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Highlights 

• Organoid systems integrated with artificial intelligence have advanced disease modeling and drug 
development. 

• Machine learning and deep learning models have demonstrated promising potentials in organoid applications. 
• Explainable AI can play a crucial role in enhancing our understanding of complex biological processes in 

organoid biology. 

 
Abstract: Organoid Intelligence ushers in a new era by seamlessly integrating cutting-edge organoid technology 
with the power of artificial intelligence. Organoids, three-dimensional miniature organ-like structures cultivated 
from stem cells, offer an unparalleled opportunity to simulate complex human organ systems in vitro. Through the 
convergence of organoid technology and AI, researchers gain the means to accelerate discoveries and insights across 
various disciplines. Artificial intelligence algorithms enable the comprehensive analysis of intricate organoid 
behaviors, intricate cellular interactions, and dynamic responses to stimuli. This synergy empowers the development 
of predictive models, precise disease simulations, and personalized medicine approaches, revolutionizing our 
understanding of human development, disease mechanisms, and therapeutic interventions. Organoid Intelligence 
holds the promise of reshaping how we perceive in vitro modeling, propelling us toward a future where these 
advanced systems play a pivotal role in biomedical research and drug development. 
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1. Introduction 

In the past few decades, a dynamic collaboration has unfolded between the fields of stem cell biology and 
bioengineering. This synergy has led to the creation of diverse culture systems capable of orchestrating the assembly 
of stem cells into distinct organoid types. These include remarkable achievements such as kidney organoids[1,2], 
intestine organoids[3,4], stomach organoids[5,6], optic cup organoids[7,8], and more recently cardiac 
organoids[9,10]. These innovative strides have not only deepened our insights into the complex realm of embryonic 
development but have also propelled the frontiers of regenerative medicine[11–14]. Organoids are three-
dimensional (3D) structures developed from stem cells or specific types of progenitor cells. In contrast to the 
traditional 2D tissue cultures, organoids possess an inherent complexity, replicating the intricate cellular 
compositions and 3D architectures that characterize natural organs[15]. For instance, human-induced pluripotent 
stem cells (hiPSCs)-derived cardiac organoids with designated geometric features were generated using spatial-
patterned Poly (ethylene glycol) (PEG) hydrogel substrates to investigate the early development of cardiovascular 
tissues[16]. In another study, organoids derived from the intestinal stem cells of a cystic fibrosis patient harboring 
a rare genetic mutation were used to test existing drugs, demonstrating the potential benefits of organoid technology 
in drug screening and the treatment of inherited diseases[17]. By mimicking the genetic makeup and physiological 
characteristics of individual patients, organoids offer a platform to tailor medical interventions to unique cases, thus 
heralding a paradigm shift in how we approach disease treatment and drug development. 

In recent years, the emerging high-throughput organoid culture systems have enabled the mass production of 
different types of organoids[18–21]. Microfluidic technology, in particular, has emerged as a key player in this 
landscape. By encapsulating suspension-cultured self-assembling stem cell organoids within hydrogels, this 
technology has managed to curtail heterogeneity and enhance quality control on a large scale[22]. However, this 
exciting leap in scalability also introduces its own set of challenges, particularly in terms of sample characterization 
and comprehensive data analysis, which have become pivotal considerations in managing the deluge of information 
generated by high-throughput platforms. Traditional analytical tools have demonstrated promise in generating 
robust results[23–25], yet they currently face the formidable task of handling the vast amount of data stemming 
from these samples. Balancing the benefits of high-throughput screening with the need for accurate, in-depth data 
analysis presents a unique challenge that the field must address as it embraces the era of organoid intelligence. 

Artificial Intelligence (AI) has emerged as a transformative force in biomedical research. AI algorithms have 
demonstrated exceptional proficiency in processing vast volumes of genomic, proteomic, and clinical data, 
identifying patterns and correlations that might elude human observation. Machine learning algorithms are 
mathematical-based models using existing input to reveal the underlying patterns in the new data by optimizing the 
global minima of different cost functions[26]. These algorithms have found expansive application in biomedical 
research, including in the dimension reduction of high-dimensional data to visualizable lower embeddings[27]. For 
example, Dr. McDonnell harnessed mass spectrometry imaging with t-distributed stochastic neighbor embedding 
(t-SNE) algorithm to distinguish breast cancer patients and gastric tumor patients into subpopulations, revealing the 
intratumor heterogeneity[28]. In another study, Dr. Frieboes trained various supervised machine models on a dataset 
containing the surveillance, epidemiology, and end result of cancer patients, achieving an accuracy rate of over 90% 
in predicting lung cancer patient survival rates[29]. Benefited from the advances in computing power, deep learning 
is increasingly revealing its latency for enabling a more nuanced understanding of the structural and developmental 
intricacies of organoids, particularly in the realm of image processing, where a growing number of classifiers are 
being trained on CNN algorithms to analyze organoid histology section image[30,31]. The integration of algorithms 
that combine image segmentation[32], feature extraction[33], and classification[34] functions has resulted in a 
remarkable elevation in the analysis of high-content microscopy-based datasets[35].  

The convergence of stem cell biology, bioengineering, and AI has ushered in a new era of organoid research (Figure 
1). In this article, we provide an overview of the recent advances in organoid research, only focusing on the emerging 
applications of AI algorithms in this research area. Through stem cell technology, precision engineering, and data-
driven insights, organoid intelligence is redefining our understanding of developmental biology, disease 
mechanisms, and therapeutic strategies. 
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2. Application of Machine Learning Models 

Machine learning algorithms started to emerge in the 1950s, coinciding with the term "artificial intelligence or AI." 
This pivotal moment marked a significant milestone in the progression of machine learning concepts[36]. These 
algorithms can be broadly classified into two fundamental domains: supervised machine learning and unsupervised 
machine learning[37]. For supervised machine learning, algorithms train models using labeled data, where inputs 
are paired with corresponding target labels or outcomes[38]. During the late 1950s, one of the early supervised 
learning models emerged with a single-layer neural network tailored for classification tasks [39]. As computational 
capabilities advanced, a diverse array of supervised machine learning models, including Decision Trees[40], the k-
Nearest Neighbor algorithm (k-NN)[41], Support Vector Machines (SVMs)[42], and Naive Bayes[43], were 
developed and refined. This refinement led to enhanced predictive accuracy for classification tasks. 

In contrast, unsupervised machine learning algorithms are trained on unlabeled data and focus on revealing patterns, 
structures, or relationships within inputs without predefined categories[44]. The evolution of unsupervised machine 
learning algorithms is closely intertwined with the broader landscape of AI and machine learning. An early example, 
the k-Means algorithm, proposed by Stuart Lloyd in 1957[45], stands as one of the earliest clustering algorithms. 
Another notable contributor, Principal Component Analysis (PCA), introduced in 1901 and widely embraced in the 
2000s, has proven invaluable in biological studies for tasks such as data visualization, noise reduction, and feature 
extraction[46]. Furthermore, the non-linear dimensionality reduction techniques, such as t-Distributed Stochastic 
Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP), showcased 
remarkable potential in visualizing high-dimensional data by transforming it into low-dimensional embeddings[47]. 

2.1 Machine learning in organoid model of human development. 

Organoids are new forms of 3D cell culture models that faithfully mimic the complexity and organization of human 
tissues or organs. These advanced models recapitulate key features of various organs, such as the brain and 
gastrointestinal tract, making them invaluable tools for studying human development, disease mechanisms, and 
personalized medicine[48,49]. Through deciphering the intricate patterns within the complex organoid datasets, 
machine learning algorithms have played a crucial role in validating the similarities between in-vivo organs and in-
vitro organoid models. For example, through comparing high-throughput RNA-seq data from organoids to the 
organs by machine learning algorithms, precise identification of cell types and inference of gene regulatory 
networks in organoids are achieved [50].  

In a study focusing on brain development, researchers used UMAP to cluster RNA-seq data from organoids at 
various time points, thereby revealing the cell subtype composition during development. Subsequently, these 
datasets were integrated into a model trained using EEG features from preterm infants, yielding prediction results 
with heightened consistency in Week 25 organoids. These findings suggest a parallel developmental trajectory of 
cortical organoids with fetal human brains, indicating similarities in their changing network electrophysiological 
properties over time[51]. Notably, the development of BOMA, a brain and organoid manifold alignment algorithm, 
has enabled comparative analysis of gene expression between brains and organoids. Utilizing this unsupervised 
machine learning algorithm, researchers have revealed spatiotemporal and species-wise gene expression patterns 
hidden in bulk tissue sequencing data and single-cell RNA sequencing (scRNA-seq) data, thus confirming the 
legitimacy of brain organoids as in-vitro counterparts for studying human neural system development[52]. 
Harnessing the spatiotemporal transcriptome atlas of the human brain, researchers trained a supervised classifier 
named "CoNTExT" to identify developmental maturity with 96.9% accuracy in brain regional identification[53–
55] The CoNTExT classifier confirmed the neuroanatomical identity of Week 5 and Week 14 organoids as cortex, 
thus demonstrating the preservation of molecular changes between organoids and the human fetal cortex during 
development[56].  

The application of machine learning has transcended the confines of transcriptome datasets and ventured into 
diverse domains. For instance, SVM algorithms were applied to classify salivary gland organoids treated with EGF 
and FGF2 based on Raman spectral data, signifying the potential to facilitate comprehension of cellular changes 
during organoid formation[57]. In a cardiac organoid study, the random forest-based computational approach has 
been proved to be a robust method for annotating scRNA-seq data obtained from hiPSC-derived heart organoids, 
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which helped effectively remove non-heart cells between fibroblasts and cardiomyocytes. The model has also 
demonstrated its potential in distinguishing cardiac tissues generated from 3D organoids, conventional 2D protocol, 
as well as organoids generated from gene mutation hiPSC cell lines. These distinctions are evident in the differential 
cross-classification pattern in cell type annotations between ventricular and atrial cardiomyocytes[58].  

2.2 Machine learning in precision drug screening. 

The capability to replicate intricate organ structures and phenotypes has positioned organoids as invaluable tools 
for expediting drug development. This is evident through their exceptional efficiency in assessing the toxicities of 
drug candidates and emulating disease heterogeneity [59,60]. Furthermore, the integration of machine learning 
algorithms has ushered in a new phase of advancement, enhancing this process by predicting drug responses and 
identifying therapeutic targets. Employing t-SNE as a dimensionality reduction technique, researchers have 
visualized the heterogeneity of colorectal tumor organoids in response to oxaliplatin treatment within a two-
dimensional representation. Subsequently, DBSCAN (Density-based spatial clustering of applications with noise) 
was employed on the low-dimensional outcome to categorize the embedding into distinct clusters. The comparison 
of clustering outcomes prior to and post-treatment has engendered the delineation of distinct subtypes within cellular 
populations, encompassing the drug-insensitive, drug-sensitive, and drug-ultrasensitive groups, showcasing 
considerable potential in cancer chemotherapeutic applications[61]. In a study aimed at building a neurotoxin-
induced Parkinson’s disease (PD) organoid model, hiPSC-induced human midbrain organoids (hMOs) were treated 
with 6-hydroxydopamine (6-OHDA) to damage the dopaminergic system. Using high-content confocal image-
based data of this PD model, researchers trained a classification random forest model, which achieved an impressive 
86% accuracy in predicting control and treatment organoids, highlighting the potential of supervised machine 
learning algorithms for neurotoxicity prediction[62].  

In line with the goal of advancing precision medicine, a network-incorporated machine learning model was 
developed to pinpoint drug biomarkers. This model stratified colorectal cancer patients into drug responders and 
non-responders. The classification outcome was then evaluated in drug-response prediction, revealing that drug 
responder patients exhibited significantly elongated overall survival following 5-Fluorouracil treatment. 
Subsequently, this model underwent validation using datasets from patients afflicted by bladder cancer and 
undergoing cisplatin treatment, thereby exemplifying the model's capacity for generalization across diverse clinical 
scenarios[63]. Another study utilizes a random forest prediction model fed with survival fraction data from rectal 
cancer patient-derived tumor organoids subjected to pre-neoadjuvant chemoradiotherapy. Remarkably, the model 
achieves over 89% accuracy in predicting tumor regression grade. Furthermore, the study establishes a significant 
positive correlation between patient and organoid irradiation responses, underscoring the value of organoid 
intelligence in understanding treatment outcomes and suggesting improved strategies for cancer therapy[64]. These 
studies emanate a promising signal in personalized therapy, enabling researchers to assess the efficacy of 
chemotherapy drugs more precisely, thereby minimizing unnecessary side effects.  

3. Application of Deep Learning Models 

Advances in computing power and the accessibility of extensive training datasets have paved the way for researchers 
to push the boundaries of neural networks, giving rise to more sophisticated architectures composed of multiple 
processing layers. These advancements have enabled neural networks to decipher intricate and intricate patterns 
and structures inherent in high-dimensional data. Noteworthy among these architectures are convolutional neural 
networks (CNNs), which have demonstrated remarkable potential in the realm of biomedical engineering[65,66]. 
CNNs generally work by processing data through multiple layers to extract information from local connections, 
leveraging shared weights, and pooling these connections across the many layers of a deep neural network. CNNs 
exhibit a particularly strong aptitude for extracting salient features from the multidimensional data intrinsic to 
imagery, as is often seen in microscopy images. Convolutional networks have had great success in detection, 
segmentation, and detection of features within images which have translated successfully to biomedical imaging 
analysis.  

3.1 Deep learning for organoid tracking 
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One of the most difficult and time intensive aspects of organoid research is the analysis of the images and videos 
generated by microscopy. A wealth of information is available within the video and image captures of organoids 
relating to changes within organoids morphology, size, number and functioning that relay critical information about 
organoid development and response to changes within their environment. However, the sheer volume of data 
presents a bottleneck in the interpretation of experimental results, thus leading to a pivotal need to implement deep 
learning technology in this field[67]. Considerable effort has been dedicated to developing investigative tools that 
harness the power of deep learning for organoid image analysis and tracking. The ability to automatically quantify 
changes in organoids is immensely advantageous, as manual screening of organoids is not only laborious but also 
prone to human errors. High-throughput image acquisition is a common approach for capturing images of a wide 
organoid area. However, this method comes with its own set of challenges, stemming from factors such as organoid 
density, depth, movement, and focus-related issues. 

To address these obstacles, a specialized high-throughput organoid image dataset was designed specifically for 
organoid detection and tracking[68]. By employing a CNN architecture known as ResNet[69], the dynamic 
evolution of organoid cultures was successfully tracked to profile the growth and morphological changes throughout 
the organoid developmental process. The impressive speed and accuracy in organoid tracking throughout the entire 
culture period marks a significant progress that not only advances organoid research but also showcases the potential 
of deep learning in this domain. Several open-source packages have emerged to facilitate the training of deep 
learning architectures for organoid analysis. Among these, the python-based tool MOrgAna utilizes a combined 
approach of deep learning and classical machine learning to analyze brain organoids from brightfield microscopic 
images. To discern organoid pixels from debris or background noise in the images, a multilayer perceptron neural 
network is extended into a deeper architecture. This expansion of logistic regression-based machine learning 
approach with deep learning network enhances the accuracy beyond traditional quantification tools[70].  

OrganoID utilizes a CNN network derived from U-NET for pixel-by-pixel organoid detection from brightfield 
microscopy images. This enables automatic counting and tracking of the size of cancerous organoids. While initially 
trained on pancreatic cancer organoids, this algorithm has been validated on diverse images, encompassing 
pancreatic, lung, colon, and adenoid cystic carcinoma organoids. The achieved accuracy rates are noteworthy, with 
individual count accuracy at 95% and individual organoid size accuracy at 97%[71]. Similarly, autoencoder CNNs, 
like Deep Image Prior (DIP)[72], has been applied to enhance microscopy resolution. This innovative super-
resolution framework employs an encoder-decoder architecture to improve the resolution of time-lapse videos 
involving tumor and immune cells as the focal objects. Extensive validation, covering both synthetic and real videos, 
has been conducted. In comparison to other techniques, this model demonstrates its value through an unsupervised 
architecture that effectively complements edge location and edge detection methods, thereby contributing to the 
advancement of high-resolution microscopy. 

3.2 Deep learning for organoid characterization 

Identification of abstract and nuanced alterations in organoid morphology has posed significant challenges. 
However, deep learning approaches have proven successful in quantifying and capturing these subtle morphological 
changes, which often elude empirical and consistent observation through traditional analysis methods. D-CryptO, 
a tool for analysis colorectal organoids, was developed by leveraging a comparison of six popular deep learning 
architectures on brightfield microscopy to detect the opacity and budding of these organoids. The study revealed 
that D-CryptO achieved remarkable outcomes by not only accurately predicting the overall opacity of individual 
organoids but also identifying instances of organoid budding with an impressively high level of accuracy[73]. 3D 
retinal organoids, derived from either mouse or human pluripotent cells, have exhibited a distinct resemblance to 
the native tissue. Despite their translational potential, the current approach to select functional retinal organoids 
relies heavily on subjective assessment of organoid morphology and features extracted from brightfield imaging. 
Addressing this challenge, a CNN-based system was designed to predict retinal differentiation based on early-stage 
retinal organoid brightfield images[74]. After cross-validation and hyperparameter tuning, the CNN was established 
using the ResNet50v2 architecture. Notably, the CNN algorithm outperformed experts in predicting organoid fate, 
even prior to the initiation of reporters. This advancement effectively obviates the need for intricate imaging 
techniques or the use of fluorescent probes. Moreover, the proposed approach is highly versatile and can be 
seamlessly incorporated into laboratories for streamlined implementation. 
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Deep learning autoencoder-decoders have emerged as promising tools for high-throughput drug screening, 
leveraging the latent vectors of autoencoders to capture the underlying phenotypic structures of organoids. These 
latent vectors effectively represent the organoids' phenotypic characteristics in a reduced dimension compared to 
the comprehensive microscopic capture. Metzger et al. pioneered a drug screening platform that successfully 
distinguished neural tube organoids between wild-type and diseased ones carrying the genetic mutations responsible 
for Huntington's disease (HD). This discrimination was achieved with remarkable accuracy by analyzing changes 
within the condensed phenotypic space of the latent vectors. The model was further extended to quantitatively assess 
the therapeutic efficacy of drugs designed to treat HD. This extension involved measuring the extent to which 
therapeutic agents brought the HD organoids closer to a phenotypic space resembling that of the wild-type organoids. 
Additionally, the platform enabled the exploration of potential adverse drug effects. By examining how much the 
addition of therapeutic agents altered the phenotypic space of the organoids from their original latent state, both for 
the diseased and wild-type organoids, insights into potential adverse effects could be obtained[66]. 

4. Conclusions and Future Perspectives 

Organoid technology holds immense promise in a wide range from animal-free drug testing that can investigate 
traditionally difficult areas from rare genetic diseases and developmental toxicology to personalized precision 
medicine for testing therapeutic strategies for patients [15].  As researchers create more complex and intricate 
organoid models to further replicate the structure and functionality of their in-vivo counterparts, our analytical tools 
must advance in sophistication to match. AI has proven to be fast, efficient, and quantitatively capable of extracting 
and analyzing the high-dimensional data generated from high-throughput organoid models with a high degree of 
accuracy. Future organoid models will continue to utilize powerful AI algorithms to fully investigate and model the 
complex and dynamic nature of organoids, facilitating the development of life-saving and groundbreaking 
discoveries. The future for organoids and AI may even become further entwined with the development of organoid 
intelligence[75] which seeks to utilize brain organoids for biological computing to implement a hybrid system for 
the future of artificial intelligence and organoid technology.  

Explainable AI (XAI) refers to the capability of AI systems to provide understandable and interpretable explanations 
for their decisions or predictions [76]. In the context of advancing research on organoid analysis, XAI can play a 
crucial role in enhancing our understanding of complex biological processes and improving the accuracy and 
reliability of analysis techniques. Integrating XAI and organoid technology will provide insights into how AI models 
arrive at a specific conclusion about organoid behaviors or properties. Researchers can gain a clearer view of which 
features or patterns that AI is focusing on, leading to increased trust and confidence in the results. By revealing the 
relationships between various organoid features, XAI can help researchers identify novel correlations (i.e., markers), 
leading to the discovery of new organoid characteristics that might be associated with certain biological conditions 
or diseases[77]. Researchers can understand which features or combinations of features are most influential in 
making predictions, potentially uncovering subtle biomarkers that would have been overlooked otherwise. In 
addition, AI models can learn irrelevant information from the data and then give high accuracy on biased predictions. 
This often occurs in biological data where many correlated factors presented to differentiate data might be irrelevant 
to the target application. Explaining the model outcomes based on XAI will reveal such bias and help develop 
unbiased AI models.  
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Figure 1. Organoid Intelligence. The integration of organoid technology and artificial intelligence for studying 
organoid properties, modeling human development, and assisting drug screening workflow. 


