
SoK: Security in Real-Time Systems∗

MONOWAR HASAN,Washington State University, USA
ASHISH KASHINATH, University of Illinois at Urbana-Champaign, USA
CHIEN-YING CHEN, University of Illinois at Urbana-Champaign, USA
SIBIN MOHAN, The George Washington University, USA

ACM Reference Format:
Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan. 2024. SoK: Security in Real-Time
Systems. ACM Comput. Surv. 0, 0, Article 000 (2024), 31 pages. https://doi.org/XXXXXXX.XXXXXXX

Security is an increasing concern for real-time systems (RTS). Over the last decade or so, researchers
have demonstrated attacks and defenses aimed at such systems. In this paper, we identify, classify
and measure the effectiveness of the security research in this domain. We provide a high-level
summary [identification] and a taxonomy [classification] of this existing body of work. Furthermore,
we carry out an in-depth analysis [measurement] of scheduler-based security techniques — the most
common class of real-time security mechanisms. For this purpose, we developed a common metric,
“attacker’s burden”1, used to measure the effectiveness of (existing as well as future) scheduler-based
real-time security measures.

1 INTRODUCTION
Real-time systems (RTS) such as avionics, nuclear power plants, automobiles, space vehicles, power
generation and distribution systems, medical devices, industrial robots, etc. have been in existence
for decades. Most of these systems have safety-critical properties, i.e., any problems could result in
significant harm to humans, the system or even the environment. Consider the case where a car’s
airbag, a real-time system with stringent timing constraints, fails to deploy in time — such failures
can have disastrous results. Despite their importance, security has rarely been a consideration in the
design of RTS, mainly due to beliefs such as: (a) real-time systems lack inherent value to adversaries
(“why would anyone attack them?”), (b) the prevalence of custom hardware/software/protocols will
deter attackers (“these protocols/hardware/software are secret and so arcane that no one can decipher
them”) and also (c) the lack of computing power and memory in these systems will throttle potential
adversarial actions (“what can they do even if they get in?”). In addition, RTS has stringent timing
∗A part of this work was conducted when M. Hasan and S. Mohan were affiliated with University of Illinois at Urbana-
Champaign (UIUC). The material in this paper is based upon work supported in part by the U.S. National Science Foundation
(NSF) under grant NSF CPS 2246937 and NSF CNS 2312006. Any findings, opinions, recommendations or conclusions
expressed in the paper are those of the authors and do not necessarily reflect the views of sponsors.
1This metric, built on the concept of “work factor” [1], is adapted for, and normalized across, various scheduler-based
real-time security techniques.

Authors’ addresses: Monowar Hasan, Washington State University, USA, monowar.hasan@wsu.edu; Ashish Kashinath,
University of Illinois at Urbana-Champaign, USA, ashishk3@illinois.edu; Chien-Ying Chen, University of Illinois at Urbana-
Champaign, USA, cchen140@illinois.edu; Sibin Mohan, The George Washington University, USA, sibin.mohan@gwu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
0360-0300/2024/0-ART000 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

000:2 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

requirements for ensuring their correct operation. For instance, a typical window for an airbag
deployment (time between detection of collision and final airbag operations) is around 50–60 ms
[2] (less than the time it takes to blink human eyes once!). Such timing constraints severely inhibit
how security solutions can be added to real-time systems; for instance, the protection methods
should not cause timing problems in RTS.
With the advent of newer domains such as autonomous vehicles, drones, remote monitoring

and control and Internet-of-Things (IoT), RTS find themselves front and center in modern society.
Since many RTS now use commodity-off-the-shelf (COTS) components and are often connected to
each other or even the Internet, they expose additional attack surfaces, often overturning all of the
aforementioned beliefs. In fact, there has been a significant uptick in attacks against systems with
real-time properties over the past decade [3–7].

Security problems in RTS also differ when compared to general purpose systems. The requirement
for tight timing guarantees brings up new vulnerabilities; for instance, if an attacker is able to
introduce a minor delay (even a few milliseconds) into the critical pathway for the deployment
of an airbag, then the passengers could be seriously injured or, worse, killed. In addition, RTS are
typically designed with safety in mind, rather than security. Even in the presence of malicious
actions, the prime focus of RTS designers would still be safe, i.e., ensure that the system or its
operators do not come to harm.
Real-time security has received significant attention in recent years from both academia and

industry, and now a significant body of work has started to appear in this domain. For instance,
regular attack vectors are also finding use against RTS, e.g., the leakage of critical data [8] and even
hostile actions due to lack of authentication [5, 6, 9]. In this paper, we have three major goals:

(1) surveying the knowledge in this area so that researchers can gain an understanding of the
domain, current solutions and challenges;

(2) systemizing this knowledge by establishing a high-level taxonomy of existing work and
(3) development of a common metric that can be used to compare and contrast solutions that

are focused on scheduler-based techniques since they form the largest collection of works in
this domain.

Systematization Approach. In this study we investigate RTS security issues and summarize
existing techniques (both, from attack and defense perspectives) in a comprehensive manner. While
there exists some limited survey (see §9 for details), to the best of our knowledge, there exists
no prior comprehensive summary and taxonomy of real-time security research that (a) classify
attack and defense mechanisms and (b) systematically compare real-time security solutions using a
“unified metric”. We have studied over 250 papers from a variety of archived sources published in
the last 27 years (1995–2022) and short-listed the related work. For instance, our search includes all
major online archives viz., ACM Digital Library, Google Scholar, IEEE Xplore, MDPI, ScienceDirect,
Scopus, USENIX and Wiley Online Library. In addition, we manually parsed papers from major
security, real-time, embedded systems and design automation conferences. We also crawled the
related publications from the websites of the researchers we know who work in similar domains.
Some of the major keywords used in our search include: “real-time systems”, “security”, “side-
channel”, “attacks”, “timing analysis”, “temporal guarantees“, among others. Table 9 in Appendix A.1
lists all the papers and their source communities. Note: We excluded papers that are not directly
connected to real-time security, for instance, security for broader cyber-physical/control systems,
robotics, IoT/cloud/edge systems, and mobile devices.

Taxonomy. Our research identifies some well-defined categories and sub-categories (for attacks
and defenses) that the majority of work in real-time security can be classified into. In this paper,

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:3

we present such a taxonomy (Fig. 2) that can be easily used to identify and classify existing (and
potentially future) work in RTS security.

Metric. A large class of security solutions in RTS are centered around resource management
algorithms since they form the crux of RTS design. The operating system (OS) scheduler is considered
to be the most important resource management algorithm and, hence, has received a lot of attention
in terms of adding security, as is evident in Fig. 2. Even with this diverse body of work, there exists
no systematic framework or metric to analyze these systems or contrast them against each other.
In this paper, we present a metric, named “attacker’s burden” inspired by work factor [1], a

concept that captures the “cost” of circumventing a security mechanism with the resources available
to an attacker. Our metric builds upon this concept by capturing the (increased) computational load
on adversaries by translating it into something directly relevant to RTS: the time that is available
to attackers. Unlike cryptographic algorithms where a direct correlation can be made between
increased key size and the computational power required by adversaries, the computation of the
attacker’s burden in RTS security is not straightforward since, as shown in §6, even among the
scheduler-driven techniques, there is significant diversity in how security mechanisms are designed.
Hence, calculating the time available for would-be attackers is challenging. To demonstrate the
use of this metric, we show how it can be computed for the various categories of scheduler-based
security techniques in literature — thus providing an easy reference for comparing the state-of-the-
art. We believe that this new metric, presented in §6, will allow designers to analyze and quantify
the effect of their solutions and, in effect, improve the security guarantees in such systems.

In this paper, we make the following contributions:
• A taxonomy of real-time security research (Fig. 2) and a comprehensive study of related
literature (see the list of papers in Table 9).

• A systematic review and qualitative comparison of various RTS security solutions, both from
attack and defense perspectives (§4, §5 and §7).

• In-depth study of scheduler-level RTS security solutions (§5) and related analyses using our
newly developed metric, “attacker’s burden” (§6).

We start with a background on RTS (§2).

2 REAL-TIME SYSTEMS
RTS are defined by their strong timing requirements. They need to function correctly, but within
their predefined timing constraints, often termed as a “deadlines” — recall the airbag example from
earlier where the deployment has to complete with a few tens of milliseconds. Some of the common
properties and assumptions related to RTS are as follows: (i) implemented as a system of periodic
tasks, (ii) worst-case bounds are known for most loops as well as the critical pieces of code, (iii) no
dynamically loaded or self-modifying code, (iv) recursion is either not used or statically bounded,
(v) memory and processing power often limited and (vi) stringent timing and safety requirements.

2.1 Architecture and System Development Model
In Fig. 1 we present a high-level illustration of an RTS. Each real-time application in the system
(called “task”) represents a time-critical function and a collection of such tasks are hosted on
a hardware platform (mostly single-core systems). The concept of tasks in RTS can be trivially
mapped with processes or threads in general-purpose OS. The scheduler in real-time OS (RTOS) uses
timers and interrupt handlers to enforce timing guarantees at runtime. This ability of the scheduler
to interrupt application processing at precise time instants is essential to ensure the “correctness”
of the system. Access to shared platform resource (such as caches, buses, memory) is regulated
using resource sharing protocols to ensure data consistency and bounds on waiting time so that

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:4 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

Grid
ICS

Avionics
System

RTS nodeRTS node

RTS node RTS node
RTS node

RTS node

Automobiles

RTS node

Communication Bus(es)

Communication Bus(es)

Real-time tasks
[periodic, priority-driven]

Real-time scheduler and resource-sharing protocols
[bounded waiting times]

Execution platform
[processor, timers]

Hardware resources
[memory, caches, sensors]

Applications

OS Layer

Hardware

Fig. 1. Abstraction of a real-time node with common uses cases.

deadlines can be met. The communication network in RTS is required to provide service with low
jitters and meet end-to-end message deadlines for all messages.

2.2 Task and Scheduling Model
Tasks in RTS are generally characterized by their periods (inter-arrival times), constant, upper
bounded execution times and temporal constraints (deadlines). Schedulability tests [10–12] are used
to determine if all tasks in the system meet their respective deadlines. If this is the case, then the
task set is deemed to be “schedulable” and the system, safe. In Listing 1 we present an abstraction
of a real-time task. running on real-time Linux (RT_PREEMPT [13]). Line 4 specifies the priority
and Line 11 performs the main task functionality. Timers are updated in Lines 14-19 for periodic
invocations.

1 int main ()
2 {
3 struct timespec t; struct sched_param param ;
4 param . sched_priority = _PRIORITY_ ; // set priority
5
6 /* enable real -time scheduling */
7 sched_setscheduler (0, SCHED_FIFO , & param)
8 clock_gettime (0, &t); // get current time
9 /* main real -time loop */
10 while (1) {
11 main_task_function (); // do the stuff
12 /* update timer (nanosecond and second fields)
13 for next period */
14 t. tv_nsec += _PERIOD_ ;
15 while (ts -> tv_nsec >= NANOSEC_PER_SEC) {
16 ts -> tv_nsec -= NANOSEC_PER_SEC ; ts -> tv_sec ++;
17 }
18 /* wait for next period */
19 clock_nanosleep (0, TIMER_ABSTIME , &t, NULL);
20 }
21 return 0; // end of code (never reaches here)
22 }

Listing 1. Code abstraction of a periodic real-time task.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:5

REAL-TIME
SYSTEMS
SECURITY

Attacks on
Real-time

systems (Sec. 4)

Reconnaissance
[16, 17]

Targeted Attacks

Single
core [18]

Multicore
[19]

Defense
Mechanisms

Scheduler-
level

techniques*
(Sec. 5)

Integrating
cryptography

services

Static
scheduling
[20–28]

Adaptive se-
lection [29]

Control-
aware
[30, 31]

Integrating
security

monitoring

Verify
execution
times [32]

Task-level
checking [33]

For legacy
systems

Opportunistic
execution

Single
core [34]

Multicore
[35, 36]

Dual-
mode [37]

Side-channel
defense

Leakage
prevention

Cache
leakage
[38, 39]

Thermal
leakage
[40, 41]Schedule

leakage
[42–44]

Schedule ran-
domization

Priority-
driven
systems

Single
core

[45, 46]

Multicore
[47]

Time-
triggered

systems [48]

Hardware/
software-
based

solutions
(Sec. 7.1)

Control flow
integrity

Using
custom
hardware

[49]

Using COTS
[50–52]

Slack-aware
monitoring

[53]

Simplex-
based security

SecureCore
framework
[54–56]

S3A
framework

[57]

Recovery
by reboot
[58–60]

Using secure
enclaves
[61–63]

Secure
RTOS design
(Sec. 7.2)

Avionics [64]

Domain
independent

[65–69]

*Systematized and evaluated with a common metric (shaded in blue color).

Fig. 2. Taxonomy of various attacks and defense techniques proposed in the real-time literature.

In real-time scheduling, task priorities can be either fixed or dynamic. Examples of commonly
used fixed and dynamic priority algorithms are: (a) rate monotonic (RM), where task priorities are
assigned based on periods (i.e., shorter period implies higher priority) and (b) earliest deadline first
(EDF), where a job with shortest deadline is scheduled first [14]. Scheduling algorithms can be
(i) preemptive (tasks can be preempted by higher priority tasks) or (ii) non-preemptive (when a
task starts executing, it will not be preempted and execute until completion). A system is called
mixed-criticality RTS if it has more that one criticality levels (say safety critical, mission critical
and low-critical) [15].

3 TAXONOMY
One of the contributions of this paper is the identification and classification of research in the area
of real-time security. Figure 2 illustrates the various categories of RTS security research that we
have identified. We find that RTS security research can be broadly classified into attack and defense
mechanisms. We categorize attacks into two classes: (i) reconnaissance (where an attacker passively
infers system information and attempts to break confidentiality — this reconnaissance can be used

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:6 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

Table 1. Threat Models Used in Literature

Problem Focus Assumptions on Adversarial Capabilities
Integrating cryptography
services [20–29]

The attacker has: (i) knowledge of the real-time tasks and intends to break confidentiality,
authentication, and/or integrity of the existing tasks [20–22, 24–26, 28, 29]; (ii) access
hardware to perform brute force attacks against symmetric cryptographic schemes [23];
(iii) knowledge of application vulnerabilities [27]

Control-aware data/message
integrity [30, 31]

The attacker has: (i) knowledge of the schedule of control tasks [30]; (ii) access to low-level
network messages and knowledge of when integrity checks (e.g.,MAC) are performed [31].
The attacker wants to remain stealthy and (i) manipulate the system to an unsafe state [30];
(ii) inject false messages [31]

Monitor temporal variations [32] No specific assumptions on attacker’s capabilities; the adversary can leverage known
vulnerabilities and execute malicious code

Task-level integrity checking [33] Attacker can exploit buffer overflow vulnerabilities and launch ROP (return-oriented
programming) attacks

Periodic monitoring for legacy
RTS [34–37]

No specific assumptions on attacker’s capabilities; model can be used for scenarios where
periodic monitoring of system events is required

Leakage prevention by clearing
shared cache [38, 39]

Vendor-based system development model; a compromised task (perhaps from a less trusted
vendor) can snoop information from security sensitive (i.e., victim) tasks; no specific
assumptions on how a task could be compromised

Robustness analysis of AES keys
against differential power analysis
attacks [40]

The adversary aims to obtain the AES key used in the system. The attacker (i) has physical
access to the system; (ii) can accurately measure the power consumption; (ii) knows the
periods of all tasks but does not know their actual execution times

Thermal leakage prevention [41] Attacker (i) knows prior thermal profile of the task schedule; (ii) can have access to on-chip
thermal sensors and obtain runtime measurements

Reduce determinism by schedule
obfuscation [45–48]

The attacker can hijack one or more tasks in the system and wants to determine which task is
running at any point in time (by observing execution traces)

to launch further attacks, see §4.1) and (ii) targeted attacks (where an adversary tampers with
temporal constraints of other real-time tasks, §4.2).

The literature on defense mechanisms can be divided into three major categories: (i) scheduler-
based techniques (§5), (ii) hardware/software-based architectural solutions (§7.1) and (iii) research
on secure RTOS design (§7.2). We further classify scheduler-based defenses, that has the most
number of papers, into three categories: (a) integration of cryptography services (§5.1); (b)
integration of monitoring techniques (§5.2) and (c) side-channel defense techniques (§5.4-§5.3).

Research on architectural solutions includes: (a) control flow monitoring (§7.1.1), (b) monitoring
of task execution time by computing slack (§7.1.2), (c) techniques based on Simplex [70] — a real-
time design framework to provide fault-tolerance (§7.1.3) and (d) techniques using off-the-shelf
processor extensions such as ARM TrustZone [71] (§7.1.4).

4 ATTACKS ON RTS
We now start with a discussion on attack mechanisms that target RTS. We classified the attack
methodologies on RTS based on the level of control over tasks in the system and the functional
objective of the attack. An adversary can violate the integrity of the system via malicious code
injections and/or by triggering a logic bomb that is otherwise silent/not detected during system
design (attacks on integrity and/or confidentiality). Since many modern RTS communicate over
unreliable mediums such as the Internet, the system is also vulnerable to network-based attacks.
Threats to message communications are usually dealt with by integrating cryptographic protection
mechanisms. In §5.1 we present solutions proposed in the literature to integrate cryptographic
mechanisms.
Since many real-time applications are running on embedded platforms, they are vulnerable to

DoS attacks (i.e., attacks on availability) due to inherent resource constraints (low memory/storage
capabilities, limited computation resource, limited energy). For example, an attacker may perform
system-level resource (e.g., CPU, disk, memory, I/O) exhaustion and force a critical task to miss
deadline due to resource unavailability. The DoS defense mechanisms developed for generic

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:7

personal/enterprise computing platforms or embedded systems do not consider timing, safety
and resource limitations of RTS and are not easily adopted without significant modifications.
Other than trying to aggressively crash the system, the adversary may silently lodge itself in

the system and extract sensitive information. Such side-channel attacks manipulate unexpected
channels (e.g., cache usage [16], thermal traces [41] and timing behavior [45]) to acquire useful
information from the victim. These channels are particularly effective for attacking RTS due to
their deterministic behaviors. Side channel attacks break the confidentiality and could be used by
the adversary to launch further attacks (that may jeopardize integrity and/or availability of the
system). As we shall see in the paper, researchers have found various side-channels for RTS (§4.1)
and also proposed techniques to mitigate them (§5.4-§5.3).

We now present various attack techniques demonstrated by the researchers.

4.1 Reconnaissance
In order for many attacks to succeed, reconnaissance is typically one of the early steps in the
process. It is in the interest of the attacker to stay undetected during this time to both, (a) collect
necessary and sufficient information to enable their attacks and (b) to not alert system operators
and their defensive actions. In the following we illustrate two reconnaissance techniques in RTS
identified by the researchers.

Chen et al. [16] developed techniques to reconstruct the task schedule of RTS so targeted attacks
can be launched against critical tasks. In particular, they develop an algorithm (ScheduLeak) to
deconstruct constituent jobs of the tasks from “busy periods” (i.e., a block of time when one or
more tasks are executing). This allows the adversary to determine what tasks are running when
by just observing the busy periods. The inferred, ordered, job set output by the algorithm allows
the attacker to reconstruct the schedule (with up to 99% success rate if tasks have fixed execution
times) and pinpoint the possible start time of any required victim task for the foreseeable future.
Liu et al. [17] show that attackers can infer the engine speed of a vehicle by observing the

real-time scheduling sequences on the engine control unit (ECU). They show that the ECU schedule
(consisting of the core engine task and other regular real-time tasks) and task periods can be
obtained by observing the electromagnetic radiation using a near-field probe and hardware signal
analyzer. The deduced period is then used to obtain the speed profile of the engine.

4.2 Targeted Attacks
We now present work on targeted attacks where adversaries tailor their attack strategy to leverage
a specific RTS property.

4.2.1 Manipulating Control Tasks. For a priority-driven, periodic real-time application, changing
the parameters (period, priority) of one task may alter the temporal properties (i.e., response
time) and, hence, the safety of other tasks. Mahfouzi et al. [18] show that by interfering with
an entry task (say a low-priority, less protected one that interacts with the outside world) an
adversary can manipulate the response time of other, low-priority tasks (called Butterfly attack).
This attack demonstrates how an adversary can destabilize single core systems. We now discuss
timing perturbations of critical tasks from multicore context.

4.2.2 Cache-Level DoS Attacks. Manymulticore processors use non-blocking caches [72] to support
concurrent memory accesses from multiple cores. Bechte et al. [19] show that an adversary can
cause significant timing influence to the real-time tasks by accessing shared caches. They show
that shared cache blocking can occur in both out-of-order and in-order processors and can increase
execution times significantly, e.g., up to 346X on a quad-core in-order architecture (Raspberry Pi).

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:8 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

Recall from the airbag example, such attacks can delay the airbag deployment and threaten safety
of the passengers.

4.3 Summary of Our Findings
While there exists some recent work on defensive techniques for RTS (see §5 and §7), there is
considerably less focus on attack mechanisms. There is a lack of papers that demonstrate the
techniques to extract important information and/or disrupt the normal operation of the system
while still remaining undetected. We find that researchers study attack mechanisms from two
contexts: (i) stealthy attacks (infer sensitive information by leveraging side-channels [16, 17]) and
(ii) targeted attacks (increase in execution time of the victim tasks by modify tasks parameters such
as periods [18] or blocking shared cache [19]). Out of four attack techniques we reviewed, three
of them [16–18] explicitly consider single core, fixed-priority systems and only one mechanism
(DoS attacks on shared caches) [19] is applicable to multicore platforms. Three of them [16, 17, 19]
evaluate/demonstrate the attacks on real hardware/embedded platforms while one (Butterfly
attack [18]) is evaluated using synthetic case studies.

5 SCHEDULER-LEVEL DEFENSES FOR RTS SECURITY
We now present scheduler-level defense mechanisms proposed in the literature (a total of 28
papers). These techniques (a) are software-based approaches (often integrated at design time), (b)
can be applied by enforcing scheduler-level constraints and/or placing a hook within the scheduler
and (c) do not require any custom hardware and/or architectural support. We categorize these
techniques into three major classes: (i) integrating cryptographic primitives (§5.1), (ii) integrating
security monitoring techniques (§5.2) and (iii) side-channel defense mechanisms (§??). In Table 1
we summarize the threat models and assumptions considered by the authors. In particular, for
different techniques we summarize the attacker’s capabilities and knowledge of the system as well
as the types of attacks the each of the schemes intend to prevent.

5.1 Integrating Cryptographic Operations
Integrating security into RTS that enables confidentiality, integrity and authentication increases
the computational load and may adversely affect the timing constraints of existing time-critical
tasks. We now discuss various techniques proposed in literature for incorporating (and optimizing)
security services (see Table 2 for a summary).

5.1.1 Static Scheduling Techniques. Xie et al. [20] propose a modified version of EDF (called
EDF_OPT) that aims to maximize the number of accepted tasks while providing the highest level
of security services (such as SSL, authentication) possible to the accepted tasks. They further
propose an algorithm (SASES) for finding feasible schedules that maximize confidentiality, integrity
and authentication requirements (as given by the designers) [21]. Lin et al. [22] propose a group-
based security model where different security services for authentication/integrity (such as RC4,
RC5, DES) are put into different groups. Kang et al. [23] propose a feedback-control scheme that
considers system load and security. The above pieces of work consider independent, periodic tasks
with same levels of criticality and are designed for single core systems. Similar ideas have been
applied to (a) multicore platforms where tasks can be inter-dependent [24]; (b) energy-constrained
systems [25–27] and (c) mixed-criticality systems [27, 28].

5.1.2 Adaptive Scheduling. The aforementioned schemes focus on design-time optimizations
based on designer-provided parameters and does not change the schedule at runtime.
Saadatmand et al. [29] propose a lookup-driven approach where different encryption algorithms
and their overheads are listed in a sorted table. At runtime, encryption algorithms are selected (from

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:9

Table 2. Summary: Integration of Cryptographic Primitives

Reference Task Model Scheduling
Policy*

Platform Key Idea Overhead/Limitation

Xie et al. [20] Independent,
aperiodic† ,
non-
preemptive

EDF Single core Find optimal level of cryptography
services (e.g., SSL, authentication)
without impacting the deadlines

security models are not
well defined, does not
provide hard timing
guarantees

Xie et al. [21] Independent,
periodic,
preemptive

EDF Single core Obtain a feasible schedule
that maximizes confidentiality,
integrity and authentication (CIA)
requirements

Hard to quantify
different security
levels (given by CIA
requirements)

Lin et al. [22] Independent,
periodic,
preemptive

EDF Single core Group multiple security services
(e.g., authentication, data integrity)
together and find the best
combination while retaining
schedulability guarantees

Does not distinguish
different services (i.e.,
they use same weights)

Qiu et al. [24] Dependent,
periodic, non-
preemptive

N/A Multicore Find security services for set of
tasks with precedence constraints
(i.e., dependency among task
executions)

Does not provide hard
timing guarantees

Jiang et al. [25,
26]

Independent,
periodic,
preemptive

EDF, RM Single core Minimizing security risk (defined
based on cryptography services)
under a predefined energy budget

Vague definition of
“security risk”

Zhang
et al. [28]

Independent,
periodic,
preemptive

EDF, RM Single core Minimize vulnerability (defined
as a function of priority and
the number of rounds used by
a cryptographic scheme) subject to
real-time requirements

No systematic way of
defining “vulnerability”
of an encryption
algorithm

Zhang et al. [27]
Dependent,
periodic, non-
preemptive

Proposed by
the authors

Multicore Assign security-critical tasks to
cores such that both energy budget
and real-time constraints are
satisfied

Vague definition of
security levels

Kang et al. [23] Independent,
periodic/aperi-
odic, preemp-
tive

N/A Single core Provide a technique to adaptively
control the utilization, execution
time and strength of protection
(a function of crytographic key
length)

Does not provide hard
timing guarantees for
real-time tasks

Saadatmand
et al. [29]

Independent,
periodic/aperi-
odic, preemp-
tive

N/A Multicore Dynamically switch between
different encryption algorithms
at runtime from a precomputed
table (where different encryption
algorithms are sorted based on
their execution times)

Runtime overheads due
to extra lookups

Lesi et al. [30,
31]

Independent,
periodic, non-
preemptive

EDF Single core Prevent man-in-the-middle
attacks while preserving control
performance

May not detect stealthy
attacks if an adversary
gradually degrades
control performance

*EDF: Earliest deadline first; RM: rate monotonic. We refer this column as “N/A” if the authors do not explicitly consider any scheduling
algorithm and/or the proposed scheme is independent of a particular scheduling technique. †Task arrival follows a Poisson distribution.

Remarks:We observe that the notion of “security level/service” used in RTS literature is not well-
defined and it is hard to quantify how the security posture is improved. The majority of the solutions
(eight out of eleven) are designed for single core platforms. Only a single work [29] is implemented
on an actual RTOS while the others are evaluated using simulations.

a higher to lower order, sorted by their execution time) based on available time. They implemented
this scheme on the OSE RTOS [73].

5.1.3 Control-Aware Solutions. In another direction, Lesi et al. [30, 31] propose techniques to
prevent man-in-the-middle (MITM) attacks (between sensors and controllers) in real-time control
systems. The goal is to find trade-offs between control performance and security overheads (e.g.,

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:10 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

Table 3. Summary: Integrating Security Monitoring Techniques

Reference Task Model Scheduling
Policy*

Platform Key Idea Overhead/Limitation

Hamad
et al. [32]

Independent,
periodic,
preemptive

Fixed
priority

Single core Monitor execution time variations
of real-time tasks within the
scheduler

May not detect attacks
that causes minimal
timing perturbations;
extra tracing overheard;
no study on overhead of
monitoring

Hao et al. [33] Independent,
periodic,
preemptive

Fixed
priority

Single core Insert security checks (e.g., control
flow integrity protection) within
task code

May result in delayed
detection since some
jobs skip security checks

Hasan
et al. [34]

Independent,
periodic,
preemptive

RM Single core Execute monitoring tasks with a
lower priority than real-time tasks

Delayed detection due
to more interference
(since monitoring tasks
run only during idle
times)

Hasan
et al. [37]

Independent,
periodic,
preemptive

RM Single core Execute monitoring detection tasks
with a lowest priority most of the
time (i.e., during normal operation);
change the mode of operation
and execute with a higher priority
(for a limited amount of time) if
anomalous behavior is suspected

False positive detection
may cause unnecessary
mode switches

Hasan
et al. [35, 36]

Independent,
periodic,
preemptive

Fixed
priority

Multicore Execute monitoring tasks with
a lower priority than real-time
tasks and (a) use a fixed core
allocation [35]; (b) allow runtime
migration to any empty core for
faster detection [36]

Delayed detection due
to more interference
(since monitoring tasks
run only during idle
times)

*We refer scheduling policy as “RM” if the task priorities follow rate monotonic order (i.e., a task with shorter period is assigned a higher
priority).

Remarks: Five out of six papers [33–37] we reviewed in this category do not provide specific security
techniques and abstract the underlying checking mechanisms. Only a single paper [32] explicitly
designs a checking scheme by observing the timing behavior of the tasks. Majority of the solutions
(four out of six) [32–34, 37] are designed for single core platforms.

overheads for enforcing data integrity technique such as message authentication codes to prevent
MITM attacks).

5.2 Integrating Security Monitoring Techniques
We now discuss scheduler-level techniques to integrate security checking (such as monitoring task
execution behavior and protecting control flow integrity). Table 3 summarizes the papers presented
in this Section.

5.2.1 Time-Based Monitoring. As we mentioned earlier, one of the main characteristics of RTS is
that they have strict timing constraints that must be met in order to maintain the correctness of the
system. Hamad et al. [32] use the temporal properties (derived from the static timing analysis [74]
of the system) and propose an intrusion prediction mechanism. The authors introduce the concept
of red-zone principle to permit the task to overrun until a predefined limit (called red-zone) is
reached. Whenever the task exceeds the limit, a recovery process is performed (e.g., terminate the
malicious task).

5.2.2 Task-Level Monitoring. In the above work a single monitoring mechanism executes in
the scheduler and checks the timing behavior of the real-time tasks. Hao et al. [33] propose
to individually execute security checks (such as checking of control flow) for each task. Different

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:11

security checks (called security levels), however, result in different (worst-case) execution of the
tasks and may impact timing requirements. The authors therefore propose to select a subset of
jobs to execute the security checks and design a scheduling policy, called security level monotonic
(SLM) algorithm, to obtain such set of jobs (that runs security checks).

5.2.3 Securing Legacy Systems. The aforementioned work performs security monitoring at the
task-level and increase execution time of the tasks. While prior work is more suitable for newer
systems, this is especially challenging for legacy systems where the real-time tasks are already
in place and perhaps cannot be modified. Hasan et al. [34–37] propose to execute monitoring
mechanisms as independent, periodic tasks (called security tasks). The security tasks execute at a
lower priority than real-time tasks so that they do not perturb the timing or execution order of the
existing real-time tasks (called opportunistic execution) [34].

Hasan et al. [37] further show that when the security tasks always execute with the lowest priority
it may result in longer detection times. They then propose a dual-mode model (Contego [37]) that
allows the security tasks to execute in two different modes: (a) by default security routines execute
opportunistically when the system is deemed to be uncompromised; (b) if an anomaly is suspected,
the security tasks may switch to higher priority; (c) the system reverts to “normal” mode if: i) no
anomalous activity is found or ii) the root cause of the problem is detected and malicious entities
are removed.

The abovework focuses on single core systems. Hasan et al. [35] extend their scheme formulticore
platforms (called HYDRA). They further show that, if security tasks can migrate across cores, at
runtime, it provides better detection (HYDRA-C) [36]. This scheme provides better monitoring but
comes with a cost (in terms of context switch overhead).
We now discuss techniques to mitigate side-channel attacks against RTS (see Table 4 for a

summary). We classify these techniques are: (a) prevention of information leakage (§5.3) and (b)
randomization of task schedule (§5.4).

5.3 Side-Channel Defense: Leakage Prevention
We first present techniques that prevent information leakage due to the use of shared resources
(§5.3.1) and then analyze the effect of power leakage on real-time scheduling (§5.3.2) and discuss
techniques to defend schedule-based side-channel leakages 5.3.3.

5.3.1 State Cleaning Mechanisms. It is well understood that the use of shared resources (e.g.,
caches, DRAMs, I/O interconnections) can lead to information leakage between tasks without
explicit communication [75, 76]. In particular, every time there is a switch between tasks belonging
to different “security levels” (as defined at the design time) there is a possibility of information
leakage through shared resources. The information from a task with a higher security level (say
𝜏𝐻) must not leak to task with a lower security level (𝜏𝐿). Mohan et al. [38] propose the idea of
mitigating information leakage among tasks with fixed security levels by placing constraints on
scheduling algorithms. The main intuition is that every time tasks switch between security levels,
the shared resource must be “cleansed” (e.g., cache should be flushed in this case) before a new task
is scheduled.

Pellizzoni et al. [39] further relax the requirement of total ordering of security levels and propose
a more general model. They propose a constraint named noleak to capture whether unintended
information sharing between any given pair of tasks must be forbidden (e.g., for any two tasks 𝜏𝑖
and 𝜏 𝑗 : if noleak(𝜏𝑖 , 𝜏 𝑗) = 𝑇𝑟𝑢𝑒 , then information leakage from 𝜏𝑖 to 𝜏 𝑗 must be prevented). The
authors then propose a general flushing mechanism based on the noleak relation and compute the
effect of the number of flushing invocations on the timing requirements.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:12 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

Table 4. Summary: Side Channel Defense Techniques

Reference Task Model Scheduling
Policy

Platform Key Idea Overhead/Limitation

Mohan
et al. [38],
Pellizzoni
et al. [39]

Independent,
periodic,
preemptive/
non-
preemptive

Fixed
priority

Single core Flush the shared medium (e.g.,
cache) between the consecutive
execution of high-security (i.e.,
security sensitive) and low-security
critical tasks

Depending on platform,
flushing can be costly;
overhead of flushing
reduces schedulability

Jiang et al. [40] Independent,
periodic,
preemptive

EDF, RM Single core Use statistical analysis and
study the difficulty (in time
overheads) for the attacker to
obtain information about system
power usage

No prevention scheme is
presented

Bao et al. [41] Independent,
aperiodic,
preemptive

Variant
of EDF
(proposed by
the authors)

Single core Find a task sequence (i.e., schedule)
that minimizes thermal side-
channel leakage

Does not provide hard
timing guarantees

Chen et al. [42] Periodic,
preemptive

Fixed
priority

Single core Find a schedule that prevents an
untrusted task to execute certain
point in time to minimize the
chances of schedule leaks

Designed for single core
platforms only, requires
additional OS support
(e.g., Linux cgroups)

Yoon
et al. [43, 44]

Hierarchical,
periodic,
preemptive

Fixed and
dynamic
priority

Single core
(can be
adapted to
multicore)

Find a schedule that makes the
partition execution behavior
oblivious to an adversary

Applicability to
multicore is not
thoroughly analyzed

Yoon et al. [45],
Baek et al. [47],
Vreman
et al. [46],
Krüger
et al. [48]

Independent,
periodic,
preemptive

Fixed prior-
ity [45, 47];
schedule
indepen-
dent [46];
slot-based,
time-
triggered [48]

Single
core [45, 46,
48], multi-
core [47]

Obfuscate task execution order
(i.e., schedule) while retaining
schedulability to reduce the
predictability

Extra context switch
overhead; no clear
metric to analyze
how randomness can
improve security

Remarks: We find that researchers study side-channel defensive techniques from two views: (i)
leakage prevention by enforcing scheduling constraints (i.e., techniques for preventing cache [38, 39],
thermal [40, 41] and schedule [42–44]-based side-channel leakages) and (ii) schedule diversification
(preventing system from timing/thermal/cache inference attacks by obfuscating task execution
orders) [45–48]. Majority of papers (9 out of 11) we reviewed [38–41, 45–48] are evaluated by
simulations and does not show how (i) scheduler-level constraints (such as flushing the cache
or randomization) can be implemented on practical RTOS/schedulers and (ii) exactly how these
techniques can limit the impact of actual side-channel attacks on RTS.

5.3.2 Power Leakage and Real-Time Scheduling. By analyzing the power traces or by using statistical
analysis and error correction techniques, an adversary can gain information about the system [77].
Jiang et al. [40] develop an analytical framework to study the robustness of AES secret keys against
differential power analysis attacks [77] for both, RM and EDF real-time scheduling policies. Bao
et al. [41] show that different orders of task executions can result in different thermal profiles and
thus leak different side-channel information (e.g., processor temperature). They then propose a
scheme that minimizes the probability of task execution inference (that an attacker may deduce
from the thermal sensor measurements).

5.3.3 Defending Schedule Leakage. SchedGuard [42] protects Linux-based real-time schedulers
against side-channel attacks (such as ScheduLeak [16]) by preventing untrusted tasks from executing
during specific time segments. The authors integrate SchedGuard into the Linux kernel using
cgroups. Yoon et al. [43, 44] show an algorithmic covert timing-channel between partitions in
hierarchical schedulers [78, 79]. In hierarchical scheduling, each partition (i.e., temporal block)

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:13

exclusively uses CPU for running set of tasks assigned to the corresponding partition. The authors
introduce a run-time schedule transformation algorithms (named Blinder [43] and TimeDice [44])
that make the partitions oblivious to the other partition’s varying temporal behavior even if an
adversary is able to control the timings of the applications.

5.4 Side-Channel Defense: Schedule Obfuscation
Another way to protect RTS from side-channel attacks is to randomize the task schedule to reduce
the observability of periodic real-time applications [45–48]. A randomized task schedule results
in different scheduling orders (and response times) of the tasks. With randomization, even if
an observer is able to capture the exact schedule for a (limited) period of time the rest of the
schedule will show different timing behavior for execution of the tasks while retaining real-time
guarantees. However, this is not straightforward for RTS since schedule obfuscation leads to priority
inversions [80] and may cause missed deadlines.

Instead of selecting the highest-priority task at each scheduling point (as is the case for vanilla
real-time schedulers), TaskShuffler [45] picks a random task (subject to deadline constraints).
Baek et al. [47] further extend TaskShuffler for multicore platforms. Contrary to TaskShuffler,
Vreman et al. [46] generates a list of randomized schedules offline, based on a metric — called
upper-approximated entropy — to quantify the diversity of the execution as well as the probability
of learning the schedule (by an adversary). Krüger et al. [48] propose a combined online/offline
randomization scheme to reduce determinism for time-triggered systems [81] where tasks are
executed based on a pre-computed, offline, slot-based schedule.

6 SYSTEMATIZATION OF SCHEDULER-LEVEL DEFENSES: METRICS & ANALYSES
The various scheduler-level defense techniques discussed thus far (see §5) are designedwith separate
application goals in mind; it is not easy to characterize them in a unified way. Hence, we now
present a systemization approach to methodologically compare them under a common “metric.”
The systemization of defense techniques presented here complements our survey and sheds new
light on designing a security evaluation metric.

The challenges with analyzing or comparing the scheduler-based security mechanisms are:

(1) the various techniques seem to address different problems,
(2) each subcategory uses a different defensive mechanism, i.e., integration of cryptographic

primitives, monitoring and side-channel defenses,
(3) no real metrics exist especially ones that can measure a shared quantity and
(4) the implementations are not readily available.

Even with such disparate mechanisms, we were able to glean the following insight – all of
the techniques are meant to increase the difficulty for adversaries and, in RTS where time and
computational resources are at a premium (and is closely tracked), this translates to: how much
time does an attacker have available? This measure of timing availability could be for an attacker
to carry out its objective, the time remaining before it is detected or kicked out, the (limited)
time that it has to steal information that will eventually be cleansed or even the window of time
(larger, smaller) that the attacker needs to observe for reconstructing useful information. We will
enumerate all of these in detail in the remainder of this section. We name this metric, the real-time
“attacker’s burden” (AB). Our metric is inspired by the general concept of “work factor” [1] that
evaluates the cost of circumventing a given security mechanism with the resources available to
a potential attacker. A similar concept is also used by the work in the crypto community where
the security provided by a cipher is measured in the number of bits [82, Ch. 3]. In our context, the

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:14 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

attacker’s burden metric overlays the notion of the “time” available to an adversary on top of the
computational “work factor”, when different scheduler-level defensive mechanisms are enforced.
Note that the computation of this metric is not straightforward due to the differences in the

defensive mechanisms, as mentioned earlier. The use of such a metric allows us to compare the
various approaches while abstracting away the, (i) high-level details such as scheduling policies,
defensive mechanisms, system models and assumptions of the adversary as well as (ii) low-level
details such as the operating system, execution platforms, attack surfaces and vulnerabilities.

In the rest of this section, we demonstrate how to measure this “time available to attackers” for
the various categories and then formalize it. We first present our evaluation methodology.

Experimental Methodology. From §5, we see that the four distinctive scheduler-level defense
mechanisms are: (i) integrating cryptographic security services, (ii) periodic monitoring to detect
intrusions, (iii) state cleaning mechanisms to prevent storage-based side-channels and (iv) schedule
obfuscation. To measure the attacker’s burden, we analyzed each of the proposed mechanisms
and extracted the core concept being proposed. This concept was implemented in a simulator [83]
and we measured how much time is available to an attacker (the attacker’s burden as listed in
each of the following sections), once the security mechanism is in place. Depending on the actual
technique, we varied relevant parameters and also inputs (a large number of real-time task sets
that were generated) to explore the design space. The details of how we generated the input sets
and the platform are in the Appendix. Our code and relevant data sets have been open-sourced in a
publicly-available repository [83].

6.1 Analysis
We now evaluate all four different categories of schedule-based defenses and demonstrate how to
derive our metric for each. We summarize our findings in §6.2.

Note: We assume that the reader is familiar with the content presented in §5 since our metric is
meant to measure (and compare) the techniques presented there.

Study 1: Integrating Cryptographic Services in RTS
The closest analogy for the measurement of an “attacker’s burden” is in the integration of
cryptographic primitives in RTS [21, 22]. It is well known that the strength of a cryptographic
algorithm is estimated by the number of operations (and hence, time) it takes to reconstruct the
key [84]. For instance, if the key is 𝑙 bits long and the adversary can test 𝑘 keys per time unit, it will
take, on average, 2𝑙−1

𝑘
time units to find the key. While this method already incorporates a notion

of time, albeit in a loose manner, researchers have analyzed additional timing properties, viz.,
(1) How long does it to carry out cryptographic operations in RTS [21]?
(2) How many cryptographic operations, 𝑀 , are required by a real-time job (e.g., if a task 𝜏𝑖

encrypts two individual messages in the same job then𝑀𝑖 = 2) [21–23]?
(3) What is the maximum key size, 𝑙𝑚𝑎𝑥 that can be tolerated in a system and still meet the

deadlines [23]?
Hence, based on this intuition, we define the attacker’s burden for real-time cryptographic

operations (𝐴𝐵𝑐𝑟𝑦𝑝𝑡𝑜) as a function of the key size (𝑙) the number of services (𝑀) and the maximum
key size that is tolerable in the RTS (𝑙𝑚𝑎𝑥) as follows:

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:15

128 bits 192 bits 256 bits
Key Size

0.0

0.5

1.0

1.5

2.0
A

tta
ck

er
's

 B
ur

de
n

(A
B c

ry
pt

o)

(a)

0
75

150
225
300

E
xe

cu
tio

n
Ti

m
e

(m
s) Deadline (250 ms)

Base execution time (50 ms)

128 bits 192 bits 256 bits
Key Size

0
20
40
60
80

100

C
om

pu
tin

g
Lo

ad
 (%

)

Baseline (No Crypto Operation)
One Crypto Operation Per Job
Two Crypto Operations Per Job

(b)

Fig. 3. (a) The attacker’s burden (normalized to [0, 1]) and (b) computational load for AES encryption with
128, 192, and 256 bits key sizes. The task is sampled at 4 Hz and the deadline is equal to the sampling rate
(250 ms). The base load in Fig. 3b represents computing load without any cryptography operations. Longer
key size leaves less time for the attacker due to increased computational difficulty to recover the key.

𝐴𝐵𝑐𝑟𝑦𝑝𝑡𝑜 =

𝑁∑︁
𝑖=1

𝑀𝑖∑︁
𝑗=1

𝑙
𝑗

𝑖

𝑙𝑚𝑎𝑥

number of tasks number of services

key size of jth service

maximum key size

That is, the amount of time available to an attacker (T𝑐𝑟𝑦𝑝𝑡𝑜) is inversely proportional to the difficulty

of obtaining the key, i.e., T𝑐𝑟𝑦𝑝𝑡𝑜 = 1
𝐴𝐵𝑐𝑟𝑦𝑝𝑡𝑜

, where
∑𝑁

𝑖=1 min
∀ 𝑗

{ 𝑙
𝑗

𝑖

𝑙𝑚𝑎𝑥 }𝑀𝑖 ≤ 𝐴𝐵𝑐𝑟𝑦𝑝𝑡𝑜 ≤ ∑𝑁
𝑖=1𝑀𝑖 . In

other words, the time available to an attacker (between cryptographic operations) is reduced and
their “burden” increases with the key size and number of operations.

Figure 3a plots𝐴𝐵𝑐𝑟𝑦𝑝𝑡𝑜 for integrating the AES algorithm into RTS – for three key sizes: 128, 192
and 256 bits. As expected, the attacker’s burden (y-axis), i.e., the amount of time T𝑐𝑟𝑦𝑝𝑡𝑜 available
to break the security mechanism (a cryptographic algorithm in this case), decreases (i.e., 𝐴𝐵𝑐𝑟𝑦𝑝𝑡𝑜
increases) with an increase in key size due to higher computing demand (x-axis). While this may
be obvious in the case of crypto, it is less so for the other security mechanisms as we shall see – in
fact, the direct correlation with cryptographic algorithms helps establish a baseline for how the
metric can be used.
Figure 3a demonstrates that with increasing key sizes (that are still within the max key sizes

that are acceptable for a given timing constraint) an attacker will have to expend increasing
amounts of time. As expected, the computing load of a real-time task also increases with additional
cryptographic operations, but just barely, as seen in Fig. 3b that plots the computing load (y-axis)
vs. increasing key sizes (x-axis). The figure shows the base load using the horizontal dotted line
(i.e., without any cryptographic operations) and the effect of adding one or two crypto operations
in each job cycle (the two bars, dark and light) – while the burden for the attacker is increased
due to larger key sizes, the computing load on the system (for normal operations) is only slightly
increased. It is important to note that these solutions were designed to finish before the deadlines
(the computing loads even with the crypto operations are lower than the deadline) but, until now,
no one had captured the additional timing load from the perspective of the attackers.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:16 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

0 25 50 75 100
Increase in Monitoring Frequency (%)

0.00

0.25

0.50

0.75

1.00
A

tta
ck

er
's

 B
ur

de
n

(A
B m

on
ito

r)

(a)

0 25 50 75 100
Increase in Monitoring Frequency (%)

0.00

0.25

0.50

0.75

1.00

Ti
m

e
A

va
ila

bl
e

fo
r t

he
 A

tta
ck

er

0

20

40

60

80

100

S
ys

te
m

 L
oa

d
(%

)

(b)

Fig. 4. Trade-off between monitoring frequency and computing load: more frequent monitoring leaves less
time for the attacker (i.e., increases burden), see left plot and blue y-axis of the right plot). However, this also
increases computing load (reduced schedulability) as shown in the right plot (red y-axis).

The time available to an adversary reduces due to increased demands in computational power to
recover the key with larger key sizes and/or increased number of cryptographic functions used.

Study 2: Integrating Periodic Security Monitoring Tasks
Security mechanisms based on periodic monitoring operate on the principle that they must execute
at least as often (if not faster) than a designer specified frequency [34–37, 85] in order to detect
intrusions. From the perspective of an attacker, an increased monitoring frequency means a higher
chance of detection or, put another way, lesser time between checks to carry out a successful
attack. Of course, as before, the frequency of the monitoring tasks is limited by the need to meet
the timing requirements (deadlines) of the RTS and do useful work. Hence, the burden on an
adversary (𝐴𝐵𝑚𝑜𝑛𝑖𝑡𝑜𝑟) can be defined as, how much time is available between successive invocations
of a monitoring task, i.e.,

𝐴𝐵𝑚𝑜𝑛𝑖𝑡𝑜𝑟 = [

time between
consecutive invocations︷ ︸︸ ︷

𝑡 𝑗+1 − 𝑡 𝑗]−1

time of (j+1)th invocation jth invocation

What 𝐴𝐵𝑚𝑜𝑛𝑖𝑡𝑜𝑟 indicates is that if the 𝑗-th and 𝑗 + 1-th job of monitoring task, invoked at times 𝑡 𝑗
and 𝑡 𝑗+1 respectively (where 𝑡 𝑗+1 > 𝑡 𝑗), then an attacker will have at most 𝑡 𝑗+1 − 𝑡 𝑗 units of time (i.e.,
the monitoring frequency/period of the security task) to launch and complete its attack. Hence, we
calculate the time available for an adversary to cause any damage as follows: i.e.,T𝑚𝑜𝑛𝑖𝑡𝑜𝑟 =

1
𝐴𝐵𝑚𝑜𝑛𝑖𝑡𝑜𝑟

.
Let 𝑈𝑖 is the processor load (i.e., ratio between its execution to period) of the task 𝜏𝑖 and 𝐶𝑀 is the
execution time of monitor task. We can calculate an lower bound on time available for the attacker
as follows: T𝑚𝑜𝑛𝑖𝑡𝑜𝑟 >

𝐶𝑀

𝑈𝐵−
∑

∀𝑖≠𝑀 𝑈𝑖
where and 𝑈𝐵 is the maximum available CPU utilization for a

given system2.
To demonstrate how this metric can be applied, let the designer specified minimum monitoring

frequency be designated as a “base frequency”.3 In our simulations, we increase the monitoring
frequency and then measure the effects on the attacker burden; this is plotted in Fig. 4. The x-axes
of Fig. 4a and Fig. 4b show the percentage of CPU time spent on monitoring. The y-axis of Figure 4a
is 𝐴𝐵𝑚𝑜𝑛𝑖𝑡𝑜𝑟 . We further plot the time available the attacker and the impact on the CPU load, i.e.,

2For example, rate monotonic (RM) scheduler has utilization bound𝑈𝐵 = 69.3% [14].
3Note that according to the designers of these mechanisms [34], the system will be schedulable at this monitoring frequency,
i.e., meet all of its deadlines.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:17

1 2 3 4 5 6 7 8 9 10
Frequency of Critical Task (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

A
tta

ck
er

's
 B

ur
de

n
(A

B f
lu

sh
)

(a)

1 2 3 4 5 6 7 8 9 10
Frequency of Critical Task (Hz)

0

5

10

15

20

25

N
um

be
r o

f F
lu

sh
es

0

20

40

60

80

100

S
ys

te
m

 L
oa

d
(%

)

(b)

Fig. 5. (a) Attacker burden (as available time between state cleaning) and (b) computing load (as number of
flushes) vs period of a critical task. When attacker’s task has a fixed period (say, 20 Hz) then a less frequent
execution of critical (high security) tasks results in more instances of attacker/low security tasks occurring
between two instances of a high security task, thus resulting in more flushing events – this reduces the time,
and increases the burden, for attackers.

the left y-axis is T𝑚𝑜𝑛𝑖𝑡𝑜𝑟 while the right y-axis plots the computational load on the system.4 As
shown by the graph, as we increase the frequency of monitoring the attacker’s burden increases i.e.,
the amount of time left for an attacker is significantly reduced. As expected, the load on the system
increases dramatically and, after a certain point, the system becomes unschedulable – i.e., real-time
tasks start missing their deadlines. Hence, there is a limit on how much increased monitoring can
be tolerated by the system.

Frequent monitoring leaves less time for adversaries to carry out their attacks but this comes with
increased costs and potential for missed deadlines – the attacker’s burden metric allows designers to
map out the costs vs. benefits for such systems.

Study 3: Leakage Prevention by Shared State Cleanup
When considering techniques that use state cleansing to prevent side-channel attacks in RTS [38, 39],
the attacker’s burden must capture the amount of time left for the adversary to retrieve the
information in the shared resource (e.g., caches) before it is “flushed”. In most of these techniques
(§5.3.1), the researchers define a “security relationship” (a lattice [8, 38, 86], a pairwise function[39])
between tasks in the system. When the context switches from a task with a higher security
classification to one that is lower, these security algorithms “flush” the shared resource, thus
preventing the leakage of information while also incurring the overheads for the cleanup. Hence,
we measure the attacker’s burden (𝐴𝐵𝑓 𝑙𝑢𝑠ℎ) as the amount of time between consecutive flushing
events,

𝐴𝐵𝑓 𝑙𝑢𝑠ℎ = [

p-percentile time difference
of all consecutive context switches︷ ︸︸ ︷

𝑄𝑝

(
𝑡 𝑗+1 − 𝑡 𝑗

)
| ∀𝑗

)
]−1

time of (j+1)th context switch jth context switch

where 𝑡 𝑗 and 𝑡 𝑗+1 are the 𝑗-th and 𝑗 + 1-th context switches.𝑄𝑝 is the 𝑝-th percentile time difference
of all consecutive context switches in the schedule; the attacker will have 𝐴𝐵𝑓 𝑙𝑢𝑠ℎ unit of time

4We carried out additional simulations that started with different initial system load conditions and demonstrate the impact
of adding increased monitoring – these results are presented in Fig. 8 in the Appendix A.3.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:18 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

0 10 20 30 40 50 60 70 80 90 100
CPU Load (%)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
tta

ck
er

's
 B

ur
de

n
(A

B r
an

d)
Randomized
Vanilla

(a)

0 10 20 30 40 50 60 70 80 90 100
CPU Load (%)

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

C
on

te
xt

 S
w

itc
h

R
at

io
(R

an
do

m
iz

ed
/V

an
ill

a)

(b)

Fig. 6. (a) Attacker’s burden (observability of a task from the schedule, defined as a ratio of its response time
and period) and (b) context switch ratio for both vanilla execution and obfuscated schedule. Randomizing
task schedule reduces determinism (i.e., more burden on the attacker to infer a task) as shows by the higher
ratio (left figure) with a increase in number of context switches (right figure).

(with probability 𝑝) to snoop on the shared medium. We use 𝑄𝑝 since the time intervals between
consecutive flushes can vary. So with the 𝑝𝑡ℎ percentile, we can say that the interval is 𝑥 with
probability 𝑝 . As in the case of periodic monitoring, we can calculate the time available for the
attacker before two consecutive flushing as follows: T𝑓 𝑙𝑢𝑠ℎ = 1

𝐴𝐵𝑓 𝑙𝑢𝑠ℎ
.

The x-axis of Fig. 5a plots the increased frequency (reduced period) for the critical (higher
security level) task while the y-axis represents the attacker’s burden, 𝐴𝐵𝑓 𝑙𝑢𝑠ℎ . Assuming that the
attacker’s frequency/period is fixed and we are able to adjust the frequency of the critical task(s),
the figure shows that it becomes increasingly difficult for an attacker to carry out its objectives (i.e.,
𝐴𝐵𝑓 𝑙𝑢𝑠ℎ increases) since there is less time available between the cleaning events. On the other hand,
as shown in Fig. 5b (x-axis frequency of critical tasks; y-axes number of flushes and system load
respectively), the overall load on the system is reduced as the critical task frequency is increased
– since there are fewer flushes between instances. Note that the assumption is that the cost of a
“cleanse”/flush is assumed to be constant in these papers. Also, the authors have computed an upper
bound on the number of flushes required by preemptive and non-preemptive systems as 2𝑛𝑐 + 1
and 𝑛𝑐 + 1, respectively where “𝑛𝑐” is the number of critical jobs in the system. Hence designers can
now compute the costs (state cleanup overheads, increased system utilization) vs benefits (reduced
time for adversaries to carry out attacks) by using the attacker’s burden value.

State cleanup mechanisms reduce the effectiveness of leakage attacks in RTS by decreasing the
window of time available to attackers to snoop upon the shared resource and the attacker’s burden is
able to plot this clearly.

Study 4: Schedule Obfuscation
As mentioned earlier, schedule randomization [45–48] has been suggested as a mechanism to
prevent side-channel attacks in RTS. From this work, we note that there is a direct correlation
between the ability of an adversary to recreate a task schedule (or timing behavior) to: (i) the tine
window for carrying out observations and (ii) the predictable, repeating, execution patterns of the
real-time tasks. Hence, the main objective of these obfuscation mechanisms is to reduce both of
the above factors. By elongating the window of time when a task can appear, the authors reduce
the predictability of the behavior that can be observed by an attacker. Since at any point only one
outstanding job of a task can exist in a window (the window is usually the period of the task)5, an
5One job per window is a common assumption in RTS [16, 45, 87].

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:19

attacker has to observe the system for a larger window of time, thus leaving it with very little time to
reconstruct the scheduling behavior before the next instance of the job arrives.
Hence, to measure the burden on an attacker, we calculate the “spread” of a task 𝜏𝑖 , i.e., what is

the largest window of time when a task can appear. For a given schedule, we compute the attacker’s
burden, 𝐴𝐵𝑟𝑎𝑛𝑑 , as:

𝐴𝐵𝑟𝑎𝑛𝑑 =
𝑅𝑖

𝑇𝑖

response time

period

This formula computes the spread of the response times, 𝑅𝑖 (time between arrival and completion
of a task), across its period,𝑇𝑖 . For a given schedule, a higher value of 𝐴𝐵𝑟𝑎𝑛𝑑 indicates that the task
can appear in a larger window of time, once released. We further calculate the time available for
the attacker when the randomization is active as follows: T𝑟𝑎𝑛𝑑 = 𝑇𝑖 − 1

𝑇𝑖
𝐴𝐵𝑟𝑎𝑛𝑑 . The metric T𝑟𝑎𝑛𝑑

tells us how much “slack time” available for an untrusted task to carry out any malicious action
(say observing the behavior of an victim task) before its next periodic invocation.

In Fig. 6a we plot this attacker burden (y-axis) against the utilization (x-axis) of both randomized
as well as vanilla systems, for a rate monotonic (RM) scheduler. As we see from the figure, the
purple dots (vanilla, without schedule obfuscation) show a much narrow range of times when tasks
execute – thus making it easier for adversaries to observe and recreate their behavior. When the
schedule obfuscation/randomization schemes are applied, the tasks appear more spread out and it
becomes harder for an adversary to predict their schedules and/or timing behavior.
The problem with introducing randomization techniques is that they increase context switch

overheads as shown in Fig. 6b — the y-axis plots the ratio of context switches in randomized
schedules to vanilla schedules while the x-axis plots the CPU utilization. As we see from the plot,
the randomized schedules have significantly higher context switch overheads but the attacker’s
burden provides information on the security gains obtained from such mechanisms to designers —
hence, they can decide whether the security vs. overheads trade-off is worth investing in.

Schedule obfuscation mechanisms increase the burden on attackers since they have less effective time
to recreate the behavior of a task as they must expend more time on observing the schedules.

Study 5: Comparison across all four Schemes
We finally compare all four schemes in Fig. 7 with a common metric (CPU load, x-axis in the figure)
and plot the attacker’s burden (y-axis, normalized into the interval [0, 1]). We note that while we
plot the observations from different schemes in a same figure for illustration purposes, they are four
different (and often complementary) techniques. For a pair of schemes (𝑖, 𝑗), a higher value in y-axis
(say for a given CPU load) for technique 𝑖 does not imply it adds a larger burden on the attacker
than 𝑗 . Instead, the goal of our evaluation is to present the “trends” (i.e., whether the burden on the
attacker increases/reduces with varying CPU load) in the attacker’s burden metric for these four
distinct approaches. As we see in Fig. 7 (and also from our previous study), the time available for
an adversary is reduced (i.e., more burden) for the first three schemes (see §5.1, §5.2, §5.3.1) with
increased load. As we discussed in §6.1 (and also illustrated in Fig. 7), for randomization the time
between arrival and completion of a task is higher in the low-to-medium CPU loads. That is, a
system that with less than 60% load has more burden on the attacker (to infer the task execution

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:20 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

10 20 30 40 50 60 70 80 90 100
CPU Load (%)

0.0

0.5

1.0

Ti
m

e
A

va
ila

bl
e

fo
r t

he
A

tta
ck

er
 (N

or
m

al
iz

ed
)

Crypto Integration
Periodic Monitoring
Leakage Prevention
Randomization

Fig. 7. Comparison of different schemes under a common metric (CPU load). For the first three schemes
(i.e., except randomization), the available time to disrupt the system is reduced (i.e., more burden on the
attacker) with increased load. For randomization, the burden on the attacker (i.e., inferability of a task from
the schedule) is most in low-to-medium loads.

Table 5. Summary of Our Observations on the Attacker’s Burden

Approach Metric: Attacker’s
Burden

Expression Observation

Integration of
cryptographic
services
(§5.1)

Time to recover the key –
inversely proportional to
the key size and number of
services

𝐴𝐵𝑐𝑟𝑦𝑝𝑡𝑜 = 1∑𝑁
𝑖=1

∑𝑀𝑖
𝑗=1

𝑙
𝑗
𝑖

𝑙𝑚𝑎𝑥

The time available for an adversary to
recover the key decreases for larger key
sizes due to increased computing load

Periodic monitoring
(§5.2)

Time between invocations
of monitor task

𝐴𝐵𝑚𝑜𝑛𝑖𝑡𝑜𝑟 = 𝑡 𝑗+1 − 𝑡 𝑗 Attacker’s burden metric captures the
trade-off between monitoring frequency
and computing load: unfettered, frequent
security monitoring can violate real-time
constraints

Leakage prevention
by flushing
(§5.3.1)

Time between flushing
shared medium

𝐴𝐵𝑓 𝑙𝑢𝑠ℎ = 𝑄𝑝 (𝑡 𝑗+1 − 𝑡 𝑗 |∀ 𝑗) Our metric finds the effectiveness of
information leakage – increasing
frequency of critical task (for a given
observation frequency of an adversary)
can minimize the chances of cache
information leakage

Schedule
randomization
(§5.4)

Observability of task
response times (difference
between arrival and
completion) to its period

𝐴𝐵𝑟𝑎𝑛𝑑 =
𝑅𝑖
𝑇𝑖

Attacker’s burden metric captures the
difficulty of observing task execution
pattern from a (randomized) schedule by
calculating how sparsely a task appears
in the schedule

pattern from the schedule) than the highly utilized systems. The effect of randomization reduces
(less burden) in higher loads to ensure the timing constraints for all tasks.

Our attacker’s burden metric is able to capture differences and commonalities across the four distinct
scheduler-level security classes. For the first three approaches (integration of cryptographic primitives,
periodic monitoring, state cleaning techniques), the time available for an adversary reduces, hence,
more burden with increased load, while for randomization, the burden is more (i.e., task spread is
high and hard to infer) in systems with low-to-medium loads.

6.2 Summary
In this section we introduce the notion of the “attacker’s burden” (summarized in Table 5) and
methods to compute it for various real-time scheduler-based defense mechanisms. For each class
of defensive techniques introduced in §5, we are able to compute the reduced time available to an
adversary — these are directly comparable, even across defensive classes! By seeing how much time
is available to an adversary, along with the overheads that are imposed, we can design systems that
are tolerant to both — attacks as well as overheads.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:21

Table 6. Summary of Hardware/Software-Based Solutions

Technique Key Idea Overhead/Limitation
Memory isolation and access
control [50–52]

Runtime memory access control through on-
chip memory protection unit [50, 51] or software
modules [52].

Platform dependent (e.g., requires
an on-chip memory protection
unit) [50, 51] and limited portability
(e.g., only supports bare-metal or
FreeRTOS applications) [51, 52]

Monitoring by separate
computing unit [49, 53–57]

Use verified/secure hardware module to monitor system
behavior (e.g., timing [53, 57], execution patterns [54],
memory access [55], system call usage [56], control
flow [49])

Limited compatibility with COTS
systems since they require custom
hardware/monitoring unit

Proactive defence by
platform reboot [58–60]

Periodic and/or event-driven (say when an
abnormal activity is detected) reboot and reload an
OS/applications from a read-only media

Requires extra hardware for triggering
(periodic/asynchronous) restart events

Trusted execution
environment (TEE)-based
security [61–63]

Leverage TEEs (i.e., TrustZone [61, 62] and SGX [63])
to execute whole RTOS [62] or task segments [61, 63]
within a secure enclave

Context switch overheads; no
isolation/protection among tasks
running inside secure enclaves

7 OTHER RESEARCH
So far we discussed scheduler-level (software) solutions. There also exist techniques that use
hardware/software-based architectural frameworks (§7.1) and research on secure RTOS design
(§7.2) as we present in this section.

7.1 Hardware/Software-Based Mechanisms
We now present techniques that either require architectural support and/or custom hardware. (see
Table 6 for a summary).

7.1.1 Control Flow Integrity. Abdi et al. [49] propose a hardware-based mechanism where an
on-chip control flow monitoring module with a dedicated memory unit directly hooks into the
processor and tracks the control flow of the tasks. The monitoring module monitors the control
flow at runtime and compares it to a stored control flow graph (obtained offline).

Many modern micro-controllers (e.g., ARM Cortex-M and Cortex-R) provide hardware-enforced
memory isolation. MINION [50] leverages those COTS memory protection units (MPUs). All
software modules are executed in an unprivileged mode and only a lightweight software module is
allowed to run in the privileged mode – this is to reduce the attack surface and minimize privilege
mode switching overheads. A similar line of work is the RECFISH framework [51] that provides
a binary instrumentation method for ARM platforms that protects both, bare-metal applications
and those that run on a RTOS (FreeRTOS) by memory isolation. RECFISH uses hardware privilege-
levels and context switching to isolate shadow stacks from untrusted code. Du et al. [52] introduce
a software-based approach, Kage, that stores all control data in separate memory regions from
untrusted data. The authors implemented Kage as an extension to FreeRTOS. In Kage, (a) a Kage-
compliant compiler transforms code to protect critical memory regions and add control-flow
integrity checks and (b) a set of secure APIs allow safe updates to the protected data.

7.1.2 Slack-Aware Monitoring. As we mentioned earlier, the worst-case execution time estimation
for real-time tasks provides the designer a safe upper bound while determining the schedulability
of the system at the design time. However the tasks often run faster than conservatively estimated
timing bound, leaving behind dynamic slack (i.e., the time instance when no other task is executing).
Lo et al. [53] leverage this slack time and propose a hardware architecture for run-time monitoring
(i.e., monitoring is only performed when enough slack exists).

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:22 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

7.1.3 Simplex-Based Security. Simplex [70] is a well-known real-time architecture for improved
fault-tolerance that utilizes a minimal, verified controller as backup when the main, high-
performance controller is not available or malfunctioning. While traditionally Simplex has been
used for fault-tolerance [88, 89], recently researchers propose to use Simplex-based architectures
for securing RTS [54–57, 59]. The key concept of using the Simplex for security is to use a minimal,
simple, subsystem (say a trusted core) to monitor the properties (i.e., timing [54, 57], memory
access [55], system call usage [56], behavioral anomalies [59]) of an untrusted entity that is designed
for more complex tasks and/or exposed to less secure mediums (e.g., network, I/O ports).

S3A and SecureCore Framework. In S3A [57], a trusted hardware component monitors the
execution behavior of a real-time control application running on a untrustworthy main system. The
S3A framework utilizes the knowledge of deterministic execution profile and timing of the system
(obtained at the design time) and use it to detect the violations (in execution time and activation
period of control tasks) of expected system behavior.
The SecureCore framework [54–56] utilizes a trusted entity that can continuously monitor

the behavior of a real-time application on an untrustworthy entity. The initial SecureCore
architecture [54] uses a statistical learning-based mechanism for profiling the correct execution
behavior. The SecureCore framework is also extended (a) to profile memory behavior [55] and (b)
detect anomalous executions using a distribution of system call frequencies[56].

Restart-Based Recovery. Both S3A and SecureCore are reactive security mechanisms in a sense that
they do not prevent the intrusions and only focus on the aftermath of the infection of application
codes. Abdi et al. [58–60] propose a proactive mechanism (by restarting the platform). Unlike
conventional computing systems (e.g., servers, smartphones) restart-based mechanisms are much
harder to implement in RTS due to the temporal constraints and interactions with the physical
entities (for example, a UAV can quickly be destabilized if its controller restarts at the wrong time!).
They develop frameworks to frequently reboot the system and load a fresh image of the tasks and
OS from read-only media, so that attackers can have less time to either destabilize or even re-enter
the system and cause meaningful damage [58–60].

7.1.4 Trusted Execution Environments (TEEs) for RTS. While TEEs (such as ARM TrustZone [71]
and Intel SGX [90]) are supported by hardware, they still create significant overheads especially in
the context of RTS. In Super-TEE [61], multiple real-time code/application sections can fuse together
to reduce TEE (ARM TrustZone) execution overheads. FreeTEE [62], a virtualization-based solution,
allows Linux and FreeRTOS to execute simultaneously while maintaining real-time performance.
Although directly not in the context of security, hypervisor-based solutions that utilize TrustZone
for real-time use-cases have also been proposed in literature [91–94]. AegisDNN [63] uses SGX
enclaves to protect the critical part of real-time inference tasks. While researchers are exploring
techniques to incorporate TrustZone and SGX-based TEEs for real-time applications, research in
this segment requires further investigation.

7.2 Designing Secure Real-Time Operating Systems (RTOS)
One way to address threats at the RTOS level is to extend partitioning and provide isolation.
Commercial RTOS such as VxWorks [95] and QNX [96] have built-in security extensions. VxWorks
provides secure boot, a secure run-time loader (to prevent authorized access), network security
through SSL and encrypted containers [97]. QNX relies on secure programming standards (e.g.,
POSIX PSE52) and enables security by resource partitioning [98].
There also exists academic research to design secure RTOS (see Table 7). seL4 [65], a formally

verified, open-source, secure microkernel, supports real-time applications with different criticality

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:23

Table 7. Research on Secure RTOS Design

Reference Approach Application Domain
seL4 [65] Formally verified microkernel-based hypervisor; provides isolation

between security-critical applications
Domain independent

Composite [66] hardware isolated configurable components for better reliability/security Domain independent
ERTOS [67] Resource isolation/protection for different subsystems Domain independent
AOS [64] Modular isolation and access control Avionics
TrackOS [68] RTOS-level control flow integrity protection Domain independent
GenRTOS [69] Generic OS abstractions with minimal (timing-related) services Domain independent

using temporal isolation. Composite [66] is an open-source minimal kernel with configurable
components. ERTOS [67] is another component-based RTOS that provides spatial and temporal
isolation for different subsystems.

AOS [64] is a modular kernel for avionics applications that provides fundamental services such as
secure initialization, resource, process and time management/synchronization, exception handling
and I/O support. TrackOS [68] provides built in support for control-flow integrity (CFI) checks
for real-time tasks. GenRTOS [69] is a generic low-level RTOS model that provide minimal OS
services (e.g., scheduling, time management, inter-process communication and device drivers) for
time-critical tasks.

8 DISCUSSION AND OPEN RESEARCH ISSUES
Research in RTS security domain is still relatively new. We now discuss the hurdles faced by the
researchers and potential future research directions.

8.1 Vulnerability and Damage Analysis
A better understanding of the vulnerabilities in RTS will enable designers to develop systems
with increased security (and hence safety) guarantees. From our study, we find that there exist
very few studies on attack mechanisms for RTS. For instance, the majority of the attacks were
demonstrated on single core platforms and a further study is required to understand scheduler-level
side-channels [16, 17] and effects of Butterfly attacks [18] for multicore RTS. We believe that an
important direction for future research is (i) identifying the risks/vulnerabilities (for both, single and
multicore RTS) and (ii) studying possible consequences of successful attacks, i.e., how much damage
an adversary can inflict.

8.2 Response and Recovery Mechanisms
A key reason for detecting attacks early is to provide enough information to system operators so
that they can respond to and recover from attacks. Research on human-computer interaction can
improve the awareness and responses of operators. Systems with real-time requirements often
use autonomous, decision-making algorithms for controlling elements in the physical world. In
addition to recovery with a human in the loop, there is also a need for automatic recovery (on
the detection of an attack). We find that while there exist some research in detection mechanisms
for RTS [32–36, 49, 53–56], they do not consider the after-effects of an intrusion. We need further
studies to design autonomous attack detection, isolation and response algorithms for safety-critical
RTS.

8.3 Certification and Regulatory Issues
A distinction of RTS, when compared to conventional IT security, is that software patching and
frequent updates are not well suited for critical systems. The addition of new security mechanisms
may pose safety concerns (e.g., a power plant was shut down because a computer rebooted after the

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:24 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

installation of a patch [99]). Upgrading a safety-critical RTS requires months of advance planning
and many layers of certifications [100–102]. We find that the solutions proposed in the literature do
not explicitly consider certification/regulatory requirements in their design. Developing, analyzing
and testing of security solutions that comply with certification requirements is one of the key areas of
real-time security research.

8.4 Security for Legacy Systems
Large industrial control systems also have a significant amount of legacy components. Software
updates and patching might violate existing safety certifications. For properly securing such
legacy critical RTS, the underlying security mechanisms must satisfy some minimum performance
requirements and the implementation should be well tested and vetted by certification agencies.
Our study finds that the majority of the security solutions proposed in the literature are not directly
adaptable for legacy RTS (i.e., they are suitable for newer/customized systems). We believe that
(i) understanding of the security requirements (and vulnerabilities) of legacy systems and (ii) design
security techniques with little or no modification on existing hardware/software/components are
vital areas of research to secure billions of deployed safety-critical systems.

8.5 Security for AI-enabled Next-Generation Systems
While traditionally, application tasks in RTS carry out more straightforward functionalities such as
computations related to control loop updates, the advent of modern IoT-specific applications (such
as autonomous driving) and the emergence of edge computing bring the use of artificial intelligence
(AI) to real-time devices that require the end nodes to process large-scale data. Modern real-time
applications often require machine learning (ML)-based inferences for achieving intelligent features
such as object recognition, image and video processing, and natural language processing. Any
manipulation of ML parameters may lead to misclassification. There is a need to prevent the leakage
of critical parameters, including data structures and location in memory, while retaining real-time
requirements. Even in the presence of malicious actions, the degree of misclassification should
be contained within a permissible and predictable range and the task must not miss its deadlines.
There is a lack of predictable, secure and resilient ML models that work for resource-constraint
real-time devices. The development of real-time aware, secure and predictable ML/AI-driven system
is an open area that needs concerted research efforts from academia, industry researchers and
standardization bodies.

8.6 Availability of Evaluation Platforms
The lack of real-time benchmark programs and evaluation platforms is one of the major challenges
in real-time cyber-physical security research especially to perform a sound evaluation. This is partly
because of the diversity of real-time applications and software as well as the hardware-dependent
nature of cyber-physical platforms. In addition, the majority of safety-critical applications are
proprietary in nature and are rarely open-sourced. As a result, existing academic real-time security
research is mainly carried out using simulations and/or limited case studies (see §4-§7) instead of a
large-scale experimental evaluation. A better coordination between industry and academic researchers
can open up opportunities for more open evaluation platforms that can help the designers identify
potential vulnerabilities as we discuss next.

8.7 Privacy and Deterrence
In addition to security and safety-related problems, RTS can also have profound privacy implications.
RTS end devices can collect private data related to diverse human activities (e.g., location
information, driving habits, electricity consumption, biosensor data) at different levels of granularity.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:25

Table 8. Summary of Related Surveys and This Research

Reference Focus Article Type Remarks
Chai et al. [105] RTS security Survey Lacks qualitative comparison across different

schemes
Chen et al. [106] RTS security Survey Limited scope; summary of author’s own research

(14 papers)
Ravi et al. [107] Embedded systems security Survey Survey of general embedded system security;

timing/safety constraints are not considered
Param et al. [108] Embedded systems security Survey Survey of general embedded system security;

timing/safety constraints are not considered
Ding et al. [109] Industrial CPS security Survey Survey of industrial CPS security, timing constraints

are not considered
Humayed et al. [110] CPS security Survey Survey of CPS security, timing constraints are not

considered
Giraldo et al. [111] CPS security Survey of surveys Survey of CPS security surveys, timing constraints

are not considered
This work RTS security Survey,

systematization
Through study of RTS security field with a review
of 54 papers published in last 27 years, in-depth
analysis of scheduler-level defenses

Due to the passive manner of collection, end users are largely unaware of the process (e.g.,
automobile manufacturers are often remotely collecting a variety of driving history data from cars
in an effort to increase the reliability of their products) [103]. If the data collected by corporations is
exposed to other malicious actors (through a variety of legal or illegal means) it can be detrimental to
user privacy.Deterrence usually depends on successful legislation, law enforcement and international
collaboration for tracking crimes committed across geographical borders [104]. We believe that the
identification of new deterrence mechanisms for the security and privacy of RTS is a promising area
of research.

9 RELATED SURVEYS
There exist two prior surveys on RTS security. One of the earliest research by Chai et al. [105]
presents a short review of RTS security techniques. This is a relatively old work and newer papers
(2018 and beyond) are not covered. The survey also lacks qualitative comparisons across different
techniques. Our prior survey [106] is limited in scope since it includes our prior work only. In
contrast, in this paper, we (i) provide an in-depth review and taxonomy of RTS security solutions
and (ii) analyze various scheduler-level techniques with a newly introduced metric (i.e., attacker’s
burden).

There also exist prior surveys on security techniques for general embedded systems [107, 108] and
broader cyber-physical system (CPS) domains [109–111]. The intrinsic time and safety constraints
of RTS distinguish the security requirements/solutions those are proposed for general embedded
systems and/or CPS. Our survey complements prior work and provides a holistic overview of
the field (see Table 8 for a relative comparison). To the best of our knowledge, this is the first
comprehensive effort on systematizing real-time security research.

10 CONCLUSION
Modern real-time embedded systems have evolved in a complex manner due to autonomous
systems and cloud-like transparent infrastructure. They are also increasingly facing serious security
problems. There is a need for a multi-layered, systematic, engineering approach to secure such
critical systems. In this SoK we present a comprehensive review of RTS security issues and analyze
various scheduler-level techniques. It is our intent that this systematization will guide future
research efforts and ultimately improve the security of this field. We believe that our metric will

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:26 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

help the designers to characterize security of systems — both, from the attacks and overhead
perspectives.

REFERENCES
[1] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems,” Proc. of the IEEE, vol. 63, no. 9,

pp. 1278–1308, 1975.
[2] A. Hussain, M. Hannan, A. Mohamed, H. Sanusi, and A. Ariffin, “Vehicle crash analysis for airbag deployment

decision,” Int. J. of Auto. Tech., vol. 7, no. 2, pp. 179–185, 2006.
[3] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper, Symantec Corp., Security Response, vol. 5,

p. 6, 2011.
[4] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack on the ukrainian power grid,” SANS Industrial

Control Systems, 2016.
[5] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,

et al., “Experimental security analysis of a modern automobile,” in IEEE S&P, pp. 447–462, 2010.
[6] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno,

et al., “Comprehensive experimental analyses of automotive attack surfaces,” in USENIX Sec. Symp., 2011.
[7] S. S. Clark and K. Fu, “Recent results in computer security for medical devices,” in MobiHealth, pp. 111–118, 2011.
[8] Joon Son and Alves-Foss, “Covert timing channel analysis of rate monotonic real-time scheduling algorithm in MLS

systems,” in IEEE Inf. Ass. Wor., pp. 361–368, 2006.
[9] H. Teso, “Aircraft hacking: Practical aero series,” in HITB Sec. Conf., 2013.
[10] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying new scheduling theory to static priority

pre-emptive scheduling,” SE Journal, vol. 8, no. 5, pp. 284–292, 1993.
[11] E. Bini and G. C. Buttazzo, “Schedulability analysis of periodic fixed priority systems,” IEEE TC, vol. 53, no. 11,

pp. 1462–1473, 2004.
[12] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor systems,” ACM CSUR, vol. 43,

no. 4, pp. 35:1–35:44, 2011.
[13] L. Fu and R. Schwebel, “Real-time Linux wiki.” https://rt.wiki.kernel.org/index.php/rt_preempt_howto. [Online].
[14] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time environment,” JACM,

vol. 20, no. 1, pp. 46–61, 1973.
[15] A. Burns and R. I. Davis, “A survey of research into mixed criticality systems,” ACM CSUR, vol. 50, no. 6, p. 82, 2018.
[16] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash, “A novel side-channel in real-time schedulers,” in

IEEE RTAS, pp. 90–102, 2019.
[17] S. Liu, N. Guan, D. Ji, W. Liu, X. Liu, and W. Yi, “Leaking your engine speed by spectrum analysis of real-time

scheduling sequences,” J. of Sys. Arch., vol. 97, pp. 455–466, 2019.
[18] R. Mahfouzi, A. Aminifar, S. Samii, M. Payer, P. Eles, and Z. Peng, “Butterfly attack: Adversarial manipulation of

temporal properties of cyber-physical systems,” in IEEE RTSS, pp. 93–106, 2019.
[19] M. Bechtel and H. Yun, “Denial-of-service attacks on shared cache in multicore: Analysis and prevention,” in IEEE

RTAS, pp. 357–367, 2019.
[20] T. Xie, A. Sung, and X. Qin, “Dynamic task scheduling with security awareness in real-time systems,” in IEEE IPDPS,

pp. 1–8, IEEE, 2005.
[21] T. Xie and X. Qin, “Improving security for periodic tasks in embedded systems through scheduling,” ACM TECS, vol. 6,

no. 3, p. 20, 2007.
[22] M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu, “Static security optimization for real-time systems,”

IEEE Trans. on Indust. Info., vol. 5, no. 1, pp. 22–37, 2009.
[23] K.-D. Kang and S. H. Son, “Systematic security and timeliness tradeoffs in real-time embedded systems,” in IEEE

RTCSA, pp. 183–189, 2006.
[24] M. Qiu, L. Zhang, Z. Ming, Z. Chen, X. Qin, and L. T. Yang, “Security-aware optimization for ubiquitous computing

systems with SEAT graph approach,” J. of Comp. and Sys. Sci., vol. 79, no. 5, pp. 518–529, 2013.
[25] W. Jiang, K. Jiang, and Y. Ma, “Resource allocation of security-critical tasks with statistically guaranteed energy

constraint,” in IEEE RTCSA, pp. 330–339, 2012.
[26] W. Jiang, K. Jiang, X. Zhang, and Y. Ma, “Energy optimization of security-critical real-time applications with guaranteed

security protection,” J. of Sys. Arch., vol. 61, no. 7, pp. 282–292, 2015.
[27] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang, “Design optimization of security-sensitive mixed-criticality real-time

embedded systems,” in IEEE ReTiMiCS, 2013.
[28] X. Zhang, J. Zhan, W. Jiang, and Y. Ma, “A vulnerability optimization method for security-critical real-time systems,”

in IEEE NAS, pp. 215–221, 2013.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

https://rt.wiki.kernel.org/index.php/rt_preempt_howto

SoK: Security in Real-Time Systems 000:27

[29] M. Saadatmand, A. Cicchetti, andM. Sjödin, “Design of adaptive security mechanisms for real-time embedded systems,”
in USENIX ESSoS, pp. 121–134, 2012.

[30] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of embedded control tasks,” ACM TECS, vol. 16, pp. 188:1–
188:21, 2017.

[31] V. Lesi, I. Jovanov, and M. Pajic, “Network scheduling for secure cyber-physical systems,” in IEEE RTSS, pp. 45–55,
2017.

[32] M. Hamad, Z. A. Hammadeh, S. Saidi, V. Prevelakis, and R. Ernst, “Prediction of abnormal temporal behavior in
real-time systems,” in ACM SAC, pp. 359–367, 2018.

[33] X. Hao, M. Lv, J. Zheng, Z. Zhang, andW. Yi, “Integrating cyber-attack defense techniques into real-time cyber-physical
systems,” in IEEE ICCD, pp. 237–245, 2019.

[34] M. Hasan, S. Mohan, R. B. Bobba, and R. Pellizzoni, “Exploring opportunistic execution for integrating security into
legacy hard real-time systems,” in IEEE RTSS, pp. 123–134, 2016.

[35] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “A design-space exploration for allocating security tasks in
multicore real-time systems,” in DATE, pp. 225–230, 2018.

[36] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Period adaptation for continuous security monitoring in multicore
systems,” in DATE, 2020.

[37] M. Hasan, S. Mohan, R. Pellizzoni, and R. B. Bobba, “Contego: An adaptive framework for integrating security tasks
in real-time systems,” in Euromicro ECRTS, pp. 23:1–23:22, 2017.

[38] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Real-time systems security through scheduler constraints,” in
Euromicro ECRTS, pp. 129–140, 2014.

[39] R. Pellizzoni, N. Paryab, M.-K. Yoon, S. Bak, S. Mohan, and R. B. Bobba, “A generalizedmodel for preventing information
leakage in hard real-time systems,” in IEEE RTAS, pp. 271–282, 2015.

[40] K. Jiang, L. Batina, P. Eles, and Z. Peng, “Robustness analysis of real-time scheduling against differential power
analysis attacks,” in IEEE ISVLSI, pp. 450–455, 2014.

[41] C. Bao and A. Srivastava, “A secure algorithm for task scheduling against side-channel attacks,” in ACM TrustED,
pp. 3–12, ACM, 2014.

[42] J. Chen, T. Kloda, A. Bansal, R. Tabish, C.-Y. Chen, B. Liu, S. Mohan, M. Caccamo, and L. Sha, “SchedGuard: Protecting
against schedule leaks using linux containers,” in IEEE RTAS, pp. 14–26, 2021.

[43] M.-K. Yoon, M. Liu, H. Chen, J.-E. Kim, and Z. Shao, “Blinder: Partition-oblivious hierarchical scheduling,” in USENIX
Securit), 2021.

[44] M.-K. Yoon, J.-E. Kim, R. Bradford, and Z. Shao, “TimeDice: Schedulability-preserving priority inversion for mitigating
covert timing channels between real-time partitions,” in IEEE/IFIP DSN, pp. 453–465, 2022.

[45] M.-K. Yoon, S. Mohan, C.-Y. Chen, and L. Sha, “TaskShuffler: A schedule randomization protocol for obfuscation
against timing inference attacks in real-time systems,” in IEEE RTAS, pp. 1–12, 2016.

[46] N. Vreman, R. Pates, K. Krüger, G. Fohler, and M. Maggio, “Minimizing side-channel attack vulnerability via schedule
randomization,” in IEEE CDC, pp. 2928–2933, IEEE, 2019.

[47] H. Baek and C. M. Kang, “Scheduling randomization protocol to improve schedule entropy for multiprocessor real-time
systems,” MDPI Symmetry, vol. 12, no. 5, p. 753, 2020.

[48] K. Krüger, M. Völp, and G. Fohler, “Vulnerability analysis and mitigation of directed timing inference based attacks
on time-triggered systems,” in EUROMICRO ECRTS, vol. 106, pp. 22:1–22:17, 2018.

[49] F. Abdi, J. Woude, Y. Lu, S. Bak, M. Caccamo, L. Sha, R. Mancuso, and S. Mohan, “On-chip control flow integrity check
for real time embedded systems,” in IEEE CPSNA, pp. 26–31, 2013.

[50] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Securing real-time microcontroller systems through
customized memory view switching.,” in NDSS, 2018.

[51] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward, “Control-flow integrity for real-time
embedded systems,” in Euromicro ECRTS, p. 2:1–2:24, 2019.

[52] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell, “Holistic control-flow protection on real-time embedded
systems with Kage,” in USENIX Security, 2022.

[53] D. Lo, M. Ismail, T. Chen, and G. E. Suh, “Slack-aware opportunistic monitoring for real-time systems,” in IEEE RTAS,
pp. 203–214, 2014.

[54] M.-K. Yoon, S. Mohan, J. Choi, J.-E. Kim, and L. Sha, “SecureCore: A multicore-based intrusion detection architecture
for real-time embedded systems,” in IEEE RTAS, pp. 21–32, 2013.

[55] M.-K. Yoon, S. Mohan, J. Choi, and L. Sha, “Memory heat map: anomaly detection in real-time embedded systems
using memory behavior,” in ACM/EDAC/IEEE DAC, pp. 1–6, 2015.

[56] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha, “Learning execution contexts from system call
distribution for anomaly detection in smart embedded system,” in ACM/IEEE IoTDI, pp. 191–196, 2017.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

000:28 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

[57] S. Mohan, S. Bak, E. Betti, H. Yun, L. Sha, and M. Caccamo, “S3A: Secure system simplex architecture for enhanced
security and robustness of cyber-physical systems,” in ACM international conference on High confidence networked
systems, pp. 65–74, ACM, 2013.

[58] F. Abdi, M. Hasan, S. Mohan, D. Agarwal, and M. Caccamo, “ReSecure: A restart-based security protocol for tightly
actuated hard real-time systems,” in IEEE CERTS, pp. 47–54, 2016.

[59] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo, “Guaranteed physical security with restart-based
design for cyber-physical systems,” in ACM/IEEE ICCPS, pp. 10–21, 2018.

[60] F. Abdi, C.-Y. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo, “Preserving physical safety under cyber attacks,”
IEEE IoT J., vol. 6, no. 4, pp. 6285–6300, 2018.

[61] A. Mukherjee, T. Mishra, T. Chantem, N. Fisher, and R. Gerdes, “Optimized trusted execution for hard real-time
applications on cots processors,” in ACM RTNS, pp. 50–60, 2019.

[62] S. Pinto, D. Oliveira, J. Pereira, J. Cabral, and A. Tavares, “Freetee: When real-time and security meet,” in IEEE ETFA,
pp. 1–4, 2015.

[63] Y. Xiang, Y. Wang, H. Choi, M. Karimi, and H. Kim, “AegisDNN: Dependable and timely execution of DNN tasks with
SGX,” in IEEE (RTSS, pp. 68–81, 2021.

[64] M. M. Bernstein and C. Kim, “AOS: An avionics operating system for multi-level secure real-time environments,” in
ACSA ACSAC, pp. 236–245, 1994.

[65] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood, “Sel4: Formal verification of an os kernel,” in ACM SOSP, p. 207–220,
2009.

[66] G. Parmer and R. West, “Predictable and configurable component-based scheduling in the composite OS,” ACM TECS,
vol. 13, no. 1s, pp. 1–26, 2013.

[67] H. Chen and S. Yang, “Research on ultra-dependable embedded real time operating system,” in 2011 IEEE/ACM
GreenCom, pp. 144–151, 2011.

[68] L. Pike, P. Hickey, T. Elliott, E. Mertens, and A. Tomb, “TrackOS: A security-aware real-time operating system,” in
LNCS RV, pp. 302–317, 2016.

[69] J. Kiszka and B. Wagner, “Modelling security risks in real-time operating systems,” in IEEE INDIN, vol. 1, pp. 125–130,
IEEE, 2007.

[70] L. Sha, “Using simplicity to control complexity,” IEEE Software, vol. 18, no. 4, pp. 20–28, 2001.
[71] S. Pinto and N. Santos, “Demystifying ARM TrustZone: A comprehensive survey,” ACM CSUR, vol. 51, no. 6, p. 130,

2019.
[72] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in IEEE ISCA, p. 81–87, 1981.
[73] “Enea OSE: High-performance, POSIX compatible, multicore real-time operating system.” https://www.enea.com/

globalassets/downloads/operating-systems/enea-ose/datasheet-enea-ose.pdf.
[74] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann,

T. Mitra, et al., “The worst-case execution-time problem—overview of methods and survey of tools,” ACM TECS, vol. 7,
no. 3, p. 36, 2008.

[75] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems,” in IACR CRYPTO,
pp. 104–113, 1996.

[76] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-channel vulnerability factor: A metric for measuring
information leakage,” in IEEE ISCA, pp. 106–117, 2012.

[77] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power analysis,” J. of Cryp. Eng., vol. 1, no. 1,
pp. 5–27, 2011.

[78] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis of hierarchical fixed-priority scheduling,” in
Euromicro ECRTS, pp. 173–181, 2002.

[79] R. Davis and A. Burns, “An investigation into server parameter selection for hierarchical fixed priority pre-emptive
systems,” in IEEE RTNS, 2008.

[80] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: An approach to real-time synchronization,”
IEEE Trans. on comp., vol. 39, no. 9, pp. 1175–1185, 1990.

[81] H. Kopetz, “Event-triggered versus time-triggered real-time systems,” in Op. Sys. of the 90s and Bey., pp. 86–101,
Springer, 1991.

[82] J.-P. Aumasson, Serious cryptography: a practical introduction to modern encryption. No Starch Press, 2017.
[83] “Link removed due to anonymity requirements.”
[84] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and

E. W. Felten, “Lest we remember: cold-boot attacks on encryption keys,” Comm. of the ACM, vol. 52, no. 5, pp. 91–98,
2009.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

https://www.enea.com/globalassets/downloads/operating-systems/enea-ose/datasheet-enea-ose.pdf
https://www.enea.com/globalassets/downloads/operating-systems/enea-ose/datasheet-enea-ose.pdf

SoK: Security in Real-Time Systems 000:29

[85] S. Mohan, “Worst-case execution time analysis of security policies for deeply embedded real-time systems,” ACM
SIGBED Review, vol. 5, no. 1, p. 8, 2008.

[86] W.-M. Hu, “Lattice scheduling and covert channels,” in IEEE S&P, pp. 52–61, 1992.
[87] M.-K. Yoon, J.-E. Kim, R. Bradford, and L. Sha, “Holistic design parameter optimization of multiple periodic resources

in hierarchical scheduling,” in DATE, pp. 1313–1318, 2013.
[88] X. Liu, Q. Wang, S. Gopalakrishnan, W. He, L. Sha, H. Ding, and K. Lee, “ORTEGA: An efficient and flexible online

fault tolerance architecture for real-time control systems,” IEEE T. on Ind. Inf., vol. 4, no. 4, pp. 213–224, 2008.
[89] X. Wang, N. Hovakimyan, and L. Sha, “L1Simplex: Fault-tolerant control of cyber-physical systems,” in ACM/IEEE

ICCPS, pp. 41–50, 2013.
[90] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Crypt. ePrint Arch., no. 086, pp. 1–118, 2016.
[91] S. W. Kim, C. Lee, M. Jeon, H. Y. Kwon, H. W. Lee, and C. Yoo, “Secure device access for automotive software,” in IEEE

ICCVE, pp. 177–181, 2013.
[92] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “LTZVisor: TrustZone is the key,” in Euromicro ECRTS 2017,

pp. 4:1–4:22, 2017.
[93] J. Martins, J. Alves, J. Cabral, A. Tavares, and S. Pinto, “𝜇RTZVisor: A secure and safe real-time hypervisor,” MDPI

Electronics, vol. 6, no. 4, p. 93, 2017.
[94] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtualization on TrustZone-enabled microcontrollers?

Voilà!,” in IEEE RTAS, pp. 293–304, 2019.
[95] H. Neugass, G. Espin, H. Nunoe, R. Thomas, and D. Wilner, “VxWorks: an interactive development environment and

real-time kernel for Gmicro,” in IEEE TRONSHOW, pp. 196–207, 1991.
[96] F. Kolnick, “The QNX 4 real-time operating system,” Basis Comp. Sys. Inc., 1998.
[97] “Security profile for VxWorks,” tech. rep., Wind River, 2014. [Online]. Available: https://tinyurl.com/vxworkssec.
[98] “QNX OS for security,” tech. rep., QNX Software Systems, 2015. [Online]. Available: https://tinyurl.com/qnxsecurity.
[99] B. Krebs, “Cyber incident blamed for nuclear power plant shutdown,” Washington Post, vol. 5, 2008.
[100] A. J. Kornecki and J. Zalewski, “Hardware certification for real-time safety-critical systems: State of the art,” Elsevier

Ann. Rev. in Control, vol. 34, no. 1, pp. 163–174, 2010.
[101] A. Kornecki and J. Zalewski, “Certification of software for real-time safety-critical systems: state of the art,” Springer

Inn. in Sys. & Soft. Eng., vol. 5, no. 2, pp. 149–161, 2009.
[102] A. J. Kornecki, Software Development Tools for Safety-Critical, Real-Time Systems Handbook. Aviation R&D, FAA, 2007.
[103] A. Cardenas, “Cyber-physical systems security knowledge area – issue 1.0,” CYBOK, 2019.
[104] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, S. Sastry, et al., “Challenges for securing cyber physical systems,”

inWksh. on Fut. Dir. in Cyber-Phy. Sys. Sec., vol. 5, 2009.
[105] H. Chai, G. Zhang, J. Zhou, J. Sun, L. Huang, and T. Wang, “A short review of security-aware techniques in real-time

embedded systems,” J. of Cir., Sys. and Comp., vol. 28, no. 02, 2019.
[106] C.-Y. Chen, M. Hasan, and S. Mohan, “Securing real-time Internet-of-things,” Sensors, vol. 18, no. 12, 2018.
[107] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in embedded systems: Design challenges,” ACM

TECS, vol. 3, pp. 461–491, Aug. 2004.
[108] S. Parameswaran and T. Wolf, “Embedded systems security—an overview,” Des. Aut. for Emb. Sys., vol. 12, no. 3,

pp. 173–183, 2008.
[109] D. Ding, Q.-L. Han, Y. Xiang, X. Ge, and X.-M. Zhang, “A survey on security control and attack detection for industrial

cyber-physical systems,” Neurocomputing, vol. 275, pp. 1674–1683, 2018.
[110] A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems security – A survey,” IEEE IoT J., vol. 4, no. 6,

pp. 1802–1831, 2017.
[111] J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantarcioglu, “Security and privacy in cyber-physical

systems: A survey of surveys,” IEEE Des. & Test, vol. 34, no. 4, pp. 7–17, 2017.
[112] D. A. Saraiva, V. R. Q. Leithardt, D. de Paula, A. Sales Mendes, G. V. González, and P. Crocker, “PRISEC: Comparison

of symmetric key algorithms for IoT devices,” MDPI Sensors, vol. 19, no. 19, p. 4312, 2019.
[113] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,” RTS Journal, vol. 30, no. 1-2, pp. 129–154,

2005.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

https://tinyurl.com/vxworkssec
https://tinyurl.com/qnxsecurity

000:30 Monowar Hasan, Ashish Kashinath, Chien-Ying Chen, and Sibin Mohan

APPENDIX

Table 9. Summary of the Included Papers

Publication Venue* Count Reference
Major systems/security conferences 6 Bernstein et al. [64], Du et al. [52], Kim et al. [50], Klein et al. [65],

Yoon et al. [43, 44]
Major real-time system journals and
conferences

17 Bechtel et al. [19], Chen et al. [16], Chen et al. [42], Hasan et al. [34, 37],
Jiang et al. [25], Kang et al. [23], Krüger et al. [48], Lesi et al. [31],
Lo et al. [53], Mahfouzi et al. [18], Mohan et al. [38], Mukherjee et al. [61],
Pellizzoni et al. [39], Walls et al. [51], Xian et al. [63], Yoon et al. [45],
Yoon et al. [54]

Major embedded system journals and
conferences

5 Abdi et al. [59, 60], Lesi et al. [30], Parmer et al. [66], Xie et al. [21]

Major design automaton conferences 3 Hasan et al. [35, 36], Yoon et al. [55]
Miscellaneous (journals, conferences,
book chapters)

22 Abad et al. [49], Abdi et al. [58], Baek et al. [47], Bao et al. [41], Chen et al. [67],
Hamad et al. [32], Hao et al. [33], Jiang et al. [40] Jiang et al. [26],
Kiszka et al. [69], Lin et al. [22], Liu et al. [17], Mohan et al. [57], Pike et al. [68],
Pinto et al. [62], Saadatmand et al. [29], Qiu et al. [24], Vreman et al. [46],
Xie et al. [20], Yoon et al. [56], Zhang et al. [27, 28]

Total paper reviewed: 268
Total paper included: 54

*In our study, (i) systems/security conferences include: ACSAC, Asia CCS, CCS, DSN, Euro S&P, HOST, NDSS, OSDI, S&P, Security, SOSP; (ii)
real-time venues include: ECRTS, RTAS, RTCSA, RTNS, RTSS, RTS; (iii) embedded system venues include: EMSOFT, ICCPS, TECS, TC, IoT;
(iv) design automation conferences include: DAC, DATE. We mark the publication venue as miscellaneous if it does not belong to the above
list.

A.1 List of Included Papers
Table 9 lists the papers (and their publication venues) included in this study.

A.2 Experiment Setup
We developed an in-house simulator [83] for our analyses of the attacker’s burden introduced
in §6. Our simulator is platform-independent and written in Python 3.5. We evaluated all four
scheduler-level techniques using simulated workloads. The parameters (scheduling policy, priority
assignments, schedule duration, number of tasks, periods, execution times) selected in our
experiments are identical to those used by the real-time community [16, 34–39, 45]. Due to the
different semantics of the techniques, we customized the experiment setup and selected parameters
that are meaningful (and realistic) for different approaches, as presented below.

Integrating cryptography services (Fig. 3).We considered a periodic task with period 250 ms
(i.e., sampled at 4 Hz) ms and requires𝑚 = {0, 1, 2} cryptographic operations per job (where𝑚 is
varied as experimental parameter, see Fig. 3b). We used the values from earlier work [112] (that
measures the execution time of AES encryption for 1 MB messages with different key sizes running
on a quad core 1.2 GHz ARM Cortex-A7 platform) and calculated the computing load.

Periodic monitoring (Fig. 4).We considered [3, 15] real-time tasks (with periods [10, 1000] ms)
and a single security checking task (with varying periods as an experimental parameter). We
assigned rate monotonic priority order (i.e., tasks with shorter periods were assigned higher
priorities) [14]. We vary the system load from 2.5% to 97.5% with a step size of 2.5. For a given
system load, the individual task load was calculated by using the UUnifast algorithm [113] — since
this is a standard technique used by the real-time community. For each load condition, we generated
250 different tasksets. We considered the base period of the security task was 5000ms and decreased
the periods (i.e., increased frequency of monitoring) from this base value. We found this value
by trial-and-error to ensure that all the generated tasksets were schedulable for demonstration
purposes.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

SoK: Security in Real-Time Systems 000:31

State cleansing mechanisms (Fig. 5). In this setup we considered 5 real-time tasks
and the system load was no more than 50%. The periods of the tasks were selected from
{25, 40, 50, 100, 125, 200, 250, 500, 1000} ms – this was to ensure that each taskset has a common
“hyperperiod”6 in our experiments. For a given load 𝑈𝑖 and period 𝑇𝑖 for task 𝜏𝑖 , its (worst-case)
execution time was calculated by ⌈𝑇𝑖 ×𝑈𝑖⌉. The task priorities follow rate monotonic order. The
attacker’s task (lowest priority) was sampled at 20 Hz (50 ms) and we selected the critical (i.e.,
victim) task period from {100, 125, 200, 250, 500, 1000} ms. For each period value, we generated
100 different taskset configurations. For each configuration, we simulated the schedule for one
hyperperiod (since the subsequent schedules will exhibit the same behavior due to the deterministic
execution pattern of the system). The flushing overhead was related to the task execution time, i.e.,⌈
𝐶𝑐

3

⌉
where 𝐶𝑐 is the execution time of the critical task.

Schedule randomization (Fig. 6). In this experiment, we grouped the tasksets by computational
loads (i.e., {[0.001+0.1 ·𝑥, 0.1+0.1 ·𝑥)×100% | 0 ≤ 𝑥 ≤ 9∧𝑥 ∈ Z}). Each group had 6 subgroups with
𝑛 = {5, 7, 9, 11, 13, 15} tasks and 100 task sets were generated for each subgroup. The generated task
sets were tested to be schedulable based on the rate monotonic priority assignment algorithm [14].
Researchers show that an attacker can learn critical information from a schedule [16] within a
duration of 10 ·𝑇 where 𝑇 is the least common multiple of the arrival rates — i.e., periods of the
observer task (the attacker’s task) and the victim task (the task under attack). We, therefore, set
this value as simulation duration in our experiments. We selected observer task and the victim task
with index (

⌊
𝑛
3
⌋
+ 1) and (𝑛 −

⌊
𝑛
3
⌋
), respectively, in a taskset of 𝑛 tasks (indexed from 1 to 𝑛 where

a larger index implies higher priority).

A.3 Impact of Periodic Monitoring with Different System Loads
We also measure total computing load (y-axis in Fig. 8) while varying frequency (x-axis) for three
scenarios (i) low (total load less than 30%), (ii) medium (30%-50%) and (iii) high (more than 70%).
The red dotted line shows maximum (feasible) load (i.e., 100% processor utilization) and shaded
regions indicate overloaded system. As we see, allowing unfettered execution for the security tasks
(especially for medium-to-high utilization scenarios) can add a significant load to the system and
will break real-time requirements.

Increase in Monitoring Frequency (%)

To
ta

l S
ys

te
m

 L
oa

d
(%

)

0

100

>
50

%
Lo

ad

Max Load (100%)

0

100

30
%

-5
0%

Lo
ad

0 25 50 75 100
0

100

<
30

%
Lo

ad

Fig. 8. Trade-off between monitoring frequency and computing load: unfettered, frequent execution for the
monitoring task increases computing load significantly and can break real-time requirements.

6Hyperperiod is the smallest interval of time (typically defined as the least common multiple of the periods of the tasks)
after which the periodic patterns of all the tasks repeat.

ACM Comput. Surv., Vol. 0, No. 0, Article 000. Publication date: 2024.

	1 Introduction
	2 Real-Time Systems
	2.1 Architecture and System Development Model
	2.2 Task and Scheduling Model

	3 Taxonomy
	4 Attacks on RTS
	4.1 Reconnaissance
	4.2 Targeted Attacks
	4.3 Summary of Our Findings

	5 Scheduler-Level Defenses for RTS Security
	5.1 Integrating Cryptographic Operations
	5.2 Integrating Security Monitoring Techniques
	5.3 Side-Channel Defense: Leakage Prevention
	5.4 Side-Channel Defense: Schedule Obfuscation

	6 Systematization of Scheduler-Level Defenses: Metrics & Analyses
	6.1 Analysis
	6.2 Summary

	7 Other Research
	7.1 Hardware/Software-Based Mechanisms
	7.2 Designing Secure Real-Time Operating Systems (RTOS)

	8 Discussion and Open Research Issues
	8.1 Vulnerability and Damage Analysis
	8.2 Response and Recovery Mechanisms
	8.3 Certification and Regulatory Issues
	8.4 Security for Legacy Systems
	8.5 Security for AI-enabled Next-Generation Systems
	8.6 Availability of Evaluation Platforms
	8.7 Privacy and Deterrence

	9 Related Surveys
	10 Conclusion
	References
	A.1 List of Included Papers
	A.2 Experiment Setup
	A.3 Impact of Periodic Monitoring with Different System Loads

