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Topological temporally mode-locked laser
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Mode-locked lasers play a crucial role in modern science and technology. 
They are essential to the study of ultrafast and nonlinear optics, and they 
have applications in metrology, telecommunications and imaging. Recently, 
there has been interest in studying topological phenomena in mode-locked 
lasers. From a fundamental perspective, such study promises to reveal 
nonlinear topological physics, and from a practical perspective it may 
lead to the development of topologically protected short-pulse sources. 
Despite this promising outlook, the interplay between topological photonic 
lattices and laser mode-locking has not been studied experimentally. In this 
work, we theoretically propose and experimentally realize a topological 
temporally mode-locked laser. We demonstrate a nonlinearity-driven 
non-Hermitian skin effect in a laser cavity and observe the robustness of the 
laser against disorder-induced localization. Our experiments demonstrate 
fundamental point-gap topological physics that was previously inaccessible 
to photonics experiments, and they suggest potential applications of our 
mode-locked laser to sensing, optical computing and robust topological 
frequency combs. The experimental architecture employed in this work also 
provides a template for studying topology in other mode-locked photonic 
sources, including dissipative cavity solitons and synchronously pumped 
optical parametric oscillators.

Over the past several years, nonlinear topological phenomena have 
gained prominence in the study of topological photonics1. Experimen-
tal realizations, including nonlinear Thouless pumps2 and topological 
lasers3–5, have demonstrated that the combination of nonlinearity and 
topology engenders exotic topological dynamics and may enable the 
development of topologically robust photonic technologies. Moti-
vated by this success, there have been substantial efforts to incorporate  
topology into highly nonlinear, mode-locked photonic sources6–11, 
including mode-locked lasers and dissipative cavity solitons. Theo-
retical work in this direction suggests that topological mode-locking 
could give rise to both exciting nonlinear physics and new topological 
devices, such as fabrication-tolerant mode-locked lasers7 and topo-
logically robust frequency combs12. However, despite this promising 
potential, to the best of our knowledge, photonic lattices with nontrivial 

topological invariants have not been experimentally demonstrated in 
mode-locked lasers.

Theoretical proposals for topological mode-locking frequently 
focus on spectral mode-locking, where the amplitudes and phases of 
the spectral, or longitudinal, modes of a resonator are synchronized 
by a mode-locking mechanism13,14. Many of these proposals incorpo-
rate topological lattices either in the form of spatially coupled reso-
nators9,10,12 or by using frequency synthetic dimensions6,7. However, 
proposals for topological mode-locking in spatially coupled resonator 
arrays require challenging fabrication processes, which may make them 
difficult to realize and to scale in size. On the other hand, proposals  
for topological mode-locking in frequency synthetic dimen-
sions encounter the challenges of realizing controllable boundary  
conditions15 and inhomogeneous couplings16, which could limit the 
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Our topological temporally mode-locked laser may enable the  
design of robust frequency combs, while our general temporal mode- 
locking architecture may have applications to sensing and optical 
computing (Supplementary Information Sections 7 and 8).

Results
Operating principle and experimental setup
As we illustrate in Fig. 1a, a topological temporally mode-locked laser 
consists of three basic elements, which are nonlocal gain saturation, 
a pulse formation mechanism (here, amplitude modulation) and intra-
cavity temporal couplings. A conventional harmonically mode-locked 
laser possesses the first two of these elements13, which together give 
rise to N  evenly spaced temporal modes, or pulses, in a laser cavity. 
While the amplitudes of these pulses are uniform, their phases  
may drift relative to one another25 (Fig. 1b). The addition of intracavity 
couplings stabilizes the relative phases and amplitudes of the pulses, 
giving rise to what we refer to as temporal mode-locking (Fig. 1c).  
While simple implementations of temporal mode-locking have been 
studied previously as a technique to suppress supermode noise in 
harmonically mode-locked lasers25–28, here we show that by engineer-
ing our intracavity couplings to produce synthetic temporal topo-
logical lattices, temporal mode-locking may be used to realize complex 
nonlinear topological phenomena (Fig. 1c,d).

At sufficiently low powers, where the Kerr nonlinearity may be 
neglected, the dynamics of our topological temporally mode-locked 
laser can qualitatively be described by a modified master equation for 
active mode-locking13. This master equation may be approximated as 
a tight-binding model of the form

topological physics accessible to these systems. Together, these  
difficulties motivate the search for an alternative approach to topo-
logical mode-locking.

In this work, we overcome the challenges of topological mode- 
locking in spatial and frequency lattices by theoretically propos-
ing and experimentally demonstrating the topological tempo-
rally mode-locked laser. Unlike existing proposals, our topological 
mode-locked laser leverages the flexibility of temporal synthetic dimen-
sions and relies on the principal of temporal mode-locking, where an 
additional mode-locking mechanism synchronizes the amplitudes 
and phases of the temporal modes (that is, pulses) in a harmonically 
mode-locked laser. By engineering topological couplings between 
the temporal modes that make up our synthetic lattices, we endow 
our temporally mode-locked laser with nontrivial topology. Because 
temporal synthetic dimensions may be used to implement large lattice 
sizes, multidimensional lattices, inhomogeneous and long-range cou-
plings and tunable boundary conditions, our experimental approach 
provides a way to access a diversity of topological behaviours in our 
topological mode-locked system17,18.

Here we leverage our topological temporally mode-locked laser 
to demonstrate topological mode-locked lasing in point-gap non- 
Hermitian topological lattices19,20. We first identify a nonlinearity-driven 
non-Hermitian skin effect21 (NHSE) that arises due to the nonlocal, non-
linear dynamics of our mode-locked laser. Then we tune the boundary 
conditions in our mode-locked laser to experimentally connect the 
existence of a point-gap topological winding number to the exist-
ence of the NHSE22, and we experimentally observe the robustness of 
the Hatano–Nelson model against disorder-induced localization23,24.  
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Fig. 1 | Topological temporal mode-locking. a, The constituent elements of 
temporal mode-locking. b, In a harmonically mode-locked laser without 
temporal mode-locking, the pulse-to-pulse phases may not be correlated.  
c, Intracavity couplings can lock the pulse-to-pulse amplitudes and phases  
and produce synthetic temporal lattices with nontrivial topology. d, Properly 

engineering the intracavity couplings can reveal non-Hermitian topological 
phenomena, such as the nonlinearity-driven NHSE studied in this work. Note 
that, due to the nature of dissipative couplings, Im(λ) appears on the abscissa 
while Re(λ) appears on the ordinate17. e, Schematic of the proof-of-principal 
topological temporally mode-locked laser built for our experiments.
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Here, an is the amplitude of the nth pulse (or the nth site of our synthetic 
lattice), g(T ) describes the nonlinear laser gain, g0 is the small signal 
gain, Γ  is the effective linear loss, γ = TRT/τ  is the ratio of the round
trip period to the gain relaxation time, ϵ is related to the saturation 
intensity and K L

n  and K R
n  describe nearest-neighbour couplings  

between the pulses in the mode-locked laser.
From equation (1), we observe that the combined nonlinear 

dynamics of the intracavity couplings and the gain saturation nonlin-
earity produce temporal mode-locking. Crucially, we assume that the 
relaxation time of our gain medium is much slower than the roundtrip 
time of our laser cavity. As a result, the gain saturates only due to the 
average power in our topological temporally mode-locked laser. In this 
sense, the gain saturation constitutes a nonlocal nonlinearity that acts 
equally on all sites an in our temporal synthetic lattice. As we show in 
Supplementary Information Section 4, the result of this nonlocal gain 
saturation is to drive the pulse amplitudes an towards the lowest-loss 
eigenstate defined by the couplings K L

n and K R
n.

While equation (1) qualitatively describes the dynamics of our 
topological temporally mode-locked laser at sufficiently low powers, 
where the Kerr nonlinearity may be neglected, at higher intracavity 
powers, the Kerr nonlinearity can introduce additional dynamics. We 
consider the effect of the Kerr nonlinearity in Supplementary Informa-
tion Section 5.

The fact that at sufficiently low powers the steady state of our topo-
logical temporally mode-locked laser tends towards the lowest-loss 
eigenstate defined by the intracavity couplings makes the topologi-
cal temporally mode-locked laser well suited to study non-Hermitian 
point-gap topology. Unlike Hermitian topological lattices, point-gap 
topological lattices exhibit the NHSE, where all states, including the 
lowest-loss state, localize near a boundary in the system21,29. This enables  
our topological mode-locked laser to probe the existence of the  
NHSE in synthetic point-gap topological lattices.

To demonstrate the interplay between point-gap topology and 
topological temporal mode-locking, in Fig. 1c,d we schematically 
illustrate topological temporal mode-locking with a Hatano–Nelson 
lattice23,24, which consists of a one-dimensional chain with asymmetric 
couplings w and v. In the presence of periodic boundary conditions, 
the Hatano–Nelson model exhibits a topologically nontrivial winding 
around a reference point in the complex energy plane20, which can  
be associated with a topological winding number 𝒲𝒲 . In this case,  
we expect the temporal structure in our laser to possess uniform  

amplitudes and phases because of the lattice’s translational symmetry 
(Fig. 1c). On the other hand, in the presence of open boundary condi-
tions (Fig. 1e), the eigenvalues of the Hatano–Nelson model collapse 
onto a line, the lattice’s topological winding number becomes trivial19 
and the mode-locked temporal structure becomes strongly localized 
near the boundary. It is important to note that, although this NHSE 
occurs in the topologically trivial phase, it is a distinctly topological 
phenomenon, in the sense that it both guarantees and is guaranteed 
by the presence of a topological invariant in the bulk lattice22.

To experimentally realize a topological temporally mode-locked 
laser, we construct the system presented in Fig. 1e. This proof-of- 
principle temporally mode-locked laser consists of a fibre cavity 
(TRT = 256 ns) and two optical delay lines, which are responsible for 
implementing nearest-neighbour dissipative couplings between the 
laser’s temporal modes. A commercial erbium-doped fibre amplifier 
(EDFA) provides the system’s nonlocal gain saturation (TRT/τ ≈ 10−5), 
while we sinusoidally modulate an intensity modulator in the main 
cavity to generate N = 64 mode-locked pulses with widths of ~100 ps 
and a repetition period of TR = 4 ns. Additional intensity modulators  
in the optical delay lines control the coupling strengths between  
the pulses and enable us to dynamically tune both the lattice model 
under study, as well as the boundary conditions of our synthetic lattice. 
Notably, because each delay line controls only one direction of the 
coupling between two pulses, it is straightforward to realize non- 
Hermitian topological lattice models in our system17.

Topological mode-locking at a non-Hermitian domain wall
To demonstrate topological temporal mode-locking, we first observe 
a nonlinearity-driven NHSE in a non-Hermitian Su-Schrieffer-Heeger 
(NH-SSH) lattice30,31. While the point-gap topological winding number 
of this lattice is trivial, the observed nonlinearity-driven NHSE arises due 
to the nontrivial point-gap topology of the bulk NH-SSH lattice32. We 
begin by tuning our EDFA gain to achieve a small signal gain of ~23.1 dB, 
which, in the presence of the NH-SSH domain wall, results in an out-
put power of ~42 μW. At first, we operate our laser with homogeneous 
nearest-neighbour couplings, so that our laser supports a train of 64 
mode-locked pulses. We then switch the intracavity couplings in our 
mode-locked laser to implement the NH-SSH domain wall illustrated 
in Fig. 2a. Shortly after, the pulse pattern in the laser forms a skin mode 
at the domain wall of the synthetic NH-SSH lattice (Fig. 2a,b). While the 
exact pulse pattern fluctuates slightly due to instabilities in the laser, 
we find that the distribution of the pulse intensities exhibits excellent 
agreement with the lowest-loss eigenstate of the theoretical NH-SSH 
lattice, in accordance with equation (1).

While domain-wall skin modes have been observed previously in 
linear photonic lattices32,33, the dynamics that drive skin mode forma-
tion in our topological mode-locked laser are unambiguously different. 
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Fig. 2 | Nonlinearity-driven NHSE in a topological mode-locked laser.  
a, Schematic representation of the NH-SSH domain wall implemented in our 
mode-locked laser’s synthetic lattice. b, Heat map of our mode-locked laser’s 
output over 500 roundtrips. The pulses are broadened for visibility. c, Mode-

locked pulse pattern in our topological mode-locked laser. The data is averaged 
using the procedure described in Supplementary Information Section 3. The 
theory is the steady state of equation (1).
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In linear photonics experiments, skin modes form due to random walks 
on conservatively coupled lattices with asymmetric couplings. In stark 
contrast, skin modes in our laser form due to the combined nonlin-
ear dynamics of our laser’s nonlocal gain saturation and dissipative, 
intracavity couplings. Unlike in the linear regime, where an external  
excitation is required to see skin mode formation, the nonlinear  
dynamics of our system enable skin modes to form spontaneously 
within our system. Moreover, while the skin modes in linear systems 
inevitably decay due to intrinsic losses, the net gain in our system  
supports the skin modes as long as our laser is stable. Because of  
the radically different dynamics that govern the skin modes in our 
system, we refer to skin mode formation in our laser as a nonlinearity- 
driven NHSE.

Tuning the boundary conditions of the Hatano–Nelson model
We next investigate the sensitivity of the Hatano–Nelson model  
to its boundary conditions by dynamically tuning the boundary con-
ditions of the temporal synthetic lattice in our topological mode- 
locked laser. As the occurrence of the NHSE both guarantees and is 
guaranteed by the existence of a nontrivial topological winding num-
ber22, this experiment confirms the existence of a nontrivial topological 
winding number in our Hatano–Nelson lattice with periodic boundary 
conditions.

We first tune our EDFA to operate with a small signal gain of 
~22.2 dB, and we program our delay line couplings to implement the 
Hatano–Nelson model with w/v = √2 and periodic boundary condi-
tions (Fig. 3b). In this case, our laser emits a uniform pulse train, as we 
would expect from translation symmetry (Fig. 3a). Next, we dynami-
cally reduce the coupling at the boundary of the Hatano–Nelson lattice 
(Fig. 3c). After a series of relaxation oscillations, the pulse pattern in 
the laser localizes near the new boundary (Fig. 3d). While the finite 
extinction ratio of our delay line intensity modulators prevents us from 
achieving perfect open boundary conditions, the observed nascent 
skin mode presages the skin mode that emerges in the presence  
of perfect open boundary conditions. From this nascent skin mode, 
we conclude that the Hatano–Nelson lattice implemented with periodic 
boundary conditions in our topological temporally mode-locked laser 
possesses a nontrivial topological winding number.

The sensitivity of point-gap topological lattices to their bound-
ary conditions is a key feature of systems like the Hatano–Nelson 
model. However, previous photonic architectures, whether in the 
spatial34, frequency35, or temporal domains32,33, have not demon-
strated the control necessary to dynamically introduce a boundary  
in a periodic lattice. The fact that we can accomplish this in our topo-
logical temporally mode-locked laser highlights the fact that, in addi-
tion to producing a nonlinearity-driven skin effect, our topological  
temporally mode-locked laser enables the study of fundamental 
non-Hermitian topology that has not been realized on existing  
photonic platforms. Moreover, the observed sensitivity of our laser’s 
pulse pattern to the boundary conditions of the Hatano–Nelson 
model suggests the possibility that our temporally mode-locked laser 
may be used for sensing. We explore this possibility in Supplementary 
Information Section 8.

Robustness of the Hatano–Nelson model
Having established that the Hatano–Nelson lattice exhibits a non-
trivial topological invariant in our mode-locked laser, we next verify 
that it exhibits robustness against disorder. Unlike trivial Hermitian 
one-dimensional lattices, where any degree of disorder causes localiza-
tion in the thermodynamic limit36,37, the Hatano–Nelson model displays 
robustness against disorder-induced localization24. It is believed that 
this robustness originates from the Hatano–Nelson model’s nontrivial 
topology19. In the present experiments, we observe the Hatano–Nelson 
model’s robustness against disorder-induced localization and verify 
that it occurs in the presence of a nontrivial topological invariant (Fig. 4).

We begin by programming the couplings of our laser to implement 
the Hatano–Nelson model with periodic boundary conditions and 
w/v = √2, and we add non-Hermitian coupling disorder distributed  
according to Unif(0,0.2w) to each direction of each coupling (Fig. 4a). 
In the presence of this strong disorder, we observe that the resulting 
pulse pattern in our mode-locked laser is nonuniform but still distri
buted throughout the lattice. We then introduce a boundary into  
the Hatano–Nelson lattice (Fig. 4b). In the presence of the boundary, 
the pulse pattern in the laser forms a nascent skin mode, which estab-
lishes that the disordered Hatano–Nelson lattice with periodic  
boundary conditions still possesses a nontrivial winding number. 
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Fig. 3 | Topological winding in a topological mode-locked laser. a, Mode-
locked pulse pattern in a Hatano–Nelson lattice with periodic boundary 
conditions. b, This lattice possesses a nontrivial topological winding number.  
c, Schematic of a Hatano–Nelson lattice with partially open boundary conditions. 
The change in the eigenvalues is exaggerated for illustrative purposes.  

d, With the boundary present, we observe a nascent skin mode, which provides 
experimental evidence of the nontrivial topological winding number in the 
bulk Hatano–Nelson lattice. The plots in a and d are generated from the data in 
Extended Data Fig. 1 using the averaging procedure discussed in Supplementary 
Information Section 3.
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Moreover, it is known that this sensitivity of the Hatano–Nelson model 
to the boundary conditions is an indication that the system with  
periodic boundary conditions is in a delocalized phase23,24.

To contrast the behaviour of the disordered Hatano–Nelson  
lattice with that of a trivial lattice, we repeat the experiment above 
with a trivial Hermitian lattice. In this case, we find that, barring finite 
size effects (Supplementary Information Section 6), the pulse pattern 
observed in our mode-locked laser appears nearly identical in both the 
periodic lattice and in the lattice with a boundary (Figs. 4c,d). The lack 
of this system’s sensitivity to the boundary conditions indicates that it 
has entered a localized phase.

Our robustness measurement is notable in several ways. First, the 
robustness of the Hatano–Nelson model’s topological phase has not 
been demonstrated before in photonic systems, as previous photonic 
studies of point-gap topology have not implemented the Hatano– 
Nelson lattice with periodic boundary conditions. Second, our  
robustness measurement utilizes off-diagonal non-Hermitian disor-
der. Given recent theoretical interest in non-Hermitian disorder38,39 
and recent photonic demonstrations of diagonal non-Hermitian  
disorder40,41, our realization of off-diagonal non-Hermitian disorder 
provides an exciting direction for future study. Finally, the robustness 
of the Hatano–Nelson lattice in our laser may provide a path for realiz-
ing robust topological frequency combs. We investigate this possibility 
in Supplementary Information Section 7.

Phase synchronization
Up to this point, our measurements have focused on the intensity  
patterns that form in our topological temporally mode-locked laser. 
However, equation (1) predicts that the temporal couplings in our  
laser should determine the relative phases of the pulses in our laser, in 
addition to their relative amplitudes. To verify this, we construct a 
topological temporally mode-locked laser that supports 69 pulses 
separated by TR2 = 8 ns. The system possesses a single +TR2 delay line, 
which enables the topological temporally mode-locked laser to imple-
ment unidirectional Hatano–Nelson couplings with periodic boundary 
conditions. We send the output of this laser to the optical hybrid setup 
depicted in Fig. 5a, which measures the relative phases between each 
pulse and its nearest neighbours in the mode-locked laser.

To begin our experiments, we first disconnect the +TR2 delay  
line and operate our system as a traditional harmonically mode- 
locked laser without temporal couplings. In this case, we expect  

each pulse in our mode-locked laser to form independently, and we 
expect the pulse-to-pulse phases to be uncorrelated. Indeed, while  
the amplitudes of the measured pulses are relatively uniform (Fig. 5b), 
the pulse-to-pulse phases appear to vary randomly (Fig. 5c). This  
situation changes dramatically once we reconnect the +TR2 delay line. 
In the presence of the topological temporal couplings, the measured 
pulse amplitudes remain relatively uniform, but now the pulse-to-pulse 
phases become synchronized, as we would expect from equation (1). 
This verifies that topological temporal mode-locking controls the 
pulse-to-pulse phases of a pulse train, in addition to the pulse-to-pulse 
amplitudes.

Outlook
In summary, we have theoretically proposed and experimentally 
demonstrated the topological temporally mode-locked laser. Our 
demonstration overcomes the challenges faced by many of the 
existing theoretical proposals for topological mode-locking by uti-
lizing temporal synthetic dimensions and the principal of temporal 
mode-locking. We use our topological mode-locked laser to study 
a novel nonlinearity-driven NHSE and to study the Hatano–Nelson 
model under different boundary conditions. We verify the existence 
of the Hatano–Nelson model’s nontrivial topological invariant in our 
laser, and we observe this model’s robustness against disorder-induced 
localization.

Our observation that the pulse pattern in our laser is sensitive 
to the boundary conditions of the Hatano–Nelson model suggests 
our laser may find use as a sensor, while our topological robustness 
measurement suggests that topological temporal mode-locking may 
provide a route to build topologically robust frequency combs. We 
explore these potential applications in Supplementary Information 
Sections 7 and 8. Moreover, the fact that we can measure pulse pat-
terns that agree well with the predictions of equation (1) suggests that 
our temporally mode-locked laser may also provide a mechanism to 
physically compute eigenvectors.

Beyond these potential applications, the temporal mode-locking 
architecture demonstrated in this work provides promising directions 
for future work in nonlinear topological photonics. Due to the flexibility 
of our intracavity couplings, our temporally mode-locked laser may 
be adapted to study exciting phenomena such as higher-dimensional 
NHSEs42, point-gap topological models with long-range couplings35 
and non-Hermitian topological Anderson insulators41. Moreover, this 
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same architecture may also be adapted to study topology in other 
mode-locked photonic sources, including synchronously pumped 
optical parametric oscillators43–45 and dissipative Kerr cavities46.  
In future work, we will investigate topological phenomena in these 
other mode-locked photonic sources.
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Methods
Experimental setup and calibration
As is shown in Fig. 1e, the topological temporally mode-locked laser 
studied in this work consists of a main laser cavity and two optical 
delay lines, which are responsible for introducing nearest-neighbour 
intracavity couplings between the pulses in the laser. We construct 
each path from polarization-maintaining patch cables and discrete 
optical components, which are all terminated in FC/APC connectors 
to minimize back-reflections. The main cavity contains an EDFA and 
an intensity modulator, which together produce pulses in the laser 
cavity. Each of the delay lines also possesses an intensity modula-
tor, which provides reconfigurable pulse-to-pulse control over the 
intracavity couplings in our laser. The other elements in our tempo-
rally mode-locked laser are discussed in Supplementary Informa-
tion Section 1, where we present a more detailed schematic of our 
experimental setup.

We calibrate the intracavity couplings in our laser using a  
multistep procedure. In the first step, we operate below threshold 
and inject pulses from an auxiliary mode-locked laser, which has  
the same repetition period as our temporally mode-locked laser, into 
our laser cavity. We first use these auxiliary pulses to set the length of 
the main cavity and to synchronize the lengths of the main cavity and 
the delay lines. Then, we disconnect the feedback in the main cavity 
path and, one at a time, analyse the throughput of the optical delay 
lines on a fast photodetector. We send a burst of constant amplitude 
pulses through the delay lines and apply an RF voltage sweep to the 
intensity modulators. We use the observed photodetector signal to 
plot the throughput optical power as a function of the RF voltage, 
and from this curve we generate preliminary coupling waveforms 
for our experiments.

We next attempt to overlap the positions of the pulses gener-
ated in our laser cavity with those of the auxiliary pulses injected 
into the cavity. Still operating below the threshold, we use a 10 MHz 
reference from our auxiliary mode-locked laser as a clock for the RF 
function generator that drives the main cavity’s intensity modula-
tor. We then set the frequency of the function generator’s sinu-
soidal output to be the same as that of the auxiliary mode-locked 
laser. Finally, we use an RF phase shifter to adjust the phase of the 
amplitude modulation in the main cavity until we minimize the 
loss experienced by the auxiliary pulses as they resonate within 
the cavity. By doing this, our goal is that the pulses generated in our 
laser will localize in the positions occupied by the auxiliary pulses 
and therefore experience the same intensity modulator response 
functions in the delay lines.

The next step in our calibration procedure is to verify that our 
calibration remains valid once we bring our laser above threshold. To 
do this, we remove the auxiliary pulses and disconnect the delay lines 
so that they no longer couple back to the main cavity. We bring the laser 
above threshold, and we tune the length of the main cavity slightly until 
we observe a stable pulse train. We apply our preliminary coupling 
waveforms to the delay line intensity modulators, and, one at a time, 
we look at the throughput of the delay lines on a fast photodetector. If 
the throughput does not agree with the expected couplings, we tune 
the positions of the optical pulses with our RF phase shifter until the 
agreement with the desired couplings improves. If small discrepancies 
persist after this tuning, we manually update the coupling waveform 
to achieve the desired delay line throughput.

Experimental procedure
To begin our experiments, we first block the free space delays in the 
two delay lines, and we bring just the main cavity above threshold. We 
then tune the length of the main cavity and the gain of the EDFA until 
we observe a train of uniformly spaced mode-locked pulses. We then 
unblock one delay line at a time, and we attempt to lock the delay lines 
to constructive interference with the main cavity. After this, we utilize 

the fact that our laser’s threshold is lower with the delay line couplings 
present to reduce the gain of the EDFA. By reducing the EDFA gain, 
we aim to reduce the effect of the Kerr nonlinearity on the observed 
mode-locked pulse patterns.

At this point, our delay lines implement constant, nearest- 
neighbour couplings between the pulses. However, while the cou-
plings are constant, they need not be Hermitian. When studying  
the Hatano–Nelson lattice under different boundary conditions, we 
find it convenient to tune the coupling strength in one delay line to be 
greater than that in the other, so that we implement the Hatano–Nelson 
model with periodic boundary conditions upon initializing our laser. 
We can then produce a boundary in this Hatano–Nelson lattice by 
reducing the coupling between two pulses with our delay line intensity 
modulators.

After initializing our laser with constant, nearest-neighbour  
couplings, we abruptly modify the coupling waveforms applied to the 
delay line intensity modulators to implement the desired lattice model. 
We implement these couplings for several minutes at a time, and we 
detect the pulse pattern emitted by our laser with a fast photodetector. 
We observe this pulse pattern on a fast oscilloscope along with an aux-
iliary signal that allows us to establish the position of the pulse pattern 
in the laser’s synthetic lattice. We describe this positioning procedure 
in the Supplementary Information Section 3.
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Extended Data Fig. 1 | Topological Temporal Mode-Locking With a Hatano-
Nelson Lattice. (a) Heat map of our mode-locked laser’s output for 500 
roundtrips. Here our laser’s intracavity couplings implement the Hatano-Nelson 
model with periodic boundary conditions. (b) A similar heat map, but now where 

the laser’s couplings implement a boundary in the Hatano-Nelson lattice. The 
data used to generate the heat maps in (a) and (b) are also used to generate the 
plots in Fig. 3. Note that the pulses in these heat maps are broadened for visibility.
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