
e-Uber: A Crowdsourcing Platform for Electric
Vehicle-based Ride- and Energy-sharing

Ashutosh Timilsina
Department of Computer Science

University of Kentucky
Lexington, USA

ashutosh.timilsina@uky.edu

Simone Silvestri
Department of Computer Science

University of Kentucky
Lexington, USA

simone.silvestri@uky.edu

Abstract—There is growing interest in deploying the sharing-
economy-based business model to energy systems, with modalities
like peer-to-peer (P2P) energy trading, Electric Vehicles (EV)-
based Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H), Vehicle-
to-Vehicle (V2V), and Battery Swapping Technology (BST). This
paper exploits the increasing diffusion of EVs to realize a
crowdsourcing platform called e-Uber that jointly enables ride-
sharing and energy-sharing through V2G and BST. We employ
theoretical concepts of online spatial crowdsourcing, reinforce-
ment learning, and reverse auction to devise this novel platform.
Experimental results using real data from New York City taxi
trips and energy consumption show that e-Uber performs close
to the optimum and outperforms a state-of-the-art approach.

Index Terms—Online spatial crowdsourcing, V2G, energy-
sharing, ride-sharing, personalized recommendation, combina-
torial multi-armed bandit.

I. INTRODUCTION

With the recent advent of sharing-economy-based models

and their successful application in accommodation-sharing

(e.g. Airbnb, Vrbo) and ride-sharing (e.g. Uber, Lyft), re-

searchers have focused on applying this concept to energy

systems [1]. Energy-sharing modalities such as peer-to-peer

(P2P) energy trading [2], [3], and Electric Vehicle (EV)-based

Vehicle-to-Grid (V2G), Vehicle-to-Home (V2H), Vehicle-to-

Vehicle (V2V) [4], as well as Battery Swapping Technology

(BST) [5] have been proposed as sustainable and flexible

approaches to balance the energy supply and demand for both

the grid and end-users [4], [6]. Especially, the rapid rise in EV

sales in recent years has created new opportunities for mobile

and flexible energy storage and management including ride-

sharing and energy-sharing services using EVs [4]. However,

no studies have been made so far to realize a platform that

jointly enables both ride-sharing and energy-sharing.

Crowdsourcing is an approach for recruiting workers from

a “crowd” to execute tasks [7], [8]. We believe that a crowd-

sourcing platform has the potential to also be successfully

applied to the combined ridesharing and energy-sharing sys-

tem, where tasks are ride- and energy-sharing requests that

can be performed by EV drivers, called workers. Tasks are

requested by task-requesters which include ride-sharing clients

as well as private or public energy customers. Examples

of such energy customers include a utility company and a

microgrid community looking to achieve demand response by

shifting energy demand to V2G services at different locations,

specially during the time of peak energy demands [9]–[12].

In this work, we propose a novel crowdsourcing platform

called e-Uber that leverages the increasing diffusion of EVs

to enable joint ride-sharing and energy-sharing services. With

this platform, drivers equipped with EVs can not only transport

passengers through ride-sharing but also sell excess energy

stored in their batteries to the grid/houses during periods of

high demand through V2G or battery swapping [13]–[15]. e-

Uber has the potential to increase the earning potential for

drivers and also to help balance the energy demand and supply

for the grid while simultaneously fulfilling the mobility and

energy demands of consumers.

A few works on crowdsourcing have been proposed to

facilitate the integration of energy-sharing services with EVs.

Ai et al. [6] proposed a V2H-based omni-sharing modality

in a microgrid community to crowdsource energy from EVs.

Similarly, the authors in [16] propose an autonomous EV

(AEV)-based energy crowdsourcing approach, allowing AEVs

to participate in energy-sharing tasks for consumers placed

in the cloudlet. However, these approaches do not consider

the workers’ preferences as well as their limited ability of

selecting tasks when overwhelmed with choices and problems.

There have been a few spatial crowdsourcing work attempting

at solving the task assignment problem considering worker

preferences [8], [17], [18]. However, these approaches focus

on general uniform tasks, and do not consider ride-sharing

combined with energy-sharing.

To the best of our knowledge, in this paper we propose the

first crowdsourcing mechanism that jointly enables ride- and

energy-sharing to provide a multifaceted solution to existing

problems on efficiency and sustainability of transportation,

energy management, and cost-effective demand response using

EVs. e-Uber works in three decision stages: calculate a person-

alized task recommendation for each EV worker, collect bids

from workers, reverse auction-based winning bids selection.

We propose a preference-aware optimal task recommendation

problem, POTR, and a reinforcement learning mechanism,

called CARS to solve this POTR problem by learning the

workers’ preferences over time based on their interaction with

the recommendations using Combinatorial Multi-Armed Ban-

dit framework [1]. Reverse auction is used for bidding and the
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Fig. 1. Working mechanism of e-Uber

winning bids are determined through an optimization frame-

work called Winning Bid Selection (WiBS). Proving that

WiBS problem is NP-hard, we propose bipartite matching-

based heuristic, BMW that finds solution to WiBS in poly-

nomial time. Through extensive experiments using real data,

we show that e-Uber outperforms state-of-the-art solutions and

realizes crowdsourcing of energy and ride-sharing. Extended

version of this paper can be found in the arXiv [19].

II. SYSTEM MODEL

We assume time to be divided in time slots. At each time slot

t, the set of tasks is referred to as St, which are crowdsourced

to the workers. We refer to Wt as the set of workers at time t.

Each task in St is denoted by a tuple sj
def
= 〈zj , csj , dj〉 where

zj is the type of task (0−rideshare, 1−battery swapping, and

2−V2G), csj is the start position and dj is the destination of

task. For V2G tasks, although spatial in nature, start position

csj is same as destination dj . We assume the utility company

submits V2G tasks as a result of an energy requirement E .

This is a typical assumption for demand response solutions

[9]–[11]. As a result, the total amount of energy provided

by workers through V2G must be at least E . Each worker

in Wt is denoted by a tuple wi
def
= 〈cwi , ei, ri, r

min
i 〉, where

ci is the current position of the EV worker wi which can

be different to spatial task location csj , ei is the energy per

unit range value in (kWh/km) that gives information about

how much energy the EV consumes to drive a unit distance,

ri is the available range of electrical vehicle in km given

by the remaining energy level in their batteries, and rmin
i is

the minimum energy not to be exceeded after completing the

task to ensure sufficient energy for traveling to a charging

location. The energy required to perform task sj by worker

wi is denoted by lij . e-Uber provides a list of tasks, called

recommendation list, to each worker. Workers then submit bids

to these tasks. The bid bij ∈ B represents the cost asked by

worker wi to perform task sj , where B is the set of all the

bids submitted by workers.

Existing works in crowdsourcing and energy-sharing using

EVs have generally assumed that workers would have com-

plete access to the list of available tasks and would pick the

best task for them or, conversely, the crowsourcing platform

would assign tasks to workers regardless of their preference.

These assumptions are both undesirable. On the one hand

workers have limited time and ability to go over potentially

a very long list of tasks [1], and on the other, workers may

have different preferences to different tasks. In this work, we

recommend a limited list of relevant tasks to each worker

based on their preferences. We model the preferences as

αizj ∈ [0, 1] denoting the probability that worker wi bids for

a task of type zj . These are called bidding probabilities. We

assume that these probabilities are unknown and thus need to

be learned over time by observing the workers’ behavior.

III. e-Uber: PROBLEM FORMULATION

Fig. 1 summarizes the steps involved in the e-Uber platform.

e-Uber collects a list of tasks St at time t as requested by task-

requesters which need to be crowdsourced to the EV-based

workers in Wt (step 1). The platform sends a personalized list

of tasks to the workers based on their preferences (step 2) to

which they respond by submitting bids to the platform for the

tasks (step 3). Based on the received bids Bt (step 4), e-Uber

uses reverse auction based algorithm to determine the winning

bids q∗ and final payment P for winners (step 5). Finally, the

worker preferences are updated based on their feedback for

the next time step (step 6). Given the nature of the considered

tasks, worker-task assignment is performed one-to-one.

As described above, the system involves solving two dif-

ferent problems. One is to recommend a set of tasks which

maximizes the likelihood of generating the maximum number

of bids, and thus improving the overall system performance.

Another problem is to select the winning bids for task assign-

ment and determine the final payment to crowdsource the tasks

to the workers. These two problems are discussed below.

maximize
∑

wi∈W

∑
sj∈S

αizjxij (1)

s.t.
∑
sj∈S

xij ≤ K, ∀wi (1a)

∑
wi∈W

xij ≥ ψ, ∀sj (1b)

∑
sj∈S

g(zj)xij ≥ |V 2G|
|S| K, ∀wi (1c)

lijxij ≤ (ri − rmin
i )ei, ∀wi, sj (1d)

xij = 0, if |csj − cwi | > λ, ∀wi, sj (1e)

xij ∈ {0, 1}, ∀wi, sj (1f)

A. Preference-aware Optimal Task Recommendation Problem

Our objective is to recommend a limited subset of tasks

to each workers which maximizes the likelihood of bidding

for these tasks, while avoiding to overwhelm workers with

a list above their cognitive capabilities. We formalize this

through the Preference-aware Optimal Task Recommendation

(POTR) problem as follows. In short, the problem aims at

maximizing the overall task bidding probabilities (hereafter

referred interchangeably as preferences) while limiting the size
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of the recommended list to K as well as ensuring that each

task is recommended to at least ψ workers.

The objective function in Eq. (1) maximizes the sum of

individual bidding probabilities for each worker’s recom-

mended tasks. The binary decision variable xij ∈ {0, 1} is

set to 1 if the task sj is included in the list of worker wi.

Constraint (1a) limits the length of each recommendation list

to K. In constraint (1b), each task is recommended to at least

ψ =
⌊
|W|K
|S|

⌋
workers. Also, we ensure that a minimum of

|V 2G|×K
|S| V2G tasks are recommended to each workers in

constraint (1c). Constraint (1d) limits the energy consumption

for each recommended task, ensuring that an EV has enough

energy after performing that task to drive to charging location,

if required. Finally, constraint (1e) ensures that only the tasks

within λ distance from workers are recommended.

The information on bidding probabilities is difficult to

obtain a priori as it is specific for each worker and include el-

ements of complex human psychology. Therefore, we assume

that the preferences are initially unknown and are learned by

observing the workers’ behavior with respect to the assigned

tasks. In section IV, we present a Combinatorial Multi-Armed
Bandit (CMAB)-based approach [1] to learn such preferences.

B. Winning Bid Selection and Final Payment Problem

After sending the personalized list of tasks to each worker,

e-Uber collects the bids. Given the collected bids, e-Uber

selects winning bids, i.e., the workers performing the tasks,

by solving the Winning Bid Selection (WiBS) problem. This

problem determines the best bids which minimize the total

cost from perspective of task requesters. WiBS can then be

formulated a costrained assignment problem as follows:

minimize
∑

wi∈W

∑
sj∈S

bijqij (2)

s.t.
∑
sj∈S

qij ≤ 1, ∀wi (2a)

∑
wi∈W

qij = 1, ∀sj , zj < 2 (2b)

∑
wi∈W

qij ≤ 1, ∀sj , zj = 2 (2c)

∑
wi∈W

∑
sj∈S

g(zj)lijqij ≥ E, (2d)

qij ∈ {0, 1}, ∀wi, sj (2e)

The objective function in Eq. (2) minimizes the total cost

of performing tasks from the collected bids. qij is the binary

decision variable as defined in constraint (2e) that indicates

whether a bid bij wins the auction and therefore the task sj is

assigned to worker wi. Constraint (2a) ensures that a worker

is assigned at most one task, while (2b) allows a ride-sharing

and battery swapping tasks (zj < 2) to be assigned to only

one worker. Similarly, constraint (2c) ensures that a V2G task

is assigned to at most one worker. Finally, constraint (2d),

ensures that at least E amount of energy will be supplied

through V2G services. Note that the function g(zj) = 1 if

zj = 2 (V2G task) and zero otherwise.

Following the winning bids selection by solving the WiBS
problem in Eq. (2), the final payment for each winning worker

wk assigned with task sj is the second-to-the-selected bid re-

ceived for that task. Since with the second price payment rule,

the dominant strategy for all bidders is to bid truthful [20], it

ensures rational workers will provide truthful bids.

Theorem 1. WiBS problem defined in Eq. (2) is NP-hard.

Proof. The theorem can be proven providing a reduction from

the 0-1 min Knapsack (0-1 min-KP) problem [21]. The proof

is omitted due to space limitations (refer [19] for proof).

IV. E-UBER SOLUTION APPROACHES

A. CMAB-based Task Recommendation System

In order to solve the optimization problem in Eq. (1), it

is necessary to have beforehand knowledge on the workers

preferences. These are generally not known a priori in realistic

settings. Therefore, it becomes necessary to learn these pref-

erences during run-time, while simultaneously optimizing the

task assignment. To this purpose, we propose a reinforcement

learning approach inspired by the Combinatorial Multi-Armed

Bandit (CMAB) framework [1], [22].

Combinatorial Multi-Armed Bandit is a classic reinforce-

ment learning problem that consists of setup where agents

can choose a combination of different choices (i.e. certain

decision-making actions) and observe a combination of linear

rewards at each timestep. The long term objective for the

problem is to find a strategy that maximizes such reward

by selecting optimal actions. This strategy, better defined as

policy, needs to be learned based on how the agents choose to

interact with the system. The learning is carried out through

exploration vs. exploitation trade-off. Since, at the beginning,

the knowledge about how an agent chooses to engage with the

system is not known, the system learns by allowing agent to

choose from diverse options and therefore learning the user

interaction accordingly, referred to as exploration. With time,

the system gathers information about agent’s behavior and

uses that knowledge instead of sending out diverse range of

choices, called exploitation. By balancing this exploration and

exploitation mechanism over the course of time, the system

eventually picks up on agent’s behavior and learns optimal

strategy for them. In our problem setting, the workers are the

agents who needs to be sent out an optimal set of tasks so as

to accumulate good quality bids from them. Specifically, the

objective is to find the best possible task recommendations

(actions) to be sent to each workers (agent) that will result in

higher cumulative preferences for workers (reward).

Hence, in this section, based on this CMAB framework,

we design an algorithm called CMAB-based Algorithm for
task Recommendation System (CARS). CARS recommends the

personalized tasks to each workers based on current estimation

of worker preferences towards each task type. Note that the

worker preference is defined as the bidding probability in

section III that a worker will submit a bid for any task based

on its type. The algorithm then updates and learns these
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bidding probabilities based on the worker’s engagement on the

recommendation through bids. If the worker submits a bid, it

is considered to be a preferred recommendation and opposite,

if the worker chooses to ignore by not the submitting bid.

Based on this information, the preference of workers towards

each task type is updated.

Therefore, with F as the overall solution space that consists

of all feasible action matrices, the action matrix A(t) ∈ F
corresponds to the optimal set of recommendation lists for

the timestep t. It consists of action values xij ∈ {0, 1},

which is same as the decision variable in POTR problem.

Recall that it represents whether the task sj is in personalized

recommendation list of worker wi for timestep t. Given this

action matrix, the preference of worker wi towards each task

type zj is modeled as a random variable ᾱizj whose mean

value is αizj and is initially unknown. The current knowledge

until timestep t for these random variables ᾱizj is denoted by

the estimated expected α̂izj . The reward for the platform for

selecting the action matrix A(t) at timestep t, is defined as

the sum of the preferences to each workers:

RA(t)(t) =
∑
wi,sj

xij(t)ᾱij(t) (3)

Since the distribution of ᾱizj is unknown, the goal of this

CMAB-based approach is to learn the policy, that minimizes

the overall regret up to time t. This regret is defined as the

difference between expected reward with perfect knowledge

of preferences and that obtained by the policy over time:

R(t) = tR∗
A(t)(t)− E

[ t∑
t′=1

RA(t′)(t
′)], (4)

where R∗
A(t)(t) is the optimal reward obtained with perfect

knowledge of the preference variables. Even though minimiz-

ing the regret is a difficult problem, CARS ensures that the

regret is bounded, meaning the non-optimal actions will be

picked only a limited number of times and eventually the

learned policy will converge towards optimal. We present a

modified objective function from UCB1 algorithm to select

the action matrix as follows.

A(t) = argmax
A∈F

∑
wi∈W

∑
sj∈S

xij

(
α̂izj +

√
(Q+ 1) ln t

mizj

)
(5)

where Q = |W| × |zj | is the total number of variables and

mizj is the number of observations so far for the variable ᾱizj .

At each timestep t, we solve the POTR problem with

CMAB-based objective function in Eq. (5) instead of Eq. (1)

and same constraints (1a)-(1f). By solving this modified prob-

lem, the sets of optimal actions (or recommendation lists)

for each workers are selected based on current estimate of

preferences until timestep (t − 1). For this purpose, we keep

track of the α̂izj , along with mizj . These two information

are then used to update the current estimation of the variable

ᾱizj at time t based on the worker’s engagement with the

recommendation i.e. whether the worker chooses to submit

the bid or not. Needs to be noted that, if the worker chooses

to submit the bid, they must complete the task if assigned.

α̂izj (t) =

⎧⎨⎩
α̂izj

(t−1)mizj
(t−1)+αizj

(t)

mizj
(t−1)+1 if 0 < bij < ∞,

α̂izj (t− 1) otherwise.

(6)

mizj (t) = mizj (t− 1) + 1 (7)

However, as shown in Theorem (1), finding optimal solution

for winner determination problem (WiBS problem Eqs. (1)-

(2e)) is NP-Hard problem. Therefore, we devise a bipartite

matching-based heuristic for winning bid determination with

polynomial time complexity for worker-task assignment.

B. Winning Bid Selection using Weighted Bipartite Matching

The WiBS problem formulation in Eq. (2) is an extension

of one-to-one weighted matching. However, this matching has

to select minimum weighted edges for task allocation with

energy budget constraints for V2G tasks. Therefore, we hereby

develop a heuristic inspired by bipartite minimum weighted

matching which can be solved in polynomial time using Karp’s

algorithm [23]. To satisfy the energy budget constraint, we

employ iterative matching that removes the highest weighted

edges from the previous matching until the budget is met. Sim-

ply put, the algorithm runs the minimum weighted matching

and if it does not satisfy the budget constraints, removes first z
highest weighted edges connected to non-V2G tasks from the

previous matching and then runs another round of matching

until the feasible solution is found.

This algorithm called Bipartite Matching-based Winner se-
lection (BMW) is presented in Alg. 1. BMW takes set of

available workers W , tasks S, and the set of bids B as input

and finds the winning bids with final pay P as the output.

In line 1, the algorithm initializes the output graph Φout, a

temporary graph Φtemp for iterative matching purpose, and P .

Then it creates a separate sets for V2G and non-V2G tasks as

sets V and R in line 2 and collects the bids from all workers

(line 3). With the information on bids, BMW generates a

bipartite graph G between bipartite sets of workers W and

tasks S, and adds edges between those nodes that have non-

zero bids i.e. worker wi with non-zero bid bij is connected

with task sj (lines 4 − 7). Now, it runs a bipartite matching

iteratively with while loop in lines 8−15. Initially, both of the

conditions for while loop are true and therefore the algorithm

runs first round of Minimum Weighted Bipartite Matching on

graph G (line 9). It then assigns the matched graph to the

output graph Φout (line 10) and checks if the energy budget for

V2G tasks is satisfied (line 11). If it is met in the first round,

it breaks out of the while loop and determines final payment

and task assignment. If it is not met, BMW removes the first

z highest weighted edges in Φout from G that just meet the

remaining of energy budget not met (line 12 − 13). Then,

since both of the conditions are still true, the algorithm runs

another round of matching on reduced graph G. Eventually the
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Algorithm 1: Bipartite Matching-based Winner selec-

tion (BMW)

Input : Sets of Workers (W) and Spatial Tasks (S), Bids (B)
Output: Winning bids with final pay (P)
/* Initialization */

1 Φout = {W ∪ S, EΦ = ∅}; Φtemp = ∅;P = ∅ ;
/* Generate bipartite graph G */

2 ∀sj ∈ S, if g(zj) = 1 then V ← {sj} else R ← {sj};
3 ∀wi ∈ W , collect their respective bids Bi ;
4 Build Bipartite Graph G = {W ∪ S, EG = ∅} ;
5 for each wi ∈ W, sj ∈ S do
6 if bij > 0 then Add edge (wi, sj) to EG with weight, bij ;
7 end
/* Run minimum bipartite matching until termination */

8 while
∑

(wi,sj)∈Eout

g(zj)lij < E or Φtemp 	= Φout do

9 Eout ←Perform Minimum Weighted Bipartite Matching on G;
10 Output graph Φout = {W ∪ S, Eout}, where Eout ⊆ EG ;

/* Remove edges if V2G energy budget is not
met, and run MWBM on reduced G again */

11 if
∑

(wi,sj)∈Eout

g(zj)lij < E then

12 Z ←Select the first z highest weight edges ∈ Φout and R

s.t.
( ∑

(wi,sj)∈Eout

g(zj)lij +
∑

(wi,sj)∈Z

lij

)
≥ E ;

13 if Z 	= ∅ then Remove all edges ∈ Z from G and Φout

else Φtemp = Φout;
14 end
15 end
16 q∗ = Eout;

/* Final Payment and Task Assignment */
17 ∀wk ∈ W, Pk ← Second to the selected bid bkj ;
18 Assign the tasks to winning workers along with final price P;

final matching in output graph Φout is used as winning task

assignments with final payment as per the bid (line 16− 18).

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experimental setup consists of modeling workers, tasks

and the simulation platform. In case of workers, we gathered

the publicly available data on 54 different EV models on

battery size, range, charging power and charging speed, and

formulated an individual profile for each EV in concern.

Similarly for ride-sharing tasks, the high volume taxi trip data

of New York City (NYC) from the year of 2013 [24] was used.

The V2G tasks were generated from the 15 minutes energy

consumption data from 25 NYC residences from PecanStreet

[25]. In absence of real dataset on battery swapping tasks,

half of the ride-sharing tasks were extracted as the battery

swapping tasks, given their similar profile with batteries trans-

ported instead of passengers. These tasks are spatial, therefore,

we collect the information on locations, distance, and time

required to complete the tasks. Bids were generated using a

Deep Neural Network (DNN) model. We used 11 months

of taxi data to train the DNN model with 80-20 train-test

split. The DNN model consisted of 3 hidden layers of sizes

(132, 132, 64). We employed ReLU activation function as well

as one-hot encoding for the input features.

Furthermore, the simulation platform, e-Uber is developed

in Python using Gurobi, NetworkX, and PyTorch libraries. We

consider a reverse auction period resolution of 15 minutes

which corresponds to the resolution set by grid for real-time

energy trading. This means that every 15 minutes the e-Uber

algorithm will collect the tasks, push the personalized list of

tasks to workers, collect the bids and assign the tasks to EV

workers that minimizes the overall cost for the task requesters.

We set the search radius for the tasks λ = 10 km and the

maximum length of recommendation list K = 5. The energy

budget for each 15 minutes time period was considered to be

total of all 25 V2G tasks available. The user preferences were

sampled uniformly from the set {0.1, 0.4, 0.5, 0.7, 0.9, 1.0}.

The energy, time and location of the EVs are tracked and

updated accordingly so as to simulate their real-world trip

behavior. If the battery level of the cars fall below a minimum,

they are considered for the charging for the next time-step.

For comparison approach, we use the task-centric winner

selection algorithm from [26] and refer it as BG for baseline

greedy. This approach neither considers user-preference in the

problem-setting nor it considers the personalized recommenda-

tion system. So for fair comparison, we augment this method

with perfect knowledge-based recommendation system that

pushes K best tasks as recommendation to each workers. Then

we implement the algorithm as presented in [26] that sorts

the bids from lowest to highest for each tasks and assigns

them one by one. Note that this approach may not guarantee

a complete matching between workers and tasks as the tasks

that are processed towards the end may not have any workers

left to choose from because of limited number of bids and

greedy selection approach. We use this BG as our baseline

and compare the performance of our algorithms CARS and

BMW along with their perfect knowledge variation PK
which has the perfect knowledge on the worker preferences

and thus do not involve learning, and OPT optimal solution to

WiBS problem. The ride-share dataset in concern consists of

actual ride-fare for specific car. However, we require bids from

each vehicle for recommended tasks and a realistic model for

bid generation is quite difficult to obtain. Therefore we trained

a Deep Neural Network with existing dataset for determining

the ride fare of the given ride-sharing tasks, the details of

which is presented in the following.

B. Results

1. Performance over time – Total Cost and # of Tasks: In

the first experimental scenario, we observe the performance

of algorithms as a snapshot of objective values over 24 hours

(i.e. 24 × 4 = 96 timeslots). We present the objective values

from midnight to next midnight as a lineplot in Fig. 2 and

cumulative bar plots of objective values (Fig. 3) and total

tasks completed (Fig. 4) over a day. Although all the pro-

posed approaches start from the same initial state (except for

knowledge on preference), these algorithms may have different

successive states since the solution is affected by the matching

in previous timeslot, availability of specific workers for next

round, and the distance travelled by these workers for pre-

vious assignment (or next assignment). Therefore, we employ

cumulative objective values and cumulative tasks completed as

the metric for a fair comparison of the approaches in Fig. 3.
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Fig. 2. Snapshot of total cost vs. time
Fig. 3. Cumulative obj. values Fig. 4. Cumulative tasks

Fig. 5. Avg. Price/task vs. Task(%) Fig. 6. Avg. price/task vs. V2G (%) Fig. 7. Mean Absolute Error vs. time

This cumulative objective value reflects the overall quality

of task assignment made so far based on the total objective

values to achieve the requirement while the cumulative tasks

completed present the total number of matches made by the

respective approach until the end of that timeslot. As seen in

the lineplot Fig. 2 and barplot Fig. 3, the solution generated by

baseline greedy approach BG is the minimum one as it assigns

task based on respective cheapest bid available but it doesn’t

meet the maximum number of matching possible unlike other

approaches as shown in Fig.4. Therefore, BG mostly violates

the V2G requirement, meaning it generates infeasible solutions

and hence fails for this problem setting. The PK − OPT
produces the best result since it involves solving the POTR
and WiBS problem optimally with perfect knowledge of

the worker preferences. Following it, is the optimal solution

OPT paired with our proposed learning framework for e-Uber,

CARS, which performs close to optimal in terms of both

objective values and number of tasks completed. Although this

approach CARS − OPT finds optimal solution, it does not

have initial knowledge on preferences. Therefore, it generates

sub-optimal recommendation list which then affects the solu-

tion to WiBS problem and hence, the overall performance.

However, even with online learning framework employed, it

produces similar results to the PK −OPT .

Also we observe similar pattern with PK − BMW and

CARS − BMW since they both rely on bipartite matching-

based approach to find feasible solution. Since PK −BMW
sends the optimal recommendation to workers for collecting

bids, it therefore has higher overall performance compared to

CARS−BMW which learns the preferences over time. The

price gap between best performing PK − OPT and worst

performing CARS−BMW however is less than $150 in the

worst case which amounts to a price hike of ∼ $3/task with

an average 50 tasks for a timeslot. We observe the cumulative

objective values grow almost linearly for all approaches and

as expected, the performance observed was better for PK −
OPT followed by CARS − OPT and then PK − BMW
and finally CARS−BMW . However, the gap in cumulative

objective value increased for the bipartite heuristic compared

to optimal due to its sub-optimal performance. Note that the

baseline BG generates less cumulative objective value but it

fails to generate maximal matching as seen in Fig. 4. The

number of tasks completed by the proposed approaches exceed

850 more than the BG in the span 24 hours.

2. Average final price per task and scaling: In this experi-

ment, we track the average final price per task while scaling

the available tasks from 32% to 64% and then at 100%. For

scaling the tasks, we increase the number of each type of tasks

proportionally. The result is plotted in Fig. 5. As the system

scales, the average final price per task for all approaches rises

since the overall cost for the system also increases with the

tasks. However, it is also observed that CARS −BMW and

BMW −PK suffer more as we scale the system. The margin

between these and optimal approaches grows drastically up

to ∼ $2. This can be attributed mainly to the increased

complexity of the problem as number of tasks is increased and
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hence the bipartite matching-based heuristic finds less efficient

solution compared to optimal. The optimal solutions however

have nominal increase in their average price per task (∼ $10)

even with scaling compared to rest. We also study the effect of

scaling V2G tasks to the average final price per task in Fig. 6.

We observed similar trend to above but with noticeable gap

between optimal and heuristic approaches when only 32% of

V2G tasks are available. This results from the sub-optimal

performance owing to less number of V2G tasks compared to

rest and hence unequal rate of learning the preferences.

3. Learning accuracy for preferences – MAE: To study the

learning accuracy of proposed CARS algorithm in conjunc-

tion with optimal and BMW , we use the Mean Absolute Error

(MAE) of the learned preferences over time as in Fig. 7.

Both approaches use the same learning algorithm but the

solution to WiBS problem differs and thus affects the learn-

ing performance. However, this difference is very negligible.

Initially, the MAE is 0.28, which rapidly decreases to less than

0.05 for both approaches by 250 timesteps, showing marginal

difference in learning efficacy between them. Since by 500
timesteps the system has garnered sufficient knowledge on

workers preferences, MAE falls to 0.03 reflecting the efficacy

of proposed CMAB-based preference learning.

VI. CONCLUSION

e-Uber is a promising crowdsourcing platform for improv-

ing the efficiency and sustainability of ride-sharing and energy-

sharing services through the use of EVs. It uses reverse auction

mechanism to assign spatial tasks to EV drivers based on their

preferences, battery level, and other realistic constraints like

minimum energy requirement for grid and one-to-one assign-

ment. Results using real data show that e-Uber outperforms

recently proposed state-of-the-art solutions.
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