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Abstract—Security concerns have been raised about cascading
failure risks in evolving power grids. This paper reveals, for the
first time, that the risk of cascading failures can be increased at
low network demand levels when considering security-constrained
generation dispatch. This occurs because critical transmission cor-
ridors become very highly loaded due to the presence of central-
ized generation dispatch, e.g., large thermal plants far from de-
mand centers. This increased cascading risk is revealed in this
work by incorporating security-constrained generation dispatch
into the risk assessment and mitigation of cascading failures. A se-
curity-constrained AC optimal power flow, which considers eco-
nomic functions and security constraints (e.g., network con-
straints, N — 1 security, and generation margin), is used to pro-
vide a representative day-ahead operational plan. Cascading fail-
ures are simulated using two simulators, a quasi-steady state DC
power flow model, and a dynamic model incorporating all fre-
quency-related dynamics, to allow for result comparison and ver-
ification. The risk assessment procedure is illustrated using syn-
thetic networks of 200 and 2,000 buses. Further, a novel preventive
mitigation measure is proposed to firstidentify critical lines, whose
failures are likely to trigger cascading failures, and then to limit
power flow through these critical lines during dispatch. Results
show that shifting power equivalent to 1% of total demand from
critical lines to other lines can reduce cascading risk by up to 80%.

Index Terms—Cascading failure, frequency stability, power
generation dispatch, risk assessment.

I. INTRODUCTION

ASCADING failures are recognized as the main cause of

large blackouts [1]. Large blackouts, although they rarely
occur, have significant social and economic impacts. As a re-
sult, risk assessment of cascading failure has long been required
by NERC reliability standards to facilitate decision making and
investment planning [2].

As summarized in [3], methods for cascading failure risk as-
sessment are mainly based on cascading simulations and statis-
tical analysis of utility outage data. Standard metrics, such as
Expected Demand Not Supplied (EDNS), are produced to quan-
tify the resulting impact of cascading failures. This allows
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benchmarking of various cascading failure simulators and eval-
uating changes in cascading risk over slow system evolution.
Previous studies have shown that cascading risk does not in-
crease proportionally with network loading. Instead, there is a
critical loading at which the cascading risk rises sharply and the
probability distribution of demand losses exhibits a power-law
dependence, indicating an increased risk of large-scale outages
[4]-6]. The power-law dependence of outage probability on
outage size is expressed in the form Pr~X%, where X is the
amount of demand loss, and « is the power-law exponent and
slope when using logarithmic axes. However, these studies
were performed using a proportional dispatch method to sched-
ule generation at different loading levels. That is, changes in
demand are proportionally distributed to all available genera-
tors, regardless of cost. To improve this, the authors in [7] com-
puted generation dispatch for each loading level using a secu-
rity-constrained DC optimal power flow, but its impact on cas-
cading risk quantification has not been adequately investigated.
Work remains to study the relationship between generation dis-
patch considerations and cascading risk assessment to inform
system planning and operational decisions.

Mitigation measures of cascading failures have been investi-
gated by several researchers, such as in [7]-[12]. A discussion
of the challenges of developing measures for cascading failures
mitigation, and the learned lessons of deploying such measures
can be found in [11]. Existing measures mitigate cascading out-
ages mainly by: 1) identifying and strengthening critical assets
[71-19], 2) scheduling system resources (e.g., backup genera-
tion and synchronous condensers) during planning and opera-
tional processes [8], [12], or 3) deploying intentional islanding
techniques [10]. These mitigation measures are often based on
a given power system model, identifying critical assets and sup-
porting system operators in deciding when to apply the meas-
ure. Extensive simulation and detailed cascading failure models
are required to thoroughly test their effectiveness.

Applications of generation dispatch techniques in cascading
risk estimation and mitigation are less well explored [3], for
several reasons. First, the modelling of cascading failures re-
mains a complicated problem. Existing cascading failure simu-
lators can only capture a subset of cascading mechanisms based
on different research objectives. Without a systematic valida-
tion procedure, the information obtained from dispatch tech-
niques may vary depending on different modelling assumptions
[13]. Second, it is challenging to provide reliable estimations of
expected costs associated with generation dispatch, control ac-
tions and power outages. Uncertainties arise from the operating



state, the occurrence of certain contingencies, the system oper-
ator’s behaviors, etc. Making optimal decisions under uncer-
tainty requires a trade-off between the solution quality, the pro-
vision of probabilistic guarantees and the computational tracta-
bility. Modelling assumptions need to be carefully identified
and validated against the limited knowledge available at the
time of decision making. This gives rise to a range of different
programming formulations, including stochastic optimization
[14] and two-stage robust optimization [15]. Given the compu-
tational burden, applications of these optimization theories of-
ten rely on simplified approximations of post-contingency
states and the use of a DC power flow model, and show limita-
tions in providing realistic and usable dispatch solutions for cas-
cading risk management. If not combined with detailed model-
ling of system dynamics, the optimization problem can lead to
overly conservative decisions, and it is difficult to validate op-
timal solutions under different operating conditions [15].

Security-constrained optimal power flow (SCOPF) is a pow-
erful scheduling tool for power system operators for day-ahead
operational planning. SCOPF aims at minimizing the opera-
tional cost while satisfying network constraints under normal
and contingency operations [16]. The formulation of SCOPF
problems considers various control actions, mainly divided into
preventive (i.e., pre-contingency) [17] and corrective (i.e., post-
contingency) [18] control actions. The state-of-the-art method-
ologies and challenges for solving SCOPF problems are dis-
cussed in [19]. Most existing SCOPF studies focus on manag-
ing control strategies and optimizing mathematical program-
ming to deal with failure events that lead to small-scale viola-
tions. In many cases, these violations can be eliminated in sub-
sequent cascades without causing a major power outage (e.g., a
small-scale cascade caused by a single component failure).
However, the nature of cascading failures has led to the widely
observed power-law distribution of demand losses [4]. This
suggests that certain combinations of events can trigger high-
impact cascading failures, although they occur with relatively
low probability. Thus, research on small-scale violations is not
sufficient in characterizing cascading phenomena, and the cou-
pling of SCOPF with cascading failure simulation has not been
adequately investigated.

To address these limitations, this paper incorporates security-
constrained AC optimal power flow (SC-ACOPF) into the risk
assessment and mitigation of cascading failures. The use of SC-
ACOPF provides a day-ahead generation dispatch solution, pri-
oritizing cheaper generation technologies, and ensuring that
network constraints and N — 1 security are respected. It there-
fore provides insights into the interactions of dispatch consid-
erations with blackout risk, and the potential improvement that
preventive operational measures can make on cascading risk
mitigation. The proposed preventive SC-ACOPF mitigates cas-
cading risk by limiting the power flow through critical lines,
whose tripping could lead to cascading failures. A Risk Sensi-
tivity Index (RSI) is computed to reveal the sensitivity of cas-
cading risk to individual line loading, and to identify critical
lines where constraining power flow can reduce cascading risk.
Then, the RSI values are used as weight factors for each line,
and additional power flow constraints are imposed on critical

lines to enhance the reliability of the power system against cas-
cading failures. In particular, this paper:

e makes the first quantification of increased cascading risk
at lower demand levels when using SC-ACOPF instead of
the proportional dispatch method.

o integrates dispatch considerations and frequency dynam-
ics into cascading failure simulation and risk assessment.

e shows that assuming proportional dispatch can underesti-
mate cascading risk.

e mitigates cascading risk by computing risk sensitivity in-
dexes and constraining power flow on the critical lines.

e coordinates quasi-steady state and dynamic simulation for
more robust and practical cascading risk assessment.

The rest of this paper proceeds as follows: Section II begins
with the formulation of SC-ACOPF problem. Then, methods
for risk assessment and blackout mitigation are described. Sec-
tion III describes the static and dynamic cascading failure sim-
ulators. Simulation results are presented in Section IV for the
200-bus and 2,000-bus systems to illustrate the impact of dis-
patch factors and the performance of mitigation measures using
critical line sensitivities. Section V concludes the paper.

II. RISK ASSESSMENT AND MITIGATION PROCEDURES

Fig. 1 illustrates the cascading failure risk assessment and
mitigation procedures with security-constrained dispatch con-
siderations. This framework begins with a SC-ACOPF solution,
which offers a representative day-ahead operational plan. In
contrast to the proportional generation dispatch commonly used
in cascading failure analysis, SC-ACOPF provides valuable in-
sights into the advantages gained by implementing efficient dis-
patch solutions. Following this, the framework proceeds with
generic procedures for cascading failure simulation, risk assess-
ment, and blackout mitigation to evaluate the current security
state against expected but not yet occurring contingencies and
implement effective mitigation measures. The following sub-
sections describe the three main parts required to apply this ap-
proach: (A) obtaining the cheapest pre-contingency dispatch,
while ensuring system availability in steady-state and under all
N — 1 contingencies for a system with N lines, (B) risk assess-
ment of cascading failures under N — k contingencies (for cas-
cading failures initiated by k line outages, where k can be in the

order of {2,3,4,... }), and (C) determining and applying pre-
ventive operational measure to find the re-dispatch solution.
A. Formulation of SC-ACOPF Problem

The conventional formulation of the SCOPF problem is
adopted from [17], [18] and compactly expressed as follows.
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Inputs: Network data, ancillary service requirements
(e.g., generation margin), demand level, etc.
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based on risk sensitivity index
]
| Apply N — k contingencies |
B | Simulate cascading failures l
| Perform cascading failure risk assessment |

Outputs: Estimated cascading risks for each demand

level, for each dispatch requirement, with and
without applying the mitigation measure.

Fig. 1: Flowchart of cascading failures risk assessment and mitigation proce-
dures with security-constrained dispatch considerations.
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Fig. 2: Flowchart to solve SC-ACOPF with Benders decomposition.
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In (1), f(x0,u,) is the objective function of system state var-
iable vector x, and control variable vector u. Subscript n =
{1,2,...,c} denotes variables and constraints associated with
the n-th contingency (n = 0 refers to the pre-contingency sys-
tem configuration). x,, is the vector of state variables, i.e., bus
voltage magnitudes and phase angles. u,, is the vector of con-
trol variables, such as generator real power, generator terminal
voltages, and transformer tap settings. This paper focuses on the
preventive capabilities in pre-contingency states (e.g., genera-
tor frequency control, automatic tap-changers, etc.) and does
not consider post-contingency corrective actions, i.e., u, =
Uy, vn=1{1,2,..,c}. More details on the corrective SCOPF
problem can be found for instance in [20]-[22].

Constraints (2, 3) and (4, 5) ensure the reliability of the pre-
contingency and post-contingency states, respectively. Equality
constraints (2, 4) define the AC power flow equations. Inequal-
ity constraints (3, 5) include physical limits on device loading.
Among the various types that may be enforced, this procedure
imposes constraints on generator active power outputs, power
flow through each line/transformer, bus voltages, and overall
generation margin. Here, generation margin of generator i is

defined as its excessive generation capacity, i.c., difference be-
tween maximum and actual active power generation, as shown
in (6). The overall generation margin is enforced to be close to
a certain amount M (in MW), as shown in (7) where U; is the
state (on=1 and off=0) of generator i, and N is the number of
available generators. Due to the discrete nature of generator ca-
pacity, the expected generation margin is set with the tolerance
of the minimum unit capacity, i.e., miin{PL-}.

M; = P — P, (6)
Ng
M —min{P} < ) UiM; < M +min{P} ©)
L 13
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N — 1 security is achieved via an iterative process, starting
with a dispatch solution, testing all single line outages, impos-
ing additional power flow constraints, and computing the new
SC-ACOPF solution iteratively until no single failure will lead
to further outages. Previous studies have shown that the com-
putation time of standard SC-ACOPF grows quadratically with
the number of contingencies, but can be reduced to linear
growth by Benders decomposition [23], [24]. This is an effi-
cient method of decomposing an optimization problem into a
master problem and subproblems. As shown in Fig. 2, the mas-
ter problem aims to minimize the operational cost under normal
operation. Control variables are then sent to subproblems to see
if there are any violations under each N — 1 contingency. In
case that the dispatch solution to the master problem does not
satisfy the operational constraints for a specific contingency,
additional constraints are generated that force the relevant con-
trol variables to be within limits for the next iteration, thus mak-
ing the subproblem feasible. For example, if some lines become
overloaded due to a single line outage, then additional power
flow constraints are imposed on each violated line as shown in
(8), where e;; represents the power flow change of line i (in
MVA) caused by the outage of line j, and F; and F/*** are the
pre-contingency power flow and short-term emergency rating
of line i, respectively. This process for N — 1 security check is
repeated until the solution to the master problem satisfies the
constraints for all sub-problems.

_Fimax S Fi + eij S Fimax (8)

B. Risk Assessment of Cascading Failures

The cascading risk of a failure scenario is quantified by its
probability and impact [3]. Given a set of all possible failure
scenarios (), the cascading risk (R (x)) at a particular state x can
be estimated as (9), where P(c) and I(c, x) are the probability
and impact of failure scenario c. In this study, the impact of a
failure scenario refers to the blackout size in MW measured by
the cascading failure models (described in Section IIT). These
models are designed to simulate various disturbances that could
initiate a cascading failure, capture the dynamics and propaga-
tion of cascading outages and calculate the resulting demand
loss. Therefore, R(x) can be interpreted as the expected value
of I(¢,x) in MW. Considering that it may not be feasible to



simulate all possible failure scenarios, a subset of scenarios ({;)
is randomly sampled from () according to the probability func-
tion P(c). That is, scenarios are weighted according to their
probability of occurrence, and scenarios with higher probability
are more likely to appear in the sampling set. The estimated risk
R(x) is given as (10), where || and |Q| represent the number
of samples in Q and Q, respectively. It is clear that R(x) con-
verges to R(x) when |Q | — |Q]. To obtain unbiased results,
Q, needs to be carefully determined, so that it provides an ade-
quate and representative subset of (), covering a wide range of
probabilities and impacts of failure scenarios.

R(x) = Y P(OI(6) )
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The focus of this work is to estimate the risk of cascading
failures initiated by simultaneous failures of k lines, i.e., to per-
form an N — k contingency cascading analysis for a system
with N lines. Specifically, if the system has N lines and the se-
quence of failures is ignored, (), represents the subset of {1,
where k simultaneous line outages start the simulation of cas-

KI(N—K)!
for a complete N — k analysis. Moreover, it is assumed that the
initial outages in each scenario are independent, i.e., the proba-
bility of an initial event is the product of the individual outage
probabilities. Correlations between initial outages, such as ag-
ing degree [25] and spatial correlation [26], [27] have been al-
ready investigated in some studies. Such factors can be applied
if desired without affecting the general methodology presented
here.

The infrequent outages and sparse outage data hinder practi-
cal risk assessment in cascading failure analysis. Existing meth-
ods for estimating transmission line failure probabilities in-
clude: 1) considering common line features like length, loca-
tion, and proximity [28], 2) utilizing fragility curves to map fail-
ure probabilities to weather profiles within each weather region
[29], and 3) performing statistical analysis of utility outage data
to determine failure rates [30], [31]. Among all estimation
methods, line length plays a role in determining the line outage
rates against extreme events. Indeed, transmission line outage
rates are often expressed per mile or per kilometer [28], [31],
[32]. Here, following [28], [31], the failure probability of each
line is assumed to be proportional to its length and impedance,
given a consistent impedance per unit length. It is important to
note that this assumption may not be appropriate for extreme
line lengths or extreme weather intensities [31]. In cases where
amply sufficient line outage data is available, a more detailed
probability distribution of line failure can be utilized, allowing
for a more nuanced analysis without altering the general meth-
odology presented. Therefore, the failure probability of each
line is assigned according to the line impedance. As shown in
(11), the initial probability of a failure scenario c as an N — k
contingency can be estimated to be proportional to the product

failure scenarios

cading failures. This contains |Q;| =

of k line impedances (Z;). Equation (12) represents the total in-
itial probability of all N — k contingencies. Then, all failure
probabilities are normalized so that the total probability of all
possible N — k scenarios is equal to the probability (1;) of an
N — k contingency occurring in the next simulation step, where
k can be in the order of {2, 3,4, .. } The normalized probabil-
ity of each N — k contingency can be expressed as (13), the
sum of which equals to 4. The total blackout risk caused by
N — k contingencies can be estimated as (14), where €, ; is a
subset of scenarios randomly sampled from Q,, according to the
probability function Py, , (¢).
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C. Approach for Cascading Risk Mitigation

As mentioned in the introduction, by considering security-
constrained generation dispatch, this work shows that increased
risk can be observed at lower demand levels. This is due to the
heavy loading in certain transmission corridors, which will be
discussed in Section IV-B where the results are presented. To
mitigate the increased cascading risk, a preventive operational
measure is proposed to constrain the steady-state transmission
limits on critical lines. This can reduce the heavy loading of
critical lines and mitigate the propagation severity of cascading
failures caused by such critical line failures. As a preventive
measure, this mitigation is applied to reduce the probability of
cascading phenomena by temporarily reducing the power flow
constraints and re-dispatching generation before disturbances
cause severe outages. To do so requires information such as net-
work branch connectivity, power flows and load conditions,
which can be gathered in reality by leveraging advanced moni-
toring capabilities without additional investments in electrical
infrastructure reinforcement and hardening actions. Full ob-
servability of network topology, demand distribution and power
flow can be augmented by placing phasor measurement units
(PMU) throughout the network [33]. Assuming the PMU meas-
urements are always available for the application, the reported
data is then transmitted to a central controller to assess the cur-
rent security state against expected but not yet occurring con-
tingencies.

A sensitivity analysis is performed to investigate the impact
of individual line loading on cascading risk. In order to con-
strain the power flow through each line individually, a Risk Sen-
sitivity Index (RSI) vector can be computed to indicate the
change in cascading risk when the power flow limit of line i
reduces from F/"®* to F/'™t as shown in (15) and (16). That
is, the power flow constraint during the sensitivity analysis is



set to be AF; lower than the power flowing through the line in
an unconstrained manner. Cascading risks can be estimated
based on (14). To establish a fair comparison, the degree of
power flow restriction needs to be consistent across all lines,
thus for a system with N lines, AF; is defined as a fixed amount
of power in MVA, Vi = {1, 2,..., N}. That is, the transmission
capacity of each line is reduced by the same amount of power
and the impact on cascading risk is quantified as RSI (7). In this
sensitivity analysis, AF; is chosen to be equal to 1% of total de-
mand, indicating that power equivalent to 1% of total demand
is shifted from line i to other lines in the sensitivity analysis.

RSI(V) = ﬁk(X; |F;| < F["9%) — ﬁk(X; |F;| < Fi”mit) (15)

AFL- — Fimax _ Filimit (16)

Considering factors such as network topology, generation
margin, loading condition and failure probability of initial con-
tingencies, RS/ values need to be accessed for various scenarios
where cascading failures may occur. Then, RS/ values are used
to rank the importance of transmission lines in terms of cascad-
ing risk mitigation, and serve as a weight factor for each line to
design the re-dispatch mitigation scheme. Finally, an effective
mitigation can be achieved by first deciding how much power
to shift from the top-ranked lines to other lines, and then impos-
ing power flow restrictions on the top-ranked lines to reduce the
potential cascading risks associated with their failure. For ex-
ample, if N,,; is a set of critical lines ranked by RSI, additional
power flow constraints will be imposed on each line i € N,
in order to shift a total power of AF from the top-ranked N,
lines to other lines. The total transferred power AF is shared be-
tween these critical lines based on their weight factors, i.e., lines
with higher RS/ values are more restricted. The transferred
power and the corresponding constrained power flow limit for
each critical line are computed based on (17). The simulation
procedures of Fig. 1 need to be conducted with and without con-
sidering the mitigation measure to determine the contribution
of this preventive operational action to the cascading risk miti-
gation.

RSI(i)

| < Fmax _ A R
[Fil < Fres = AR g

i ENcri (17)

Existing sensitivity analysis methods can be divided into lo-
cal, screening and global sensitivity tests, which exhibit a trade-
off between sensitivity accuracy and computational time [34].
Here, a local one-at-a-time method is used to show the sensitiv-
ity of cascading risk to individual line loading, where the impact
of constrained power flow on cascading risk is linearized
through RS values. While slightly more optimized weights for
critical lines may exist, more time is needed for day-ahead so-
lutions, and indeed the inaccuracies caused by the small adjust-
ments to power flow (1%-2% of total demand) are small. The
linearized sensitivity analysis is considered computationally
tractable and effective for day-ahead operational planning, and
such linearization assumption has been made previously in
other cascading risk mitigation works, such as [7], [8], [35].

Case studies of cascading risk mitigation are discussed in Sec-
tion IV-C to demonstrate and compare the improvements in sys-
tem security at different demand levels. However, it is not
within the scope of this work to quantify the costs associated
with implementing these improvements. If robust economic
data is available, methods for balancing security and cascading
risks, such as chance constrained programming [36], can be ap-
plied as an interesting possible extension of this work.

III. CASCADING FAILURE SIMULATORS

The above-mentioned risk assessment and mitigation proce-
dures are generic and can be applied to any cascading failure
simulator that reflects the impact of cascading phenomena re-
sulting from a given set of initial contingencies. For the com-
parison and verification of the results, cascading failures are
simulated based on two typical modelling approaches [37], i.e.,
the quasi-steady state DC power flow model (herein referred to
as a static model), and the time-based dynamic model. Both the
static and dynamic simulators were developed by the authors
and explained in previous publications [38], [39]. In the prior
work detailed in [38], the frequency-related cascading phenom-
ena have been illustrated using these two models. The results
obtained from extensive comparisons of performance indicators
(e.g., the amount of demand loss and the number of line out-
ages) have shown that the two models can produce consistent
data distributions, such as the well-observed power-law distri-
bution of demand loss [4]. Cross-validation between these two
models has shown their validity and accuracy, thus supporting
their potential to provide useful information in different system
scenarios. While the prior work focused on estimating cascad-
ing risk under one operating condition, this work computes risk
assessment among various demand levels, and incorporates
more realistic probability distribution of contingencies and SC-
ACOPF into cascading risk estimates. For brevity, only key as-
pects of the simulator implementations will be described in the
following subsections.

A. Static Modelling of Cascading Failures

Several models have been developed for power flow-based
steady-state analysis, including the OPA model [40], hidden
failure model [41], and Manchester model [42]. The static
model used in this study is based on the fast dynamic process
of the standard OPA model, representing cascading events as
discrete transitions. It starts with a SC-ACOPF solution for gen-
eration, demand, and power flow. Then, post-contingency states
are computed iteratively. To enhance the representation of fre-
quency response during cascading failures and align with the
dynamic model, several modifications have been made to the
fast dynamic process of the standard OPA mode: (1) overloaded
lines are tripped deterministically, while the standard OPA dis-
connects overloaded lines probabilistically, (2) after network
separation, generation is re-dispatched and load is shed in each
island individually, assuming that no operator action occurs
during cascades and that a new steady state is reached by fre-
quency control, (3) the static model incorporates over-fre-
quency generator tripping schemes, starting from the smallest



unit, as a result of the large generation surplus that typically oc-
curs after network separation, and (4) the static model explicitly
considers the flexibility of generator and load during re-dis-
patch, with a certain ramp rate and limited generator dispatch
and load shedding capabilities. In addition, the static model is
simulated using the optimal power flow (OPF) solver from
MATPOWER [43].

B. Dynamic Modelling of Cascading Failures

The dynamic simulator is implemented based on DIg-
SILENT PowerFactory 2023 SP3 and MATLAB version 9.14
(R2023a) via the Python application programming interface. It
overcomes the limitations of traditional manual system set-up
methods, and represents a significant advance in the field of dy-
namic modelling of cascading failures in realistically sized
power networks. The frequency dependence of system compo-
nents is explicitly simulated, where speed governor and auto-
matic generation control of all synchronous generators are mod-
elled, and a frequency-dependent ZIP load model is used. Wind
turbine is modelled using type 3 model, i.c., doubly-fed induc-
tion generator. Five types of protection relays are modelled:
thermal relays for transmission line protection, under-frequency
load shedding relays for emergency frequency containment, un-
der-/over-frequency generator tripping relays for synchronous
generator protection, and generator out-of-step relays for syn-
chronization check. Here, it is assumed that all protective relays
can correctly remove circuit elements when triggering condi-
tions are met, and the hidden failures in the protection systems
are not considered in this work. Studies analyzing hidden fail-
ures in protection systems can be found in [41], [44]. The dy-
namic model focuses on frequency-related cascading phenom-
enon, and the impacts of other cascading mechanisms (such as
voltage violations and reactive power limits) on the cascading
risk estimation remain topics for future work. The detailed in-
troduction and source codes of the dynamic cascading failure
model are available in [39]. Based on this dynamic model, the
impact of step size on various cascading metrics has been in-
vestigated in [45]. Results suggest that a step size of 0.1 s can
be considered as a good balance between simulation accuracy
and efficiency when simulating cascading failures with fre-
quency dynamics and limited renewable penetration and is
therefore used here.

IV. CASE STUDY APPLICATIONS

The proposed framework is illustrated using two large syn-
thetic systems: the Illinois 200-bus system (ACTIVSg200) [46]
and the Texas 2,000-bus system (ACTIVSg2000) [46].

A. Simulation Data

The case studies presented in this section focus on estimating
cascading risks following a set of N — 2 contingencies, i.e.,
cascading failures initiated by simultaneous failures of two
transmission lines. A similar study can be applied to higher-or-
der initial contingencies where k = {3,4, ... }. In large power
systems, it is computationally infeasible to perform a complete
N — 2 contingency analysis, and an adequate number of failure
scenarios is required to obtain an effective risk estimation. The

proper size of the sampling set (), ; can be determined via a sep-
arate study of how the estimated cascading risk changes with an
increasing number of failure scenarios. Fig. 3 shows the results
of this study, where 2,000 N — 2 contingencies are randomly
simulated and plotted as separate curves to eliminate any poten-
tial bias from the simulation order. Results show that the esti-
mated cascading risk converges to a consistent value when the
number of failure scenarios exceeds 1,000. Specifically, in AC-
TIVSg200 and ACTIVSg2000, the average estimated risk in-
creases by 0.4% and 1.7% respectively, when the number of
scenarios increases from 1,000 to 2,000 (doubling the simula-
tion time). Hence, 1,000 N — 2 contingencies are selected as a
reasonable and computationally feasible sampling size for both
networks. In fact, the static cascading failure model typically
takes a few minutes to simulate 1,000 failure scenarios, using a
desktop PC with Intel Core W-2123, 3.60 GHz CPU and 32 GB
RAM. However, the dynamic model takes nearly an hour to
complete the same simulation for ACTIVSg200 and 5 days for
ACTIVSg2000. This can be improved if a better computer
source is available, or if contingency screening/sampling tech-
niques are applied. Methods, such as selection of high impact
N — k contingencies [47], variance reduction techniques [48],
stratified sampling [27], [49], and likely spatial patterns [27],
have been developed to assist in the effective sampling of initial
contingencies. However, before these methods can be applied,
a detailed verification and validation process is required to
check the accuracy of the results from multiple test systems,
observed data sets and cascading failure simulators, as re-
quested by IEEE PES Working Group on Cascading Failures
[37].
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Fig. 3: Dependency of cascading risk on number of failure scenarios using (a)
ACTIVSg200 and (b) ACTIVSg2000 systems.

All studies are conducted for the day-ahead operation plan-
ning with a simulation period of 24 hours. Reliable data of
transmission line failure rate is needed to estimate the probabil-
ity of an N — 2 contingency occurring the next day. The daily
probability of an N — 2 contingency is computed based on the
transmission line outage data reported by Bonneville Power
Administration (BPA) over 10 years [50], which gives the de-
tailed causes and timing of line outages. From 2012 to 2022,
21,001 automatic transmission line outages were recorded.
Here, the line outages are grouped into cascades according to
the time interval between their occurrences. Assuming that suc-
cessive outages with a time interval of more than 1 hour belong
to different cascades and outages with a time interval of less



than 1 minute occur simultaneously [51], 7,107 cascades are
identified, of which 377 cascades are triggered by double line
outages (i.e., nearly 0.1 occurrences/day). The BPA transmis-
sion network has 688 transmission lines. Considering that a
larger network with more transmission lines has a higher prob-
ability of double-line outage, the probability (4,) of an N — 2
contingency occurring on the next day is set to 0.1 occur-
rences/day in ACTIVSg200 and 0.2 occurrences/day in AC-
TIVSg2000. These probabilities are indicative and can be ad-
justed if better data is available. The specific probability of each
failure scenario can be determined by (13).

To illustrate the impact of different dispatch methods on cas-
cading risk estimation, steady-state operation states at different
demand levels are computed using SC-ACOPF and propor-
tional dispatch. 140% and 110% are the highest demand levels
for SC-ACOPF convergence to ensure system availability in
steady-state and under all N —1 contingencies in AC-
TIVSg200 and ACTIVSg2000, respectively. Thus, in the fol-
lowing simulations, the demand level ranges from 50% to 140%
for ACTIVSg200 and 50% to 110% for ACTIVSg2000.

B. Estimating Risk at Different Demand Levels

This section first discusses the impact of different dispatch
methods and increased generation margin on cascading risk es-
timation. Then, special attention is paid to the changes in criti-
cal transitions as demand increases. In the following discussion,
simulations are performed using static and dynamic models to
support the validity of the findings. Considering the complexity
of the research scope, the application on ACTIVSg200 is
mainly used to illustrate the impact of dispatch considerations
on cascading risk. The results of ACTIVSg2000 are used to ver-
ify the discovery and illustrate the impact of network size.

1) Proportional Dispatch vs. SC-ACOPF Methods

This section reveals how the cascading risk varies with the
demand level in ACTIVSg200 using both static and dynamic
models. The day-ahead operating states are computed using the
SC-ACOPF and proportional dispatch methods for comparison.
The proportional dispatch method equally distributes the
change in demand to all the generators, regardless of cost. In
other words, the same set of generators is committed at different
demand levels and the generation margin reduces as demand
increases. The SC-ACOPF method considers economic factors
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and system constraints. The setting of generation margin M =
20% of total demand is first arbitrarily considered, which is in
line with industrial practice (e.g., 20-30% in GB [52]). That is,
the system always maintains an excess generation capacity
equal to 20% of total demand to compensate for large power
imbalances. The effect of this assumption is evaluated in Sec-
tion IV-B-2.

As shown in Fig. 4, the sharp increase at higher demand lev-
els is captured in both simulators and with both dispatch meth-
ods. Compared with the static model, the sharp increase of cas-
cading risk occurs at a relatively lower demand level in the dy-
namic model. This is because the static model ignores the fre-
quency dynamics and tends to underestimate risks, thus leading
to a higher level of critical demand. This phenomenon has been
previously explored in more detail in [38]. Besides, observed
by both simulators, the cascading risk of the proportional dis-
patch method is much smaller than that of the SC-ACOPF (note
the different y-axis scaling). The proportional dispatch assump-
tion allows the generation margin to vary from 350% to 60%,
as the demand level increases from 50% to 140%, which is
much greater than the 20% generation margin used in SC-
ACOPF. This provides a high level of dispatch capability in
emergency situations that would not be possible in real power
system operation, and results in the significant underestimation
of risk. SC-ACOPF considers the dispatch factors such as indi-
vidual generator output limits and security constraints, but the
requirements for these factors need to be carefully determined
to achieve an acceptable level of risk.
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Fig. 4: Cascading failure risk versus demand level in ACTIVSg200 using (a)
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One striking result is that when using SC-ACOPF, the risk
does not always increase as the demand increases. In fact, an
increased risk is seen at lower demand levels of 50-70%, con-
trary to the steady growth indicated by the proportional dis-
patch. This reveals, for the first time, a centralized generation
issue in cascading risk management that can happen when the
system is operating with a small number of generators. In this
case, power from a small number of sources needs to be trans-
mitted to a larger number of load locations, which will lead to
a high utilization of a certain part of transmission system to
transport the energy from the cheap generation locations. The
high utilization of assets will increase the vulnerability of these
devices, whose failure will lead to a high risk of cascading fail-
ure. To illustrate this, Fig. 5 presents heatmaps of the line load-
ing conditions at three representative demand levels, i.e., 60%,
100% and 140%. Note that the network topology is formed
based on line impedances and thus the layout is not geographic.
It is shown that at 60% of demand (in Fig. 5(a)), even though
the overall system demand level is low, some of lines (as
marked) are more utilized than they would be when the demand
is 100% (in Fig. 5(b)). In fact, results show that at 60% of de-
mand, cascading failures associated with the top 5 highly uti-
lized lines (as initial event or participating in the cascades) con-
tribute to 42% of the total blackout risk, which result in the in-
crease of blackout risk at lower demand levels. A similar ‘bowl-
sha e ’ relationshi has been observed in [53], indicating that
the transition probabilities in a Markov model must change as
the cascade proceeds to obtain that power law in cascade size.
However, the relationship seen in [53] describes the cascade-
stop probability as a function of the progression of failures in a
cascade, whereas here the impact of increasing system loading
on blackout size is investigated.

2) Impact of the Amount of Generation Margin

In this subsection, the impact of the amount of generation
margin (M) on the cascading risk is investigated. This analysis
will help to quantify the relationship between increased margin
and the resulting system risk. For example, in GB, system op-
erators typically maintain generation margin at 20-30% of total
demand [52]. Seasonal reserve margins averaged about 20% for
2021 summer and 25% for 2021-2022 winter across all U.S. re-
gions assessed [54]. Therefore, this study considers M increas-
ing from 10% to 40% with a 10% step size. Fig. 6 shows the
extent to which the increased generation margin can mitigate
cascading risk in the 200-bus system. It is notable that the re-
sults of static and dynamic models show similar trends in cas-
cading risks among various demand levels and generation mar-
gin requirements. Whilst differences do exist, among different
operating conditions, the dynamic model always provides
higher estimated risks than the static model. Dynamic simula-
tion on the 2,000-bus system is time-consuming, as thousands
of measurement devices, controllers and relays are simulated
concurrently. Considering the high computational cost of the
dynamic model and the consistency of results obtained from
static and dynamic simulators, the study is conducted on the
2,000-bus network, using only the static simulator to increase
computational efficiency as similar trends in cascading risks are
observed in the two models. Results are shown in Fig. 7.
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Fig. 6: Dependence of risk on generation margin in ACTIVSg200, using static
and dynamic cascading failure simulators.
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Fig. 7: Dependence of risk on generation margin in ACTIVSg2000, using static
cascading failure simulator only.

The increased risk at lower demand levels is reflected in the
results of both systems, thus verifying that the centralized gen-
eration issue plays an important role in the cascading risk esti-
mation. The increased generation margin can improve genera-
tion dispatch capability to compensate large power imbalances
and reduce the blackout size. In ACTIVSg200, by increasing
the generation margin from 10% to 40%, the risk can be reduced
by approximately 78% for demand level below 130%. When
the demand level is above 130%, the system is operating under
heavily loaded conditions and the contribution of generation
margin towards risk reduction is limited. In particular, the cas-
cading risks with different generation margins all converge to a
similar value at a demand of 140%. In ACTIVSg2000, increas-
ing generation margin to 40% can reduce the risk by about 40%
for demand levels between 50% and 75%, and by about 18% at
a demand of 110%. It is expected that further increase in the
generation margin can reduce the cascading risk further, but the
continuous provision of a large amount of generation margin
may not be economically reasonable.

3) Variations in Critical Demand Levels

Existing studies have shown the existence of critical transi-
tions (also referred to as network tipping points or breakpoints)
in power systems, as network demand grows. The critical tran-
sitions are determined by observing sudden increases in relia-
bility metrics, such as EDNS, the number of component outages
and the probability of cascading outages of a certain size [4],
[5]. Also, it is widely observed in historical records and simu-
lation-based studies that the probability distribution of cascad-
ing risk near the critical demand level is governed by a power-
law [1], [4]. The critical transition provides a reference point of
system stressing. Recent advances in the field of system stress



testing have emphasized the great potential for detecting near-
collapse situations and providing early warning signals by pre-
dicting system behavioral changes [55]-[57]. Carefully control-
ling and operating the power system close to, but below, this
critical point can effectively manage cascading risks and ensure
economic benefits. This subsection identifies the critical de-
mand levels and power law exponents of ACTIVSg200 and
ACTIVSg2000 when using SC-ACOPF, and investigates the
probability distribution characteristics of power outages near
the critical demand levels.

Here, the critical demand is defined at the point where the
gradient of the curves in Fig. 6 and Fig. 7 is greater than
1 MW/percent. Given the similar trends in cascading risks ob-
served between simulation results of static and dynamic simu-
lators, the results of static model are presented here. It can be
seen from Table I that the growth in the generation margin
slightly increases the critical demand. Systems with higher crit-
ical demand levels have greater flexibility to tackle disturb-
ances and gain higher economic benefits by operating at in-
creased levels of transmission system loading without signifi-
cantly increasing the cascading risk. The exponent of the power
law represents the slope of probability density function on a
log-log plot, i.e., a smaller absolute value of exponent indicates
a slower slope and a heavier tail of the probability distribution.
Here, the value of exponent varies from —1.2 to —1.4 and is not
sensitive to generation margin or network size. Observing prob-
ability distributions of unserved demand with exponents from
—1 to —2 is in line with the trends of historical data and results
using other cascading failure models [1], [4], [5], which sup-
ports the validity of the proposed methodology. However, the
correlation between the exponent and disturbance types/net-
work properties has not been examined in previous studies.

TABLE 1
CRITICAL DEMAND LEVELS AND APPROXIMATE POWER LAW EXPONENTS
WITH DIFFERENT GENERATION MARGINS, DISPATCHED BY SC-ACOPF

ACTIVSg200 ACTIVSg2000

Generation 10 20 30 40 | 10 20 30 40
margin (%)
Critical
demand (%) 122 124 128 133 102 104 105 107
Power-law

-1.27 -1.25 -1.32 -1.30|-1.25 -1.24 -1.29 -1.34
exponent

1 4 Demand = 110% 1 4 Demand = 90%
® Demand = 124% ® Demand = 104%
B Demand = 130% B Demand = 110%
> >
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2
s s
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Fig. 8: Probability density functions of unserved demand for demand levels be-
low (triangles), at (circles) and above (squares) the critical demand with a gen-
eration margin of 20% in (a) ACTIVSg200 and (b) ACTIV Sg2000.

With a generation margin of 20%, the probability density
functions of unserved demand below, at and above the critical
demand of ACTIVSg200 and ACTIVSg2000 are shown in Fig.
8. In both systems, the probability distributions of unserved de-
mand below the critical demand show an approximately expo-
nential tail, while the distributions for cases at and above the
critical demand show power-law behaviors with different expo-
nents. The power-law tail becomes heavier as demand in-
creases, indicating a higher probability for large blackouts. The
critical transition from an exponential tail to a power-law tail of
the blackout size is widely reflected in historical data and exist-
ing work [4], which highlights the validity of the proposed
methodologies and cascading failure simulators. For example,
[58] shows the probability distribution of demand loss changing
from a lognormal distribution to a regime with a power law tail
and then back to a lognormal distribution, as the failure proba-
bility of transmission line increases. Fig. 9 of [58] shows a slope
change in the power law regime, and this is consistent with the
slope changes observed in Fig. 8 here as the demand changes
from 124% to 130% in (a), and from 104% to 110% in (b).

C. Blackout Mitigation

This section examines the contribution of the proposed miti-
gation measure to risk reduction. RS/ values are first computed
to provide an importance ranking of transmission lines. Then,
targeted preventive measures are developed to reduce transmis-
sion stress on critical lines, thus reducing overall cascading risk.
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Fig. 9: Sensitivity of cascading risk to individual line loading for all 245
branches in ACTIVSg200 at demand levels of (a) 60% and (b) 140% with a
generation margin of 20% and the dynamic simulator. The five lines with the
highest RS values are marked in red.

By reducing line loading individually by an amount equal to
1% of total demand, the sensitivity of cascading risk to individ-
ual line loading can be computed from (15). RSI values of two
typical demand levels (60% and 140%) are shown in Fig. 9,
representing high-risk conditions at low and high demand lev-
els. Lines with the highest RS/ values are marked in red and are
targeted for power flow restriction. The ranking of line im-
portance depends on the SC-ACOPF solution and varies with



different levels of demand. At a demand level of 60%, reducing
line loading by 1% of total demand (i.e., 9.2 MVA) can reduce
the expected cascading risk by up to 15.4 MW, smoothing out
the increased risk at this demand level. However, at the 140%
demand level, about 5% of lines have negative RS/ values. This
indicates that reducing the loading of these lines does not re-
duce cascading risk, but rather increases the likelihood of trig-
gering cascading outages when these lines are tripped. This oc-
curs because the system is highly utilized at a high demand level
and shifting power from some lines can increase the failure
probabilities of other lines, thus increasing the cascading risk.
The proposed mitigation measure imposes additional power
flow constraints (as shown in (17)) to avoid the high loading of
critical assets. This type of asset high loading can occur, for ex-
ample, when large-scale offshore wind generation is connected
at a single point of common coupling or can be exposed when
the system is operating with a small number of generators, as
discussed in Section IV-B. Fig. 10 showcases the performance
of the proposed mitigation at 60% and 140% demand levels of
ACTIVSg200. The ranking of line importance can be read from
Fig. 9, for example, the top 5 critical lines at the 60% demand
level are {99,47,124,87,16}. For each demand level, the cas-
cading risk is evaluated as the total transferred power AF in-
creases from 0 to 30 MVA, and N_,; increases from including
of only the top-ranked line, to including the top-ranked 5 lines,
to including all lines. More specifically, stud case “ Line”
shifts the transferred power of AF from N,,.; = {99} to other
lines. Stud case “2 Lines” shifts a total ow er of AF from
N, = {99,47}to other lines, where RSI(99)=15.4 MW and
RSI(47)=14.3 MW. AF is shared between lines 99 and 47 ac-
cording to their RS/ values, i.e., the power flow limits are re-
duced by 52%AF and 48%AF for lines 99 and 47 respectively.
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Fig. 10: Dependence of risk on the total amount of transferred power and the
number of constrained lines in ACTIVSg200 at demand levels of (a) 60% and
(b) 140% with a generation margin of 20% and the dynamic simulator.

The overall trend shows a clear reduction in cascading risk
(up to 80%) by deploying the proposed mitigation measure. By
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constraining the power flow of only the top-ranked 5 lines, a
risk reduction comparable to that of constraining all lines can
be achieved, with a difference of less than 2% for different val-
ues of transferred power. The small difference in results sup-
ports the validity of the linearization assumption between cas-
cading risk and individual line loading, which is sufficiently
fast to offer a good indication of critical lines for day-ahead op-
erational planning. Specifically, as AF increases, cascading risk
at the 60% demand level gradually flattens out and the mitiga-
tion effect saturates when the total transferred power is above
15 MVA. Furthermore, a steeper slope of risk reduction can be
observed as more lines participate in mitigation, but operating
at sub-optimal outputs can lead to higher system operation
costs. These factors will need to be balanced when optimizing
the mitigation of cascading risk. For the demand level of 140%,
shifting 30 MVA from the top 5 critical lines to other lines can
mitigate cascading risk by 50% but is still around 25 MW. Con-
tinuing to limit line loading at this point may not be appropriate
for risk mitigation at high demand levels, as the network is al-
ready highly utilized. The impact of other dispatch considera-
tions, such as the spatial distribution of generation margin,
against blackout mitigation can be further evaluated, so that ad-
vances can be made in understanding the relative importance of
dispatch considerations under different system conditions.

V. CONCLUSIONS

This paper has revealed, for the first time, that an increased
risk can be observed at lower demand levels, when security-
constrained generation dispatch is considered. This suggests
that the presence of readily dispatched centralized generation
can lead to high utilization of critical assets and result in a
higher risk of power outages. This finding was revealed by in-
corporating security-constrained AC optimal power flow (SC-
ACOPF) into risk assessment and mitigation of cascading fail-
ures in power systems. Results showed that the proportional
dispatch commonly assumed in cascading failure simulation
can underestimate the cascading risk compared to SC-ACOPF
dispatch. In addition, based on SC-ACOPF, a novel mitigation
measure was proposed to limit critical line loading in the pre-
ventive mode and reduce the associated probabilities of line
outages during cascading failures.

Two cascading failure simulators were used for result verifi-
cation: a quasi-steady state DC power flow model and a time-
based dynamic model incorporating all frequency dynamics.
The proposed approach was illustrated through risk assessment
of cascading failures on two large synthetic networks: AC-
TIVSg200 and ACTIVSg2000. Cascading risks at different de-
mand levels were quantified and the probability distribution
characteristics of demand loss near the critical demand levels
were investigated. Consistent conclusions were drawn from
simulations conducted with two distinct simulators, two large-
scale test systems and considering different system settings
such as demand levels, generation margins, and power flow
constraints. When using SC-ACOPF, an increased cascading
risk was observed at low demand levels. Generally, the static



simulator can reflect important information regarding the vari-
ation trends of estimated risk but tends to underestimate the cas-
cading risk compared to the dynamic simulator. In addition, in-
creasing generation margin can effectively mitigate cascading
risk and push the critical demand to a higher value, but contin-
uously providing a large generation margin solely to prevent
occasional power outages may not be economically justified.
Furthermore, a Risk Sensitivity Index (RSI) was defined to de-
scribe the sensitivity of cascading risk to individual line load-
ing. The proposed mitigation measure — imposing additional
power flow constraints based on RS/ values — can effectively
solve issues associated with heavily loaded assets triggering
cascading failures. Case studies of cascading risk mitigation at
low and high demand levels provided insights on the contribu-
tion of preventive measures on blackout mitigation at different
system stressing conditions. In particular, targeted line loading
reduction based on RS/ can mitigate cascading risk almost as
effectively as reducing all line loading limits. All these findings
emphasized the importance of taking the dispatch considera-
tions into account when performing cascading failure analysis,
and carefully formulating these requirements in cascading risk
management.
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