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Security is an increasing concern for real-time systems (RTS). Over the last decade or so, researchers
have demonstrated attacks and defenses aimed at such systems. In this paper, we identify, classify
and measure the effectiveness of the security research in this domain. We provide a high-level
summary [identification] and a taxonomy [classification] of this existing body of work. Furthermore,
we carry out an in-depth analysis [measurement] of scheduler-based security techniques — the most
common class of real-time security mechanisms. For this purpose, we developed a common metric,
“attacker’s burden™, used to measure the effectiveness of (existing as well as future) scheduler-based
real-time security measures.

1 INTRODUCTION

Real-time systems (RTS) such as avionics, nuclear power plants, automobiles, space vehicles, power
generation and distribution systems, medical devices, industrial robots, etc. have been in existence
for decades. Most of these systems have safety-critical properties, i.e., any problems could result in
significant harm to humans, the system or even the environment. Consider the case where a car’s
airbag, a real-time system with stringent timing constraints, fails to deploy in time — such failures
can have disastrous results. Despite their importance, security has rarely been a consideration in the
design of RTS, mainly due to beliefs such as: (a) real-time systems lack inherent value to adversaries
(“why would anyone attack them?”), (b) the prevalence of custom hardware/software/protocols will
deter attackers (“these protocols/hardware/software are secret and so arcane that no one can decipher
them”) and also (c) the lack of computing power and memory in these systems will throttle potential
adversarial actions (“what can they do even if they get in?”). In addition, RTS has stringent timing
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requirements for ensuring their correct operation. For instance, a typical window for an airbag
deployment (time between detection of collision and final airbag operations) is around 50-60 ms
[2] (Iess than the time it takes to blink human eyes once!). Such timing constraints severely inhibit
how security solutions can be added to real-time systems; for instance, the protection methods
should not cause timing problems in RTS.

With the advent of newer domains such as autonomous vehicles, drones, remote monitoring
and control and Internet-of-Things (IoT), RTS find themselves front and center in modern society.
Since many RTS now use commodity-off-the-shelf (COTS) components and are often connected to
each other or even the Internet, they expose additional attack surfaces, often overturning all of the
aforementioned beliefs. In fact, there has been a significant uptick in attacks against systems with
real-time properties over the past decade [3-7].

Security problems in RTS also differ when compared to general purpose systems. The requirement
for tight timing guarantees brings up new vulnerabilities; for instance, if an attacker is able to
introduce a minor delay (even a few milliseconds) into the critical pathway for the deployment
of an airbag, then the passengers could be seriously injured or, worse, killed. In addition, RTS are
typically designed with safety in mind, rather than security. Even in the presence of malicious
actions, the prime focus of RTS designers would still be safe, i.e., ensure that the system or its
operators do not come to harm.

Real-time security has received significant attention in recent years from both academia and
industry, and now a significant body of work has started to appear in this domain. For instance,
regular attack vectors are also finding use against RTS, e.g., the leakage of critical data [8] and even
hostile actions due to lack of authentication [5, 6, 9]. In this paper, we have three major goals:

(1) surveying the knowledge in this area so that researchers can gain an understanding of the
domain, current solutions and challenges;

(2) systemizing this knowledge by establishing a high-level taxonomy of existing work and

(3) development of a common metric that can be used to compare and contrast solutions that
are focused on scheduler-based techniques since they form the largest collection of works in
this domain.

Systematization Approach. In this study we investigate RTS security issues and summarize
existing techniques (both, from attack and defense perspectives) in a comprehensive manner. While
there exists some limited survey (see §9 for details), to the best of our knowledge, there exists
no prior comprehensive summary and taxonomy of real-time security research that (a) classify
attack and defense mechanisms and (b) systematically compare real-time security solutions using a
“unified metric”. We have studied over 250 papers from a variety of archived sources published in
the last 27 years (1995-2022) and short-listed the related work. For instance, our search includes all
major online archives viz.,, ACM Digital Library, Google Scholar, IEEE Xplore, MDP]I, ScienceDirect,
Scopus, USENIX and Wiley Online Library. In addition, we manually parsed papers from major
security, real-time, embedded systems and design automation conferences. We also crawled the
related publications from the websites of the researchers we know who work in similar domains.
Some of the major keywords used in our search include: “real-time systems”, “security”, “side-
channel”, “attacks”, “timing analysis”, “temporal guarantees®, among others. Table 9 in Appendix A.1
lists all the papers and their source communities. Note: We excluded papers that are not directly
connected to real-time security, for instance, security for broader cyber-physical/control systems,
robotics, IoT/cloud/edge systems, and mobile devices.

Taxonomy. Our research identifies some well-defined categories and sub-categories (for attacks
and defenses) that the majority of work in real-time security can be classified into. In this paper,
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we present such a taxonomy (Fig. 2) that can be easily used to identify and classify existing (and
potentially future) work in RTS security.

Metric. A large class of security solutions in RTS are centered around resource management
algorithms since they form the crux of RTS design. The operating system (OS) scheduler is considered
to be the most important resource management algorithm and, hence, has received a lot of attention
in terms of adding security, as is evident in Fig. 2. Even with this diverse body of work, there exists
no systematic framework or metric to analyze these systems or contrast them against each other.

In this paper, we present a metric, named “attacker’s burden” inspired by work factor [1], a
concept that captures the “cost” of circumventing a security mechanism with the resources available
to an attacker. Our metric builds upon this concept by capturing the (increased) computational load
on adversaries by translating it into something directly relevant to RTS: the time that is available
to attackers. Unlike cryptographic algorithms where a direct correlation can be made between
increased key size and the computational power required by adversaries, the computation of the
attacker’s burden in RTS security is not straightforward since, as shown in §6, even among the
scheduler-driven techniques, there is significant diversity in how security mechanisms are designed.
Hence, calculating the time available for would-be attackers is challenging. To demonstrate the
use of this metric, we show how it can be computed for the various categories of scheduler-based
security techniques in literature — thus providing an easy reference for comparing the state-of-the-
art. We believe that this new metric, presented in §6, will allow designers to analyze and quantify
the effect of their solutions and, in effect, improve the security guarantees in such systems.

In this paper, we make the following contributions:

e A taxonomy of real-time security research (Fig. 2) and a comprehensive study of related
literature (see the list of papers in Table 9).

e A systematic review and qualitative comparison of various RTS security solutions, both from
attack and defense perspectives (84, §5 and §7).

e In-depth study of scheduler-level RTS security solutions (§5) and related analyses using our
newly developed metric, “attacker’s burden” (§6).

We start with a background on RTS (§2).

2 REAL-TIME SYSTEMS

RTS are defined by their strong timing requirements. They need to function correctly, but within
their predefined timing constraints, often termed as a “deadlines” — recall the airbag example from
earlier where the deployment has to complete with a few tens of milliseconds. Some of the common
properties and assumptions related to RTS are as follows: (i) implemented as a system of periodic
tasks, (ii) worst-case bounds are known for most loops as well as the critical pieces of code, (iii) no
dynamically loaded or self-modifying code, (iv) recursion is either not used or statically bounded,
(v) memory and processing power often limited and (vi) stringent timing and safety requirements.

2.1 Architecture and System Development Model

In Fig. 1 we present a high-level illustration of an RTS. Each real-time application in the system
(called “task”) represents a time-critical function and a collection of such tasks are hosted on
a hardware platform (mostly single-core systems). The concept of tasks in RTS can be trivially
mapped with processes or threads in general-purpose OS. The scheduler in real-time OS (RTOS) uses
timers and interrupt handlers to enforce timing guarantees at runtime. This ability of the scheduler
to interrupt application processing at precise time instants is essential to ensure the “correctness”
of the system. Access to shared platform resource (such as caches, buses, memory) is regulated
using resource sharing protocols to ensure data consistency and bounds on waiting time so that
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Fig. 1. Abstraction of a real-time node with common uses cases.

deadlines can be met. The communication network in RTS is required to provide service with low
jitters and meet end-to-end message deadlines for all messages.

2.2 Task and Scheduling Model

Tasks in RTS are generally characterized by their periods (inter-arrival times), constant, upper
bounded execution times and temporal constraints (deadlines). Schedulability tests [10-12] are used
to determine if all tasks in the system meet their respective deadlines. If this is the case, then the
task set is deemed to be “schedulable” and the system, safe. In Listing 1 we present an abstraction
of a real-time task. running on real-time Linux (RT_PREEMPT [13]). Line 4 specifies the priority
and Line 11 performs the main task functionality. Timers are updated in Lines 14-19 for periodic

invocations.

1 | int main()

2 | {

3 struct timespec t; struct sched_param param;

4 param.sched_priority = _PRIORITY_; // set priority
5

6 /* enable real-time scheduling */

7 sched_setscheduler (0, SCHED_FIFO, &param)

8 clock_gettime (0, &t); // get current time

9 /* main real-time loop */

10 while (1) {

11 main_task_function(); // do the stuff

12 /* update timer (nanosecond and second fields)
13 for next period */

14 t.tv_nsec += _PERIOD_;

15 while (ts->tv_nsec >= NANOSEC_PER_SEC) {

16 ts->tv_nsec -= NANOSEC_PER_SEC; ts->tv_sec++;
17 T

18 /* wait for next period */

19 clock_nanosleep (0, TIMER_ABSTIME, &t, NULL);
20 }

21 return 0; // end of code (never reaches here)

22 }

Listing 1. Code abstraction of a periodic real-time task.
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Fig. 2. Taxonomy of various attacks and defense techniques proposed in the real-time literature.

In real-time scheduling, task priorities can be either fixed or dynamic. Examples of commonly
used fixed and dynamic priority algorithms are: (a) rate monotonic (RM), where task priorities are
assigned based on periods (i.e., shorter period implies higher priority) and (b) earliest deadline first
(EDF), where a job with shortest deadline is scheduled first [14]. Scheduling algorithms can be
(i) preemptive (tasks can be preempted by higher priority tasks) or (ii) non-preemptive (when a
task starts executing, it will not be preempted and execute until completion). A system is called

mixed-criticality RTS if it has more that one criticality levels (say safety critical, mission critical
and low-critical) [15].

3 TAXONOMY

One of the contributions of this paper is the identification and classification of research in the area
of real-time security. Figure 2 illustrates the various categories of RTS security research that we
have identified. We find that RTS security research can be broadly classified into attack and defense
mechanisms. We categorize attacks into two classes: (i) reconnaissance (where an attacker passively
infers system information and attempts to break confidentiality — this reconnaissance can be used
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Table 1. Threat Models Used in Literature

Problem Focus

Assumptions on Adversarial Capabilities

Integrating cryptography The attacker has: (i) knowledge of the real-time tasks and intends to break confidentiality,
services [20-29] authentication, and/or integrity of the existing tasks [20-22, 24-26, 28, 29]; (ii) access
hardware to perform brute force attacks against symmetric cryptographic schemes [23];
(iii) knowledge of application vulnerabilities [27]

Control-aware data/message The attacker has: (i) knowledge of the schedule of control tasks [30]; (ii) access to low-level
integrity [30, 31] network messages and knowledge of when integrity checks (e.g., MAC) are performed [31].
The attacker wants to remain stealthy and (i) manipulate the system to an unsafe state [30];
(ii) inject false messages [31]

Monitor temporal variations [32] No specific assumptions on attacker’s capabilities; the adversary can leverage known
vulnerabilities and execute malicious code

Task-level integrity checking [33] Attacker can exploit buffer overflow vulnerabilities and launch ROP (return-oriented
programming) attacks

Periodic monitoring for legacy No specific assumptions on attacker’s capabilities; model can be used for scenarios where

RTS [34-37] periodic monitoring of system events is required

Leakage prevention by clearing Vendor-based system development model; a compromised task (perhaps from a less trusted

shared cache [38, 39] vendor) can snoop information from security sensitive (i.e., victim) tasks; no specific

assumptions on how a task could be compromised
Robustness analysis of AES keys The adversary aims to obtain the AES key used in the system. The attacker (i) has physical
against differential power analysis | access to the system; (ii) can accurately measure the power consumption; (ii) knows the

attacks [40] periods of all tasks but does not know their actual execution times

Thermal leakage prevention [41] Attacker (i) knows prior thermal profile of the task schedule; (ii) can have access to on-chip
thermal sensors and obtain runtime measurements

Reduce determinism by schedule The attacker can hijack one or more tasks in the system and wants to determine which task is

obfuscation [45-48] running at any point in time (by observing execution traces)

to launch further attacks, see §4.1) and (ii) targeted attacks (where an adversary tampers with
temporal constraints of other real-time tasks, §4.2).

The literature on defense mechanisms can be divided into three major categories: (i) scheduler-
based techniques (§5), (ii) hardware/software-based architectural solutions (§7.1) and (iii) research
on secure RTOS design (§7.2). We further classify scheduler-based defenses, that has the most
number of papers, into three categories: (a) integration of cryptography services (§5.1); (b)
integration of monitoring techniques (§5.2) and (c) side-channel defense techniques (§5.4-§5.3).

Research on architectural solutions includes: (a) control flow monitoring (§7.1.1), (b) monitoring
of task execution time by computing slack (§7.1.2), (c) techniques based on Simplex [70] — a real-
time design framework to provide fault-tolerance (§7.1.3) and (d) techniques using off-the-shelf
processor extensions such as ARM TrustZone [71] (§7.1.4).

4 ATTACKS ON RTS

We now start with a discussion on attack mechanisms that target RTS. We classified the attack
methodologies on RTS based on the level of control over tasks in the system and the functional
objective of the attack. An adversary can violate the integrity of the system via malicious code
injections and/or by triggering a logic bomb that is otherwise silent/not detected during system
design (attacks on integrity and/or confidentiality). Since many modern RTS communicate over
unreliable mediums such as the Internet, the system is also vulnerable to network-based attacks.
Threats to message communications are usually dealt with by integrating cryptographic protection
mechanisms. In §5.1 we present solutions proposed in the literature to integrate cryptographic
mechanisms.

Since many real-time applications are running on embedded platforms, they are vulnerable to
DoS attacks (i.e., attacks on availability) due to inherent resource constraints (low memory/storage
capabilities, limited computation resource, limited energy). For example, an attacker may perform
system-level resource (e.g., CPU, disk, memory, I/O) exhaustion and force a critical task to miss
deadline due to resource unavailability. The DoS defense mechanisms developed for generic
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personal/enterprise computing platforms or embedded systems do not consider timing, safety
and resource limitations of RTS and are not easily adopted without significant modifications.

Other than trying to aggressively crash the system, the adversary may silently lodge itself in
the system and extract sensitive information. Such side-channel attacks manipulate unexpected
channels (e.g., cache usage [16], thermal traces [41] and timing behavior [45]) to acquire useful
information from the victim. These channels are particularly effective for attacking RTS due to
their deterministic behaviors. Side channel attacks break the confidentiality and could be used by
the adversary to launch further attacks (that may jeopardize integrity and/or availability of the
system). As we shall see in the paper, researchers have found various side-channels for RTS (§4.1)
and also proposed techniques to mitigate them (§5.4-§5.3).

We now present various attack techniques demonstrated by the researchers.

4.1 Reconnaissance

In order for many attacks to succeed, reconnaissance is typically one of the early steps in the
process. It is in the interest of the attacker to stay undetected during this time to both, (a) collect
necessary and sufficient information to enable their attacks and (b) to not alert system operators
and their defensive actions. In the following we illustrate two reconnaissance techniques in RTS
identified by the researchers.

Chen et al. [16] developed techniques to reconstruct the task schedule of RTS so targeted attacks
can be launched against critical tasks. In particular, they develop an algorithm (ScheduLeak) to
deconstruct constituent jobs of the tasks from “busy periods” (i.e., a block of time when one or
more tasks are executing). This allows the adversary to determine what tasks are running when
by just observing the busy periods. The inferred, ordered, job set output by the algorithm allows
the attacker to reconstruct the schedule (with up to 99% success rate if tasks have fixed execution
times) and pinpoint the possible start time of any required victim task for the foreseeable future.

Liu et al. [17] show that attackers can infer the engine speed of a vehicle by observing the
real-time scheduling sequences on the engine control unit (ECU). They show that the ECU schedule
(consisting of the core engine task and other regular real-time tasks) and task periods can be
obtained by observing the electromagnetic radiation using a near-field probe and hardware signal
analyzer. The deduced period is then used to obtain the speed profile of the engine.

4.2 Targeted Attacks

We now present work on targeted attacks where adversaries tailor their attack strategy to leverage
a specific RTS property.

4.2.1 Manipulating Control Tasks. For a priority-driven, periodic real-time application, changing
the parameters (period, priority) of one task may alter the temporal properties (i.e., response
time) and, hence, the safety of other tasks. Mahfouzi et al. [18] show that by interfering with
an entry task (say a low-priority, less protected one that interacts with the outside world) an
adversary can manipulate the response time of other, low-priority tasks (called Butterfly attack).
This attack demonstrates how an adversary can destabilize single core systems. We now discuss
timing perturbations of critical tasks from multicore context.

4.2.2 Cache-Level DoS Attacks. Many multicore processors use non-blocking caches [72] to support
concurrent memory accesses from multiple cores. Bechte et al. [19] show that an adversary can
cause significant timing influence to the real-time tasks by accessing shared caches. They show
that shared cache blocking can occur in both out-of-order and in-order processors and can increase
execution times significantly, e.g., up to 346X on a quad-core in-order architecture (Raspberry Pi).
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Recall from the airbag example, such attacks can delay the airbag deployment and threaten safety
of the passengers.

4.3 Summary of Our Findings

While there exists some recent work on defensive techniques for RTS (see §5 and §7), there is
considerably less focus on attack mechanisms. There is a lack of papers that demonstrate the
techniques to extract important information and/or disrupt the normal operation of the system
while still remaining undetected. We find that researchers study attack mechanisms from two
contexts: (i) stealthy attacks (infer sensitive information by leveraging side-channels [16, 17]) and
(ii) targeted attacks (increase in execution time of the victim tasks by modify tasks parameters such
as periods [18] or blocking shared cache [19]). Out of four attack techniques we reviewed, three
of them [16-18] explicitly consider single core, fixed-priority systems and only one mechanism
(DoS attacks on shared caches) [19] is applicable to multicore platforms. Three of them [16, 17, 19]
evaluate/demonstrate the attacks on real hardware/embedded platforms while one (Butterfly
attack [18]) is evaluated using synthetic case studies.

5 SCHEDULER-LEVEL DEFENSES FOR RTS SECURITY

We now present scheduler-level defense mechanisms proposed in the literature (a total of 28
papers). These techniques (a) are software-based approaches (often integrated at design time), (b)
can be applied by enforcing scheduler-level constraints and/or placing a hook within the scheduler
and (c) do not require any custom hardware and/or architectural support. We categorize these
techniques into three major classes: (i) integrating cryptographic primitives (§5.1), (ii) integrating
security monitoring techniques (§5.2) and (iii) side-channel defense mechanisms (§??). In Table 1
we summarize the threat models and assumptions considered by the authors. In particular, for
different techniques we summarize the attacker’s capabilities and knowledge of the system as well
as the types of attacks the each of the schemes intend to prevent.

5.1 Integrating Cryptographic Operations

Integrating security into RTS that enables confidentiality, integrity and authentication increases
the computational load and may adversely affect the timing constraints of existing time-critical
tasks. We now discuss various techniques proposed in literature for incorporating (and optimizing)
security services (see Table 2 for a summary).

5.1.1 Static Scheduling Techniques. Xie et al. [20] propose a modified version of EDF (called
EDF_OPT) that aims to maximize the number of accepted tasks while providing the highest level
of security services (such as SSL, authentication) possible to the accepted tasks. They further
propose an algorithm (SASES) for finding feasible schedules that maximize confidentiality, integrity
and authentication requirements (as given by the designers) [21]. Lin et al. [22] propose a group-
based security model where different security services for authentication/integrity (such as RC4,
RC5, DES) are put into different groups. Kang et al. [23] propose a feedback-control scheme that
considers system load and security. The above pieces of work consider independent, periodic tasks
with same levels of criticality and are designed for single core systems. Similar ideas have been
applied to (a) multicore platforms where tasks can be inter-dependent [24]; (b) energy-constrained
systems [25-27] and (c) mixed-criticality systems [27, 28].

5.1.2  Adaptive Scheduling. The aforementioned schemes focus on design-time optimizations
based on designer-provided parameters and does not change the schedule at runtime.
Saadatmand et al. [29] propose a lookup-driven approach where different encryption algorithms
and their overheads are listed in a sorted table. At runtime, encryption algorithms are selected (from
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Table 2. Summary: Integration of Cryptographic Primitives
Reference Task Model Scheduling | Platform Key Idea Overhead/Limitation
Policy'

Xie et al. [20] Independent, EDF Single core Find optimal level of cryptography | security models are not
aperiodic*, services (e.g., SSL, authentication) well defined, does not
non- without impacting the deadlines provide hard timing
preemptive guarantees

Xie et al. [21] Independent, EDF Single core Obtain a feasible schedule Hard to quantify
periodic, that maximizes confidentiality, different security
preemptive integrity and authentication (CIA) levels (given by CIA

requirements requirements)

Lin et al. [22] Independent, EDF Single core Group multiple security services Does not distinguish
periodic, (e.g., authentication, data integrity) | different services (i.e.,
preemptive together and find the best they use same weights)

combination while retaining
schedulability guarantees

Qiu et al. [24] Dependent, N/A Multicore Find security services for set of Does not provide hard
periodic, non- tasks with precedence constraints timing guarantees
preemptive (i.e., dependency among task

executions)

Jiang et al. [25, Independent, EDF, RM Single core Minimizing security risk (defined Vague definition of

26] periodic, based on cryptography services) “security risk”
preemptive under a predefined energy budget

Zhang Independent, EDF, RM Single core | Minimize vulnerability (defined No systematic way of

et al. [28] periodic, as a function of priority and defining “vulnerability”
preemptive the number of rounds used by of an encryption

a cryptographic scheme) subject to | algorithm
real-time requirements
Dependent, Proposed by | Multicore Assign security-critical tasks to Vague definition of

Zhang et al. [27] | periodic, non- the authors cores such that both energy budget | security levels
preemptive and real-time constraints are

satisfied

Kang et al. [23] Independent, N/A Single core Provide a technique to adaptively Does not provide hard
periodic/aperi- control the utilization, execution timing guarantees for
odic, preemp- time and strength of protection real-time tasks
tive (a function of crytographic key

length)

Saadatmand Independent, N/A Multicore Dynamically switch between Runtime overheads due

et al. [29] periodic/aperi- different encryption algorithms to extra lookups
odic, preemp- at runtime from a precomputed
tive table (where different encryption

algorithms are sorted based on
their execution times)

Lesi et al. [30, Independent, EDF Single core Prevent man-in-the-middle May not detect stealthy

31] periodic, non- attacks while preserving control attacks if an adversary
preemptive performance gradually degrades

control performance

"EDF: Earliest deadline first; RM: rate monotonic. We refer this column as “N/A” if the authors do not explicitly consider any scheduling
algorithm and/or the proposed scheme is independent of a particular scheduling technique. T Task arrival follows a Poisson distribution.

Remarks: We observe that the notion of “security level/service” used in RTS literature is not well-
defined and it is hard to quantify how the security posture is improved. The majority of the solutions
(eight out of eleven) are designed for single core platforms. Only a single work [29] is implemented
on an actual RTOS while the others are evaluated using simulations.

a higher to lower order, sorted by their execution time) based on available time. They implemented
this scheme on the OSE RTOS [73].

5.1.3 Control-Aware Solutions. In another direction, Lesi et al. [30, 31] propose techniques to
prevent man-in-the-middle (MITM) attacks (between sensors and controllers) in real-time control
systems. The goal is to find trade-offs between control performance and security overheads (e.g.,
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Table 3. Summary: Integrating Security Monitoring Techniques
Reference Task Model Scheduling | Platform Key Idea Overhead/Limitation
Policy'
Hamad Independent, Fixed Single core Monitor execution time variations May not detect attacks
et al. [32] periodic, priority of real-time tasks within the that causes minimal
preemptive scheduler timing perturbations;
extra tracing overheard;
no study on overhead of
monitoring
Hao et al. [33] Independent, Fixed Single core Insert security checks (e.g., control | May result in delayed
periodic, priority flow integrity protection) within detection since some
preemptive task code jobs skip security checks
Hasan Independent, RM Single core | Execute monitoring tasks with a Delayed detection due
et al. [34] periodic, lower priority than real-time tasks to more interference
preemptive (since monitoring tasks
run only during idle
times)
Hasan Independent, RM Single core Execute monitoring detection tasks | False positive detection
et al. [37] periodic, with a lowest priority most of the may cause unnecessary
preemptive time (i.e., during normal operation); | mode switches
change the mode of operation
and execute with a higher priority
(for a limited amount of time) if
anomalous behavior is suspected
Hasan Independent, Fixed Multicore Execute monitoring tasks with Delayed detection due
et al. [35, 36] periodic, priority a lower priority than real-time to more interference
preemptive tasks and (a) use a fixed core (since monitoring tasks
allocation [35]; (b) allow runtime run only during idle
migration to any empty core for times)
faster detection [36]

"We refer scheduling policy as “RM?” if the task priorities follow rate monotonic order (i.e. a task with shorter period is assigned a higher
priority).

Remarks: Five out of six papers [33—37] we reviewed in this category do not provide specific security
techniques and abstract the underlying checking mechanisms. Only a single paper [32] explicitly
designs a checking scheme by observing the timing behavior of the tasks. Majority of the solutions
(four out of six) [32—34, 37] are designed for single core platforms.

overheads for enforcing data integrity technique such as message authentication codes to prevent
MITM attacks).

5.2 Integrating Security Monitoring Techniques

We now discuss scheduler-level techniques to integrate security checking (such as monitoring task
execution behavior and protecting control flow integrity). Table 3 summarizes the papers presented
in this Section.

5.2.1 Time-Based Monitoring. As we mentioned earlier, one of the main characteristics of RTS is
that they have strict timing constraints that must be met in order to maintain the correctness of the
system. Hamad et al. [32] use the temporal properties (derived from the static timing analysis [74]
of the system) and propose an intrusion prediction mechanism. The authors introduce the concept
of red-zone principle to permit the task to overrun until a predefined limit (called red-zone) is
reached. Whenever the task exceeds the limit, a recovery process is performed (e.g., terminate the
malicious task).

5.2.2 Task-Level Monitoring. In the above work a single monitoring mechanism executes in
the scheduler and checks the timing behavior of the real-time tasks. Hao et al. [33] propose
to individually execute security checks (such as checking of control flow) for each task. Different
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security checks (called security levels), however, result in different (worst-case) execution of the
tasks and may impact timing requirements. The authors therefore propose to select a subset of
jobs to execute the security checks and design a scheduling policy, called security level monotonic
(SLM) algorithm, to obtain such set of jobs (that runs security checks).

5.2.3 Securing Legacy Systems. The aforementioned work performs security monitoring at the
task-level and increase execution time of the tasks. While prior work is more suitable for newer
systems, this is especially challenging for legacy systems where the real-time tasks are already
in place and perhaps cannot be modified. Hasan et al. [34-37] propose to execute monitoring
mechanisms as independent, periodic tasks (called security tasks). The security tasks execute at a
lower priority than real-time tasks so that they do not perturb the timing or execution order of the
existing real-time tasks (called opportunistic execution) [34].

Hasan et al. [37] further show that when the security tasks always execute with the lowest priority
it may result in longer detection times. They then propose a dual-mode model (Contego [37]) that
allows the security tasks to execute in two different modes: (a) by default security routines execute
opportunistically when the system is deemed to be uncompromised; (b) if an anomaly is suspected,
the security tasks may switch to higher priority; (c) the system reverts to “normal” mode if: i) no
anomalous activity is found or ii) the root cause of the problem is detected and malicious entities
are removed.

The above work focuses on single core systems. Hasan et al. [35] extend their scheme for multicore
platforms (called HYDRA). They further show that, if security tasks can migrate across cores, at
runtime, it provides better detection (HYDRA-C) [36]. This scheme provides better monitoring but
comes with a cost (in terms of context switch overhead).

We now discuss techniques to mitigate side-channel attacks against RTS (see Table 4 for a
summary). We classify these techniques are: (a) prevention of information leakage (§5.3) and (b)
randomization of task schedule (§5.4).

5.3 Side-Channel Defense: Leakage Prevention

We first present techniques that prevent information leakage due to the use of shared resources
(§5.3.1) and then analyze the effect of power leakage on real-time scheduling (§5.3.2) and discuss
techniques to defend schedule-based side-channel leakages 5.3.3.

5.3.1 State Cleaning Mechanisms. It is well understood that the use of shared resources (e.g.,
caches, DRAMs, /O interconnections) can lead to information leakage between tasks without
explicit communication [75, 76]. In particular, every time there is a switch between tasks belonging
to different “security levels” (as defined at the design time) there is a possibility of information
leakage through shared resources. The information from a task with a higher security level (say
77) must not leak to task with a lower security level (z). Mohan et al. [38] propose the idea of
mitigating information leakage among tasks with fixed security levels by placing constraints on
scheduling algorithms. The main intuition is that every time tasks switch between security levels,
the shared resource must be “cleansed” (e.g., cache should be flushed in this case) before a new task
is scheduled.

Pellizzoni et al. [39] further relax the requirement of total ordering of security levels and propose
a more general model. They propose a constraint named noleak to capture whether unintended
information sharing between any given pair of tasks must be forbidden (e.g., for any two tasks ;
and 7;: if noleak(z;, 7;) = True, then information leakage from 7; to 7; must be prevented). The
authors then propose a general flushing mechanism based on the noleak relation and compute the
effect of the number of flushing invocations on the timing requirements.
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Table 4. Summary: Side Channel Defense Techniques
Reference Task Model Scheduling | Platform Key Idea Overhead/Limitation
Policy
Mohan Independent, Fixed Single core | Flush the shared medium (e.g., Depending on platform,
et al. [38], periodic, priority cache) between the consecutive flushing can be costly;
Pellizzoni preemptive/ execution of high-security (i.e., overhead of flushing
et al. [39] non- security sensitive) and low-security | reduces schedulability
preemptive critical tasks
Jiang et al. [40] Independent, EDF, RM Single core Use statistical analysis and No prevention scheme is
periodic, study the difficulty (in time presented
preemptive overheads) for the attacker to
obtain information about system
power usage
Bao et al. [41] Independent, Variant Single core | Find a task sequence (i.e., schedule) | Does not provide hard
aperiodic, of EDF that minimizes thermal side- timing guarantees
preemptive (proposed by channel leakage
the authors)
Chen et al. [42] | Periodic, Fixed Single core Find a schedule that prevents an Designed for single core
preemptive priority untrusted task to execute certain platforms only, requires
point in time to minimize the additional OS support
chances of schedule leaks (e.g., Linux cgroups)
Yoon Hierarchical, Fixed and Single core | Find a schedule that makes the Applicability to
et al. [43, 44] periodic, dynamic (can be partition execution behavior multicore is not
preemptive priority adapted to oblivious to an adversary thoroughly analyzed
multicore)
Yoon et al. [45], | Independent, Fixed prior- Single Obfuscate task execution order Extra context switch
Baek et al. [47], | periodic, ity [45, 47]; core [45, 46, | (i.e, schedule) while retaining overhead; no clear
Vreman preemptive schedule 48], multi- schedulability to reduce the metric to analyze
et al. [46], indepen- core [47] predictability how randomness can
Krager dent [46]; improve security
et al. [48] slot-based,
time-
triggered [48]

\

Remarks: We find that researchers study side-channel defensive techniques from two views: (i)
leakage prevention by enforcing scheduling constraints (i.e., techniques for preventing cache [38, 39],
thermal [40, 41] and schedule [42—44]-based side-channel leakages) and (ii) schedule diversification
(preventing system from timing/thermal/cache inference attacks by obfuscating task execution
orders) [45-48]. Majority of papers (9 out of 11) we reviewed [38—41, 45—48] are evaluated by
simulations and does not show how (i) scheduler-level constraints (such as flushing the cache
or randomization) can be implemented on practical RTOS/schedulers and (ii) exactly how these
techniques can limit the impact of actual side-channel attacks on RTS.

5.3.2  Power Leakage and Real-Time Scheduling. By analyzing the power traces or by using statistical
analysis and error correction techniques, an adversary can gain information about the system [77].
Jiang et al. [40] develop an analytical framework to study the robustness of AES secret keys against
differential power analysis attacks [77] for both, RM and EDF real-time scheduling policies. Bao
et al. [41] show that different orders of task executions can result in different thermal profiles and
thus leak different side-channel information (e.g., processor temperature). They then propose a
scheme that minimizes the probability of task execution inference (that an attacker may deduce
from the thermal sensor measurements).

5.3.3 Defending Schedule Leakage. SchedGuard [42] protects Linux-based real-time schedulers
against side-channel attacks (such as ScheduLeak [16]) by preventing untrusted tasks from executing
during specific time segments. The authors integrate SchedGuard into the Linux kernel using
cgroups. Yoon et al. [43, 44] show an algorithmic covert timing-channel between partitions in
hierarchical schedulers [78, 79]. In hierarchical scheduling, each partition (i.e., temporal block)
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exclusively uses CPU for running set of tasks assigned to the corresponding partition. The authors
introduce a run-time schedule transformation algorithms (named Blinder [43] and TimeDice [44])
that make the partitions oblivious to the other partition’s varying temporal behavior even if an
adversary is able to control the timings of the applications.

5.4 Side-Channel Defense: Schedule Obfuscation

Another way to protect RTS from side-channel attacks is to randomize the task schedule to reduce
the observability of periodic real-time applications [45-48]. A randomized task schedule results
in different scheduling orders (and response times) of the tasks. With randomization, even if
an observer is able to capture the exact schedule for a (limited) period of time the rest of the
schedule will show different timing behavior for execution of the tasks while retaining real-time
guarantees. However, this is not straightforward for RTS since schedule obfuscation leads to priority
inversions [80] and may cause missed deadlines.

Instead of selecting the highest-priority task at each scheduling point (as is the case for vanilla
real-time schedulers), TaskShuffler [45] picks a random task (subject to deadline constraints).
Baek et al. [47] further extend TaskShuffler for multicore platforms. Contrary to TaskShuffler,
Vreman et al. [46] generates a list of randomized schedules offline, based on a metric — called
upper-approximated entropy — to quantify the diversity of the execution as well as the probability
of learning the schedule (by an adversary). Kriiger et al. [48] propose a combined online/offline
randomization scheme to reduce determinism for time-triggered systems [81] where tasks are
executed based on a pre-computed, offline, slot-based schedule.

6 SYSTEMATIZATION OF SCHEDULER-LEVEL DEFENSES: METRICS & ANALYSES

The various scheduler-level defense techniques discussed thus far (see §5) are designed with separate
application goals in mind; it is not easy to characterize them in a unified way. Hence, we now
present a systemization approach to methodologically compare them under a common “metric”
The systemization of defense techniques presented here complements our survey and sheds new
light on designing a security evaluation metric.

The challenges with analyzing or comparing the scheduler-based security mechanisms are:

(1) the various techniques seem to address different problems,

(2) each subcategory uses a different defensive mechanism, i.e., integration of cryptographic
primitives, monitoring and side-channel defenses,

(3) no real metrics exist especially ones that can measure a shared quantity and

(4) the implementations are not readily available.

Even with such disparate mechanisms, we were able to glean the following insight — all of
the techniques are meant to increase the difficulty for adversaries and, in RTS where time and
computational resources are at a premium (and is closely tracked), this translates to: how much
time does an attacker have available? This measure of timing availability could be for an attacker
to carry out its objective, the time remaining before it is detected or kicked out, the (limited)
time that it has to steal information that will eventually be cleansed or even the window of time
(larger, smaller) that the attacker needs to observe for reconstructing useful information. We will
enumerate all of these in detail in the remainder of this section. We name this metric, the real-time
“attacker’s burden” (AB). Our metric is inspired by the general concept of “work factor” [1] that
evaluates the cost of circumventing a given security mechanism with the resources available to
a potential attacker. A similar concept is also used by the work in the crypto community where
the security provided by a cipher is measured in the number of bits [82, Ch. 3]. In our context, the
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attacker’s burden metric overlays the notion of the “time” available to an adversary on top of the
computational “work factor”, when different scheduler-level defensive mechanisms are enforced.

Note that the computation of this metric is not straightforward due to the differences in the
defensive mechanisms, as mentioned earlier. The use of such a metric allows us to compare the
various approaches while abstracting away the, (i) high-level details such as scheduling policies,
defensive mechanisms, system models and assumptions of the adversary as well as (ii) low-level
details such as the operating system, execution platforms, attack surfaces and vulnerabilities.

In the rest of this section, we demonstrate how to measure this “time available to attackers” for
the various categories and then formalize it. We first present our evaluation methodology.

Experimental Methodology. From §5, we see that the four distinctive scheduler-level defense
mechanisms are: (i) integrating cryptographic security services, (ii) periodic monitoring to detect
intrusions, (iii) state cleaning mechanisms to prevent storage-based side-channels and (iv) schedule
obfuscation. To measure the attacker’s burden, we analyzed each of the proposed mechanisms
and extracted the core concept being proposed. This concept was implemented in a simulator [83]
and we measured how much time is available to an attacker (the attacker’s burden as listed in
each of the following sections), once the security mechanism is in place. Depending on the actual
technique, we varied relevant parameters and also inputs (a large number of real-time task sets
that were generated) to explore the design space. The details of how we generated the input sets
and the platform are in the Appendix. Our code and relevant data sets have been open-sourced in a
publicly-available repository [83].

6.1 Analysis

We now evaluate all four different categories of schedule-based defenses and demonstrate how to
derive our metric for each. We summarize our findings in §6.2.

Note: We assume that the reader is familiar with the content presented in §5 since our metric is
meant to measure (and compare) the techniques presented there.

Study 1: Integrating Cryptographic Services in RTS

The closest analogy for the measurement of an “attacker’s burden” is in the integration of
cryptographic primitives in RTS [21, 22]. It is well known that the strength of a cryptographic
algorithm is estimated by the number of operations (and hence, time) it takes to reconstruct the
key [84]. For instance, if the key is [ bits long and the adversary can test k keys per time unit, it will
take, on average, ZIT_I time units to find the key. While this method already incorporates a notion
of time, albeit in a loose manner, researchers have analyzed additional timing properties, viz.,
(1) How long does it to carry out cryptographic operations in RTS [21]?
(2) How many cryptographic operations, M, are required by a real-time job (e.g., if a task 7;
encrypts two individual messages in the same job then M; = 2) [21-23]?
(3) What is the maximum key size, % that can be tolerated in a system and still meet the
deadlines [23]?

Hence, based on this intuition, we define the attacker’s burden for real-time cryptographic
operations (ABcypto) as a function of the key size (I) the number of services (M) and the maximum
key size that is tolerable in the RTS (I"™%*) as follows:
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Fig. 3. (a) The attacker’s burden (normalized to [0, 1]) and (b) computational load for AES encryption with
128, 192, and 256 bits key sizes. The task is sampled at 4 Hz and the deadline is equal to the sampling rate
(250 ms). The base load in Fig. 3b represents computing load without any cryptography operations. Longer
key size leaves less time for the attacker due to increased computational difficulty to recover the key.
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That is, the amount of time available to an attacker (7;yyp1o) is inversely proportional to the difficulty
o . _ 1 N . l{ N
of obtaining the key, i.e., Torypro = ABoymia where ;1 n\}ljn{W}M,- < ABerypro < Xty M. In

other words, the time available to an attacker (between cryptographic operations) is reduced and
their “burden” increases with the key size and number of operations.

Figure 3a plots AB., 0 for integrating the AES algorithm into RTS - for three key sizes: 128, 192
and 256 bits. As expected, the attacker’s burden (y-axis), i.e., the amount of time 7¢,p:, available
to break the security mechanism (a cryptographic algorithm in this case), decreases (i.e., AB¢rypto
increases) with an increase in key size due to higher computing demand (x-axis). While this may
be obvious in the case of crypto, it is less so for the other security mechanisms as we shall see - in
fact, the direct correlation with cryptographic algorithms helps establish a baseline for how the
metric can be used.

Figure 3a demonstrates that with increasing key sizes (that are still within the max key sizes
that are acceptable for a given timing constraint) an attacker will have to expend increasing
amounts of time. As expected, the computing load of a real-time task also increases with additional
cryptographic operations, but just barely, as seen in Fig. 3b that plots the computing load (y-axis)
vs. increasing key sizes (x-axis). The figure shows the base load using the horizontal dotted line
(i.e., without any cryptographic operations) and the effect of adding one or two crypto operations
in each job cycle (the two bars, dark and light) — while the burden for the attacker is increased
due to larger key sizes, the computing load on the system (for normal operations) is only slightly
increased. It is important to note that these solutions were designed to finish before the deadlines
(the computing loads even with the crypto operations are lower than the deadline) but, until now,
no one had captured the additional timing load from the perspective of the attackers.
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Fig. 4. Trade-off between monitoring frequency and computing load: more frequent monitoring leaves less
time for the attacker (i.e., increases burden), see left plot and blue y-axis of the right plot). However, this also
increases computing load (reduced schedulability) as shown in the right plot (red y-axis).

The time available to an adversary reduces due to increased demands in computational power to
recover the key with larger key sizes and/or increased number of cryptographic functions used.

Study 2: Integrating Periodic Security Monitoring Tasks

Security mechanisms based on periodic monitoring operate on the principle that they must execute
at least as often (if not faster) than a designer specified frequency [34-37, 85] in order to detect
intrusions. From the perspective of an attacker, an increased monitoring frequency means a higher
chance of detection or, put another way, lesser time between checks to carry out a successful
attack. Of course, as before, the frequency of the monitoring tasks is limited by the need to meet
the timing requirements (deadlines) of the RTS and do useful work. Hence, the burden on an
adversary (ABmonitor) can be defined as, how much time is available between successive invocations

of a monitoring task, i.e.,
time between
consecutive invocations

Y e N
-1
ABmonitor:[ tivi — tj ]
time of (j+1)!" invocation T T jtM invocation

What AByonitor indicates is that if the j-th and j + 1-th job of monitoring task, invoked at times t;
and tj,1 respectively (where t;,1 > t;), then an attacker will have at most ¢;,; — ¢; units of time (i.e,
the monitoring frequency/period of the security task) to launch and complete its attack. Hence, we
calculate the time available for an adversary to cause any damage as follows: i.e., Troniror = m.
Let U; is the processor load (i.e., ratio between its execution to period) of the task 7; and Cy is the
execution time of monitor task. We can calculate an lower bound on time available for the attacker
as follows: Thonitor > #"LMUI where and Ug is the maximum available CPU utilization for a
given system?.

To demonstrate how this metric can be applied, let the designer specified minimum monitoring
frequency be designated as a “base frequency”.® In our simulations, we increase the monitoring
frequency and then measure the effects on the attacker burden; this is plotted in Fig. 4. The x-axes
of Fig. 4a and Fig. 4b show the percentage of CPU time spent on monitoring. The y-axis of Figure 4a
is ABonitor- We further plot the time available the attacker and the impact on the CPU load, i.e.,

2For example, rate monotonic (RM) scheduler has utilization bound Up = 69.3% [14].

3Note that according to the designers of these mechanisms [34], the system will be schedulable at this monitoring frequency,
i.e, meet all of its deadlines.
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Fig. 5. (a) Attacker burden (as available time between state cleaning) and (b) computing load (as number of
flushes) vs period of a critical task. When attacker’s task has a fixed period (say, 20 Hz) then a less frequent
execution of critical (high security) tasks results in more instances of attacker/low security tasks occurring
between two instances of a high security task, thus resulting in more flushing events - this reduces the time,
and increases the burden, for attackers.

the left y-axis is Tmonitor While the right y-axis plots the computational load on the system.* As
shown by the graph, as we increase the frequency of monitoring the attacker’s burden increases i.e.,
the amount of time left for an attacker is significantly reduced. As expected, the load on the system
increases dramatically and, after a certain point, the system becomes unschedulable - i.e, real-time
tasks start missing their deadlines. Hence, there is a limit on how much increased monitoring can
be tolerated by the system.

Frequent monitoring leaves less time for adversaries to carry out their attacks but this comes with
increased costs and potential for missed deadlines — the attacker’s burden metric allows designers to
map out the costs vs. benefits for such systems.

Study 3: Leakage Prevention by Shared State Cleanup

When considering techniques that use state cleansing to prevent side-channel attacks in RTS [38, 39],
the attacker’s burden must capture the amount of time left for the adversary to retrieve the
information in the shared resource (e.g., caches) before it is “flushed”. In most of these techniques
(§5.3.1), the researchers define a “security relationship” (a lattice [8, 38, 86], a pairwise function[39])
between tasks in the system. When the context switches from a task with a higher security
classification to one that is lower, these security algorithms “flush” the shared resource, thus
preventing the leakage of information while also incurring the overheads for the cleanup. Hence,
we measure the attacker’s burden (AByy,,p) as the amount of time between consecutive flushing
events,

p-percentile time difference
of all consecutive context switches

ABfrusn = Qp (tjer — ;)1 ¥j) 177

time of (j+1)t" context switch T jth context switch

where t; and t;; are the j-th and j + 1-th context switches. Q, is the p-th percentile time difference
of all consecutive context switches in the schedule; the attacker will have AByj,gp, unit of time

4We carried out additional simulations that started with different initial system load conditions and demonstrate the impact
of adding increased monitoring - these results are presented in Fig. 8 in the Appendix A.3.
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Fig. 6. (a) Attacker’s burden (observability of a task from the schedule, defined as a ratio of its response time
and period) and (b) context switch ratio for both vanilla execution and obfuscated schedule. Randomizing
task schedule reduces determinism (i.e., more burden on the attacker to infer a task) as shows by the higher
ratio (left figure) with a increase in number of context switches (right figure).

(with probability p) to snoop on the shared medium. We use Q, since the time intervals between
consecutive flushes can vary. So with the p*" percentile, we can say that the interval is x with
probability p. As in the case of periodic monitoring, we can calculate the time available for the
attacker before two consecutive flushing as follows: Ty,s, = Ao

The x-axis of Fig. 5a plots the increased frequency (reduced period) for the critical (higher
security level) task while the y-axis represents the attacker’s burden, ABfj,gp,. Assuming that the
attacker’s frequency/period is fixed and we are able to adjust the frequency of the critical task(s),
the figure shows that it becomes increasingly difficult for an attacker to carry out its objectives (i.e.,
ABfyysh increases) since there is less time available between the cleaning events. On the other hand,
as shown in Fig. 5b (x-axis frequency of critical tasks; y-axes number of flushes and system load
respectively), the overall load on the system is reduced as the critical task frequency is increased
— since there are fewer flushes between instances. Note that the assumption is that the cost of a
“cleanse”/flush is assumed to be constant in these papers. Also, the authors have computed an upper
bound on the number of flushes required by preemptive and non-preemptive systems as 2n, + 1
and n. + 1, respectively where “n.” is the number of critical jobs in the system. Hence designers can
now compute the costs (state cleanup overheads, increased system utilization) vs benefits (reduced
time for adversaries to carry out attacks) by using the attacker’s burden value.

State cleanup mechanisms reduce the effectiveness of leakage attacks in RTS by decreasing the
window of time available to attackers to snoop upon the shared resource and the attacker’s burden is
able to plot this clearly.

Study 4: Schedule Obfuscation

As mentioned earlier, schedule randomization [45-48] has been suggested as a mechanism to
prevent side-channel attacks in RTS. From this work, we note that there is a direct correlation
between the ability of an adversary to recreate a task schedule (or timing behavior) to: (i) the tine
window for carrying out observations and (ii) the predictable, repeating, execution patterns of the
real-time tasks. Hence, the main objective of these obfuscation mechanisms is to reduce both of
the above factors. By elongating the window of time when a task can appear, the authors reduce
the predictability of the behavior that can be observed by an attacker. Since at any point only one
outstanding job of a task can exist in a window (the window is usually the period of the task)®, an

50ne job per window is a common assumption in RTS [16, 45, 87].
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attacker has to observe the system for a larger window of time, thus leaving it with very little time to
reconstruct the scheduling behavior before the next instance of the job arrives.

Hence, to measure the burden on an attacker, we calculate the “spread” of a task 7;, i.e., what is
the largest window of time when a task can appear. For a given schedule, we compute the attacker’s
burden, AB, 4,4, as:

response time

e
R;

ABrand =
T;

period

This formula computes the spread of the response times, R; (time between arrival and completion
of a task), across its period, T;. For a given schedule, a higher value of AB, ;4 indicates that the task
can appear in a larger window of time, once released. We further calculate the time available for
the attacker when the randomization is active as follows: 7y4pg = T; — TiiAand. The metric Trqna
tells us how much “slack time” available for an untrusted task to carry out any malicious action
(say observing the behavior of an victim task) before its next periodic invocation.

In Fig. 6a we plot this attacker burden (y-axis) against the utilization (x-axis) of both randomized
as well as vanilla systems, for a rate monotonic (RM) scheduler. As we see from the figure, the
purple dots (vanilla, without schedule obfuscation) show a much narrow range of times when tasks
execute — thus making it easier for adversaries to observe and recreate their behavior. When the
schedule obfuscation/randomization schemes are applied, the tasks appear more spread out and it
becomes harder for an adversary to predict their schedules and/or timing behavior.

The problem with introducing randomization techniques is that they increase context switch
overheads as shown in Fig. 6b — the y-axis plots the ratio of context switches in randomized
schedules to vanilla schedules while the x-axis plots the CPU utilization. As we see from the plot,
the randomized schedules have significantly higher context switch overheads but the attacker’s
burden provides information on the security gains obtained from such mechanisms to designers —
hence, they can decide whether the security vs. overheads trade-off is worth investing in.

Schedule obfuscation mechanisms increase the burden on attackers since they have less effective time
to recreate the behavior of a task as they must expend more time on observing the schedules.

Study 5: Comparison across all four Schemes

We finally compare all four schemes in Fig. 7 with a common metric (CPU load, x-axis in the figure)
and plot the attacker’s burden (y-axis, normalized into the interval [0, 1]). We note that while we
plot the observations from different schemes in a same figure for illustration purposes, they are four
different (and often complementary) techniques. For a pair of schemes (i, j), a higher value in y-axis
(say for a given CPU load) for technique i does not imply it adds a larger burden on the attacker
than j. Instead, the goal of our evaluation is to present the “trends” (i.e., whether the burden on the
attacker increases/reduces with varying CPU load) in the attacker’s burden metric for these four
distinct approaches. As we see in Fig. 7 (and also from our previous study), the time available for
an adversary is reduced (i.e., more burden) for the first three schemes (see §5.1, §5.2, §5.3.1) with
increased load. As we discussed in §6.1 (and also illustrated in Fig. 7), for randomization the time
between arrival and completion of a task is higher in the low-to-medium CPU loads. That is, a
system that with less than 60% load has more burden on the attacker (to infer the task execution
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Fig. 7. Comparison of different schemes under a common metric (CPU load). For the first three schemes
(i.e., except randomization), the available time to disrupt the system is reduced (i.e., more burden on the
attacker) with increased load. For randomization, the burden on the attacker (i.e., inferability of a task from
the schedule) is most in low-to-medium loads.

Table 5. Summary of Our Observations on the Attacker’s Burden

Approach Metric: Attacker’s Expression Observation

Burden
Integration of Time to recover the key — ABcrypto = % The time available for an adversary to
cryptographic inversely proportional to sN_ yM; % recover the key decreases for larger key
services the key size and number of =18yl sizes due to increased computing load
(§5.1) services

Periodic monitoring

(§5-2)

Time between invocations
of monitor task

ABmonitor = tj+1 - tj

Attacker’s burden metric captures the
trade-off between monitoring frequency
and computing load: unfettered, frequent
security monitoring can violate real-time
constraints

Leakage prevention

Time between flushing

ABfrush = Qp(tj+1 — 81V )

Our metric finds the effectiveness of

by flushing shared medium information leakage - increasing

(§5.3.1) frequency of critical task (for a given
observation frequency of an adversary)
can minimize the chances of cache
information leakage

Schedule Observability of task AByand = % Attacker’s burden metric captures the

randomization response times (difference ! difficulty of observing task execution

(§5.4) between arrival and pattern from a (randomized) schedule by

completion) to its period

calculating how sparsely a task appears

in the schedule

pattern from the schedule) than the highly utilized systems. The effect of randomization reduces
(less burden) in higher loads to ensure the timing constraints for all tasks.

Our attacker’s burden metric is able to capture differences and commonalities across the four distinct
scheduler-level security classes. For the first three approaches (integration of cryptographic primitives,
periodic monitoring, state cleaning techniques), the time available for an adversary reduces, hence,
more burden with increased load, while for randomization, the burden is more (i.e., task spread is
high and hard to infer) in systems with low-to-medium loads.

6.2 Summary

In this section we introduce the notion of the “attacker’s burden” (summarized in Table 5) and
methods to compute it for various real-time scheduler-based defense mechanisms. For each class
of defensive techniques introduced in §5, we are able to compute the reduced time available to an
adversary — these are directly comparable, even across defensive classes! By seeing how much time
is available to an adversary, along with the overheads that are imposed, we can design systems that
are tolerant to both — attacks as well as overheads.
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Table 6. Summary of Hardware/Software-Based Solutions

Technique [ Key Idea [ Overhead/Limitation
Memory isolation and access | Runtime memory access control through on- Platform dependent (e.g., requires
control [50-52] chip memory protection unit [50, 51] or software an on-chip memory protection
modules [52]. unit) [50, 51] and limited portability
(e.g., only supports bare-metal or
FreeRTOS applications) [51, 52]
Monitoring by separate Use verified/secure hardware module to monitor system | Limited compatibility with COTS
computing unit [49, 53-57] behavior (e.g., timing [53, 57], execution patterns [54], systems since they require custom
memory access [55], system call usage [56], control hardware/monitoring unit
flow [49])
Proactive defence by Periodic and/or event-driven (say when an Requires extra hardware for triggering
platform reboot [58-60] abnormal activity is detected) reboot and reload an (periodic/asynchronous) restart events
OS/applications from a read-only media
Trusted execution Leverage TEEs (i.e., TrustZone [61, 62] and SGX [63]) Context switch overheads; no
environment (TEE)-based to execute whole RTOS [62] or task segments [61, 63] isolation/protection among tasks
security [61-63] within a secure enclave running inside secure enclaves

7 OTHER RESEARCH

So far we discussed scheduler-level (software) solutions. There also exist techniques that use
hardware/software-based architectural frameworks (§7.1) and research on secure RTOS design
(§7.2) as we present in this section.

7.1 Hardware/Software-Based Mechanisms

We now present techniques that either require architectural support and/or custom hardware. (see
Table 6 for a summary).

7.1.1  Control Flow Integrity. Abdi et al. [49] propose a hardware-based mechanism where an
on-chip control flow monitoring module with a dedicated memory unit directly hooks into the
processor and tracks the control flow of the tasks. The monitoring module monitors the control
flow at runtime and compares it to a stored control flow graph (obtained offline).

Many modern micro-controllers (e.g., ARM Cortex-M and Cortex-R) provide hardware-enforced
memory isolation. MINION [50] leverages those COTS memory protection units (MPUs). All
software modules are executed in an unprivileged mode and only a lightweight software module is
allowed to run in the privileged mode - this is to reduce the attack surface and minimize privilege
mode switching overheads. A similar line of work is the RECFISH framework [51] that provides
a binary instrumentation method for ARM platforms that protects both, bare-metal applications
and those that run on a RTOS (FreeRTOS) by memory isolation. RECFISH uses hardware privilege-
levels and context switching to isolate shadow stacks from untrusted code. Du et al. [52] introduce
a software-based approach, Kage, that stores all control data in separate memory regions from
untrusted data. The authors implemented Kage as an extension to FreeRTOS. In Kage, (a) a Kage-
compliant compiler transforms code to protect critical memory regions and add control-flow
integrity checks and (b) a set of secure APIs allow safe updates to the protected data.

7.1.2  Slack-Aware Monitoring. As we mentioned earlier, the worst-case execution time estimation
for real-time tasks provides the designer a safe upper bound while determining the schedulability
of the system at the design time. However the tasks often run faster than conservatively estimated
timing bound, leaving behind dynamic slack (i.e., the time instance when no other task is executing).
Lo et al. [53] leverage this slack time and propose a hardware architecture for run-time monitoring
(i.e., monitoring is only performed when enough slack exists).
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7.1.3  Simplex-Based Security. Simplex [70] is a well-known real-time architecture for improved
fault-tolerance that utilizes a minimal, verified controller as backup when the main, high-
performance controller is not available or malfunctioning. While traditionally Simplex has been
used for fault-tolerance [88, 89], recently researchers propose to use Simplex-based architectures
for securing RTS [54-57, 59]. The key concept of using the Simplex for security is to use a minimal,
simple, subsystem (say a trusted core) to monitor the properties (i.e., timing [54, 57], memory
access [55], system call usage [56], behavioral anomalies [59]) of an untrusted entity that is designed
for more complex tasks and/or exposed to less secure mediums (e.g., network, I/O ports).

S3A and SecureCore Framework. In S3A [57], a trusted hardware component monitors the
execution behavior of a real-time control application running on a untrustworthy main system. The
S3A framework utilizes the knowledge of deterministic execution profile and timing of the system
(obtained at the design time) and use it to detect the violations (in execution time and activation
period of control tasks) of expected system behavior.

The SecureCore framework [54-56] utilizes a trusted entity that can continuously monitor
the behavior of a real-time application on an untrustworthy entity. The initial SecureCore
architecture [54] uses a statistical learning-based mechanism for profiling the correct execution
behavior. The SecureCore framework is also extended (a) to profile memory behavior [55] and (b)
detect anomalous executions using a distribution of system call frequencies[56].

Restart-Based Recovery. Both S3A and SecureCore are reactive security mechanisms in a sense that
they do not prevent the intrusions and only focus on the aftermath of the infection of application
codes. Abdi et al. [58—-60] propose a proactive mechanism (by restarting the platform). Unlike
conventional computing systems (e.g., servers, smartphones) restart-based mechanisms are much
harder to implement in RTS due to the temporal constraints and interactions with the physical
entities (for example, a UAV can quickly be destabilized if its controller restarts at the wrong time!).
They develop frameworks to frequently reboot the system and load a fresh image of the tasks and
OS from read-only media, so that attackers can have less time to either destabilize or even re-enter
the system and cause meaningful damage [58-60].

7.1.4  Trusted Execution Environments (TEEs) for RTS. While TEEs (such as ARM TrustZone [71]
and Intel SGX [90]) are supported by hardware, they still create significant overheads especially in
the context of RTS. In Super-TEE [61], multiple real-time code/application sections can fuse together
to reduce TEE (ARM TrustZone) execution overheads. FreeTEE [62], a virtualization-based solution,
allows Linux and FreeRTOS to execute simultaneously while maintaining real-time performance.
Although directly not in the context of security, hypervisor-based solutions that utilize TrustZone
for real-time use-cases have also been proposed in literature [91-94]. AegisDNN [63] uses SGX
enclaves to protect the critical part of real-time inference tasks. While researchers are exploring
techniques to incorporate TrustZone and SGX-based TEEs for real-time applications, research in
this segment requires further investigation.

7.2 Designing Secure Real-Time Operating Systems (RTOS)

One way to address threats at the RTOS level is to extend partitioning and provide isolation.
Commercial RTOS such as VxWorks [95] and QNX [96] have built-in security extensions. VxWorks
provides secure boot, a secure run-time loader (to prevent authorized access), network security
through SSL and encrypted containers [97]. QNX relies on secure programming standards (e.g.,
POSIX PSE52) and enables security by resource partitioning [98].

There also exists academic research to design secure RTOS (see Table 7). seL4 [65], a formally
verified, open-source, secure microkernel, supports real-time applications with different criticality
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Table 7. Research on Secure RTOS Design

Reference [ Approach [ Application Domain
seL4 [65] Formally verified microkernel-based hypervisor; provides isolation Domain independent
between security-critical applications

Composite [66] hardware isolated configurable components for better reliability/security | Domain independent
ERTOS [67] Resource isolation/protection for different subsystems Domain independent
AOS [64] Modular isolation and access control Avionics

TrackOS [68] RTOS-level control flow integrity protection Domain independent
GenRTOS [69] Generic OS abstractions with minimal (timing-related) services Domain independent

using temporal isolation. Composite [66] is an open-source minimal kernel with configurable
components. ERTOS [67] is another component-based RTOS that provides spatial and temporal
isolation for different subsystems.

AOS [64] is a modular kernel for avionics applications that provides fundamental services such as
secure initialization, resource, process and time management/synchronization, exception handling
and I/O support. TrackOS [68] provides built in support for control-flow integrity (CFI) checks
for real-time tasks. GenRTOS [69] is a generic low-level RTOS model that provide minimal OS
services (e.g., scheduling, time management, inter-process communication and device drivers) for
time-critical tasks.

8 DISCUSSION AND OPEN RESEARCH ISSUES

Research in RTS security domain is still relatively new. We now discuss the hurdles faced by the
researchers and potential future research directions.

8.1 Vulnerability and Damage Analysis

A better understanding of the vulnerabilities in RTS will enable designers to develop systems
with increased security (and hence safety) guarantees. From our study, we find that there exist
very few studies on attack mechanisms for RTS. For instance, the majority of the attacks were
demonstrated on single core platforms and a further study is required to understand scheduler-level
side-channels [16, 17] and effects of Butterfly attacks [18] for multicore RTS. We believe that an
important direction for future research is (i) identifying the risks/vulnerabilities (for both, single and
multicore RTS) and (ii) studying possible consequences of successful attacks, i.e., how much damage
an adversary can inflict.

8.2 Response and Recovery Mechanisms

A key reason for detecting attacks early is to provide enough information to system operators so
that they can respond to and recover from attacks. Research on human-computer interaction can
improve the awareness and responses of operators. Systems with real-time requirements often
use autonomous, decision-making algorithms for controlling elements in the physical world. In
addition to recovery with a human in the loop, there is also a need for automatic recovery (on
the detection of an attack). We find that while there exist some research in detection mechanisms
for RTS [32-36, 49, 53-56], they do not consider the after-effects of an intrusion. We need further
studies to design autonomous attack detection, isolation and response algorithms for safety-critical
RTS.

8.3 Certification and Regulatory Issues

A distinction of RTS, when compared to conventional IT security, is that software patching and
frequent updates are not well suited for critical systems. The addition of new security mechanisms
may pose safety concerns (e.g., a power plant was shut down because a computer rebooted after the
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installation of a patch [99]). Upgrading a safety-critical RTS requires months of advance planning
and many layers of certifications [100-102]. We find that the solutions proposed in the literature do
not explicitly consider certification/regulatory requirements in their design. Developing, analyzing
and testing of security solutions that comply with certification requirements is one of the key areas of
real-time security research.

8.4 Security for Legacy Systems

Large industrial control systems also have a significant amount of legacy components. Software
updates and patching might violate existing safety certifications. For properly securing such
legacy critical RTS, the underlying security mechanisms must satisfy some minimum performance
requirements and the implementation should be well tested and vetted by certification agencies.
Our study finds that the majority of the security solutions proposed in the literature are not directly
adaptable for legacy RTS (i.e., they are suitable for newer/customized systems). We believe that
(i) understanding of the security requirements (and vulnerabilities) of legacy systems and (ii) design
security techniques with little or no modification on existing hardware/software/components are
vital areas of research to secure billions of deployed safety-critical systems.

8.5 Security for Al-enabled Next-Generation Systems

While traditionally, application tasks in RTS carry out more straightforward functionalities such as
computations related to control loop updates, the advent of modern IoT-specific applications (such
as autonomous driving) and the emergence of edge computing bring the use of artificial intelligence
(AI) to real-time devices that require the end nodes to process large-scale data. Modern real-time
applications often require machine learning (ML)-based inferences for achieving intelligent features
such as object recognition, image and video processing, and natural language processing. Any
manipulation of ML parameters may lead to misclassification. There is a need to prevent the leakage
of critical parameters, including data structures and location in memory, while retaining real-time
requirements. Even in the presence of malicious actions, the degree of misclassification should
be contained within a permissible and predictable range and the task must not miss its deadlines.
There is a lack of predictable, secure and resilient ML models that work for resource-constraint
real-time devices. The development of real-time aware, secure and predictable ML/AI-driven system
is an open area that needs concerted research efforts from academia, industry researchers and
standardization bodies.

8.6 Availability of Evaluation Platforms

The lack of real-time benchmark programs and evaluation platforms is one of the major challenges
in real-time cyber-physical security research especially to perform a sound evaluation. This is partly
because of the diversity of real-time applications and software as well as the hardware-dependent
nature of cyber-physical platforms. In addition, the majority of safety-critical applications are
proprietary in nature and are rarely open-sourced. As a result, existing academic real-time security
research is mainly carried out using simulations and/or limited case studies (see §4-§7) instead of a
large-scale experimental evaluation. A better coordination between industry and academic researchers
can open up opportunities for more open evaluation platforms that can help the designers identify
potential vulnerabilities as we discuss next.

8.7 Privacy and Deterrence

In addition to security and safety-related problems, RTS can also have profound privacy implications.
RTS end devices can collect private data related to diverse human activities (e.g., location
information, driving habits, electricity consumption, biosensor data) at different levels of granularity.
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Table 8. Summary of Related Surveys and This Research

Reference [ Focus [ Article Type [ Remarks

Chali et al. [105] RTS security Survey Lacks qualitative comparison across different
schemes

Chen et al. [106] RTS security Survey Limited scope; summary of author’s own research
(14 papers)

Ravi et al. [107] Embedded systems security | Survey Survey of general embedded system security;
timing/safety constraints are not considered

Param et al. [108] Embedded systems security | Survey Survey of general embedded system security;
timing/safety constraints are not considered

Ding et al. [109] Industrial CPS security Survey Survey of industrial CPS security, timing constraints
are not considered

Humayed et al. [110] CPS security Survey Survey of CPS security, timing constraints are not
considered

Giraldo et al. [111] CPS security Survey of surveys Survey of CPS security surveys, timing constraints
are not considered

This work RTS security Survey, Through study of RTS security field with a review

systematization of 54 papers published in last 27 years, in-depth

analysis of scheduler-level defenses

Due to the passive manner of collection, end users are largely unaware of the process (e.g.,
automobile manufacturers are often remotely collecting a variety of driving history data from cars
in an effort to increase the reliability of their products) [103]. If the data collected by corporations is
exposed to other malicious actors (through a variety of legal or illegal means) it can be detrimental to
user privacy. Deterrence usually depends on successful legislation, law enforcement and international
collaboration for tracking crimes committed across geographical borders [104]. We believe that the
identification of new deterrence mechanisms for the security and privacy of RTS is a promising area
of research.

9 RELATED SURVEYS

There exist two prior surveys on RTS security. One of the earliest research by Chai et al. [105]
presents a short review of RTS security techniques. This is a relatively old work and newer papers
(2018 and beyond) are not covered. The survey also lacks qualitative comparisons across different
techniques. Our prior survey [106] is limited in scope since it includes our prior work only. In
contrast, in this paper, we (i) provide an in-depth review and taxonomy of RTS security solutions
and (ii) analyze various scheduler-level techniques with a newly introduced metric (i.e., attacker’s
burden).

There also exist prior surveys on security techniques for general embedded systems [107, 108] and
broader cyber-physical system (CPS) domains [109-111]. The intrinsic time and safety constraints
of RTS distinguish the security requirements/solutions those are proposed for general embedded
systems and/or CPS. Our survey complements prior work and provides a holistic overview of
the field (see Table 8 for a relative comparison). To the best of our knowledge, this is the first
comprehensive effort on systematizing real-time security research.

10  CONCLUSION

Modern real-time embedded systems have evolved in a complex manner due to autonomous
systems and cloud-like transparent infrastructure. They are also increasingly facing serious security
problems. There is a need for a multi-layered, systematic, engineering approach to secure such
critical systems. In this SoK we present a comprehensive review of RTS security issues and analyze
various scheduler-level techniques. It is our intent that this systematization will guide future
research efforts and ultimately improve the security of this field. We believe that our metric will
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help the designers to characterize security of systems — both, from the attacks and overhead
perspectives.
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APPENDIX
Table 9. Summary of the Included Papers
Publication Venue Count [ Reference
Major systems/security conferences 6 | Bernstein et al. [64], Du et al. [52], Kim et al. [50], Klein et al. [65],
Yoon et al. [43, 44]
Major real-time system journals and 17 | Bechtel et al. [19], Chen et al. [16], Chen et al. [42], Hasan et al. [34, 37],
conferences Jiang et al. [25], Kang et al. [23], Kriiger et al. [48], Lesi et al. [31],
Lo et al. [53], Mahfouzi et al. [18], Mohan et al. [38], Mukherjee et al. [61],
Pellizzoni et al. [39], Walls et al. [51], Xian et al. [63], Yoon et al. [45],
Yoon et al. [54]
Major embedded system journals and 5 | Abdi et al. [59, 60], Lesi et al. [30], Parmer et al. [66], Xie et al. [21]
conferences
Major design automaton conferences 3 | Hasan et al. [35, 36], Yoon et al. [55]
Miscellaneous (journals, conferences, 22 | Abad et al. [49], Abdi et al. [58], Baek et al. [47], Bao et al. [41], Chen et al. [67],
book chapters) Hamad et al. [32], Hao et al. [33], Jiang et al. [40] Jiang et al. [26],
Kiszka et al. [69], Lin et al. [22], Liu et al. [17], Mohan et al. [57], Pike et al. [68],
Pinto et al. [62], Saadatmand et al. [29], Qiu et al. [24], Vreman et al. [46],
Xie et al. [20], Yoon et al. [56], Zhang et al. [27, 28]
Total paper reviewed: 268
Total paper included: 54

"In our study, (i) systems/security conferences include: ACSAC, Asia CCS, CCS, DSN, Euro S&P, HOST, NDSS, OSDI, S&P, Security, SOSP; (ii)
real-time venues include: ECRTS, RTAS, RTCSA, RTNS, RTSS, RTS; (iii) embedded system venues include: EMSOFT, ICCPS, TECS, TC, IoT;
(iv) design automation conferences include: DAC, DATE. We mark the publication venue as miscellaneous if it does not belong to the above
list.

A.1 List of Included Papers
Table 9 lists the papers (and their publication venues) included in this study.

A.2 Experiment Setup

We developed an in-house simulator [83] for our analyses of the attacker’s burden introduced
in §6. Our simulator is platform-independent and written in Python 3.5. We evaluated all four
scheduler-level techniques using simulated workloads. The parameters (scheduling policy, priority
assignments, schedule duration, number of tasks, periods, execution times) selected in our
experiments are identical to those used by the real-time community [16, 34-39, 45]. Due to the
different semantics of the techniques, we customized the experiment setup and selected parameters
that are meaningful (and realistic) for different approaches, as presented below.

Integrating cryptography services (Fig. 3). We considered a periodic task with period 250 ms
(i.e., sampled at 4 Hz) ms and requires m = {0, 1, 2} cryptographic operations per job (where m is
varied as experimental parameter, see Fig. 3b). We used the values from earlier work [112] (that
measures the execution time of AES encryption for 1 MB messages with different key sizes running
on a quad core 1.2 GHz ARM Cortex-A7 platform) and calculated the computing load.

Periodic monitoring (Fig. 4). We considered [3, 15] real-time tasks (with periods [10, 1000] ms)
and a single security checking task (with varying periods as an experimental parameter). We
assigned rate monotonic priority order (i.e., tasks with shorter periods were assigned higher
priorities) [14]. We vary the system load from 2.5% to 97.5% with a step size of 2.5. For a given
system load, the individual task load was calculated by using the UUnifast algorithm [113] — since
this is a standard technique used by the real-time community. For each load condition, we generated
250 different tasksets. We considered the base period of the security task was 5000 ms and decreased
the periods (i.e., increased frequency of monitoring) from this base value. We found this value
by trial-and-error to ensure that all the generated tasksets were schedulable for demonstration
purposes.
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State cleansing mechanisms (Fig. 5). In this setup we considered 5 real-time tasks
and the system load was no more than 50%. The periods of the tasks were selected from
{25, 40, 50, 100, 125, 200, 250, 500, 1000} ms — this was to ensure that each taskset has a common
“hyperperiod” in our experiments. For a given load U; and period T; for task 7;, its (worst-case)
execution time was calculated by [T; X U;]. The task priorities follow rate monotonic order. The
attacker’s task (lowest priority) was sampled at 20 Hz (50 ms) and we selected the critical (i.e.,
victim) task period from {100, 125, 200, 250, 500, 1000} ms. For each period value, we generated
100 different taskset configurations. For each configuration, we simulated the schedule for one
hyperperiod (since the subsequent schedules will exhibit the same behavior due to the deterministic
execution pattern of the system). The flushing overhead was related to the task execution time, i.e.,

3

Schedule randomization (Fig. 6). In this experiment, we grouped the tasksets by computational
loads (i.e., {[0.001+0.1-x,0.140.1-x) X100% | 0 < x < 9Ax € Z}). Each group had 6 subgroups with
n={5,7,9, 11,13, 15} tasks and 100 task sets were generated for each subgroup. The generated task
sets were tested to be schedulable based on the rate monotonic priority assignment algorithm [14].
Researchers show that an attacker can learn critical information from a schedule [16] within a
duration of 10 - T where T is the least common multiple of the arrival rates — i.e., periods of the
observer task (the attacker’s task) and the victim task (the task under attack). We, therefore, set
this value as simulation duration in our experiments. We selected observer task and the victim task
with index (|_'—31J +1)and (n— L%J ), respectively, in a taskset of n tasks (indexed from 1 to n where
a larger index implies higher priority).

&] where C. is the execution time of the critical task.

A.3 Impact of Periodic Monitoring with Different System Loads

We also measure total computing load (y-axis in Fig. 8) while varying frequency (x-axis) for three
scenarios (i) low (total load less than 30%), (ii) medium (30%-50%) and (iii) high (more than 70%).
The red dotted line shows maximum (feasible) load (i.e., 100% processor utilization) and shaded
regions indicate overloaded system. As we see, allowing unfettered execution for the security tasks
(especially for medium-to-high utilization scenarios) can add a significant load to the system and
will break real-time requirements.
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Fig. 8. Trade-off between monitoring frequency and computing load: unfettered, frequent execution for the
monitoring task increases computing load significantly and can break real-time requirements.

®Hyperperiod is the smallest interval of time (typically defined as the least common multiple of the periods of the tasks)
after which the periodic patterns of all the tasks repeat.
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