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ARTICLE INFO ABSTRACT
Keywords: We introduce Branched Latent Neural Maps (BLNMs) to learn finite dimensional input-output
Branched Latent Neural Maps maps encoding complex physical processes. A BLNM is defined by a simple and compact feed-

Scientific Machine Learning

forward partially-connected neural network that structurally disentangles inputs with different
Numerical simulations

intrinsic roles, such as the time variable from model parameters of a differential equation, while
transferring them into a generic field of interest. BLNMs leverage latent outputs to enhance the
learned dynamics and break the curse of dimensionality by showing excellent in-distribution
generalization properties with small training datasets and short training times on a single
processor. Indeed, their in-distribution generalization error remains comparable regardless of
the adopted discretization during the testing phase. Moreover, the partial connections, in place
of a fully-connected structure, significantly reduce the number of tunable parameters. We show
the capabilities of BLNMs in a challenging test case involving biophysically detailed electro-
physiology simulations in a biventricular cardiac model of a pediatric patient with hypoplastic
left heart syndrome. The model includes a 1D Purkinje network for fast conduction and a
3D heart-torso geometry. Specifically, we trained BLNMs on 150 in silico generated 12-lead
electrocardiograms (ECGs) while spanning 7 model parameters, covering cell-scale, organ-level
and electrical dyssynchrony. Although the 12-lead ECGs manifest very fast dynamics with sharp
gradients, after automatic hyperparameter tuning the optimal BLNM, trained in less than 3 h
on a single CPU, retains just 7 hidden layers and 19 neurons per layer. The resulting mean
square error is on the order of 10~* on an independent test dataset comprised of 50 additional
electrophysiology simulations. In the online phase, the BLNM allows for 5000x faster real-
time simulations of cardiac electrophysiology on a single core standard computer and can be
employed to solve inverse problems via global optimization in a few seconds of computational
time. This paper provides a novel computational tool to build reliable and efficient reduced-
order models for digital twinning in engineering applications. The Julia implementation is
publicly available under MIT License at https://github.com/Stanford CBCL/BLNM.jl.

Cardiac electrophysiology
Congenital heart disease

1. Introduction

Learning complex input—output maps behind physical processes in a reliable manner has significant implications in any field of
science and engineering. In particular, when these physical processes are described via mechanistic models, the numerical resolution
of the underlying differential equations may be challenging and computationally demanding, even for a single instance of model
parameters [1,2].
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Fig. 1. Sketch of Branched Latent Neural Maps with different disentanglement levels between inputs, involving time variable + and model parameters 6, and
outputs, i.e. generic fields of interest, including both physical zy,.,(t) and latent z,,(r) temporal quantities. Partial connections are depicted in light gray,
whereas full connections are outlined in black.

In the past few years, several methods in the field of model order reduction, partially or entirely based on Neural Networks (NNs),
have been proposed to mitigate the high computational cost of physics-based solvers, with the aim of producing accurate and efficient
model evaluations for many-query applications [3-8], which involve sensitivity analysis, parameter estimation, forward and inverse
uncertainty quantification, and optimization [9-11]. However, many intrusive [1] and non-intrusive [12] reduced-order models
either fail or struggle to effectively reproduce phenomena that manifest fast and irregular dynamics while spanning an elaborate
solution manifold. In this paper, we propose a novel computational tool which we term Branched Latent Neural Maps (BLNMs) to
accurately and efficiently learn generic input-output relationships, even in the presence of sharp features and significant variability.
BLNMs are based on feedforward partially-connected NNs [13] to separate the contributions coming from unrelated inputs, such as
space and time variables with respect to physics-based scalar parameters. The output of BLNMs is given by relevant scalar or vector
fields of interest, as well as additional latent variables, which serve the purpose of enhancing the learned dynamics. The presence of
partial connections allows for a significant reduction in the number of tunable parameters while ensuring excellent in-distribution
generalization properties during the testing phase, even on different mesh resolutions than those used during the training stage.

Several Machine Learning methods have been recently proposed to tackle cardiac electromechanics while exploiting physics-
based knowledge [14-19]. In this paper, we demonstrate the performance of BLNMs in the setting of cardiovascular modeling
[20-23] and congenital heart disease [24,25], where multiphysics and multiscale phenomena interact in the context of understudied
pathological conditions in the field of computational cardiology. Specifically, we consider a patient-specific heart-torso geometry
of a pediatric case with hypoplastic left heart syndrome (HLHS) [26]. We perform biventricular-Purkinje 3D-1D electrophysiology
simulations to compute in-silico 12-lead electrocardiograms (ECGs) while spanning cell-scale through tissue-level parameter vari-
ability of a biophysically detailed mathematical model of electrophysiology. A BLNM trained on 150 electrophysiology simulations
in less than 3 h on a single CPU, endowed with 7 hidden layers and 19 neurons per layer (2398 tunable parameters), retains
an approximation error on the order of 10~* on 50 additional unseen 12-lead ECGs by the NN. Moreover, it enables faster than
real-time numerical simulations during the online phase, which allows one to accurately and efficiently solve inverse problems.
Indeed, this task would be unaffordable using a biophysically detailed electrophysiology model, given the computational cost of
these numerical simulations and the amount of queries that are required to solve a nonlinear optimization problem. BLNMs are
lightweight, compact, easy to train architectures, able to precisely capture the fast time scales of 12-lead ECGs while spanning
cell-to-organ model variability. Moreover, they can be queried in fractions of seconds to generate new predictions. Overall, BLNMs
provide a novel computational tool for the generation of accurate and efficient standalone surrogate models that can be applied for
digital twinning in computational science.

2. Methods

We describe the methodological details behind BLNMs for time-dependent processes, as well as the mathematical and numerical
models adopted for the application of simulated cardiac electrophysiology in a congenital heart disease patient.

2.1. Branched latent neural Maps

Given a generic high-fidelity model My expressed in terms of an input—output map between model parameters and a time-
dependent process, we derive a surrogate model Mgy by building a feedforward partially-connected NN that explores model
Myr parametric variability while structurally separating the role of time and model parameters. We depict the BLNM architecture
in Fig. 1, showing that different levels of disentanglement are allowed, ranging from the first hidden layer to the output layer. This
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Fig. 2. Example of heart-torso electrophysiology simulation in the patient-specific cardiac model and corresponding 12-lead simulated ECGs.

disentanglement enables BLNMs to generalize well over different grids during testing even if the training stage is performed on a
specific finite dimensional resolution (see Section 3.3). The surrogate model reads:

2(t) = BLN M (1,0;w) for t € [0,T]. (€D)]

This feedforward partially-connected NN is represented by weights and biases w € R+, and defines a map BLN' M : RI+Np — RN,
from time ¢ and model parameters € @ ¢ RN? to a state vector z(f) = [Zphysical (s Ziene D17 . Indeed, the state vector z(t) € RNz
Ccontains z,.q., (1) physical fields of interest, as well as 2, (t) latent temporal variables without a direct physical representation, that
enhance the learned dynamics of the BLNM. These non-dimensional latent variables z,,.,, (#) are not accounted for in the loss function
during the training stage, as in neural differential equations [6,27,28], but enrich the generalization of BLNMs while mapping the
whole solution manifold, by selectively and properly acting in areas with steep gradients. During the optimization process of the
NN tunable parameters, we minimize the Mean Square Error (MSE), that is:

‘C(thysical(t)’;obs(t); V?') = aIgIIlln [”’iphysical(t) - ;obs (I)”iz(o T)] ’ (2)
W ,

~ - ~ N, L . .
where Zp, e (f) € [=1, 1] il and Z,(7) el-11] “physical represent model My outputs and observations in non-dimensional
form. Time 7 € [0, 1] and model parameters 8 € [-1, 1]V? are also normalized during the training phase of model M-

2.2. Cardiac electrophysiology

We reconstruct a heart-torso model of a 7 year old female pediatric patient with HLHS from computerized tomography (CT)
images. Images and associated clinical data were obtained under an IRB-approved protocol at Stanford University. In Fig. 2 we
show an example of an electrophysiology simulation and in silico derived 12-lead ECGs on this patient-specific geometry.

2.2.1. Mathematical model
We model cardiac electrophysiology in the heart-Purkinje system by considering the biophysically detailed monodomain
equation [29,30] coupled with the ten Tusscher-Panfilov ionic model [31], represented here in compact form:

du

= F Tion (. w,2) = V - (Dy Vi) = T (x,1) in 2x(0,7T],

(Dy Vi) -n=0 on a2 x (0, T,

‘fj—'f =H@u,w,z) in 2x(0,T], 3)
2—? =Gu,w,z) in 2x(0,T],

u(x,0) = ug(x), w(x,0) =wy(x), z(x,0) =zyp(x) in Q.

In the following, we denote Eq. (3) as model Myp. T = Tyg = 600 ms corresponds to the final simulation time, given by a
single heartbeat. The computational domain Q = QU £, is represented by the one-way coupled 1D Purkinje network and
3D biventricular patient-specific geometry.

Transmembrane potential u describes the propagation of the electric signal at the Purkinje and myocardial level, vector w =
(wy, ..., wy,) defines the probability density functions of M = 12 gating variables, which represent the fraction of open channels
across the membrane of a single cardiomyocyte, and vector z = (zy, ..., zp) introduces the concentrations of P = 6 relevant ionic
species. Among them, sodium Na™, intracellular calcium Ca?* and potassium K* play an important role in the physiological
processes [32] dictating heart rhythmicity or sarcomere contractility, and are generally targeted by pharmaceutical therapies [33].
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Table 1
Parameter space sampled via latin hypercube for the numerical simulations performed with model M.

Parameter Description Range Units

Gear, Maximal Ca’* current conductance [1.99e-5, 7.96e-5] cm ms™! pF-!
Gra Maximal Na* current conductance [7.42, 29.68] nS pF~!

Gy, Maximal rapid delayed rectifier current conductance [0.08, 0.31] nS pF~!

D, Anisotropic conductivity [0.008298, 0.033192] mm? ms~!
Dy, Isotropic conductivity [0.002766, 0.011064] mm? ms~!
Dipuic Purkinje conductivity [1.0, 3.5] mm? ms~!
[ Purkinje left bundle stimulation time [0, 100] ms

Right hand sides H (u, w, z) and G(u, w, z), which describe the dynamics of the gating variables and ionic concentrations respectively,
along with ionic current Z,,,(u, w, z), derive from the mathematical formulation of the ten Tusscher-Panfilov ionic model [31]. The
action potential is triggered in the left and right bundle branches by an external applied current I, (x,1).

The diffusion tensor is expressed as Dy = DjsoI+D,ify ®f in 2., and Dy, = Dy, I in €, where f;, expresses the biventricular
fiber field [34]. D,y;, Diso» Dpurk € R* represent the anisotropic, isotropic and Purkinje conductivities, respectively.

We impose the condition of an electrically isolated domain by prescribing homogeneous Neumann boundary conditions 9£2,
where n is the outward unit normal vector to the boundary.

The ECG signals u, are computed in each lead location x, following [35]:

ue(xe)=—/ Vu-V—1_av (€]
Q

Ix =%

where e = (V,V,,V5,V,, Vs, V) and e = {LA,RA, F} define 6 precordial leads and 3 limb leads located on the pediatric
patient-specific torso model, respectively. From this information, we retrieve 3 bipolar limb leads as:

I=LA-—RA II=F-RA III=F-LA, (5)
and 3 augmented limb leads as:
aVL={U-1I1)/2 aVR=—-{I+11)/2 aVF={I+1II)/2. (6)

The set ECG = {V|,V,,V3,Vy, V5, Ve, [,I1,111,aV L,aV R,aV F} defines a 12-lead ECG, which is a comprehensive representation of
the electrical activity in the heart [30].

In Table 1 we report descriptions, ranges and units for the 7 model parameters that we explore via latin hypercube sampling to
generate the dataset of 200 electrophysiology simulations.

2.2.2. Numerical discretization

We perform space discretization of model My using P, Finite Elements. The biventricular tetrahedral mesh is comprised of
933,916 cells and 158,277 DOFs. The average mesh size is 2 = 1 mm. We generate the Purkinje network for both ventricles using
the fractal tree and projection algorithm proposed in [36]. We initiate the left and right bundles from the endocardial locations
near the atrioventricular node. The left bundle consists of 14,820 elements (14,821 DOFs), whereas the right bundle has 67,456
elements (67,457 DOFs). Following the approach adopted in [37], we use non-Gaussian quadrature rules to recover convergent
conduction velocities in the cardiac tissue [38,39]. We consider a transmural variation of ionic conductances to differentiate
epicardial, myocardial and endocardial properties according to [31]. For time discretization, we first update the variables of the
ionic model and then the transmembrane potential by employing an Implicit-Explicit numerical scheme [20,40,41]. Specifically,
in the monodomain equation, the diffusion term is treated implicitly and the ionic term is treated explicitly. Moreover, the ionic
current is discretized by means of the Ionic Current Interpolation scheme [42]. We employ a fixed time step 4t = 0.1 ms. The fiber
architecture is prescribed according to the Bayer-Blake-Plank-Trayanova algorithm with a, = —60°, depg, = 60°, B, = 20° and
Bondo = —20° [43].

2.2.3. Integration with branched latent neural Maps

In the present application, BLNMs are used to learn in silico ECGs while spanning relevant parameters of the monodomain
equation and ten Tusscher-Panfilov ionic model. The vector 6 corresponds to the 7 model parameters Ogp = [Gcyr.5 Gnas ks> Panis Disos
Dypyrks tsL‘\i/m]T reported in Table 1. The vector of physical variables zy; ., (f) contains the z,.,4,(r) precordial and limb leads recordings,
that is z,,4,(t) = [V1 (1), Va(2), V5(2), V4(t), V5(D), V(1), LA(t), RA(t), F(1)]T. We note that these recordings are considered in their non-
dimensional form 7z () € [-1, 17 zohysical during the training and testing phases. The same holds for time 7 € [0, 1] and model
parameters Ogp € [-1,1]V7.
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Fig. 3. Full dataset containing 200 in silico precordial and limb leads recordings.

2.3. Parameter estimation

We employ model Mgy in the setting of inverse problems. Specifically, we perform parameter calibration for 5EP e [-1,1]"
to match BLNMs physical outputs Zyyc.(f) to observations Zy,(r) coming from model Myp by minimizing the MSE, all in
non-dimensional form, that is:

‘C(thysical(t)”iobs(t)) = ”iphysical - ’iobs(t)lliz(o T) )

L ~HF

We randomly initialize GlEm;, in the [—1, 117 hypercube and we aim to recover model My parameters 6,. We run a single trial

~DE

of an Adaptive Differential Evolution algorithm for global optimization [44], which leads to a set of tuned model parameters 6,
via BLNMs.

2.4. Software and hardware

We employ 3D slicer [45] for the manual segmentation of the medical images in order to reconstruct the heart-torso geometry.
Meshing of this anatomic model is carried out using the TetGen library available in the SimVascular open-source software [46].
All electrophysiology simulations with model My are performed using svFSIplus [47], a C++ high-performance computing
multiphysics and multiscale finite element solver for cardiac and cardiovascular modeling, on 336 cores of the Stanford Research
Computing Center. This solver is part of the SimVascular software suite for patient-specific cardiovascular modeling [46]. We train
model Mgy by using BLNM. j1 [48-50], a new, in-house, Julia library for Scientific Machine Learning which is made publicly
available under MIT License at https://github.com/Stanford CBCL/BLNM.jl with this work. This public repository also contains the
dataset encompassing all the electrophysiology simulations used for the training and testing phases.

3. Results

We report numerical results related to the electrophysiology simulations that were run to generate the training, validation and
testing datasets for BLNMs. Then, we explain the technical details behind the automatic BLNM hyperparameter tuning method and
show the properties and results associated with model Mp;yy-

3.1. Electrophysiology simulations

We ran 200 numerical simulations on the patient-specific heart-torso model (see Fig. 2) and collected the corresponding simulated
12-lead ECGs. In Fig. 3 we depict the 200 precordial and limb lead sources that are employed for training, validation and testing
of the BLNMs. In Fig. 4 we show the corresponding 12-lead ECGs, where the limb leads are algebraically manipulated according to
Egs. (5) and (6). In Fig. 5 we report a representative output from the 3D electrophysiology simulation, namely activation times for
8 random samples from the whole dataset.

We notice that by exploring relevant parameters affecting cardiac function at the cell-level and organ-scale, we are able to
generate a broad set of plausible 12-lead ECGs and different patterns in the activation sequence for this pediatric patient. In
particular, we remark that the simulated 12-lead ECGs produce sharp gradients during the QRS complex (ventricular depolarization)
and T wave propagation (ventricular repolarization). Moreover, they manifest high variability among different instances of the model
parameters.
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Fig. 5. Simulated activation times in 8 different electrophysiology simulations that are randomly extracted from the full dataset.
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Table 2
Hyperparameters ranges and selected values for the final training stage.
BLNM Hyperparameters Trainable parameters
Layers Neurons Number of states Disentanglement level # parameters
Tuning {1..8} {10 ... 30} {9...12} {1 . Niggers}
Final 7 19 10 2 2398
Table 3

Summary of the computational times and resources to generate the electrophysiology simulations with model My and to train
model Mg yy. We always tune NN parameters with the BFGS optimizer, by employing either 5 cores or serial execution on an
Intel(R) Core(TM) i7-8700 3.20 GHz CPU. We sample in silico 12-lead ECGs with a fixed time step 47 =5.0 ms.

Task Computational resources Execution time

Dataset generation using My (200 simulations) 336 cores 1 day

Mpny hyperparameters tuning (50 confs, 10,000 iters) 5 cores 20 h

Mg ny final training (50,000 iters) 1 core 2 h and 30 min
Table 4

MSE and computational times associated with different training dataset with increasing complexity for the optimal
NN architecture (7 layers, 19 neurons per layer, 10 states, 2 disentanglement level). We use a fixed time step
At = 5.0 ms. We employ 1 core of a standard computer endowed with an Intel(R) Core(TM) i7-8700 3.20 GHz

CPU.

Number of simulations Training loss (MSE) Testing loss (MSE) Training time
50 0.000599 0.018932 50 min

100 0.000293 0.000589 1 h and 45 min
150 0.000340 0.000454 2 h and 30 min

3.2. Hyperparameter tuning

We perform hyperparameter tuning by employing K-fold (K = 5) cross validation over 150 electrophysiology simulations. We
consider a hypercube as a search space for the number of layers, number of neurons, number of states N, and disentanglement level
in the BLNM structure. Given the limited dimension of the search space, we employ 50 instances of latin hypercube sampling and
select the configuration providing the lowest MSE. The Julia implementation is based on Hyperopt. j1 [51], a package to perform
parallel hyperparameter optimization. The different NNs associated with each K-fold are simultaneously trained via Message Passing
Interface (MPI) on 5 physical cores of a standard workstation computer. We also exploit Hyper-Threading over 7 additional virtual
cores with Open Multi-Processing (OpenMP) to speed-up computations. For each configuration of hyperparameters, we sample the
dataset with a fixed time step of Ar = 5.0 ms and we perform 10,000 iterations of the second-order BFGS optimizer [52]. In Table 2
we report the initial hyperparameter ranges for tuning and the final optimized values. In Table 3 we detail the computational times
and resources that we employ to generate electrophysiology simulations and to train NNs. Generating the dataset of biophysically
detailed and anatomically accurate electrophysiology simulations and reaching the final BLNM configuration require less than 2 days
of computation time. Each electrophysiology simulation runs in approximately 10 min but requires hundreds of cores to achieve
this performance. On the other hand, training a single NN defining a BLNM requires 10 min to 3 h on a single CPU depending to
the specific architecture.

3.3. Branched latent neural Maps

We showcase the features of BLNMs by means of different test cases. In Table 4 we analyze the influence of the training set
size on the computational times and MSE. We consider the optimal NN architecture obtained from hyperparameters tuning (see
Section 3.2). We notice that the total training time scales linearly with the dimensionality of the dataset. Moreover, the training
costs on a single CPU are quite modest, approximately ranging from 1 to 3 h. The training MSE is small, on the order of 104, and
comparable, regardless of the number of electrophysiology simulations. On the other hand, the testing loss drops to 6-10~* with 100
numerical simulations. Given the sharp temporal dynamics of 12-lead ECGs, the number and ranges of model parameters covered
by model My, BLNMs provide excellent in-distribution generalization properties with a relatively small amount of training data,
especially when compared to the significant variability and complex dynamics encompassed by the dataset.

In Table 5 and Fig. 6 we study the effect of different testing time steps on the BLNM prediction accuracy. We see that the MSE
remains approximately the same on finer and coarser meshes with respect to the fixed time step used for training, that is 4r = 5.0 ms.
This means that BLNMs appear to show little sensitivity to time discretization even if the training stage is performed on a specific
finite dimensional representation of the encoded physical process.

In Fig. 7 we compare the BLNM predictions with the ground truth for 5 randomly selected testing samples. BLNMs manifest good
agreement with observations, even in presence of sharp peaks and gradients during the QRS complex and T wave propagation. In
Table 6 we see the impact of varying the total number of states on the resulting MSEs. Adding latent outputs to the 9 physical outputs
representing precordial and limb lead recordings allows us to significantly reduce both training and testing errors. Specifically,
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Testing errors associated with different sampling time steps on in silico 12-lead ECGs for the optimal NN architecture
(7 layers, 19 neurons per layer, 10 states, 2 disentanglement level). We consider 50,000 BFGS iterations and 150
electrophysiology simulations for the training stage.

Training time step [ms]

Testing time step [ms]

Training loss (MSE)

Testing loss (MSE)

5.0 0.1 0.000348 0.000459

5.0 1.0 0.000348 0.000458

5.0 5.0 0.000340 0.000454

5.0 10.0 0.000337 0.000452

5.0 20.0 0.000333 0.000445
Table 6

Training and testing errors associated with different number of states on in silico 12-lead ECGs for the optimal
NN architecture (7 layers, 19 neurons per layer, 2 disentanglement level). We consider 50,000 BFGS iterations
and 150 electrophysiology simulations for the training stage, with A7 = 5.0 ms.

Number of states

Training loss (MSE)

Testing loss (MSE)

Time [ms]

Time [ms]

9 0.000758 0.097660
10 0.000340 0.000454
11 0.000358 0.000754
I I I
r 1.0 ¢ 1.0 ¢
H [ ] 1
- At =01 ms At = 10.0 ms m==At — 20.0 ms
F : 0.5 05
i A
,.,'J& 0.0 fe o —~, o 0.0 /L
. .’.
. 5L . . . g5l . . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
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Fig. 6. BLNM predictions (solid) and ground truth (points) for 1 randomly selected 12-lead ECGs in the testing set. Different colors represent different testing
time steps, namely 0.1, 10.0 and 20.0 ms (left to right), respectively. We show the time evolution of three relevant leads, i.e. I, aV F and V,. We employ

At = 5.0 ms for training.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. BLNM predictions (solid) and ground truth (points) for 5 randomly selected 12-lead ECGs in the testing set.
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Fig. 9. Training and testing errors vs. number of latent outputs associated with four different NN architectures. We consider 50,000 BFGS iterations, 150 and
50 electrophysiology simulations for training and testing, respectively, with A7 = 5.0 ms.

the training error is approximately halved, whereas the testing error is reduced by two orders of magnitude. This means that the
dynamics of 12-lead ECGs can be reproduced more accurately in the presence of a suitable number of latent variables. In particular,
from Fig. 8 we notice that the additional latent variable selected by the hyperparameter tuning process enhances the BLNM learned
dynamics by selectively acting on the QRS complex, that is ventricular depolarization, and T wave, that is ventricular repolarization.
Similar considerations hold even for sub-optimal NN architectures. In Fig. 9 we depict the training and testing errors with respect to
the number of latent outputs by considering four different BLNMs with smaller/higher number of layers and/or neurons per layer
than the optimal set of hyperparameters. We see that adding one latent output always entails a significant reduction in both loss
functions. On the other hand, two latent outputs contribute to a small reduction of the training error while sometimes leading to
overfitting. This means that a single latent output is sufficient to capture the required additional features for this specific application.

We also train a standard feedforward fully-connected NN with 9 physical outputs, i.e. without latent outputs, 7 layers and 19
neurons per layer, that is the optimal configuration for BLNMs. This NN accounts for 2631 trainable parameters. We employ the
BFGS optimizer and we perform 50,000 epochs over the usual 150 electrophysiology simulations, sampled with 47 = 5.0 ms. The
training error is 7 - 1073 while the testing error is 3.1. This shows that BLNMs outperform standard NNs in terms of training and
testing errors while considering less tunable parameters and shorter training times. Moreover, the standard NN does not generalize
well on different discretization due to the high MSE reported for the testing loss.

Furthermore, we quantitatively compare BLNMs against latent neural differential equations [28,53]. We perform hyperparameter
tuning using the same ranges reported in Table 2, except for the disentanglement level, which is not present given the feedforward
fully-connected structure of the NN in this framework. Following the approach of BLNMs, we employ the BFGS optimizer and
we perform 10,000 epochs, sampling the training and validation sets with a fixed time step At = 5.0 ms. We discretize the latent
neural differential equations in time using the forward Euler method, by considering 4+ = 5.0 ms. The optimal configuration of
hyperparameters found during K-fold (K = 5), which is given by 7 layers, 26 neurons per layer and 9 states (i.e no latent variables),
has a validation loss that is equal to 54.3. Indeed, we notice that latent neural differential equations fail to capture the QRS complex
and the T wave, which are the most important features of 12-lead ECGs.

3.4. Parameter estimation

We employ the final BLNM to perform parameter calibration against the testing set, which is comprised of 50 electrophysiology
simulations. In Fig. 10 we report the box plots showing the distribution of the errors, given by the absolute difference between each
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Fig. 10. Box plots showing the distribution of the errors for all model parameters.

parameter 61 " from model My and each estimated parameter 9EP with model Mpg;ny, in non-dimensional form. We notice that
all the errors are small and lay within the [0,0.09] range. This is possible given the small approximation error (~ 10~%) provided
by the BLNM with respect to the high-fidelity electrophysiology simulations. We show that BLNMs can be used to match unseen
observations coming from model My, while also retrieving all 7 cell-to-organ model parameters. Performing a single instance of
global optimization requires 7 s of computations in serial execution on an Intel(R) Core(TM) i7-8700 3.20 GHz CPU.

4. Discussion

Many efforts in the Scientific Machine Learning community are devoted to learning or mapping physical processes, within a
certain range of variability, by means of NNs. This can be performed by either learning the time [27,28,53-55], space [56,57] and
space-time [6-8,58,59] dynamics via different forms of neural differential equations or by mapping the whole solution manifold
with physics-informed or data-driven neural maps [4,5,60,61]. These involve the use of feedforward fully-connected, recurrent,
convolutional or graph neural networks, as well as encoders and decoders based on these architectures.

BLNMs blend and share mathematical properties coming from both classes of numerical methods. Indeed, this novel neural map
encodes the whole output of interest by spanning model variability in a supervised fashion, while structurally disentangling inputs of
different nature, such as time and model parameters of a differential equation. The level of separation between different categories
of inputs can be properly tuned, ranging from the first hidden layer to the outputs of a feedforward partially-connected NN. BLNMs
are simple, lightweight architectures, easy and fast to train, that effectively reproduce challenging processes with sharp gradients
and fast dynamics in complex solution manifolds.

While autoencoders generally exploit latent variables between the encoder and the decoder in order to perform dimensionality
reduction [62-64], BLNMs are endowed with additional latent outputs that act in specific regions of the simulated process to locally
enhance the learned dynamics. This principle is similar to what is done in latent/augmented neural differential equations [6,27,28],
where the NN defines a novel set of differential equations encoding the dynamics of a specific state vector, which contains both
physical and latent variables. The latter are generally not considered in the loss function, as in BLNMs, but allow one to find better
dynamics for the physical variables that are targeted during the optimization process. BLNMs exploit these latent variables as a
lifting in the output dimension in order to better map the whole solution manifold directly, without passing them from a system
of differential equations. This enables faster training than neural differential equations, as we do not have to replicate the NN
structure over different time steps and we do not need to compute gradients over a chain of NNs during backpropagation. BLNMs
require backpropagation over a single NN, where the presence of partial connections significantly reduces the number of tunable
parameters with respect to latent neural differential equations. Similar considerations hold for the online inference process, which
can be carried out with BLNMs by simply querying the NN without solving one or multiple differential equations. This provides a
speed-up in the testing phase of BLNMs in comparison to neural differential equations. Moreover, latent neural differential equations
generally struggle to reproduce sharp and irregular features, as we showed in Section 3.3.

On the other hand, while recent computational tools based on neural differential equations or deep neural operators enable space—
time extrapolation [6,7,65,66], learning the input-output map via BLNMs currently allows for excellent in-distribution generalization
only. Indeed, while testing BLNMs for out-of-distribution generalization, i.e. by considering model parameters outside the training
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range and longer simulation times, we notice that they provide reasonable approximations only in the neighborhood that is right
outside the training range and fail to perform time extrapolation. In particular, after the maximum training time, BLNMs provide
the trivial zero solution followed by a divergent behavior. Future studies should aim to improve the performance of BLNMs for
out-of-distribution generalization.

Another important feature of BLNMs is that they present a comparable performance among different discretizations during the
testing phase. This last property is also shared by neural operators [60], which learn maps between infinite dimensional function
spaces. Nevertheless, BLNMs focus on a specific finite dimensional grid during the training stage and are able to generalize over
different resolutions during the testing phase. Moreover, if compared to BLNMs, neural operators of different categories, such as
Fourier, low-rank, graph-based or deep operators, necessitate a more complex structure within the layers of the NN, which increases
training and testing times [4,67].

BLNMs present several differences with respect to both physics-informed neural networks (PINNs) [61] and associated recent
extensions [68-71]. While both BLNMs and PINNs share a data-driven term in the loss function, the former method encodes latent
outputs that enhance the learned dynamics but does not enforce any physics-based knowledge, while the latter focuses on physical
outputs only but also incorporates a physics-driven loss function based on the strong form of differential equations. BLNMs focus
on a specific mesh during training and present similar generalization errors over both coarser and finer grids during testing. On the
other hand, PINNs are mesh-less and require a suitable distribution of training points in the parameter space in order to generalize
well during the testing phase. BLNMs present a partially connected structure, that allows for reduced complexity (i.e. number of
trainable parameters) while structuring separating flows of information coming from inputs that are intrinsically different, whereas
PINNs are normally based on fully-connected NNs. Both methods can potentially handle different sets of inputs and outputs, such
as space and time variables, scalar and vector fields from parameterized differential equations, model-based or geometrically-based
parameters. Furthermore, in this specific application for cardiac electrophysiology, the 12-lead ECGs are obtained by a space integral
over the gradient of the transmembrane potential coming from the monodomain equation (see Eq. (4)), which makes a direct use of
PINNs unfeasible because the physics-based part cannot be incorporated as the residual of a differential equation written in strong
form. On the other hand, BLNMs can properly handle scenarios for model discovery or when the mathematical formulation cannot
be seamlessly enforced in the loss function.

All the aforementioned aspects characterizing BLNMs are demonstrated on a challenging real-world application in the field of
cardiac modeling. Specifically, a reduced-order model of in silico 12-lead ECGs spanning 7 cell-to-organ model parameters is learned
from biophysically detailed and anatomically accurate electrophysiology simulations on a patient-specific heart-torso geometry of a
pediatric patient with HLHS, a complex form of congenital heart disease. BLNMs accurately reproduce the outputs of this high-fidelity
electrophysiology model and can be readily employed in many-query applications, such as robust and global parameter estimation.

5. Conclusions

We introduced BLNMs, a novel computational tool for arbitrary functional mapping. BLNMs structurally disentangles inputs
with different intrinsic roles, such as time and model parameters, by means of feedforward partially-connected NNs. These partial
connections can be propagated from the first hidden layer throughout the outputs according to the chosen disentanglement level.
Furthermore, BLNMs may be endowed with latent variables in the output space, which enhance the learned dynamics of the neural
map.

The novelties of this work reside both in the methods and their application to congenital heart disease, which is understudied
in the field of computational cardiology. Indeed, we apply BLNMs in a challenging test case, that is learning the 12-lead ECGs of a
pediatric patient with HLHS by covering a large range of 7 significant cell-to-organ model parameters. We demonstrate that BLNMs
retain a small number of tunable parameters while accurately encoding complex, irregular and highly variable dynamics. Moreover,
thanks to the efficient Julia implementation, leveraging different NN libraries and optimization tools, these neural maps can be
trained in a fast manner even on a single CPU. BLNMs require small training datasets and do not degrade in accuracy when tested
on a different discretization than the one used for training. Furthermore, they can be effectively employed for parameter estimation,
as demonstrated using the whole testing set of the high-fidelity numerical simulations. This parameter calibration process can be
carried out within a few seconds, i.e. almost in real-time, on a single core standard computer, by considering global optimization
in the parameter space. In future works, we aim at using BLNMs to match patient-specific data with numerical simulations by also
leveraging computational tools from global sensitivity analysis and robust parameter estimation with uncertainty quantification.
Moreover, we would incorporate geometrical features within BLNMs, so that we can cover anatomical variability and we do not
need to re-train the NN on every new patient.

Finally, although we showcased and tested BLNMs in a specific application involving time processes only, this paper paves
the way for several extensions of the presented approach to space-time processes, while also structurally disentangling different
sets of parameters, such as the ones describing geometric variability from scalar and vector values related to a single geometry.
Furthermore, integrating a physics-based loss or a multifidelity approach, as recently proposed in the framework of deep operator
networks [72], may improve the performance and generalization of BLNMs, especially for multiscale and multiphysics problems
with known physical laws and properties.
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