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Mode-locked lasers play a crucial role in modern science and technology.
They are essential to the study of ultrafast and nonlinear optics, and they

have applications in metrology, telecommunications and imaging. Recently,
there has beeninterest in studying topological phenomenain mode-locked
lasers. From afundamental perspective, such study promises to reveal
nonlinear topological physics, and from a practical perspective it may

lead to the development of topologically protected short-pulse sources.
Despite this promising outlook, the interplay between topological photonic
lattices and laser mode-locking has not been studied experimentally. In this
work, we theoretically propose and experimentally realize a topological
temporally mode-locked laser. We demonstrate a nonlinearity-driven
non-Hermitian skin effectin alaser cavity and observe the robustness of the
laser against disorder-induced localization. Our experiments demonstrate
fundamental point-gap topological physics that was previously inaccessible
to photonics experiments, and they suggest potential applications of our
mode-locked laser to sensing, optical computing and robust topological
frequency combs. The experimental architecture employed in this work also
provides atemplate for studying topology in other mode-locked photonic
sources, including dissipative cavity solitons and synchronously pumped
optical parametric oscillators.

Over the past several years, nonlinear topological phenomena have
gained prominencein the study of topological photonics'. Experimen-
tal realizations, including nonlinear Thouless pumps?and topological
lasers®, have demonstrated that the combination of nonlinearity and
topology engenders exotic topological dynamics and may enable the
development of topologically robust photonic technologies. Moti-
vated by this success, there have been substantial effortstoincorporate
topology into highly nonlinear, mode-locked photonic sources®™,
including mode-locked lasers and dissipative cavity solitons. Theo-
retical work in this direction suggests that topological mode-locking
couldgiverise toboth exciting nonlinear physics and new topological
devices, such as fabrication-tolerant mode-locked lasers’ and topo-
logically robust frequency combs™. However, despite this promising
potential, to the best of our knowledge, photoniclattices with nontrivial

topological invariants have not been experimentally demonstratedin
mode-locked lasers.

Theoretical proposals for topological mode-locking frequently
focus on spectral mode-locking, where the amplitudes and phases of
the spectral, or longitudinal, modes of a resonator are synchronized
by a mode-locking mechanism™*, Many of these proposals incorpo-
rate topological lattices either in the form of spatially coupled reso-
nators”'* or by using frequency synthetic dimensions®’. However,
proposals for topological mode-locking in spatially coupled resonator
arraysrequire challenging fabrication processes, which may make them
difficult to realize and to scale in size. On the other hand, proposals
for topological mode-locking in frequency synthetic dimen-
sions encounter the challenges of realizing controllable boundary
conditions” and inhomogeneous couplings™, which could limit the
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Fig.1| Topological temporal mode-locking. a, The constituent elements of
temporal mode-locking. b, Ina harmonically mode-locked laser without
temporal mode-locking, the pulse-to-pulse phases may not be correlated.

¢, Intracavity couplings can lock the pulse-to-pulse amplitudes and phases
and produce synthetic temporal lattices with nontrivial topology. d, Properly

engineering the intracavity couplings can reveal non-Hermitian topological
phenomena, such as the nonlinearity-driven NHSE studied in this work. Note
that, due to the nature of dissipative couplings, Im(1) appears on the abscissa
while Re(1) appears on the ordinate". e, Schematic of the proof-of-principal
topological temporally mode-locked laser built for our experiments.

topological physics accessible to these systems. Together, these
difficulties motivate the search for an alternative approach to topo-
logical mode-locking.

In this work, we overcome the challenges of topological mode-
locking in spatial and frequency lattices by theoretically propos-
ing and experimentally demonstrating the topological tempo-
rally mode-locked laser. Unlike existing proposals, our topological
mode-locked laser leverages the flexibility of temporal synthetic dimen-
sions and relies on the principal of temporal mode-locking, where an
additional mode-locking mechanism synchronizes the amplitudes
and phases of the temporal modes (that is, pulses) in a harmonically
mode-locked laser. By engineering topological couplings between
the temporal modes that make up our synthetic lattices, we endow
our temporally mode-locked laser with nontrivial topology. Because
temporal synthetic dimensions may be used toimplement large lattice
sizes, multidimensional lattices,inhomogeneous and long-range cou-
plings and tunable boundary conditions, our experimental approach
provides a way to access a diversity of topological behaviours in our
topological mode-locked system'”s,

Here we leverage our topological temporally mode-locked laser
to demonstrate topological mode-locked lasing in point-gap non-
Hermitian topological lattices'*°. We firstidentify anonlinearity-driven
non-Hermitian skin effect? (NHSE) that arises due to the nonlocal, non-
linear dynamics of our mode-locked laser. Then we tune the boundary
conditions in our mode-locked laser to experimentally connect the
existence of a point-gap topological winding number to the exist-
ence of the NHSE?, and we experimentally observe the robustness of
the Hatano-Nelson model against disorder-induced localization?*.

Our topological temporally mode-locked laser may enable the
design of robust frequency combs, while our general temporal mode-
locking architecture may have applications to sensing and optical
computing (Supplementary Information Sections 7 and 8).

Results

Operating principle and experimental setup

Asweillustrate in Fig. 1a, a topological temporally mode-locked laser
consists of three basic elements, which are nonlocal gain saturation,
apulse formation mechanism (here, amplitude modulation) andintra-
cavity temporal couplings. A conventional harmonically mode-locked
laser possesses the first two of these elements”, which together give
rise to N evenly spaced temporal modes, or pulses, in alaser cavity.
While the amplitudes of these pulses are uniform, their phases
may drift relative to one another® (Fig. 1b). The addition of intracavity
couplings stabilizes the relative phases and amplitudes of the pulses,
giving rise to what we refer to as temporal mode-locking (Fig. 1c).
While simple implementations of temporal mode-locking have been
studied previously as a technique to suppress supermode noise in
harmonically mode-locked lasers®* %, here we show that by engineer-
ing our intracavity couplings to produce synthetic temporal topo-
logicallattices, temporal mode-locking may be used to realize complex
nonlinear topological phenomena (Fig. 1c,d).

At sufficiently low powers, where the Kerr nonlinearity may be
neglected, the dynamics of our topological temporally mode-locked
laser can qualitatively be described by amodified master equation for
active mode-locking"™. This master equation may be approximated as
atight-binding model of the form
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Fig.2|Nonlinearity-driven NHSE in a topological mode-locked laser.

a, Schematic representation of the NH-SSH domain wall implemented in our
mode-locked laser’s synthetic lattice. b, Heat map of our mode-locked laser’s
output over 500 roundtrips. The pulses are broadened for visibility. c, Mode-

locked pulse patternin our topological mode-locked laser. The data is averaged
using the procedure described in Supplementary Information Section 3. The
theory is the steady state of equation (1).
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Here, a, isthe amplitude of the nth pulse (or the nthsite of our synthetic
lattice), g(T) describes the nonlinear laser gain, g, is the small signal
gain, I"is the effective linear loss, y = Tpy/T is the ratio of the round-
trip period to the gain relaxation time, € is related to the saturation
intensity and K,L, and K,s describe nearest-neighbour couplings
between the pulses in the mode-locked laser.

From equation (1), we observe that the combined nonlinear
dynamics of the intracavity couplings and the gain saturation nonlin-
earity produce temporal mode-locking. Crucially, we assume that the
relaxation time of our gain mediumis much slower than the roundtrip
time of our laser cavity. As a result, the gain saturates only due to the
average power inour topological temporally mode-locked laser. In this
sense, the gain saturation constitutes anonlocal nonlinearity that acts
equally on all sites a,, in our temporal synthetic lattice. As we show in
Supplementary Information Section 4, the result of this nonlocal gain
saturationis to drive the pulse amplitudes a, towards the lowest-loss
eigenstate defined by the couplings K,L, and K,*}.

While equation (1) qualitatively describes the dynamics of our
topological temporally mode-locked laser at sufficiently low powers,
where the Kerr nonlinearity may be neglected, at higher intracavity
powers, the Kerr nonlinearity can introduce additional dynamics. We
consider the effect of the Kerr nonlinearity in Supplementary Informa-
tion Section 5.

Thefactthatat sufficiently low powers the steady state of our topo-
logical temporally mode-locked laser tends towards the lowest-loss
eigenstate defined by the intracavity couplings makes the topologi-
cal temporally mode-locked laser well suited to study non-Hermitian
point-gap topology. Unlike Hermitian topological lattices, point-gap
topological lattices exhibit the NHSE, where all states, including the
lowest-loss state, localize near aboundary in the system?-*’, This enables
our topological mode-locked laser to probe the existence of the
NHSE in synthetic point-gap topological lattices.

To demonstrate the interplay between point-gap topology and
topological temporal mode-locking, in Fig. 1c,d we schematically
illustrate topological temporal mode-locking with a Hatano-Nelson
lattice”**, which consists of aone-dimensional chain with asymmetric
couplings w and v. In the presence of periodic boundary conditions,
the Hatano-Nelson model exhibits a topologically nontrivial winding
around a reference point in the complex energy plane*, which can
be associated with a topological winding number 7. In this case,
we expect the temporal structure in our laser to possess uniform

amplitudes and phases because of the lattice’s translational symmetry
(Fig. 1c). On the other hand, in the presence of open boundary condi-
tions (Fig. 1e), the eigenvalues of the Hatano-Nelson model collapse
ontoaline, thelattice’s topological winding number becomes trivial"
and the mode-locked temporal structure becomes strongly localized
near the boundary. It is important to note that, although this NHSE
occurs in the topologically trivial phase, it is a distinctly topological
phenomenon, in the sense that it both guarantees and is guaranteed
by the presence of atopological invariant in the bulk lattice®.

To experimentally realize a topological temporally mode-locked
laser, we construct the system presented in Fig. 1e. This proof-of-
principle temporally mode-locked laser consists of a fibre cavity
(Txr =256 ns) and two optical delay lines, which are responsible for
implementing nearest-neighbour dissipative couplings between the
laser’s temporal modes. A commercial erbium-doped fibre amplifier
(EDFA) provides the system’s nonlocal gain saturation (Tx1/7 ~ 107,
while we sinusoidally modulate an intensity modulator in the main
cavity to generate N = 64 mode-locked pulses with widths of ~100 ps
and arepetition period of T; =4 ns. Additional intensity modulators
in the optical delay lines control the coupling strengths between
the pulses and enable us to dynamically tune both the lattice model
under study, as well as the boundary conditions of our synthetic lattice.
Notably, because each delay line controls only one direction of the
coupling between two pulses, it is straightforward to realize non-
Hermitian topological lattice models in our system".

Topological mode-locking at anon-Hermitian domain wall
To demonstrate topological temporal mode-locking, we first observe
anonlinearity-driven NHSE in a non-Hermitian Su-Schrieffer-Heeger
(NH-SSH) lattice®**". While the point-gap topological winding number
of thislatticeis trivial, the observed nonlinearity-driven NHSE arises due
to the nontrivial point-gap topology of the bulk NH-SSH lattice®. We
begin by tuning our EDFA gain to achieve asmall signal gain of -23.1 dB,
which, in the presence of the NH-SSH domain wall, results in an out-
put power of ~42 pW. At first, we operate our laser with homogeneous
nearest-neighbour couplings, so that our laser supports a train of 64
mode-locked pulses. We then switch the intracavity couplings in our
mode-locked laser to implement the NH-SSH domain wall illustrated
inFig.2a.Shortly after, the pulse patterninthelaser forms a skinmode
atthe domain wall of the synthetic NH-SSH lattice (Fig. 2a,b). While the
exact pulse pattern fluctuates slightly due to instabilities in the laser,
we find that the distribution of the pulse intensities exhibits excellent
agreement with the lowest-loss eigenstate of the theoretical NH-SSH
lattice, in accordance with equation (1).

While domain-wall skin modes have been observed previously in
linear photonic lattices***, the dynamics that drive skin mode forma-
tionin our topological mode-locked laser are unambiguously different.
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Fig.3 | Topological winding in atopological mode-locked laser. a, Mode-
locked pulse patternin a Hatano-Nelson lattice with periodic boundary
conditions. b, This lattice possesses a nontrivial topological winding number.

¢, Schematic of a Hatano-Nelson lattice with partially open boundary conditions.
The change in the eigenvalues is exaggerated for illustrative purposes.
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d, With the boundary present, we observe anascent skin mode, which provides
experimental evidence of the nontrivial topological winding number in the

bulk Hatano-Nelson lattice. The plotsinaand d are generated from the datain
Extended Data Fig. 1using the averaging procedure discussed in Supplementary
Information Section 3.

Inlinear photonics experiments, skin modes form due to random walks
on conservatively coupled lattices with asymmetric couplings. Instark
contrast, skin modes in our laser form due to the combined nonlin-
ear dynamics of our laser’s nonlocal gain saturation and dissipative,
intracavity couplings. Unlike in the linear regime, where an external
excitation is required to see skin mode formation, the nonlinear
dynamics of our system enable skin modes to form spontaneously
within our system. Moreover, while the skin modes in linear systems
inevitably decay due to intrinsic losses, the net gain in our system
supports the skin modes as long as our laser is stable. Because of
the radically different dynamics that govern the skin modes in our
system, we refer to skin mode formationin our laser as anonlinearity-
driven NHSE.

Tuning the boundary conditions of the Hatano-Nelson model
We next investigate the sensitivity of the Hatano-Nelson model
to its boundary conditions by dynamically tuning the boundary con-
ditions of the temporal synthetic lattice in our topological mode-
locked laser. As the occurrence of the NHSE both guarantees and is
guaranteed by the existence of a nontrivial topological winding num-
ber?, this experiment confirms the existence of anontrivial topological
winding number in our Hatano-Nelson lattice with periodicboundary
conditions.

We first tune our EDFA to operate with a small signal gain of
~22.2 dB, and we program our delay line couplings to implement the
Hatano-Nelson model with w/v = /2 and periodic boundary condi-
tions (Fig. 3b). In this case, our laser emits a uniform pulse train, as we
would expect from translation symmetry (Fig. 3a). Next, we dynami-
callyreducethe coupling atthe boundary of the Hatano-Nelson lattice
(Fig. 3¢). After a series of relaxation oscillations, the pulse patternin
the laser localizes near the new boundary (Fig. 3d). While the finite
extinctionratio of our delay line intensity modulators prevents us from
achieving perfect open boundary conditions, the observed nascent
skin mode presages the skin mode that emerges in the presence
of perfect open boundary conditions. From this nascent skin mode,
we conclude that the Hatano-Nelson lattice implemented with periodic
boundary conditionsin our topological temporally mode-locked laser
possesses a nontrivial topological winding number.

The sensitivity of point-gap topological lattices to their bound-
ary conditions is a key feature of systems like the Hatano-Nelson
model. However, previous photonic architectures, whether in the
spatial**, frequency®, or temporal domains***, have not demon-
strated the control necessary to dynamically introduce a boundary
inaperiodiclattice. The fact that we canaccomplish this in our topo-
logical temporally mode-locked laser highlights the fact that, in addi-
tion to producing a nonlinearity-driven skin effect, our topological
temporally mode-locked laser enables the study of fundamental
non-Hermitian topology that has not been realized on existing
photonic platforms. Moreover, the observed sensitivity of our laser’s
pulse pattern to the boundary conditions of the Hatano-Nelson
model suggests the possibility that our temporally mode-locked laser
may be used for sensing. We explore this possibility in Supplementary
Information Section 8.

Robustness of the Hatano-Nelson model
Having established that the Hatano-Nelson lattice exhibits a non-
trivial topological invariant in our mode-locked laser, we next verify
that it exhibits robustness against disorder. Unlike trivial Hermitian
one-dimensionallattices, where any degree of disorder causeslocaliza-
tion in the thermodynamic limit***’, the Hatano-Nelson model displays
robustness against disorder-induced localization?. It is believed that
thisrobustness originates from the Hatano-Nelson model’s nontrivial
topology”. Inthe present experiments, we observe the Hatano-Nelson
model’s robustness against disorder-induced localization and verify
thatitoccursinthe presence of anontrivial topological invariant (Fig. 4).
Webegin by programming the couplings of our laser to implement
the Hatano-Nelson model with periodic boundary conditions and
w/v = \/2, and we add non-Hermitian coupling disorder distributed
according to Unif(0, 0.2w) to each direction of each coupling (Fig. 4a).
In the presence of this strong disorder, we observe that the resulting
pulse pattern in our mode-locked laser is nonuniform but still distri-
buted throughout the lattice. We then introduce a boundary into
the Hatano-Nelson lattice (Fig. 4b). In the presence of the boundary,
the pulse patternin the laser forms a nascent skin mode, which estab-
lishes that the disordered Hatano-Nelson lattice with periodic
boundary conditions still possesses a nontrivial winding number.
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Fig. 4 | Robustness against disorder-induced localization. a, Mode-locked
pulse pattern of a disordered Hatano-Nelson lattice with periodic boundary
conditions. b, Anascent skin mode emerges uponintroducing aboundary in
the Hatano-Nelson lattice, which provides evidence of the system'’s robustness
against disorder-induced localization. ¢, Mode-locked pulse patternina
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disordered trivial lattice with periodic boundary conditions. d, The pulse pattern
is essentially unchanged in the corresponding lattice with aboundary. In the
lattice schematics depictedina, b,cand d, §,and 6, represent the addition of the
non-Hermitian coupling disorder described in the text. The pulsesina,b,candd
arebroadened forimproved visibility.

Moreover, itis known that this sensitivity of the Hatano-Nelson model
to the boundary conditions is an indication that the system with
periodic boundary conditions isin a delocalized phase**,

To contrast the behaviour of the disordered Hatano-Nelson
lattice with that of a trivial lattice, we repeat the experiment above
with a trivial Hermitian lattice. In this case, we find that, barring finite
size effects (Supplementary Information Section 6), the pulse pattern
observedinour mode-locked laser appears nearly identicalinboth the
periodiclatticeand inthe lattice with aboundary (Figs. 4c,d). Thelack
of this system’s sensitivity to the boundary conditionsindicates that it
has entered alocalized phase.

Our robustness measurementis notable in several ways. First, the
robustness of the Hatano-Nelson model’s topological phase has not
been demonstrated before in photonic systems, as previous photonic
studies of point-gap topology have not implemented the Hatano-
Nelson lattice with periodic boundary conditions. Second, our
robustness measurement utilizes off-diagonal non-Hermitian disor-
der. Given recent theoretical interest in non-Hermitian disorder®**
and recent photonic demonstrations of diagonal non-Hermitian
disorder*®*, our realization of off-diagonal non-Hermitian disorder
provides an exciting direction for future study. Finally, the robustness
ofthe Hatano-Nelson lattice in our laser may provide a path for realiz-
ingrobust topological frequency combs. We investigate this possibility
in Supplementary Information Section 7.

Phase synchronization
Up to this point, our measurements have focused on the intensity
patterns that form in our topological temporally mode-locked laser.
However, equation (1) predicts that the temporal couplings in our
laser should determine therelative phases of the pulsesin our laser, in
addition to their relative amplitudes. To verify this, we construct a
topological temporally mode-locked laser that supports 69 pulses
separated by Tp, = 8 ns. The system possesses asingle +Ty, delay line,
which enables the topological temporally mode-locked laser toimple-
ment unidirectional Hatano-Nelson couplings with periodicboundary
conditions. We send the output of this laser to the optical hybrid setup
depicted in Fig. 5a, which measures the relative phases between each
pulse and its nearest neighbours in the mode-locked laser.

To begin our experiments, we first disconnect the +Tg, delay
line and operate our system as a traditional harmonically mode-
locked laser without temporal couplings. In this case, we expect

each pulse in our mode-locked laser to form independently, and we
expect the pulse-to-pulse phases to be uncorrelated. Indeed, while
theamplitudes of the measured pulses are relatively uniform (Fig. 5b),
the pulse-to-pulse phases appear to vary randomly (Fig. 5¢). This
situation changes dramatically once we reconnect the + Ty, delay line.
Inthe presence of the topological temporal couplings, the measured
pulse amplitudes remain relatively uniform, but now the pulse-to-pulse
phases become synchronized, as we would expect from equation (1).
This verifies that topological temporal mode-locking controls the
pulse-to-pulse phases of a pulse train, in addition to the pulse-to-pulse
amplitudes.

Outlook

In summary, we have theoretically proposed and experimentally
demonstrated the topological temporally mode-locked laser. Our
demonstration overcomes the challenges faced by many of the
existing theoretical proposals for topological mode-locking by uti-
lizing temporal synthetic dimensions and the principal of temporal
mode-locking. We use our topological mode-locked laser to study
anovel nonlinearity-driven NHSE and to study the Hatano-Nelson
model under different boundary conditions. We verify the existence
of the Hatano-Nelson model’s nontrivial topological invariant in our
laser, and we observe this model’s robustness against disorder-induced
localization.

Our observation that the pulse pattern in our laser is sensitive
to the boundary conditions of the Hatano-Nelson model suggests
our laser may find use as a sensor, while our topological robustness
measurement suggests that topological temporal mode-locking may
provide a route to build topologically robust frequency combs. We
explore these potential applications in Supplementary Information
Sections 7 and 8. Moreover, the fact that we can measure pulse pat-
terns that agree well with the predictions of equation (1) suggests that
our temporally mode-locked laser may also provide a mechanism to
physically compute eigenvectors.

Beyond these potential applications, the temporal mode-locking
architecture demonstrated in this work provides promising directions
for future work innonlinear topological photonics. Dueto the flexibility
of our intracavity couplings, our temporally mode-locked laser may
be adapted to study exciting phenomena such as higher-dimensional
NHSEs*, point-gap topological models with long-range couplings™
and non-Hermitian topological Andersoninsulators*. Moreover, this
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same architecture may also be adapted to study topology in other
mode-locked photonic sources, including synchronously pumped
optical parametric oscillators**~*° and dissipative Kerr cavities*®.
In future work, we will investigate topological phenomena in these
other mode-locked photonic sources.
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Methods

Experimental setup and calibration

As is shown in Fig. 1e, the topological temporally mode-locked laser
studied in this work consists of a main laser cavity and two optical
delay lines, which are responsible for introducing nearest-neighbour
intracavity couplings between the pulses in the laser. We construct
each path from polarization-maintaining patch cables and discrete
optical components, which are all terminated in FC/APC connectors
to minimize back-reflections. The main cavity contains an EDFA and
an intensity modulator, which together produce pulses in the laser
cavity. Each of the delay lines also possesses an intensity modula-
tor, which provides reconfigurable pulse-to-pulse control over the
intracavity couplings in our laser. The other elements in our tempo-
rally mode-locked laser are discussed in Supplementary Informa-
tion Section 1, where we present a more detailed schematic of our
experimental setup.

We calibrate the intracavity couplings in our laser using a
multistep procedure. In the first step, we operate below threshold
and inject pulses from an auxiliary mode-locked laser, which has
thesamerepetition period as our temporally mode-locked laser, into
our laser cavity. We first use these auxiliary pulses to set the length of
the main cavity and to synchronize the lengths of the main cavity and
the delay lines. Then, we disconnect the feedback in the main cavity
path and, one at a time, analyse the throughput of the optical delay
lines on afast photodetector. We send aburst of constant amplitude
pulses through the delay lines and apply an RF voltage sweep to the
intensity modulators. We use the observed photodetector signal to
plot the throughput optical power as a function of the RF voltage,
and from this curve we generate preliminary coupling waveforms
for our experiments.

We next attempt to overlap the positions of the pulses gener-
ated in our laser cavity with those of the auxiliary pulses injected
into the cavity. Still operating below the threshold, we use a10 MHz
reference from our auxiliary mode-locked laser as a clock for the RF
function generator that drives the main cavity’s intensity modula-
tor. We then set the frequency of the function generator’s sinu-
soidal output to be the same as that of the auxiliary mode-locked
laser. Finally, we use an RF phase shifter to adjust the phase of the
amplitude modulation in the main cavity until we minimize the
loss experienced by the auxiliary pulses as they resonate within
the cavity. By doing this, our goal is that the pulses generated in our
laser will localize in the positions occupied by the auxiliary pulses
and therefore experience the same intensity modulator response
functionsin the delay lines.

The next step in our calibration procedure is to verify that our
calibration remains valid once we bring our laser above threshold. To
dothis, we remove the auxiliary pulses and disconnect the delay lines
sothattheynolonger coupleback to the main cavity. We bring the laser
above threshold, and we tune the length of the main cavity slightly until
we observe a stable pulse train. We apply our preliminary coupling
waveforms to the delay line intensity modulators, and, one at a time,
welook atthe throughput of the delay lines on afast photodetector. If
the throughput does not agree with the expected couplings, we tune
the positions of the optical pulses with our RF phase shifter until the
agreement with the desired couplingsimproves. If small discrepancies
persist after this tuning, we manually update the coupling waveform
to achieve the desired delay line throughput.

Experimental procedure

To begin our experiments, we first block the free space delays in the
two delay lines, and we bring just the main cavity above threshold. We
then tune the length of the main cavity and the gain of the EDFA until
we observe a train of uniformly spaced mode-locked pulses. We then
unblock one delay line atatime, and we attempt to lock the delay lines
to constructive interference with the main cavity. After this, we utilize

thefactthatourlaser’s threshold is lower with the delay line couplings
present to reduce the gain of the EDFA. By reducing the EDFA gain,
we aim to reduce the effect of the Kerr nonlinearity on the observed
mode-locked pulse patterns.

At this point, our delay lines implement constant, nearest-
neighbour couplings between the pulses. However, while the cou-
plings are constant, they need not be Hermitian. When studying
the Hatano-Nelson lattice under different boundary conditions, we
finditconvenient to tune the coupling strengthinone delay linetobe
greater thanthatinthe other, so that we implement the Hatano-Nelson
model with periodic boundary conditions uponinitializing our laser.
We can then produce a boundary in this Hatano-Nelson lattice by
reducing the coupling between two pulses with our delay line intensity
modulators.

After initializing our laser with constant, nearest-neighbour
couplings, we abruptly modify the coupling waveforms applied to the
delay lineintensity modulators toimplement the desired lattice model.
We implement these couplings for several minutes at a time, and we
detect the pulse patternemitted by our laser witha fast photodetector.
We observe this pulse pattern on afast oscilloscope along with an aux-
iliary signal that allows us to establish the position of the pulse pattern
inthelaser’s synthetic lattice. We describe this positioning procedure
inthe Supplementary Information Section 3.

Data availability
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Extended Data Fig.1| Topological Temporal Mode-Locking With a Hatano- thelaser’s couplings implement aboundary in the Hatano-Nelson lattice. The
Nelson Lattice. (a) Heat map of our mode-locked laser’s output for 500 dataused to generate the heat maps in (a) and (b) are also used to generate the
roundtrips. Here our laser’s intracavity couplings implement the Hatano-Nelson plots in Fig. 3. Note that the pulses in these heat maps are broadened for visibility.

model with periodic boundary conditions. (b) A similar heat map, but now where
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