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Depinning in the quenched Kardar-Parisi-Zhang class. I. Mappings, simulations, and algorithm
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Depinning of elastic systems advancing on disordered media can usually be described by the quenched
Edwards-Wilkinson equation (qEW). However, additional ingredients such as anharmonicity and forces that
cannot be derived from a potential energy may generate a different scaling behavior at depinning. The most
experimentally relevant is the Kardar-Parisi-Zhang (KPZ) term, proportional to the square of the slope at each
site, which drives the critical behavior into the so-called quenched KPZ (qKPZ) universality class. We study this
universality class both numerically and analytically: by using exact mappings we show that at least for d = 1, 2
this class encompasses not only the qKPZ equation itself, but also anharmonic depinning and a well-known class
of cellular automata introduced by Tang and Leschhorn. We develop scaling arguments for all critical exponents,
including size and duration of avalanches. The scale is set by the confining potential strength m2. This allows
us to estimate numerically these exponents as well as the m-dependent effective force correlator �(w), and its
correlation length ρ := �(0)/|�′(0)|. Finally, we present an algorithm to numerically estimate the effective
(m-dependent) elasticity c, and the effective KPZ nonlinearity λ. This allows us to define a dimensionless
universal KPZ amplitude A := ρλ/c, which takes the value A = 1.10(2) in all systems considered in d = 1.
This proves that qKPZ is the effective field theory for all these models. Our work paves the way for a deeper
understanding of depinning in the qKPZ class, and in particular, for the construction of a field theory that we
describe in a companion paper.

DOI: 10.1103/PhysRevE.107.054136

I. INTRODUCTION

Diverse systems can be modeled as an elastic object
(line, surface, manifold) advancing through a random medium
with quenched disorder: disordered magnets and the asso-
ciated Barkhaussen noise [1], expanding fronts of bacterial
colonies [2,3], systems that show self-organized criticality [4],
or coffee soaking into this paper (if you are old fashioned
enough to use a printout and to pour your coffee onto it) [5–7].
Often, the elastic system experiences a so-called “depinning
transition” as a function of some driving parameter, so that the
system changes from being pinned in some configuration to
advancing at an average velocity [8]. This phase transition can
be thought of as the transition between an active state, where
the elastic interface (or surface etc.) changes over time, and
an absorbing or quiescent state, where the interface remains
frozen [9]. At the transition, the dynamics becomes universal
at sufficiently large scales, universality appears as micro-
scopic details are irrelevant, and different systems and models
can be grouped together into a few universality classes. The
latter can then be studied via the renormalization group (RG)
and, more specifically, by employing functional renormaliza-
tion group (FRG) approaches [10–16].

The simplest prototypical model for depinning transi-
tions is the quenched Edwards-Wilkinson equation (qEW),
also called harmonic depinning. It monitors the height
u(x, t ) ∈ R of a d-dimensional interface embedded into d + 1

dimensions. By construction, this excludes overhangs as well
as bubbles. Its dynamics is described by

η∂t u(x, t ) = c∇2u(x, t )
︸ ︷︷ ︸

harmonic elasticity

+ m2[w−u(x, t )]
︸ ︷︷ ︸

confinement and driving

+ F (x, u(x, t ))
︸ ︷︷ ︸

pinning forces

.

(1)

The pinning forces F (x, u) are quenched Gaussian ran-
dom variables with variance F (x, u)F (x′, u′) = δd (x − x′)
�0(u − u′). �0(u) is the microscopic disorder-force cor-
relator, assumed to decay rapidly for short-range (SR)
disorder [8]. The system is driven by slowly increasing w,
either as w = vt (with v small) or via a small “kick,” w →
w + δw whenever the interface is stuck (pinned). The latter
protocol is particularly useful to study avalanches [17–34].

While the microscopic force correlator �0(u) can be ana-
lytic, the effective renormalized correlator �(w) seen in the
field theory [10–16], and measurable in experiments [35–39]
exhibits a cusp at w = 0. The slope at the cusp is proportional
to the typical avalanche size, |�′(0+)| ∼ 〈S2〉/〈S〉 [19].

The qEW class is not the only universality class for inter-
face depinning. As we show here, there is one other rather
large universality class, which we will establish is relevant
whenever nonlinear effects cannot be neglected. As an exam-
ple, the coffee going into our paper can be modeled by the
cellular automaton proposed in 1992 by Tang and Leschhorn
(TL92) [40] or variants thereof [41,42]. As it permeates
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through the paper, the coffee is blocked by a percolating
line orthogonal to the coffee front, a phenomenon known
as directed-percolation depinning (DPD) [5]. At a coarse-
grained level one observes that the coffee front tends to grow
in its normal direction, inducing anisotropy in the invaded
medium. This phenomenon is modeled by an additional term,
usually called a KPZ term [43], in the equation of motion,

η∂t u(x, t ) = · · · + λ[∇u(x, t )]2

︸ ︷︷ ︸

KPZ-term

. (2)

In addition to fluid invasion (our coffee front) [5–7], ex-
periments on bacterial colonies [2,3] or chemical reaction
fronts [44,45] share this property.

In our setup, there is a preferred direction in the medium:
the coffee front starts from a flat initial condition. If there is no
such preferred direction, or the microscopic disorder is very
strong, the critical behavior may be different [46].

Finally, the elastic restoring force may be stronger than
the harmonic elasticity in Eq. (1). This is particularly impor-
tant at depinning in dimension d = 1, where the roughness
exponent ζ = 5/4 is larger than 1, meaning that the width
of the interface grows stronger than the system size. As ar-
gued in Ref. [47] this implies that the small-displacement
expansion for the elastic energy must be invalid, and one
needs to go to the next order and include anharmonic elastic
terms to bring the roughness to ζ � 1. The interpretation
in Ref. [47] is that an elastic string would break and the
qEW model is unphysical. For domain walls in 2D mag-
nets this leaves two possibilities: either they are self-affine
interfaces in the qKPZ class, or non-self-affine (i.e., not de-
scribed by a height function), and then possibly (isotropic)
fractals.

We show below that all these models belong to the same
universality class, termed the quenched Kardar-Parisi-Zhang
(qKPZ) universality class [48]. The field theoretic treatment
of qKPZ via FRG is, however, fraught with difficulties [49].
The reason is that in [49] the effective KPZ coupling λ generi-
cally flows to strong coupling, indicating that the perturbative
treatment breaks down. Reference [49] further contained a
subspace of fixed points defined by closed RG equations.
This subspace is characterized by an exponentially decaying
effective force correlators �(w). Our study was motivated
by the observation that such a fixed point is indeed re-
alized for the pair-contact process (PCP) [50]. However,
our numerical simulations indicate that none of the mod-
els discussed above have an exponentially decaying �(w).
A field theory that agrees with the simulations is therefore
needed.

In view of the theoretical problems, here we tackle the
system first numerically and use the results to guide devel-
opment of the theory. The first key conceptual advance is the
introduction of a confining potential proportional to m2. When
m2 = ∞, the interface position is the flat configuration
u(x, t ) = w. As a consequence, both the elastic term
c∇2u(x, t ) and the KPZ term λ[∇u(x, t )]2 vanish. Thus when
we sample the total forces acting on the interface, and its
correlations �(w) (see Sec. V), we see the microscopic cor-
relations �0(w) of F (x, u). Let us now decrease m2. As the
interface explores more configurations and takes advantage
of stronger pinning configurations, the total pinning force

increases, while at the same time the interface becomes wider.
Viewing the dynamics as a function of w, the size of jumps
increases (with decreasing m), while their rate decreases. This
leads to larger correlation lengths ξm in the x direction and ξ⊥
in the driving direction.

While we can take m smaller and smaller, we cannot take
m = 0 to start with, as we cannot even define a steady state.
However, when ξm surpasses the system size, its effect on the
(spatial) correlations of u(x) becomes invisible. Thus for all
practical purposes, we have reached the scaling limit.

Apart from the effective (total) force correlator �(w), we
numerically estimate the flow of the parameters c and λ as
a function of the confining potential strength m2, to assess
whether the effective nonlinearity λ flows to infinity as it
did in the field theory of [49] or reaches a fixed point. In
the latter scenario, we could hope to be able to repair the
field theory. Our overall goal is to identify the effective field
theory, i.e., the effective large-scale theory, without having
to resort to field theory techniques, such as a diagrammatic
expansion.

Our second key advance is to construct an algorithm to es-
timate all parameters of the effective field theory, as a function
of m. Our conclusion is that an effective field theory with fi-
nite, m-dependent parameters exists, and it has the form of the
qKPZ equation. More specifically, we define a dimensionless
effective KPZ amplitude A,

A := lim
m→0

λ

c
ρ, (3)

where λ is the KPZ nonlinearity in Eq. (2), c the effective elas-
ticity in Eq. (1), and ρ the correlation length of the effective
force correlator (for a precise definition see Sec. V G). Since
the limit in Eq. (3) exists, the theory remains valid for the more
common setting of the qKPZ equation without an m2 term. A
should be viewed as the effective KPZ nonlinearity in dimen-
sionless units: It vanishes in qEW, and we show numerically
that A is the same for the TL92 cellular automaton, qKPZ, and
anharmonic depinning. This supports our claim that (at least
in d = 1, 2) there is only one universality class with A �= 0
which differs from qEW with A = 0. The qKPZ fixed point is
relevant even if the deviations from qEW in the microscopic
model are small.

This paper is organized as follows: in Sec. II we describe
the models we use. We then show through mappings that these
models are in the same universality class (Sec. III). Section IV
is devoted to a scaling analysis, with the confining potential
m2 defining our class of exponents. How to estimate numer-
ically the effective field theory is described in Sec. V, first
for the force correlator (Secs. V B-V C) and then the coupling
constants (Secs. V E–V G). Brief conclusions are offered in
Sec. VI. In a companion paper [51] we show how to obtain
the effective field theory from a diagrammatic approach.

II. MODELS

In this section we define three models. The first two are
described by a continuous equation, while the third one is a
cellular automaton model, i.e., a discrete microscopic model.
We show in Sec. III that they can all be mapped onto each
other.
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A. QKPZ equation

The quenched KPZ equation (qKPZ) is defined as

η∂t u(x, t ) = c∇2u(x, t ) + λ[∇u(x, t )]2

+ m2[w − u(x, t )] + F (x, u(x, t )). (4)

Rescaling u and F (x, u), we could set λ → 1. We prefer
to not rescale the disorder, and thus λ will change under
RG. Invariant under these transformations is the sign of λv,
i.e., λ times the driving velocity v = dw/dt . A positive
sign defines what is called the positive qKPZ equation. The
negative qKPZ equation exhibits a very different phenomenol-
ogy, with the propagating front spontaneously generating
facets [44,52,53].

Discretization of the KPZ term [second term on the r.h.s. of
Eq. (4)] is not trivial, and the choice made for it is important.
We use the discretization of Ref. [54],

u(x, t + δt ) − u(x, t )

= δt

{

m2[w − u(x, t )] + F (x, u(x, t ))

+ c[u(x + 1, t ) + u(x − 1, t ) − 2u(x, t )]

+ λ

[
u(x + 1, t ) − u(x − 1, t )

2

]2
}

with λ = 3, c = 1, δt = 0.01. (5)

Our main control parameter m is varied between 0.05 and 0.6.
The system size is chosen to be L � 512 with L the linear
size. Following standard approaches, the disorder forces are
drawn from a Gaussian distribution with unit variance, lin-
early interpolated between integer values of u. While efficient
algorithms exists for the other two models, a direct simulation
of the qKPZ equation is computationally expensive, and we
have restricted our simulations to d = 1.

B. Anharmonic depinning

Anharmonic depinning (aDep) is defined by the equation

η∂t u(x, t ) = c4∇ ·
{

∇u(x, t )[∇u(x, t )]2
}

︸ ︷︷ ︸

anharmonic elasticity

+ c∇2u(x, t )
︸ ︷︷ ︸

harmonic elasticity

+ m2[w−u(x, t )]
︸ ︷︷ ︸

driving force

+ F (x, u(x, t ))
︸ ︷︷ ︸

quenched disorder

. (6)

If �ei represents the unit vectors in d dimensions, the dis-
cretized anharmonic energies are

Hel[u] =
∑

x

d
∑

i=1

Eel[u(x+�ei ) − u(x)], (7)

Eel(u) = c

2
u2 + c4

4
u4. (8)

FIG. 1. The cellular automaton TL92. Blocking cells, i.e., cells
above the threshold are drawn in cyan; those below in white.
The initial configuration is the string at height 1 (dark blue). The in-
terface moves up. An intermediate configuration is shown in red, the
final configuration in black. Open circles represent unstable points,
i.e., points which can move forward; closed circles are stable.

The resulting elastic forces at site x are

−δHel[u]

δu(x)
=

∑

i

E
′
el[(u(x+�ei )−u(x)] + E

′
el[u(x−�ei )−u(x)]

= c
d

∑

i=1

[u(x + �ei ) + u(x − �ei ) − 2u(x)]

+ c4

d
∑

i=1

[u(x+�ei )−u(x)]3+[u(x−�ei ) − u(x)]3.

(9)

The discretizations are similar to the qKPZ equation. For
d = 1, we simulate systems with size up to L = 2048, as-
suming m � 0.05. Using GPUs in d = 2 allowed us to reach
L = 256, with m = 0.09. In d = 3, we reached L = 64, and
m = 0.08. To speed up simulations, we set c = 0, after check-
ing that it gives the same results as c = 1. We varied the
anharmonic term as c4 = 0.1, 0.2, 0.3. There are 6 × 105

(d = 1), 5 × 104 (d = 2), and 2 × 104 (d = 3) independent
samples. By construction, this system only moves forward,
respecting the Middleton “no-passing” theorem [55]; see
Sec. III A. This allows us to use the very efficient algorithm
introduced in Ref. [56].

C. TL92

To describe fluid imbibition, Tang and Leschorn intro-
duced the cellular automaton visualized in Fig. 1 (TL92) [40].
On a square lattice, each cell (i, j) is assigned a variable
f (i, j) ∈ [0, 1]. If f (i, j) < p the cell is considered closed
(blocking). Otherwise the cell is considered open. The inter-
face starts from a flat configuration at the bottom (dark blue on
Fig. 1). A point (i, j = ui ) on this interface is unstable and can
move forward by 1, ui → ui + 1, according to the following
rules (in that order):

(i) Links cannot be longer than two. If a site is two cells
ahead of its neighbors, stop.
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x

x0

u1

u2

u

FIG. 2. Two configurations at depinning.

(ii) If f (i, j) > p, move forward.
(iii) If one of the neighboring sites is two cells ahead,

move forward.
While in the original version the critical force p is a con-

stant [40], here we choose it to depend on the height j = ui of
the interface,

p := m2(ui − w). (10)

This has two consequences: first, as f (i, j) ∈ [0, 1], rule (ii) is
satisfied for all ui < w, and never satisfied for ui > w + m−2.
As a result, the interface is trapped in a domain of size m−2.
Increasing w, we can drive the interface as in qEW, Eq. (1).
Our protocol is to keep w fixed until a stable configuration
is reached, and only then increase w by δw. Two timescales
are thus separated: a fast one governing the reorganization of
the system, and an infinitely slower one corresponding to the
driving. We use this protocol to calculate the effective force
correlator and to simulate avalanches.

The interface is pinned when all its cells are blocking; its
maximal slope is 1; see Fig. 1. This ensures that a directed-
percolation path goes from left to right, i.e., perpendicular
to the driving direction [40]. To be precise, the line gets
pinned at the lowest percolating cluster (see Fig. 4). This
relation to directed percolation allows us to use many of the
high-precision results available for DP (see Sec. IV D). Since
time in the DP formulation is from left to right, whereas
time for depinning of an interface is in the u direction, this

FIG. 3. Possible instability of the qKPZ equation, when a series
of locally aligned points have a slope α. The interface goes back to
being flat at large distance, due to the ξ⊥/ξm → 0. The force felt by
the lowest point is greater than the force felt by the lowest point.
Below a certain slope α, this configuration does not generate a local
slope above α.

FIG. 4. Directed percolation from left to right. A site (i, u) is
defined to be connected if it is occupied and at least one of its left
neighbors (i − 1, u), (i − 1, u ± 1) is connected. The index i takes
the role of time t .

correspondence is restricted to static quantities i.e., those cor-
responding to blocking configurations.

In our simulations of this cellular automaton, we use
L = 4096 and m � 0.02 in d = 1. GPU computing allows us
to reach L = 256 at m = 0.05 in two dimensions and L = 128
and m = 0.1 in three.

III. MAPPINGS

In this section we present different mappings between the
three models introduced in Secs. II A to II C. Some of these
mappings rely on no-passing theorems, which we prove below
first.

A. No-passing theorems for TL92 and anharmonic depinning

In parallel to the famous no-passing theorem by Middle-
ton [55] for harmonic depinning, we now prove a similar
theorem for TL92 and anharmonic depinning.

1. No-passing theorem for anharmonic depinning

in the continuum

Assumptions

The elastic energy between nearest neighbors E (u) in
Eq. (8) is a convex function,

The disorder force F (x, u) is continuous in u,
u̇(x, t ) � 0.

No-Passing Theorem I (depinning in the continuum)

u̇(x, t ′) � 0 for all t ′ � t .
If two configurations are ordered, u2(x, t ) � u1(x, t ), then

they remain ordered for all times, i.e., u2(x, t ′) � u1(x, t ′) for
all t ′ > t .

Proof. Consider an interface discretized in x. The trajecto-
ries u(x, t ) are a function of time. Suppose that there exists
x and t ′ > t such that u̇(x, t ′) < 0. Define t0 as the first time
when this happens, t0 := infx inf t ′>t {u̇(x, t ′) < 0}, and x0 the
corresponding position x. By continuity of F in u, the velocity
u̇ is continuous in time, and u̇(x0, t0) = 0. This implies that
the disorder force acting on x0 does not change in the next
(infinitesimal) time step, and the only changes in force can
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come from a change in the elastic terms. Since by assumption
no other point has a negative velocity and the elastic energy
E (u) is convex, this change in force cannot be negative, con-
tradicting the assumption.

To prove the second part of the theorem, consider the
following configuration at time t0: Here the red configuration
is ahead of the blue one, except at position x0, where they
coincide. As in the first part of the proof, we wish to bring to
a contradiction the hypothesis that at some later time u1(x0)
(blue in Fig. 2) is ahead of u2(x0) (red). For this reason,
we have chosen t0 the infimum of times contradicting the
theorem, t0 := inf t ′>t {u1(x0, t ′) > u2(x0, t ′)}. Consider the
equation of motion for the difference between u1 and u2 at
point x0. According to Eqs. (6) and more generally (9),

η∂t [u2(x0, t ) − u1(x0, t )]|t=t0

=
∑

x=nn(x0,t0 )

E
′
el[u2(x, t0) − u2(x0, t0)]

− E
′
el[u1(x, t0) − u1(x0, t0)]

� 0. (11)

The sum runs over all nearest neighbors of x0. The disorder
forces have canceled as well as the term of order m2, since
by assumption u2(x0, t0) = u1(x0, t0). The inequality follows
from monotonicity of E ′

el(u), equivalent to the convexity of
E (u).

2. No-passing theorem for anharmonic depinning

as a cellular automaton

Assumptions

The positions u(x, t ) are integers; they can grow by 1 in an
update, or remain constant.

The elastic energy between nearest neighbors E (u) is con-
vex.
No-Passing Theorem II (Cellular Automaton

for Depinning)

If two configurations are ordered, u2(x, t ) � u1(x, t ), then
they remain ordered for all times, i.e., u2(x, t ′) � u1(x, t ′) for
all t ′ > t .

Proof. As for theorem I.

3. No-passing theorem for TL92

No-Passing Theorem III (TL92)

If two configurations are ordered, u2(x, t ) � u1(x, t ), then
they remain ordered for all times, i.e., u2(x, t ′) � u1(x, t ′) for
all t ′ > t .

Proof. Consider again point x0 on Fig. 2. By direct in-
spection of all possible configurations one shows that either
nobody moves, red and blue move together, or only red moves.
This works as well for parallel update as for single-site update,
provided one updates both configurations at the same time.

B. Mapping from anharmonic depinning to TL92

1. General idea

The general idea is to show that, for an appropriate choice
of parameters, both TL92 and anharmonic depinning have the

same blocking configurations. This statement has two direc-
tions:

A blocking configuration for TL92 is a blocking configu-
ration for the depinning of an elastic line.

All other configurations move forward.
We failed to prove the stronger statement, namely, that each

site stable in an allowed TL92 configuration is also stable for
depinning, and that only allowed TL92 configurations appear
at depinning. This means that the dynamics of both models
may be different, and even show different dynamical critical
exponents.

2. Cellular automaton in d = 1

We aim to find the blocking configurations of TL92 with
an interface whose law of evolution is the one of anharmonic
depinning as given in Eq. (6), at least with a specific choice of
parameters. To that end, we need to check for a given disorder
that every configuration of the interface following the anhar-
monic depinning equation stops at the same configuration as
in TL92. Let us start with a cellular automaton version. We
choose disorder forces F = ±1, where F = 1 corresponds
to open sites, and F = −1 to blocking sites. The height is
integer, and whenever a site is unstable, it is moved ahead by
1, as in TL92. Whether a site moves or not depends only on its
relative position to its nearest neighbors. Therefore, we only
need to test whether there is agreement for 25 configurations:
the two neighbors of a site can be separated by a distance
with values in {−2,−1, 0, 1, 2}. The maximum distance is
given by the TL92 rule that two neighbors cannot be sepa-
rated by a distance of more than 2, a condition anharmonic
depinning needs to satisfy too. Symmetry of the forces under
the exchange of the left and right neighbors decreases the
number of distinct cases to 15. If one can find parameters
c and c4, such that the two prescriptions agree on those
15 configurations, the anharmonic depinning equation agrees
for any interface configuration with TL92, and we have our
mapping.

For each configuration to be tested, there are three sites to
check: the left, the middle, and the right ones. We note the
relative position of the left and right neighbors: for example,
(+1,+1) corresponds to a “v” shape with slope 1, (−2,+2)
to “/” with slope 2, and so on. Our considerations are for
the middle point. If according to the TL92 rules it moves, the
force felt by it must be � 0, otherwise � 0. The discretization
of the equation of motion is given in Eq. (9), with elastic
forces between two neighbors c4(ui − ui+1)3. This gives the
inequalities in Table I. With one exception, they are fulfilled
by taking c4 ∈] 1

7 , 1
2 [; a centered value of c4 = 1/4 is a good

choice. Then in all cases anharmonic depinning has the same
update rules as TL92, except for the configuration (2,−2),
a strongly inclined line. We did not succeed in tweaking the
model such that this configuration is also always stable at de-
pinning. On the other hand, all blocking TL92 configurations
are also blocking at depinning, and there is no configuration
blocked at depinning which would move in TL92.

Using the no-passing theorems II and III shows that both
models have exactly the same blocking configurations, and
that they are chosen independently from the history. Since an-
harmonic depinning can move faster than TL92, we conclude
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TABLE I. Conditions on the anharmonic depinning coefficients,
such that anharmonic depinning evolves as TL92, for each of the
configurations in TL92.

Configuration Condition Configuration Condition

(2,2) 16c4 > 1 (1,−2) 7c4 > 1
(2,1) 9c4 > 1 (0,0) True
(2,0) 8c4 > 1 (0,−1) −1 < c4 < 1
(2, −1) 7c4 > 1 (0,−2) 8c4 > 1
(2, −2) False (−1, −1) −1 < 2c4 < 1
(1,1) −1 < 2c4 < 1 (−1, −2) 9c4 > 1
(1,0) −1 < c4 < 1 (−2,−2) 16c4 > 1
(1, −1) True

that their corresponding dynamical exponents should satisfy

zTL92 � zaDep. (12)

3. Cellular automaton in an arbitrary dimension

We now generalize our considerations to an arbitrary
dimension d . We first derive necessary conditions for a (glob-
ally) blocking configuration in TL92:

(i) A blocking configuration of TL92 has no site whose
neighbor is at a distance −2.

(ii) A blocking configuration of TL92 has no site whose
neighbor is at a distance 2.

As (ii) is trivial, we only need to prove (i): Suppose a site s1

exists with a neighbor s2 at a distance −2. Then their heights
u(s) satisfy

u(s2) = u(s1) − 2. (13)

If site s2 has a neighbor s3 which is at a height distance −2,
we continue to s3, and so on. Since u(si) is a decreasing
sequence, and the minimum of all heights umin := mins u(s)
exists, this process stops, say, at step n. By construction site
sn has no neighbor at distance −2, but at least neighbor sn−1

at distance 2. Thus site sn is unstable, proving (i).
Let us now check for each site s its local configuration

ls = (δu1, . . . , δu2d ), defined as in Sec. III B 2. We start with
a globally blocking configuration in TL92. Due to (i) and
(ii), all its δui ∈ {−1, 0, 1}. Whether the site is stable or not
is disorder decided. We have to ensure that this is the same
for anharmonic depinning. To simplify matters, we set c → 0,
only retaining c4. In TL92 the site is unstable if F = 1 and
stable if F = −1. Let us consider the stable case. In order to
reproduce this in anharmonic depinning, we need that even if
all neighbors pull in the opposite direction, i.e., are 1, the site
remains stable. This implies the

(iii) Condition from configuration ls = (1, 1, . . . , 1):

c4 <
1

2d
. (14)

If the site in TL92 is unstable, the same condition arises,
this time for the configuration (−1,−1, . . . ,−1).

Next consider a configuration with one −2:
(iv) Condition from ls = (−2, . . .): none.
TL92 is blocked, while aDep may move or not. Due to the

no-passing theorems, nothing has to be checked.
It remains to check a configuration with at least one 2:

(5) Condition from ls = (2, . . .):

c4(9 − 2d ) > 1. (15)

Proof. We need aDep to move. The worst case is that the
disorder is F = −1, and that all remaining neighbors pull
backwards. Since we have already excluded case (iv), they
can maximally be at a distance −1. This gives the condition
that the total elastic force c4[23 − (2d − 1)] > 1. Simplifying
yields Eq. (15).

We conclude that TL92 and aDep always find the same
blocking configurations (in d � 4), as long as

1

9 − 2d
< c4 <

1

2d
. (16)

This gives the bounds

1
7 < cd=1

4 < 1
2 , (17)

1
5 < cd=2

4 < 1
4 . (18)

In d = 3 there is no solution, but one can repeat the argument
with an anharmonicity

Eel(u) = c2p

2p
u2p. (19)

While the bound (14) remains valid as a condition for c2p,
Eq. (15) changes to

c2p(22p−1 + 1 − 2d ) > 1. (20)

Therefore the simplest solution in d = 3 reads

1
27 < c6 < 1

6 . (21)

This leaves open the possibility that in d = 3 several
anharmonic-depinning universality classes exist. Both our
simulations and the literature [5] are in favor of that hypothe-
sis.

4. Depinning in the continuum

In [8] (Sec. 5.7) a continuum model was proposed in d = 1
which finds the blocking configurations of TL92, and other-
wise moves. The idea is to let the disorder act only close to
integer values of u, and to provide a sufficiently strong force
in between. This way anharmonic depinning stops at TL92
configurations, but never in between.

C. Mapping qKPZ to TL92

The mapping of qKPZ onto TL92 is more delicate as qKPZ
has no no-passing theorem. In Table II we show the condi-
tions to be satisfied for a cellular-automaton version of qKPZ,
termed qKPZc. Inspection shows that not all conditions can
be satisfied simultaneously. This remained true if we enlarged
the space of allowed models. As an example, we allowed for
an additional constant term in the equation of motion.

What we could achieve, however, is that blocking con-
figurations of TL92 are blocking for qKPZc, while most of
the nonblocking configurations of TL92 are nonblocking for
qKPZc, choosing

c = 2
5 , λ = 1

2 . (22)
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TABLE II. Set of conditions on the qKPZ coefficients for each
possible configuration in TL92. F = 1 is the maximum disorder
force. We can satisfy most conditions by choosing c = 2/5, λ = 1/2,
as indicated by the check marks.

TL92 blocking TL92 nonblocking

Configuration Condition Configuration Condition

(1,1) c < 1
2 � (2,2) c > 1

4 �

(1,0) c + λ

4 < 1 � (2,1) 3c + λ

4 > 1 �

(1,−1) λ < 1 � (2,0) 2c + λ > 1 �

(0, 0) True � (2, −1) 4c + 9λ > 4 �

(0,−1) −1 < c− λ

4 < 1 � (2, −2) 1 + 4λ < 0
(−1,−1) c < 1

2 � (1, −2) 4 + 9λ < 4c
(0, −2) 1 + λ < 2c

(−1, −2) 4 + λ < 12c �

(−2, −2) c > 1
4 �

The violating cases (2,−2), (1,−2), and (0,−2) do not move
in TL92, but move in qKPZc, bringing us out of the allowed
configurations of TL92.

We now provide heuristic arguments that in the continuous
version these configurations are not reached. In the continuum
and close to the depinning transition, we have ξ⊥

ξm
→ 0. As

a result, at large distances compared to the lattice cutoff but
below the correlation length ξm, the interface must be flat on
average. Now suppose that a series of sites are aligned and
has the maximal available slope α. This extremal perturbation
is shown in Fig. 3. We use the discretization of Eq. . We
do not consider the disorder for simplicity. (It enters in this
argument only through the structure of the space swept by the
interface between avalanches.) If we name F1 the force felt
by the leftmost site of the slope, and FN the force felt by the
rightmost of the slope, then (independent of the KPZ term)

�F1N = FN − F1 = −2cα. (23)

As a result globally the perturbation gets flattened. For i ∈
{2, 3, . . . , N − 2} we have �Fi,i+1 = 0. And finally

�F12 = −αc + 3λα2

4
, (24)

�FN−1,N = −αc − 3λα2

4
. (25)

The local slope does not increase if α �
4c
3λ

. With the previous
values for λ and c this gives α �

16
15 . So while we expect

slope α = 1 to be commonly reached, larger slopes are not.
As a result, the configurations (2,−2) and (1,−2) are not
reached, and that their associated conditions are not fulfilled
does not matter. Finally, for the case (−2, 0), it corresponds to
the highest site of the perturbation. We can see from Eq. (25)
that it always experiences a force that is weaker than the site
just below, and as a result the local slope gets flattened and
cannot reach the value (−2, 0). Adding disorder is statistically
more likely to pin the site N , which feels a weaker forward
force, than the site 1, accelerating the smoothening of the
perturbation. We checked by numerical simulations of Eqs. (5)
and in d = 1, with forces set to F = 1 for an open cell, and
F = −1 for a blocking cell, and c = 2

5 , λ = 1
2 that qKPZ stops

at the same blocking configuration as TL92.

TABLE III. All scaling relations derived in this paper. ν⊥, ν‖
come from DP mappings.

ξ⊥ ∼ ξ
ζ

‖ , ζ = ν⊥
ν‖

, ζm = 2ν⊥
1+ν⊥

,

ζm
ζ

= ν‖(2 − ζm ), ξm = Cm− ζm
ζ , β = ζm (z−ζ )

ζ (2−ζm ) ,


η = z ζm
ζ

− 2, 
c = 2 ζm−ζ

ζ
, 
λ = 2 ζm−ζ

ζ
− ζm,

τ = 2 − 2

d ζm
ζ

+ζm
, (1 − τ ) d+ζ

z = 1 − α.

D. Mapping anharmonic depinning to qKPZ

Starting from the anharmonic-depinning Eq. (6), the KPZ
term is generated under renormalization, even in the limit
of a vanishing driving velocity, v → 0+, which corresponds
to depinning, under the combined action of the anharmonic-
ity and the nonanalytic disorder force correlator. This was
shown in [49] and is reproduced in the companion pa-
per [51]. The KPZ term generated is then more relevant, in
the renormalization-group sense, than the anharmonic elastic
terms. This ensures that anharmonic depinning belongs to the
qKPZ class.

IV. CRITICAL EXPONENTS AND SCALING RELATIONS

Some scaling relations have already been de-
rived [5,40,41], using the distance to the critical point as
a control parameter. However, in order to construct the
field theory, one has to introduce an infrared regularization
acting in the x direction. This is achieved by driving the
surface using a confining potential with strength m2, i.e.,
the term m2[w − u(x, t )] in Eqs. (1), (4), and (6) and
m2[ui − w] in Eq. (10). It is this term which forbids rare large
fluctuations in the u direction. Moreover, this term is crucial
for the field theory to have a fixed point [51], to estimate
the effective-force correlations (see Sec. V below), and to
quantitatively compare the RG flow between field theory and
simulations. It is thus necessary to derive all scaling relations
in terms of the confining potential strength m2 or mass m.
While the m dependence in correlation functions disappears
for ξm � L, having a finite (even tiny) m allows us to be in the
steady state. All scaling relations are summarized in Table III.

A. Why use a confining potential of strength m2?

The reader may wonder why we use a protocol with a
confining potential of strength m2, as in Eqs. (1) and (4)–(6)
There are several reasons: First of all, this allows us to reach
a steady state, and not only to approach it, as is the case when
tuning an applied force to the depinning threshold. Second,
having an energetically preferred position w allows us to talk
about fluctuations of the center of mass uw around w. Finally,
as discussed in Sec. V, this allows us to measure correlations
of the effective force.

It is important that the confining-potential strength m2 is
protected, i.e., changes with scale m as m2 (without any cor-
rection): On average the center of mass uw of the interface
follows the driving term w, i.e., m2[uw − w] = fc. If one
changes w → w + δw, this results in an increase in force
δ f = m2δw, and the center of mass in the long-time limit
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FIG. 5. (Left) TL92 1D two-point function C(x) for different
values of m (not all shown here), plotted against x′ = 4x(L−x)

L to
take advantage of the periodic boundary conditions. We read off the
exponent ζ = 0.636 in the linear part of the curve (the slope is 2ζ ).
(Right) Scaling of the plateau of the two-point functions for different
m. The fit yields ζm = 1.052.

is uw → uw + δw, on average. As a result, the long-time
response of the center of mass to a change of force δ f is 1/m2.
Since this holds both on the microscopic and macroscopic
level, the effective m2 is the same as the microscopic one.

B. Correlation lengths

There are two correlations lengths for the interface. One
is in the direction parallel to the interface ξ‖, the other in the
perpendicular direction ξ⊥. They are both due to the confining
potential, i.e., m2, but we name the parallel correlation length
ξm = ξ‖, because it is the long-distance cutoff set by m. We
will place ourselves in the regime where the long-distance
(infrared) cutoff is not given by the system size L but by ξm.
We define the roughness exponent ζ as the exponent character-
izing the scaling of the lengths in the perpendicular direction
with respect to the lengths in the parallel direction. At short
distances u ∼ xζ (see Fig. 5), which translates into a relation
between the two correlation lengths

ξ⊥ ∼ ξ ζ
m. (26)

The scaling properties of both qEW and qKPZ can be ex-
pressed as a function of ξm.

1. Scaling of ξm and ξ⊥ for qEW

In qEW the parameters c and m are protected by a symme-
try, called the statistical tilt symmetry [8]. As a result, c does
not acquire an anomalous dimension under renormalization,
and thus does not depend on m and ξm. At depinning, all forces
scale in the same way, so equating the elastic force with the
driving we get

∇2u ∼ m2u

⇒ ξm ∼ m−1. (27)

From Eq. (26) we obtain

ξ⊥ ∼ m−ζ . (28)

2. Scaling of ξm, ξ⊥ for qKPZ

In qKPZ the term λ(∇u)2 breaks the statistical tilt symme-
try. As a consequence, c is no longer protected and acquires
an anomalous dimension. Only m is protected (see Sec. IV A).
Assuming again that at depinning all forces scale in the same
way,

c∇2u ∼ m2u

⇒ ξm ∼
√

c

m
. (29)

As we show below, c increases when m → 0. As a result, the
system has a larger correlation length than in qEW. Now that
ξm has a nontrivial scaling, we need an exponent to describe
this scaling. We chose to use the scaling of ξ⊥ with m, defining

ξ⊥ ∼ m−ζm . (30)

Using Eq. (26) we obtain

ξm ∼ m− ζm
ζ . (31)

C. Definition of the two-point function

The two-point function is defined as

C(x − y) := 1

2
[u(x)−u(y)]2

∼
{

A|x − y|2ζ , |x − y| ≪ ξm

Bm−2ζm , |x − y| ≫ ξm
. (32)

The average is taken over disorder configurations. We can
formally define ξ⊥ as

ξ 2
⊥ := C(x − y)||x−y|≫ξm . (33)

ξ‖ = ξm is the intersection point between the two asymptotic
behaviors. Taking x = ξm in the two-point function, we get
Aξ 2ζ

m ≃ Bm−2ζm , and as a consequence

ξm = Cm− ζm
ζ , C =

(
B

A

) 1
2ζ

. (34)

Let us stress that key features of this universality class stem
from ζm

ζ
�= 1. This is illustrated with numerical results for

the TL92 automaton in d = 1 in Fig. 5, and for d = 2 in
Fig. 6. For anharmonic depinning Figs. 7 and 8 show results
in dimensions d = 2 and d = 3. Before we discuss them in
depth, let us extract the critical exponents in d = 1 from
directed percolation. This will serve as a strong check on our
simulations.

D. Connection to directed percolation

In Sec. III we discussed that blocking configurations in
TL92 are paths in directed percolation. Here we extract the
exponents ζ and ζm from DP exponents. As the latter are
known precisely [9,57,58], we get precise predictions for the
former.
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FIG. 6. (Left) TL92 2D two-point function C(x) along the diag-
onal of the system for different values of m (not all shown) plotted

against x′ = 4x
√

2(L
√

2−x
√

2)√
2L

. The exponent ζ ≈ 0.47 is obtained from
the linear part of the curve. (Right) Scaling of the plateau of the
two-point functions for different m. The fit yields ζm = 0.70.

There are two guiding principles for these relations: all
forces at depinning have the same scaling dimension, and
every length parallel to the interface scales as x or ξm, while
lengths in the perpendicular direction scale as u ∼ xζ ∼ m−ζm .

Consider Fig. 4 which shows directed-percolation paths
from left to right (in pink). They are constructed on a square
lattice, where occupied cells (in pink or cyan) are selected
with probability p, and the remaining once are unoccupied
(white). A cell (i, j) is said to be connected to the left bound-
ary (and colored pink) if it is occupied, and if at least one of
its three neighbors (i − 1, j) and (i − 1, j ± 1) is connected to
the left boundary. The system is said to percolate if at least one
point on the right boundary is connected to the left boundary.
To achieve periodic boundary conditions for TL92, it is further
required that this remains true for the periodically continued
system.

FIG. 7. (Left) Anharmonic depinning 2D two-point function
C(x) alongside the diagonal of the system for different values of m

(not all shown here) plotted against x′ = 4x
√

2(L
√

2−x
√

2)√
2L

. The exponent
ζ = 0.47 is extracted from the linear part of the curve. (right) Scaling
of the plateau of the two-point functions for different m. The fit gives
ζm = 0.61.

FIG. 8. (Left) Anharmonic depinning 3D two-point function
C(x) alongside the diagonal of the system for different values of

m (not all shown) plotted against x′ = 4x
√

3(L
√

3−x
√

3)√
3L

. The exponent
ζ = 0.27 is read off from the linear part of the curve. (Right) Scaling
of the plateau of the two-point functions for different m. The fit gives
ζm = 0.34.

While percolation is unlikely for small p, it is likely for
large p, with a transition at p = pc. There are three indepen-
dent exponents β, ν‖, and ν⊥, defined via

ρ(t ) :=
〈

1

h

∑

u

su(t )

〉

t→∞−→ ρstat, (35)

ρstat ∼ (p − pc)β , p > pc, (36)

ξ‖ = |p − pc|−ν‖ , (37)

ξ⊥ = |p − pc|−ν⊥ . (38)

Here su(t ) is the activity of site u at time t , set to one if the site
is connected to the left boundary, and zero otherwise. h = ∑

u
is the height of the system, and ρstat the stationary density of
active sites. ξ‖ is the size of the DP cluster along the parallel
(time) direction, and ξ⊥ the size in the transverse direction.

FIG. 9. Avalanche size and duration distributions for TL92. τ

and α are the associated exponents. We also computed Sm and Tm

from these distributions at different m and verified the relations (51)
and (55) (not shown).
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TABLE IV. Critical exponents ζ and ζm of the qEW and qKPZ
classes, from simulations of anharmonic depinning and comparison
with the literature. Only ζ was measured in the literature, while ζm is
also necessary to describe the qKPZ class (see Sec. IV B 2).

Model ζ ζm ζ literature

aDep 1D 0.635(6) 1.054(3) 0.63 [47]
TL92 1D 0.636(8) 1.052(5) 0.63 [5]
qKPZ 1D 0.64(2) 1.05(1) 0.633 (8) [54]

qEW 1D 1.25(1) 1.25(1) 1.25 [47,60,61]

aDep 2D 0.48(2) 0.61(2) 0.45 (1) [47]
TL92 2D 0.47(3) 0.70(3) 0.48 (3) [5]

qEW 2D — — 0.753 (2) [47]

TL92 3D 0.44(5) 0.52(6) 0.38 (4) [5]
aDep 3D 0.27(4) 0.34(4) 0.25 (2) [47]

qEW 3D — — 0.355 (1) [47]

The last two relations imply

ξ⊥ ∼ ξ
ζ

‖ ⇒ ζ d=1 = ν⊥
ν‖

= 0.632613(3). (39)

This is the roughness exponent ζ defined in Eq. (32). All
numerical values are collected in Table V.

For TL92, the surface is blocked by directed percolation
paths in the direction parallel to the interface (from left to
right). However, instead of a global p, we have a u-dependent
p, given by p − pc = m2(u − w). As a result, the distance to
pc in DP corresponds to a driving force in TL92. Together
with u ≃ ξ⊥ ∼ (p − pc)−ν⊥ , this gives m2 ∼ (p − pc)1+ν⊥ or

(p − pc) ∼ m
2

1+ν⊥ . This finally yields

u ∼ m−ζm ⇒ ζ d=1
m = 2ν⊥

1 + ν⊥
= 1.046190(4). (40)

Note that in contrast to qEW (where ζm = ζ ), here ζm > ζ .

TABLE V. The DP values for all exponents are from Ref. [9]
(first two lines), combined with the scaling relations derived here
(following lines). The agreement between the static exponents nu-
merically estimated for aDep and TL92 and their DP values is
excellent. There is no such mapping for dynamical exponents. The
conjecture z = 1 advanced in Ref. [5] is in contradiction to our
simulations; see Appendix A for a detailed discussion.

Exponent DP value Simulated value

ν‖ 1.733847(6)
ν⊥ 1.096854(4)
ζ 0.632613(3) 0.636(4)
ζm 1.046190(4) 1.052(6)
ζm
ζ

1.65376(1) 1.65(1)

τ 1.259246(3) 1.257(5)
ψc 1.30752(2) 1.31(4)
ψλ 0.26133(2) 0.28(3)
z — 1.10(2)
α — 1.28(3)
ψη — −0.18(1)
β — 0.81(3)

In d � 2 directed-percolation paths are 1D, whereas the
interface is d-dimensional. As a result, the mapping breaks
down and one has to introduce directed surfaces [59]. Since no
information for our simulations is gained, we will not discuss
this case.

E. Results for the two-point function, ζ and ζm

For TL92 in d = 1, the two-point function is shown in
Fig. 5. d = 2 is covered in Figs. 6 and 7, while Fig. 8 is for
dimension d = 3. The results for the critical exponents ζ and
ζm are summarized in Table IV.

Let us first discuss our choice of simulation parameters. To
obtain ζ , the smallest possible m is chosen, such that there
is no system-spanning avalanche. The latter would mix the
physics of the d-dimensional interface with that of a single
degree of freedom. For ζm one needs a value of m that allows
to clearly see the plateau of the two-point function. Finally,
we saw with seemingly little noise the two-point function
for larger systems, until L = 1024 for TL92, but we found
systematic errors in those bigger systems, due to a lack of
statistics. As a rule of thumb, 2 × 104 avalanches/per site
are necessary to ensure a scaling collapse of the two-point
function for different sizes.

Let us now discuss our results, summarized on Tables IV
and V. In d = 1, there are consistent values for ζ and ζm

between the three simulated models and directed percolation.
We thus have confirmed numerically that there is a single
universality class, and that the scaling arguments for ζ (known
in the literature) and ζm (introduced here) are valid.

In d = 2, our simulations show that TL92 and anharmonic
depinning share the same exponents. This is consistent with
the mapping established in Sec. III B 3.

In d = 3, the exponents seemingly differ, suggesting that
the two universality classes may be different. This is con-
sistent with the absence of a mapping established at the end
of Sec. III B 3. On the other hand, we cannot exclude that
finite-size corrections, which are expected to be large for a
cellular automaton such as TL92, are responsible for this lack
of agreement.

F. The exponent ν

By definition of the correlation-length exponent ν‖, ξm ∼
( f − fc)−ν‖ , with f the driving force, and fc the critical depin-
ning force. This identifies the standard depinning exponent ν

as

νd=1 = ν‖. (41)

Since ( f − fc) = m2(u − w) ∼ m2−ζm , together with Eq. (31)
this implies

ζm

ζ
= ν(2 − ζm). (42)

This relation is valid in any dimension d � dc and does not
rely on the mapping to DP. In d = 1 replacing ζm and ζ by
their expressions in terms of ν⊥ and ν‖ given in Sec. IV D, we
verify consistency.
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FIG. 10. Joint probability distributions of (S, 〈T 〉), (S, 〈ℓ〉), (T, 〈ℓ〉) in TL92, in log scale, for d = 1, for L = 4096 and m = 0.024. They
verify Eqs. (54) and (50) and the definition of z in Eq. (47). Averaging before or after taking the log gives similar results. The solid line is the
theoretical prediction.

G. Dynamical exponent z

The response function R(x, t ) is defined as the response of
the system at time t and position x, given a kick in the force of
the confining potential m2

w(x, t ) at time t = 0 and x = 0 (we
use translational invariance in both space and time),

R(x, t ) := δ〈u(x, t )〉
m2δw(0, 0)

. (43)

Assume that the response function takes the scaling form

R(x, t ) = 1

m2t
d
z

f
( x

t
1
z

)

, (44)

where
∫

x f (x) = 1. Then z is the dynamical critical exponent.
For the velocity of an avalanche by definition

v ∼ ( f − fc)β , and v = u
t = ξ⊥

ξ z
‖

= ξ
ζ−z
‖ = ( f − fc)−ν‖(ζ−z).

Eliminating ν‖ with the help of Eq. (42) we get

β = ζm(z − ζ )

ζ (2 − ζm)
. (45)

Scaling relations for qEW are recovered by setting ζm = ζ ,
resulting in

βqEW = z − ζ

2 − ζ
= ν(z − ζ ). (46)

We evaluated z in the TL92 automaton in d = 1 by looking
at the joint distribution of avalanche duration T and lateral
extension ℓ, shown in Fig. 10 (see Sec. IV I for details). Using

T ∼ ℓz, (47)

we find

zd=1
TL92 = 1.10 ± 0.02. (48)

This value contradicts Ref. [5], which conjectures the exact
value z = 1 using heuristic arguments and evidence from nu-
merical simulations. Our simulation, like theirs, computes the
lateral extension of an avalanche as a function of its dura-
tion. While Ref. [5] extracts the power law by a fit to one
decade, we have data on more than 2.5 decades, allowing for
a much more precise value. We reviewed the argument given
in Ref. [5], which relies on shortest paths on a percolation
cluster. Our main criticism is that transport properties on
percolation clusters are linked to the proportion of singly con-
nected bonds, bonds that if cut, separate the percolation cluster
into two parts (the “blobs and links” representation [62]).
Even if the perpendicular direction is small compared to the
longitudinal one, it is nonzero, which changes the proportion
of singly connected bonds. Details are given in Appendix A.

H. Avalanche size

Let us recall scaling for avalanches, adapted to qKPZ. This
is summarized in Table VI. Let S the size of an avalanche,
i.e., is the number of sites that are affected in an avalanche
(in a cellular automaton), or the volume swept through by

TABLE VI. Scaling relations for qEW can be obtained from
qKPZ by setting ζm = ζ . To pass from qEW to qKPZ, it suffices to
replace d by d ζm

ζ
and ζ by ζm when it is linked to a length in the u

direction.

qEW qKPZ

ξm ∼ m−1 ξm ∼ m− ζm
ζ

Sm ∼ m−d−ζ Sm ∼ m−d ζm
ζ

−ζm

τ = 2 − 2
d+ζ

τ = 2 − 2

d ζm
ζ

+ζm
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the interface between two blocking configurations. Define its
typical size Sm as [20]

Sm := 〈S2〉
2〈S〉 . (49)

If the avalanche-size distribution decays as an exponential for
large S, then this exponential decay is ∼e−S/(4Sm ) [20,63,64],
identifying Sm as the large-scale cutoff. Note that using
Eq. (49) is very precise, while fitting a tail is rather imprecise.

Scaling implies that

S ∼ ℓd+ζ ⇒ Sm ∼ ξ d+ζ
m , (50)

where ℓ is the lateral extension of an avalanche. Injecting
Eq. (31) yields

Sm ∼ m−d ζm
ζ

−ζm . (51)

Assume that PS (S) ∼ S−τ for S ≪ Sm. To obtain a scaling
relation for τ , follow [27] to consider the avalanche-size dis-
tribution per unit force,

ρ f (S) := δN (S)

δ f
≃ S−τ fS (S/Sm)gS (S/S0), S0 ≪ Sm. (52)

Sm is the large-scale cutoff introduced above, while S0 is a
small-scale cutoff. We expect Eq. (52) to have a finite limit
when m → 0 [27]. Associated to a force increase by δ f is a
total displacement

∫

x δu(x) = 〈S〉. The total increase in force
can be written as δ f =

∫

x m2δu(x) = m2〈S〉. By the definition
of ρ f we have 〈S〉 = δ f

∫ ∞
0 Sρ f (S) dS. This gives

1 = m2
[

S2−τ
m − O

(

S2−τ
0

)]

.

Since τ < 2, we can take the limit of S0 → 0, resulting in

τ = 2 − 2

d ζm

ζ
+ ζm

. (53)

We compare this result to simulations in Sec. IV J below.

I. Avalanche duration

Consider the dynamics of an avalanche, with ℓ its lateral
extension and T its duration. Using T ∼ ℓz and S ∼ ℓd+ζ , we
get

S ∼ T
d+ζ

z . (54)

Assume that

PT (T ) ∼ T −α for T ≪ Tm := 〈T 2〉
2〈T 〉 . (55)

Scaling implies that PS (S)dS ∼ PT (T )dT . For small
avalanches (but bigger than the discretization cutoff) this
implies that S1−τ ∼ T 1−α . Using Eq. (54) we obtain

α = 1 + 1

z

(

d + ζ − 2ζ

ζm

)

. (56)

J. Numerical simulations for size and duration

Let us first explain our choice of parameters: to study
avalanches, it is important to avoid triggering two overlapping

avalanches; to that end, we use a driving strength w → w +
δw such that the probability that a site gets depinned is 1

40 . As
a comparison, in the other simulations we generate on average
one avalanche per driving event. Next, m should be large
enough to avoid system-spanning avalanches. For L = 4096
we computed our distributions for 2 × 107 avalanches and
m = 0.0244.

We verified the scaling relations for the dynamic exponent
z and the size and duration exponents τ and α. To this end, we
recorded for TL92 in d = 1 the joint distribution of (S, T, ℓ),
with ℓ the lateral extension of the avalanche. This allowed
us to extract three joint distributions involving two variables,
and shown on Fig. 10. First, we use T ∼ ℓz to extract z in
d = 1 as

zd=1 = 1.10(2). (57)

This gives for the remaining relations the numerical values
T ∼ ℓ1.48(3) and S ∼ ℓ1.6326(3). A glance in Fig. 10 shows that
the data are in good agreement with these values.

Figure 9 shows the size and duration distributions, with
predicted exponents τ = 1.2592(6), and α = 1.385(7). While
the former is satisfied over almost three decades, the latter
seemingly comes out much smaller, namely, at

αd=1
TL92 = 1.28(2). (58)

Let us discuss possible sources for this discrepancy:
(i) The real functional form of PT is more complicated than

the scaling anzatz in Eq. (55), and has a “shoulder” that pushes
the apparent exponent down. This phenomenon was described
for the size distribution PS in qEW, both numerically [18] and
within the FRG [19]; it was studied numerically for PS on
qKPZ [63]. As the top plot of Fig. 9 shows, there is a small
shoulder for PS , but the agreement on the exponent is very
good. If the shoulder for PT is much longer, it is hard to see in
Fig. 9.

(ii) We still see large finite-size corrections due to the
discretization of the time evolution. This would be surprising
in view of the excellent scaling in the (T, ℓ) and (S, T ) plots
of Fig. 10.

We could properly simulate avalanche durations only in a
cellular automaton, since for anharmonic depinning we used
the variant Monte Carlo algorithm of [47,65], which has a dif-
ferent (probably faster) time evolution. Whether this amounts
to a smaller exponent z is, however, doubtful.

K. Comparison with qEW

What is the effect of the nonlinearity on the physics of
the system? Can one get an intuition? The increase of the
short-range elasticity with the scale has two main effects:
the roughness exponent ζ decreases from 1.25 for qEW to
ζ = 0.63 for qKPZ, meaning the width is reduced at large
scales. The parallel correlation length ξm for m → 0 grows
faster than for qEW, reflected in ζm

ζ
> 1. As the elasticity at

large scales gets stronger, more sites are correlated and the
correlation length increases. The avalanche size exponent τ

goes from τqEW = 1.11 [29] in d = 1, to τ = 1.26, close to
the one in dimension d = 2 for qEW.
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V. EFFECTIVE FORCE CORRELATOR �(w)

AND RUNNING COUPLING CONSTANTS

A. Definition of the effective force correlator �(w)

In Eqs. (1), (4), and (6) we introduced a restoring force
m2[w − u(x, t )] from a confining potential. This was not only
necessary to drive the system, but also to estimate the effective
force correlator �(w), by measuring the fluctuations of the
center-of-mass position uw of the interface. Define �(w) as

�(w − w
′) := m4Ld (uw − w)(uw

′ − w
′)

c
, (59)

uw := 1

Ld

∫

x
uw(x), (60)

uw(x) := lim
t→∞

u(x, t ) given w fixed. (61)

In our protocol, w is increased in steps. One then waits until
the interface stops, which defines uw(x). Its center-of-mass
position is uw, and its fluctuations define �(w).

B. Scaling of �(w)

The definition (59) has a finite limit for fixed m, when
L → ∞. Using that u ∼ m−ζm , and that L/ξm is dimensionless
leads together with Eq. (31) to

�(0) ∼ m4−d ζm
ζ

−2ζm . (62)

For the argument of �(w), we expect

w ∼ u ∼ m−ζm . (63)

A nontrivial check is as follows: As in qEW, one can connect
the typical avalanche size given in Eq. (49) to the disorder
force correlator [see, e.g., [8], Eq. (104)],

|�′(0+)| = m4 〈S2〉
2〈S〉 ∼ m4−ζm (d/ζ+1). (64)

This is consistent with Eqs. (62) and (63).

C. Measuring �(w)

�(w) is defined from the variable uw in Eq. (61). For
depinning, be it anharmonic or not, integrating the equation of
motion with periodic boundary conditions leads to

m2(uw − w) = Fw, (65)

Fw := 1

Ld

∫

x
F (x, uw(x)). (66)

Thus �(w) is also the correlator of the disorder acting on the
interface. This direct connection breaks down in qKPZ, as
after integration over the center of mass three terms remain:
m2(w − uw ), Fw, and �w, defined by

�w := 1

Ld

∫

x
λ[∇uw(x)]2. (67)

A configuration at rest then has

m2(w − uw ) + Fw + �w = 0. (68)

FIG. 11. Comparison of the shapes of the correlators in d = 1
and for anharmonic depinning, TL92 and qKPZ with the exponen-
tial behavior observed in a subspace in Ref. [49]. We clearly see
the following. (a) The correlators for TL92, aDep and qKPZ are
very close. (b) The subspace found in [49] is not the one attained
by the evolution of those models. The shapes have been normalized
by setting |�′(0+)| = �(0) = 1.

We note that while the first and last terms are positive, the
middle term is negative. So why did we define �(w) as the
(connected) correlations of uw and not Fw? After all, we call
it the renormalized force correlator. The answer comes from
more sophisticated field theory arguments, developed in a
companion paper [51]. In essence it looks at all two-time
contributions to the uu correlations and then amputates the
external response functions. The result is as given in Eq. (59).
For details we refer to [51].

We have verified that Eqs. (62)–(64) hold for TL92 and
the other two models. The correct regime to obtain a good
scaling collapse for the correlator, with the exponents given in
Table IV, is when the infrared cutoff is set by the confining
parabola, meaning that the plateau of the two-point function
is reached. The results for the shape of �(w) are summarized
in Figs. 11 and 12, where everything is rescaled such that
|�′(0+)| = �(0) = 1.

FIG. 12. Comparison of the shapes of the correlators in d = 2, 3
for anharmonic depinning with the exponential behavior found for
a subspace in Ref. [49]. We see that this subspace is not the one
attained by these models. The shapes are normalized such that
|�′(0+)| = �(0) = 1.
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FIG. 13. Left: Double-logarithmic plot for scaling of c and λ for
anharmonic depinning in 1d as a function of m. Right: Measured
amplitude ratios A for TL92 and anharmonic depinning (linear plot).
The dotted lines are guides for the eye. The second-order polynomial
fits show convergence to A ≈ 1.10(2) for m → 0.

D. Anomalous dimensions for c, λ, and η

If there were no corrections to c, λ, and η, the theory
would be trivial. Before we show in the next Sec. V E an
algorithm to estimate their scale dependence, let us first derive
their anomalous dimensions, given the information already
obtained.

Let us define their scaling dimensions as

λ ∼ m−ψλ , (69)

c ∼ m−ψc , (70)

η ∼ m−ψη . (71)

Equating the dimensions of driving force and elasticity,
c∇2u ∼ m2u, we get m−ψc−ζmξ−2

m ∼ m2−ζm and together with
Eq. (31)

ψc = 2
ζm − ζ

ζ
. (72)

A similar argument for λ yields

ψλ = 2
ζm − ζ

ζ
− ζm. (73)

These two relations have been verified (see left of Fig. 13),
due to the algorithm we describe in Sec. V E.

The scaling relation for ψη is obtained from η∂t u ∼ m2u,
implying t ∼ m−2−ψη ∼ x(2+ψη )ζ/ζm . This yields

ψη = z
ζm

ζ
− 2. (74)

E. An algorithm to estimate the effective coupling constants

In order to obtain the effective KPZ nonlinearity λ, one
can tilt the system and estimate the change in the depinning
force as in [48]. In contrast, the effective elasticity c has to
our best knowledge never been estimated numerically. Since
the field theory in Ref. [49] did not deliver an FRG fixed point
for the ratio λ/c, we decided to check numerically whether

FIG. 14. We drive the interface with the spatially modulated
driving given in Eq. (75), with f = 1. The continuous black line
and the blue dots represent the interface, while the gray dashed line
represents w(x).

such a fixed point exists, and to extract as much information
as possible to constrain the field theory.

Our algorithm to achieve this is simple: measure the re-
sponse of the interface to a perturbation, sinusoidal in space,
and constant in time. This is achieved by driving the sys-
tem with a spatially modulated background field w(x) (see
Fig. 14),

w(x) = w0 + A sin

(

f
2πx

L

)

. (75)

After each avalanche, we increase w(x) by δw (a constant),
w(x) → w(x) + δw. We focus on the slowest mode f = 1.
We then measure the mean interface profile, i.e., its response,
u(x). Varying the amplitude A of the driving, we fit this re-
sponse with a polynomial in A. The effective parameters are
then linked to the projections on these modes. To be specific,
write, with ℓ := L/2π ,

u(x) = u0(A) + u1(A) sin
(x

ℓ

)

+ u2(A) cos

(
2x

ℓ

)

+ · · · ,

(76)

u0(A) = 0u0 + 2u0A2 + O(A4), (77)

u1(A) = 1u1A + O(A3), (78)

u2(A) = 2u2A2 + O(A4). (79)

The dots represent higher-order terms in A, while the double-
indexed u’s are numbers to be estimated numerically. The
lower index represents the mode, while the upper index is
the order in A. We inject this development into the noiseless
KPZ equation

−m2u + c∇2u + λ(∇u)2 = −m2A sin
(x

ℓ

)

. (80)

It is the nonlinear term in this equation that generates the
higher harmonics. The parity of the number of derivatives
restricts the allowed modes to those in Eq. (76). Matching
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FIG. 15. The numerically estimated effective c and λ for the
qEW equation. The effective elasticity c does not depend on m (with
noticeable simulation errors at large m), as predicted by the statis-
tical tilt symmetry (STS). The numerically estimated nonlinearity λ

vanishes.

coefficients, we find
0u0 = w0, (81)

1u1 = m2

m2 + c
ℓ2

, (82)

2u0 = m2λ

4ℓ2
(

m2 + c
ℓ2

)2
, (83)

2u2 = m4λ

4ℓ2
(

m2 + 4c
ℓ2

)(

m2 + c
ℓ2

)2
. (84)

These relations are inverted to obtain λ and c,

c(m) = m2ℓ2 1 − 1u1

1u1
, (85)

λ(m) = 4m2ℓ2
2u0

(1u1)2
. (86)

F. Tests and results

Let us start with some tests of our procedure for qEW.
There λ(m) ≡ 0, and there is no renormalization of c, as
it is protected by the statistical-tilt symmetry, the statistical
invariance of the equation of motion under the transformation
u(x, t ) → u(x, t ) + αx. In Fig. 15 we show simulations for
harmonic depinning [Eq. (6) with c4 = 0 and c = 1]. We
estimated the effective elastic constant c, and see that it does
not renormalize and stays at c = 1. Moreover, the numerically
estimated λ = 0.

We next apply our procedure to TL92 and anharmonic
depinning in d = 1; see Fig. 13. For each m, the polynomials
were fitted on 100 different values for A, and each value of A
corresponds to a simulation of 105 independent samples. The
size varies from L = 512 to L = 2048, since for larger values
of m smaller systems are sufficient. We find

ψd=1
c = 1.31 ± 0.04, (87)

ψd=1
λ = 0.28 ± 0.03, (88)

in agreement with their expressions in Eqs. (72) and (73), and
the numerical values given in Table V.

We checked that higher-order relations (given in Ap-
pendix B) give the same values for c and λ. We further
checked that the results given for λ are the same as those
obtained as a response to a tilt. (Note that to introduce a tilt
with our driving protocol, one has to tilt both the driving
potential and the interface.)

The determination of the effective parameters λ and c is
not the only application of this algorithm: one can numerically
estimate the effective decay of subleading parameters present
in the microscopic model, such as c4, and obtain valuable
information on the crossover to the qKPZ universality class.
This may be helpful for experiments and is summarized in Ap-
pendix B. While many things can be numerically estimated,
this technique is limited by the available computer resources,
as illustrated in Fig. 19 for the decay of c4.

G. The universal KPZ amplitude A

An important question is whether qKPZ is the proper large-
distance description of TL92, anharmonic depinning, and
itself (i.e., a numerical implementation of the qKPZ equation).
To ensure this, the properly renormalized nonlinearity λ needs
to flow to a fixed point. While λ and c both flow, i.e., do not go
to a fixed point by themselves, this is achieved by the universal
KPZ amplitude A,

A := ρ
λ

c
, ρ = �(0)

|�′(0+)| . (89)

The idea behind this construction is that if both λ and c are
relevant, then

λ[∇u(x, t )]2 ∼ c∇2u(x, t ) �⇒ λ

c
∼ 1

u
. (90)

On the other hand �(u) ∼ u�′(u), thus we can define a cor-
relation length ρ ∼ u by ρ := �(0)/|�′(0+)|; this allows one
to write the dimensionless quantity A in Eq. (89). Note that
the definition (89) ensures that A remains invariant under a
change of units for u, say, from mm to km, and the same
(independently) for x.

The reader may wonder whether our definition for A is
unique? It is not, as one could instead of ρ use another char-
acteristic scale, such as ξ⊥. The reason we use ρ defined in
Eq. (89) rather than ξ⊥ defined in Eq. (33) is that the former
is simpler to handle analytically.

If the qKPZ equation is the effective field theory in the limit
of m → 0, then the ratio A needs to converge to a universal
limit set by the qKPZ field theory. That this is indeed the
case can be seen in Fig. 13. In the two models simulated, the
amplitude ratio converges to the same value,

A
d=1 = 1.10(2). (91)

Given that the microscopic models are quite different, this is
a strong sign of universality.

H. Interpretation of A: How strong is the KPZ nonlinearity?

The reader may ask himself whether the amplitude
A = 1.1 estimated numerically in Eq. (91) is small, or large:
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first, it is definitely much larger than for qEW, for which
AqEW = 0 (since λ = 0 there).

For a rough estimate at the microscopic scale, we can
convert the arguments of Sec. III C into a prediction for A.
Let us first consider the mapping of TL92 onto qKPZ, which
resulted into the values for c and λ given in Eq. (22). If we
take these values, and the lattice size ρ = 1 for the correlation
length of the disorder, then we get a microscopic or bare value
of A,

A
bare
d=1 ≈ 5

4 . (92)

It is surprising that the estimate (92) at small scales is close to
the large-scale estimate (91) of our numerical simulation.

Can one give a bound for A, or could one have estimated
an arbitrarily large value in Eq. (91)? Let us consider Fig. 3.
We ask that in the absence of disorder the point N does
not advance, thus FN be negative. This means that the ratio
between KPZ1 and elastic term is bounded by 1,

1 �
λ(∇u)2

c|∇2u| ≃
λ
(

δu
2ξm

)2

c
(

δu
ξm

)2
= λδu

4c
. (93)

We now need to estimate δu. Taking it as the typical fluc-
tuation at scale ξm, i.e., the perpendicular correlation length
ξ⊥, gives δu = ξ⊥ as defined in Sec. IV C. If this heuristic
argument is correct, then

A � A
c := 4ρ

ξ⊥
. (94)

While Ac is a bound on the value A can take before the inter-
face becomes unstable, it is not necessarily the most stringent
bound. In our simulations we find

ρ

ξ⊥
= 0.85(1), (95)

rather independent of m. This in turn gives

A
c
d=1 = 3.40(4). (96)

Thus in d = 1 the amplitude A is definitely large, though
below its critical value. Field theory (see the companion pa-
per [51]) gives a bound of Ac

d=1 = 2 (at leading order).
More intuition can be gotten from rescaling: If one uses the

dimensionless variables ũ := u
ρ

, w̃ := w

ρ
and x̃ := xm√

c
, then

blocking configurations satisfy

0 = ∇2ũ + A(∇ũ)2 + w̃ − ũ + F̃ (x̃, ũ). (97)

In these units, forces are correlated according to

〈F̃ (x̃, ũ)F̃ (x̃′, ũ′)〉 = δd (x̃ − x̃′)�̃(ũ − ũ′), (98)

with

�̃(ũ) = md−4

cd/2ρ2
�(ρũ). (99)

1Note that the discretization (5) for the KPZ term induces a numer-
ical factor of 1/4 into the equation. Given that these values for λ and
c are effective large-scale estimates, this factor should be taken with
a grain of salt.

FIG. 16. �̃(0) and A for Anharmonic depinning and TL92 in
d = 1. They seem to converge to the same value for this particular
scaling choice.

We estimate Eq. (99) in Fig. 16 for d = 1, and find that
�̃(0) ≈ A. The conclusion is that at the critical point, at least
in d = 1, all parameters are of order one, and thus equally
important.

VI. CONCLUSION

We showed through theoretical arguments and numerical
tests that anharmonic depinning, qKPZ, and the cellular au-
tomaton TL92 are in the same universality class, the qKPZ
universality class, for d � 2. For 2 < d � 4, there is evi-
dence that TL92 may depart from the qKPZ universality class
(which still includes anharmonic depinning at those dimen-
sions).

We then elucidated the scaling relations for driving through
a parabolic confining potential. This allowed us to understand
statics and dynamics of qKPZ. Finally, we developed an al-
gorithm to estimate the renormalized (effective) coefficients
of the continuity equation. We find that, at least in d = 1, all
quantities are equally important, of order one in a particular
scheme. Our work will be used to constrain and ultimately
construct the field theory, which is presented in a sequel to
this work [51].

We believe that our technique to extract the effective cou-
pling constants by measuring the static response of the system
under spatially modulated perturbations may yield important
information in other systems that lack a proper field theoretic
description. As an example, we started to extend our approach
to the thermal KPZ equation.
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FIG. 17. Numerical estimation of the interface modes for different driving amplitude A. From the orange fits one obtains the coefficients
iu j defined in Eqs. (76)–(79). For example, from the fit of the driving mode one obtains 1u1 and 3u1. The polynomial behavior predicted in
Eq. (79) is verified. The shown plots are for anharmonic depinning, L = 1024, and m = 0.06. The perturbation amplitude is in lattice units.

APPENDIX A: WHY z �= 1

In Ref. [5] the authors provide a heuristic argument for
z = 1 in d = 1, while for a higher dimension they conjecture
that z = dmin with dmin the exponent on how the shortest-path
length on a d-dimensional critical percolating cluster scales
with the Euclidean distance. Our simulations invalidate this
heuristics. Here we give theoretical arguments as to why this
heuristics fails. Ref. [5] studies TL92 with parallel updates.
After an avalanche, they define the path of invaded cells as
the path (in one dimension) from the cell from which it was
invaded to the cell it invaded. Then they assert that the path
length from the start of the avalanche to site i is equal to
the time it took for cell i to be invaded. Then z is defined by
T ∼ ℓz with T the avalanche duration and ℓ the lateral exten-
sion of the avalanche. Since ξ⊥/ξm → 0, the invading path is
considered rough as the path along the blocking configuration,
so ℓ ≈ ξm. As a result they find z = 1. However, equating the
length of the invading path with the duration of an avalanche
is problematic: After reaching site i, the avalanche can change
direction and then come back, and as a result the duration is
underestimated, and z > 1.

In higher dimensions, this underestimation persists, but is
associated with another problem, that overestimates z: since
ξ⊥/ξm → 0 they model the d + 1-dimensional space in which
the invading path lives as a d-dimensional critical percolation
cluster, and then declare the invading path to be the shortest
distance between two points on this percolation cluster. How-
ever, the transport properties of percolation clusters are highly
dependent on the proportion of singly connected cells [62]
(i.e., cells that if removed separate the percolation cluster in
two). The existence of another dimension through which the
path can go changes the statistics of those singly connected
cells. There are far more ways to reach one target, and as

a result the time it takes to reach it may be smaller and z
overestimated.

APPENDIX B: DETAILS OF THE ALGORITHM

1. Numerical details

In Fig. 17 we show the results of measuring the modes of
the interface for different amplitudes of the driving. One has
to be careful to be in the small-perturbation limit. We find
that taking the maximum perturbation amplitude to be A = L

40
to be appropriate. The number of points needed within that
range to have a good precision on the polynomial fit is hard to
deduce in advance and varies with m. We find that sometimes
the small perturbation limit is reached before A = L

40 and in
that case it is good to have more points in order to maintain a
good fit for the polynomials. A good rule of thumb is to have
around 50 points.

2. Higher-order relations

There are higher order relations for λ and c. Here we put
them, for completeness:

c(m) =
( 2u0

2u2
− 1

)
m2ℓ2

4
, (B1)

λ(m) = 4ℓ2

m4

(

m2 + 4c

ℓ2

)
(

m2 + c

ℓ2

)2
2u2. (B2)

In Fig. 18 we can see that for smaller m, the higher order
formulas agrees with their lower order counterpart. For higher
m the signal for c determined with Eq. (B2) is too noisy. For
λ there is good agreement for all m.
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FIG. 18. Comparison of the different formulas (Eq. (86) and
Eq. (B2) for a fit based on higher-order harmonics) for determining c
and λ, for aDep in d = 1. We see a good agreement for λ, while for
c the higher-order harmonics are too noisy for m � 0.2.

3. Crossover and higher-order anharmonic terms

An interesting question is the crossover from the micro-
scopic model, e.g., in anharmonic depinning which contains
a coefficient c4. How does this terms decrease with m? To
answer these questions, we derive a formula for the expression
of c4. If a c4 term is present, then the lowest order in A is A3.
We find that there is a contribution of c4 on the first mode,
written for compactness in terms of jui, λ, and c,

c4(m) = −4
ℓ4

(1u1)3

[
λ1u1

2u2

ℓ2
+ 3u1

(

m2 + c

ℓ2

)
]

. (B3)

c4 appears as a third-order perturbation in A. Since it comes
from higher harmonics, it is more heavily suppressed as the

FIG. 19. Numerically estimated effective anharmonicity c4 de-
termined for anharmonic depinning using Eq. (B3). L = 64 and
the initial condition is c4 = 1 (red dotted line). The numerically
estimated effective c4 decreases as m decreases, vanishing within
the precision of our simulation when m ≈ 0.3. There the error
for c4 increases, as the small system sees more system-spanning
avalanches, crossing over to a single-particle behavior. Increasing L
further increases this error, since c4 is determined through a high-
order harmonics of the driving signal, and scales ∼L4 appearing in
Eq. (B3). Still, qualitatively this confirms that c4 can be dropped in
the effective long-distance description of the model.

system becomes larger. As a result, small system sizes (and
large m) must be considered to accurately estimate c4. How-
ever, there is a tradeoff, since c and λ are determined with
a lesser accuracy for smaller systems size. The result for an
initial anharmonic depinning equation with c4 = 1 are pre-
sented in Fig. 19. We see that at large m the microscopic value
c4 = 1 is obtained. Reducing m to about 0.35, the effective c4

becomes too small to be distinguishable from the noise.
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