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Abstract—There is growing interest in deploying the sharing-
economy-based business model to energy systems, with modalities
like peer-to-peer (P2P) energy trading, Electric Vehicles (EV)-
based Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H), Vehicle-
to-Vehicle (V2V), and Battery Swapping Technology (BST). This
paper exploits the increasing diffusion of EVs to realize a
crowdsourcing platform called e-Uber that jointly enables ride-
sharing and energy-sharing through V2G and BST. We employ
theoretical concepts of online spatial crowdsourcing, reinforce-
ment learning, and reverse auction to devise this novel platform.
Experimental results using real data from New York City taxi
trips and energy consumption show that e-Uber performs close
to the optimum and outperforms a state-of-the-art approach.

Index Terms—Online spatial crowdsourcing, V2G, energy-
sharing, ride-sharing, personalized recommendation, combina-
torial multi-armed bandit.

I. INTRODUCTION

With the recent advent of sharing-economy-based models
and their successful application in accommodation-sharing
(e.g. Airbnb, Vrbo) and ride-sharing (e.g. Uber, Lyft), re-
searchers have focused on applying this concept to energy
systems [1]. Energy-sharing modalities such as peer-to-peer
(P2P) energy trading [2], [3], and Electric Vehicle (EV)-based
Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H), Vehicle-to-
Vehicle (V2V) [4], as well as Battery Swapping Technology
(BST) [5] have been proposed as sustainable and flexible
approaches to balance the energy supply and demand for both
the grid and end-users [4], [6]. Especially, the rapid rise in EV
sales in recent years has created new opportunities for mobile
and flexible energy storage and management including ride-
sharing and energy-sharing services using EVs [4]. However,
no studies have been made so far to realize a platform that
jointly enables both ride-sharing and energy-sharing.

Crowdsourcing is an approach for recruiting workers from
a “crowd” to execute tasks [7], [8]. We believe that a crowd-
sourcing platform has the potential to also be successfully
applied to the combined ridesharing and energy-sharing sys-
tem, where fasks are ride- and energy-sharing requests that
can be performed by EV drivers, called workers. Tasks are
requested by task-requesters which include ride-sharing clients
as well as private or public energy customers. Examples
of such energy customers include a utility company and a
microgrid community looking to achieve demand response by
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shifting energy demand to V2G services at different locations,
specially during the time of peak energy demands [9]-[12].

In this work, we propose a novel crowdsourcing platform
called e-Uber that leverages the increasing diffusion of EVs
to enable joint ride-sharing and energy-sharing services. With
this platform, drivers equipped with EVs can not only transport
passengers through ride-sharing but also sell excess energy
stored in their batteries to the grid/houses during periods of
high demand through V2G or battery swapping [13]-[15]. e-
Uber has the potential to increase the earning potential for
drivers and also to help balance the energy demand and supply
for the grid while simultaneously fulfilling the mobility and
energy demands of consumers.

A few works on crowdsourcing have been proposed to
facilitate the integration of energy-sharing services with EVs.
Ai et al. [6] proposed a V2H-based omni-sharing modality
in a microgrid community to crowdsource energy from EVs.
Similarly, the authors in [16] propose an autonomous EV
(AEV)-based energy crowdsourcing approach, allowing AEVs
to participate in energy-sharing tasks for consumers placed
in the cloudlet. However, these approaches do not consider
the workers’ preferences as well as their limited ability of
selecting tasks when overwhelmed with choices and problems.
There have been a few spatial crowdsourcing work attempting
at solving the task assignment problem considering worker
preferences [8], [17], [18]. However, these approaches focus
on general uniform tasks, and do not consider ride-sharing
combined with energy-sharing.

To the best of our knowledge, in this paper we propose the
first crowdsourcing mechanism that jointly enables ride- and
energy-sharing to provide a multifaceted solution to existing
problems on efficiency and sustainability of transportation,
energy management, and cost-effective demand response using
EVs. e-Uber works in three decision stages: calculate a person-
alized task recommendation for each EV worker, collect bids
from workers, reverse auction-based winning bids selection.
We propose a preference-aware optimal task recommendation
problem, POTR, and a reinforcement learning mechanism,
called CARS to solve this POT'R problem by learning the
workers’ preferences over time based on their interaction with
the recommendations using Combinatorial Multi-Armed Ban-
dit framework [1]. Reverse auction is used for bidding and the
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Fig. 1. Working mechanism of e-Uber

winning bids are determined through an optimization frame-
work called Winning Bid Selection (WiBS). Proving that
WiBS problem is NP-hard, we propose bipartite matching-
based heuristic, BMW that finds solution to WiB.S' in poly-
nomial time. Through extensive experiments using real data,
we show that e-Uber outperforms state-of-the-art solutions and
realizes crowdsourcing of energy and ride-sharing. Extended
version of this paper can be found in the arXiv [19].

II. SYSTEM MODEL

We assume time to be divided in time slots. At each time slot
t, the set of tasks is referred to as S;, which are crowdsourced
to the workers. We refer to W; as the set of workers at time ¢.
Each task in S; is denoted by a tuple s; &« (24, cs;, dj) where
zj is the type of task (O—rideshare, 1—battery swapping, and
2—V2G), ¢, is the start position and d; is the destination of
task. For V2G tasks, although spatial in nature, start position
cs; is same as destination d;. We assume the utility company
submits V2G tasks as a result of an energy requirement E.
This is a typical assumption for demand response solutions
[9]-[11]. As a result, the total amount of energy provided
by workers through V2G must be at least £. Each worker
in W, is denoted by a tuple w; &ef (Cuw,» €15 T, T, where
¢; is the current position of the EV worker w; which can
be different to spatial task location cg;, e; is the energy per
unit range value in (kWh/km) that gives information about
how much energy the EV consumes to drive a unit distance,
r; is the available range of electrical vehicle in km given
by the remaining energy level in their batteries, and r" is
the minimum energy not to be exceeded after completing the
task to ensure sufficient energy for traveling to a charging
location. The energy required to perform task s; by worker
w; is denoted by [;;. e-Uber provides a list of tasks, called
recommendation list, to each worker. Workers then submit bids
to these tasks. The bid b;; € B represents the cost asked by
worker w; to perform task s;, where B is the set of all the
bids submitted by workers.

Existing works in crowdsourcing and energy-sharing using
EVs have generally assumed that workers would have com-
plete access to the list of available tasks and would pick the
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best task for them or, conversely, the crowsourcing platform
would assign tasks to workers regardless of their preference.
These assumptions are both undesirable. On the one hand
workers have limited time and ability to go over potentially
a very long list of tasks [1], and on the other, workers may
have different preferences to different tasks. In this work, we
recommend a limited list of relevant tasks to each worker
based on their preferences. We model the preferences as
@;.; € [0,1] denoting the probability that worker w; bids for
a task of type z;. These are called bidding probabilities. We
assume that these probabilities are unknown and thus need to
be learned over time by observing the workers’ behavior.

III. e-Uber: PROBLEM FORMULATION

Fig. 1 summarizes the steps involved in the e-Uber platform.
e-Uber collects a list of tasks S; at time ¢ as requested by task-
requesters which need to be crowdsourced to the EV-based
workers in W, (step 1). The platform sends a personalized list
of tasks to the workers based on their preferences (step 2) to
which they respond by submitting bids to the platform for the
tasks (step 3). Based on the received bids B; (step 4), e-Uber
uses reverse auction based algorithm to determine the winning
bids g* and final payment P for winners (step 5). Finally, the
worker preferences are updated based on their feedback for
the next time step (step 6). Given the nature of the considered
tasks, worker-task assignment is performed one-to-one.

As described above, the system involves solving two dif-
ferent problems. One is to recommend a set of tasks which
maximizes the likelihood of generating the maximum number
of bids, and thus improving the overall system performance.
Another problem is to select the winning bids for task assign-
ment and determine the final payment to crowdsource the tasks
to the workers. These two problems are discussed below.

maximize Z Z Qiz; Tij ()
w; EW s; €S
st > @y <K, Y, (1a)
s; €S
D w2, Vs, (1b)
w; €W
V2@
> gz > | |K, Y, (Ic)
s; €S |8‘
J
lijicij S (’I‘i - ,,,l'(nin)ei’ Vwi, Sj (ld)
wij =0, if |cs; — cw,| > A, Vw;, s (le)
Tij € {0,1}, Vw;, s; (1f)

A. Preference-aware Optimal Task Recommendation Problem

Our objective is to recommend a limited subset of tasks
to each workers which maximizes the likelihood of bidding
for these tasks, while avoiding to overwhelm workers with
a list above their cognitive capabilities. We formalize this
through the Preference-aware Optimal Task Recommendation
(POTR) problem as follows. In short, the problem aims at
maximizing the overall task bidding probabilities (hereafter
referred interchangeably as preferences) while limiting the size

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 12,2024 at 17:30:23 UTC from IEEE Xplore. Restrictions apply.



of the recommended list to K as well as ensuring that each
task is recommended to at least ¢ workers.

The objective function in Eq. (1) maximizes the sum of
individual bidding probabilities for each worker’s recom-
mended tasks. The binary decision variable z;; € {0,1} is
set to 1 if the task s; is included in the list of worker w;.
Constraint (1a) limits the length of each recommendation list
to K. In constraint (1b), each task is recommended to at least
P = L‘WlK workers. Also, we ensure that a minimum of

IS]
[V2G|x K
S|

V2G tasks are recommended to each workers in
constraint (1c). Constraint (1d) limits the energy consumption
for each recommended task, ensuring that an EV has enough
energy after performing that task to drive to charging location,
if required. Finally, constraint (1e) ensures that only the tasks
within A distance from workers are recommended.

The information on bidding probabilities is difficult to
obtain a priori as it is specific for each worker and include el-
ements of complex human psychology. Therefore, we assume
that the preferences are initially unknown and are learned by
observing the workers’ behavior with respect to the assigned
tasks. In section IV, we present a Combinatorial Multi-Armed
Bandit (CMAB)-based approach [1] to learn such preferences.

B. Winning Bid Selection and Final Payment Problem

After sending the personalized list of tasks to each worker,
e-Uber collects the bids. Given the collected bids, e-Uber
selects winning bids, i.e., the workers performing the tasks,
by solving the Winning Bid Selection (WiB.S) problem. This
problem determines the best bids which minimize the total
cost from perspective of task requesters. WiB.S can then be
formulated a costrained assignment problem as follows:

minimize Z Z bijqij 2)
w; EW s; €S
s.t. > @ <1, Y, (2a)
s; €S
Z aij =1, Vsj,z; <2 (2b)
w; EW
Z qij <1, Vsj,zj =2 (20)
w; EW
Z Z 9(zj)lijqi; > €, (2d)
w; EW s; €S
qij € {07 1}a Vwi,s]- (2e)

The objective function in Eq. (2) minimizes the total cost
of performing tasks from the collected bids. ¢;; is the binary
decision variable as defined in constraint (2e) that indicates
whether a bid b;; wins the auction and therefore the task s; is
assigned to worker w;. Constraint (2a) ensures that a worker
is assigned at most one task, while (2b) allows a ride-sharing
and battery swapping tasks (z; < 2) to be assigned to only
one worker. Similarly, constraint (2c) ensures that a V2G task
is assigned to at most one worker. Finally, constraint (2d),
ensures that at least £ amount of energy will be supplied
through V2G services. Note that the function g(z;) = 1 if
z; = 2 (V2G task) and zero otherwise.
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Following the winning bids selection by solving the WiBS
problem in Eq. (2), the final payment for each winning worker
wy, assigned with task s; is the second-to-the-selected bid re-
ceived for that task. Since with the second price payment rule,
the dominant strategy for all bidders is to bid truthful [20], it
ensures rational workers will provide truthful bids.

Theorem 1. WiBS problem defined in Eq. (2) is NP-hard.

Proof. The theorem can be proven providing a reduction from
the 0-1 min Knapsack (0-1 min-KP) problem [21]. The proof
is omitted due to space limitations (refer [19] for proof).

O

IV. E-UBER SOLUTION APPROACHES
A. CMAB-based Task Recommendation System

In order to solve the optimization problem in Eq. (1), it
is necessary to have beforehand knowledge on the workers
preferences. These are generally not known a priori in realistic
settings. Therefore, it becomes necessary to learn these pref-
erences during run-time, while simultaneously optimizing the
task assignment. To this purpose, we propose a reinforcement
learning approach inspired by the Combinatorial Multi-Armed
Bandit (CMAB) framework [1], [22].

Combinatorial Multi-Armed Bandit is a classic reinforce-
ment learning problem that consists of setup where agents
can choose a combination of different choices (i.e. certain
decision-making actions) and observe a combination of linear
rewards at each timestep. The long term objective for the
problem is to find a strategy that maximizes such reward
by selecting optimal actions. This strategy, better defined as
policy, needs to be learned based on how the agents choose to
interact with the system. The learning is carried out through
exploration vs. exploitation trade-off. Since, at the beginning,
the knowledge about how an agent chooses to engage with the
system is not known, the system learns by allowing agent to
choose from diverse options and therefore learning the user
interaction accordingly, referred to as exploration. With time,
the system gathers information about agent’s behavior and
uses that knowledge instead of sending out diverse range of
choices, called exploitation. By balancing this exploration and
exploitation mechanism over the course of time, the system
eventually picks up on agent’s behavior and learns optimal
strategy for them. In our problem setting, the workers are the
agents who needs to be sent out an optimal set of tasks so as
to accumulate good quality bids from them. Specifically, the
objective is to find the best possible task recommendations
(actions) to be sent to each workers (agent) that will result in
higher cumulative preferences for workers (reward).

Hence, in this section, based on this CMAB framework,
we design an algorithm called CMAB-based Algorithm for
task Recommendation System (CARS). CARS recommends the
personalized tasks to each workers based on current estimation
of worker preferences towards each task type. Note that the
worker preference is defined as the bidding probability in
section III that a worker will submit a bid for any task based
on its type. The algorithm then updates and learns these
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bidding probabilities based on the worker’s engagement on the
recommendation through bids. If the worker submits a bid, it
is considered to be a preferred recommendation and opposite,
if the worker chooses to ignore by not the submitting bid.
Based on this information, the preference of workers towards
each task type is updated.

Therefore, with F as the overall solution space that consists
of all feasible action matrices, the action matrix A(t) € F
corresponds to the optimal set of recommendation lists for
the timestep ¢. It consists of action values z;; € {0,1},
which is same as the decision variable in POTR problem.
Recall that it represents whether the task s; is in personalized
recommendation list of worker w; for timestep ¢. Given this
action matrix, the preference of worker w; towards each task
type z; is modeled as a random variable @;,, whose mean
value is @, and is initially unknown. The current knowledge
until timestep ¢ for these random variables @;.; is denoted by
the estimated expected @;.,. The reward for the platform for
selecting the action matrix A(t) at timestep ¢, is defined as
the sum of the preferences to each workers:

Raw(t) = Y ai(t)a;(t)

Wi ,8;

3

Since the distribution of @;.; is unknown, the goal of this
CMAB-based approach is to learn the policy, that minimizes
the overall regret up to time ¢. This regret is defined as the
difference between expected reward with perfect knowledge
of preferences and that obtained by the policy over time:

R(t) = tRjy (1) — E| S R (1) @)

t'=1

where R} £ (t) is the optimal reward obtained with perfect
knowledge of the preference variables. Even though minimiz-
ing the regret is a difficult problem, CARS ensures that the
regret is bounded, meaning the non-optimal actions will be
picked only a limited number of times and eventually the
learned policy will converge towards optimal. We present a
modified objective function from UCB1 algorithm to select
the action matrix as follows.

(az‘z]' + )

)
where @ = |[W| x |z;] is the total number of variables and
Mz, is the number of observations so far for the variable Qi -

At each timestep ¢, we solve the POTR problem with
CMAB-based objective function in Eq. (5) instead of Eq. (1)
and same constraints (1a)-(1f). By solving this modified prob-
lem, the sets of optimal actions (or recommendation lists)
for each workers are selected based on current estimate of
preferences until timestep (¢t — 1). For this purpose, we keep
track of the aizj, along with m;,. These two information
are then used to update the current estimation of the variable
@;.; at time ¢ based on the worker’s engagement with the

(Q+1)lnt

My
12

A(t) =argmax 3 D i

w;EW s; €S
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recommendation i.e. whether the worker chooses to submit
the bid or not. Needs to be noted that, if the worker chooses
to submit the bid, they must complete the task if assigned.

Qiz (1571)771,1ZJ (t71)+aiz.7 (t)

if0<b1jj<00,

Gz, (t) = M U4
' Qi (t—1) otherwise.
(6)
Mz, (t) = Mz, (t — 1) +1 (7)

However, as shown in Theorem (1), finding optimal solution
for winner determination problem (W3iB.S problem Egs. (1)-
(2e)) is NP-Hard problem. Therefore, we devise a bipartite
matching-based heuristic for winning bid determination with
polynomial time complexity for worker-task assignment.

B. Winning Bid Selection using Weighted Bipartite Matching

The WiBS problem formulation in Eq. (2) is an extension
of one-to-one weighted matching. However, this matching has
to select minimum weighted edges for task allocation with
energy budget constraints for V2G tasks. Therefore, we hereby
develop a heuristic inspired by bipartite minimum weighted
matching which can be solved in polynomial time using Karp’s
algorithm [23]. To satisfy the energy budget constraint, we
employ iterative matching that removes the highest weighted
edges from the previous matching until the budget is met. Sim-
ply put, the algorithm runs the minimum weighted matching
and if it does not satisfy the budget constraints, removes first z
highest weighted edges connected to non-V2G tasks from the
previous matching and then runs another round of matching
until the feasible solution is found.

This algorithm called Bipartite Matching-based Winner se-
lection (BMW) is presented in Alg. 1. BMW takes set of
available workers W, tasks S, and the set of bids B as input
and finds the winning bids with final pay P as the output.
In line 1, the algorithm initializes the output graph ®,,;, a
temporary graph ®,.,,,, for iterative matching purpose, and P.
Then it creates a separate sets for V2G and non-V2G tasks as
sets V and R in line 2 and collects the bids from all workers
(line 3). With the information on bids, BMW generates a
bipartite graph G between bipartite sets of workers W and
tasks S, and adds edges between those nodes that have non-
zero bids i.e. worker w; with non-zero bid b;; is connected
with task s; (lines 4 — 7). Now, it runs a bipartite matching
iteratively with while loop in lines 8 — 15. Initially, both of the
conditions for while loop are true and therefore the algorithm
runs first round of Minimum Weighted Bipartite Matching on
graph G (line 9). It then assigns the matched graph to the
output graph ®,,,; (line 10) and checks if the energy budget for
V2G tasks is satisfied (line 11). If it is met in the first round,
it breaks out of the while loop and determines final payment
and task assignment. If it is not met, BMW removes the first
z highest weighted edges in ®,,,; from G that just meet the
remaining of energy budget not met (line 12 — 13). Then,
since both of the conditions are still true, the algorithm runs
another round of matching on reduced graph G. Eventually the
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Algorithm 1: Bipartite Matching-based Winner selec-
tion (BMW)
Input : Sets of Workers (VV) and Spatial Tasks (S), Bids (1)
Output: Winning bids with final pay (P)
/+ Initialization
Pout = {WUS,E(} = @};‘btemp = ®7P =0 5
/= Generate bipartite graph G
Vs; € S, if g(z;) =1 then V < {s;} else R < {s;}:
Yw; € W, collect their respective bids B; ;
Build Bipartite Graph G = {WU S, Eg =0} ;
for each w; € W,s; € S do
| if by; > 0 then Add edge (wy, s;) to Eg with weight, b;;;
end
/+ Run minimum bipartite matching until termination
while > 9(zj)lij < E or Piemp # Pout do
(wi,s5)EEout
9 FEout <Perform Minimum Weighted Bipartite Matching on G}
Output graph @yt = {W US, Eout}, where Eout C Eq
/+ Remove edges if V2G energy budget is not
met, and run MWBM on reduced G again */
> g(Zj)li]‘ < & then
(wi,s5)€EEout
Z <—Select the first z highest weight edges € ®oy¢ and R
> 9(z)lij + 3 lij) > &
(w;,s5)€EEout (wi,s,)€Z
if Z # () then Remove all edges € Z from G and ®out
else (I)tean = DPout;
end

#/

#/

I N SR I Y

#/

®

if

o (

end

qQ* = Eout;

/+ Final Payment and Task Assignment

Vwy, € W, Py, < Second to the selected bid by ;;

Assign the tasks to winning workers along with final price P;

¥/

final matching in output graph ®,,, is used as winning task
assignments with final payment as per the bid (line 16 — 18).

V. EXPERIMENTAL RESULTS
A. Experimental Setup

Our experimental setup consists of modeling workers, tasks
and the simulation platform. In case of workers, we gathered
the publicly available data on 54 different EV models on
battery size, range, charging power and charging speed, and
formulated an individual profile for each EV in concern.
Similarly for ride-sharing tasks, the high volume taxi trip data
of New York City (NYC) from the year of 2013 [24] was used.
The V2G tasks were generated from the 15 minutes energy
consumption data from 25 NYC residences from PecanStreet
[25]. In absence of real dataset on battery swapping tasks,
half of the ride-sharing tasks were extracted as the battery
swapping tasks, given their similar profile with batteries trans-
ported instead of passengers. These tasks are spatial, therefore,
we collect the information on locations, distance, and time
required to complete the tasks. Bids were generated using a
Deep Neural Network (DNN) model. We used 11 months
of taxi data to train the DNN model with 80-20 train-test
split. The DNN model consisted of 3 hidden layers of sizes
(132,132, 64). We employed ReLU activation function as well
as one-hot encoding for the input features.

Furthermore, the simulation platform, e-Uber is developed
in Python using Gurobi, NetworkX, and PyTorch libraries. We
consider a reverse auction period resolution of 15 minutes
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which corresponds to the resolution set by grid for real-time
energy trading. This means that every 15 minutes the e-Uber
algorithm will collect the tasks, push the personalized list of
tasks to workers, collect the bids and assign the tasks to EV
workers that minimizes the overall cost for the task requesters.
We set the search radius for the tasks A = 10 km and the
maximum length of recommendation list K = 5. The energy
budget for each 15 minutes time period was considered to be
total of all 25 V2G tasks available. The user preferences were
sampled uniformly from the set {0.1,0.4,0.5,0.7,0.9,1.0}.
The energy, time and location of the EVs are tracked and
updated accordingly so as to simulate their real-world trip
behavior. If the battery level of the cars fall below a minimum,
they are considered for the charging for the next time-step.

For comparison approach, we use the task-centric winner
selection algorithm from [26] and refer it as BG for baseline
greedy. This approach neither considers user-preference in the
problem-setting nor it considers the personalized recommenda-
tion system. So for fair comparison, we augment this method
with perfect knowledge-based recommendation system that
pushes K best tasks as recommendation to each workers. Then
we implement the algorithm as presented in [26] that sorts
the bids from lowest to highest for each tasks and assigns
them one by one. Note that this approach may not guarantee
a complete matching between workers and tasks as the tasks
that are processed towards the end may not have any workers
left to choose from because of limited number of bids and
greedy selection approach. We use this BG as our baseline
and compare the performance of our algorithms CARS and
BMW along with their perfect knowledge variation PK
which has the perfect knowledge on the worker preferences
and thus do not involve learning, and O PT" optimal solution to
WiBS problem. The ride-share dataset in concern consists of
actual ride-fare for specific car. However, we require bids from
each vehicle for recommended tasks and a realistic model for
bid generation is quite difficult to obtain. Therefore we trained
a Deep Neural Network with existing dataset for determining
the ride fare of the given ride-sharing tasks, the details of
which is presented in the following.

B. Results

1. Performance over time — Total Cost and # of Tasks: In
the first experimental scenario, we observe the performance
of algorithms as a snapshot of objective values over 24 hours
(i.e. 24 x 4 = 96 timeslots). We present the objective values
from midnight to next midnight as a lineplot in Fig. 2 and
cumulative bar plots of objective values (Fig. 3) and total
tasks completed (Fig. 4) over a day. Although all the pro-
posed approaches start from the same initial state (except for
knowledge on preference), these algorithms may have different
successive states since the solution is affected by the matching
in previous timeslot, availability of specific workers for next
round, and the distance travelled by these workers for pre-
vious assignment (or next assignment). Therefore, we employ
cumulative objective values and cumulative tasks completed as
the metric for a fair comparison of the approaches in Fig. 3.
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This cumulative objective value reflects the overall quality
of task assignment made so far based on the total objective
values to achieve the requirement while the cumulative tasks
completed present the total number of matches made by the
respective approach until the end of that timeslot. As seen in
the lineplot Fig. 2 and barplot Fig. 3, the solution generated by
baseline greedy approach BG is the minimum one as it assigns
task based on respective cheapest bid available but it doesn’t
meet the maximum number of matching possible unlike other
approaches as shown in Fig.4. Therefore, BG mostly violates
the V2G requirement, meaning it generates infeasible solutions
and hence fails for this problem setting. The PK — OPT
produces the best result since it involves solving the POT R
and WiBS problem optimally with perfect knowledge of
the worker preferences. Following it, is the optimal solution
OPT paired with our proposed learning framework for e-Uber,
CARS, which performs close to optimal in terms of both
objective values and number of tasks completed. Although this
approach CARS — OPT finds optimal solution, it does not
have initial knowledge on preferences. Therefore, it generates
sub-optimal recommendation list which then affects the solu-
tion to WiBS problem and hence, the overall performance.
However, even with online learning framework employed, it
produces similar results to the PK — OPT.

Also we observe similar pattern with PK — BMW and
CARS — BMW since they both rely on bipartite matching-
based approach to find feasible solution. Since PK — BMW
sends the optimal recommendation to workers for collecting

Fig. 6. Avg. price/task vs. V2G (%)
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Fig. 7. Mean Absolute Error vs. time

bids, it therefore has higher overall performance compared to
CARS — BMW which learns the preferences over time. The
price gap between best performing PK — OPT and worst
performing CARS — BMW however is less than $150 in the
worst case which amounts to a price hike of ~ $3/task with
an average 50 tasks for a timeslot. We observe the cumulative
objective values grow almost linearly for all approaches and
as expected, the performance observed was better for PK —
OPT followed by CARS — OPT and then PK — BMW
and finally CARS — BMW . However, the gap in cumulative
objective value increased for the bipartite heuristic compared
to optimal due to its sub-optimal performance. Note that the
baseline BG generates less cumulative objective value but it
fails to generate maximal matching as seen in Fig. 4. The
number of tasks completed by the proposed approaches exceed
850 more than the BG in the span 24 hours.

2. Average final price per task and scaling: In this experi-
ment, we track the average final price per task while scaling
the available tasks from 32% to 64% and then at 100%. For
scaling the tasks, we increase the number of each type of tasks
proportionally. The result is plotted in Fig. 5. As the system
scales, the average final price per task for all approaches rises
since the overall cost for the system also increases with the
tasks. However, it is also observed that CARS — BMW and
BMW — PK suffer more as we scale the system. The margin
between these and optimal approaches grows drastically up
to ~ $2. This can be attributed mainly to the increased
complexity of the problem as number of tasks is increased and
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hence the bipartite matching-based heuristic finds less efficient
solution compared to optimal. The optimal solutions however
have nominal increase in their average price per task (~ $10)
even with scaling compared to rest. We also study the effect of
scaling V2G tasks to the average final price per task in Fig. 6.
We observed similar trend to above but with noticeable gap
between optimal and heuristic approaches when only 32% of
V2G tasks are available. This results from the sub-optimal
performance owing to less number of V2G tasks compared to
rest and hence unequal rate of learning the preferences.

3. Learning accuracy for preferences — MAE: To study the
learning accuracy of proposed CARS algorithm in conjunc-
tion with optimal and BM W, we use the Mean Absolute Error
(MAE) of the learned preferences over time as in Fig. 7.
Both approaches use the same learning algorithm but the
solution to W3iBS problem differs and thus affects the learn-
ing performance. However, this difference is very negligible.
Initially, the MAE is 0.28, which rapidly decreases to less than
0.05 for both approaches by 250 timesteps, showing marginal
difference in learning efficacy between them. Since by 500
timesteps the system has garnered sufficient knowledge on
workers preferences, MAE falls to 0.03 reflecting the efficacy
of proposed CMAB-based preference learning.

VI. CONCLUSION

e-Uber is a promising crowdsourcing platform for improv-
ing the efficiency and sustainability of ride-sharing and energy-
sharing services through the use of EVs. It uses reverse auction
mechanism to assign spatial tasks to EV drivers based on their
preferences, battery level, and other realistic constraints like
minimum energy requirement for grid and one-to-one assign-
ment. Results using real data show that e-Uber outperforms
recently proposed state-of-the-art solutions.
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