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ABSTRACT

A distributed multi-writer multi-reader (MWMR) atomic register
is an important primitive that enables a wide range of distributed
algorithms. Hence, improving its performance can have large-scale
consequences. Since the seminal work of ABD emulation in the
message-passing networks, many researchers study fast implemen-
tations of atomic registers under various conditions. “Fast” means
that a read or a write can be completed with 1 round-trip time
(RTT), by contacting a simple majority. In this work, we explore
an atomic register with optimal resilience and “optimistically fast”
read and write operations. That is, both operations can be fast if
there is no concurrent write.

This paper has three contributions: (i) We present Gus, the em-
ulation of an MWMR atomic register with optimal resilience and
optimistically fast reads and writes when there are up to 5 nodes;
(ii) We show that when there are > 5 nodes, it is impossible to emu-
late an MWMR atomic register with both properties; and (iii) We
implement Gus in the framework of EPaxos and Gryff, and show
that Gus provides lower tail latency than state-of-the-art systems
such as EPaxos, Gryff, Giza, and TEMPo under various workloads
in the context of geo-replicated object storage systems.
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1 INTRODUCTION

Attiya, Bar-Noy, Dolev [7] present an emulation algorithm, namely
ABD, that implements an atomic single-writer multi-reader regis-
ter with optimal resilience in asynchronous message-passing net-
works when nodes may crash. ABD allows porting many known
shared-memory algorithms to message-passing networks, such as
multi-writer multi-reader (MWMR) registers, atomic snapshots,
approximate consensus and randomized consensus.

The MWMR version of ABD [42] requires 2 RTT to complete a
write operation, and 1 RTT to complete a read when there is no
concurrent write. Subsequent works identify conditions so that
reads [20, 34] and writes [23] can be fast. An operation is fast if it
can always be completed in 1 round-trip time (RTT), by contacting

a simple majority of nodes. Unfortunately, the conditions for fast
writes are not generally applicable to practical systems as will be
discussed in Section 2.2.

Dutta et al. [PODC ’04] prove that implementing an atomic
register with both fast writes and fast reads is impossible [20].
Recently, Huang et al. [PODC ’20] identify more constraints in
implementing fast writes or fast reads [34]. Motivated by these
results, we ask: “Can we do better for practical systems?”

Motivation. Observe that object storage systems can be modeled
as atomic registers. For real-world object storages, the typical work-
loads have two key characteristics [4, 14, 24]: (i) Concurrency is
rare, but possible: in Microsoft OneDrive, only 0.5% of the writes
occur within a 1 second interval; and (ii) Object size and operation
vary widely: IBM Cloud Object Storage supports hosting service
of web page, game, video and enterprise backups. In their testing
benchmark [4], object size varies from 1 KB to 128 MB, and the
ratio of write operations range from 5% to 90%.

These observations indicate that it is important to design an
algorithm that handles various workloads efficiently, for practical
object storages. To optimize for the common case, we are inter-
ested in “optimistically fast” operations, i.e., operations that are fast,
when there is no concurrent write. The MWMR version of ABD
[42] achieves optimistically fast reads, but not writes. Concretely,
we answer the following question in this paper:

Is it possible to implement an atomic register that
supports both optimistically fast reads and writes?
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Contribution: Theory. On the positive side, we present Gus,
which implements an MWMR atomic register with optimal re-
silience and optimistically fast read and write operations when
there are up to 5 nodes. To achieve optimistically fast operations,
Gus combines two novel techniques: (i) speculative timestamp: a
node optimistically uses locally known logical timestamp to enable
1-RTT fast path for writes (i.e., when writes commit in a single
communication step), and (ii) view exchange: nodes exchange newly
received timestamps to enable 1-RTT fast path for reads.

Considering that most production storage systems deploy 3- or
5-way geo-replication [16, 29, 49], we believe Gus is useful for
practical settings, given its performance benefits. Furthermore, to
address the scalability issue, we propose two solutions with different
trade-offs between latency (in terms of RTTs) and resilience.

Furthermore, we formally prove that scalability is fundamentally
limited. We show that when there are > 5 nodes, it is impossible
to emulate an optimally resilient atomic register that supports
optimistically fast reads and writes. This impossibility implies that
Gus is optimal with this aspect.

Contribution: Systems and Experiments. We experimentally
evaluate how the property of optimistically fast operations behave
in object storages, as it is difficult to quantify how concurrent
operations affect the performance in theory. Practical systems often
use a consensus-based approach to implement an object storage.
Hence, we compare Gus with state-of-art consensus-based systems
EPaxos [44], Gryff [12],Giza [14], and TEmpo [21].

We implemented Gus in the framework of EPaxos [44] and Gryft
[12] to make a fair comparison. Furthermore, in the same frame-
work, we implemented our version of Giza [14] (source code not
available). Gus outperforms these competitors in both throughput
and latency, which demonstrates practical performance benefits
under a wide range of workloads. Under various settings with three
nodes, Gus has better tail latency than both Gryff and EPaxos.
Compared to Gryff, 5%-18% of Gus’s reads are faster, and >95%
of writes improve latency by up to 50%. Gus also has 0.5x-4.5x
maximum throughput than both Gryff and EPaxos in the case of
write-intensive geo-replication workload. With 9 nodes, Gus’s tail
latency for reads has 12.5% improvement over TEMPO’s [21].

2 PRELIMINARIES AND RELATED WORK
2.1 System Model

We consider an asynchronous message-passing network consisting
of n nodes, where n < 5. Section 5.1 presents solutions to scale Gus
beyond 5 nodes with different trade-offs. At most f of the nodes may
crash at any point of time. Gus ensures safety and liveness as long
asn > 2f + 1. Messages could be arbitrarily delayed, but messages
between any pair of fault-free nodes are delivered eventually.

Following the convention of the literature [7, 8, 41], we assume
that each node has client threads (reader thread or writer thread)
and a server thread. In practical systems, this model captures co-
located clients — a client C is co-located with a sever R if the message
delivery latency between C and R is much less than the minimum
latency between C and other servers. Clients running the appli-
cations (e.g., web hosting or backup service) can be considered
co-located with a server in the same data center.
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Linearizability. Gus achieves linearizability [32]. That is, there
exists a total ordering of operations O such that (i) operations
appear to execute in the order of O; (ii) O is consistent with register
semantics, i.e., any read must return the value of the most recent
write in O; and (iii) O satisfies the real-time ordering between
operations, i.e., if operation o, completes before the invocation of
operation oy, then o, should appear after o, in O.

2.2 Related Work

This section discusses the closely related theory works. We defer the
comparison between Gus and relevant practical systems to Section
6. These systems (e.g., [12, 14, 21, 44]) are based on some form
of consensus and provide liveness only in partially asynchronous
networks, whereas Gus uses quorum and ensures both safety and
liveness in asynchronous networks.

The ABD algorithm by Attiya, Bar-Noy, Dolev [7] is the first im-
plementation of atomic single-writer multi-reader (SWMR) register
in asynchronous networks with n > 2f +1. ABD requires 1 RTT for
writes and 2 RTT for reads. Lynch and Shvartsman [42] later extend
the algorithm to the multi-writer multi-reader version, which takes
2 RTT for writes and 2 RTT for reads. These two versions of ABD
support a simple optimization to make reads optimistically fast, i.e.,
1 RTT reads when there is no concurrent write.

Subsequent works [20, 23, 34] study fast operations which com-
plete in 1 RTT. The algorithm in [23] supports fast writes only when
there are at most n — 1 writer clients. In practical geo-replication
with n data centers, this condition implies that one data center
cannot serve any writes. The algorithms in [20, 34] support fast
reads, but require n = O(fng), where ng is the number of readers.

Prior works identify several impossibilities. Dutta et al. [20]
show that in general it is impossible to have both fast writes and
reads, when a single node may crash. Englert et al. [23] prove that
to support fast writes, the number of writes cannot be more than
n — 1 (which implies that their algorithm is optimal in this aspect).
Huang et al. [34] derive two more impossibilities: (i) fast write is
impossible if reads need to be completed in 2 RTT; and (ii) to have
fast reads and 2-RTT writes, Q(fng) is the lower bound on n.

Several works study other variations of the properties, e.g., semi-
fast operations [28, 37], fast operations for Byzantine-tolerant SWMR
registers [31], weak semi-fast operations [27], and fast operations
for regular and safe registers [3, 30]. To the best of our knowledge,
no prior work studies the feasibility of atomic registers with op-
timistically fast operations. Furthermore, our idea of speculative
timestamp is new, which would be useful for future works that aim
to achieve optimistically fast operations.

ABD Register [7, 42]. Most works on atomic registers in message-
passing networks are inspired by ABD, including Gus. Hence, we
briefly describe ABD before presenting our design. We describe
ABD and Gus for a single register. Recall that linearizability is a local
(or composable) property [32], i.e., the property holds for a set of
objects, if and only if it holds for each individual object. Therefore,
it is straightforward to compose instances of these protocols to
obtain a linearizable system that supports multiple registers.
ABD associates a unique tag with a write and its value. Writes
and values are ordered lexicographically by their tags. Formally, a
tag is a tuple, (ts, id), consisting of two fields: (i) a logical timestamp
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representing the (logical) time for the write; and (ii) the writer ID
representing the writer client’s identifier that invokes the write.
For tag t, we use “t.ts” to denote the timestamp field, and “t.id” to
denote the writer ID field. Two tags can be compared as follows:

Definition 1. Tag t; is greater than tag ty if (i) ty.ts > ta.ts; or (ii)
t1.ts = to.ts and t1.id > t.id.
Tag ty is equal to tp if t1.ts = tp.ts and t1.id = ty.id.

Each node stores a value v and an associated tag ¢. ABD register
requires two phases for both reads and writes. A read begins with
the reader client obtaining the current tag and value from a quo-
rum. The quorum is any simple majority of nodes. The reader then
chooses the value associated with the maximum tag and propagates
this maximum tag and value to all the nodes. Upon the acknowl-
edgments from a quorum, the read is complete. The second phase,
namely the “write-back” phase, can be omitted if all the tags from
the first phase are identical, achieving optimistically fast reads.

A writer client w follows a similar two-phase procedure. It first
obtains the maximum tag t;qx from a quorum, and then constructs
anew tag t = (tmax.ts + 1, w). In the second phase, client w propa-
gates t and its value to all nodes and waits for acknowledgments
from a quorum. Since a writer needs to contact a quorum to obtain
tag t (writer-reads design), ABD and relevant protocols [20, 34] re-
quire 2 RTT for the write operations, even if there is no concurrent
operation. Our technique “speculative timestamp” and the focus on
only 3 or 5 nodes allow us to skip this step optimistically.

3 GUS: DESIGN
3.1 Architecture and Protocol

Gus borrows tag and lexicographical ordering from ABD. A key
challenge is to determine a tag for each write. Later we will show
that even with a speculative timestamp, each write and its value
still obtain a unique tag. As a result, we will often refer to a tag as
the “version” of the register value.

Recall that each node has a writer, a reader and a server.! Writers
and readers communicate with server threads at other nodes. For
brevity, we will simply say writer/reader communicate with nodes.
Readers exchange (READ) and (ACK-READ) messages, and writers
exchange (WRITE), (ACK-WRITE), and (COMMIT-WRITE) messages.
Background handlers of the server implement a set of event-driven
functions that exchange (UPDATE-VIEW) messages with other nodes
and update local variables.

Node States. Each node R; maintains three states:

e Storage; is a set of tuples (tag, value), which stores all the
versions of the register value, where each version has a
unique tag;

e tag; represents the largest known tag associated with the
value in Storage;; and

e View; is a vector that keeps track of each node’s view. View
of a node R; is defined as a set of tags that R; has known so
far. By design, View;[i] contains the tags associated to all
the values in Storage;. Condition SAFETORETURN presented
later in Definition 2 shows how Gus uses View; to decide

INodes can support multiple writers and readers using proxies.
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which version of the register value is safe to return, with
respect to linearizability.

We assume any thread on the node can access these states. This
assumption is typical in many practical systems, as clients are
handled by client proxies that run on each node.

Techniques and Challenges. Gus has two novel techniques:

o Speculative timestamp: Writer opportunistically uses the lo-
cal tag tag; as the tag for the value it intends to write.

e View exchange: Each node propagates to all the other nodes
whenever it has learned a new tag. Each node i uses View;
to keep track of this information.

Speculative timestamp allows Gus to achieve 1 RTT when there
is no concurrent write, and enters the second phase only when
observing a concurrent write. View exchange allows nodes to collect
up-to-date information and to enable 1-RTT read when there is no
concurrent write. In terms of protocol design, we need to address
the following two technical challenges:

o No read can return stale value, even if the speculative times-
tamp is stale. A writer can observe a stale timestamp if the
node that the writer is co-located with has not received the
most recent writes from other nodes.

e No write operation can be associated with two tags. Essen-
tially, the ordering of the operations is constructed using the
tags; hence, if a write can be associated with multiple tags,
the total ordering could be violated. We will formally define
what “associated tags” mean after presenting the protocol.

Protocol Specification. Algorithm 1 specifies the steps that need
to be followed by each node when n = 3. We defer the discussion
of extension of n = 4 or 5 to Section 3.3.

Write operation: Writer i, which is co-located with node R;, ob-
tains tag (¢s]"%%, i) by adding 1 to the timestamp of the largest tag
known to node R; (Line 2). It then propagates the value along with
this new tag to all the nodes and waits until receiving an acknowl-
edgement from a quorum of nodes Q (Line 4). A quorum used in
Gus is always a simple majority.

Fast Path: Writer can then detect whether there is a concurrent
write by comparing (¢s["%%, i) with the tag received from Q (Line
6). If there is no concurrent write operation, then i’s write is on
the fast path (Line 7). Client is notified that the write is completed
at this point. The writer proceeds to asynchronous bookkeeping
steps, including updating tag (Line 12), storage (Line 13), and view
(Line 14). All these steps can be done asynchronously, because after
Line 7, it is guaranteed that enough nodes have already obtained
the value with the correct tag.

Slow Path: Only if the writer detects a concurrent write, it needs
to obtain and update the correct logical timestamp. It first constructs
the logical timestamp by finding the largest timestamp field in the
received tags from Q and increasing it by 1 (Line 9). The writer
then sends the commit message (COMMIT-WRITE) to all the nodes to
update the tag, and waits for acknowledgement from a quorum on
the slow path. This is necessary to ensure that enough nodes have
received the correct and updated tag. Note that (COMMIT-WRITE)
message does not include the value field to save network bandwidth.

Background Handler for Writes: The server thread has event-
driven handlers that run in the background to process incoming
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Algorithm 1 Gus forn =3

Write(value) invoked by Writer i:

: // Put phase: propagate data with speculative timestamp

ts"*  tag;.ts+1

: send (WRITE, (£s]"%%, i), value) to all

: wait until receiving (ACK-WRITE, tag; ) from a quorum of nodes Q

. // Update phase: update tag if necessary

if (¢s]"%,i) > tagj forall j € Q then
commit write

else
ts'%* «— maxjeo tagj.ts+1

send (COMMIT-WRITE, (¢s]"%,i)) to all

wait until receiving (Ack-commrT, (¢s]*%*

: tag;.time < ts["%; tag;.id « i

13: Storage; « Storage; U {(tag;, value)}

14: View;[i] « View;[i] U {(tag;,i)}

15: commit write, if not have already done so

Read() invoked by Reader i:

_
= S AR U B A N e

,i)) from a quorum

—_
N

16: send (READ, i) to all

17: wait until receiving (ACK-READ, tag;) from a quorum of nodes Q
18: tag™?* « largest tag; received fromall j € Q

19: wait until Condition SAFETOREAD holds on View;, tag™**, value
20: return value

Background Handlers at Node R;:
21: Upon receiving (WRITE, fag;, value) from writer j:

>fast-path for write

>slow-path for write

: if tag; < tag; then

Storage; < Storage; U {(tag;, value)}

tag; < tag;

View;[j] « View;[j] U {tag;}; View;[i] < View;[i] U {tag;}
send (UPDATE-VIEW, tag;) to all nodes

: else

TmpStorage; < TmpStorage; U {(tag;, value)}

: send (ACK-WRITE, fag;) to writer j

: Upon receiving (COMMIT-WRITE, tag;) from writer j:

: if j’s write is in TmpStorage; then

value « value associated with j’s most recent write in TmpStorage;
Storage; < Storage; U {(tag;, value)}

: else

Update Storage; to ensure j’s write has tag tag;

: if tag; < tag; then

tag; < tag;

2 View;[j] « View;[j] U {tag;}; View;[i] < View;[i] U {tag;}
: send (UPDATE-VIEW, tag;) to all nodes

: send (ACK-COMMIT, tag; ) to writer j

: Upon receiving (READ, j) from reader j:
: send (ACK-READ, tag;) to reader j

: Upon receiving (UPDATE-VIEW, (s, k)) from node j:
2 View;[j] « View[j] U {(zs,k)}

messages. Upon receiving (WRITE) message from writer j, node
R; first checks the tag (ts, j). If it is larger than tag;, then node R;
stores the value (Line 23), updates tag (Line 24) and view (Line 25),
and notifies others that it has learned a new value (Line 26). Finally,
R; replies j with the acknowledgement (Line 29). If tag; is larger,
this means that writer j’s tag may be stale, and j needs to update
its speculative timestamp later. Hence, node R; puts the value at a
temporary storage TmpStorage; (Line 28) and replies j (Line 29).

Upon receiving (COMMIT-WRITE) message from writer j, node R;
moves the value from TmpStorage; to Storage; (Line 32, 33) if the
write has been put in TmpStorage; before. Otherwise, R; updates
Storage; to make sure that j’s write has the correct tag. The tag
in Storage; could be stale if both R; and j have not observed a
previously completed write operation. Next, R; proceeds with the
steps similar to the previous handler: updates tag (Line 36, 37) and
view (Line 38), and notifies others that it has learned a new value
(Line 39). Finally, R; sends acknowledgement to j (Line 40).

Technical Challenge 1: Due to asynchrony and failure, it is possi-
ble for a write to have a stale speculative timestamp. Consider the
example in Figure 1, node R3 has not observed the most recent write
writeq; hence, its timestamp is still 1. Then, writez, invoked by a
writer co-located with Rs3, has a stale tag because its speculative
timestamp is less than the one included in a completed write opera-
tion write;. Recall that to satisfy linearizability, a read that occurs
after writey has to return the value of writey, instead of write;.
Gus achieves this by introducing the second phase to identify
and update the correct timestamp, which equals to 3 in this example.
After write; completes, Ry and Rz have timestamp 2; hence, after
the first phase, writey learns the most recent timestamp from either
node, and updates the correct tag in the second phase.
Read operation: In Gus, a reader can retrieve value from its co-
located node. The only task is to figure out the value associated
with the most recent tag, i.e., the version of the value that satisfies
both real-time and total ordering constraints. Gus achieves this by
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Replica R, has not observed

B— write;ts=2 —# ‘ write, and uses a stale

Replica R, updates others
with a new timestamp

. timestamp

| —

e N
write, completes after
receiving ACKs from
replicaR, and R,

~ J

B— write, ts=1 —— write,;ts=3 —l

Figure 1: Speculative Timestamp with n = 3. Two ends denote
the invocation and the completion time of each operation,
respectively. Orange box denotes the timestamp (ts) field of
each write’s tag. writey’s timestamp was stale initially.

first contacting a quorum of nodes to learn their most recent tag
tag™™ (Line 16 — 18), and using Condition SAFETOREAD, as per
Definition 2, to obtain the return value (Line 19, 20).

Background Handler for Reads: Upon receiving (READ) message,
node R; returns its tag tag; (Line 42), which is the largest known
tag at R;. Upon receiving (UPDATE-VIEW) message, node R; updates
the corresponding entry in View; (Line 44). By definition of View;,
adding (ts, k) to View;[j] means that node R; learns that node R;
has added writer k’s value associated with ts to Storage;j. Owing
to the usage of speculative timestamp, it is possible that View;[ ]
has both (s, k) and (ts’, k) for the same k’s write operation where
ts # ts’. However, this does not affect the correctness, as we explain
next how Gus addresses technical challenge 2.

Definition 2. Condition SAFETOREAD is said to hold on View;, tax™%*

and value if there exists a (tag,value) in Storage; where tag >
tag™*, and there is a quorum Qg s.t. (i) i € Qg; and (ii) for each
J € Or. (tag, j) € View;[j].

Intuitively, Condition SAFETOREAD finds a (tag, value) pair in
Storage; whose tag is larger than tag™* and value is received by
a quorum of nodes Qp, including R;. In other words, the condition
ensures that the returned value is received by a read quorum Qg,
and its version tag is at least as recent as tag™*~.

Figure 2 presents the fast and slow paths for reads. If tag

tagi, then the condition must hold at that moment. If there is a

max
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concurrent write (with a larger tag), then tag™** > tag;. Thus, the
reader at Ry needs to wait for more messages — (WRITE) from Rs
and (UPDATE-VIEW) from two other nodes - to satisfy Condition
SAFETOREAD. In the worst case, this takes 2 RTT.
Technical Challenge 2: With speculative timestamp, a write may
have two tags (or timestamps). We say that a write is “associated”
with a tag tag (or timestamp ts) if a read returns the value of a write
with tag (or ts). In the example of Figure 1, we do not want writey
to be associated with timestamp 1, i.e., no read should return the
value of write; with timestamp 1. This is because that eventually
writey will update its timestamp to 3, which means writes will be
associated with two tags. Consequently, it is impossible to find a
total ordering using associated tags that satisfies linearizability.
Condition SAFETOREAD is devised so that such an undesirable
scenario can never occur. In Gus, a read returns value if a read quo-
rum QR has received (tag, value). In the aforementioned example,
no read can return a value associated with timestamp 1 because
R; and R; observe ts = 1 being stale, and Rz updates ts only after
writey is completed; hence, it is not possible to gather a read quo-

°ld then no

rum. When n = 3, if a write observes a stale tag tag
read can return a value with tag"ld. This is because at most one
other node would consider tag”ld as the most recent tag, which

means that no read can obtain tag"ld from a read quorum Qg.

3.2 Correctness and Performance Analysis

We follow the proof structure in [7, 42], i.e., using tags to assign
the order of the operations. The key difference is to prove that Gus
addresses Technical Challenge 2 correctly — each write can only
be associated with one tag. We prove the claim by formalizing the
argument in Section 3.1. The complete proof is in [52].

Gus achieves optimistically fast operations, i.e., both writes and
reads take 1 RTT if there is no concurrent write. Both operations
take 2 RTT in the worst case, as shown in Figure 2. Message com-
plexity for reads is the same as prior algorithms [7, 42], O(n). For
reads, we only count the messages on the fast path, since as shown
in Figure 2, other messages for committing reads belong to writes.
For writes, the message complexity is O(n?) due to (UPDATE-VIEW).
Despite higher complexity, we find this acceptable in our target
case because this design allows for using the fast path for reads.
Moreover, for the case of object storage systems, (UPDATE-VIEW)
only contains tag, not the data itself. Since typical data size is in the
range of KBs, MBs or even more [4, 14, 24], the bit complexity and
network bandwidth consumption of the overhead are negligible.

3.3 TheCaseofn=4o0r5

Algorithm 1 does not work with n > 3 owing to Technical Challenge
2 — a write could be associated with two tags when n > 3. Consider
the example in Figure 3. Suppose write; is from a writer W; at Ry
and writep is from writer W, at Ry. Writer Wj learns from Ry that its
speculative timestamp is stale due to the concurrent writey. In the
meantime, R3, Ry, and Rs have not observed writey and form a read
quorum which allows a reader to read write; with a stale timestamp.
After W; updates a new timestamp due to the notification from Ry,
write; is associated with two tags.

To address this issue, more information needs to be included in
(ACK-WRITE) message - if the highest tag is from R}, then R; needs
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— Slow Path of Reads | tag™ > tag, | —
tag™™ = tag, R omm
Fast Path of Reads - ) 1 k /7‘ / /‘
Commit _y R >
® Rea ’ \\ [ /7
/ R, >
R > <UPDATE-VIEW>
: g -
R, - >
R <READ> <ACK-READ> <WRITE>
>
’ » R write at R, >

Figure 2: Fast/Slow Path of Reads. Green arrows represent
(READ) and (ACK-READ), blue represent (WRITE), and red rep-
resent (UPDATE-VIEW). (On the right figure, not all messages
are shown for brevity.)

——  wite, ——————a

— write, — |

— read —a

Figure 3: Example Execution. write; is concurrent with the
other two operations.

to indicate whether a write is completed or not. In the earlier exam-
ple, the second phase is not needed. Since write; has not completed
yet (i.e., W2 has not received a confirmation from a quorum), the
writer Wy does not need to update the tag, and can complete its
write on the fast path. This does not violate linearizability, since by
definition, two concurrent writes can appear in any order.

4 IMPOSSIBILITY

THEOREM 1. Forn > 5 andn = 2f + 1, it’s impossible to have an
atomic register that supports optimistically fast writes and reads.

Proor SKETCH. The proof is based on an indistinguishability
argument, which constructs several executions indistinguishable
to nodes such that in one of the executions, a reader has to return
a value that violates linearizability. All the executions we construct
have no concurrent write; hence, the optimistically fast operations
require all operations to complete in 1 RTT.

Consider n = 7 with nodes R, to Ry. Since f = 3, the maximum
quorum size to ensure liveness is 4. Now, consider the following
executions such that the first write w; is invoked by a writer at
node R, and writes value x:

e E1: wy is completed with a write quorum {Ry, Re, Ry, Rg}.
All the messages from the write quorum to other nodes are
delayed, except for the messages between R; and R,. At
some time ¢ after wi completes, reader at node R, invokes a
read rq that completes with a read quorum {Rg, Ry, R¢, Ry}
and returns wy’s value x.

e E2: Only node Ry receives wy, because node R, and its writer
client crash during the write. The messages from R, are all
lost, because it has crashed. The messages from R; to nodes
other than node R, are delayed. At time ¢, reader at node
R, invokes a read r; that completes with a read quorum
{Ra, Rp, Rc, Ry}. Since E1 and E2 are indistinguishable from
the perspective of node R, and its reader, the read returns x.

e E3: Now, we construct E3 by extending E2. Right after the
read r; completes, nodes R; and R; crash. This is allowed
since f = 3. Furthermore, the messages from R, and Ry to
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all the other nodes are lost, because they have crashed. As a
result, none of Ry, R¢, R f Ry learns the existence of wy.
At some later time, a reader at R}, invokes another read r; that
completes with a read quorum {Rp, R, Rf, Rg}, and returns
a default value, violating linearizability.

It’s straightforward to extend the argument to a larger n. O

Fundamentally, the impossibility is because that the quorum
intersection is too small for a larger f. Due to the 1-RTT communi-
cation, readers or writers are not able to update all nodes in the read
or write quorums. This is why we can defer messages in the proof.
In the case of ABD, the read quorum of r1 will learn the most recent
value before r; completes because of the write-back. Consequently,
the read quorum for r; would return x.

Note that in the construction above, we require 3 nodes to fail.
This is why Gus works for n < 5. For example, when n = 3, the
union of the reader and the quorum intersection is enough to ensure
safety; hence, E3 is impossible and readers can learn the correct
value that satisfies linearizability. To circumvent the impossibility,
we either need to sacrifice optimistically fast operation or resilience.

5 PRACTICAL CONSIDERATIONS
5.1 Scalability

To increase scalability, we present two solutions for n > 5. The
first increases 1 RTT for writes, which is suitable for serving larger
objects because of its natural integration with erasure coding. The
second increases the quorum size by focusing on the case of a
smaller number of concurrent failures (relaxed resilience), a com-
mon case for modern geo-replicated systems [16, 21, 22]. For n < 5,
these solutions are not needed, and therefore not applied.
Layered design by separating metadata and data: Inspired by
Giza [14] and Layered Data Replication [25], we integrate a layered
design with Gus, which separate the data and metadata paths into
two layers. To read, a client first contacts the servers in the metadata
layer to find the set of data servers that have the most recent data,
and then reads the data from any of them. To write, a client first
writes its data to a set of data servers, then update the metadata
servers. Such a layered design allows the underlying data/metadata
servers to optimize different workloads and features. Giza uses
Azure object storage as the data server and Azure table as the
core of metadata layer. Giza adopts Fast Paxos [39] to replicate the
metadata (i.e., the version, the IDs and the locations of the object)
to 3 or 5 metadata servers, whereas Gus uses Algorithm 1. In our
implementation, we use Redis as the data server because of its high
performance and support of durability.

As observed in [14, 53], to save storage and network cost, it is
common to use erasure coding for the data layer. For larger objects,
we adopt the n = k + m Reed-Solomon code [35] — the value is
divided into k data fragments, and the encoder generates m parity
fragments. Each data server stores exactly one fragment. The object
is durable as long as at most m node fails. With erasure coding,
both writes and reads take 2 RTT on the fast path.

Increasing quorum sizes by lowering resilience: Concurrent
failures in replication across datacenters are rare and transient
[16, 21, 22]; hence, it is reasonable to focus on a smaller f with a
larger n. Let Qg and Qyy be the size of the read and write quorum,
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respectively. As long as they satisfy the following inequalities, Gus
ensures safety: 20w > nand 2n—-2Qw — 1 < Qr

The first part ensures that any two write quorums intersect with
each other, whereas the second part ensures that any write can
only be associated with one tag (which can be argued similar as
before). As long as a writer (or reader) can reach a write (or read)
quorum, then its operation can be completed.

For read-intensive workloads, we can let Qg be |n/2] + 1. Then
Qw >n-— %
write quorum size by increasing read quorum size accordingly. In
other words, tolerating less failures allows Gus to explore a trade-off
between quorum sizes and performance of different operations.

— 1. For write-intensive workloads, we can lower

5.2 Optimizing Reads in Gus

We have two approaches to optimize reads in Gus. Consider the case
of n = 3. Gus’s read only needs 1 RTT with one simple change - pig-
gybacking the value associated with the highest tag in (ACK-READ)
at Line 42. Since any two nodes form a read quorum Qg, upon
receiving the value associated with tag™?*, the reader can update
View and directly return the value, which must satisfy Condition
SAFETORETURN. The second optimization can be applied to the case
when n < 5 and when a node serves several reader clients (a typical
case in practical systems). Observe that read does not change the
state at other nodes; hence, when there are multiple concurrent
readers co-located in the same data center, then all the subsequent
reads can “tag along” the first read without sending any messages.

6 EVALUATION

We evaluate Gus in practical settings. Our evaluation is focused on
the case of geo-replicated object storages, because (i) atomic regis-
ters capture its semantic [12, 14]; and (ii) round-trip time matters
the most for user-perceived latency in the case of geo-replication,
as cross-datacenter latency can be in the order of 100+ms.

As discussed in Section 2.2, prior algorithms [20, 23, 34] with
fast operations have limited practical usages due to their stringent
conditions. Therefore, we compare Gus with consensus-based sys-
tems. Even though these systems only ensure liveness when the
network is partially synchronous, they have high-performance in
common cases. We first present related systems that are optimized
for geo-replication, followed by our evaluation.

6.1 Related Work: Geo-replicated System

A comparison of Gus’s features against state-of-the-art competitors
is outlined in Table 1. To ensure a total ordering, storage systems
often adopt the consensus-based approach. Most production sys-
tems [1, 2, 9, 11, 13, 16] rely on variants of Paxos [38, 40] or Raft
[46] for agreeing on the order of client commands (or requests) and
execute the commands following the agreed order. Unfortunately,
these leader-based consensus protocols suffer long latency — 2 RTT
(cross-datacenter message delay) - if the clients are not co-located
with the leader data center.

Many recent systems [5, 21, 22, 43, 44, 47] propose a leaderless
design to avoid the bottleneck at the leader and achieve optimisti-
cally fast operations.? EPaxos commits commands in 1 RTT when

21t is also called “optimal commit latency” in [44]; however, the term is typically used
for consensus-based systems. Hence, we use a different term to avoid confusion.
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Latency Fast-Quorum Size | Optimistically | Limitation
Read | Write Fast Ops
EPaxos [44] 1/2 1/2 f+L(f+1)/2] read/write tail latency, dependency tracking
Gryff [12] 1/2 2/2 f+1L(f+1)/2] read write latency, throughput
Giza [14] 1/2 1/2 [3n/4] +1 - coordinator, large fast-quorum
Gus (this work) | 1/2 1/2 [n/2] +1 read/write all properties when n =3 or 5

Table 1: Gus vs. related leaderless systems designed for geo-redundancy. The first number in the Latency column indicates the
RTT in the common case (fast path), and the second is the RTT with contention. All of the systems tolerate f crashes with
n = 2f + 1 nodes. Both EPaxos and Gryff support read-modify-write, whereas Giza and Gus do not. When n is beyond 5, some

properties of Gus no longer hold.

there is no contention, and 2 RTT with contention. Unfortunately,
EPaxos has worse tail latency than Paxos-based systems (up to
4x worse) [12] and may have a livelock in pathological cases [50].
This is mainly because EPaxos’s fine-grained dependency track-
ing may chain dependency recursively, and the execution of some
operations may be delayed in wide-area networks [50].

Gryff [12] reduces tail latency by unifying consensus and shared
registers. Gryff implements an abstraction that provides read, write
and read-modify-write (RMW) on a single object. On a high-level, it
uses ABD register [7] to process reads and writes, and EPaxos [44]
to process RMWs. While Gryff reduces p99 read latency compared
to EPaxos, it always takes 2 RTT to complete a write; hence, it
does not achieve optimistically fast writes and is not suitable for
write-intensive workloads like game hosting or enterprise backup
service that typically has around 90% of writes [4].

Giza uses Fast Paxos [39] to agree on the version for each opera-
tion, and needs only 1 RTT when there is no concurrent write. Two
downsides of Giza are its reliance on the coordinator to order con-
current write operations and that its fast-quorum requires a super
majority. Both affect tail latency, especially for the geo-replicated
storage systems, because the clients need to wait for the nodes or
the coordinator in the further datacenters.

Atras [22] and TEmpO [21] are two recent consensus-based
systems that sacrifice resilience to optimize performance. ATLAS
uses dependency tracking; hence, suffers from long tail latency.
Tempo develops a novel mechanism of using (logical) timestamps
to determine when it is safe to execute a particular operation. Both
systems have quorum size |n/2] + f, which is optimal when f =
1. AtrAs and TEmpo do not distinguish between read and write
quorums. Compared to them, Gus can be configured to have an
optimal read quorum size, while having the write quorum size the
same or greater by 1. Table 2 presents some examples. Gus’s smaller
read quorum not only allows a better read latency, but also ensures
that reads can still complete, when > |n/2] + 1 nodes are alive. For
the case of n = 11, TEMPO requires a quorum of 8, which equals to
the write quorum of Gus. Reads can be served with a quorum of 6
in Gus. Later in Section 6.6, we will see how a smaller quorum size
allows Gus to have better tail latency under practical workloads.

Other consensus-based systems achieve optimistically fast oper-
ations for both reads and writes, e.g., M?Paxos [47], Caesar [5],
and Mencius [43]. Each system performs well in certain cases.
To support more general operations, e.g., transactions or RMW,
they sacrifice high-performance under high skewed workload. Both
EPaxos and Caesar use dependency tracking, which leads to high
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Gus AtrAs/TEMPO
n f]Or]Ow Y
7 2|4 5 5
9 2 5 7 6
11 3 6 8 8
13 3 7 10 9

Table 2: Read/write quorum size (Qg/QR) in Gus, and quorum
size (Q) in ATLAs and TEMPO, where f = number of tolerated
concurrent failures.
tail latency [50]. M?Paxos requires a lock on an object; hence, not
suitable for workloads with high contention. Mencius need infor-
mation from all nodes.

6.2 Implementation and Experiment Setup

In our evaluation, we focus on tail latency, because it is well-known
that user-perceived latency is correlated with the tail latency of the
underlying storage systems [6, 18, 45, 48]. Our technical report [52]
presents more evaluation results, including throughput comparison
and the integration with erasure coding and layered design. We
evaluate Gus against two categories of competitors: (i) those aim-
ing/optimizing for fault-tolerant non-blocking MWMR registers
(Gryft and Giza), and (ii) state-of-the-art consensus systems (EPaxos
and TEmPO) that are optimized for the same scenarios Gus is also
optimized for.

For Gryff, we are essentially evaluating its ABD component
(and Gryff’s optimizations), as the workload consists of only reads
and writes. For Giza, we only focus on the tail latency without any
concurrent write. As documented in [14], its design is not optimized
for concurrency. For scalability, we compare Gus with TEMPO so
that they tolerate the same number of concurrent failures.

Recent leader-based systems use techniques such as erasure cod-
ing [53, 54] and nil-externality [26] to further improve performance.
We do not compare them because our evaluation is focused on lead-
erless systems. As shown in [12, 14, 44], leaderless systems have
better performance in the common case and tail latency in the
context of geo-replicated storages.

Implementation. We implemented Gus® and our version of Giza
in Go using the framework of EPaxos and Gryff to ensure a fair
comparison. For TEMPO, we use the implementation in [21].
Clearly, even though in Algorithm 1 we focus on a single register
(or object) for clarity, our implementation supports multiple objects
and adopts the optimizations mentioned in Section 5. In order

3github.com/be-computing/gus-automation
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CA VA IR OR JP
CA | 0.2
VA | 72 0.2
IR | 151 88 0.2
OR |59 93 145 0.2
JP 113 162 220 121 0.2

Table 3: RTT (in ms) between VMs in emulated geographic
regions [12]. For n = 3, we use VMs in CA, VA, and IR.

to do that, we include two extra fields in each message type —
key key and sequence number seq. The key denotes the identifier
of each object, and the sequence number is the operation index.
This allows Gus to support multiple objects and also pipelining.
We do not enable thrift optimization nor batching, because these
optimizations generally increase the tail latency, by increasing the
chance of conflicts [12, 44, 50].

In addition, we follow the same setup in [12, 44, 50] to separate
node and client machines for best performance. Each node has
several client proxies that handle requests from the respective client.

Testbed. We run our experiments on CloudLab [19] using m510
(Intel Xeon D-1548, 8 cores, 6 GB RAM) for node VMs and ¢6525-25g
(AMD EPYC 7302P, 16 cores, 8 GB RAM) for the client VM. We adopt
the same latency profile used in [12] - (i) n = 3: nodes in California
(CA), Virginia (VA), and Ireland (IR); and (ii) n = 5: two more
nodes in Oregon (OR) and Japan (JP). The latencies of the wide-area
network are emulated using Linux’s Traffic Control (tc) by adding
delays to packets on all nodes with filters on different IPs. Table
3 shows the configured RTT between nodes in different regions.
These numbers were chosen to represent typical RTT between the
corresponding Amazon EC2 availability regions [12].

Experiment Setup. In all experiments, the clients run on one client
VM, which adds no artificial latency to all the other node VMs. For
most experiments, we use 16 closed-loop clients co-located with
each node, again following [12]. This setup balances between cap-
turing the effect of concurrent operations and avoiding saturating
the system. This also allows us to isolate limitations of the hard-
ware and software. We use different numbers of clients to stress
the systems in the throughput experiment.

In our implementation, despite the fact that clients and servers
are co-located, clients do not interact directly with the system’s
backend but pass through a proxy interface, which emulates an
intermediate tier typically deployed in data centers for security and
access control purposes. Therefore, the backend in our implemen-
tation supports remote clients by the usage of proxy.

For all experiments, we require the system to commit and execute
client requests before responding to clients. Since as observed in
[50], most applications depend on information or confirmation
returned by an operation. For example, Redis and ZooKeeper [36]
return results for both reads and writes.

Each experiment is run for 180 seconds, and we collect statistics
in the middle of 150 seconds. In our experience, the statistics are
quite stable during this period because of the removal of warm-
up and cool-down. By default, each object is of 16B. While large
objects are common in object storages [14, 24], 16B gives the best
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performance for EPaxos and Gryf, and in [6], Facebook reported
the workload of using Memcached as a key-value store, where 40%
of the data is less than 11B. Therefore, we mainly test 16B objects.

Following prior works [12, 44, 50], all the systems we test store
the data in the main memory, except for two sets of experiments.
This choice is reliable as long as the number of concurrent node
failures is bounded. We are targeting redundancy across data cen-
ters, which are very rare to fail concurrently [14, 16, 22]. Moreover,
there exist solutions that prevent data loss from crashed machines,
e.g., persistent memory or disaggregated memory [17, 51, 55, 57].
For persistence, we write to a file using Go’s OS package in Section
6.5. The m510 nodes are equipped with 256 GB NVMe flash storage.

Two operations are said to be conflicting with each other if they
are targeting the same object (or same key) [12, 14, 44, 50]. Following
the evaluation in [12, 21, 22, 44], we focus on the evaluations with
various conflict rates. A conflict rate p denotes that a client chooses
the same key with a probability p, and some unique key otherwise.
Workload with a Zipfian distribution [50] shows a similar pattern.

6.3 Summary of Our Findings

To understand whether Gus performs well under various settings,
we aim at answering the following questions:
e Does Gus reduce tail latency under various conflict rates and
write ratios? (Section 6.4)
e How does persistence affect latency? (Section 6.5)
e How does Gus scale when tolerating a smaller number of
concurrent failures? (Section 6.6)

To summarize our findings, under various conflict rates, Gus
has better read and write tail latency than both Gryff and EPaxos.
When n = 3, around 5%-18% of reads are faster than Gryff, even
though both systems complete reads in 1 RTT. This demonstrates
the effectiveness of our read optimization mentioned in Section
5. Gus’s maximum throughput is 0.5x-4.5x greater than Gryff and
EPaxos in the context of geo-replication with a write-intensive
workload. The write ratio does not have a significant impact on
throughput in Gus, whereas it impacts Gryff significantly because
of its 2-RTT writes. Finally, Gus’s reads are 12.5%-17% faster than
TeMmPO because of the smaller read quorum size.

6.4 Tail Latency

The Case of n = 3. First, we examine the tail latency of Gus,
with a focus on large-scale web hosting. Since the web hosting
applications is usually read-heavy [6, 10, 15], we use the ratio of
94.5% read operations with various conflict rate. This write ratio
is the same as the YCSB-B workload [15]. Figure 4 presents the
cumulative distribution functions (CDF) for both read and write
latency for clients from three regions (CA, VA, IR) for three different
conflict rates with n = 3. Top row represents the CDF for reads and
bottom row for writes.

1 RTT Reads for Gus and Gryff. Both Gus and Gryff complete
reads in 1 RTT, as shown in the top row of Figure 4. ~66% of reads
complete after 1-RTT of communication with the nearest quorum
(a simple majority) between CA and VA, which has latency of 72ms.
Clients in IR are closest to the nodes in IR and VA, so 33% of the
reads complete in 1 RTT between IR and VA, which is 88ms.
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Figure 4: Latency CDF (n = 3, 94.5% reads, 5.5% writes). Both Gryff and Gus complete reads in 1 RTT when n = 3.
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Figure 5: Latency CDF (n = 5, 50.5% writes, 25% conflicts).
Gus’s reads are faster than those of competitors due to the
read optimization under high conflict rate and write ratio.

Read Optimization of Gus. As mentioned in Section 5, Gus ex-
ploits the semantics of linearizable object storages to return reads
without any communication when there are concurrent readers
co-located within the same data center. Depending on when the
concurrent reads are invoked, the latencies vary from 0.755ms to
72ms for clients in CA and VA.

Impact of Instant Execution. As identified in [12, 50], in EPaxos,
some operations need to be delayed due to its dependency tracking,
which results into a higher latency. In comparison, Gryff and Gus
can execute an operation instantly.

Impact of Conflict Rate. For both Gryff and Gus, conflict rate
does not affect latency significantly. This is because reads complete
in 1 RTT, and writes always complete in 2 RTT in Gryff. With
a higher conflict rate, Gus’s reads have improved latency in the
common case, owing to the read optimization. Higher conflict rate
implies a higher chance for reads to tag along. With 25% conflict,
Gus’s writes occasionally need to take 2-RTT to complete.

The Case of n = 5. Figure 5 reports the cumulative distribution
functions of the latency of reads and writes with n = 5. In this
experiment, we use workload consisting of 49.5% reads and 50.5%
writes with 25% conflicts. The write ratio follows from YCSB-A.
Roughly equal amount of operations and the higher conflict rate
allow us to observe the performance under concurrent operations.

6.5 Persistence After Crash

For persistence, we log state change to an SSD disk before sending
acknowledgement. This experiment uses the same configuration as
in Figure 4c. In EPaxos, nodes log synchronously to an SSD-backed
file, whereas in Gryff and Gus, nodes log their state change only
for incoming writes; hence, we only report the latency for writes in
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Figure 6: Log-scale Latency CDF with Persistent Writes (n = 3,
94.5% reads, 25% conflicts).
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Figure 7: Log-scale Latency CDF with Scalability (n = 5,7,9;
94.5% reads; 2% conflicts).

Figure 6. All the systems are I/O bound, but EPaxos’s dependency
tracking makes the tail latency increase by ~600ms, whereas Gryff
and Gus increase by 280-300ms. Even with persistent writes, Gus
still has better tail latency because of its 1-RTT fast path.

6.6 Scalability: Relaxed Resilience

In Figure 7, we compare Gus against TEmpo [21] with n = 5,7,9.
Both systems tolerate 2 concurrent failures in all three scenarios.
To avoid cluttering the plot, we omit the results of EPaxos, Gryff,
Flexible Paxos [33], and ATLAs [22], because they generally have
higher tail latency, as also observed in [21, 50].

Gus has better tail latency for reads because of its smaller read
quorum (see Table 2). For example, when n = 5, Gus’s fast path
to the closet fast quorum takes 72-145ms and TEMPO’s takes 93-
162ms. In general, TEMPO has better latency for writes when n =9,



SPAA ’23, June 17-19, 2023, Orlando, FL, USA

because its quorum is 1 less than Gus’s write quorum. Occasionally,
TEMPO needs to wait for timestamps to becomes stable to execute an
operation. This is mainly the reason that Gus outperforms TEMPO
when we consider p99 or above latency for writes.
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