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A B S T R A C T

In numerical simulations of cardiac mechanics, coupling the heart to a model of the circulatory
system is essential for capturing physiological cardiac behavior. A popular and efficient
technique is to use an electrical circuit analogy, known as a lumped parameter network or zero-
dimensional (0D) fluid model, to represent blood flow throughout the cardiovascular system.
Due to the strong physical interaction between the heart and the blood circulation, developing
accurate and efficient numerical coupling methods remains an active area of research. In this
work, we present a modular framework for implicitly coupling three-dimensional (3D) finite
element simulations of cardiac mechanics to 0D models of blood circulation. The framework is
modular in that the circulation model can be modified independently of the 3D finite element
solver, and vice versa. The numerical scheme builds upon a previous work that combines
3D blood flow models with 0D circulation models (3D fluid–0D fluid). Here, we extend it to
couple 3D cardiac tissue mechanics models with 0D circulation models (3D structure–0D fluid),
showing that both mathematical problems can be solved within a unified coupling scheme.
The effectiveness, temporal convergence, and computational cost of the algorithm are assessed
through multiple examples relevant to the cardiovascular modeling community. Importantly,
in an idealized left ventricle example, we show that the coupled model yields physiological
pressure–volume loops and naturally recapitulates the isovolumic contraction and relaxation
phases of the cardiac cycle without any additional numerical techniques. Furthermore, we
provide a new derivation of the scheme inspired by the Approximate Newton Method of Chan
(1985), explaining how the proposed numerical scheme combines the stability of monolithic
approaches with the modularity and flexibility of partitioned approaches.
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1. Introduction

Numerical simulations have long been used to investigate the cardiovascular system in both health and disease [1]. These efforts
ave primarily applied computational fluid dynamics (CFD) to study blood flow in the heart and vasculature [2–7], computational
olid dynamics (CSD) to simulate tissue mechanics in the heart and vasculature [8–12], and fluid–structure interaction (FSI) for
oupled problems [13–16]. Because accounting for the entire 3D circulatory system is typically infeasible due to limited imaging
omains and a vast range of scales (micro- to macro-vessels), it is common to model parts of this system with a lumped parameter
etwork (LPN), which can be thought of as a 0D model of blood flow. This treats blood flow in the circulatory system analogously
o the flow of current in an electrical circuit [17] and allows one to quantify bulk quantities — pressure and flowrate — at various
ocations in the system, at a fraction of the cost of fully-resolved 3D CFD simulations. Representing some parts of the cardiovascular
ystem — for example, the heart or specific blood vessels — with 3D structural and/or fluid models, while modeling the remainder
sing a 0D LPN constitutes a multi-domain approach [18,19]. The 0D LPN acts as a boundary condition on the 3D model that
ecapitulates physiological effects not captured by other, simpler conditions (e.g., zero-pressure). Coupling 3D and 0D models is the
ocus of this work.
Existing 3D–0D coupling approaches can be broadly categorized as monolithic [18,20,21] or partitioned [22–25]. Monolithic

chemes are robust and generally exhibit better convergence properties, but are not conducive to modularity. We define modular
chemes as those in which the 3D and 0D equations are solved separately by independent codes optimized for their respective
roblems, and those codes exchange information as needed to couple the two sets of equations. Partitioned approaches are typically
odular, but may suffer from numerical stability issues. Past approaches can also be categorized by whether the 3D model is a fluid
r a structure. Many studies have coupled 3D blood flow in large vessels to 0D circulation models [17–19], while many others have
oupled 3D finite element models of the heart to 0D circulation models [11,24,26,27]. While these two problems, 3D fluid–0D fluid
nd 3D structure–0D fluid, are related, to the best of our knowledge, none have previously treated them in a unified manner.
Partitioned 3D structure–0D fluid schemes suffer from a particular issue known in the FSI literature as the balloon or

ncompressibility dilemma [22,28]. This issue arises in situations where the fluid is entirely enclosed by Dirichlet boundary
onditions and the structure. In cardiac mechanics simulations, this manifests during the two isovolumic phases of the cardiac
ycle, when both the inlet and outlet valves of the left ventricle (LV) are closed. The LV volume is nearly constant, but the LV
ressure increases or decreases greatly due the contraction or relaxation of the heart muscle. In this situation, partitioned schemes
hat alternate between structure and fluid solvers typically fail because the structure solver is not aware of the constant-volume
onstraint. The balloon dilemma can be avoided by adopting a monolithic Newton approach, as in [20], in which a 3D model of the
eft and right ventricles was coupled to a closed-loop LPN. However, owing to their ease of implementation, partitioned approaches,
ith appropriate modification, have also been used. Early work in [25] avoided the balloon dilemma using a special iterative
rocess that involved estimating the compliance of their 3D biventricular model. In [22], the authors addressed the issue by using a
ime-staggered approach, at each timestep determining the deformation of their LV model under a cavity volume constraint obtained
rom the 0D fluid. A similar approach was taken in [24]. Under certain conditions, this scheme leads to unphysical oscillations in
ime, which can be mitigated by the addition of a stabilization term [29]. The stabilized scheme was recently used to couple an
lectromechanical whole heart model to a closed-loop LPN [11].
In [19], the authors developed a hybrid approach to the 3D fluid–0D fluid coupling problem, combining the advantages of
onolithic and partitioned approaches. This method was implemented in the open source multiphysics finite element solver svFSI
https://github.com/SimVascular/svFSI) [30] and has been used extensively in blood flow simulations where the solution in the 3D
omain is strongly influenced by the surrounding vascular system [31–33].
In this work, we describe a modular numerical scheme to implicitly couple 3D fluid and/or structural mechanics models to

D LPNs of the cardiovascular system. The algorithm was originally described in [19] for only the 3D fluid–0D fluid problem.
Here, we extend it to solve the 3D structure–0D fluid problem, showing that these two problems can be treated under a unified
coupling framework. The algorithm involves iteratively passing interface pressures and flowrates between the 3D and 0D solvers
until both are converged in a given timestep. We additionally compute the interface resistance, defined as the change in pressure for
a given change in flowrate, seen by the 3D model due to the 0D fluid. The tangent matrix in the 3D solver is modified according to
this resistance, greatly improving convergence behavior and avoiding the balloon dilemma. Applying this coupling to an idealized
left ventricle model, we demonstrate the method produces a realistic pressure–volume loop and naturally captures the isovolumic
cardiac phases and opening and closing of valves without additional numerical treatment. We further derive the coupling scheme
as a modification to the monolithic Newton approach, inspired by the Approximate Newton Method (ANM) of Chan [34], revealing
a firm mathematical foundation. This connection to ANM also makes clear how the present coupling retains the robustness of a
monolithic approach within a modular implementation like a partitioned approach. The modularity greatly improves usability,
allowing the user to modify the 0D LPN independently of the 3D solver and vice versa.

The paper is organized as follows. In Section 2, the proposed coupling framework is derived. In Section 3, we leverage our
numerical scheme in three different test cases, including an ellipsoidal LV coupled to an open-loop LPN, a spherical shell inflated
through a limit point, and a pulmonary arterial model coupled to a closed-loop LPN. We also provide preliminary results on the
convergence and computational cost of our method. In Section 4, we consider our method in relation to recent works and discuss
2

imitations and future directions. Finally, in Section 5, we summarize our findings with respect to the proposed scheme.
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Fig. 1. Left: An idealized geometry of a section of a blood vessel is given as an example 3D fluid domain. Right: An idealized geometry of the LV of the heart is
given as an example 3D structure domain. The dynamics in each are described by standard governing partial differential equations (PDEs), and on both, we may
define Dirichlet or Neumann boundary conditions, or a combination of both. In this work, the PDEs are spatially discretized using the finite element method.

2. Methods

In this section, we derive the proposed coupling framework. The resulting equations are the same as those given in [19,35], but a
generalized mathematical derivation, inspired by ANM [34] and applicable to both 3D fluid and 3D structure problems, is provided
here. First, we state the governing equations for the 3D and 0D systems, then we describe how the two systems are mathematically
coupled, and finally, we explain how to solve the coupled problem in a modular manner. In the following, the minor differences in
the equations when considering a 3D fluid versus a 3D structure are highlighted.

2.1. 3D mechanical model: fluid or structure

We first state the governing equations and numerical formulation for an incompressible and Newtonian fluid on a fixed 3D
domain [19], which models blood flow in large blood vessels (Fig. 1 left). Specifically, the Navier–Stokes equations, consisting of
the momentum and continuity equations, as well as the Newtonian constitutive model, read

𝜌 𝜕𝐮
𝜕𝑡

+ 𝜌𝐮 ⋅ ∇𝐮 − ∇ ⋅ 𝝈 − 𝐟 = 𝟎, (1)

∇ ⋅ 𝐮 = 0, (2)

𝝈 = −𝑝𝐈 + 𝜇(∇𝐮 + ∇𝐮𝑇 ), (3)

with boundary conditions

𝐮 = 𝐠, 𝐱 ∈ 𝛤𝑔 , (4)

𝝈 ⋅ 𝐧 = 𝐡, 𝐱 ∈ 𝛤ℎ, (5)

and initial conditions

𝐮(𝑡 = 0) = 𝐮0, (6)

𝑝(𝑡 = 0) = 𝑝0, (7)

with position vector 𝐱, time 𝑡, density 𝜌, velocity 𝐮, Cauchy stress tensor 𝝈, pressure 𝑝, dynamic viscosity 𝜇, body force 𝐟 , which we
assume to be zero, and surface normal vector 𝐧. Eq. (4) is a Dirichlet boundary condition with prescribed velocity 𝐠 on 𝛤 . Similarly,
3
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Eq. (5) is a Neumann boundary condition with prescribed traction 𝐡 on 𝛤ℎ. We may write these equations in abstract form as

⎧

⎪

⎨

⎪

⎩

3𝐷,𝑓𝑙𝑢𝑖𝑑 (𝐮, 𝑝, 𝐱, 𝑡) = 𝟎,
Boundary conditions,
Initial conditions.

(8)

Following [19], these equations are discretized in space using a stabilized (variational multiscale) finite element formulation and
in time using the generalized-𝛼 method. This yields the nonlinear residual equation at timestep 𝑛 + 1

𝐑3𝐷,𝑓𝑙𝑢𝑖𝑑 (𝐔̇𝑛+1,Π𝑛+1) = 𝟎, (9)

to be solved for 𝐔̇𝑛+1 and Π𝑛+1, the vectors of nodal accelerations and nodal pressures at the next timestep 𝑛+ 1, respectively. The
residual is also a function of 𝐔̇𝑛 and Π𝑛, but these are assumed to be known, and thus we do not explicitly write the functional
dependence on them. This equation is solved using Newton’s method, which in turn requires solving the following linear system at
each Newton iteration 𝑘

[

𝐊̃ 𝐆
𝐃 𝐋

](𝑘)

𝑛+1

[

𝛥𝐔̇(𝑘)
𝑛+1

𝛥Π(𝑘)
𝑛+1

]

= −

[

𝐑3𝐷,𝑓𝑙𝑢𝑖𝑑
𝑚

𝐑3𝐷,𝑓𝑙𝑢𝑖𝑑
𝑐

](𝑘)

𝑛+1

. (10)

𝐑3𝐷,𝑓𝑙𝑢𝑖𝑑
𝑚 is the residual associated with momentum balance Eq. (1), while 𝐑3𝐷,𝑓𝑙𝑢𝑖𝑑

𝑐 is the residual associated with mass continuity
Eq. (2). 𝐊̃,𝐆,𝐃,𝐋 are blocks of the tangent or stiffness matrix, and 𝛥𝐔̇(𝑘)

𝑛+1 and 𝛥Π(𝑘)
𝑛+1 are the Newton increments in nodal

accelerations and pressures, respectively. The notation
[

⋅
](𝑘)
𝑛+1 indicates that terms inside the brackets are evaluated at 𝐔̇

(𝑘)
𝑛+1 and

Π(𝑘)
𝑛+1. The solutions are updated each Newton iteration until convergence according to

𝐔̇(𝑘+1)
𝑛+1 = 𝐔̇(𝑘)

𝑛+1 + 𝛥𝐔̇
(𝑘)
𝑛+1, (11)

Π(𝑘+1)
𝑛+1 = Π(𝑘)

𝑛+1 + 𝛥Π
(𝑘)
𝑛+1. (12)

In cardiovascular biomechanics modeling, we are not only interested in blood flow, but also in the dynamics of the tissues
urrounding the blood, notably the heart (Fig. 1 right). The deformation of these tissues is governed by the equations of finite
deformation elastodynamics. Specifically, we may state the Cauchy momentum equation in Lagrangian form

𝜌𝐷𝐮
𝐷𝑡

− ∇ ⋅ 𝝈 − 𝐟 = 𝟎, (13)

where 𝐷
𝐷𝑡 denotes the material derivative. As with the fluid equations, 𝐮 is the velocity, 𝝈 is the Cauchy stress tensor, and 𝐟 is a

body force, which we assume to be zero in this work. In our finite element solver, the structural problem is solved in the reference
configuration, in which the relevant stress measure is the second Piola–Kirchhoff stress

𝐒 = 𝐽𝐅−1𝝈𝐅−𝑇 , (14)

where 𝐅 is the deformation gradient tensor and 𝐽 = det 𝐅 is the Jacobian. For a hyperelastic material described by a strain energy
ensity function 𝜓(𝐅), we have

𝐒 =
𝜕𝜓
𝜕𝐄

, (15)

here 𝐄 = 1
2 (𝐂 − 𝐈) is the Green–Lagrange strain tensor and 𝐂 = 𝐅𝑇𝐅 is the right Cauchy–Green tensor. These equations are

augmented with boundary and initial conditions so that we may write the structural dynamics problem in abstract form

⎧

⎪

⎨

⎪

⎩

3𝐷,𝑠𝑡𝑟𝑢𝑐𝑡(𝐮, 𝐱, 𝑡) = 𝟎,
Boundary conditions,
Initial conditions.

(16)

These equations are solved using similar methods to those for fluid flow (i.e., finite element method and generalized-𝛼
ethod) [20], leading to an analogous nonlinear system of equations to be solved at each timestep

𝐑3𝐷,𝑠𝑡𝑟𝑢𝑐𝑡(𝐔̇𝑛+1) = 𝟎. (17)

sually, nodal displacements are chosen as the structural unknowns after time discretization, but in our implementation, we instead
hoose nodal accelerations. This is an arbitrary choice that allows the structure problem to be treated similarly to the fluid problem,
ut it is not necessary for the present coupling framework. The system is solved using Newton’s method,

[

𝐊
](𝑘)
𝑛+1

[

𝛥𝐔̇(𝑘)
𝑛+1

]

= −
[

𝐑3𝐷,𝑠𝑡𝑟𝑢𝑐𝑡](𝑘)
𝑛+1 , (18)

here 𝑘 again indicates the Newton iteration.
4



Computer Methods in Applied Mechanics and Engineering 421 (2024) 116764A.L. Brown et al.

m

2

a
v
c
b
n

o

Fig. 2. An example of a 0D circulation model or LPN, which treats blood flow through the body like the flow of current through an electrical circuit. The LPN
is forced by prescribed flowrates 𝐪 at the Dirichlet boundary nodes 𝛾𝑔 = {𝛾𝑔,1} and prescribed pressures 𝐩 at the Neumann boundary nodes 𝛾ℎ = {𝛾ℎ,1 , 𝛾ℎ,2}, both
of which are denoted by red circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the remainder of the paper, we consider the general 3D problem

⎧

⎪

⎨

⎪

⎩

3𝐷(𝝓, 𝐱, 𝑡) = 𝟎,
Boundary conditions,
Initial conditions,

(19)

where 3𝐷 may represent either the 3D fluid or 3D structure PDE. 𝝓 are the 3D variables, which include velocity or velocity and
pressure, depending on the physics. After space–time discretization, we obtain the general 3D residual equation as

𝐑3𝐷(Φ𝑛+1) = 𝟎. (20)

Φ𝑛+1 is the state vector of the 3D system, where, for the fluid, Φ𝑛+1 =
[

𝐔̇𝑛+1
Π𝑛+1

]

, while for the structure, Φ𝑛+1 = 𝐔̇𝑛+1. Newton’s

ethod to solve this nonlinear system gives the general 3D linear system
[

𝜕𝐑3𝐷

𝜕Φ𝑛+1

](𝑘)

𝑛+1

[

𝛥Φ(𝑘)
𝑛+1

]

= −
[

𝐑3𝐷](𝑘)
𝑛+1 . (21)

.2. 0D circulation model

Blood flow throughout the circulatory system is modeled using an LPN [20–22], also called a 0D fluid model. Fig. 2 shows
n example LPN that will be used later in Section 3.1. LPN models are typically combinations of resistors 𝑅, which model the
iscous resistance of vessels to blood flow, inductors 𝐿, which account for the inertia of blood, and capacitors 𝐶, which model the
ompliance of blood vessels. In addition, diodes are used to represent the heart valves. Many LPN models of the vasculature have
een used in the literature, ranging from simple resistance or resistance–capacitance models of arteries to extensive closed-loop
etworks representing the entire circulatory system [19,22,36].
An LPN can be analyzed using Kirchhoff’s first law for an electrical circuit, which leads to a general representation as a system

f differential–algebraic equations (DAEs) [37],
𝑑𝐲
𝑑𝑡

= 𝐟 (𝐲, 𝐳, 𝑡), (22)

𝐠(𝐲, 𝐳, 𝑡) = 𝟎, (23)

with initial conditions

𝐲(𝑡 = 0) = 𝐲0, (24)

where 𝐲 contains differential variables determined by the differential equations Eq. (22), 𝐳 contains algebraic variables determined
by the algebraic equations Eq. (23), and 𝑡 is time. Both 𝐲 and 𝐳 contain pressures and flowrates at nodes and branches, respectively,
and may also contain other variables, such as the cross-sectional area of a vessel or the state of a valve. 𝐟 and 𝐠 are potentially
5
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Fig. 3. Left: Coupling between a 3D fluid and 0D fluid. The 3D fluid is an aorta model taken from the Vascular Model Repository (https://www.vascularmodel.
com/). Right: Coupling between a 3D structure and 0D fluid. The 3D structure is a biventricular model obtained from patient MRI data. Both coupling problems
are treated identically. Coupled Neumann surfaces 𝛤 (𝑖)

ℎ𝑐
on the 3D models are highlighted in yellow. Coupled Dirichlet nodes 𝛾 (𝑖)𝑔𝑐 on the 0D model are shown in

green. Along each 𝛤 (𝑖)
ℎ𝑐
– 𝛾 (𝑖)𝑔𝑐 connection is an associated exchange of flowrate 𝑄𝑖 and pressure 𝑃𝑖. Note that in addition to coupled boundaries, the 3D model will

generally have additional uncoupled boundaries on which one may prescribe uncoupled Dirichlet and/or Neumann boundary conditions, and likewise the 0D
model will generally have additional uncoupled nodes on which one may prescribe uncoupled Dirichlet and/or Neumann boundary forcings. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

As with the 3D model, we may define boundary conditions for the 0D LPN model. Let 𝛾𝑔 denote the set of Dirichlet boundary
odes on which we prescribe flowrates 𝐪. Let 𝛾ℎ denote the set of Neumann boundary nodes on which we prescribe pressures 𝐩. In
ig. 2, these boundary nodes are shown in red. The boundary flowrates and pressures are not boundary conditions in a strict sense
ecause there is no notion of length in a 0D fluid model. Instead, they act as forcing terms directly in the 0D equations [17]

𝑑𝐲
𝑑𝑡

= 𝐟 (𝐲, 𝐳, 𝑡,𝐪,𝐩), (25)

𝐠(𝐲, 𝐳, 𝑡,𝐪,𝐩) = 𝟎. (26)

and 𝐳 can often be considered together, so we define the combined 0D state vector 𝐰 = [𝐲, 𝐳]𝑇 .
Analogous to the 3D system, the 0D equations are written in the following abstract form

{

0𝐷(𝐰, 𝑡,𝐪,𝐩) = 𝟎,
Initial conditions.

(27)

In this work, we integrate the 0D system with a 4th-order Runge–Kutta (RK4) scheme (Appendix A). We first apply RK4 to
ntegrate the differential variables 𝐲 using Eq. (25) from timestep 𝑛 to 𝑛+ 1, then determine the algebraic variables 𝐳 with Eq. (26)
using the updated differential variables. This yields a system of algebraic equations to be solved at timestep 𝑛 + 1

𝐑0𝐷(𝐰𝑛+1) = 𝟎. (28)

If the time-stepping scheme is explicit, as in this work, this system can be solved directly (i.e., in one iteration). If the scheme is
implicit and the DAE system is nonlinear in 𝐰, this system can be solved by Newton’s method.

2.3. The coupled problem

So far, we have individually discussed the numerical treatment of the 3D mechanical model and the 0D circulation model. In
this section, we describe how these two models are mathematically coupled.

The 3D Neumann boundary is split into coupled and uncoupled parts, 𝛤ℎ = 𝛤ℎ𝑐 ∪ 𝛤ℎ𝑢 . In general, there may be multiple distinct
coupled Neumann boundaries, so that 𝛤ℎ𝑐 = 𝛤 (1)

ℎ𝑐
∪ 𝛤 (2)

ℎ𝑐
∪ ⋯ ∪ 𝛤 (𝑛𝑐𝐵𝐶 )

ℎ𝑐
, where 𝑛𝑐𝐵𝐶 is the number of coupled boundaries. In Fig. 3,

these are the outflow boundaries of the aorta model and the endocardial surfaces of the biventricular model (i.e., the inner surfaces
6
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of the heart muscle in contact with the blood). Similarly, the set of 0D Dirichlet nodes is split into coupled and uncoupled parts,
𝛾𝑔 = 𝛾𝑔𝑐 ∪ 𝛾𝑔𝑢 . The set of coupled Dirichlet nodes may be written 𝛾𝑔𝑐 = 𝛾 (1)𝑔𝑐 ∪ 𝛾 (2)𝑔𝑐 ∪⋯ ∪ 𝛾 (𝑛

𝑐𝐵𝐶 )
𝑔𝑐 . Each 0D coupled Dirichlet node 𝛾 (𝑖)𝑔𝑐 is

associated with a 3D coupled Neumann boundary 𝛤 (𝑖)
ℎ𝑐
, 𝑖 ∈ {1,… , 𝑛𝑐𝐵𝐶}, as shown in Fig. 3.

With these definitions in place, we may state the mathematical coupling between the 3D and 0D domains. For the 3D, we impose
a spatially uniform pressure 𝑃𝑖 on the coupled 3D boundary 𝛤

(𝑖)
ℎ𝑐
, where the value of 𝑃𝑖 is taken as the pressure at the corresponding

coupled node 𝛾 (𝑖)𝑔𝑐 of the 0D model. Stated mathematically,

𝑃𝑖 = (P𝐰)𝑖 on 𝛤 (𝑖)
ℎ𝑐
, (29)

where P is a matrix that selects the appropriate components from 𝐰. For example, if 𝐰 has 5 components, but only the second and
fourth components represent pressures at coupled nodes 1 and 2, then

P =
[

0 1 0 0 0
0 0 0 1 0

]

. (30)

Note that the spatially uniform pressure assumption is made in several other coupling approaches [20–22].
Analogously, for the 0D, we impose a flowrate 𝑄𝑖 at the coupled 0D node 𝛾

(𝑖)
𝑔𝑐 , where the value of 𝑄𝑖 is taken as the velocity flux

through the corresponding coupled boundary 𝛤 (𝑖)
ℎ𝑐
of the 3D model. Stated mathematically,

𝑄𝑖 = ∫𝛤 (𝑖)
ℎ𝑐

𝐮 ⋅ 𝐧𝑑𝛤 at 𝛾 (𝑖)𝑔𝑐 , (31)

where 𝐧 is the outward surface normal vector. This definition of flowrate should be clear in the context of a 3D fluid. For a 3D
structure, however, in order to define a flowrate 𝑄𝑖, we must restrict our attention to 3D structures that enclose some volume of
blood 𝑉𝑖, most commonly a chamber of the heart. Then, we may define flowrate as 𝑄𝑖 = − 𝑑𝑉𝑖

𝑑𝑡 . In Appendix B, using the Reynolds
Transport Theorem, it is shown that Eq. (31) is equally valid for such a 3D structure, provided 𝛤 (𝑖)

ℎ𝑐
is a surface that closes the volume

of interest 𝑉𝑖 (see Section 2.6 if surface is not closed) and the integral is taken over 𝛤
(𝑖)
ℎ𝑐
in the deformed configuration. It is this

observation that permits uniform treatment of 3D fluid and structure.
On a practical note, in the finite element setting, the flowrate integral is computed from the 3D degrees of freedom as follows.

𝑄𝑖 = ∫𝛤 (𝑖)
ℎ𝑐

𝐮 ⋅ 𝐧𝑑𝛤 =
∑

𝐴
∫𝛤 (𝑖)

ℎ𝑐

𝑁𝐴(𝐔)𝐴 ⋅ 𝐧𝑑𝛤 , (32)

where (𝐔)𝐴 is the velocity of node 𝐴 of the finite element model and 𝑁𝐴 is the associated shape function in the finite element
formulation. Note also that in the time-discrete setting, the nodal velocities are obtained from the nodal accelerations by the
generalized-𝛼 method expression

𝐔𝑛+1 = 𝐔𝑛 + 𝛥𝑡𝐔̇𝑛 + 𝛾𝛥𝑡(𝐔̇𝑛+1 − 𝐔̇𝑛), (33)

where 𝛥𝑡 is the timestep size and 𝛾 is a parameter of the generalized-𝛼 method, not to be confused with the 0D Dirichlet and
Neumann boundary node sets 𝛾𝑔 and 𝛾ℎ. Recall that depending on the physical formulation (structure or fluid), 𝐔̇ is either precisely
Φ or a component of Φ.

The coupled problem in the time and space continuous domain may be summarized in the following abstract manner

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0𝐷(𝐰, 𝑡, [𝐪𝑢,𝐐],𝐩) = 𝟎,
Initial conditions,

3𝐷(𝝓, 𝐱, 𝑡) = 𝟎,
Initial conditions,
Uncoupled boundary conditions,
𝝈 ⋅ 𝐧 = −𝑃𝑖𝐧, on 𝛤

(𝑖)
ℎ𝑐
, 𝑖 ∈ {1,… , 𝑛𝑐𝐵𝐶},

𝑃𝑖(𝑡) = (P𝐰(𝑡))𝑖,
𝑄𝑖(𝑡) = ∫𝛤 (𝑖)

ℎ𝑐
(𝑡) 𝐮(𝑡) ⋅ 𝐧(𝑡)𝑑𝛤 ,

(34)

where the 0D Dirichlet forcing term 𝐪 is split into an uncoupled component 𝐪𝑢, which are prescribed flowrates on the 0D model,
and a coupled component 𝐐, which is obtained from the 3D model (i.e., 𝐪 = [𝐪𝑢,𝐐]). Similarly, the 3D boundary conditions are
split into an uncoupled component (Dirichlet or Neumann), which is prescribed, and coupled pressure boundary conditions with
magnitude 𝑃𝑖, which are obtained from the 0D model. The expressions for 𝑃𝑖 and 𝑄𝑖, given in Eqs. (29) and (31) and restated here,
provide the coupling conditions between 0D and 3D. While the values of the uncoupled boundary conditions for both 3D and 0D
are generally prescribed, the values of the coupled pressure and flow boundary conditions, 𝑃𝑖 and 𝑄𝑖, are unknown and must be
determined as part of the solution to the coupled problem.
7
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After applying RK4 time discretization to the 0D system and applying generalized-𝛼 time discretization and finite element spatial
discretization to the 3D system, the problem reduces to solving the following coupled nonlinear equations at each timestep 𝑛 + 1,

{

𝐑0𝐷(𝐰𝑛+1,𝐐𝑛+1(Φ𝑛+1)) = 𝟎,
𝐑3𝐷(Φ𝑛+1,𝐏𝑛+1(𝐰𝑛+1)) = 𝟎,

(35)

where, due to the coupling between 3D and 0D, the 0D residual 𝐑0𝐷 is a function of the 3D state vector Φ𝑛+1 through the interface
flowrates 𝐐𝑛+1, and similarly the 3D residual 𝐑3𝐷 is a function of the 0D state vector 𝐰𝑛+1 through the interface pressures 𝐏𝑛+1. The
goal then is to find Φ𝑛+1 and 𝐰𝑛+1 that satisfy both 0D and 3D residual equations simultaneously. More to the point, the goal is to
find consistent flowrates 𝐐𝑛+1 and pressures 𝐏𝑛+1, in the sense that 𝐐𝑛+1 yields 𝐏𝑛+1 when solving the 0D system, and 𝐏𝑛+1 yields
𝐐𝑛+1 when solving the 3D system.

2.4. Solving the coupled problem

The method to solve the system Eq. (35) is inspired by ANM [34], with modifications suggested in [38] and in [39]. The coupled
roblem is solved in a modular manner, which allows us to take advantage of codes that already exist to efficiently solve the 3D and
D problems. Moreover, the 0D model may be modified without changing the 3D solver, and vice versa. Using ANM as a foundation,
e reproduce the equations of the original coupling framework described in [19,35]. In addition, we show the equations apply not
nly to 3D fluid–0D fluid coupling, but also to 3D structure–0D fluid coupling.
It is instructive to first consider other potential approaches to solving Eq. (35). One option is to solve the 0D and 3D equations

eparately in a time-staggered fashion, for example
{

𝐑0𝐷(𝐰𝑛+1,𝐐𝑛(Φ𝑛)) = 𝟎,
𝐑3𝐷(Φ𝑛+1,𝐏𝑛+1(𝐰𝑛+1)) = 𝟎,

r
{

𝐑3𝐷(Φ𝑛+1,𝐏𝑛(𝐰𝑛)) = 𝟎,
𝐑0𝐷(𝐰𝑛+1,𝐐𝑛+1(Φ𝑛+1)) = 𝟎.

hese are analogous to the staggered schemes discussed in [29]. This approach has the advantage that within a timestep, each
quation will have minimal convergence issues, since as far as each solver is concerned, the information from the other solver may
e treated as a prescribed boundary condition. However, modifying the original equations incurs a splitting error, possibly leading
o unphysical oscillations in time [29].
To solve the original Eq. (35), we may apply the same idea, but iterate it multiple times per timestep, for example,

{

𝐑0𝐷(𝐰(𝑘+1)
𝑛+1 ,𝐐(𝑘)

𝑛+1(Φ
(𝑘)
𝑛+1)) = 𝟎,

𝐑3𝐷(Φ(𝑘+1)
𝑛+1 ,𝐏(𝑘+1)

𝑛+1 (𝐰(𝑘+1)
𝑛+1 )) = 𝟎,

here 𝑘 is an iteration counter. This is a so-called nonlinear Gauss–Seidel iteration [40]. With this approach, one is solving the
riginal equations, but there is no guarantee that the iteration will converge. In fact, in the particular application of coupling 3D
eart models to 0D circulation models, this simple iteration will typically diverge during the isovolumic phases of the cardiac cycle,
recisely due to the balloon dilemma. To illustrate this, we consider the situation where 𝐐(𝑘)

𝑛+1 and 𝐏(𝑘)
𝑛+1 are scalars 𝑄

(𝑘)
𝑛+1 and 𝑃

(𝑘)
𝑛+1

i.e., only one coupled boundary and node). Suppose the initial guess 𝑄(0)
𝑛+1 is slightly smaller than its converged value, which is

ear-zero since the cardiac valves are closed during the isovolumic phases. Because the closed valves have extremely high resistance
, solving the 𝐑0𝐷 equation for 𝐰(1)

𝑛+1 yields 𝑃
(1)
𝑛+1 which has roughly 𝑅 times the initial error in 𝑄(0)

𝑛+1. Then, solving the 𝐑
3𝐷 for Φ(1)

𝑛+1
sing 𝑃 (1)

𝑛+1 produces a 𝑄
(1)
𝑛+1 which may have worse error than 𝑄(0)

𝑛+1, if 𝑅 is large enough. The process then repeats, leading to
ivergence of the iteration. Indeed, a variation of our coupling scheme which is nearly identical to the nonlinear Gauss–Seidel
cheme was found to be unstable in our cardiac mechanics test case. This is discussed further in Section 4.
To avoid the balloon dilemma and improve convergence, one can apply Newton’s method to solve Eq. (35), which yields a linear

ystem to be solved at each Newton iteration, 𝑘,

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝐑0𝐷

𝜕𝐰𝑛+1
𝜕𝐑0𝐷

𝜕Φ𝑛+1

𝜕𝐑3𝐷

𝜕𝐰𝑛+1
𝜕𝐑3𝐷

𝜕Φ𝑛+1

⎤

⎥

⎥

⎥

⎥

⎦

(𝑘)

𝑛+1

[

𝛥𝐰(𝑘)
𝑛+1

𝛥Φ(𝑘)
𝑛+1

]

= −

[

𝐑0𝐷

𝐑3𝐷

](𝑘)

𝑛+1

, (36)

with the update

Φ(𝑘+1)
𝑛+1 = Φ(𝑘)

𝑛+1 + 𝛥Φ
(𝑘)
𝑛+1 and 𝐰(𝑘+1)

𝑛+1 = 𝐰(𝑘)
𝑛+1 + 𝛥𝐰

(𝑘)
𝑛+1. (37)

As before, the notation
[

⋅
](𝑘)
𝑛+1 indicates that terms inside the brackets are evaluated at Φ(𝑘)

𝑛+1 and 𝐰(𝑘)
𝑛+1. This is identical to the

monolithic approach of [20]. Conceptually, there is no balloon dilemma because there is no alternating iteration between 3D and
0D. The balloon dilemma can also be avoided by computing the resistance (𝑑𝐏∕𝑑𝐐) seen by the 3D model due to the 0D fluid and
incorporating this information into the 3D solver. This is effective because the 3D residual depends not only directly on the 3D
8
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variables Φ𝑛+1, but also indirectly on Φ𝑛+1 through the flowrate–pressure relationship due to the 0D system. By providing the effect
of flowrate on pressure to the 3D solver, it will choose an updated iterate of Φ𝑛+1 that reduces the 3D residual, taking into account
both the direct and indirect dependences. As we will show in the remainder of this section, these two approaches are essentially
equivalent; that is, a manipulation of Newton’s method leads to a coupling algorithm that demands a modification of the 3D solver
to account for 0D resistance.

Having considered other approaches, we now proceed with our solution approach. Performing Schur Complement Reduction [41]
(also known as Block Gauss Elimination or Static Condensation) on Eq. (36) yields the equivalent system

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝐑0𝐷

𝜕𝐰𝑛+1
𝜕𝐑0𝐷

𝜕Φ𝑛+1

𝟎 𝜕𝐑3𝐷

𝜕Φ𝑛+1
− 𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1 𝜕𝐑0𝐷

𝜕Φ𝑛+1

⎤

⎥

⎥

⎥

⎥

⎦

(𝑘)

𝑛+1

[

𝛥𝐰(𝑘)
𝑛+1

𝛥Φ(𝑘)
𝑛+1

]

= −
⎡

⎢

⎢

⎣

𝐑0𝐷

𝐑3𝐷 − 𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1
𝐑0𝐷

⎤

⎥

⎥

⎦

(𝑘)

𝑛+1

. (38)

From this, 𝛥Φ(𝑘)
𝑛+1 can be determined by solving the linear system from the bottom row

[

𝜕𝐑3𝐷

𝜕Φ𝑛+1
− 𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1 𝜕𝐑0𝐷

𝜕Φ𝑛+1

](𝑘)

𝑛+1
𝛥Φ(𝑘)

𝑛+1 = −
[

𝐑3𝐷 − 𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1
𝐑0𝐷

](𝑘)

𝑛+1
. (39)

This is identical to the linear system for the uncoupled 3D problem Eq. (21), except for additional contributions to the 3D model’s
residual and tangent from the 0D model. For convenience, we denote the 0D contribution to the 3D tangent 𝐊3𝐷∕0𝐷, where

[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 = −

[

𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1 𝜕𝐑0𝐷

𝜕Φ𝑛+1

](𝑘)

𝑛+1
. (40)

s will be shown, rather than considering the 0D contribution to the 3D residual, it is more convenient to consider the entire
D-modified 3D residual 𝐑3𝐷∕0𝐷, where

[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 =

[

𝐑3𝐷 − 𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1
𝐑0𝐷

](𝑘)

𝑛+1
. (41)

hus, the solution strategy is as follows:

1. Approximate
[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1.

2. Approximate
[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1.

3. Solve the modified 3D linear system
[

𝜕𝐑3𝐷

𝜕Φ𝑛+1
+𝐊3𝐷∕0𝐷

](𝑘)

𝑛+1
𝛥Φ(𝑘)

𝑛+1 = −
[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 . (42)

We then perform the Newton update with 𝛥Φ(𝑘)
𝑛+1, proceed to the next Newton iteration 𝑘 + 1, and repeat until convergence. Note

hat because we use RK4 (an explicit scheme) for the 0D system, the 0D system does not depend on an updated guess for 𝐰𝑛+1, and
thus we do not need to compute 𝛥𝐰(𝑘)

𝑛+1.

The approximations for
[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 and

[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 are performed using a fixed point iteration operator 𝐹

0𝐷(𝐰𝑛+1,Φ𝑛+1) for
the 0D system, which is introduced next. Then, explicit expressions for the two terms are provided.

2.4.1. 0D fixed point iteration operator
Here, we introduce the 0D fixed point iteration operator, which is necessary for the 0D residual and tangent approximations to

follow. Assume we have an operator 𝐹 0𝐷(𝐰𝑛+1,Φ𝑛+1) such that the iteration 𝐰(𝑚+1)
𝑛+1 = 𝐹 0𝐷(𝐰(𝑚)

𝑛+1,Φ𝑛+1) converges to the solution of
𝐑0𝐷(𝐰𝑛+1,Φ𝑛+1) = 𝟎 (for fixed Φ𝑛+1). One can identify this operator for nearly all conceivable 0D solvers, implicit or explicit. In this
work, RK4 is used to integrate the 0D system, and the fixed point operator corresponding to RK4, 𝐹 0𝐷,𝑅𝐾4(𝐰𝑛+1,Φ𝑛+1), is provided
in Appendix A. As was done for 𝐑0𝐷 (Eq. (35)), it is convenient to view 𝐹 0𝐷 as a function of Φ𝑛+1 through the coupling flowrates
𝐐𝑛+1 as,

𝐹 0𝐷(𝐰𝑛+1,Φ𝑛+1) = 𝐹 0𝐷(𝐰𝑛+1,𝐐𝑛+1(Φ𝑛+1)). (43)

We briefly list some relevant features of 𝐹 0𝐷,𝑅𝐾4. Because RK4 is an explicit scheme, 𝐹 0𝐷,𝑅𝐾4 is a function of Φ𝑛+1, but is not
a function of 𝐰𝑛+1. However, for generality and in case one is interested in using an implicit scheme, we retain its dependence on
𝐰𝑛+1 in the remainder of the derivation. It is a fixed point operator corresponding to Newton’s method, which converges in one
iteration; in other words, 𝐰(𝑚+1)

𝑛+1 = 𝐹 0𝐷,𝑅𝐾4(𝐰(𝑚)
𝑛+1,𝐐𝑛+1(Φ𝑛+1)) converges to the solution of 𝐑0𝐷(𝐰𝑛+1,𝐐𝑛+1(Φ𝑛+1)) = 𝟎 in only one

step regardless of 𝐰(𝑚)
𝑛+1. Finally, on a practical note, we emphasize that 𝐹

0𝐷 is also a function of 𝐰𝑛 and 𝐐𝑛, which are assumed to
be known. See Appendix A for more details.

0𝐷 [ 3𝐷∕0𝐷](𝑘) [ 3𝐷∕0𝐷](𝑘)
9

With 𝐹 described, we continue by deriving explicit expressions for 𝐑 𝑛+1 and 𝐊 𝑛+1.
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2.4.2. 0D-modified 3D residual
In this section, an explicit expression is derived for

[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1. Recall Eq. (41),

[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 =

[

𝐑3𝐷 − 𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1
𝐑0𝐷

](𝑘)

𝑛+1
.

First, use a finite difference approximation as suggested in [39],

[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 =

[

𝐑3𝐷 − 𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1
𝐑0𝐷

](𝑘)

𝑛+1
≈ 𝐑3𝐷(Φ(𝑘)

𝑛+1, 𝐰̃
(𝑘)
𝑛+1), (44)

where

𝐰̃(𝑘)
𝑛+1 = 𝐰(𝑘)

𝑛+1 −
[

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1
𝐑0𝐷

](𝑘)

𝑛+1
. (45)

ote that in our case, the 3D residual 𝐑3𝐷 is linear in the 0D variables 𝐰𝑛+1, so this approximation is exact. Eq. (45) is in fact one
Newton iteration to solve the 0D system at fixed Φ(𝑘)

𝑛+1 (or 𝐐
(𝑘)
𝑛+1). Thus, we may approximate it using the 0D fixed point operator

𝐰̃(𝑘)
𝑛+1 ≈ 𝐹 0𝐷(𝐰(𝑘)

𝑛+1,Φ
(𝑘)
𝑛+1). (46)

f 𝐹 0𝐷 is a Newton iteration, as in our case, this approximation is exact.
In terms of implementation, at each Newton iteration, first compute 𝐰̃(𝑘)

𝑛+1 using Eq. (46). Recalling 𝐑3𝐷 is a function of 𝐰𝑛+1
hrough coupling pressures (Eq. (35)), next compute modified pressures defined as

𝐏̃(𝑘)
𝑛+1 = P𝐰̃(𝑘)

𝑛+1. (47)

inally, evaluate
[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 = 𝐑3𝐷(Φ(𝑘)

𝑛+1, 𝐏̃
(𝑘)
𝑛+1). (48)

his last step can be implemented as follows in a 3D finite element solver. Splitting the residual into a term from the coupled
eumann boundaries and terms from all other residual contributions (internal stresses, other boundary conditions, etc.),

[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1

s computed as follows:

(

𝑅3𝐷∕0𝐷
)(𝑘)

𝑛+1,𝐴𝑖
= Uncoupled residual terms +

𝑛𝑐𝐵𝐶
∑

𝑚=1
∫𝛤 (𝑚)

ℎ𝑐

𝑁𝐴𝑃
(𝑘)
𝑛+1,𝑚𝑛𝑖𝑑𝛤 , (49)

here 𝐴 is the node index, 𝑖 indexes the spatial dimension, 𝑚 indexes the coupled Neumann boundaries, of which there are 𝑛𝑐𝐵𝐶 ,
nd 𝛤 (𝑚)

ℎ𝑐
is the surface corresponding to coupled Neumann boundary 𝑚. 𝑁𝐴 is the shape function for node A, 𝑃 (𝑘)

𝑛+1,𝑚 is the 𝑚th
omponent of 𝐏̃(𝑘)

𝑛+1, and 𝑛𝑖 is the 𝑖th component of the outward surface normal. The integral expression in Eq. (49) is the same as
or any other (uncoupled) pressure boundary condition; the only difference is that the value of the pressure 𝑃 (𝑘)

𝑛+1,𝑗 is obtained by
ommunicating with the 0D solver. If 𝐑3𝐷 contains momentum and continuity components (as in the fluid system Eq. (10)), the
ontribution of the coupled Neumann boundary conditions should be assembled into the momentum equation residual.

emark: We point out the minor difference in Eq. (49) when considering a 3D fluid–0D fluid problem vs. a 3D structure–0D fluid
roblem. For a 3D fluid, we may consider the fluid domain to be fixed (non-deforming), so the integral is taken over the coupled
urface in the reference configuration. For a 3D structure, we typically assume a ‘‘follower pressure load.’’ Thus, if the structure
eforms, the integral is taken over the coupled surface in the current (deformed) configuration with the current surface normal
ector, corresponding to timestep 𝑛 + 1.

.4.3. 0D contribution to 3D tangent
In this section, an explicit expression is derived for

[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1. Recall Eq. (40),

[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 = −

[

𝜕𝐑3𝐷

𝜕𝐰𝑛+1

( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1 𝜕𝐑0𝐷

𝜕Φ𝑛+1

](𝑘)

𝑛+1
.

Following [34], define a matrix 𝐂

𝐂 =
( 𝜕𝐑0𝐷

𝜕𝐰𝑛+1

)−1 𝜕𝐑0𝐷

𝜕Φ𝑛+1
, (50)

so that
[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 = −

[

𝜕𝐑3𝐷

𝜕𝐰𝑛+1
𝐂
](𝑘)

𝑛+1
.

he key approximation is provided in [34], in which it was shown that 𝐂 can be reasonably approximated by

𝐂 ≈ −
𝜕𝐹 0𝐷(𝐰𝑛+1,Φ𝑛+1) = −

𝜕𝐹 0𝐷(𝐰𝑛+1,𝐐𝑛+1) 𝜕𝐐𝑛+1 𝜕𝐔𝑛+1 , (51)
10
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where we have used the chain rule and the fact that 𝐹 0𝐷 is a function of Φ𝑛+1 through the flowrates 𝐐𝑛+1 and the nodal velocities
𝑛+1 (Eqs. (32) and (33)).
For the other term, 𝜕𝐑3𝐷

𝜕𝐰𝑛+1
, we also apply the chain rule and the fact that 𝐑3𝐷 is a function of 𝐰𝑛+1 through the pressures 𝐏𝑛+1

(Eq. (29))

𝜕𝐑3𝐷

𝜕𝐰𝑛+1
= 𝜕𝐑3𝐷

𝜕𝐏𝑛+1
𝑑𝐏𝑛+1
𝑑𝐰𝑛+1

= 𝜕𝐑3𝐷

𝜕𝐏𝑛+1
P. (52)

hus, the 0D tangent matrix contribution is

[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 =

[

𝜕𝐑3𝐷

𝜕𝐏𝑛+1
P
𝜕𝐹 0𝐷(𝐰𝑛+1,𝐐𝑛+1)

𝜕𝐐𝑛+1

𝜕𝐐𝑛+1
𝜕𝐔𝑛+1

𝜕𝐔𝑛+1
𝜕Φ𝑛+1

](𝑘)

𝑛+1
. (53)

All partial derivatives are computed analytically (see Appendix C for details) except for
[

P
𝜕𝐹 0𝐷(𝐰𝑛+1,𝐐𝑛+1)

𝜕𝐐𝑛+1

](𝑘)

𝑛+1
.

his term, which is denoted by 𝐌, is computed in a finite difference manner by communicating with the 0D solver as

𝑀𝑖𝑗 =
[

P𝑖𝑝
( 𝜕𝐹 0𝐷(𝐰𝑛+1,𝐐𝑛+1)

𝜕𝐐𝑛+1

)

𝑝𝑗

](𝑘)

𝑛+1

≈
P𝑖𝑝𝐹 0𝐷

𝑝 (𝐰(𝑘)
𝑛+1,𝐐

(𝑘)
𝑛+1 + 𝜖𝐞𝑗 ) − P𝑖𝑝𝐹 0𝐷

𝑝 (𝐰(𝑘)
𝑛+1,𝐐

(𝑘)
𝑛+1)

𝜖
,

where 𝐞𝑗 is the 𝑗th unit vector and 𝜖 is a small numerical perturbation. Note that for the evaluation of
[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1, we already

require

P𝐹 0𝐷(𝐰(𝑘)
𝑛+1,𝐐

(𝑘)
𝑛+1) = P𝐰̃(𝑘)

𝑛+1 = 𝐏̃(𝑘)
𝑛+1.

The slightly perturbed quantity, P𝐹 0𝐷(𝐰(𝑘)
𝑛+1,𝐐

(𝑘)
𝑛+1 + 𝜖𝐞𝑗 ), can be computed in exactly the same manner. We define 𝐰̃(𝑘)

𝑛+1,𝜖𝑗
and 𝐏̃(𝑘)

𝑛+1,𝜖𝑗
such that

P𝐹 0𝐷(𝐰(𝑘)
𝑛+1,𝐐

(𝑘)
𝑛+1 + 𝜖𝐞𝑗 ) = P𝐰̃(𝑘)

𝑛+1,𝜖𝑗
= 𝐏̃(𝑘)

𝑛+1,𝜖𝑗
.

Thus, we may write

𝑀𝑖𝑗 =
𝑃 (𝑘)
𝑛+1,𝜖𝑗 ,𝑖

− 𝑃 (𝑘)
𝑛+1,𝑖

𝜖
. (54)

In this form, it is revealed that 𝑀𝑖𝑗 is a resistance matrix that describes how pressure at coupled node 𝑖 changes with flowrate at
coupled surface 𝑗. As indicated previously, we have shown that this manipulation of Newton’s method demands a modification of
the 3D solver to account for 0D resistance. Following [19], the off-diagonal entries of 𝑀𝑖𝑗 are ignored in this work. Since𝑀𝑖𝑗 factors
into the tangent but not the residual, ignoring the off-diagonal components affects the rate of convergence but not the converged
solution itself, analogous to an inexact Newton method. In practice, we did not see convergence issues with this modification, which
improves the sparsity of the tangent contribution and decreases the computational cost.

The resulting 0D tangent contribution is given as (again, see Appendix C for derivation)

(

𝐾3𝐷∕0𝐷
)(𝑘)

𝑛+1,𝐴𝑖𝐵𝑗
=
𝑛𝑐𝐵𝐶
∑

𝑙=1

𝑛𝑐𝐵𝐶
∑

𝑚=1
𝛾𝛥𝑡𝑀𝑙𝑚 ∫𝛤 (𝑙)

ℎ𝑐

𝑁𝐴𝑛𝑖𝑑𝛤 ∫𝛤 (𝑚)
ℎ𝑐

𝑁𝐵𝑛𝑗𝑑𝛤 . (55)

The variable definitions are the same as for 𝐑3𝐷∕0𝐷 (a vector), with the addition of indices (𝐵, 𝑗, 𝑚) since we are now dealing with a
matrix. Analogous to the 0D-modified 3D residual, the 0D tangent contribution should be assembled into the momentum–acceleration
block of the tangent matrix, if applicable.

Remark: For a 3D structure–0D fluid problem, the integrals in Eq. (55) should be taken over the coupled surface in the current
(deformed) configuration with the current surface normal vector, corresponding to timestep 𝑛 + 1.

Remark: Eq. (49) (0D-modified 3D residual) and Eq. (55) (0D contribution to the 3D tangent) can be found in [19,35], in slightly
ifferent notation. However, we obtain these expressions through a new derivation involving ANM and show that they apply not
nly to the 3D fluid–0D fluid problem, but also to the 3D structure–0D fluid problem.

.4.4. Summary
The coupling strategy is summarized below. See Fig. 4 for a graphical representation of the required computations and

ommunications. At each Newton iteration 𝑘,

1. Compute 𝐐(𝑘)
𝑛+1 = 𝑓 (Φ(𝑘)

𝑛+1), where 𝑓 is some function according to Eqs. (32) and (33), and communicate with the 0D solver.
The 3D solver must also compute and send 𝐐𝑛 = 𝑓 (Φ𝑛), which is also required by the 0D solver (see Appendix A for more
11

details).
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Fig. 4. Communication diagram between 3D and 0D solvers. At each timestep 𝑛, we iterate until convergence. At each Newton iteration 𝑘, we perform 6
computations/communications. These steps correspond to the coupling algorithm summary in Section 2.4.4.

2. Compute

𝐰̃(𝑘)
𝑛+1 = 𝐹 0𝐷(𝐰(𝑘)

𝑛+1,𝐐
(𝑘)
𝑛+1;𝐰𝑛,𝐐𝑛),

𝐰̃(𝑘)
𝑛+1,𝜖𝑗

= 𝐹 0𝐷(𝐰(𝑘)
𝑛+1,𝐐

(𝑘)
𝑛+1 + 𝜖𝐞𝑗 ;𝐰𝑛,𝐐𝑛), 𝑗 ∈ {1,… , 𝑛𝑐𝐵𝑐}.

This requires 𝑛𝑐𝐵𝑐 + 1 calls to the 0D solver.
3. Compute

𝐏̃(𝑘)
𝑛+1 = P𝐰̃(𝑘)

𝑛+1,

𝐏̃(𝑘)
𝑛+1,𝜖𝑗

= P𝐰̃(𝑘)
𝑛+1,𝜖𝑗

, 𝑗 ∈ {1,… , 𝑛𝑐𝐵𝑐}.

This requires the 0D to simply extract the proper components of 𝐰̃(𝑘)
𝑛+1 and 𝐰̃(𝑘)

𝑛+1,𝜖𝑗
and send them to 3D.

4. Given 𝐏̃(𝑘)
𝑛+1, compute

[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 using Eq. (49).

5. Given 𝐏̃(𝑘)
𝑛+1 and 𝐏̃(𝑘)

𝑛+1,𝜖𝑗
, 𝑗 ∈ {1,… , 𝑛𝑐𝐵𝑐}, compute 𝐌 using Eq. (54) and construct

[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 using Eq. (55).

6. Solve the modified 3D linear system Eq. (42)
[

𝜕𝐑3𝐷

𝜕Φ𝑛+1
+𝐊3𝐷∕0𝐷

](𝑘)

𝑛+1
𝛥Φ(𝑘)

𝑛+1 = −
[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 ,

for 𝛥Φ(𝑘)
𝑛+1.

The 3D degrees of freedom are updated with 𝛥Φ(𝑘)
𝑛+1, the Newton iteration index is incremented 𝑘 → 𝑘+1, and the process repeats

ntil
[

𝐑3𝐷∕0𝐷](𝑘)
𝑛+1 falls below a prescribed relative or absolute tolerance.

.5. Numerical considerations

The 0D tangent contribution
[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 is dense and adding it explicitly to

[

𝜕𝐑3𝐷

𝜕Φ𝑛+1

](𝑘)

𝑛+1
may deteriorate the performance of

he linear solver, which typically takes advantage of the sparse structure of tangent matrices arising in finite element solvers [42].
o address this, we rewrite Eq. (55) as

(

𝐾3𝐷∕0𝐷
)(𝑘)

𝑛+1,𝐴𝑖𝐵𝑗
=
𝑛𝑐𝐵𝐶
∑

𝑙=1

𝑛𝑐𝐵𝐶
∑

𝑚=1
𝛾𝛥𝑡𝑀𝑙𝑚(𝑆𝑙)𝐴𝑖(𝑆𝑚)𝐵𝑗 , (𝑆𝑙)𝐴𝑖 = ∫𝛤 (𝑙)

ℎ𝑐

𝑁𝐴𝑛𝑖𝑑𝛤 . (56)

That is,
[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 is the sum of rank 1 matrices. It is more efficient to store the vector 𝐒𝑙 separately and apply when needed (in

matrix multiplication and in preconditioning) than to explicitly form the outer product and add it to the tangent [35].
The 0D tangent contribution also increases the condition number of the linear system, proportional to the resistance of the

coupled Neumann boundaries (i.e., 𝐌). This can cause poor performance of standard iterative linear solvers. Resistance-based
12

preconditioning is an effective remedy [35,43].
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Fig. 5. Left: An idealized LV. Right: The same model with a cap surface shown in red, which, combined with the endocardial surface, defines a closed surface
with which to compute volume/flowrate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

2.6. Capping non-closed surfaces and consequences

The proposed coupling method requires computing flowrates from the 3D domain. For a 3D structure, this flowrate is identical
to the negative rate of change of the enclosed volume. An important complication arises if the structure does not enclose a volume,
such as in cardiac modeling. When the cardiac valves are closed, each cardiac chamber encloses a volume. However, the valves are
often ignored when modeling the heart. As an example, Fig. 5 (left) shows an idealized LV, where the inflow and outflow valves
re omitted. Here, we would like to couple the endocardial surface to a 0D fluid model, but the endocardial surface is not closed.
ot accounting for this will lead to an inaccurately computed flowrate. In this work, we address this issue by introducing a ‘‘cap,’’
surface that closes the endocardial surface, thereby defining an enclosed fluid-tight volume (Fig. 5 right). Stated formally, if a
oupled surface 𝛤 (𝑖)

ℎ𝑐
is not closed, we consider a cap surface 𝛤 (𝑖)

ℎ𝑐 ,𝑐𝑎𝑝
such that 𝛤 (𝑖)

ℎ𝑐
∪ 𝛤 (𝑖)

ℎ𝑐 ,𝑐𝑎𝑝
is a closed surface.

Because there is some flexibility in defining the cap surface, in our formulation, we leave the responsibility of constructing it
to the user. Methods exist for constructing such surfaces, such as the ear clipping algorithm [44] or the vtkFillHolesFilter
from VTK [45], the latter being used in this work.

We note that this cap surface is used only for computing flowrate and should not be treated in the same manner as a boundary
of the 3D model. In particular, even though the cap surface is used to compute flowrate, the coupling pressure is not applied to the
cap surface. The consequences are as follows. When computing flowrates, the cap surface is included in the integral in Eq. (32),

𝑄𝑖 =
∑

𝐴

(

∫𝛤 (𝑖)
ℎ𝑐

𝑁𝐴(𝐔)𝐴 ⋅ 𝐧𝑑𝛤 + ∫𝛤 (𝑖)
ℎ𝑐 ,𝑐𝑎𝑝

𝑁𝐴(𝐔)𝐴 ⋅ 𝐧𝑑𝛤
)

.

hen computing the 0D-modified residual, the cap surface is not included in the pressure integral in Eq. (49); it is unchanged,

(

𝑅3𝐷∕0𝐷
)(𝑘)

𝑛+1,𝐴𝑖
= Uncoupled residual terms +

𝑛𝑐𝐵𝐶
∑

𝑗=1
∫𝛤 (𝑗)

ℎ𝑐

𝑁𝐴𝑃
(𝑘)
𝑛+1,𝑗𝑛𝑖𝑑𝛤 .

hen computing the 0D tangent contribution, the cap surface is ignored in the first integral, but included in the second integral in
q. (55),

(

𝐾3𝐷∕0𝐷
)(𝑘)

𝑛+1,𝐴𝑖𝐵𝑗
=
𝑛𝑐𝐵𝐶
∑

𝑙=1

𝑛𝑐𝐵𝐶
∑

𝑚=1
𝛾𝛥𝑡𝑀𝑙𝑚 ∫𝛤 (𝑙)

ℎ𝑐

𝑁𝐴𝑛𝑖𝑑𝛤
(

∫𝛤 (𝑚)
ℎ𝑐

𝑁𝐵𝑛𝑗𝑑𝛤 + ∫𝛤 (𝑚)
ℎ𝑐 ,𝑐𝑎𝑝

𝑁𝐵𝑛𝑗𝑑𝛤
)

.

Note that the cap surface is constructed once and evolved with the deformation of the model. Note also that the expressions
bove assume the cap surface does not introduce any new nodes in the interior of the surface. If the cap included interior nodes,
e would have to interpolate velocities from the boundary nodes (where the velocity is well-defined) to these interior nodes, and
he above expressions would have to account for this interpolation. We leave this problem for future work.

. Results

The present coupling method is implemented in svFSI, a multiphysics finite element solver for cardiovascular modeling [30].
n the following sections, we demonstrate the coupling method in several illustrative and clinically relevant examples, as well as
13

ssess the convergence behavior and cost of our method.
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Fig. 6. Problem setup for the coupled idealized LV example. (a) An idealized LV model, shown in cut-view, is coupled to an open-loop LPN of the systemic
circulation. The LV is supported by Robin boundary conditions (denoted by the spring–dashpot assemblies) on the base and epicardial surfaces, and periodic
active stress along fiber directions causes the LV to contract. (b) Fiber 𝐟 (left) and sheet 𝐬 (right) orientation fields for the idealized LV model. Arrows denote
the local fiber or sheet direction, and they are colored by their component along the longitudinal axis. Fiber angles (relative to circumferential) vary from +60◦

n the endocardial surface to −60◦ degrees on the epicardial surface. (c) Fiber stress curve (top) and prescribed atrial pressure curve (bottom). Here, we assume
he cardiac cycle duration is 1s. Atrial systole is set to begin at 𝑡𝑠𝑦𝑠,𝑎 = 0ms and lasts for a duration 𝑇𝑠𝑦𝑠,𝑎 = 200ms. Atrial pressure ranges between 6mmHg and
4mmHg. Ventricular systole is set to begin at 𝑡𝑠𝑦𝑠,𝑣 = 143ms, and the active stress reaches a maximum value of approximately 65 kPa (488mmHg). A complete
list of simulation parameters is provided in Table 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

3.1. Idealized left ventricle with open-loop circulation

In this example, we simulate a LV with active contraction, pumping blood through an open-loop LPN model of the systemic
circulation. The idealized LV geometry is that of a truncated, prolate ellipsoid [46] (Fig. 6a), with three surfaces: epicardial (outer)
𝛤𝑒𝑝𝑖, endocardial (inner) 𝛤𝑒𝑛𝑑𝑜, and basal (top) 𝛤𝑏𝑎𝑠𝑒. The geometry is meshed with linear tetrahedral elements with an average
edge length of approximately 5mm, yielding a mesh with 23,897 elements and 5,357 nodes (16,071 degrees of freedom). We also
construct a fiber orientation field [46], which is used in a fiber-based constitutive model of the myocardium, described next. The
iber orientations 𝐟 vary linearly from +60◦ (relative to circumferential) on the endocardial surface to −60◦ on the epicardial surface.
he material model also requires a ‘‘sheet’’ orientation field 𝐬, which in this work is perpendicular to 𝐟 and to the ellipsoidal normal
irection 𝐧. See Fig. 6b for visualization.
The myocardium is modeled with a Holzapfel–Ogden strain energy, plus a quadratic volumetric penalty term. In addition, we

nclude a viscous pseudo-potential, which accounts for viscous dissipation in the collagen and elastin matrix surrounding muscle
ibers [47,48], and an active stress term, which acts along fiber directions to recapitulate cardiac contraction [48,49]. The second
iola–Kirchhoff stress is thus given by

𝐒 = 𝜕
𝜕𝐄

(𝜓𝐻𝑂 + 𝜓𝑣𝑜𝑙) +
𝜕
𝜕𝐄̇

(𝜓𝑣𝑖𝑠𝑐 ) + 𝐒𝑎𝑐𝑡, (57)

𝜓𝐻𝑂 = 𝑎
2𝑏

(

𝑒𝑏(𝐼1−3) − 1
)

+
𝑎𝑓𝑠
2𝑏𝑓𝑠

(

𝑒𝑏𝑓𝑠𝐼
2
8,𝑓𝑠 − 1

)

+
∑

𝑖∈{𝑓,𝑠}
𝜒(𝐼4,𝑖)

𝑎𝑖
2𝑏𝑖

(

𝑒𝑏𝑖(𝐼4,𝑖−1)
2
− 1

)

, (58)

𝜓𝑣𝑜𝑙 =
𝜅
2
(1 − 𝐽 )2, (59)

𝜓𝑣𝑖𝑠𝑐 =
𝜂
2
tr(𝐄̇2), (60)

where 𝑎𝑖 and 𝑏𝑖 are material parameters, 𝜅 is a volumetric penalty parameter, and the strain invariants are defined as

𝐼1 = 𝐽−2∕3𝐼1 , where 𝐼1 = tr(𝐂),
𝐼4,𝑓 = 𝐟 ⋅ 𝐂𝐟 ,
𝐼4,𝑠 = 𝐬 ⋅ 𝐂𝐬,

(61)
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𝜂 is the viscosity and 𝐄̇ is the rate of Green–Lagrange strain tensor. 𝜒(𝑥) is a smoothed Heaviside function centered at 𝑥 = 1 with
smoothing parameter 𝑘,

𝜒(𝑥) = 1
1 + 𝑒−𝑘(𝑥−1)

(62)

inally, active stress is applied along fiber directions to recapitulate cardiac contraction,

𝐒𝑎𝑐𝑡 = 𝜏(𝑡) ⋅ 𝐟 ⊗ 𝐟 . (63)

𝜏(𝑡) is determined using the model from [48], yielding the active stress curve shown in Fig. 6c (top).
On 𝛤𝑒𝑝𝑖, we apply a Robin boundary condition in the normal direction only, following [48] to mimic the effect of the pericardium.

n 𝛤𝑏𝑎𝑠𝑒, we apply Robin boundary conditions in all directions. On 𝛤𝑒𝑛𝑑𝑜, we use a coupled Neumann boundary condition (Fig. 6a).
he initial LV geometry is set as the stress-free reference configuration, and the simulation is initialized with zero displacements
nd velocities.
In this example, the 0D fluid is an open-loop Windkessel-type model of the systemic circulation [48], shown in Fig. 6a. Performing
nodal analysis on this LPN yields the following set of ODEs.

𝑝𝑣 − 𝑝𝑎𝑡
𝑅𝑎𝑣

+
𝑝𝑣 − 𝑝𝑝
𝑅𝑠𝑙

−𝑄1 = 0,

𝑞𝑝 −
𝑝𝑣 − 𝑝𝑝
𝑅𝑠𝑙

+ 𝐶𝑝𝑝̇𝑝 = 0,

𝑞𝑝 +
𝑝𝑑 − 𝑝𝑝
𝑅𝑝

+
𝐿𝑝
𝑅𝑝
𝑞̇𝑝 = 0,

𝑝𝑑 − 𝑝𝑟𝑒𝑓
𝑅𝑑

− 𝑞𝑝 + 𝐶𝑑 𝑝̇𝑑 = 0.

(64)

The atrial pressure 𝑝𝑎𝑡 is a prescribed function of time, given by

𝑝𝑎𝑡 =

⎧

⎪

⎨

⎪

⎩

𝛥𝑝𝑎𝑡
2

(

1 − cos 2𝜋(𝑡−𝑡𝑠𝑦𝑠,𝑎)
𝑇𝑠𝑦𝑠,𝑎

)

+ 𝑝𝑎𝑡0, for 𝑡𝑠𝑦𝑠,𝑎 < 𝑡 < 𝑡𝑠𝑦𝑠,𝑎 + 𝑇𝑠𝑦𝑠,𝑎,

𝑝𝑎𝑡0, otherwise.
(65)

See Fig. 6c (bottom) for plot.
The atrioventricular (av) and semilunar (sl) valves are modeled as diodes with nonlinear resistances 𝑅𝑎𝑣 and 𝑅𝑠𝑙 that depend on

the pressure differential on either side as below:

𝑅𝑎𝑣 = 𝑅𝑚𝑖𝑛 + (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)𝑆+(𝑝𝑣 − 𝑝𝑎𝑡), (66)

𝑅𝑠𝑙 = 𝑅𝑚𝑖𝑛 + (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛)𝑆+(𝑝𝑝 − 𝑝𝑣), (67)

where 𝑆+ is a sigmoid function with steepness parameter 𝑘𝑝.
To cast into the general form in Section 2.3, we identify the 0D unknowns as 𝐰 = [𝑝𝑣, 𝑝𝑝, 𝑝𝑑 , 𝑞𝑝]𝑇 , while the coupled Dirichlet

boundary data are 𝐐 = [𝑄1]𝑇 . The uncoupled Neumann boundary data are 𝐩 = [𝑝𝑎𝑡, 𝑝𝑟𝑒𝑓 ]𝑇 , and there are no uncoupled Dirichlet
boundary data 𝐪𝑢 = []. The 0D variables are initialized using values from [48]. The coupled problem for this example can be
summarized as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0𝐷(𝐰, 𝑡, [𝐪𝑢,𝐐],𝐩) = 𝟎 given by Eq. (64),
Initial conditions from [48],

3𝐷,𝑠𝑡𝑟𝑢𝑐𝑡(𝐮, 𝐱, 𝑡) = 𝟎,
Initialize with zero displacement and velocity,
(Uncoupled) Robin boundary conditions on 𝛤𝑒𝑝𝑖 and 𝛤𝑏𝑎𝑠𝑒,
𝝈 ⋅ 𝐧 = −𝑃1𝐧, on 𝛤𝑒𝑛𝑑𝑜,

𝑃1(𝑡) = 𝑤1(𝑡) = 𝑝𝑣(𝑡),
𝑄1(𝑡) = ∫𝛤𝑒𝑛𝑑𝑜(𝑡) 𝐮(𝑡) ⋅ 𝐧(𝑡)𝑑𝛤 .

(68)

A complete table of parameters for this simulation can be found in Appendix D Table 1.
Fig. 7 (left) shows the pressure–volume (PV) loop over 10 cardiac cycles obtained from this coupled simulation. Although the

initial volume of the idealized LV is higher than a physiological heart, the ranges of pressure and volume are in a physiological range.
The stroke volume is approximately 90 mL and the resulting ejection fraction is 50%, which is comparable to normal physiological
15

values and values reported in other computational studies with different LV geometries [22,48,50]. There is a clear delineation of
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Fig. 7. Left: The PV loop for the LV is plotted for 10 cardiac cycles. The PV loop spans a realistic range of pressure and volume, exhibits a clear distinction of
he four cardiac phases, and reaches a limit cycle after about 5 cardiac cycles. Right: The deformation of the LV, colored by the magnitude of Green–Lagrange
train, is shown at four time points in the final (tenth) cardiac cycle, corresponding to the black circles on the PV loop. A movie showing the LV deformation
ynchronized with the PV loop is provided in the supplementary material. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 8. PV loops for a single cardiac cycle of the idealized LV model (Section 3.1) for decreasing timestep size. Insets show zoomed in view at the top and
bottom-right portions of the loop. PV loops converge as the timestep size decreases.

the four cardiac phases — isovolumic contraction, ejection, isovolumic relaxation, and filling. Additionally, the PV loop reaches a
limit cycle after about 5 cardiac cycles.

Fig. 7 (right) shows the LV deformation, colored by the magnitude of Green–Lagrange strain, ‖𝐄‖𝐹 , at four time points in the final
tenth) cardiac cycle. These time points correspond to the black circles shown in Fig. 7 (left), at the transition points between cardiac
hases when the cardiac valves open or close. Just before isovolumic contraction (𝑡 = 910ms), the LV is at its maximum volume
nd relatively unstrained, being loaded only by an end-diastolic pressure of 13.5mmHg. After isovolumic contraction (𝑡 = 919ms),
V volume is nearly unchanged, but the LV has begun to exhibit its characteristic twist due the prescribed fiber architecture, seen
ost clearly by the rotation of the apex. Just before isovolumic relaxation (𝑡 = 947ms), when the fiber stress is maximum and the
V is the most deformed and at its minimum volume, strain magnitude is greatest. Finally, after isovolumic relaxation (𝑡 = 951ms),
V volume is still at its minimum value, but the LV has begun to untwist due to the relaxation of the fiber stress.
16
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Fig. 9. Comparison of simulation time for 0D-coupled versus uncoupled simulations. ‘‘Coupled’’ is identical to that in Fig. 6, except it is run for only 1 cardiac
ycle (1000 timesteps). ‘‘Uncoupled (constant P)’’ is the same except the endocardial pressure is a constant 1500 Pa (11.25 mmHg). ‘‘Uncoupled (variable P)’’
s the same except the endocardial pressure is given by a prescribed time-varying pressure curve, shown in the inset plot. All simulations were run in parallel
ith 4 processors. Each simulation was run 5 times, and the mean ± standard deviation of those samples is plotted.

.2. Temporal convergence

In this section, we present preliminary results on the temporal convergence of the coupling method, applied to the idealized LV
odel (Section 3.1). In Fig. 8, the PV loop for a single cardiac cycle of the LV model is plotted for several timestep sizes. As the
imestep size is decreased from 10−3 s to 10−6 s, the PV loop converges. As shown in the figure, the PV loop for 10−3 s is very close
to the PV loop for 10−6 s, except for the maximum pressure, for which the difference is only about 1%.

3.3. Computational cost

In this section, wall time is used to compare the computational cost of the 0D-coupled idealized LV simulation (Section 3.1)
ith two similar but uncoupled simulations — the first with a constant endocardial pressure, and the second with a time-varying
ndocardial pressure. All simulations were run for one cardiac cycle (1000 timesteps) with a timestep size of 10−3 s. All simulations
ere run in parallel with 4 CPUs of an Intel Gold 5118 2.3 GHz processor, and each case was run 5 times. The mean wall time ±
tandard deviation was computed for each set of simulations. As seen in Fig. 9, after one cardiac cycle, the coupled simulation is
pproximately 15% slower than the uncoupled simulations. This is due to the extra 0D solver communication and computation that
s performed at each Newton iteration of the 3D solver. Note also that around timesteps 200 and 500, the coupled simulation slows
own. These timesteps correspond to the isovolumic phases when both valves are closed, where our method experiences marginally
lower convergence.

.4. Inflation of a spherical shell through its limit point

An interesting feature of the coupling framework is that it also permits the investigation of so-called limit point problems in
tructural mechanics. In this example, a simple 0D LPN is used to inflate a thick-walled sphere at approximately a constant flowrate
Fig. 10). The coupled problem for this example may be stated in the structure of Eq. (34) as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

𝑝𝑖𝑛 = 𝑝ℎ𝑖𝑔ℎ +𝑄1𝑅ℎ𝑖𝑔ℎ,

3𝐷,𝑠𝑡𝑟𝑢𝑐𝑡(𝐮, 𝐱, 𝑡) = 𝟎,
Initialize with zero displacement and velocity,
𝝈 ⋅ 𝐧 = −𝑃1𝐧, on 𝛤𝑖𝑛𝑛𝑒𝑟,

𝑃1(𝑡) = 𝑤1(𝑡) = 𝑝𝑖𝑛(𝑡),
𝑄1(𝑡) = ∫𝛤𝑖𝑛𝑛𝑒𝑟(𝑡) 𝐮(𝑡) ⋅ 𝐧(𝑡)𝑑𝛤 .

(69)
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Fig. 10. Left: A 3D thick spherical shell is coupled to a constant current 0D fluid. The inner surface of the shell is the coupled Neumann boundary. The 0D
fluid model has a high pressure source and a high resistance, which produces an approximately constant flowrate. Right: The pressure–volume relation for the
spherical shell is plotted. Markers are placed every 100 ms. Inflating the sphere at roughly a constant rate of change of volume allows the limit point (where
𝑑𝑃∕𝑑𝑉 = 0) to be traversed.

The LPN is the simplest ‘‘constant current’’ circuit, consisting of a large resistance 𝑅ℎ𝑖𝑔ℎ and a large pressure source 𝑝ℎ𝑖𝑔ℎ, chosen
together to yield an approximately constant flowrate −𝑄1 into the sphere. In this case, the LPN is described by a single algebraic
equation for the pressure inside the sphere, 𝐰 = [𝑝𝑖𝑛]𝑇 . The coupled 0D Dirichlet boundary data are 𝐐 = [𝑄1]𝑇 . The uncoupled
0D Neumann boundary data are 𝐩 = [𝑝ℎ𝑖𝑔ℎ]𝑇 , and there are no uncoupled 0D Dirichlet boundary data 𝐪𝑢 = []. By the coupling
conditions, the pressure 𝑃1 applied to the inner surface of the sphere, 𝛤𝑖𝑛𝑛𝑒𝑟, is equal to 𝑝𝑖𝑛.

The sphere has an inner radius of 25 μm and a thickness of 2.5 μm, and it is composed of a neo-Hookean material with material
constant 𝐶1 = 3 kPa. The geometry is meshed with linear tetrahedral elements with an average edge length of approximately 1 μm,
yielding a mesh with 229,578 elements and 42,673 nodes (128,019 degrees of freedom). With the given geometry and material
model, the spherical shell displays limit point behavior. Specifically, as the sphere is inflated in a quasi-static process, the pressure
increases, reaches a maximum (the limit point, where 𝑑𝑃∕𝑑𝑉 = 0), then decreases [51,52] (Fig. 10 right). Similar concave down
diastolic pressure–volume relations have been observed in embryonic chick hearts [53] and embryonic zebrafish hearts [54], and
limit point behavior has been proposed as a possible explanation. This example represents an idealized model of this phenomena
in small-scale, embryonic hearts.

Limit point behavior presents a challenge to standard simulation methods. To simulate inflation of the sphere, one would typically
apply an increasing pressure on the inner surface at constant increments. Unfortunately, this approach would never be able to capture
the descending portion of the PV curve; once the applied pressure exceeds the limit point pressure, Newton’s method will diverge
and the simulation will crash because there is no static equilibrium configuration at that pressure. Techniques exist to traverse the
limit point (and similar phenomena like snap-through behavior), the most common being the arc-length method [55].

As shown in Fig. 10, the present coupling framework allows us to traverse this limit point. There is in fact a connection
between this coupling method and the arc-length method. In both cases, the load magnitude (pressure) is treated as unknown,
and the equations corresponding to the mechanics problem are augmented by additional equations required to determine the load
increment or load scaling factor. Actually, ANM was originally applied to solve coupled nonlinear systems arising from the arc-length
method [34]. We note that a standard monolithic 3D–0D coupling approach, such as in [20], should also be able to traverse limit
oints in the same manner, but to the best of our knowledge, no previous studies have applied it to limit point problems.

.5. 3D fluid - 0D fluid example

For completeness, and to illustrate the generality of the coupling scheme to both 3D structure–0D fluid problems and 3D fluid–
D fluid problems, we reproduce a simulation similar to those in [56] using the current coupling scheme. In this work, the authors
pplied the original 3D fluid–0D fluid coupling of [19] to simulate blood flow in the pulmonary arteries coupled to a complex, closed-
oop model of the cardiovascular system. They used this model to investigate the hemodynamic effects of left pulmonary artery
tenosis after the stage II superior cavo-pulmonary connection (SCPC) surgery. The model is illustrated in Fig. 11. The geometry
is meshed with linear tetrahedral elements with an average edge length of approximately 0.3mm yielding a mesh with 1,593,709
elements and 293,943 nodes (881,829 degrees of freedom). The parameters of the model are taken from Table E1 P2 in [56].
18
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Fig. 11. (a) A 3D model of the pulmonary arteries is coupled to a closed-loop LPN model of the circulatory system [56]. (b) Streamlines of blood flow, colored
by pressure, in the pulmonary arterial model during mid-diastole (see red dot in the PV loop in panel c). (c) The PV loop over two cardiac cycles of the LPN
ventricle, which is modeled as a time-varying capacitor. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

The coupled problem for this example may be stated as,
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⎪

⎩

0𝐷(𝐰, 𝑡, [𝐪𝑢,𝐐],𝐩) = 𝟎 (equations not provided),
Initial conditions,

3𝐷,𝑓𝑙𝑢𝑖𝑑 (𝐮, 𝑝, 𝐱, 𝑡) = 𝟎,
Initial conditions,
(Uncoupled) no-slip boundary conditions on walls,
𝝈 ⋅ 𝐧 = −𝑃1𝐧, on 𝛤

(1)
ℎ𝑐
,

⋮

𝝈 ⋅ 𝐧 = −𝑃14𝐧, on 𝛤
(14)
ℎ𝑐

,

𝑃1(𝑡) = (P𝐰(𝑡))1,
⋮

𝑃14(𝑡) = (P𝐰(𝑡))14,
𝑄1(𝑡) = ∫𝛤 (1)

ℎ𝑐
(𝑡) 𝐮(𝑡) ⋅ 𝐧(𝑡)𝑑𝛤 ,

⋮

𝑄14(𝑡) = ∫𝛤 (14)
ℎ𝑐

(𝑡) 𝐮(𝑡) ⋅ 𝐧(𝑡)𝑑𝛤 ,

(70)

where 𝛤 (1)
ℎ𝑐
,… , 𝛤 (14)

ℎ𝑐
are the 14 faces (1 inlet + 13 outlet) of the pulmonary model, which are associated with 14 coupling pressures

𝑃1 …𝑃14 and flowrates 𝑄1 …𝑄14.

For the sake of clarity, when applied to 3D fluid–0D fluid problems, the coupling code used in the present work is functionally
identical to the code used in [56]. We include this section to emphasize that a 3D fluid–0D fluid problem can be solved using the
current unified coupling scheme; however, the method when applied to the 3D fluid–0D fluid problem and the results in this section
19

are not novel.
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Fig. 11 shows the 3D fluid and 0D fluid models, as well as the simulation results, which include a visualization of blood flow in
he pulmonary arteries and the PV loop of the LPN ventricle component. Other examples of 3D fluid–0D fluid coupling using the
resent coupling method can be found in [19,57,58].

. Discussion

We present a general framework for coupling 3D models of cardiovascular components – cardiac structures like the LV, as well
s vascular blood flow models like the pulmonary arteries – to 0D models of the circulatory system. The novel aspects of this work
re the extension of the modular framework of [19] to the 3D structure–0D fluid problem, a demonstration of the scheme’s efficacy
in 0D-coupled cardiac mechanics applications, especially in its ability to avoid the balloon dilemma and capture isovolumic cardiac
phases, and finally a new derivation of the coupling scheme based on ANM, which provides important mathematical underpinnings
and clearly shows the close connection to the monolithic coupling approach.

In multiple examples, we have shown the effectiveness of the present coupling method. To illustrate the application to cardiac
mechanics modeling, we simulated an idealized LV coupled to an open-loop LPN over 10 cardiac cycles (Section 3.1). The resulting
PV loop spans physiological ranges of pressure and volume, shows a clear distinction of the four cardiac phases, and reaches a limit
cycle. Critically, the isovolumic phases of the cardiac cycle are automatically captured without numerical stability issues. These
results provide significant verification of the effectiveness of the coupling framework for cardiac mechanics simulations. Using the
coupled LV model, we made preliminary assessments of the temporal convergence and cost of our method. In Section 3.2, we
showed that the coupling algorithm is stable and converges for small timesteps. In Section 3.3, we showed that coupled simulations
are moderately more expensive than uncoupled simulations (15% longer for one cardiac cycle). The additional cost comes from
communication with the 0D solver and a few assembly operations each Newton iteration of the 3D solver. This relatively small
increase in cost is well-warranted, given the increased physiological fidelity afforded by the coupling. In the spherical shell inflation
case (Section 3.4), which represents a simplified model of an embryonic heart, we showed 3D–0D coupling can be used to traverse
a limit point and discussed its relationship to the arc-length method. Finally, we simulated blood flow in a pulmonary arterial
model coupled to a closed-loop LPN of the circulatory system, demonstrating that our coupling also applies to the 3D fluid–0D fluid
problem (Section 3.5).

Previous approaches to the coupling problem use either a partitioned or monolithic strategy, and the advantage of the present
coupling is that it adopts a hybrid strategy, retaining the attractive features of both. In a monolithic approach, such as [20,48],
modifying the 0D model can be cumbersome, requiring a detailed understanding of the 3D solver structure. In particular, one
must typically derive new expressions for the off-diagonal tangent blocks in the monolithic (Newton) linear system Eq. (36). In our
approach, one can modify the 0D model without touching the 3D solver at all, and vice versa. As shown in Section 2, this is achieved
by applying Schur complement reduction to Eq. (36), which separates the 3D and 0D computations, then using the 0D fixed point
operator to approximately solve the modified linear system.

The present approach corresponds to the Neumann coupling in [19], in which a Neumann (pressure) boundary condition is
imposed on the 3D domain, while a Dirichlet boundary condition is imposed on the 0D domain. In [19], the authors also described
a Dirichlet coupling, in which a Dirichlet boundary condition is imposed on the 3D domain, while a Neumann boundary condition
is imposed on the 0D domain. In this type of coupling, the shape of the velocity profile on the 3D Dirichlet surface must be
chosen. While applicable to fluid simulations, in which one can reasonably assume a parabolic or flat profile, this is an inconvenient
limitation for structural mechanics simulations, since in most cases, the shape of the velocity profile cannot reasonably be assumed
a priori. In this paper, we only consider Neumann coupling.

A different kind of Dirichlet coupling for the 3D structure–0D fluid problem may be achieved by imposing a volume for the 3D
structure, enforced by augmenting the structural equations with a volume constraint, as in recent works [21,22,29]. The augmented
equations are then solved using Newton-like methods. Our Neumann coupling approach does not require such a volume constraint.
Furthermore, unlike in the time-staggered approach of [29], we do not observe any unphysical oscillations in the LV test case. These
oscillations, which were mitigated by the addition of a stabilization term in [29], do not appear in our coupling approach because
we iterate until both 3D and 0D systems are converged at each timestep. Similar oscillations might appear between iterations within
a timestep, but these are mitigated in our scheme by the incorporation of resistance information into the 3D tangent matrix, which
in fact is similar in philosophy to the stabilization term in [29].

The authors of [19] also identified three variations of the method. In the ‘‘implicit’’ method, the 𝐌 matrix is updated each
Newton iteration. In the ‘‘semi-implicit’’ method, 𝐌 is only computed once at the start of the simulation. In the ‘‘explicit’’ method,
the entire 0D contribution to the 3D tangent matrix is ignored. Note that this variation is nearly identical to the nonlinear Gauss–
Seidel approach mentioned in Section 2.4, except instead of solving the 3D residual equation fully each coupling iteration, the 3D
solver takes only one Newton step each coupling iteration. In [19], the three variations were compared in 3D fluid–0D fluid test
cases, and the semi-implicit method was found to provide the best balance of stability and cost. In this work, we described and used
only the implicit method because, for the coupled LV simulation, the explicit method was unstable due to the balloon dilemma, and
the semi-implicit method did not converge because 𝐌 changes drastically over the simulation due to the opening and closing of the
cardiac valves. We leave a detailed comparison of the three variations for coupled cardiac mechanics simulations to future work.
20
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Limitations and future work With respect to the present coupling algorithm, we identify important areas for future investigation
and development. We will first analyze the temporal convergence of the method, including the order of convergence as well as the
effect of the 3D and 0D time-stepping schemes on overall convergence. In addition, under certain assumptions met in our case, ANM
should converge quadratically [34]. We intend to verify this quantitatively.

We are also interested in applying the stabilized structural mechanics formulation presented in [59] for cardiac mechanics
simulations. This formulation treats both fluid and structural problems under a unified continuum modeling framework in which
pressure is a primitive variable. It is highly effective for incompressible solids, including cardiac tissues. Generally, we plan
on applying the coupling in more complex cardiac mechanics simulations, for example with advanced myocardial constitutive
models [27,60] or using 4-chamber anatomies [26].

This framework can be extended to couple a 3D model to a 1D model of blood circulation [61], which, unlike a 0D model, can
recapitulate wave propagation phenomenon in arteries [62]. On the 3D side, the expressions will be identical. One only needs to
define the effect of a flowrate boundary condition on the 1D system, and define how to extract pressure from the 1D system to
communicate back to the 3D system.

In the coupled LV test case, we assumed all cardiac muscle fibers contract in unison. While this assumption was sufficient to
generate many key features of cardiac behavior, in reality, the propagation of an electrical excitation wave determines the timing of
contraction at various points in the heart muscle. In future work, we plan on simulating the electrophysiology of the heart in order to
recapitulate this mechanical dyssynchrony, which can be important in diseased cases like ventricular tachycardia or bundle branch
blocks [63–65]. Coupling electrophysiology and 3D structural mechanics, with either one-way or two-way coupling approaches, is
a challenging problem in its own right [22], but since electrophysiology is not directly coupled to the 0D fluid model, it can be
integrated into the present 3D structure–0D fluid coupling framework with little or no modification.

Another important limitation in the coupled LV test case is the assumption of a spatially uniform endocardial pressure
distribution, a consequence of using a 0D fluid model. Indeed, the blood pressure in the LV is not spatially homogeneous.
Experimental studies have quantified the pressure difference between the apical and basal regions of the LV, called left ventricular
pressure gradient (LVPG) or intraventricular pressure difference (IVPD). This value varies throughout the cardiac cycle, but for
healthy adult humans, it is around 3mmHg during diastole and a similar order of magnitude in systole [66–68]. However, this
degree of spatial variability is much smaller than the temporal variability in LV pressure, which is roughly 100mmHg. Thus, we
argue that the spatially uniform pressure assumption is adequate to capture the major features of LV function. That said, spatial
variability may be important to capture some phenomena, especially in diseased cases. In future work, we intend to evaluate the
importance of spatial variability in LV pressure by comparing 0D-coupled LV simulations to FSI simulations with fully-resolved
intraventricular blood flow.

Finally, more recent coupling ideas similar to ANM have been proposed and summarized in [69], in which each solver is treated
as a blackbox defined only through its fixed point iteration operator. These algorithms are even more modular than the present
coupling scheme, while retaining the quadratic convergence properties of Newton’s method. Future work may aim to apply these
ideas to the 3D–0D coupling discussed here.

5. Conclusion

In this work, a unified and modular framework for 3D–0D coupling in cardiovascular simulations is introduced. The algorithm,
originally described in [19] for the 3D fluid–0D fluid problem, is extended to solve the closely-related 3D structure–0D fluid problem,
showing that both problems can be treated uniformly within the same mathematical formulation. Through multiple examples, the
effectiveness of the coupling algorithm is demonstrated. Notably, we construct a 0D-coupled idealized LV model that produces a
physiological pressure–volume loop and effectively captures the isovolumic cardiac phases without additional numerical treatment.
We also provide a new derivation using ANM, which reveals the present coupling scheme’s connection to the monolithic Newton
coupling approach. This hybrid coupling strategy combines the stability of monolithic approaches with the modularity and flexibility
of partitioned approaches, with relatively small additional computational cost compared to uncoupled simulations. Overall, this
work provides a robust, flexible, and efficient method for modeling the circulatory system in cardiovascular simulations of tissue
mechanics and blood flow.
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ppendix A. 4th order Runge–Kutta scheme

RK4 applied to the ODE system Eq. (25) reads

𝐤1 = 𝐟
(

𝐲𝑛, 𝐳𝑛, 𝑡𝑛,𝐪(𝑡𝑛),𝐩(𝑡𝑛)
)

,

𝐤2 = 𝐟
(

𝐲𝑛 + 𝐤1
𝛥𝑡
3
, 𝐳𝑛, 𝑡𝑛 +

𝛥𝑡
3
,𝐪(𝑡𝑛 +

𝛥𝑡
3
),𝐩(𝑡𝑛 +

𝛥𝑡
3
)
)

,

𝐤3 = 𝐟
(

𝐲𝑛 − 𝐤1
𝛥𝑡
3

+ 𝐤2𝛥𝑡, 𝐳𝑛, 𝑡𝑛 +
2𝛥𝑡
3
,𝐪(𝑡𝑛 +

2𝛥𝑡
3

),𝐩(𝑡𝑛 +
2𝛥𝑡
3

)
)

,

𝐤4 = 𝐟
(

𝐲𝑛 + 𝐤1𝛥𝑡 − 𝐤2𝛥𝑡 + 𝐤3𝛥𝑡, 𝐳𝑛, 𝑡𝑛 + 𝛥𝑡,𝐪(𝑡𝑛 + 𝛥𝑡),𝐩(𝑡𝑛 + 𝛥𝑡)
)

,

𝐲𝑛+1 = 𝐲𝑛 +
𝐤1 + 3𝐤2 + 3𝐤3 + 𝐤4

8
𝛥𝑡.

(71)

The algebraic variables are then determined by solving Eq. (26) for 𝐳𝑛+1 with the updated differential variables 𝐲𝑛+1,

𝐠(𝐲𝑛+1, 𝐳𝑛+1, 𝑡𝑛 + 𝛥𝑡,𝐪(𝑡𝑛 + 𝛥𝑡),𝐩(𝑡𝑛 + 𝛥𝑡)) = 𝟎.

For the LPNs considered in this work, this equation can be rewritten as

𝐳𝑛+1 = 𝐠̃(𝐲𝑛+1, 𝐳𝑛+1, 𝑡𝑛 + 𝛥𝑡,𝐪(𝑡𝑛 + 𝛥𝑡),𝐩(𝑡𝑛 + 𝛥𝑡)),

for some function 𝐠̃. If the LPN contains valves (as in the LV example in Section 3.1), 𝐠̃ is highly nonlinear with respect to 𝐳𝑛+1.
This leads to numerical difficulties in the coupling associated with valves switching open and closed between subsequent Newton
iterations. These difficulties are alleviated by replacing 𝐳𝑛+1 with 𝐳𝑛,

𝐳𝑛+1 = 𝐠̃(𝐲𝑛+1, 𝐳𝑛, 𝑡𝑛 + 𝛥𝑡,𝐪(𝑡𝑛 + 𝛥𝑡),𝐩(𝑡𝑛 + 𝛥𝑡)). (72)

Note that we assume the flow and pressure boundary forcings, 𝐪 and 𝐩, are known functions of time. In the coupled problem, 𝐪
is composed of a prescribed uncoupled component 𝐪𝑢 and a coupled component 𝐐,

𝐪(𝑡) = [𝐪𝑢(𝑡),𝐐(𝑡)].

Since 𝐪𝑢 is prescribed, its value is known at any time 𝑡. The value of 𝐐, on the other hand, is obtained from the 3D system, and its
variation with time may be approximated by interpolating between its values at timestep 𝑛 and 𝑛 + 1,

𝐐(𝑡𝑛 + ℎ) = 𝐐𝑛 + (𝐐𝑛+1 −𝐐𝑛)
ℎ
𝛥𝑡
,

where 𝐐𝑛 and 𝐐𝑛+1 are calculated from the 3D degrees of freedom Φ𝑛 and Φ𝑛+1, respectively.
From Eqs. (71) and (72), we can identify the fixed point operator corresponding to this 0D time integration scheme as

𝐹 0𝐷,𝑅𝐾4(𝐰𝑛+1,Φ𝑛+1;𝐰𝑛,Φ𝑛) =
[

𝐲𝑛+1
𝐳𝑛+1

]

=

⎡

⎢

⎢

⎢

⎣

𝐰𝑛 +
𝐤1 + 3𝐤2 + 3𝐤3 + 𝐤4

8
𝛥𝑡

𝐠̃
(

𝐰𝑛 +
𝐤1 + 3𝐤2 + 3𝐤3 + 𝐤4

8
𝛥𝑡, 𝐳𝑛, 𝑡𝑛 + 𝛥𝑡,𝐪(𝑡𝑛 + 𝛥𝑡),𝐩(𝑡𝑛 + 𝛥𝑡)

)

⎤

⎥

⎥

⎥

⎦

.

ppendix B. Calculation of flowrate

For a coupled Neumann boundary condition, the 3D model must compute a flowrate 𝑄 and send this value to the 0D domain.
For 3D fluid–0D fluid coupling (e.g., blood flow in the aorta coupled to Windkessel LPN), this is easily computed by integrating the
normal component of the velocity over the coupled surface, 𝑄 = ∫𝛤 𝐮 ⋅𝐧𝑑𝛤 . For structural simulations, we must specify the context.
In cardiac mechanics, we are typically interested in modeling a chamber or chambers of the heart. In this context, we are interested
in the flowrate of blood into or out of a chamber, which is identical to the rate of change of volume of the chamber. We use this
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interpretation to compute flowrate in the 3D structure–0D fluid problem.
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Let 𝛤 be a closed surface, for example a sphere. The rate of change of volume enclosed by 𝛤 can be computed using the Reynolds
ransport Theorem, which states that for an arbitrary scalar function 𝑓 defined over a time-varying region 𝛺(𝑡) with boundary 𝛤 (𝑡)

𝑑
𝑑𝑡 ∫𝛺(𝑡)

𝑓𝑑𝛺 = ∫𝛺(𝑡)

𝜕𝑓
𝜕𝑡
𝑑𝛺 + ∫𝛤 (𝑡)

(𝐮𝐛 ⋅ 𝐧̃)𝑓𝑑𝛤 , (73)

here 𝐮𝐛 is the velocity of the boundary and 𝐧̃ is the outward unit normal of the boundary. Taking 𝑓 = 1 and observing that 𝜕𝑓𝜕𝑡 = 0,
e find

𝑑
𝑑𝑡 ∫𝛺(𝑡)

(1)𝑑𝛺 = ∫𝛺(𝑡)
0𝑑𝛺 + ∫𝛤 (𝑡)

(𝐮𝐛 ⋅ 𝐧̃)(1)𝑑𝛤 ,

𝑑𝑉
𝑑𝑡

= ∫𝛤 (𝑡)
(𝐮𝐛 ⋅ 𝐧̃)𝑑𝛤 . (74)

That is, the rate of change of volume enclosed by a surface 𝛤 is the velocity flux integral over that surface. In cardiac mechanics,
t is more natural to use the inward surface normal 𝐧 = −𝐧̃ (pointing away from the cardiac tissue and into the blood pool on
he endocardial surface, for example). In addition, a positive flowrate 𝑄 out of the heart chamber is associated with a decrease in
hamber volume. Thus, we may write

𝑄 = −𝑑𝑉
𝑑𝑡

= ∫𝛤 (𝑡)
(𝐮𝐛 ⋅ 𝐧)𝑑𝛤 . (75)

This is in fact the same integral as in blood flow simulations, except we must be careful to take the integral over the coupled surface
in the current (deformed) configuration, 𝛤 (𝑡).

It is important to note that Eq. (75) is valid only if 𝛤 is a closed surface. In general, this is not the case, for example in the left
ventricle or biventricle models cut at the basal plane. For these models, in order to accurately calculate 𝑑𝑉

𝑑𝑡 , it is necessary to close
𝛤 with a ‘‘cap’’ surface. Such a capping was done in this work and slightly modifies the expressions for the 0D residual and tangent
contributions (see Section 2.6).

Appendix C. Contribution of coupled surface to tangent matrix

Here we derive Eq. (55) from Eq. (53). Eq. (53) reads

[

𝐊3𝐷∕0𝐷](𝑘)
𝑛+1 =

[

𝜕𝐑3𝐷

𝜕𝐏𝑛+1
P
𝜕𝐹 0𝐷(𝐰𝑛+1,𝐐𝑛+1)

𝜕𝐐𝑛+1

𝜕𝐐𝑛+1
𝜕𝐔𝑛+1

𝜕𝐔𝑛+1
𝜕Φ𝑛+1

](𝑘)

𝑛+1
.

e consider each term individually.

• The residual 𝐑3𝐷 depends on the coupling pressures 𝐏𝑛+1 through an equation like Eq. (49),

𝑅3𝐷
𝐴𝑖 = other terms +

𝑛𝑐𝐵𝐶
∑

𝑗=1
∫𝛤 (𝑗)

ℎ𝑐

𝑁𝐴𝑃𝑛+1,𝑗𝑛𝑖𝑑𝛤 .

Thus,

𝜕(𝑅3𝐷
𝐴𝑖 )

𝜕𝑃𝑛+1,𝑗
= ∫𝛤 (𝑗)

ℎ𝑐

𝑁𝐴𝑛𝑖𝑑𝛤 . (76)

Note that if the 3D residual is composed of momentum and continuity components (e.g., for Navier–Stokes), then this term is

multiplied by I𝑚 =
[

𝟏
𝟎

]

, which is simply a vector with 1s corresponding to momentum rows and 0s corresponding to continuity

rows. This places the tangent contribution in the momentum block row.

• In Section 2.4.3, we described how P
𝜕𝐹 0𝐷(𝐰𝑛+1,𝐐𝑛+1)

𝜕𝐐𝑛+1
is computed in a finite difference manner (Eq. (54)). This term is

denoted by the resistance matrix 𝑀𝑖𝑗 .
• From Eq. (32), we have

𝑄𝑛+1,𝑖 =
∑

𝐴
∫𝛤 (𝑖)

ℎ𝑐

𝑁𝐴𝑈𝑛+1,𝐴𝑘𝑛𝑘𝑑𝛤 .

Thus,
𝜕𝑄𝑛+1,𝑖
𝜕𝑈

= ∫ (𝑖)
𝑁𝐴𝑛𝑘𝑑𝛤 . (77)
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• Finally, we deal with the term 𝜕𝐔𝑛+1
𝜕Φ𝑛+1

. This term depends on the time discretization scheme. In our case, we use the generalized-𝛼
method and choose the nodal accelerations 𝐔̇ as our 3D unknowns (along with nodal pressures Π if the 3D is a fluid). The
nodal velocities 𝐔 are related to the nodal accelerations 𝐔̇ by Eq. (33)

𝐔𝑛+1 = 𝐔𝑛 + 𝛥𝑡𝐔̇𝑛 + 𝛾𝛥𝑡(𝐔̇𝑛+1 − 𝐔̇𝑛).

Thus,
𝜕𝑈𝑛+1,𝐴𝑖
𝜕𝛷𝑛+1,𝐵𝑗

=
𝜕𝑈𝑛+1,𝐴𝑖
𝜕𝑈̇𝑛+1,𝐵𝑗

= 𝛾𝛥𝑡𝛿𝐴𝐵𝛿𝑖𝑗 . (78)

Note that if the 3D degrees of freedom contain both acceleration and pressure components (e.g., for Navier–Stokes), then this

term is multiplied by I𝑎 =
[

𝟏
𝟎

]

, which is simply a vector with 1s corresponding to acceleration rows and 0s corresponding to

pressure rows. This places the tangent contribution in the acceleration block column.

ombining these terms yields the tangent matrix contribution Eq. (55). In addition to this tangent matrix contribution, with a
follower pressure load there should be a tangent contribution due to the fact that 𝛤 (𝑖)

ℎ𝑐
and 𝑛𝑖 change with the deformation. However,

this term is no different than the required term for an uncoupled surface and is unrelated to our coupling method, so we do not
explain it here.

Appendix D. Idealized LV simulation parameters

We list the parameter values for the idealized LV coupled to open-loop LPN simulation, shown in Fig. 6. Most values are taken
rom [48].

Table 1
Table of simulation parameters for the LV test case shown in Fig. 6.
Name Parameter Value Unit

General mechanical
Tissue Density 𝜌0 103 kg∕m3

Viscosity 𝜂 102 Pa s
Volumetric Penalty 𝜅 106 Pa

Active stress [48]
Contractility 𝜎0 8 × 104 Pa
Activation rate 𝛼𝑚𝑎𝑥 +5 1∕s
Deactivation rate 𝛼𝑚𝑖𝑛 −30 1∕s
Ventricular systole 𝑡𝑠𝑦𝑠,𝑣 0.143 s
Ventricular diastole 𝑡𝑑𝑖𝑎𝑠,𝑣 0.484 s
Steepness 𝛾 0.005 s

Passive myocardial tissue (HO model)
Matrix 𝑎 59.0 Pa

𝑏 8.023 −
Fiber 𝑎𝑓 18.472 × 103 Pa

𝑏𝑓 16.026 −
Sheet 𝑎𝑠 2.481 × 103 Pa

𝑏𝑠 11.12 −
Fiber sheet 𝑎𝑓𝑠 216 Pa

𝑏𝑓𝑠 11.436 −

Epicardial boundary condition
Spring stiffness 𝑘𝑒𝑝𝑖 1.0 × 108 Pa∕m
Dashpot viscosity 𝑐𝑒𝑝𝑖 5.0 × 103 Pa s/m

Basal boundary condition
Spring stiffness 𝑘𝑏𝑎𝑠𝑒 1.0 × 105 Pa∕m
Dashpot viscosity 𝑐𝑏𝑎𝑠𝑒 5.0 × 103 Pa s/m

LPN
Proximal inertance 𝐿𝑝 1.3 × 105 kg∕m4

Proximal capacitance 𝐶𝑝 7.7 × 10−9 m4 s2∕kg
Distal capacitance 𝐶𝑑 8.7 × 10−9 m4 s2∕kg
Proximal resistance 𝑅𝑝 7.3 × 106 kg∕m4∕s
Distal resistance 𝑅𝑑 1.0 × 108 kg∕m4∕s
Reference pressure 𝑃𝑟𝑒𝑓 0.0 Pa
Closed valve resistance 𝑅𝑚𝑎𝑥 1 × 109 kg∕m4∕s
Open valve resistance 𝑅𝑚𝑖𝑛 1 × 106 kg∕m4∕s
Valve steepness 𝑘𝑝 1 × 10−3 Pa
Baseline atrial pressure 𝑝𝑎𝑡,0 6.0 mmHg

(continued on next page)
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Table 1 (continued).
Name Parameter Value Unit

Atrial pressure amplitude 𝛥𝑝𝑎𝑡 8.0 mmHg
Atrial systole 𝑡𝑠𝑦𝑠,𝑎 0.0 s

𝑇𝑠𝑦𝑠,𝑎 0.2 s

LPN initial conditions
Initial ventricle pressure 𝑝𝑣(0) 8.0 mmHg
Initial proximal pressure 𝑝𝑝(0) 61.8 mmHg
Initial distal pressure 𝑝𝑑 (0) 59.7 mmHg
Initial proximal flowrate 𝑞𝑝(0) 38.3 mL∕s

Numerical integration
Timestep size 𝛥𝑡 0.001 s
Gen-𝛼 parameter 𝛾 0.5 −
Gen-𝛼 parameter 𝛼𝑓 0.5 −
Gen-𝛼 parameter 𝛼𝑚 0.5 −
Gen-𝛼 parameter 𝛽 0.25 −

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2024.116764.
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