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The most frequent N-k line outages occur in motifs
that can improve contingency selection

Kai Zhou, Member, IEEE, lan Dobson, Fellow, IEEE, and Zhaoyu Wang, Senior Member, IEEE

Abstract—Maultiple line outages that occur together show a
variety of spatial patterns in the power transmission network.
Some of these spatial patterns form network contingency motifs,
which we define as the patterns of multiple outages that occur
much more frequently than multiple outages chosen randomly
from the network. We show that choosing N-k contingencies
from these commonly occurring contingency motifs accounts
for most of the probability of multiple initiating line outages.
This result is demonstrated using historical outage data for
two transmission systems. It enables N-k contingency lists that
are much more efficient in accounting for the likely multiple
initiating outages than exhaustive listing or random selection. The
N-k contingency lists constructed from motifs can improve risk
estimation in cascading outage simulations and help to confirm
utility contingency selection.

Index Terms—Cascading risk, N-k, contingency selection, net-
work motif,

I. INTRODUCTION

It is routine to choose initial line outage contingencies to
assess power transmission system security with simulation.
Single line contingencies, known as N-1, are tractable and
their impact is tested simply by applying each outage in turn.
This paper analyzes the probabilities of the more challenging
N-k initial line contingencies with k>1 lines outaged at once.
These multiple line contingencies, generally of higher impact
and lower frequency, do occur in practice, and are simulated
when assessing the risk of more extreme events such as
cascading, or ensuring robustness to a list of contingencies
that goes beyond N-1. We now explain how these applications
motivate our analysis of the probability of N-k initial outages
based on outage data routinely collected by utilities.

When assessing the risk of cascading outages with a simu-
lation, it is usual to sample multiple initial line outages with
some sort of equal probability assumption [1], [2], such as
independent, equal probabilities for the individual line outages
that make up each multiple outage, or equal probabilities
for all N-2 outages. These equal probability assumptions are
pragmatic but unrealistic, and this systematic skewing of the
sampling towards contingencies that are unlikely in practice
makes the resulting risk estimates less credible. We use con-
tingency motifs to sample the multiple contingencies that have
significantly higher probability. When this improved sampling
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of initial contingencies is combined with the simulated cascad-
ing impact, better estimates of cascading risk can be obtained.
The power industry routinely tests and maintains power grid
reliability by simulating the impacts of a list of credible initial
outage contingencies. The credible contingencies include all
single line contingencies and a judicious selection of the
huge number of multiple contingencies that are theoretically
possible. As summarized in the literature review, the credible
multiple contingencies are largely chosen by their impact or
by engineering judgment. The contingency motifs give sets of
multiple outages that have a much higher probability based on
the historic outage data. Quantifying the extent to which these
sets of multiple outages have occurred much more frequently
in the past can help confirm and augment the contingency list.
This paper originates from the observation from real outage
data that multiple contingencies occur much more frequently
in spatial patterns that we call contingency motifs. We illus-
trate this idea for the simplest case of N-2 outages. For N-2
outages, the contingency motif is all the outages of two lines
that share a common bus; that is, they have the spatial pattern
2\ In our first power grid example of N=528 lines, there
are N(N-1)/2=139 128 possible double contingencies, but
only 2116 of these double contingencies are the contingency
motif. If we assume each double contingency occurs with
equal probability, then the probability of a contingency motif
occurring would be 2116/139 128 = 1.5%. However, observing
the system for 14 years, we find that 81% of the double
contingencies that actually occurred are the contingency motif
.\. Since the contingency motif is much more likely to occur,
we can efficiently capture much more of the probability of the
realistically occurring double initial outages with the contin-
gency motif than by random selection from all double outages.
On reflection, it is not surprising that the contingency motif
of two lines with a common bus occurs much more often, since
the status of the two lines can be linked by both proximity
and various details of the protection system and substation
layout. But we can generalize this insight to N-3 and N-4
and quantify it statistically in order to capture most of the
probability of N-k outages. The reason is that N-3 and N-4 do
occur in practice and their outage data is enough for making
statistically meaningful inference; however, N-k for k>4 is
rare and they only account for a small portion of multiple
line outages, and thus there is not enough historical data for
statistical analysis.
This paper
o defines contingency motifs of the power network and
finds that multiple initial line outages occur much more
frequently in contingency motifs.



« develops a probabilistic model and sampling schemes for
multiple contingencies.

o shows that the new sampling schemes and contingency
lists account for most of the probability of multiple initial
line outages.

« applies to standard utility data, and analyzes historical
contingencies from two large North American utilities.

II. LITERATURE REVIEW

Researchers have proposed various model-based methods
for contingency selection. The Performance Index (PI) method
approximates an index for a contingency that reflects the
impact on the violation of line flows or voltages [3]. Then
contingencies are ranked based on PIs, and those having large
PIs are put on the contingency list. The PI method has a
trade-off between approximation accuracy and computation
speed. For improving approximation accuracy, [4] forms a
PI based on three margin indices for unbalanced systems in
terms of currents, voltages, and reactive power. The margin
indices use the deviation beyond limits instead of the absolute
values. [5] proposes two PI-based methods considering distri-
bution networks. For speeding up computation, [6] presents
an algorithm of fast N-2 contingency selection. Based on the
linear power system model, it derives a set of constraints that
describe the line flow overload; whenever some contingencies
are considered to be credible, the algorithm constructs new
constraints to identify more credible contingencies.

Besides the PI method, some works [7]-[9] first select
individual critical components and then extend them to mul-
tiple contingencies. The final list is generated by screen-
ing for risky contingencies based on topological metrics or
time-domain simulation. [7] describes a security assessment
tool that incorporates a probabilistic contingency selection
module. This method identifies critical individual components
according to the conditional probabilities of individual com-
ponent outages given different threats (such as bad weather,
environment, aging, sabotage). It then enumerates single and
multiple contingencies based on critical individual components
and computes topological metrics to screen for contingencies.
Instead of conditional probabilities, [8] uses a metric based on
Line Outage Distribution Factors to select critical individual
components. Then, line candidates for multiple contingencies
are those within a specified distance from the selected critical
individual components, and multiple contingencies are ranked
according to the betweenness centrality. Compared to the
above two methods, [9] extends pre-selected contingencies
only when the post-contingency state is stable, and candidates
are the components that are impacted most by the pre-selected
contingencies. This method uses time-domain simulation to
evaluate the system voltage stability. [10] proposes a method of
forming an N-k contingency list based on substation configu-
rations. The idea is that the protection system forms functional
groups, in which components outage together because of bus
configurations and protection schemes.

Moreover, statistical sampling and optimization are pro-
posed to select multiple contingencies. [11] proposes a Ran-
dom Chemistry sampling to identify large collections of multi-
ple contingencies that initiate cascading outages. Specifically,

Random Chemistry starts with a relatively large random subset
of components that cause cascading outages, and then reduces
the size of that subset recursively until a minimal subset is
found. This minimal subset is a multiple contingency that
leads to cascading, and it is minimal because any subset of it
does not cause cascading. In a different approach, [12] studies
the statistical properties of critical N-2 contingencies in terms
of their locations in the power network, which can be used
to identify critical lines. Mixed-integer linear programming is
also used to identify credible contingencies. The objective is
to maximize either the risk [13] or the incremental risk [14] of
contingencies, and a recursive algorithm is used to select a list
of credible contingencies. However, the optimization method
is inadequate to generate a large collection of contingencies
in a limited time. [15] formulates a mixed-integer non-linear
programming problem to identify multiple contingencies that
cause a large load shed. Two algorithms using power flow
sensitivity and a topological metric reduce the search space to
speed up computation.

Instead of assessing cascading risk, one can pose a different
question that starts from a large blackout caused by a very
large contingency and then asks: what is the minimal multiple
initial contingency that causes the large blackout? This ques-
tion is addressed by a Random Chemistry algorithm in [11].

Industry practice for contingency selection requires all
single contingencies and some of multiple contingencies.
The North American Electric Reliability Corporation (NERC)
established a standard TPL-001-4 [16] about categories of
contingencies to be adopted in transmission system planning.
[17] discusses in detail and models the seven categories
of contingencies in TPL-001-4. A conventional continuous
Markov Chain is used. Its parameters, such as failure and
repair rates, are estimated from outage data collection systems,
such as the Transmission Availability Data System (TADS).
The model evaluates the probabilities of different categories
of contingencies; it does not consider specific contingencies in
each category. [18] also discusses the standard as well as the
practice of contingency analysis. It presents the experience of
selecting multiple contingencies for analysis in power system
planning. ISO New England [19] is developing a tool that cal-
culates probabilities of multiple contingencies given weather
conditions. Multiple contingencies are constructed from in-
dependent single contingencies. These single contingencies
either have high probabilities or are selected by operators
because they are in major power grid interfaces.

Commercial software, such as TRELSS [20] and PSSE
[21], have user-specified contingencies and automatic multiple
contingency selection modules. User-specified contingencies
could have common-mode contingencies, protection control
group contingencies, and other specified contingencies. The
automatic multiple contingency selection assumes independent
individual outages in a multiple contingency, and the PI
method is used for selection. For example, in the case of an
N-2 contingency, the first outage is enumerated and ranked
according to PI, and the second outage is enumerated and
ranked according to PI in a subnetwork without the first
outaged component; then, a combination of the first outage
and the second outage is formed as an N-2, and the rank of



N-k contingencies is determined by the PI of the first outage
and then the PI of the second outage.

The definition of multiple contingencies varies in different
contexts: the meaning of k in N-k is different. NERC considers
both primary and secondary devices, and k is the number of
outaged devices. On the other hand, in the definition of PSSE
and [19], N-1 could also be a multiple contingency under its
protection scheme, which is a protection control group in [10].
However, [10] considers this contingency as an N-k, where k
is the number of outaged circuits. In this paper, N-k represents
a contingency involving k transmission lines.

As utilities are routinely recording outage data, data-driven
and probabilistic methods for contingency selection are pos-
sible and promising but are not studied as much. One data-
driven approach [22] proposes a Bayesian hierarchical model
to estimate outage rates of individual transmission lines con-
sidering line dependencies. Expert knowledge is of course
distilled from the experience of real outages, but there is an
opportunity for statistical analysis to not only confirm and
quantify the expert knowledge but also reveal more hidden
findings that are not easily learned from experience. Motivated
by this opportunity, in this paper we analyze real outage data
to find historical contingency patterns and propose systematic
sampling schemes for multiple contingency selection.

It is proven in cascading simulation that initial outage spatial
correlation has a substantial impact on assessing cascading
risk [23], [24]. In general, the increased correlation of close
initial outages increases the cascading risk. This finding also
motivates us to examine initial outage spatial patterns in real
outage data.

By analyzing outage data recorded over ten years in two
large power transmission systems, we find that multiple line
outages occur more frequently in some spatial patterns. This
idea is inspired by the network motif concept. Network motifs
are recurrent and statistically significant subgraphs of a net-
work that are first introduced by complex network and biology
researchers to analyze gene regulation networks [25], [26].
Network motifs are widely used in gene regulation networks
in systems biology and successfully applied in ecological,
sociological, and epidemiological networks [27].

There are studies applying network motifs to power systems.
Ren et al. propose network motifs as an indicator of cascading
outage risk [28]. They show that cascading outages exhibit
three phases as the load level increases, and the phases corre-
spond to the decrease of the frequency of network motifs. The
frequency of motifs reflects the connectivity of the power grid;
hence, it can be a warning sign of the cascading outage risk.
Other researchers have studied network motifs as an indicator
of power grid robustness and reliability using techniques
from network science [29]-[32]. Specifically, they carry out
attacks on the power grid by removing nodes according to
some order, and monitor network motif properties such as
concentration, z-score, and lifetime. Then they determine the
robustness and reliability of the network based on the idea
that a robust network tends to preserve longer its motif-based
measurements.

Researchers also study outage patterns using influ-
ence/interaction graphs [33]-[38]. An essential difference from

this work is that they study propagation patterns of cascading
outages, while this work aims at revealing spatial patterns of
initial simultaneous outages for better contingency selection
and risk estimation. However, influence/interaction graphs
generated from simulated cascades could be improved by
using better contingency lists for the simulated cascades.
Influence/interaction graphs generated from utility data can
empirically account for the frequencies of initial outages
[37]. It is also feasible [38] to simulate an influence graph
from assumed initial conditions, and this could use better
contingency lists.

The previous work on network motif applications in power
systems uses the conventional definition of network motifs,
which defines motifs as connected subgraphs in a network
that occur significantly more frequently than in a random
network [26]. However, this definition is not well suited to
contingency selection because the power network is not a
random network; it is a particular network of known structure.
Moreover, multiple contingencies can also be disconnected
subgraphs. Therefore, in this paper, we newly define con-
tingency motifs as connected or disconnected subgraphs that
occur significantly more frequently than random subgraphs of
the particular power network under consideration.

III. MULTIPLE LINE INITIAL OUTAGES FREQUENTLY
OCCUR IN CONTINGENCY MOTIFS

We analyze 19 years of historical outage data recorded by
Bonneville Power Administration (BPA) and publicly available
at [39]. The first 14 years of data are used for analysis and
the last 5 years of data are used for testing. The power
transmission network is deduced from the outage data itself
using the method in [40]. The automatic line outages are
grouped into cascades and then generations according to the
outage times'. Then, multiple initial line outages are extracted
from the first generations of cascades and represented as
subgraphs of the power network. Some patterns are frequently
recurrent, and we adapt the network motif concept to represent
these frequently occurring patterns as contingency motifs.

This section first describes the statistics of random patterns
of the power network and statistics of patterns observed
in historical outages, and then it gives the definition and
identification of contingency motifs.

A. Subgraphs and patterns in the power transmission network

The BPA power transmission network is shown in Figure 1.
Substations correspond to network nodes, and transmission
lines correspond to network edges. The power grid has multi-
ple transmission lines between some substations, and they are
represented by one line in this network.

A k-edge subgraph is an edge-induced subgraph, which is
a subset of edges of a graph together with nodes that are their

IThe grouping of line outages uses the method detailed in [41]: Looking at
the gaps in start time between successive line outages, if successive outages
have a gap of one hour or more, then the outage after the gap starts a new
cascade; if outages occur within the same minute, they are in the same
generation of a cascade. More elaborate methods of grouping line outages
to find initiating outages could also be applied.



Transmission line

Substation
Fig. 1: BPA power transmission network (528 lines) derived

from the outage data [40]. Highlighted subgraphs are five
examples of multiple line outages. Layout is not geographic.

endpoints. For example, {1—3, 1—6} is a two-edge subgraph
of the graph in Figure 2. When an N-k contingency occurs,
we can imagine that the k outaged lines in the power network
are highlighted, and we observe a subgraph. Thus, each N-k
contingency corresponds to a subgraph.

Two subgraphs are isomorphic when there is a mapping
between their nodes such that two nodes adjacent in one
subgraph implies that the corresponding two nodes in the other
subgraph are also adjacent. We say that two subgraphs are
the same when their nodes and edges are exactly the same.
For example, in Figure 2, subgraphs {1 — 3, 1 — 6} and
{1—5, 4—5} are isomorphic, but are not the same subgraph.

Fig. 2: The two highlighted subgraphs are isomorphic 2-edge
subgraphs.

A pattern is a set of isomorphic edge subgraphs. Sy ;
denotes a pattern that is a set of subgraphs sy ;, where k
is the number of edges and ¢ is the pattern identifier. An
exception is Sy ., which denotes the set of 4-edge subgraphs
that are not members of Sy, for ¢ = 1,2,3,4. Table I
shows patterns of the BPA network and the number of distinct
subgraphs in each pattern (the size |Sy ;| of the pattern). As
contingencies are always grouped according to the number of
outaged components k, subgraphs are also grouped this way.

B. Probability of patterns

Let P(Sk,i|k) be the probability that a pattern Sy ; appears
in contingency subgraphs given the number of lines k. Two

TABLE I: Probabilities of patterns in BPA data and random
subgraphs

. Sk |Sk,il Puni(Sy ilk) ng ney P(Sk,ilk)
O\ Sen 2116 0015 392 317 0.81
" Shp 137012 0.98 392 75 0.19
o Ssa 463 00002 127 74 0.58
1 Ss2 1083833 0.044 127 31 024
< Sza 519 00003 127 18 0.14
S Ssa e 1076 127 3 0.024
1 :fj S35 23297709 0.96 127 1 0.0079
T Sia 9799 106 39 0.39
] \I Sai2 2354215 10~ 23 5 0.22
W Sis 48581 10-° 35 0.22
7 Sia 26028 106 3 2 0.087
others Si. 3199244477 0.9 23 2 0.087

S4,x 1s the set of 4-edge subgraphs that are not in Sy ; for ¢ = 1,2, 3,4.

methods are used to estimate P(Sy ;|k): one based on the
uniform assumption and the other based on outage data.

1) Uniform assumption: Suppose the network has /N nodes.
If no other information is available, it is natural to assume that
contingency subgraphs occur uniformly in all the (J,\C] ) possible
k-edge subgraphs of the network. That is

1

(%)
where p}gi}; denotes the probability of a particular subgraph
sk, given k, and “uni” indicates uniform. We call this the
uniform assumption.

|Sk,s| is the number of subgraphs of the network in Sy ;.
Then P(Sk;|k) under the uniform assumption is

1Skl

= /N
(%)

as shown in the fourth column of Table I.

2) Empirical probability: P(S;|k) estimated from the
outage data is

uni

Psyp; = (D

Puni(Skﬂ_

k) )

P(Silk) = "2 3)
N
where ny; is the number of contingency subgraphs sy ;
appearing in the outage data, and ny, is the number of k-edge
contingency subgraphs in the network. Note > . ny; = ng.
P(Sk,i|k) is shown in the last column of Table I.

3) Discussion: Table 1 shows that the probabilities from
outage data differ greatly from the uniform assumption. For
example, P(S31|2) is much greater than P""(S51]2), and
P(S51|3) is much greater than P"™ (S5 1|3). This implies that
some patterns recur much more frequently than indicated by
the uniform assumption. These frequently recurrent patterns
are the contingency motifs discussed in the next subsection.



C. Contingency motif definition

The conventional definition of a network motif [26] con-
siders connected subgraphs with a specific number of nodes.
For example, possible size-3 motifs in Figure 2 are subgraphs
{1-3,1-6, 3—6} and {1 -5, 4— 5}. Conventional
motifs are detected by computing the frequency of each pattern
and comparing it with the frequency of the same pattern
in random networks with the same global property, such as
degree distribution, as the original network [26], [42]. How-
ever, the power network is a particular, non-random network,
contingency subgraphs can be disconnected subgraphs, and
contingencies are grouped according to the number of lines,
not the number of nodes. Therefore, the conventional definition
of the network motif cannot be directly applied, and we define
contingency motifs as follows.

Instead of comparing the frequency of a pattern in outage
data to that in a random network, we compare the frequency
of the pattern to that in subgraphs sampled randomly from
the particular power network under consideration. We define
a k-edge contingency motif in a power network as a k-edge
pattern whose probability of occurrence is significantly greater
than that when all k-edge subgraphs in the power network are
assumed to have the same probability of occurrence. That is,

P(Sy.ilk) > aP"™ (S} ;|k) 4)

where a > 1 is large enough to indicate a significant dif-
ference. We choose a = 10 in this paper. For example, to
determine 3-edge motifs, we estimate the probability of S5 ;
for all ¢ from outage data, and then compute the probability
of S3; in the network under the uniform assumption. If
the probability of a pattern in outage data is significantly
statistically greater than that under the uniform assumption
according to (4), the pattern is a contingency motif.

D. Contingency motifs in the power network

To detect a contingency motif from data, we compare the
probability of the contingency pattern observed in outage data
and the probability of that pattern under the uniform assump-
tion. This problem can be formulated as a hypothesis test:

Hy : P(Sy.i|k) < 10P"™(Sy ;|k)

versus Hy : P(Syi|k) > 10P"™(Sy ;|k)

We use frequentist and Bayesian methods to do the
hypothesis test as detailed in Appendix A, and both tests
identify the same motifs: So; is a 2-edge contingency motif,
S3.1, S3,3, 53,4 are 3-edge contingency motifs, and Sy 1, 542,
Sa,3, Sa,4 are 4-edge contingency motifs. The test results are
shown in Table II, including the p-value in the frequentist
hypothesis test and the posterior probability P(Hy|nk ;) in
the Bayesian hypothesis test.

E. Discussion

We only consider transmission line outages. In terms of
physical elements in power systems, multiple contingencies
involve primary devices (generators, lines, transformers, com-
pensators, circuit breakers, bus-bar sections) and secondary de-
vices (protections and telecommunication equipment). Outages

TABLE II: Contingency motifs of the BPA data

Sk,i motif p-value P(Ho|ng,;)
.i‘x. 5211 true 0. 0.
\\ S22 false 1. 1.
<V S3,1 true 0. 0.
U S false 1. 0.99
\./\ S3,3 true 0. 0.
.i\. 53’4 true 0. 0.
| . S35 false 1. 1.
% S4’1 true 0. 0.
I\ 54’2 true 0. 108
'.\" S4y3 true 0. 0.
': S4,4 true 0. 1079
others S4,x false 1. 1.

of these devices can result in both single and multiple con-
tingencies of transmission lines. NERC standard TPL-001-4
describes seven categories of contingencies related to various
devices [16], and they can be further grouped into four types:
N-1, N-1-1, N-2, and N-k for k>2. For example, category
P3 are single-phase short circuit to ground faults of a bus-bar
section; if the bus-bar section connects k lines, then an N-k
line contingency occurs.

Multiple line outages can be divided into dependent and
independent contingencies. Dependent outages are closely
related to bus configurations and protective relays. It needs a
lot of effort to build a detailed power system model including
relays [43]. Scheduled maintenance and forced outages change
the topology of the power network, and hidden failures in the
protective relay system are inevitable. There are also common-
mode multiple contingencies® that are caused by extreme
weather or other external factors [44].

Two-edge stars 2in S,1 could be two transmission lines
connected to the same substation faulted simultaneously by co-
incidence, common-mode contingencies of two lines, a circuit
breaker or a tie break stuck in a breaker and a half substation,
primary protection fails and zone 2 protection is activated, a
fault in a bus-bar section connecting two transmission lines, or
a hidden relay system failure, etc.. In the first cause, the two
line outages are independent because one line outage does not
cause the other line outage; while for the rest of the causes,
the two line outages are dependent on physical or engineered
structure. Thus, S» 1 as a motif usually reflects some inherent
dependence of two lines.

The causes for three-edge and four-edge stars could include
faults of transmission lines connected on the same bus-bar sec-
tion, faults of bus-bar sections, transformers outages, breaker
stuck, etc. S3 3 is composed of three lines in a row. A possible

2 A common-mode contingency is a multiple contingency caused by a single
event where outages are not consequences of each other. For example, a single
lightning stroke can cause two line outages on a common tower.



cause is that these three lines are in a protection control group.
Ss 4 is a triangle, which is a special local structure in the power
network that is limited in number.

The precise physical or engineering dependencies causing
a specific motif are not clear without detailed knowledge of
a system, but the existence of the motif underlines the impor-
tance of studying multiple contingency mechanisms in detail.

1V. PROBABILITIES OF MULTIPLE LINE OUTAGES
A. A probabilistic model for multiple line outages

As multiple line outages show different patterns and some
are contingency motifs, we partition the whole contingency
space accordingly. Moreover, some patterns are disconnected
subgraphs, and they have different network diameters®. As the
network diameter follows a Zipf distribution as discovered in
[46], we further partition disconnected patterns according to
their diameter. The Zipf distribution has a heavy tail, implying
that multiple line outages containing far-away lines do occur.

The partition is illustrated in Figure 3. The ellipse represents
the space of contingency subgraphs, including N-2, N-3, and
N-4. According to the different patterns, N-k contingencies are
further divided into groups S} ;. Furthermore, disconnected
Sk, are divided into subgroups according to their diameters.
Each cell represents a Sy ; with a specific diameter d. A key

Fig. 3: Partition of the contingency subgraph space. Each cell
represents a pattern Sy ; with a specific diameter d. Multiple
contingencies s ; in each cell are assumed to have equal
probabilities.

assumption is that multiple contingencies s;, ; in each cell have
equal probabilities.

We build a probabilistic model to estimate the probability of
the multiple line outage s, ; with k lines based on the statistics
of outage data. That is,

P (sg,i) = P (k, Sk, d,s1.:)
= P (k) P (Sk,z|k) P (dlk’7 Sk,i) P (Sk,i|k7 Skﬁ', d)
= P (k) P (Sk,i|k) P (d|Sk:) P (5k,:|Sk.i, d) (5)

where P (k) is the probability of k line outages, P (d|Sk ;)
is the probability that pattern Sj; has diameter d, and
P (sy;|d, Sy ;) is the probability of a specific multiple con-
tingency given its pattern and diameter.

3The diameter of a subgraph is the largest network distance between any
two lines, and the network distance of two lines in a subgraph is the minimum
number of nodes of a network path connecting the two lines [40], [45].

1) Probability of the number of line outages: It is natural
to estimate the probability P (k) by
ny

Pk)= ———,
No + Ny + Ny

The distribution of k for the BPA data is P(k = 2) =
0.72, P(k = 3) = 0.24, P(k = 4) = 0.04. N-k contin-
gencies for k>4 are not considered because of their very rare
occurrence.

2) Probability of a pattern given k line outages: P (Sy;|k)
is estimated during the detection of contingency motifs and is
shown in Table III

k=234 (6)

TABLE III: Distribution of patterns P (Sj ;|k) for BPA data.

Sk So1 S22
P(Sy, k) 0809 0.191

Sk, S3,1 S32 S3,3 S3,4 S35
P(Sk,i|k) 0.583  0.244 0.141 0.024  0.008

Sk,i S41 Sa2  Sa3  Saa S
P(Sk’i k) 0391 0.217 0217 0.087 0.087

3) Probability of the contingency diameter given its pattern:
The connected contingency subgraphs have patterns Sz 1, S3 1,
S3.3, S34, Sa1, Sa,3, Sa4. For the connected contingency
subgraphs, the diameter is constant or very nearly constant*.
Therefore, we take the diameter distribution of the connected
contingency subgraphs to have probability 1 at a constant
diameter.

The disconnected contingency subgraphs have patterns S5 »,
S3.2, S35, S4,2. For all the disconnected contingencies com-
bined together, we empirically estimate from the outage data
the distribution of diameter P(d|disconnected). The discon-
nected contingencies are all combined together to calculate the
single distribution P(d|disconnected) because of the limited
outage data for these subgraphs. P(d|disconnected) is the
number of disconnected subgraphs with diameter d divided
by the total number of disconnected subgraphs.

Sk« has both connected and disconnected subgraphs, but a
small probability. Therefore we set the diameter distribution to
have probability 1 as for the connected subgraphs. However,
we can only determine the value of d when a specific sy, 4 is
given to make it a valid probability distribution, and if sy, , is
given, d equals the diameter of this specific sy, ..

In summary, the diameter distribution conditional on pattern
Sk.,i is estimated by

1 Sk.,i connected
P(d|disconnected) Sy ; disconnected (7)
1 Sk

P (d|Sk:) =

Note that (7) does not explicitly express the support (all
possible values) of d for the different Sj; because it is
obvious. For example, S 1 has d € {1};

4) Probability of a contingency given its pattern and di-
ameter: Finally, assume that subgraphs of a pattern Sy ; with

452’1, $3,1, 53,4, 54,1 have diameter 1 and s3 3, s4,3 have diameter 2.
Although the diameter of s4 4 is 2 or 3, 98% of s4 4 have a diameter of 3
in the BPA network.



diameter d are uniformly distributed. That is, P (s ;|Sk.i, d)
is the discrete uniform distribution
1
P (sk,i|Sk,iyd)) = o3~ ®)
|5k

|Sg’ ;| denotes the number of subgraphs in Sy, ; with diameter d.
|S,‘j,i| is approximated by uniformly sampling a large number
of s ; and computing their diameters, as shown in Table IV.

TABLE IV: Number of distinct subgraphs with different
diameters in Sy, ;

d_ 18551 18§51 IS§51 1S4,

2 6592 47035 10129 110725
3 14330 133813 333798 232684
4 22607 203860 1442182 414143
5 27069 231926 3395950 522119
6 25360 201685 5041582 475201
7 18777 133339 5069585 318717
8 11653 73988 3781098 160323
9 6283 36730 2327380 75294

10 2897 15178 1213277 34563

B. Probabilities of multiple line outages

Given a specific multiple contingency sy, ;, we can estimat
its probability with (5) by substituting values in Table III, an
computing probabilities with (6), (7), (8). Table V shows th
probability of any contingency sj ; in a pattern with diamete
d. S4. is not included because it has a great number of distinc
54, and thus each s4, has an extremely small probabilit
Table V confirms that motifs have higher probabilities tha
other patterns.

TABLE V: Probability of outages with different patterns an
diameters

d  s21  s22  $31  S32 833 s34 53,5 54,1 54,2 54,3  S4.4
1 3E-4 0. 3E-5 0. 0. 9E-5 0. 3E-6 0. 0. 0.
2 0. 1E-5 0. 7E-7  2E-6 0. 1E-9 0. 4E-8  4E-8 0.
3 0. 2E-6 0. 9E-8 0. 0. 1E-9 0. 8E-9 0. 4E-8
4 0. 6E-7 0. 3E-8 0. 0. 1E-10 0. 2E-9 0. 0.
5 0. 3E-7 0. 2E-8 0. 0. 3E-11 0. 1E-9 0. 0.
6 0. 2E-7 0. 1E-8 0. 0. 1E-11 0. 7E-10 0. 0.
7 0. 2E-7 0. 1E-8 0. 0. 1E-11 0. 7E-10 0. 0.
8 0. 2E-7 0. 2E-8 0. 0. 1E-11 0. 1E-9 0 0.
9 0. 3E-7 0. 2E-8 0. 0. 1E-11 0. 2E-9 0. 0.
10 0. 3E-7 0. 2E-8 0. 0. 1E-11 0. 2E-9 0. 0.

V. FORMING A CONTINGENCY LIST

A contingency list is a sample of contingencies to assess the
risk of cascading outages and other system violations such as
line flows and voltages exceeding limits. The risk of cascading
outages is often defined as the expected value of the impact
[1]. Three factors are considered in estimating the risk: (1) the
probability of a contingency; (2) the probability distribution of
cascading outage sizes, whose uncertainty also comes from
pre-contingency system states, model parameters, and how
the cascade evolves; (3) the size and impact of the blackout.
The cascade size and impact are usually estimated through
power system simulation. The risk R(s) of contingency s
with impact ¢(s) is R(s) = P(s)E(c(s)), where P(s) is the
probability of contingency s and E(c(s)) is the expectation
of the cascade impact’, which can be estimated by Monte

SFor a deterministic simulation, E(c(s)) reduces to c(s).

Carlo simulation given the initial contingency sample s. The
overall system risk is then the average of the risk of individual
contingencies. A contingency list that efficiently samples from
a large fraction of the probable contingencies is fundamental to
this risk calculation and is the subject of this paper. Therefore,
this section forms a contingency list from the contingency
motifs for the BPA data.

A. Straightforward sampling of contingencies

The probabilistic model of (5) implies a straightforward
sampling scheme for multiple line outages with four steps:
(1) sample k according to P(k); (2) sample S ; according
to P(Sk,i|k); (3) sample diameter d according to P(d|Sk,;);
(4) sample a sy ; uniformly from all subgraphs in Sj; with
diameter d. Figure 4 shows the flowchart of sampling a
contingency list including B distinct contingencies.

Initialize
total contingency number B;
contingency list list = {};
b=1

v
| Sample a k from P (k) |<*
v

| Sample a pattern Sy ; from P(Sy;|k) |

| Sample a diameter d from P (d|Sy;)

y

| Randomly draw a contingency sy ; in Sy ;

Yes
No

@ Yes
No

Fig. 4: Flowchart of the straightforward sampling.

The first three steps are straightforward as the corresponding
random variables have a small number of discrete values. The
fourth step is tricky because there is no effective way to find all
subgraphs sy ; with pattern S, ; and diameter d, and randomly
draw one of these subgraphs. For example, it is difficult to
describe the 1083 833 subgraphs in S5 . Instead, we sample
a sy ; by drawing lines sequentially. For N-2, first draw a line
randomly; then find all lines that are at distance d from the first
line; finally, randomly draw a second line so that the first line
and the second line form an N-2. Figure 5a illustrates the steps
of sampling a s » with diameter 2 using the small system in
Figure 2. For N-3, draw the first line randomly and draw the
second line that is at distance d from the first line, as we do for
N-2; then randomly draw the third line from lines that have a
distance not greater than d from either the first or the second
line and form the desired pattern together with the previous



Find lines at distance 2 from line 1-3 Find any line that can form a s3 , together with

ﬂ line 1-3, 4-6 ﬂ

R: Randomly select a line from line 4-5 and 4-6 Randomly select a line from line 1-2, 1-5 and 4-5

(a)sfi (b) 83,2

Fig. 5: Sampling (a) a s2 2 motif and (b) a s3 2 motif.

two lines. Figure 5b illustrates the steps of sampling a s3
with diameter 2. For connected N-4, the distance is fixed. We
first sample an N-3 that is a subgraph of the desired pattern,
then sample the last line randomly from lines that can form
the desired N-4. For s4 2, we first draw a 3-edge star s3 ; and
then draw a line that is maximum distance d from any of the
three lines in the star. For s4 ., we randomly sample 4 lines; if
they do not form s, ., we sample again until they form a sy .
We will get a s4 ., with only a few trials because its probability
under the uniform assumption is high as shown in Table I.

Using the sampling scheme, we draw 10000 N-2, N-3, and
N-4. It is possible that we sample a contingency that is already
sampled. In this case, we discard this contingency so that
there is no repetition in the samples. This is actually sampling
without replacement, which is less variable than sampling with
replacement [47]. The three most likely contingencies at the
top of the contingency list are {{348—365, 348385}, {342—
378,350 — 378}, {340 — 353,340 — 354}}. They are in Sz 1
and have the same probability 0.0003.

Let M(r) be the percentage of outages in the test data (last
5 years of outage data) that are covered by a contingency
list with r contingencies. To evaluate the performance of
the straightforward sampling scheme, we compute M (r) of
the proposed contingency list and compare it with the same
size list produced by a random scheme that treats all N-k as
equally likely. That is, the random scheme samples an N-k
by drawing a k according to P(k) and then drawing & lines
randomly from all lines.

Figure 6 shows how M (r) increases as r increases. The
straightforward sampling is much more efficient than the
random sampling. Since we are using a sampling method,
we draw ten lists with size r to estimate the mean and
standard deviation of M (r). For the straightforward sampling,
the average M (10000) is 82% with standard deviation 2%;
while for the random sampling, the average M (10 000) is only

100.

proposed
80.

60.

M(r)

40.

20.

random

---------
_______________
__________

L mmmmmmee
2000

number of samples (r)

Fig. 6: M(r) for the straightforward sampling and the random
sampling. The curves do not start at 0 because we compute
M (r) for r = 100, 200, 300, ...

10% with standard deviation 3%.

The straightforward sampling scheme is designed so that
outages with high probabilities are more likely to be drawn at
an early stage. As a result, the solid curve in Figure 6 has a
high slope at the beginning and then the curve flattens near
the kink at 7 = 3000. When the slope of the straightforward
sampling is higher than the random sampling, we are in a
region where increments of effort in further sampling perform
better than the random sampling. The kink is one possible
indicator of stopping further sampling. Thus, we can use the
first 3000 multiple contingencies to form a contingency list
for detailed analysis. They cover about 70% of the outages in
the test data; in contrast, the first 3000 random contingencies
only cover about 4%.

The straightforwardly sampled contingencies have high cov-
erage of outages in test data. It shows that the contingency
motifs capture the spatial statistics of multiple line outages.

B. Stratified sampling of contingencies

The straightforward sampling scheme can be improved to
stratified sampling, using motifs as strata. It is easy and flexible
to implement and leads to more precise risk estimates than
straightforward sampling.

Three contingency motifs (52 1 A, S31 <", and Ss.4 A) in
the sampled contingencies in Section V-A account for 78% of
the probability of multiple outages in the test data. As shown
in Table V, any individual s2 1, 53,1, Or s34 also has a higher
probability than others. Another reason that we only consider
these three motifs is that other motifs have a large number
of distinct subgraphs (see Table I) and these three motifs can
explain most of the probability. Therefore, we choose each of
the motifs Sy 1, S3.1, or S3 4 as a stratum and all other patterns
as a single stratum. Accordingly, (5) is rewritten as

P (ski) =P (sk,i| S2,1)P(S21) + P (sk,i| S31)P(S31)+
P (s1.i| S3.4)P(S3.4) + P (s.i] S+)P(S.) (9)
where S, represents any pattern that is not Sz 1, 531, or 53 4.

Note that only one of the four terms on the right-hand side of
(9) is not zero for a specific sy ;, s0 P(Sk,;) = P(Sk,:|k)P(k),



and P(S*) =1- P(Sg’l) — P(‘SS,I) — P(83’4). Directly
calculating with the probability estimates P(S ;) in (9) in-
stead of sampling proportional to these probabilities in the
straightforward sampling scheme gives more precise estimates
of P(sk).

There are various choices of the number of samples in a
stratum. One way is allocating samples according to their
probabilities. That is, the number of samples in each stratum
is proportional to its probability P(Sy ;). If a list needs 3000
contingencies, then we would have 3000 x P(Sz,1) = 1748 A,
3000x P(S3,1) = 420, 3000x P(S3 4) = 18 /\, and 814 s,,.
As shown in Section V-A, this list accounts for 70% of outages
in the test data. For strata of the three motifs, we randomly
sample contingencies uniformly according to the fourth step
of the straightforward sampling; for the stratum S,, we can
use the full straightforward sampling but exclude the previous
three motifs when evaluating conditional probabilities in (5).

The flexibility of the stratified sampling allows us to give
more consideration to other factors. We may sample more
contingencies from strata that we are interested in, or sample
more contingencies from strata that generally have a high
impact. For example, we could sample more contingencies
from N-3 because N-3 generally has a higher impact than N-2.
Stratified sampling reduces the variance of the estimate when
there are more samples in the stratum with high probability
than with low probability when the stratum variance is the
same [47, Ch. 5.5].

Another example of the flexibility of stratified sampling is
that it could be used in future work to better estimate risk.
To evaluate the risk, the expected impact of contingencies
in each stratum can be estimated by the average impact of
contingency samples in that stratum, and the system risk is the
weighted sum of the strata impacts with stratum probabilities
as weights. Stratified sampling can reduce the variance of the
risk estimates because contingencies are more homogeneous
in each stratum than between strata, fewer samples are needed
to obtain a precise estimate for each stratum, and combining
these estimates for the whole population can be less variable.

C. Deterministic contingency list

A fixed or deterministic contingency list that involves no
sampling could also be used. As shown in Table I, there are
2116 s91 .\, 4653 831 7, and 62 s34 /\. The total number
of these three motifs is 6831, which can be simulated in an
acceptable time. Therefore we can make a contingency list that
samples all the contingencies in the three motifs. This neglects
the S, contingencies, but gives a deterministic contingency list
that accounts for 78% of multiple outages in the test data.

VI. TEST RESULTS ON A SECOND SYSTEM

This section applies the analysis of the previous sections to a
second transmission system with outages recorded by the New
York Independent System Operator (NYISO) and summarizes
the results, which turn out to be similar.

The NYISO transmission system outage records cover New
York State and parts of neighboring US states and Canadian
provinces, with more network detail in New York State. The

NYISO outage data is publicly accessed from its website
[48] and processed according to Carrington’s method in [49].
Twelve years of data are used here, spanning from 2008 to
2020. The NYISO network formed from the outage data using
the method of [40] has 1695 lines. The outage data do not
have enough samples of N-4. Therefore, only N-2 and N-3
are considered. The first 10 years of data are used for training
and the last 2 years of data are used for testing.

The contingency motifs identified in the NYISO data are
So1 N, S3q vl S33 v and Ss4 A\, which are the same
2-edge and 3-edge motifs as in the BPA data. Then, we form
the probabilistic model and sample contingencies according
to the straightforward sampling scheme. 10000 contingencies
turn out to cover 74% of outages in the test data (0.9%
standard deviation). This shows that these contingency motifs
also capture the spatial characteristics of the NYISO multiple
initial outages.

A contingency list is formed by the stratified sampling
scheme. Motifs ., *[-, /\, and all remaining patterns S,
compose four strata. The consideration is the same as the BPA
case: any individual subgraph in the three motifs has a higher
probability than others; these three motifs already account
for the most probability (75%) of multiple outages; and the
remaining motif *.> have a large number (19911) of distinct
subgraphs (moreover, there are 6305 so 1, 14138 s3 1, and
247 s34). Since the NYISO network has more transmission
lines than the BPA network, we form a contingency list with
10000 contingencies for demonstration. Allocating samples
proportional to probabilities, this list contains 6305 s3 1, 809
53,1, 247 s34 and 2639 s,., which accounts for 72% of multiple
initial outages in the test data.

VII. DISCUSSION

The contingency motifs could confirm or inform industry
contingency selection by indicating multiple contingencies
with high probabilities. Given motifs in a power network,
engineers with field knowledge can better identify vulnerable
locations in the network for further analysis. In practical
contingency analysis, contingencies selected from the contin-
gency motifs could be refined by incorporating engineering
considerations such as substation bus configurations.

Because transmission line automatic outage data is sparse,
it is routine to group together lines by characteristics such
as voltage rating and component type to determine outage
probabilities of the lines in the group. The grouping of multiple
initial line outages into contingency motifs is similar, except
that the groups are formed by a spatial pattern the multiple
outages share, and it is a similarly pragmatic way to mitigate
the sparsity of multiple line outage data when estimating the
probabilities of multiple initial outages.

The method of this paper relies on a single database of
detailed historical outage data that is routinely collected by
transmission utilities in North America and also by many
utilities worldwide. The initial multiple outages can be readily
extracted from the data and located on the network to find the
contingency motifs and estimate their probabilities, so that the
most probable contingencies can be sampled first. The network



can be obtained from an inventory associated with outage data
or, as we do in this paper, from the outage data itself. Since
their own data is available to each utility and the computations
are not difficult, we would first recommend that contingency
motifs be found and applied with specific utility data to get im-
proved contingency lists to estimate cascading risk from simu-
lations. However, specific utility historical outage data may not
be available, since the simulated system may not have associ-
ated historical data, or the study is done outside a utility. Then
the risk assessment could still realize some similar benefits by
relying on the overall similarities in power transmission system
physics and engineering to use the contingency motifs .\, [,
and /\ that we observed in two different transmission systems.

This paper proposes an improved method of sampling multi-
ple initial line outages, which is only one part of assessing cas-
cading risk. We briefly comment on how the new method fits
into assessing cascading risk. The new method can simply be
substituted for the various sampling schemes with explicit or
implicit uniform probability assumptions, and then combined
with the sampling of the grid conditions and stresses, and the
sampling of any cascading outages and interactions that may
occur after the initial line outages to evaluate a cascading
outcome. We note that for risk analysis it is necessary to
sample likely as well as less likely possibilities across as much
of the sample space as possible. For comprehensive reviews of
cascading risk assessment we refer the reader to [1], [50]. Note
that [51] explains the close relation between deterministic and
probabilistic framings of cascading.

One feature of the new method that arises from it being di-
rectly driven by observed line outage data is that the initial line
outage underlying causes need not be modeled and analyzed.
The pattern of initial line outages in a given motif can arise
from a variety of causes and mechanisms, but for the purpose
of sampling initial line outages better, we only need to know
the observed outcome of all these causes and mechanisms as it
is expressed in the frequency of the motif. This point is specific
to sampling initial outages for risk analysis, and we are not
suggesting in any general way that the underlying causes are
unimportant; indeed the underlying causes are vital to good
engineering to mitigate the risk of specific situations.

There are some specific threats to grid security that can have
atypical patterns of initial outages related to the specific threat,
such as terrorism, war, and solar geomagnetic disturbances. In
a grid in which one of these threats is rare, these atypical
patterns will be rare in the historical record, and the motifs
extracted from the historical record will tend not to include
these atypical patterns. The extracted motifs correctly summa-
rize the historical probability structure of the multiple outages
in that grid and are appropriate for use in risk analysis on that
basis. On the other hand, one might choose to defend the grid
against one of these threats that has rarely occurred in the past,
and in that case we would suggest that each of these threats
requires separate analysis with their own initial contingency
lists. However, our improved contingency lists for multiple
initial outages based on historical data can be expected to
have some amount of overlap with these special contingency
lists for two reasons. First, in general, better screening of
multiple initial outages is broadly helpful because all threats

share the same grid topology and protection systems. Second,
in particular, many motifs correspond to outages related to a
single substation, and efficiently augmenting the contingency
analysis with these motifs tends to cover some of the starting
impact of these threats if that threat starts with damage
to a single substation. Earthquakes are another threat that
may require separate analysis because they tend to have an
unusually large number of initial outages occurring in the same
minute in a specific area of the grid, but can be rare in any
given specific area, giving only a few cases in recorded data.

In implementation, we expect the new sampling methods
to be used offline to generate a fixed contingency list. Then it
takes the same time online or offline as any other contingency
list, which is a small part of the time required for cascading
simulation.

VIII. CONCLUSION

In going beyond N-1 security, contingency lists of multiple
initial line outages are foundational for assessing cascading
risk and the security of power transmission systems. We
analyze the spatial patterns of multiple automatic line outages
that occurred in the same minute at the start of a cascade from
historical outage data. Some patterns occur significantly more
frequently in outage data than in random subgraphs of the
particular power network under consideration. We call these
patterns contingency motifs. The existence of contingency
motifs is the result of complex physical and engineering
dependencies in power systems.

Three contingency motifs (. ., I, and 2\) account for
most of the probability of multiple line outages in both BPA
and NYISO historical data. A contingency list formed from
these contingency motifs is much more efficient than random
selection or exhaustive listing. This improved contingency
list can easily improve simulations that evaluate cascading
risk. Specifically, to assess the cascading risk, we can use all
contingencies of the contingency motifs or sample a desired
number of multiple initial outages according to a sampling
scheme. A stratified sampling scheme is flexible and effective.

We show that sampling based on motifs works on the outage
datasets of two transmission systems. We expect that it will
also be applicable to other transmission systems, and we hope
that others will be able to confirm this with the outage data
available to them.

Contingency motifs can substantially improve the contin-
gency lists and the risk estimates obtained when assessing cas-
cading risk with respect to N-k contingencies with simulations.
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APPENDIX
DETECTING CONTINGENCY MOTIFS

A. Statistical model of multiple contingencies

Let X be the number of s; ; in ng N-ks. For simplicity, we
write P (S ;|k) as pg; and P (S ;|k) as pii. X follows a
binomial distribution:

N ng—=o

B. Frequentist hypothesis test

Pu(X =2) = (10)

Under Hy, the likelihood of obtaining ny ; or more sy ; is
nk

L(pki|nk,i) = Z

J=Nk,s

(J )(10p“m> I(1 - 10pEy (1)

When the likelihood is less than significance level 0.01, we
reject Hy, which means that the probability that Hy is true
but we reject it is less than 0.01.

C. Bayesian hypothesis test

We compare the posterior probability P(Hg|ny,;) with
P(Hq|ng;). If P(Ho|ng,:) > P(Hilng;), we accept Ho;
otherwise, we reject Hy and accept H;.
P(nk,i|Ho)P(Ho)

P(ny,i)
P(n;”|H0 (Ho)
P(ny,i|Ho)P(Ho) + P(nk:|H1)P(H1)

1/( P(n,H|H1)P(H1)) (12)

’I’Lk 1|H0)P(H0)
where P(Hy) is the prior probability and

P(H0|7’Lk,i) =

10p20i
P(ng,i|Ho) = / P(ngi|pri) f (pril Ho)dpr: — (13)
0

is the marginal likelihood under Hy. f(pgi|Ho) is the prior
for parameter py; when H is true, which is assumed to be a
uniform distribution.

Assume P(Hy) = P(H;) = 0.5, and pg;|Ho and pg;|Hq
both follow uniform distributions. Then the posterior proba-
bility of Hy is 1

1+BF

where BF is the Bayes Factor for H; relative to Hy, which
can be evaluated as follows:

P(ng,;|H1)

P(ng,;|Ho)

_ Jiogy P
mePl’é?i P(ng,ilpri) f (pril Ho)dpri
fmpum et ( )" dp
fOIOp‘”" o (L= )™ dpri

where F(z) is the cumulative density function of a beta
distribution with parameters ny ; + 1 and ny — ng; + 1.

BF =

Ne,i|Pri) f (Dri| H1 ) dpgs

Nk

1 — Pki F(lopum)

F(10pp)
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