
POSTER: OCToPus: Semantic-aware Concurrency
Control for Blockchain Transactions

dePaul Miller
Lehigh University

dsm220@lehigh.edu

Hank Korth
Lehigh University
hfk2@lehigh.edu

Roberto Palmeiri
Lehigh University

palmieri@lehigh.edu

Abstract
Many blockchain implementations o�er APIs to send and
receive money between accounts exclusively. In this paper,
we introduce OCToPus, a deterministic concurrency control
scheme that uses a semantic-aware fast path and a GPU-
accelerated directed acyclic graph-based fallback path to
parallelize the execution of a block aggressively.

CCSConcepts: • Information systems!Database trans-
action processing.

Keywords: Blockchain, Concurrency Control, GPU
ACM Reference Format:
dePaul Miller, Hank Korth, and Roberto Palmeiri. 2024. POSTER:
OCToPus: Semantic-aware Concurrency Control for Blockchain
Transactions. In The 29th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming (PPoPP ’24), March
2–6, 2024, Edinburgh, United Kingdom. ACM, New York, NY, USA,
3 pages. h�ps://doi.org/10.1145/3627535.3638494

1 Introduction
Blockchains are becoming an increasingly prevalent type
of secure distributed transactional processing scheme for
large-scale systems. Unquestionably, its popularity comes
from its ability to implement payment systems [12, 13, 21]
and possibly enable the establishment of central bank digital
currency [1, 11]. In order to execute distributed transactions
in a typical blockchain 1), a proposer pulls transactions from
the mempool (i.e., a transaction repository) in some order
to form and validates a block before proposing it; 2), a con-
sensus algorithm is then responsible for agreeing on that
block; 3), and validators receive that block and execute it
deterministically to validate it and replicate the blockchain
state, ensuring immutability and irrefutability. In this paper,
we introduce a transaction processing scheme that can be
used by proposers before submitting the block to consensus
and by validators during consensus to maximize the number
of transactions that are committed in a block.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0435-2/24/03.
h�ps://doi.org/10.1145/3627535.3638494

We want to focus on two important characteristics of
the above process. First, the outcome of processing transac-
tions in a block must be deterministic so each node of the
blockchain can reproduce the shared state after executing
a sequence of blocks. Second, many blockchain implemen-
tations, especially those permissionless, focus on �nancial
transactions (i.e., moving money between accounts) [3, 4, 8,
19] and have a rigid programming model.

The high performance of the concurrency control that
ensures the deterministic transaction processing schema is
essential for implementing competitive blockchains. Prior
work [9, 14, 17] has considered various ways to parallelize
this execution. These techniques must detect and resolve
con�icts (e.g., anti-dependency [6] or blind write [10]) to
process transactions in a way that is equivalent to running
them sequentially in the pre-de�ned order. The overhead
entailed by these advanced synchronization schemes often
nulli�es the bene�ts of the parallel computation [16, 18, 20].

We introduce Optimistic Commutative and compensating
Transaction Processing (OCToPus) to a) leverage the strict
programming model of blockchain implementations and the
absence of interactive transactions, and b) e�ectively exploit
the commutativity property of transactional operations to
improve performance.

2 OCToPus
We consider a blockchain model where transactions oper-
ate on accounts, and the blockchain maintains account bal-
ances rather than tracking unspent transaction output, as
done by Bitcoin [13]. Our assumed model follows that of
Ethereum [21] and other chains [2, 3], including blockchain-
based decentralized applications such as Uniswap [5].

The set of transactions utilized in the blockchains adopting
our model comes from a service called a mempool, which is
created through a gossip protocol. Proposers in the blockchain
may pick any set of transactions and propose them through
a consensus protocol. The choice of consensus protocol is or-
thogonal to OCToPus. Unlike more traditional concurrency
control protocols (e.g., 2PL [7]), we require determinism in
order to replicate the shared state correctly.
OCToPus is designed for blockchain systems. Most of

these systems [3, 4, 8] have a rigid programming model
where money is exchanged between accounts through sim-
ple transactions that involve increasing and decreasing val-
ues (e.g., balance and/or some metadata such as a sequence
number [8]) associated with various accounts. For simplicity,

463

https://doi.org/10.1145/3627535.3638494
https://doi.org/10.1145/3627535.3638494
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627535.3638494&domain=pdf&date_stamp=2024-02-20


PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom dePaul Miller, Hank Korth, and Roberto Palmeiri

we name this model send-receive-money (or SRM in short).
Because of the nature of SRM, it is possible to de�ne compen-
sating actions that revert the e�ect of an unwanted commit.

We utilize the semantics of SRM to break down each trans-
action into a sequence of atomic operations and run the
atomic operations of di�erent transactions in parallel. We
call this the fast path. When we recognize a transaction’s
execution is no longer equivalent to its original semantics
(e.g., funds were not available to perform a transfer in the
�rst place), we undo it by executing compensating actions
and re-execute it by relying on a graph-based concurrency
control, optimized for GPU. We call this the fallback path.

2.1 Fast Path
In the SRM programming model, transactions are committed
(money is sent) only if the sender has a great enough balance.
This model allows for many transactions to commute (i.e.,
the state of the data repository after running commutative
transactions is equivalent regardless of the ordering of said
transactions). In the SRM programming model, if we allow
con�icting yet commutative transactions to interleave, it is
enough to execute each individual operation atomically to
produce a schedule where no account ends with insu�cient
funds to perform all the transfers in the block.
However, even in a blockchain, transactions do not al-

ways commute. In this case, the order of transactions will
determine which transaction succeeds and which aborts. It
is important to note that unavailability of funds is the only
reason for a transaction to abort in OCToPus. Because of
this, our concurrency control in the fast path does not need
to keep track of accesses performed by transactions. When
an abort occurs in the fast path, OCToPus must ensure that
its modi�cation to the sender’s account is undone before
re-execution. That is because transactions are broken down
into multiple atomic operations, and therefore, their e�ects
are immediately applied to the shared state.
In the blockchain, many client transactions are batched

into a block, no transactions are interactively submitted, and
no output is externalized to clients unless the entire block
is committed. That means, even if a transaction applies its
modi�cations to the shared state and then aborts, no other
transaction but those in the block can access the change. As
a result, by tracking transactions’ dependencies, undoing the
e�ect of a transaction that aborts due to the unavailability
of funds using cascading rollback prevents �nal inconsistent
states. The fallback path ensures this.

2.2 Fallback Path
The fallback path is designed for handling non-commutative
transactions. We consider the ordering in the block as a ref-
erence order for con�icting transactions and build a directed
acyclic graph (DAG) to order them accordingly. Recall that
there is a con�ict between two transactions if both access
the same data, and at least one of them writes it concurrently.

These con�icts are represented as directed edges where a
transaction )1 that occurs before in the block order that con-
�icts with a transaction)2 that occurs later in the block order
will have an edge from )1 to )2 in the DAG. Because of the
simplicity of the SRM model, accounts’ IDs are provided by
the programmer and not de�ned at runtime. With this as-
sumption, we can identify a-priori transactions’ access sets
(i.e., their read-set and write-set) by parsing the transaction
APIs for reading and writing accounts.

We move from the fast path to the fallback path if there
are aborts. The set of aborted transactions is given to the
fallback path. Compensating transactions enable us to undo
the modi�cations performed by these aborted transactions
e�ciently. One transaction, )2, compensates another trans-
action,)1, if running the transaction)1 and then)2 results in
the same state prior to the execution of)1. In the SRMmodel,
compensating for an aborted transaction means depositing
money, which is an operation that always succeeds.

Not only the transactions aborted in the fast path are un-
done, but also all their dependent transactions, as identi�ed
in the DAG. Compensated transactions are then processed
in the fallback path, following the order imposed by the
DAG. Non-con�icting sets of transactions in the DAG are
not connected, and each subgraph that is not connected can
be executed in parallel. Transactions in a subgraph are exe-
cuted sequentially to avoid con�ict resolution, but since they
can still abort due to the unavailability of funds, their writes
are bu�ered until the transaction’s completion.

Although the DAG-based schema is well known in litera-
ture [15, 19], the novelty of our approach lies in using it as a
fallback for non-commutative transactions and redesigning
it to take advantage of the GPU parallelism. OCToPus is able
to utilize the GPU to build an upper triangular matrix that
represents this DAG e�ciently. This process is accomplished
in parallel while the CPU executes the fast path.

3 Conclusion
We brie�y introduced OCToPus, a deterministic transaction
processing scheme that speeds up the execution of blocks of
transactions in blockchain implementations that o�er API
to transfer money between accounts exclusively. OCToPus
can be used by blockchain proposer and validator nodes
when dealing with transactions that transfer money between
accounts. OCToPus aggressively exploits the commutativity
property of these simple transactions to eliminate the need
for instrumentation at runtime.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. CNS-2045976. This re-
search was also funded by a CORE grant from Lehigh Uni-
versity and by a gift grant from the Stellar Dev. Foundation.

464



PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom

References
[1] 2022. Federal Reserve Board releases discussion paper that exam-

ines pros and cons of a potential U.S. central bank digital currency
(CBDC). h�ps://www.federalreserve.gov/newsevents/pressreleases/
other20220120a.htm

[2] 2023. Aptos Developer Documentation. h�ps://aptos.dev/
[3] 2023. Operations and Transactions. h�ps://developers.

stellar.org/docs/fundamentals-and-concepts/stellar-data-
structures/operations-and-transactions

[4] 2023. Transactions. h�ps://developer.algorand.org/docs/get-details/
transactions

[5] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and
Dan Robinson. 2021. Uniswap v3 Core. h�ps://uniswap.org/
whitepaper-v3.pdf

[6] Atul Adya. 1999. Weak consistency: a generalized theory and opti-
mistic implementations for distributed transactions. (1999).

[7] Kapali P. Eswaran, Jim Gray, Raymond A. Lorie, and Irving L. Traiger.
1976. The Notions of Consistency and Predicate Locks in a Database
System. Commun. ACM 19, 11 (1976), 624–633. h�ps://doi.org/10.
1145/360363.360369

[8] Aptos Foundation. 2023. Aptos Core. h�ps://github.com/aptos-labs/
aptos-core

[9] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George
Danezis, Zekun Li, Dahlia Malkhi, Yu Xia, and Runtian Zhou. 2023.
Block-STM: Scaling Blockchain Execution by Turning Ordering Curse
to a Performance Blessing. In Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming,
PPoPP 2023, Montreal, QC, Canada, 25 February 2023 - 1 March 2023,
MaryamMehri Dehnavi, Milind Kulkarni, and Sriram Krishnamoorthy
(Eds.). ACM, 232–244. h�ps://doi.org/10.1145/3572848.3577524

[10] Masoomeh Javidi Kishi, Sebastiano Peluso, Henry F. Korth, and Roberto
Palmieri. 2019. SSS: Scalable Key-Value Store with External Consistent
and Abort-free Read-only Transactions. In 39th IEEE International
Conference on Distributed Computing Systems, ICDCS 2019, Dallas, TX,
USA, July 7-10, 2019. IEEE, 589–600. h�ps://doi.org/10.1109/ICDCS.
2019.00065

[11] Asia Krishna Srinivasan and Paci�c Department Director. 2022. Open-
ing remarks at peer-learning series on Digital Money/Technology:
Central Bank Digital Currency and the case of China.
h�ps://www.imf.org/en/News/Articles/2022/07/07/sp070722-central-
bank-digital-currency-and-the-case-of-china#.ZD2fh81KeHA.link

[12] David Mazieres. 2015. The stellar consensus protocol: A federated
model for internet-level consensus. Stellar Development Foundation 32
(2015), 1–45.

[13] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash
System. Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf (2008).

[14] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly
Contended OLTP Workloads Using Fast Dynamic Partitioning. In
Proceedings of the 2020 International Conference onManagement of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June
14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew
Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 527–542.
h�ps://doi.org/10.1145/3318464.3389764

[15] Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel. 2008.
Dependence-aware transactional memory for increased concurrency.
In 2008 41st IEEE/ACM International Symposium on Microarchitecture.
246–257. h�ps://doi.org/10.1109/MICRO.2008.4771795

[16] Arun Raman, Hanjun Kim, Thomas R Mason, Thomas B Jablin, and
David I August. 2010. Speculative parallelization using software multi-
threaded transactions. In Proceedings of the �fteenth International Con-
ference on Architectural support for programming languages and oper-
ating systems. 65–76.

[17] Geo�rey Ramseyer, Ashish Goel, and David Mazières. 2023. SPEEDEX:
A Scalable, Parallelizable, and Economically E�cient Decentralized

EXchange. arXiv:2111.02719 [cs.DC]
[18] Mohamed M. Saad, Masoomeh Javidi Kishi, Shihao Jing, Sandeep Hans,

and Roberto Palmieri. 2019. Processing transactions in a prede�ned
order. In Proceedings of the 24th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2019, Washington, DC, USA,
February 16-20, 2019, Je�rey K. Hollingsworth and Idit Keidar (Eds.).
ACM, 120–132. h�ps://doi.org/10.1145/3293883.3295730

[19] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database
System Concepts, Seventh Edition. McGraw-Hill Book Company. h�ps:
//www.db-book.com/

[20] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J Abadi. 2012. Calvin: fast distributed transac-
tions for partitioned database systems. In Proceedings of the 2012 ACM
SIGMOD international conference on management of data. 1–12.

[21] Gavin Wood. [n. d.]. Ethereum: A secure decentralised generalised
transaction ledger. ([n. d.]). h�ps://gavwood.com/paper.pdf

465

https://www.federalreserve.gov/newsevents/pressreleases/other20220120a.htm
https://www.federalreserve.gov/newsevents/pressreleases/other20220120a.htm
https://aptos.dev/
https://developers.stellar.org/docs/fundamentals-and-concepts/stellar-data-structures/operations-and-transactions
https://developers.stellar.org/docs/fundamentals-and-concepts/stellar-data-structures/operations-and-transactions
https://developers.stellar.org/docs/fundamentals-and-concepts/stellar-data-structures/operations-and-transactions
https://developer.algorand.org/docs/get-details/transactions
https://developer.algorand.org/docs/get-details/transactions
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/360363.360369
https://github.com/aptos-labs/aptos-core
https://github.com/aptos-labs/aptos-core
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1109/ICDCS.2019.00065
https://doi.org/10.1109/ICDCS.2019.00065
https://www.imf.org/en/News/Articles/2022/07/07/sp070722-central-bank-digital-currency-and-the-case-of-china#.ZD2fh81KeHA.link
https://www.imf.org/en/News/Articles/2022/07/07/sp070722-central-bank-digital-currency-and-the-case-of-china#.ZD2fh81KeHA.link
https://doi.org/10.1145/3318464.3389764
https://doi.org/10.1109/MICRO.2008.4771795
https://arxiv.org/abs/2111.02719
https://doi.org/10.1145/3293883.3295730
https://www.db-book.com/
https://www.db-book.com/
https://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 OCToPus
	2.1 Fast Path
	2.2 Fallback Path

	3 Conclusion
	Acknowledgments
	References

