2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE) | 979-8-3503-2996-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/ASE56229.2023.00151

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

WEMINT: Tainting Sensitive Data Leaks in
WeChat Mini-Programs

Shi Meng!2, Liu Wang*2, Shenao Wang!, Kailong Wang™!, Xusheng Xiao®, Guangdong Bai?, Haoyu Wang™!
¥ Huazhong University of Science and Technology, China 2 Beijing University of Posts and Telecommunications, China
3 Arizona State University, United States of America 4 The University of Queensland, Australia

Abstract—Mini-programs (MiniApps), lightweight versions of
full-featured mobile apps that run inside a host app such as
WeChat, have become increasingly popular due to their simplified
and convenient user experiences. However, MiniApps raise new
security and privacy concerns as they can access partially or all
of host apps’ system resources, including sensitive personal data.
While taint detection has been proven effective in addressing this
kind of concerns, existing taint detection techniques for mobile
apps cannot be directly applied to MiniApps. The main reason is
that the key logics of MiniApps are usually written in JavaScript,
and its intrinsic characteristics (function-level scope, dynamic
types, synchronous programming, and code obfuscation) prevent
existing taint detection techniques from precisely propagating the
taints. To address this problem, we propose a novel taint detection
technique, WEMINT, that detects sensitive information leaks in
MiniApps. Specifically, WEMINT facilitates taint propagation via
building a context-based model based on the operational prin-
ciple of MiniApps and JavaScript, and addresses asynchronous
function calls by modeling their callbacks explicitly in taint rules.
In addition, due to the adoption of Abstract Syntax Trees (ASTs)
for code representation during taint detection, WEMINT exhibits
better robustness against the commonly-applied code obfuscation.
Our experimental results show that WEMINT can effectively
detect sensitive information leaks in WeChat MiniApps, as well
as trace the path of sensitive data flows. By applying WEMINT to
over 20K suspicious MiniApps, we found that over 7.5K (36.5%)
of them have sensitive data leaks, and WEMINT outperforms
the state-of-the-art DoubleX based techniques in detecting these
leaks.

Index Terms—WeChat Mini-programs, Taint detection, Secu-
rity, Privacy

I. INTRODUCTION

Mini programs (or MiniApps), known as the lightweight
version of the full-featured mobile applications running inside
a host application (or SuperApp), have gained significant pop-
ularity in recent years by providing a seamless but simplified
user experience (i.e., simplified navigation and limited but
relevant features) [1]. For example, the users can accomplish
a rich set of activities in an integrated manner, such as online
shopping [2], watching and sharing social media contents [3],
playing video games [4] or even seeing a doctor [5], inside
the SuperApp without the nuisance for downloading multiple

“Liu Wang is the co-first author.

®Haoyu Wang (haoyuwang@hustedu.cn) and
(wangkl @hust.edu.cn) are the corresponding authors.

fThe full name of the affiliation is Hubei Key Laboratory of Distributed
System Security, Hubei Engineering Research Center on Big Data Security,
School of Cyber Science and Engineering, Huazhong University of Science
and Technology.

Kailong Wang

applications. These MiniApps thus gradually form unique
ecosystems centering the SuperApps. Among them, WeChat
has emerged as the most influential and dynamic, hosting over
7 million MiniApps that serve over 450 million DAUs (daily
active users) [6].

The tremendous amount of data available from the WeChat
ecosystem as well as the enormous size of active users have
nurtured the thriving community of MiniApps' that is built
upon. Accompanied by the conveniences and versatility boost
for user experiences, the under-researched dynamics between
WeChat and its MiniApps inadvertently open up new surfaces
for ill-purposed parties to exploit potential privacy weaknesses.
One of the primary concerns pertains to the collection and
use of personal data by third-party developers. For instance,
WeChat possesses a number of system-level permissions, and
consequently the MiniApps could access partial or all of these
system resources including personal data, without obtaining
any form of notification or authorization. Another concern
is the lack of transparency with respect to data collection
and usage by third-party developers. The absence of clear
information about how user data is collected and utilized
renders it challenging for users to make informed decisions
regarding their use of MiniApps.

As user private data protection has become increasingly
critical in light of privacy laws such as GDPR [7], CCPA [8],
APPI [9] and PDPA [10], WeChat has been actively incor-
porating guidelines and instructions [11] that impose more
stringent scrutiny on data collection and processing from
MiniApps. However, these are far from sufficient to safeguard
the WeChat ecosystem from careless or even malicious de-
velopers who would accidentally or intentionally leak users’
sensitive data. Although such issues from MiniApps have gar-
nered mounting interest from the relevant research community,
most of the recent works still focus on understanding the appli-
cation ecosystem [4], [12]-[14] and measuring/characterizing
its security/privacy issues [1], [15]-[17]. There still lacks a
generic and systematic approach to track sensitive data flows
and identify potential information leaks within MiniApps. The
intuitive solution would be applying taint detection to this
problem, as frameworks like FlowDroid [18] have been proven
successful and powerful in the literature. Unfortunately, we
have identified several critical obstacles that prevent the direct

'MiniApps hereafter refers to WeChat MiniApps for simplicity, unless
specified otherwise.

2643-1572/23/$31.00 ©2023 IEEE 1403
DOI 10.1109/ASE56229.2023.00151
Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

application of existing taint detection techniques.

Given that the key logics of the MiniApps are written in
JavaScript, most of those obstacles originate from the intrinsic
characteristics of the language. The biggest obstacle is rooted
in JavaScript’s function-level scope, which specifies that vari-
ables declared inside a function are not visible outside of
that function. This constraint makes it particularly difficult to
propagate the taint, especially in larger code bases. In addition,
the dynamically typed nature of JavaScript further exacerbates
the situation, as the increased difficulty in resolving the types
of variables or expressions hinders the taint propagation. The
second obstacle is due to the asynchronous programming
commonly seen in JavaScript. More specifically, the use of
callbacks, promises, and async/await can make it complicated
to determine the program execution flow. The third obstacle
is related to the prevalent code obfuscation, which could
invalidate techniques requiring clean source code.

Despite the abundance of tools and research for JavaScript
analysis, they unfortunately fall short when directly applied
to MiniApps. As a distinct subset of JavaScript applications,
MiniApps incorporate a broad array of predefined and cus-
tomized objects and APIs from the WeChat platform. These
elements inevitably lead to disruptions in the data and control
flows established by existing JavaScript static analysis tools,
such as DoubleX [19] and TAJS [20], thereby complicating the
analysis process. In particular, these disruptions could block
or significantly reduce the effectiveness of taint propagation.
Our work. To advance the taint detection technique on
MiniApps, we propose WEMINT that can effectively bridge
the aforementioned gaps. WEMINT constructs a context-
based analysis model based on the operational principle
of MiniApps, which can enable effective taint propagation
in different JavaScript function-level scopes (to be detailed
in Section IV-B1). To provide better resolution for asyn-
chronous functions, WEMINT leverages the taint detection
model constructed according to the structural features of
asynchronous APIs and their callback functions (to be detailed
in Section IV-B2). Due to the adoption of Abstract Syntax
Trees (ASTs) for code representation during taint detection,
WEMINT exhibits better robustness against the commonly-
applied code obfuscation, compared to approaches directly
applied to clear-text source code such as those on JavaScript
files. WEMINT starts with a taint detection to enable a
coarse-grained search for potential data leaks. To capture in
detail the suspicious private data leaks reported from the
taint detection, we further develop a complementary data
flow analysis that reports the explicit sensitive information
transition paths from the target source to destination (to be
detailed in Section I'V-C).To facilitate the research in this area,
we open source WEMINT at the online repository [21].
Contributions. In summary, this paper makes the following
contributions:

« We propose WEMINT, a novel static taint detection frame-
work designed to detect potential sensitive data leaks in
WeChat MiniApps. WEMINT relies on a context-based
analysis mode to address the challenges of JavaScript’s

1404

View Layer Logic Layer
WebView JSCore

WXML Manager

WXSS API

Eventl T Data Data l T Event
JSBridge
Camera Network
Native

Fig. 1. The Runtime Framework of MiniApp

function-level scopes and adopts abstract syntax trees for
code representation, providing systematic taint detection and
sensitive data flow path tracking in MiniApps.

We conduct experiments to evaluate the effectiveness of
WEMINT. Experimental results show that WEMINT is
capable of tainting sensitive data leaks in MiniApps with
promising accuracy and efficiency. Compared to the state-of-
art, WEMINT exhibits better support for taint propagation
and sensitive path construction in JavaScript.

We perform a large-scale measurement study by applying
WEMINT to over 20,000 MiniApps, seeking to measure
the sensitive data leaks of MiniApps in the wild. We reveal
the severity of sensitive data leaks in the WeChat MiniApp
ecosystem.

II. BACKGROUND

In this section, we provide an overview of WeChat
MiniApps from both the perspective of code composition and
the runtime framework.

A. WeChat MiniApp Code Composition

A WeChat MiniApp consists of two main parts: a set of
code describing the overall MiniApp, and multiple sets of code
describing each page of the MiniApp. The code describing
the overall MiniApp consists of three files: (i) app.json, the
global configuration file for the MiniApp; (ii) app.js, the file
that registers the MiniApp instance with the App() method;
(iii) app.wxss, the file that defines the global style. The
code describing the MiniApp pages consists of four files: (i)
login.wxml, which defines the page structure [22]; (ii) login.js,
which defines the initial data, lifecycle callback functions and
event handling functions for the page; (iii) login.wxss, which
defines the page style; (iv) login.json, which configures the
window representation of the page.

B. Runtime Framework for WeChat MiniApps

The framework of a WeChat MiniApp can be separated into
two layers, the view layer and the logic layer, as shown in
Figure 1. The view layer is composed of .wxml and .wxss
files, and the logic layer comprises .js files. Multiple pages in
an MiniApp correspond to multiple WebView threads in the
view layer. The logic layer performs logical processing, data
requests, interface calls, and so on through JSCore threads.
The WebView thread and the JsCore thread communicate

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

through the JSBridge of the MiniApp host app (i.e., WeChat).
Whenever the data in the logic layer changes, the setData()
method is used to trigger updates in the view layer. The
view layer generates an interaction event that invokes the
corresponding event handler function in the logic layer, and if
a change is made to the data in the event handler function, it
triggers the update in the view layer again. In addition, some
API calls in the logic layer are also handled through the host
app, such as network requests are forwarded through the host
app, cameras need to be started by the host app, etc.

III. MOTIVATION AND A PILOT STUDY

Due to the architectural design of WeChat MiniApps,
MiniApps usually have frequent data exchange and sharing
with the host apps and the backend server through the pre-
defined interfaces, which opens up new surfaces for sensitive
data leaks. One of the prominent examples is the leak of
App Secret. The App Secret is a unique credential key of
the MiniApp, and also an important parameter to get the
Access Token that is the only backend API interface call
credential for MiniApps. It is crucial for developers to keep
this App Secret confidential, as WeChat officials have warned
that the App Secret leaks can cause serious consequences
such as identity fraud and sensitive data leaks. However, some
developers still write the App Secret in the JavaScript code of
the MiniApp logic layer, and use it as a parameter when calling
the wx.request() to access the sensitive interface provided
by WeChat and obtain some important return values. This
approach is dangerous, as the code packages for MiniApps can
be easily obtained and decompiled. If the App Secret is leaked,
hackers can decompile the code package of the MiniApp and
obtain the Access Token, potentially leading to an attack.

We conducted a pilot study and surprisingly found frequent
App Secret leaks problem, even for those with a large user
base. For instance, we found a WIFI information sharing
MiniApp? (with 2.78 million users) vulnerable against the
App Secret leaks in October 2022. Figure 2 shows that the
developer defines a button in the view layer and binds the ge-
tUserInfo() callback function to initiate a user login operation.
Within the function, the requestLoginUserldPost() function in
the same file is called, sending the App Secret as a parameter
to the MiniApp backend to obtain the user information. It can
be seen that the App Secret is explicitly written in the code
of the MiniApp. Instead, the correct approach to save it is to
encrypt and store it in the MiniApp’s backend program.

IV. APPROACH

To enable automatic detection of sensitive data leaks
from WeChat MiniApps, we develop a static analysis tool
called WEMINT. Figure 3 shows the overall architecture of
WEMINT.

2MiniApp name is anonymized for ethical considerations during paper
review period. The developer has acknowledged and fixed the issue.

1405

<image class="index_welcom_bg" mode="aspectFill"
N P 2N

src="

openType="getUserInfo">Create My WiFi| Code</button>
</image>

.</view>

.|5etUser‘Info: function(t) { |<7

/** some code **/

wx.login({
success: function(o) {

e.requestLoginUserIdPost(o.code, t.detail.encryptedData,
"wx01a1827d7F*F ¥ #¥ %" |t detail.iv);

|_

15
fail: function(t) {}
1)
/** some code **/
10.},

lr‘equestLoginUserIdPost: function(o, a, s, i) {|<—

1
2 ** some code **

var n = {code: o,encryptedData: a,appId: s,
kecret: "******36695cf7c736974dc33f******"J
iv: i};

wx.request({
url: "https://wxapp.zt#iik com/*xik [k [k ook |
method: "POST", //Using the declared parameters
data: n,
eader: {

"content-type": "application/json;charset=utf-8"

1,
/** some code **/

1)

Fig. 2. App Secret Leaks Example

A. Overview

WEMINT is executed through the following three stages:
« Source code processing: The code package is decompiled
into its original source code and file directory structure, and
each page of the MiniApp is identified based on the page
path defined in app.json.
Static analysis: This stage consists of the core function-
ality of WEMINT, including a taint detection engine for
searching potential data leak locations on the coarse-grained
level (to be detailed in Section IV-B), and a sensitive data
flow path analyzer for tracking the specific data leak path
on the fine-grained level (to be detailed in Section IV-C).
Results analysis: Finally the results are aggregated and
processed in this stage.

B. Taint-based Sensitive Data Leak Detection

Considering the security issues of MiniApps are primarily
located in the JavaScript code of the logic layer, the taint-based
detection technique faces the following challenges intrinsic to
the JavaScript language. We first briefly enumerate them and
our insights for mitigating them, followed by the details.

Difficulty of taint propagation due to the function-level
scope. We propose a context-based taint propagation model
according to the rules of variable scopes in MiniApps and
Javascript to bridge the gaps due to the scope restrictions (to
be detailed in Section IV-B2).

Difficulty for handling asynchronous functions. We pro-
pose an AST-based taint detection technique that utilize the
AST structural features and callback functions for locating

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

777777777777 Source code processing— — — — —— — — — — — — P& Static analysis of source code+ - — Analysis results

Tain-t : Taint Detection —_—————
T e e == —— 1 -’ ~
Page-1 Code rule ! | Taint Propagation Model | : N 1
=== I I\“—"’/I

| _Page.json > Taint Detector
o= | AST - o _ |
| Pagelss [~ | Generator e = === : Taint |
[page.wxml | I Report 1
page.wxml |
: Tracking of sensitive infor- : : :
Data H mation transmission

Source —>] ! |
iti o XML Analyzer |
| app.json j Definition e Grapher Path Graph) |
L —— — 1 /page = == H | |
Code | Pagejs | L@ PathAnalyzer \ ;

Path ' ~ o

Fig. 3. Overall Architecture of WEMINT

File Context File Context

parent parent__

File Function

Object Context _ Context

M 3 { Variable Table |
___parent parent_ ‘;amm

Member
Function Context
Variable Table |

T parent__

Block Context
[Variable Table |

Member
Function Context
[Variable Table | g
___parent ' —parent___

Block Context Block Context
! Variable Table | ! Variable Table |

Block Context

YT 0

Variable Table :

Block Context
[Variable Table !

Fig. 4. Static Analysis Model of WeChat MiniApp

the taint. This technique also exhibits better robustness

against obfuscation (to be detailed in Section IV-C).

1) Context-Based Taint Propagation Model (Solution for
Difficulty #1): To facilitate the taint propagation, we propose
a context-based model based on the rules of variable scopes in
MiniApps and JavaScript, as shown in Figure 4. The general
idea behind the model is to create a context for each code
segment that defines new variable scopes, and construct a
separate variable table in each context based on the propaga-
tion rules for variables in different scopes. The variable table
encompasses all variable definitions in that context derived
from static analysis. We specify the following 5 levels of
context, as detailed below.

o File Context: The file-level context is an abstraction of the
entire JavaScript file. From the rules of variable scopes in
JavaScript, file-level variables and constants can be accessed
and used in any scope of the file. The variable table of
this context stores the definitions of all variables at the file
level. In addition, due to the modularity introduced by the
ES6 version of JavaScript, other files or modules may be
introduced in the code via the import or require keywords.
Thus, we also introduce the concept of sibling contexts in
file-level contexts to construct relevant data dependencies.
A file-level context may have one or more sibling contexts,
and each sibling context is also a file-level context.

File Function Context: This context is an abstraction of the
global file-level functions. These functions can be called in
member functions defined in the Page() of the MiniApps,
where tainted code may be present. The variable table of this

1406

context stores the definitions of variables within the scope of
the file-level functions. According to the rules for variable
scopes in JavaScript, we consider the file-level context as
the parent of file function context.

Object Context: This context is an abstraction of the
MiniApp objects. The variable table of this context stores
the variable values that are parsed from the object’s data
property. Similar to the file function context, the parent of
an object-level context is also a file-level context.

o Member Function Context: Member functions are functions
defined within the object constructors, typically inside App()
or Page() functions. The member function context is an
abstraction of them. The variable table of this context stores
the definitions of variables within the function scope. The
parent of this context is the object-level context.

Block Context: In JavaScript, a code block wrapped by *{}’
creates a new block scope, e.g., if and while statements
will create new variable scopes. The block-level context is
an abstraction of them. The variable table of this context
stores the definitions of variables in the current block scope.
Additionally, the parent-child relationship at the block level
arises when block nesting occurs.

2) AST-Based Taint Detection (Solution for Difficulty #2):
Detection flow. We generate an AST for each MiniApp’s
JavaScript code using Acorn [23]. We then traverse the AST in
a depth-first manner and perform taint detection following the
defined taint detection rules. The analysis process is illustrated
in Algorithm 1. Specifically, we identify the variable, function,
and Page() sections from the JavaScript code, and generate
each level of context beginning from the File Context (i.e.,
root node) to lower-level contexts based on the variable scopes
(lines 11 to 15).

The initial step takes place in the File Context where we
identify the variables and constants (lines 8 to 10) defined at
the file level. We perform a backward analysis to determine
the values of these variables and constants, and save them
in the variable table of the File Context. Next, we identify
the functions declared at the file level. For each function, we
generate a File Function Context that points to the File Context
as its parent. We then perform taint location and variable
analysis on these functions. Security issues in MiniApps can

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Taint Detection Algorithm

Input: AST Root Node root,File Context fc,AST Node Visit Stack
S1=[root],Context Visit Stack S2=[fc],Taint Checker checker
Output: Taint Report report
1 Function taintDetection (S1,52,checker) :

2 while S1! = 0 do

3 node < S1.pop();

4 context < S2.pop();

5 if node.type € checker.taintNodeTypeSet then

6 \ checker.check ByRule(node, context);

7 end

8 else if isVariable Node(node.type) then

9 variableValue <
backTraceAnalysis(node, context)
context.variableT able.update(node, variableV alue);

10 end

11 else if isContextNode(node.type) then

12 newContext < createContext():

13 newContext.parent <— context;

14 S2.push(newContext);

15 end

16 foreach child node childN ode of node.children do

17 if childNode! = null then

18 S1.push(childNode);

19 end

20 end

21 end

2 checker.analysisAndVerify();

23 report < checker.generate Report();

24 return report;

25 End Function

Detecting AST generated
by member functions

FunctionExpression
requestLoginUserldPost
i CallE i Find all C
n wxrequest() nodes.

= —= Determine whether the function

—— e g
is making a wx.request() API
{ ObjectExpression } { Mcmherl‘.xprn“i»nJ [ObjectExpression J call, and if itis, check the

wx.request arguments passed to that API

P ey

N Detecting App Secret Leaks
Property Property Property
{ Seeret; #reer, 3660... J [J{ url: .. }[dataz n by String Matching and
7Y T

Contexts.

Fig. 5. App Secret Leaks Detection Rule

vary in type, and require different rules for taint location and
analysis (lines 5 to 7). These rules need to be manually written
based on the specific characteristics of the taint.

In the process of determining the specific values of key
parameters in the tainted code, a backtracking operation is
performed based on the static analysis model, starting from
the current context and moving up the hierarchy to find the
value of the key parameter. If the parent context at the top level
cannot be found, the search continues in the sibling context.

Finally, we analyze the Page() function defined in the file
and create an Object Context with the File Context as its
parent. We first analyze all the member variables in the data
property of the function and put the values obtained from
the analysis into the variable table of this context. After that,
we analyze all the member functions defined in the Page()
function, and the analysis process is similar to the process of
analyzing the file functions.

App Secret Detection Rules. Using a simple example shown
in Figure 5, we explain how our App Secret detection rules
can be derived from AST, and how they are utilized for
the analysis. App Secrets typically function as parameters

1.1let urll = "https://demo.com/access?appid=" + getApp().appid +
"&secret=" + getApp().secret;

2.let url2 = "https://demo.com/access?appid=" + a.data.appid +
"&secret=" + a.data.secret;
3.1let url3 = "https://demo.com/access?appid=" + this.appid +

"&secret=" + this.secret;
4.let url4 = "https://demo.com/access?appid=" + appid + "&secret=" +
secret;

(@)

.function sendRequest(){
let url = "https://demo.com/access?appid=";
wx.request({

v E
2
3
4
5 url:url + getApp().appid + “&secret” + getApp().secret,
6. success:function(res){

7 /** some code **/

8 }
9. 1
10.}

(b)

Fig. 6. Other Obstacles of Taint Detection

when making HTTPS requests through wx.request(), which is
represented as the CallExpression node in the AST. Therefore,
we explicitly check for this type of node throughout the
traversal process. Upon identifying such node, the function
call within its child node MemberExpression is examined to
see if it corresponds to wx.request. If a match is found, the
parameters of this CallExpression node are inspected. Since
these parameters are represented as an ObjectExpression type,
all its properties are traversed to detect the presence of the
App Secret within the url and data properties.

Handling asynchronous function calls. During the develop-
ment process of MiniApps, various asynchronous scenarios
need to be handled. The MiniApp SDK provides numerous
asynchronous APIs that primarily use callback functions to
achieve asynchrony. However, tainted code may exist in these
callback functions. To deal with this scenario, we first try to
summarize the characteristics of the AST structure for asyn-
chronous functions. We find that on the AST, asynchronous
functions also have a function type node in their parameters
(child nodes), which is different from synchronous functions.
This can help us identify whether an API is asynchronous or
not. Specifically, we examined the code and AST structure
of known asynchronous APIs, and we found that they are
essentially function calls, with their AST structure consisting
of a CallExpression type node. To use these APIs, an Ob-
ject parameter defining the required properties and callback
function is passed. This Object parameter is represented by
an ObjectExpression node in the AST, which is a sub-node of
the Arguments node of the CallExpression node. The callback
function of the asynchronous API is a child element of this
ObjectExpression node. Using this structure, we analyzed the
callback functions of asynchronous APIs and the nested use of
multi-layer asynchronous APIs to identify any potential tainted
code within the callback functions.

3) Other Obstacles in Taint-Based Detection for JavaScript:
Although we have tackled significant challenges through
context-based model and AST, and yet some obstacles still
remain in practice.

One prominent obstacle we need to address is the variable
value analysis. While analyzing the tainted code, some key

1407

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

parameters may not be directly in the form of literal quantities,
but instead may be member variables of the object (e.g.,
a.data.secret,getApp().secret), member variables referenced by
the this keyword (e.g., this.secret) or variables defined directly
in the code (e.g., secret), as shown in Figure 6(a). We
respond to each of these situations with different tactics. When
encountering the case of type such as a.data.secret, where a
is an object variable, we traverse the AST generated by a in
depth first, get each property in a and store it in a dictionary
structure which is named ‘a’ to the variable table. We then
use aldata][secret] to obtain the value of secret. When we
encounter the getApp().secret case, we use app.js as a sibling
context to the current File Context. The member variables in
App() are analyzed in the same way and stored in a dictionary
structure, which has a global scope and from which the value
of secret is taken. As for member variables referenced by the
this keyword, they are taken directly from the variable table
of the current Object Context. The value of a directly defined
variable, such as secret, is obtained from the variable table of
the context in which the variable is located or by backtracking
analysis. This helps overcome the challenges in the variable
value analysis phase while analyzing tainted code.

Another obstacle we face is expression analysis. Some
key parameters of the tainted code may perform arithmetic
operations, as shown in Figure 6(b), where the ur/ parameter
passed to wx.request() performs a splicing operation. To get
the specific value of the url after that operation, we have to
perform the same operation. However, since JavaScript is a
weakly typed language, it is difficult to determine the specific
type of each operand in an expression during analysis, and
thus the value of that expression. To solve this problem, we
first determine the value of each unknown variable in the
expression by backtracking the context. Then we construct
a JavaScript code string based on the operator and the value
of the unknown variable obtained from the analysis. Finally,
we execute the expression by calling the eval() function in
JavaScript to obtain the final result of the expression.

C. Sensitive Data Flow Path Analysis

To enable better understanding of the detected sensitive data
leaks, WEMINT also performs detailed data flow analysis that
reports the explicit transition paths of sensitive information
from the target source to the destination. We achieve this
through a three-step process: (i) identifying the data source;
(ii) designing the data tracking algorithm; (iii) constructing
and plotting the data propagation path for users to analyze.
This allows developers to better understand how the sensitive
data flows within their MiniApps, and help them pinpoint the
exact location of the data leak and take appropriate measures
to fix it.

Similar to traditional apps, the sensitive data accessed by
MiniApps mainly comes from two sources: one is user input
data, such as name, age, cell phone number; the other one is
the sensitive API usage, as they would require user’s privacy-
related authorization. Thus, we configure the data source as
sensitive data that potentially relates to taints propagated from

1408

the previous coarse-grained taint detection stage. Meanwhile,
it is important to note that the flow analyzer is also capable
of tracking other generic type of data, which enables further
configurable and wider-range data flow analysis.

1) Data Tracking Algorithm: The objective of this step
is to track the propagation paths of sensitive data derived
from taint detection, which is different from the process of
identifying tainted code. Instead, we adopt a forward-detecting
approach to identify code involving sensitive data, and tag
it during data tracking. Specifically, our approach analyzes
taint code-located functions, event callback functions bound
by UI components, and return values from sensitive APIs. In
addition, other member functions of the Page() object may
also contain the use of sensitive APIs, and for other functions,
we only perform sensitive API return value tracing.

Algorithm 2: Data Flow Analysis Algorithm

Input: AST Root Node root,Key Parameters Set ps,Page
Object Properties pd,Page Object Member Functions

pJ
Output: Data Flow Path path
1 Function dataFlowAnalysis (root,ps,pd,pf):
path < CreateNewPath();
if isSuspiciousNode(root.type) then
path.isKeyPath <
suspiciousCheck(node, ps, pd, pf);

s WoN

end
foreach child node childNode of node.children do
if childNode! = null then
childPath <
dataFlowAnalysis (childNode,ps, pd,pf):
if childPath.isKeyPath then
| path.next.append(childPath);
end
end

®w 9w

9
10
11
12
13 end

14 return path;
15 End Function

The algorithm for sensitive data flow path analysis is
shown in Algorithm 2. For the located callback function, we
construct its AST and perform a depth-first traversal, setting
that function node as the root node. To identify the key steps
involved in the propagation of sensitive data, we introduce the
concept of “critical paths”, which refer to the AST nodes that
pertain to the sensitive data identified (lines 3 to 5) during
the depth-first traversal. For nodes of branch statement type,
we then continue to execute the algorithm recursively (lines
6 to 13). As we execute the algorithm, we mainly solve the
following problems.

(i) Identification and parsing of sensitive data.

Functions with tainted code. As sensitive information can be
recklessly transmitted as parameters, we thus mark the param-
eters passed or variables used in the tainted code that involves
data transmission as sensitive data for further verification.
For example, App Secret could be passed as a parameter to
wx.request(). Otherwise, we simply mark the paths containing
the tainted code as critical for further analysis.

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

Page({
getPhoneNumber(e){

this.setData({
/* Assign the value entered by the user
to the member variable ‘phoneNumber’ */
phoneNumber: e.detail.value

i

0;

Fig. 7. Takes The Value Entered By User

Callback function bound by UI components. After entering
information in the input component, encapsulated in the event
object as a parameter of the callback function for further use.
The value is then extracted as a member variable, as shown
in the Figure 7. The event object, represented by e, is passed
to the callback function, and the user input can be retrieved
using e.detail.value.

Return values from sensitive APIs. We have classified these
APIs into two categories: synchronous and asynchronous,
based on how they are used. Synchronous APIs directly in-
clude user privacy data in the return value, while asynchronous
APIs accept an object type parameter in which a callback
function can be defined. After a successful asynchronous API
call, the privacy data will be included in the parameters of the
success callback function.

Summary of analysis insights. When analyzing functions
related to sensitive data, a variable set is created. It is initial-
ized in various ways according to the generation of sensitive
data. For example, sensitive information from UI component
callback functions will be initialized and filled in the set with
e.detail, while the return value of asynchronous sensitive APIs
will be initialized and filled in the set with the parameters of
the success callback function. When searching the AST nodes,
we check whether the current node involves the key variables
stored in the variable set. If there is a new variable generated
by the key parameters in the variable set after operation or
manipulation in the current node, then the node will be marked
as a critical path node, and the new variable will be added
to the variable set as a key variable. In case of complex
expressions encountered during traversal, we transform the
AST structure to code and use string matching to determine
whether the expression is a critical path node.

(ii) Analysis of page object member variables. As aforemen-
tioned, member variables can be included in the page object
by using this.setData(). The user input and the return values
of the sensitive API can also be set as member variables of
the page by this.setData(), making them accessible by the this
keyword in other functions. We define a global page-data set
to collect all key variables with values set by this.setDataf().
Then, the critical path node analysis also checks whether the
current node uses sensitive data from the page-data set.

(iii) Cross-functional analysis. The main target of our anal-
ysis is the member functions defined in Page(). In MiniApps
there may be calls to other member functions, causing a break
in the data flow analysis. To overcome this, we maintain a

1409

Function Call Call Expression
function name -> getUserInfo callee name -> wx.login
Call Expression

function name -> success

-

Function Call
callee name -> e.requestLoginUserldPost

>

Variable Declarator Call Expression

left ->n callee name -> wx.request
right -> param ->

Object Properties
{secret ->
HRHAHAI6605¢7¢T36974dc33PrHHHk*)

Object Properties
{data ->n}

Fig. 8. Data Flow Graph

mapping from the member function name to the AST node of
that member function before analysis. Following the member
function calling rules, other member functions will be called in
the current function through this.member function name. Using
the mapping based on the member function name, we can
locate the corresponding AST node and continue to execute
the analysis algorithm with this node serving as the root node,
to address the problem of break in data flow analysis.

2) Construction of Sensitive Data Flow Paths: To construct
the sensitive data flow paths, we create different path nodes
based on the type of the AST nodes and create branch node
paths directly when encountering branch type nodes. When
encountering a critical path node, we create the corresponding
path based on the type of the critical path node. Once all paths
have been created, we draw the sensitive data flow graph using
Graphviz [24], an open source graph visualization tool that can
draw many types of graphs, especially suitable for generating
image results such as data flow diagrams.

3) Example Illustration: Figure 8 shows an example of
a path diagram of tainted flow in a MiniApp. The diagram
describes the tracking result of the App Secret leaks problem
in Figure 2. When the user clicks the Button to trigger
the getUserlnfo() event function, wx.login() API is called in
the function, and the requestLoginUserldPost() function is
called in the success callback function of the API. In the
requestLoginUserldPost() function, the App Secret is hard-
coded into the Object variable n, which is sent as a parameter
to wx.request() APL. Figure 8 fully describes all the key paths
related to the tainted flow propagation.

V. EVALUATION

In this section, we conduct experiments to evaluate
WEMINT. Our experiments were conducted on a Windows
10 system, powered by an 8-core Intel(R) Core(TM) 17-4790
processor clocked at 3.60GHz, and equipped with 16GiB of
RAM. In particular, we seek to answer the following research
questions (RQs):

« RQ1. How effective is WEMINT in detecting and prevent-
ing sensitive data leaks in MiniApps?

« RQ2. What is the prevalence of MiniApps with sensitive
data leaks in the wild?

« RQ3. How well does WEMINT perform compared with
state-of-the-art approach?

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

A. Evaluation Subject

We used Mini-Crawler [14], an open source crawler that
is able to crawl MiniApps automatically, to collect a large
number of MiniApp packages from the app market of WeChat
to form our evaluation dataset. In total, we collected 115,392
MiniApps, occupying 261 GB of storage. To demonstrate the
effectiveness of WEMINT, we evaluate how WEMINT detects
App Secret leaks, a representative type of sensitive data leaks
in MiniApps. App Secret leaks are mainly caused by carelessly
programming, i.e., the developer explicitly writes the App
Secret in the MiniApp’s code. To find the MiniApps where
App Secret leaks may occur and filter out useless samples, we
first applied regular matching to pinpoint MiniApps from our
dataset that may potentially suffer from this security problem.
Specifically, we conducted a code scan on each MiniApp
using regular matching pattern to identify a 32-bit long string
composed of lowercase letters and numbers (i.e., the string
pattern of App Secret). If it matches, we assume the scanned
MiniApp as a suspicious MiniApp that may have App Secret
leaks. As a result, we identified 20,766 suspicious MiniApps
for further investigation.

B. RQI: Effectiveness of WEMINT

1) Effectiveness of WEMINT s Taint Detection: In this
evaluation, we first manually curate a benchmark of MiniApps.
We randomly selected 100 MiniApp packages for manual
inspection, and confirmed that 47 of them are positive samples
with App Secret leaks. We then apply WEMINT to these
100 MiniApps. The results showed that for the 47 positive
samples, WEMINT correctly identified 42 of them without
reporting false positives. Thus, WEMINT achieves a precision
of 100% (42/(42+0)), a recall of 89% (42/(42+5)) and an
accuracy of 95% ((42+53)/100). In fact, as our detection
rule is tailored to the usual scenarios of App Secret leaks,
WEMINT is expected to exhibit zero false positives but might
encounter some potential misses (ignoring the corner cases
where decompilation fails). In addition, the average time cost
for taint detection of each MiniApp was 3.11 seconds. These
results show that WEMINT can effectively and efficiently
detect data leaks in MiniApps.

2) Effectiveness of WEMINT s Sensitive Data Flow Path
Analysis: WEMINT’s sensitive data flow path analyzer is
designed initially to track specific data leak paths, but in
practice it can serve as a generic data flow analysis tool
that enables tracing of any data of interest. For example, in
MiniApps, the uses of sensitive APIs pose a potential security
risk because they provide access to data that is highly valuable
and confidential. Thus, tracking the data flow of sensitive API
return values is an important way to ensure that sensitive
data is stored and accessed securely. WEMINT, fortunately,
is equipped with this capacity. Thus, we conduct another
evaluation of WEMINT’s generic data tracking capability.
Specifically, we apply WEMINT to track the data flows of
sensitive data commonly used in MiniApps and manually
inspect the data flow paths to evaluate the effectiveness of
the data flow path analyzer.

1410

TABLE I

ELEMENTS OF THE UI INTERFACE THAT CAN INTERACT WITH THE USER

Classification

| Example

Features

Components with open-
type attributes that provide
special functionality

<button>

Bind event callback func-
tions using properties with
the bind keyword

Forms, input boxes, and
other components that col-
lect user input

<form>,<input>etc

Bind event callback func-
tions using properties with
the bind or catch key-

words

The location of the code
defining the components
can be found in the con-
figuration file

The corresponding API
can be found in the logic
layer callback function

Developer-defined compo- | None

nents

Collect user data using
canvas, media and map

map, media selection and
other components

Evaluation Setup. In this evaluation, we concern about two
types of sensitive data in MiniApps, i.e., user input data and
sensitive API return values, as they are representative data
sources for taints (as discussed in Section IV-C). Specifically,
we use the data entered through UI and the data returned by
calling sensitive APIs of MiniApps as the primary sources for
sensitive data flow path analysis.

In the UI layout file, we have classified Ul elements that
can obtain user data and trigger event operations into four
categories in Table L. (i) WeChat-offered components with the
open-type attribute, such as the button component, which can
specify button behavior and obtain user information through
specified callback functions; (if) Components that collect user
input data, such as form and input box components, which
use properties containing the “bind” or “catch” keywords to
bind callback functions for receiving or processing user input
data; (iii) Custom components developed by the developer for
component reuse, which may include basic components for
accepting user input, and whose paths can be found in the page
configuration file; and (iv) Components that use canvas, media,
map, and other way to collect user input information, which
require the use of APIs provided by WeChat for collecting
user information and can be found directly in the logical layer
code without analyzing the Ul interface.

In terms of sensitive APIs, since there is no predefined list of
sensitive APIs available, we manually reviewed the developer
documentation for all APIs and filtered them according to their
functions, identifying 27 APIs that involve users’ private data,
as shown in Table II.

We randomly selected 20 MiniApps, and used WEMINT
to extract event callback functions from the view layer as
well as the return values of sensitive APIs to track them.
Next, we manually analyzed the tracking results to assess the
effectiveness of WEMINT’s sensitive data flow path analysis.
Results. Table III shows the detailed results of our sensi-
tive data flow path analysis for 20 MiniApps. Specifically,
of pages indicates how many pages are included in the
MiniApp, User Input Data and Sensitive API indicates
that the sources of sensitive data are from user interaction
events in the view layer or return values of the sensitive APIs,
respectively. Through manual inspection, we categorize the

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SYNCHRONOUS AND ASYNCHRONOUS SENSITIVE APIS.

Classification | APIs Sensitive Info
wx.getSystemSetting System Info
wx.getSystemInfoSync System Info

Sync APTs wx.getDevicelnfo Device Info
wx.createCameraContext Camera
wx.getSystemInfoAsync System Info
wx.getSystemInfo System Info
wx.requestPluginPayment Payment Info
wx.requestPayment Payment Info
wx.chooseVideo Video
wx.chooseMedia Image& Video
wx.startRecord Audio
wx.chooselmage Image
wx.startLocationUpdateBackground | Location
wx.startLocationUpdate Location
wx.getLocation Location

Async APIs wx.onLocationChange Location
wx.getFuzzyLocation Location
wx.chooseLocation Location
wx.choosePoi Location
wx.chooseAddress Address
wx.login User Info
wx.getUserProfile User Info
wx.getUserInfo User Info
wx.getWeRunData WeRun
wx.chooseLicensePlate CarPlate
wx.chooseContact Contact
wx.getClipboardData Clipboard

TABLE III

RESULTS OF SENSITIVE DATA FLOW PATH ANALYSIS

Data Flow

MiniApp ID # of User Input | Sensitive | Total | Correct | Error | Miss Time
PagSS | pata APIs spent
wx000b96¢c507 5 9 5 14 12 0 2 45.12s
13 18 4 22 20 1 1 36.86s
11 18 0 18 18 0 0 63.88s
23 55 11 66 62 1 3 54.16s
wx00dbd76979* 16 34 3 37 36 0 1 25.16s
WX0c87dcde32 ks 17 14 1 15 11 3 1 28.82s
WX0cb2d24f(Q 7k 9 18 0 18 16 2 0 34.47s
Wx0ac876a29a% sk 7 8 10 18 15 0 3 56.95s
wxO0f1£69246¢ 9 10 2 12 12 0 0 29.21s
wx2aefd30c2’ 18 28 6 34 28 2 4 28.90s
wx0d78a195bf’ 5 5 1 6 4 1 1 24.26s
wx1f67e18769%* 9 14 0 14 14 0 0 32.86s
wx3ba31leQad i 7 2 6 8 6 0 2 32.18s
wx2a58adda69 ik 13 18 2 20 18 1 1 43.03s
wx0e08ba7d0: 9 14 0 14 14 0 0 34.14s
wx0e8be68d7 8 26 2 28 24 1 3 75.64s
wx0e3a760cb 15 30 8 38 36 0 2 36.51s
wx0f160dddb0** 6 31 3 34 34 0 0 31.05s
Wx1b4851d9c7#### 6 6 1 7 6 0 1 12.11s
WXOf4b126998## ks 11 14 2 16 16 0 0 32.40s
Total / 372 67 439 402 12 25 /

quality of the generated data flow paths using three labels:
Correct denotes that a recognized data flow path is correct
and complete; Error denotes that a recognized data flow is
wrong or broken; Miss denotes that a data flow in the code
failed to be recognized. Overall, WEMINT identified a total
of 439 data flow paths, of which 402 were correctly identified,
12 were incorrectly identified, and 25 were missed. WEMINT
achieved an accuracy of 91.57% in the module of sensitive
data flow path analysis. Note that in our evaluation we define
only sources but not sinks. This is because some APIs that
can be used as sink can be encapsulated by developers, and
defining an explicit sink point may cause WEMINT to miss
some data flows.

We also measure the time cost of WEMINT for sensitive
data flow path analysis (Column T'imespent). The average

1411

TABLE IV
DISTRIBUTION OF THE NUMBER OF USERS OF MINTAPPS WITH APP
SECRET LEAKS.

Visit Total Count | Percentage
[0,10000) 7011 92.43%
[10000,20000) 162 2.14%
[20000,50000) 204 2.69%
[50000,100000) 88 1.16%
[100000,1000000) 101 1.33%
[1000000,10000000) 18 0.24%
[10000000,60000000) 1 0.01%

time spent for a MiniApp was 37.89s, with the longest time
being 75.64s, and the shortest time being 12.11s. We observe
that the time spent is not proportional to the number of pages,
because time-consuming operations are mainly spent on AST
traversal and analysis. In general, the data flow path analysis
takes a longer time for more complex JavaScript code structure
(e.g., having a large number of code blocks and nested callback
functions).

C. RQ2: Prevalence of Sensitive Data Leaks

RQ2 aims to understand how many MiniApps with App
Secret leaks WEMINT can find in the wild. For the selected
20,766 suspicious MiniApps, we applied WEMINT to perform
taint detection, and successfully confirmed 7,585 MiniApps
with App Secret leaks, accounting for 36.5% of the MiniApps
in our dataset. Note that the AST-based detection for App
Secret utilized by WEMINT is highly reliable. As indicated
by the results in RQ1, all the MiniApps flagged by WEMINT
are true positives with App Secret leak issues. Therefore, the
identified 7,585 leaks are confirmative. In other words, there
are at least 7,585 MiniApps in our dataset that have security
leak issues.

To show the impacts of these data leaks, we next measure
the number of users for these 7,585 MiniApps with App
Secret leaks, as shown in Table IV. Visit T'otal represents the
cumulative number of users of a MiniApp, which is obtained
by making requests to the interface provided by WeChat after
acquiring the Access Token through App Secret and MiniApp
ID. Note that the statistics are up to October 1, 2022. We
can see that these MiniApps with such sensitive data leaks
have a user base ranging from 2 to 53 millions. Over half
of the MiniApps have a user base of less than 238 and 92%
have a user base less than 10,000. This indicates that most of
the MiniApps with sensitive data leaks have a limited number
of users, while there are indeed a few of them with large
user bases. Table V shows the top 10 MiniApps ranked by
the cumulative number of users. Share PV represents the
number of retweets of the MiniApp and Share UV represents
the number of users who retweeted the MiniApp. We can see
that the highest ranked MiniApp has 53,000,256 users, and the
other MiniApps have a minimum of 1.5+ million users. Any
attack launched by hackers on these MiniApps would have
severe consequences given their user bases.

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

TABLE V
Top 10 MINTAPPS WITH APP SECRET LEAKS BY NUMBER OF USERS.

MiniApp ID Visit Total MiniApp ID Visit Tofal
wx845a2f34af 5% 53 000,46 | wxO0lal827d7 % 37780 F%5
wxd3448d987 (% ks 7,414,%%5 Wx781693d468% 2,741,450
wx3db9d150ch#* #5147 #%2 wx3da0eTced sk 1.932,5%5
Wx5103f6e064 % 4,127,%%7 wxad40758d7 ¢k 1,620,**3
wx507477e9ca****k% 3197 #*3 | wx8c01564d8a* -k 1,565,

D. RQ3: Comparison with State-of-the-art

In this RQ, we compare WEMINT with the state-of-the-art
open-source tool TAINTMINI [25] on ground truth dataset.
TAINTMINI is a static taint analysis framework developed
based on DoubleX? [19] for detecting flows of sensitive data
in MiniApps. To this end, we utilize both tools to detect
App Secret leaks and analyze sensitive data flow paths, and
compare their output results. Specifically, we apply the tools
to 20 representative MiniApps with App Secret leaks and
conduct quantitative and qualitative analysis to demonstrate
the superiority of WEMINT.

App Secret Leak Detection. Table VI illustrates the com-
parative results of WEMINT and TAINTMINI in App Secret
leak detection. None of these App Secret Identifiers are
recognized by TAINTMINI, which indicates the necessity of
the ingenious design of WEMINT on specific tasks. We
attribute the poor performance of TAINTMINI to its focus
on identifying only Object identifiers while overlooking
key-value pairs within it. For instance, in the most common
App Secret leakage scenario, developers hardcode the Secret
value in the globalData object of App. js, represented by
the key-value pair {secret: hardcode-hex-string}.
However, TAINTMINI only considers the object identifier
globalData in the data flow analysis and overlooks the
fine-grained analysis of key-value pairs.

Sensitive Data Flow Path Analysis. For a more detailed and
comprehensive comparison, we assign the same source and
sink APIs to both WEMINT and TAINTMINI, and evaluate
the performance of detecting sensitive data flow paths on
the ground truth benchmark. Table VII records the detailed
results of sensitive data flow paths detected by both frame-
works. For the 224 sensitive data flow paths in the ground
truth, WEMINT successfully detected 202 out of them, while
TAINTMINI detected 152. Additionally, TAINTMINI produced
2 false positives due to mistakenly detecting JavaScript files
from unregistered pages.

VI. DISCUSSION

1) Performance Influencing Factors: First, JavaScript is
a programming language that supports both procedural and
functional programming, with all values in JavaScript being
objects. The language’s design has been enhanced by its event-
driven and non-blocking capabilities since ES6. These features
make it very flexible when writing JavaScript code, but their

3DoubleX is a static analysis tool designed to help developers identify
potential data leaks in browser extensions. As both browser extensions and
MiniApps are primarily developed in JavaScript, DoubleX can be used to
analyze MiniApps.

1412

TABLE VI
COMPARASION WITH TAINTMINI ON THE EFFECTIVENESS OF TAINT
DETECTION
MiniApp ID Identifier WEMINT TAINTMINI
wx000b96¢c50" i app_key_ald v X
wx000d4 16d0d sk e[appSecret] v X
wx00a796d7bg % page [secret] v X
wx00b1b2de34*####% | wx . request.data[secret] v X
WX00b74f75f6H s+ globalData[secret] v X
wx00b77e32b] ####% globalData[secret] v X
wx00b94fba3 5t globalData[secret] v X
Wwx00bb88373 c [APPSECRET] v X
wx00c462d1bc* * globalData[secret] v X
wx00cc9fedbf* * d[appKey] v X
wx00cd02ab 1 e c [APPSECTRE] v X
wx00dbd 76979k globalData[secret] v X
wx00e 1 bf5a0cH e [APPSECRET] v X
wx00e400c360% % globalData[secret] v X
wx00edad 1 bgg i globalData[secret] v X
wx00e589al ff### globalData[secret] v X
Wx00eb4375 b e [APPSECRET] v X
WX00eb6¢28 7k kx4 globalData[secret] v X
wx00eeeS5ch5H sk globalData[secret] v X
wx00fdc948ch _ [APP_SECRET] v X

TABLE VII
COMPARASION WITH TAINTMINI ON THE EFFECTIVENESS OF SENSITIVE
DATA FLOW PATH ANALYSIS

. | WEMINT TAINTMINI
MiniApp ID GT —p FP FN| TP FP FN
Wx000696cc30F 7 |3 3 0 0 3 2 0
wx000d416d0d****% | 6 | 6 0 0 | 5 0 1
wx00a796d7bd* 5% | 8 | 8 0 0 | 8 0 0
wxO0bIb2de34=+#+5x | 2 [2 o o | 2 0 0
wx00b74f75f6* ===+ | 6 | 5 o 1 | 5 0 1
wx00b77e32bl*%xx | 2 | 2 o0 o0 | 1 0 1
Wx00b94fba3sHsssss | 3 30 03 0 o0
wx00bb88373f=+#+5% | 20 | 20 0 0 | 5 0 15
wx00c462dibes==s | 20 | 18 0 2 | 13 0 7
wx00ccOfedbf***#+% | 6 | 6 0 0 | 6 0 0
wx00cd02able***+# | 19 | 19 0 0 | 5 0 14
wx00dbd76979% k5 | 3 30 03 o o0
wx00eIbfSa0c**#+#% | 36 | 28 0 8 | 17 0 19
wx00e400c360%#%5% | 45 | 44 0 1 | 40 0 5
wxO0cdadlbddssssxx | 14 | 9 o 5 | 9 o 5
wx00e589al ffsssmss | 3 30 03 o o0
wx00ebd375fb**#++ | 11 | 8 0 3 | 9 0 2
wx00eb6e28cT**5#5% | 4 | 3 0 1 | 3 0 1
wx00ceeS5chs*ssss | 1 o 0o 1] o0 0 1
wx00fdcO48ch***++ | 12 | 12 0 0 | 12 0 0
Total i 200 0 212 2 72

I GT stands for the ground truth dataset.

complexity also limits the accuracy of the analysis algorithm
due to the large number of statement combinations that it
cannot cover. In addition, since our static analysis process is
performed on the MiniApps’ source code, we use an unpacker
tool to decompile the MiniApps to access to the source code.
There are a small number of MiniApps experienced issues
during the decompilation process, such as the code package
cannot be properly decompiled, or the normal structure of
the decompiled code is destroyed, or the decompiled code is
obfuscated to a high degree, etc., which can have an impact
on the static analysis results. Nevertheless, only 0.2% of
MiniApps in our dataset were affected by the decompilation

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

issues, indicating a very limited impact.

2) Limitations: While WEMINT has proved to be an ef-
fective tool for identifying sensitive data leaks in WeChat
MiniApps, it has some limitations. First, the accuracy of
WEMINT’s analysis results is affected by the complexity of
the JavaScript code. If the code is highly obfuscated and has
a complex structure, the detection coverage of the analysis
results may be reduced. Second, during the sensitive data flow
path analysis, we could identify data returned by sensitive
APIs as sensitive data, but for user input data we were unable
to determine if it was indeed sensitive data. In response,
WEMINT tracks all the user input data and may produce
false positives. This can be mitigated by adapting existing
works [26] to analyze the sensitive data types of user input
data. Third, the existing detection strategy in WEMINT may
not be able to cover all code combinations because it is
generated by manual analysis, which inevitably leads to some
omissions. Continuous improvement is required to enhance the
capabilities of the tool.

3) Extension and Generalization of WEMINT: In this
study, WEMINT is designed to discover sensitive data leaks
for WeChat MiniApps, and tracking sensitive data flow paths.
In fact, WEMINT is extensible, allowing developers to develop
a customized detection strategy for MiniApps based on the
characteristics of the bugs they want to identify. This flexi-
bility enables WEMINT to adapt to the ever-changing threat
landscape and stay effective in detecting new types of sensitive
data leaks. In terms of generalization, as WEMINT works
on the basis of ASTs generated for the JavaScript language,
it is applicable to all traditional MiniApps frameworks that
use JavaScript as the development language for the logic
layer (including WeChat, Alipay, etc.). However, for some
MiniApps developed by multi-terminal unified development
frameworks such as uni-app, Taro etc., WEMINT still needs
future work to adapt.

VII. RELATED WORK
A. Analysis on MiniApps

As an emerging application paradigm in parallel to the
existing web [27], [28] and mobile [29] systems, MiniApps
have received attention from the research community only in
the recent years. We characterize the prior works according to
the following three aspects.

1) Understanding MiniApp Application and Architecture:
A considerable portion of the research focuses on under-
standing the application and architecture of MiniApps [4],
[12], [13]. More recently, Zhang et al. [14] designed Mini-
Clawer, and then analyzed the security practices of the crawled
MiniApps. They focus on whether the MiniApp code was
obfuscated and which security-related APIs were involved.

2) Security Analysis of MiniApps: Several studies have
focused on the security of MiniApps [1], [16]. In particular,
Wang et al. [15] collected 83 MiniApp bugs from the real
world and proposed WeDetector to detect WeBugs with three
bug patterns. Zhang et al. [17] identified a novel privacy
disclosure problem in MiniApps that can lead to the theft of

1413

private data held by the MiniApp platform. They illustrated
an attack process that exploits this vulnerability.

3) MiniApp Analysis and Optimization Tools: A few studies
have focused on MiniApp analysis and optimization tools.
Liu et al. [30] designed Welalangi, an efficient dynamic
analysis framework for WeChat MiniApps based on the ex-
isting JavaScript dynamic analysis framework Jalangi [31].
However, they did not open-source it. Additionally, Li et al.
[32] proposed a cross-learning search model for user fuzzy
search. This model can assist users in finding the desired
search results more easily.

B. Analysis on Javascript

There are numerous studies on JavaScript in the context
of web security [33]-[37]. Melicher et al. [38] modified
browsers and used dynamic taint analysis to detect possible
vulnerabilities in web applications. DoubleX [19] investi-
gated security issues in browser extensions and examined the
JavaScript code of browser extensions using static analysis.
In terms of JavaScript code analysis tools, there have been
continued contributions in the community [39], [40]. JSAI
[41] can convert JavaScript code into an intermediate language
(IR) for static analysis. JSFlow [42] implements information
flow tracking by performing dynamic analysis of JavaScript.
SAFE [43] is an extensible parser that supports JavaScript AST
rewriting and control flow graph analysis. Additionally, several
tools are available to detect concurrency in Node.js, such as
NodeAV [44], NRace [45], NodeRacer [46], and Node.fz [47].
Some work has also been done to detect analysis of client-
side JavaScript, such as RClassify [48], AutoFLox [49],
SymlJS [50], JAW [51], and Adgraph [52].

VIII. CONCLUSION

Based on the analysis of potential security and privacy
risks in WeChat MiniApps, we propose a novel framework,
WEMINT, that uses abstract syntax trees to identify tainted
code and trace the path of sensitive data flows. Our experi-
mental results demonstrate that WEMINT can effectively and
efficiently detect vulnerabilities to sensitive information leaks
in MiniApps. By applying WEMINT to over 20K suspicious
MiniApps, we discovered that over 7.5K (36.5%) of them
have sensitive data leaks. Furthermore, our results indicate
that WEMINT outperforms the state-of-the-art DoubleX based
system in some aspects. These findings highlight the impor-
tance of using innovative approaches to ensure the security
and privacy of WeChat MiniApps. In the future, we plan to
extend WEMINT to address other types of security and privacy
risks in MiniApps and explore the feasibility of integrating
WEMINT into the development process of WeChat MiniApps.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D
Program of China (2021YFB2701000), the National Natural
Science Foundation of China (grant No.62072046, 62172049),
Knowledge Innovation Program of Wuhan-Basic Research
and HUST-FiberHome Joint Research Center for Network
Security.

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

(1]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

121
[22]

[23]
[24]

[25]

REFERENCES

Y. Yang, Y. Zhang, and Z. Lin, “Cross miniapp request forgery: Root
causes, attacks, and vulnerability detection,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 3079-3092.

“ecommerce saas solution by wechat: a com-
plete guide,” https://wechatwiki.com/wechat-resources/
wechat-mini-shop-ecommerce-solution/, 2022.

Q. Rao and E. Ko, “Impulsive purchasing and luxury brand loyalty in
wechat mini program,” Asia Pacific Journal of Marketing and Logistics,
2021.

L. Hao, F. Wan, N. Ma, and Y. Wang, “Analysis of the development of
wechat mini program,” in Journal of Physics: Conference Series, vol.
1087, no. 6. IOP Publishing, 2018, p. 062040.

Y. Qian and A. Hanser, “How did wuhan residents cope with a 76-day
lockdown?” Chinese Sociological Review, vol. 53, no. 1, pp. 55-86,
2021.

“White paper on internet development of miniapps in 2021, https:/
aldzs.com/viewpointarticle?id=16175, 2022.

“General data protection regulation,” https://commission.europa.eu/law/
law-topic/data-protection_en, 2022.

“California consumer privacy act,” https://oag.ca.gov/privacy/ccpa, 2022.
“Act on the protection of personal information,” https://www.ppc.go.jp/,
2022.

“Personal data protection act,” https://www.pdpc.gov.sg/, 2022.
“Configuring user privacy protection guidelines for miniapps,” https:
/lwww.aldzs.com/viewpointarticle?id=16573, 2023.

A. Cheng, G. Ren, T. Hong, K. Nam, and C. Koo, “An exploratory
analysis of travel-related wechat mini program usage: affordance the-
ory perspective,” in Information and Communication Technologies in
Tourism 2019: Proceedings of the International Conference in Nicosia,
Cyprus, January 30-February 1, 2019. Springer, 2019, pp. 333-343.
L. Ma, L. Wang, and E. Jiang, “Empirical study on the wechat mini
program acceptance based on uta ut model take the pearl river delta as
an example,” in 2018 15th International Conference on Service Systems
and Service Management (ICSSSM). 1EEE, 2018, pp. 1-6.

Y. Zhang, B. Turkistani, A. Y. Yang, C. Zuo, and Z. Lin, “A mea-
surement study of wechat mini-apps,” ACM SIGMETRICS Performance
Evaluation Review, vol. 49, no. 1, pp. 19-20, 2021.

T. Wang, Q. Xu, X. Chang, W. Dou, J. Zhu, J. Xie, Y. Deng, J. Yang,
J. Yang, J. Wei et al., “Characterizing and detecting bugs in wechat
mini-programs,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 363-375.

H. Lu, L. Xing, Y. Xiao, Y. Zhang, X. Liao, X. Wang, and X. Wang,
“Demystifying resource management risks in emerging mobile app-in-
app ecosystems,” in Proceedings of the 2020 ACM SIGSAC conference
on computer and communications Security, 2020, pp. 569-585.

L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang,
G. Yang, and M. Yang, “Identity confusion in {WebView-based} mobile
app-in-app ecosystems,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 1597-1613.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259-269, 2014.

A. Fass, D. F. Somé, M. Backes, and B. Stock, “Doublex: Statically
detecting vulnerable data flows in browser extensions at scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1789-1804.

S. H. Jensen, M. Madsen, and A. Mgller, “Modeling the HTML DOM
and Browser API in Static Analysis of JavaScript Web Applications,”
in FSE, 2011, p. 59-69.

“Wemint,” https://anonymous.4open.science/t/ WEMINT, 2023.
“Weixin ~ markup language,” https://developers.weixin.qq.com/
miniprogram/dev/reference/wxml, 2022.

“Acorn-a small, fast, javascript-based javascript parser,” https://github.
com/acornjs/acorn, 2022.

“Graphviz is open source graph visualization software,” https://graphviz.
org/, 2022.

C. Wang, R. Ko, Y. Zhang, Y. Yang, and Z. Lin, “Taintmini: Detecting
flow of sensitive data in mini-programs with static taint analysis,” in Pro-
ceedings of the 45th International Conference on Software Engineering,
2023.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

1414

J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“{SUPOR}: Precise and scalable sensitive user input detection for
android apps,” in 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 977-992.

K. Wang, J. Zhang, G. Bai, R. Ko, and J. S. Dong, “It’s Not Just the Site,
It’s the Contents: Intra-domain Fingerprinting Social Media Websites
Through CDN Bursts,” in WWW, 2021.

K. Wang, Y. Ling, H. Wang, G. Bai, and J. S. Dong, “Are they Toeing
the Line? Auditing Privacy Compliance among Browser Extensions,”
SIGMETRICS.

K. Wang, Y. Zheng, Q. Zhang, G. Bai, Q. Mingchuang, D. Zhang, and
J. S. Dong, “Assessing Certificate Validation User Interfaces of WPA
Supplicants,” in MobiCom, 2022.

Y. Liu, J. Xie, J. Yang, S. Guo, Y. Deng, S. Li, Y. Wu, and Y. Liu, “Indus-
try practice of javascript dynamic analysis on wechat mini-programs,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 1189-1193.

K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488—498.

H. Li, Z. Liu, S. Xu, Z. Lin, and X. Chen, “How to find it better? cross-
learning for wechat mini programs,” in Proceedings of the 28th ACM
International Conference on Information and Knowledge Management,
2019, pp. 2753-2761.

S. Lekies, B. Stock, and M. Johns, “25 million flows later: large-scale
detection of dom-based xss,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013, pp. 1193—
1204.

S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett, “Vex:
Vetting browser extensions for security vulnerabilities.” in USENIX
Security Symposium, vol. 10, 2010, pp. 339-354.

B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: Feedback-
driven static analysis of node.js applications,” ser. ESEC/FSE 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
455-465. [Online]. Available: https://doi.org/10.1145/3338906.3338933
S. Wei and B. G. Ryder, “Practical blended taint analysis for
javascript,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York, NY, USA:
Association for Computing Machinery, 2013, p. 336-346. [Online].
Available: https://doi.org/10.1145/2483760.2483788

S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and
R. Berg, “Saving the world wide web from vulnerable javascript,” in
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ser. ISSTA ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 177-187. [Online]. Available:
https://doi.org/10.1145/2001420.2001442

W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding out
domsday: Towards detecting and preventing dom cross-site scripting,”
in 2018 Network and Distributed System Security Symposium (NDSS),
2018.

S. Guarnieri and V. B. Livshits, “Gatekeeper: Mostly static enforcement
of security and reliability policies for javascript code.” in USENIX
Security Symposium, vol. 10, 2009, pp. 78-85.

S. H. Jensen, A. Mgller, and P. Thiemann, “Type analysis for javascript.”
in SAS, vol. 9. Springer, 2009, pp. 238-255.

V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarra-
cino, B. Wiedermann, and B. Hardekopf, “Jsai: A static analysis platform
for javascript,” in Proceedings of the 22nd ACM SIGSOFT international
symposium on Foundations of Software Engineering, 2014, pp. 121-132.
D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking
information flow in javascript and its apis,” in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, 2014, pp. 1663-1671.
J. Park, Y. Ryou, J. Park, and S. Ryu, “Analysis of javascript web
applications using safe 2.0,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 59-62.

X. Chang, W. Dou, Y. Gao, J. Wang, J. Wei, and T. Huang, “Detecting
atomicity violations for event-driven node. js applications,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 631-642.

X. Chang, W. Dou, J. Wei, T. Huang, J. Xie, Y. Deng, J. Yang, and
J. Yang, “Race detection for event-driven node. js applications,” in

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2021, pp. 480—491.

A. T. Endo and A. Mgller, “Noderacer: Event race detection for node. js
applications,” in 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST). 1EEE, 2020, pp. 120-130.
J. Davis, A. Thekumparampil, and D. Lee, “Node. fz: Fuzzing the server-
side event-driven architecture,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 145-160.

L. Zhang and C. Wang, “Rclassify: classifying race conditions in
web applications via deterministic replay,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). 1EEE, 2017,
pp. 278-288.

F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “Autoflox: An
automatic fault localizer for client-side javascript,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Valida-
tion. IEEE, 2012, pp. 31-40

G. Li, E. Andreasen, and I. Ghosh, “Symjs: automatic symbolic testing
of javascript web applications,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 449-459.

S. Khodayari and G. Pellegrino, “Jaw: Studying client-side csrf with
hybrid property graphs and declarative traversals,” in USENIX Security
Symposium, 2021.

U. Igbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq,
“Adgraph: A graph-based approach to ad and tracker blocking,” in 2020
IEEE Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 763—
776.

Authorized licensed use limited to: ASU Library. Downloaded on January 23,2024 at 22:41:49 UTC from IEEE Xplore. Restrictions apply.

1415

