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ABSTRACT

Single ventricle patients, including those with hypoplastic left heart syndrome (HLHS), typically
undergo three palliative heart surgeries culminating in the Fontan procedure. HLHS is associated
with high rates of morbidity and mortality, and many patients develop arrhythmias, electrical
dyssynchrony, and eventually ventricular failure. However, the correlation between ventricular
enlargement and electrical dysfunction in HLHS physiology remains poorly understood. Here we
characterize the relationship between growth and electrophysiology in HLHS using computa-
tional modeling. We integrate a personalized finite element model, a volumetric growth model,
and a personalized electrophysiology model to perform controlled in silico experiments. We
show that right ventricle enlargement negatively affects QRS duration and interventricular dys-
synchrony. Conversely, left ventricle enlargement can partially compensate for this dyssyn-
chrony. These findings have potential implications on our understanding of the origins of
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electrical dyssynchrony and, ultimately, the treatment of HLHS patients.

1. Introduction

Hypoplastic left heart syndrome (HLHS) is a severe
congenital cardiac defect where the left ventricle is
underdeveloped and the systemic outflow tract is
obstructed (Noonan and Nadas 1958). HLHS occurs
in 1.8 of 10,000 live births and represents 3.8% of all
patients suffering from congenital heart disease
(Ferencz et al. 1985). Without intervention, HLHS is
uniformly fatal. Having drastically improved over the
past four decades, the current treatment for HLHS -
and other functional single right ventricle lesions —
involves a series of two (hybrid approach) or three
(traditional approach) palliative surgical procedures
that establish the Fontan circulation (Fontan and
Baudet 1971). In the resulting physiology, the right
ventricle is established as the sole ventricular pump-
ing chamber that propels blood through both the sys-
temic and the pulmonary circulations and the venous
return is routed directly to the pulmonary arteries.
Regardless of the approach, longitudinal data from
birth show that only two thirds of the patients born
with HLHS today may hope to reach adulthood
(Ohye et al. 2016).

Despite improved mortality rates, the series of sur-
geries that create the Fontan physiology in HLHS
patients is not curative and exposes the right ventricle
to a systemic workload it is not built for (Files and
Arya 2018). HLHS patients can develop a number of
sequelae in the years following the Fontan procedure,
including heart failure, arrhythmia, protein losing
enteropathy, coagulopathy, exercise intolerance, portal
hypertension, and lymphatic dysfunction. Over time,
growth and remodeling in the single ventricle often
leads to ventricular enlargement (Sobh et al. 2022)
and a prolongation of the QRS segment in the elec-
trocardiogram (Graham et al. 2007; Tsai et al. 2013).
Both aspects are correlated with ventricular dyssyn-
chrony, which frequently accelerates the development
of heart failure (Rosner et al. 2018; Zaidi et al. 2019).
Once the single ventricle begins to fail, heart trans-
plantation, accompanied by associated consequences
of immune suppression, or mechanical circulatory
support are often the only viable options for the
patient to survive (Gutgesell and Massaro 1995; Lopez
et al. 2010; Rathod et al. 2014).

In adult patients with normal anatomy and ven-
tricular  dyssynchrony, cardiac resynchronization
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therapy is a well-established treatment modality.
However, the use of cardiac resynchronization therapy
in pediatric and congenital heart disease patients is
less established (Joyce et al. 2020). For single ventricle
patients specifically, no study has been able to dem-
onstrate a significant improvement in survival (Chubb
et al. 2022). Furthermore, the risk of transplantation
or death has been shown to be up to four times
higher in paced versus non-paced HLHS patient
cohorts (Chubb et al. 2022). This substantially raised
hazard ratio is thought to be correlated with the dis-
coordinated contraction of the paced single ventricle.
However, these dyssynchrony mechanisms in the sin-
gle ventricle patient populations remain poorly under-
stood (Motonaga et al. 2012). Therefore, an improved
understanding of the electrophysiology of the single
ventricle heart is urgently required to improve ven-
tricular pacing and cardiac resynchronization thera-
pies in this high risk patient population.

The lack of established single ventricle animal
models (Wiinnemann and Andelfinger 2016) and the
small yet highly heterogeneous single ventricle patient
population make it highly challenging to infer insights
from (pre)clinical data into single ventricle function
and dysfunction. Therefore, we turn to biophysical
cardiac computational modeling to provide a mechan-
istic understanding of the onset and progression of
electrical dyssynchrony in the single ventricle patient.
More specifically, we design and calibrate a personal-
ized image-based cardiac anatomic model from an
HLHS patient and perform electrophysiological simu-
lations. Using this model, we explore how right and
left ventricular overload induces growth, and how this
growth induces electrical dyssynchrony in this single
ventricle patient.

2. Materials and methods

To design a personalized heart model, we obtained
medical images and electrocardiographic data from a
six-and-a-half-year-old HLHS patient. We segmented
the cardiac geometry to create a personalized finite
element model and incorporated rule-based Purkinje
and myocardial fiber architectures for electrophysio-
logical simulations. We extracted electrocardiogram
readings and calculated personalized activation times
to characterize electrical dyssynchrony. We then
investigated the effect of loading-induced growth on
electrical dyssynchrony by simulating kinematic
growth following pressure-induced inflation of the
right and left ventricles. We used modified numerical
quadrature rules to minimize the mesh sensitivity of

our simulated conduction velocities. We preserved the
original Purkinje and myocardial fiber architectures
by mapping them from the baseline geometry to the
grown geometries. We simulated the electrical dyssyn-
chrony in the grown and remodeled states using the
earlier obtained personalized electrophysiology param-
eters and compared these results to follow-up electro-
cardiogram recordings. The following sections
describe the steps of our modeling pipeline in more
detail.

2.1. Personalized finite element model

This study focuses on a six-and-a-half-year-old female
with a hypoplastic left ventricle who had undergone
the Fontan procedure at age two. We obtained med-
ical imaging and electrocardiographic data for this
patient under an IRB approved protocol. We seg-
mented the biventricular geometry from magnetic res-
onance images using the Simvascular software
(Updegrove et al. 2017), and converted the resulting
geometry with a cutoff at the base plane, 5mm above
mitral and tricuspid valves, into a 611,864 tetrahedral
element mesh using Gmsh software (Geuzaine and
Remacle 2009) (see Figure 1, left). We used linear
element formulation in electrophysiology simulations.
However, in order to prevent locking of linear tetra-
hedral elements, we used quadratic element formula-
tion with reduced integration rule in simulating
growth mechanics.

The His-Purkinje system is a network of fast-con-
ducting cells that forms an integral part of the cardiac
excitation system. We created the Purkinje network
for both ventricles using a fractal tree and projection
algorithm proposed by Costabal et al. (2016). We ini-
tiated the left and right Purkinje networks from the
endocardial locations near the atrioventricular node
and constrained these networks to stay approximately
10 mm below the base plane. Parameters of the fractal
tree algorithm we used to generate left and right
Purkinje networks are given in Table 1. The resulting
dense networks consists of 53,642line elements in
total, with an average element size of 0.16 mm. Both
fiber networks have 3343 end-points in total, with
280 in left and 2863 in left endocardium, where the
Purkinje-myocardium junctions are established. An
algorithm we developed for this purpose iterates
through the Purkinje end-nodes and for each
Purkinje end-node finds the closest myocardium node
in order to create a Purkinje-myocardium junction.
When an end-node is paired to a myocardium node,
the algorithm assigns the number and the coordinate
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Figure 1. Biventricular geometry of the heart generated from magnetic resonance images of a 6.5-year-old hypoplastic left heart
syndrome patient using the Simvascular software (left). Heart model discretized with 611,864 tetrahedral elements with individual
myofiber orientations and Purkinje network discretized with 53,642 line elements (right).

Table 1. Parameters of the fractal tree algorithm (Costabal et al. 2016), used for generating left and right

Purkinje networks.

Parameter name Left Purkinje Right Purkinje
init_length N_it 7.0 20 20.0 40
length std_length 1.0 v/0.2 x length 15 1/0.2 x length
min_length branch_angle length /10.0 0.2 length/10.0 0.2
w |_segment 0.15 0.1 0.15 0.15
Fascicles Fascicles_angles True [0.5, —0.5] True [1.5, = 1.5,0.0]
Fascicles_length [3.0,3.0] [7.0,7.0,7.0]
values from the myocardium node to the Purkinje % (cV + ILion ) — div(D - VV) = L. (1)

end-node, virtually making them the same node,
therefore the transmembrane potentials are identical.
In this way, Purkinje-myocardium junction becomes
established, allowing the electrical signal transmission
from the Purkinje network to the myocardium mesh.
Left and right networks are not connected to each
other and need to be activated by independent elec-
trical stimuli (see Figure 1, right).

In addition to the Purkinje system, the anisotropic
structure of the myocardium plays an important role
in the spatiotemporal excitation of the heart. We
assign transmurally varying fiber orientations to our
computational heart model wusing the Laplace-
Dirichlet rule-based approach Bayer et al. (2012). In
line with ex vivo DTMRI experiments of human heart
tissue (Rohmer et al. 2007), we assign a transmural
fiber orientation ranging from +40°on the endocar-
dium to —50°0n the epicardium for both ventricles
(see Figure 1, right).

2.2. Electrophysiology modeling

We simulated the spatiotemporal evolution of the
transmembrane potential V across the heart using the
mono-domain electrophysiology equation,

Here, y is the surface-to-volume ratio, ¢ is the cap-
acitance of the cell membrane, and D is the aniso-
tropic conductivity tensor. I, is the ionic current
generated by ion transport across the cell membrane
and Iy is the external stimulus. We applied an
external stimulus of Iy, = 50 pA/mm?® for a dur-
ation of 2ms to the initial nodes of the right and left
Purkinje networks at times t =8V and t =1L} ,
which we determined through the personalization of
the electrophysiology model (see, Section 2.3). The
ionic current I, is a function of the transmembrane
potential V and a set of state variables of the underly-
ing ionic model. In simulations we used a dedicated
ionic model for the Purkinje fiber cells proposed in
Ten Tusscher and Panfilov (2008) and a dedicated
ionic model for ventricular cardiomyocytes proposed
in Ten Tusscher and Panfilov (2006). In our electro-
physiology model we did not distinguish the ionic
model differences between endocardial, mid-myocar-
dial and epicardial layers. We used endocardial vari-
ant of the Ten Tusscher-Panfilov model (Ten
Tusscher and Panfilov 2006) for all myocardium cells.
We note that some recent ionic models have
advanced the Ten Tusscher-Panfilov model, for
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example O’Hara-Virdg-Varré-Rudy model (O’Hara
et al. 2011) is shown to be able to model early after-
depolarizations where Ten Tusscher-Panfilov model
fails. However, the improved modeling accuracy
comes with an elevated computational cost: O’Hara-
Virag-Varr6-Rudy model employs 41 state variables
which is significantly more than the 18 state variables
used by the Ten Tusscher-Panfilov model. We do not
simulate complex electrophysiological processes in
this study, therefore we contented our simulations
with the Ten Tusscher-Panfilov model in order to
keep the computational cost tractable. With no-flux
boundary conditions, the weak form of Equation (1)
becomes

J bé CV oV + VV.-D- VbV + X IionSV - Istim5V
B

dv=0,

()
for all admissible test functions 0V. We obtain the
matrix form of the electrophysiology equation by
applying a finite element discretization to the weak
form in Equation (2) and split the matrix form into
ionic and diffusion parts (Qu and Garfinkel 1999;
Krishnamoorthi et al. 2013),

C,-V+D-V =0 (diffision)  C,-V+M - Iy,

= 0 (ionic),
3)

where C; and C, are the capacitance matrices, D is
the conductance matrix, M is the mass matrix, I;,, is
the transmembrane current vector, and V is the trans-
membrane potential vector. To calculate the matrices
C; and D, we used a modified four-point quadrature
rule in the tetrahedral elements and a modified two-
point quadrature rule in the line elements (Pezzuto
et al. 2016; Woodworth et al. 2022). Each quadrature
point has equal weight in a given quadrature rule,
however we modify the location of these points as
explained in Section 2.6. In doing so, we position
each quadrature point along a line that runs from the
element centroid to a vertex, which is illustrated for a
sample quadrature point in Figure 2. As a result, each
quadrature point in a given quadrature rule is at
equal distance from the centroid, however in different
directions. In the ionic part of problem, we applied
matrix lumping and obtained two diagonalized matri-
ces C, and M as described in Krishnamoorthi et al.
(2013). This approach is equivalent to using nodal
integrations in calculating the matrices. Therefore, we
store the gating variables of the ionic model at the
nodes and run the ionic updates strictly at the nodes.

We integrated the diffusion equations in time using
the Backward-Euler method with a uniform time step
size of 0.10ms and the ionic equations using a
fourth-order Runge-Kutta method with a uniform
time step size of 0.05 ms.

To couple the Purkinje system to the excitable
myocardial tissue, we connected the end-points of the
Purkinje network to the myocardium directly, as
described in Section 2.2. At the Purkinje-myocardium
junction nodes, we performed ionic updates using the
myocardial ionic model. We solved the resulting elec-
trophysiology problem using the finite elements
method as described in Krishnamoorthi et al. (2013).
See Appendix A for the validation of our electro-
physiology solver.

To parameterize our model, we started with the
ionic model parameters for human Purkinje fiber cells
(Ten Tusscher and Panfilov 2008) and ventricular car-
diomyocytes (Ten Tusscher and Panfilov 2006) and
with anisotropic conductivity values for the conduct-
ivity tensor D (Niederer et al. 2011). We further per-
sonalized the model based on electrocardiographic
recordings as described in Section 2.3. After solving
the electrophysiology model (Equation (3)), we com-
puted virtual electrocardiogram recordings from the
computed spatiotemporal transmembrane potential
evolution. Specifically, we calculated the pseudo-
electrocardiographic signal ¢, by integrating the dir-
ectional multiplication of the gradient of transmem-
brane potential at each point in the cardiac domain
with the direction vector pointing from the integra-
tion location to a lead location x, (Sahli Costabal
et al. 2018),

dolxe) = —va V) dvn @

where r is the direction vector from the point within
the heart model B to the virtual lead position. To
correctly locate the virtual leads, we estimated the
coordinates x, using the magnetic resonance imaging
scan (Figure 1) for three electrocardiogram leads e =
{V2,Ve6, AVF}.

2.3. Personalization of electrophysiology
parameters

After constructing the electrophysiological finite elem-
ent model, we calibrated our electrophysiology model
parameters to approximate the clinical electrocardio-
gram recordings of our HLHS patient. In developing
the procedure for parameter calibration, we adopted a
methodology similar to the one proposed in Gillette
et al. (2018), by optimizing stimulus timing and
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Figure 2. Change in conduction velocities with mesh size, for different quadrature point locations. Conduction velocities are plot-
ted in the range [0.00,0.50] for line elements and [0.00,0.25] for tetrahedral elements, where Gauss quadrature locations corres-
pond to 0.21 and 0.34. Shaded gray regions represent the average element sizes in our baseline and grown heart models. To
minimize the mesh sensitivity of conduction velocities within the gray region, we selected quadrature point locations of 0.40 for

line elements and 0.05 for tetrahedral elements.

conduction velocities. However, we used monodo-
main finite element solver instead of reaction-Eikonal
solving method, and we used a bespoke Purkinje net-
work instead of applying stimuli directly to myocar-
dium. In our study, we optimized the conductivities
D of the Purkinje network and the myocardium tissue
independently, and we optimized the timing of the
external stimulus applied to each Purkinje networks,
8 and t5/ such that our spatiotemporal activation
patterns match the electrocardiogram recordings of
leads V2, V6, and AVF. Resulting parameters at the
end of optimization are given in Section 3.1. We used
the data from V2, V6, and AVF leads of the clinical
ECG recordings, in calibration of the personalized
electrophysiology parameters. Our reason to choose
these three ECG leads is to inform our personaliza-
tion procedure of three dimensional electrical activity.
Specifically; V2 lead is positioned on the chest and
measures the electrical activity in anterior-posterior
axis, V6 lead is positioned near the armpit and meas-
ures electrical activity in medial-lateral axis, AVF lead
attached to the left leg and measures electrical activity
in inferior-superior axis. The combination of these
three axes gives us sufficient three-dimensional
insights in the spatiotemporal activation sequence of
the heart to calibrate the personalized electrophysi-
ology model. Starting from the initial parameter val-
ues of Section 2.1, we performed a parameter search
using the Nelder-Mead optimization algorithm in
order to tune the electrophysiology model parameters
to match the patient specific electrocardiogram
(Virtanen et al. 2020). We defined the objective func-
tion as the root mean square error of the simulated
and measured electrocardiogram signals,

1 n ) 1/2
err = Z; <Z (o™ — q>jf;)2) for
e i=1

(5)
e ={V2,V6,AVF} ,

where ¢5™ and ¢&

e1 e
electrocardiogram readings and n is the number of

are the simulated and measured

data points in time. As the stopping criteria of the
parameter search process, we used the function value
tolerance option fatol in SciPy’s Nelder-Mead
implementation. We have set fatol =1 x 107°.
Each electrophysiology simulation took about one
hour to complete on a high performance computing
(HPC) cluster using 24 cores of Intel 5118 CPUs. The
complete optimization process took about 75 function
evaluations, requiring about three days of wall-clock
time.

2.4. Dyssynchrony measures

To quantify the electrical performance we used two
measures of electrical dyssynchrony, the electric acti-
vation time and the electric dyssynchrony index
(Motonaga et al. 2012). The electrical activation time
t5 of each ventricle i = {RV,LV} is the difference
between the latest and earliest local electrical activa-
tion times, max(#) and min(£¢), where £ is an
array that contains the time values at which the trans-
membrane potential of all j=1,...,n endocardial
points became positive,

" = max(£7)—min(t;7) for i={RV,LV} .
(6)

The electrical dyssynchrony index t;i " of each ven-
tricle i = {RV,LV} is the standard deviation of the
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local activation times £ from the mean ventricular
activation time pu;,

1 n
(7 == S — ) with
n =
1 n

b= Zl £ for i={RV,LV} .
p=

7)

The interventricular dyssynchrony is the difference
between the mean activation times of the left and
right endocardial surfaces, [y — Hpy-

2.5. Kinematic-based growth modeling

We model the growth of the heart using a kinematic
growth model (Goktepe et al. 2010a). We assume a
kinematic decomposition of the deformation gradient
F into elastic and growth parts,

F=F.F, (8)

where F& describes the spin-free growth tensor that
maps tangent elements from the undeformed config-
uration to an incompatible intermediate configuration
and F¢ is the elastic tensor restores the compatibility
of the full deformation gradient F. To model the
growth of the heart as a result of a chronic ventricular
overload, we define the evolution of the second order
growth tensor F8 in response to mechanical loading.
Here we adopt a stretch-driven growth model in
which isotropic growth is driven by the elastic over-
stretch of the muscle fibers. This implies that the
growth tensor F® takes a diagonal format and the
growth factor ¥ is a function of the elastic stretch A°
in the fiber direction,

Yoes1) (o
T

=971 with 9=

The parameter 7 governs the growth rate, but is
not relevant in our simulations because here we are
only interested in the steady state of the growth
model at different stages, as the time scale is much
longer compared with electrophysiological simula-
tions. Our biventricular geometry was built based on
end-diastolic images and we take A° as the relative
stretch state at this end-diastolic stage. Therefore any
stretch beyond this state causes growth through A° >
1. At the steady state of the growth simulations, elas-
tic fiber stress relaxes completely and the fibers reach
an unstressed state. At this point elastic component of
the fiber stretch recovers its initial value A° = 1. To
model the elastic response of myocardial tissue, we
incorporate its hyperelastic, anisotropic, and nearly
incompressible tissue behavior (Sommer et al. 2015;

MCcEvoy et al. 2018) using the following strain energy
function (Holzapfel and Ogden 2009),

a —e af 7€
=, exp (O, - 3]) + z—bf[exp (bs[Ty — 11%) — 1]
As 7¢ _11%) —
+ 2b, [exp (bs[Iys — 1]7) — 1]
afs

bes
1
Kl = 1] ).

+o7 - exp (g [Ty, — 1) — 1]

(10)
Here, invariants of deformation are defined as
C =] 2PFt . F I, =C:fy®f, ] =det(C)"/
I;=C:11I;,,=C":s8®sg Ig, =sym(C":f,®sp),
(11)

where F is the deformation gradient, x is the bulk
modulus, and a, gy, g, ag, b, by, b, bg, are the material
parameters that govern the anisotropic response of
the tissue. We note that the elastic deformation is vol-
ume-preserving (incompressible), however the overall
deformation including the growth part is not volume-
preserving. We took the constitutive model parame-
ters from the study of (Peirlinck et al. 2019b), where
authors calibrated parameters based on diastolic fill-
ing simulations and Klotz-relation (Klotz et al. 2006).
In addition, we applied realistic kinematic boundary
conditions to constrain our finite element model in
space. We used a continuum distributed coupling
approach to constrain the left ventricular annulus
nodes with respect to the fixed center of mass of the
annulus and fixed the out-of-plane motion of the
nodes on the base cut plane.

We simulated homeostatic growth in response to a
ventricular pressure of 10mmHg. We applied this
pressure in three different scenarios: We pressurized
both ventricles, only the right ventricle, and only the
left ventricle and refer to the simulations as RV 4LV,
RV, and LV throughout the remainder of this study.
For all growth simulations, we adopted a custom
designed kinematic growth-based user subroutine
(Peirlinck et al. 2019a) within the commercial finite
element software Abaqus (Dassault Systemes Simulia
Corp 2022). We performed all growth simulations in
Abaqus/Explicit using automatic time stepping with a
minimum time interval of 107° s.

2.6. Mesh sensitivity of conduction velocities

Growth deforms the finite element model of the heart
and alters the mesh size in comparison to the baseline
geometry. Changing the mesh size changes the
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simulated conduction velocity because coarse meshes
tend to either under- or over-estimate the conduction
velocities depending on the quadrature method used
(Krishnamoorthi et al. 2013). To ensure consistency
of results, it is necessary to minimize the change in
simulated conduction velocities due to change in
mesh size. Previous studies proposed a method to
minimize the error in conduction velocities by using
non-Gaussian quadrature strategies (Pezzuto et al.
2016; Woodworth et al. 2022). Here we adapt the
same approach however we choose the non-Gaussian
quadrature points such that the simulated conduction
velocities are less sensitive to change in mesh size.
Figure 2 shows the simulated conduction velocities
with respect to the mesh size for different locations of
non-Gaussian quadrature points (those are marked on
the representative line and tetrahedral elements). We
calculated that the average size of Purkinje line ele-
ments is 0.16 mm before growth and size increased
up to 0.21mm after growth. Similarly, average edge
size of tetrahedral elements increased from 1.11 mm
up to 1.31mm in myocardium mesh. These ranges
are marked with gray vertical regions in Figure 2.
Our goal is to have a minimal change in simulated
conduction velocities, within the aforementioned
ranges of mesh sizes. Therefore, we proceed to iden-
tify the most horizontal line in each plot, within the
gray regions, that represents the least change in con-
duction velocity. The quadrature location correspond-
ing to the chosen line is selected to be the optimal
quadrature location for our electrophysiology model.
Using this reasoning, we selected quadrature locations
0.40 for line elements (Figure 2, left) and 0.05 for
tetrahedral elements (Figure 2, right) as optimal quad-
rature locations, because these lines show the least
amount of variability (more horizontal) within the
gray regions. We use these optimal quadrature loca-
tions only for solving the diffusion part of the electro-
physiology problem in Equation (3), whereas for the
ionic part of the problem we use nodal quadratures.

3. Results
3.1. Personalized electrophysiology model

At the end of the personalization process, we obtained
the optimized parameters as follows: conductivity ten-
sor for myocardium Dy = (1.05 X 107°)I + (6.95 X
1079)fp ®f, [S mm~ ' conductivity tensor for
Purkinje Dpyr = (1.26 x 1072)I [S mm~ ']; stimulus
timing of right Purkinje 8 = 145 ms; stimulus tim-
ing of left Purkinje

R =165 ms. Simulated

stim

electrocardiogram recordings resulting from the opti-
mized parameters are given in Figure 3.

Table 2 summarizes the resulting conduction veloc-
ities for the His-Purkinje network and the myocardial
tissue, the electrical activation times, and the dyssyn-
chrony indices according to Section 2.4, as a result of
the personalized electrophysiology model.

3.2. Growth of personalized geometry

Figure 4 illustrates the baseline and grown geometries
of three loading-induced scenarios. The sections high-
light the enlargement of the heart and the growth-
induced residual fiber stretch in the ventricular muscle
tissue. Table 3 summarizes the growth-induced volume
changes. For the RV + LV case, we observe that the left
ventricular cavity enlarged by 47% whereas the right
ventricular cavity enlarged by 101%, indicating that the
left ventricle is stiffer and less sensitive to pressure-
induced growth. Compared to the clinical catheteriza-
tion laboratory reports, the patient’s right ventricular
volume grew from 38.0 mL to 75.1 mL from age 6 years
and 6 months to age 11years and 4 months. The right
ventricular enlargement predicted by our RV+LV
growth model corresponded to roughly six years of age
difference in the patient’s life. Left ventricular loading
alone resulted in a 56% and 4% increase of the left and
right ventricular volumes; right ventricular loading
resulted in a 37% and 99% enlargement.

3.3. Growth-induced changes in electrocardiogram
readings

Figure 5 illustrates our simulated baseline electrocardio-
gram readings and the predicted electrocardiogram
readings for our grown hypoplastic left heart syndrome
models using the personalized electrophysiology param-
eters from Section 3.1. We showcase the growth-induced
changes in these electrocardiograms for ten 10% growth
increments with respect to the final grown configura-
tions from Section 3.2. From our results, we conclude
that RV-only and RV + LV load-induced growth cause
an increase in the amplitude and length of the QRS com-
plex and the T wave. At the same time, LV-only loaded
growth causes smaller changes in the electrocardiogram
readings. More specifically, the QRS duration increased
about 20 ms for RV and RV + LV load-induced growth
and about 2 ms for LV load-induced growth.

3.4. Interventricular dyssynchrony

Figure 6 illustrates the distribution of local electrical
activation times t*“ (see, Section 2.4) of the left and
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Figure 3. Clinical electrocardiogram recording of the patient is compared to the simulated electrocardiograms. Black lines repre-
sent the electrocardiograms before growth, and magenta lines represent the electrocardiograms after growth. Simulations of
growth are from RV + LV scenario. In the personalization procedure, only the activation phase is considered (opaque) and the

deactivation phase is omitted (transparent).

Table 2. Conduction velocities and dyssynchrony metrics
found from the personalized electrophysiology model agree
well with the values reported in literature. Electrophysiology
metrics are reported for right ventricle only.

Conduction velocities EP metrics

Purkinje  Myocardium  Activation time  Dyssync. index
Simulated  1.42m/s 0.78m/s 68.5ms 14.7 ms
Literature ~ 1.95m/s? 0.70 m/s? 633 ms® 13.7 ms?
2.00 m/s¢ 0.45 m/s¢

#Barber et al. (2021)
bDurrer et al. (1970)
“‘Motonaga et al. (2012)

right ventricle endocardia at baseline and for the
three loading-induced growth scenarios. Figure 7
summarizes the growth-induced changes in interven-
tricular dyssynchrony as defined in Section 2.4. In the
baseline case, the activation of the right ventricle is
slightly delayed compared to the left ventricle. In RV
and RV +LV load-induced growth, we observe an
increased delay in right ventricular activation, whereas
left ventricle activation is delayed to a lesser extent.
Expressed more quantitatively, this results in a 7.5ms
and 7.7ms increase in interventricular dyssynchrony
for RV and RV +LV cases as shown in Figure 7. In
LV load-induced growth, however, the activation pro-
file of the right ventricle remains almost unaffected,
while the activation profile of the left ventricle is
shifted to the right. As a result, the activation profiles
of the left and right ventricles overlap more and the
interventricular dyssynchrony decreases to 1.3 ms.

4. Discussion

During the past four decades, several innovations in
the palliative treatment strategy of hypoplastic left
heart syndrome have greatly improved survival rates

for patients born with this congenital heart defect.
Since two-thirds of patients currently have a good
chance of making it well into young adulthood (Ohye
et al. 2016), it becomes increasingly important to
study the long-term morbidities arising in these
patients. Despite improved survival rates, many
patients with HLHS still face the burden of lifelong
complications and remain at high risk of Fontan fail-
ure. Up to 50% of all patients with a completed
Fontan circulation still require additional interven-
tions before the age of five years Gobergs et al.
(2016). The most common follow-up intervention,
performed in 8% to 45% of all univentricular patients,
is permanent pacemaker implantation. Although
unavoidable, ventricular pacing is associated with a
3.8-fold higher risk of transplantation or death
(Chubb et al. 2022). As damage induced by ventricu-
lar pacing in the single ventricle population is
hypothesized to be correlated with a discoordinated
contraction of the paced ventricle, we urgently need
to improve our understanding of the electromechan-
ical coupling of the single ventricle. This is a chal-
lenging endeavor given the high heterogeneity of the
single ventricle population and the crescent shape of
the right ventricular geometry (Grattan and Mertens
2016; Wen Zhong et al. 2021). Lacking an established
single ventricle animal model, we turned to computa-
tional modeling to improve our understanding of sin-
gle ventricle function and dyssynchrony.

Following recent developments in computational
modeling, cardiac simulations are increasingly able to
replicate the mechanisms of cardiovascular physiology
and, as such, deliver more and more opportunities for
clinical use (Peirlinck et al. 2021c). Computational
models can help to understand the cause of, and
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Figure 4. Heart models resulting from the growth simulations. Baseline model and grown models after both right and left ven-
tricular loading, RV + LV, purely left ventricular loading, LV, and purely right ventricular loading, RV, followed by unloading. The
fiber stretch /4 denotes the total stretch in the myofibers with & = 9'/> A%. For the LV case, growth is localized around the left
ventricle; for the RV and RV + LV cases, growth takes place in both ventricles.

Table 3. Ventricular volumes at the baseline and after growth in response to left and right ventricular loading,
RV + LV, purely left ventricular loading, LV, and purely right ventricular loading, RV (upper rows); compared to the
right ventricular volume recorded in clinical measurements (lower rows).

Baseline RV+LV Lv RV
Left ventricular volume 1.82mL 2.67mL 2.84mL 2.50mL
Right ventricular volume 37.98 mL 76.34mL 39.58 mL 75.52mL
age of 6 yrs 6 mo age of 11 yrs 4mo
Right ventricular volume (clinical recording) 38.0mL 75.1mL

improve treatment therapies for, congenital heart
defects (Salman and Yalcin 2021; Trusty et al. 2018).
In this aspect, lumped parameter network models
have become a standard method to study the hemo-
dynamics of congenital heart defects (Marsden and
Feinstein 2015), including a.o. the effect of dobut-
amine in Fontan circulation (Sughimoto et al. 2019)
and the performance of total cavopulmonary connec-
tion on single ventricle circulation (Sundareswaran
et al. 2008). More advanced studies develop personal-
ized coupled three-dimensional computational fluid
dynamics models with lumped parameter models, as
in Schwarz et al. (2021); Yang et al. (2015) where
authors simulated hemodynamics of cavopulmonary

grafts. Electrophysiology and growth-and-remodeling
of CHDs have received less attention (Lee et al. 2018)
and are often modeled with reduced-order lumped
parameter network models (Hayama et al. 2020). To
the authors’ best knowledge, this study is the first
attempt to simulate personalized electrophysiology
and growth mechanics in single ventricle physiology.
State-of-the-art cardiac  electrophysiology and
growth modeling approaches in literature allow accur-
ate patient-specific simulations. Cardiac growth and
remodeling approaches are summarized in excellent
review papers by Sharifi et al. (2021); Niestrawska
et al. (2020). We use volumetric growth models and
do not consider remodeling in this study. Rodriguez
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Figure 5. Electrocardiogram readings for baseline and grown geometries in the V2 lead, top, the V6 lead, middle, and the AVF lead, bot-
tom. Baseline electrocardiograms in black and grown heart electrocardiograms in color, interpolated for ten 10% growth increments.
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Figure 6. Electrical activation times of baseline and loading-induced growth electrophysiology simulations of the personalized
hypoplastic left heart syndrome heart. Solid and dashed black lines highlight the distribution of activation times of the left and
right ventricular endocardia at baseline; red, green, and blue lines show the activation times for RV 4LV, LV-only, and RV-only
load-induced growth. Light to dark colors illustrate the effect of gradual growth, from 10% to 100%, on the activation profiles.
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Figure 7. Changes in interventricular dyssynchrony following
three scenarios of loading-induced growth. In RV and RV + LV
loading-induced growth cases the interventricular dyssyn-
chrony increases from 32.0 ms to 39.5ms and 39.7 ms, respect-
ively, whereas in the LV loading-induced growth case the
interventricular dyssynchrony decreases to 30.7 ms.

et al. (1994) established the foundation of volumetric
growth modeling, through the use of multiplicative
split of the deformation gradient, in analogy to
plasticity. This method was later applied to cardiac
growth simulations (Taber and Chabert 2002;
Ramasubramanian et al. 2008). Lin and Taber (1995)
introduced an evolution law for the growth tensor,
and Goktepe et al. (2010b) used stress and strain in
the evolution law of growth tensor, therefore linking
volumetric growth to biomechanical stimuli . Kroon

et al. (2009) applied volumetric growth modeling to a
univentricle model, whereas Genet et al. (2016) pre-
sented the first application to a four-chamber heart
model. Growth models have been applied to HLHS
physiology: Dewan et al. (2017) used volumetric
growth modeling to investigate the hypothesis that
decreased ventricular filling reduces LV growth in
utero. Moreover, Del Bianco et al. (2018) have investi-
gated electromechanical changes taking place upon
volumetric growth using a univentricle geometry.
Modeling of electrophysiology at organ level neces-
sitates consideration of various aspects such as the
fibrous structure, cardiac conduction system, cell elec-
trophysiology models and solving the resulting
coupled problem, which are discussed extensively in
excellent review articles by Lopez-Perez et al. (2015);
Peirlinck et al. (2021b); Corral-Acero et al. (2020);
Niederer et al. (2019). In the absence of DT-MRI
data, myocardium fibers can be modeled using rule-
based methods (Bayer et al. 2012; Bishop et al
2009).Fast-conducting Purkinje network can be
approximated using novel algorithms (Abboud et al.
1991; Costabal et al. 2016), transmembrane potential
at cell level can be modeled using phenomenological
(FitzZHugh 1961; Aliev and Panfilov 1996) or realistic
ionic models (Hodgkin and Huxley 1952; Beeler and
Reuter 1977; Ten Tusscher and Panfilov 2006).
Finally, the coupled conduction and ionic reaction
problem of electrophysiology can be solved by means
of finite element method (Goktepe and Kuhl 2009),
Eikonal approximation (Colli Franzone et al. 1990) or
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isogeometric analysis (Pegolotti et al. 2019). Studies
using computational electrophysiology modeling in
pediatrics are rare in literature; among which are,
fetal electrophysiology models (Pervolaraki et al. 2014;
Biktasheva et al. 2018) and arrhythmia modeling in
pediatric patients (Cartoski et al. 2019; Shade et al.
2020).

We built and calibrated a personalized heart model
based on medical imaging and electrocardiographic
data of a six-and-a-half-year-old female patient with
HLHS. This framework allowed us to systematically
study the impact of ventricular growth on electrical
dyssynchrony in a controlled manner, examining
effects of RV and LV loading-induced growth inde-
pendently and together. Our study uncovered several
important findings:

First, we conclude that the systemic right ventricle
in our HLHS patient is highly dyssynchronous, which
is line with earlier work by Motonaga et al. (2012).
As long QRS is associated with increased risk of
arrhythmia, heart failure, and death (Abd El Rahman
et al. 2000; Karikari et al. 2020), it is important to
assess how loading-induced growth can affect this
duration. Our results show that loading-induced right
ventricular enlargement leads to a dramatic increase
in QRS duration and interventricular dyssynchrony.
This effect is purely due to HLHS anatomy; since we
assumed a healthy electrical conduction system, nor-
mal myofiber structure and healthy material proper-
ties. This finding agrees with studies in Tetralogy of
Fallot patients where the size of the right ventricle
has been associated with QRS elongation (Abd El
Rahman et al. 2000). In our simulations, the QRS
complex widened approximately 30% (it increased
from 70 to 90 ms) as a result of roughly doubling the
volume of the right ventricular cavity corresponding
to approximately six years of growth. In the literature,
the QRS duration in patients with HLHS is observed
to increase approximately 12ms in the six years fol-
lowing the Fontan operation (Khan et al. 2015;
Karikari et al. 2020), which is slightly lower than our
simulated QRS elongation values. One possible
explanation for this discrepancy could be that
Purkinje conduction velocities increase with age
(Rosen et al. 1981), as a partially compensatory mech-
anism for QRS elongation. To test this hypothesis, we
increased the Purkinje conduction velocities in Table
2 by 20% and recomputed the spatiotemporal activa-
tion pattern in the RV 4LV loading-induced growth
case. This resulted in a smaller QRS elongation of
about 10ms, which agrees more closely with the lit-
erature. However, data on conduction velocities in the

human heart during childhood are needed before we
can draw further conclusions.

Second, we found an inverse relationship between
left ventricular enlargement and interventricular dys-
synchrony. The activation times of the personalized
electrophysiology simulations (Figure 6) show that the
left ventricle begins and completes activation earlier
than the right ventricle. This observation supports the
finding of Monaco et al. (2015) about pre-excited
appearance of ECG of HLHS patients. Following the
enlargement of the left ventricle, ventricular activation
times merge with each other, decreasing interventric-
ular dyssynchrony. This outcome is diminished and
reversed when right ventricular enlargement is present
along with left ventricular enlargement. This is due to
the relative size difference between the left and right
ventricle in HLHS patients, before and after growth.
Here, the left ventricular hypertrophic wall thickness,
and the resulting difference in wall stiffness also play
a role in the relative left versus right ventricular load-
ing-induced enlargement. In Section 3.2 we observed
that the left ventricle has enlarged approximately 50%
and right ventricle enlarged about 100% in response
to the same pressure level of 10 mmHg. Hypoplastic
left ventricles have endocardial fibroelastosis, which is
shown to restrict ventricular capacity and growth (Xu
et al. 2015). Although this is a major reason for the
stiffness of the ventricle, we observe increased left
ventricle stiffness without the presence of fibrosis in
our heart model. We conclude that the HLHS geom-
etry with thick left ventricle walls is a contributor to
the increased left ventricular stiffness.

Our study has several limitations that need to be
noted. First, we defined myofiber orientations using a
Laplace-Dirichlet rule based algorithm. Ideally, fiber
orientations in the model would be informed by
DTMRI data or disease specific measurements.
However, such data was not available for this patient
and is not routinely collected. Apart from a single
myofiber architecture analysis of a one-year-old male
patient with a univentricular systemic right ventricle
(Tous et al. 2020), data on hallmark transmural fiber
orientation in univentricular patients is lacking in the
literature. Given the high heterogeneity of the single
ventricle patient population, we chose to inform our
model based on a healthy myofiber architecture.
Given the comparative nature of our study, this limi-
tation about fiber architecture should not affect the
overall results, but we note that our model could be
updated in future should such data become available,
keeping the rest of the modeling pipeline intact.
Second, we employed a healthy electrical conduction
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system when simulating electrophysiology and tune
this to match the personalized electrocardiographic
recordings. As the three-stage surgery is confined
largely to the atria and outflow tracts, and therefore a
significant impact upon the Purkinje system and ven-
tricular conduction is not typically observed, this was
felt to be a reasonable assumption given the lack of
available data in the HLHS population. In future
work, we could expand our framework to incorporate
more patient or disease-specific information as it
becomes available. In particular, we note that there
could be changes in the conduction velocity with age
which we have not accounted for due to lack of avail-
able data. Third, although we closely matched the
patient’s grown chamber volumes with our load-
induced growth simulations, we did not have the
means to compare chamber shapes because the
patient did not have an MRI scan available from the
given time point (at 11years 4 months old). We did
not account for the prestressed state of the baseline
heart geometry (Peirlinck et al. 2018); which could
affect the grown geometries slightly. Fourth, this
study focused on a female patient. In the future, we
aim to expand this study to include both male and
female patients, as sex differences in cardiac function
cannot be ignored (Peirlinck et al. 2021a; St Pierre
et al. 2022). Lastly, a limitation of the proposed dis-
cretization is the imposed continuity of voltage at the
Purkinje-myocardium junction which ignores possible
conduction delays at the Purkinje-myocardium junc-
tion (Kamiyama and Inoue 1971). Given the limita-
tions, this study is meant as a pilot study to explore
preliminary agreement. More data would be needed
to validate this method for clinical use. In future
work, we aim to further expand this framework
toward electromechanically coupled simulations (Sahli
Costabal et al. 2017; Peirlinck et al. 2022) to further
elucidate the underlying mechanisms between elec-
trical and mechanical dyssynchrony in this challeng-
ing patient population (Motonaga et al. 2012).

Our study has important implications for the
future understanding and treatment of patients with
HLHS. Most importantly, a better understanding of
dyssynchrony in the clinically challenging single ven-
tricle population is key to developing more personal-
ized approaches that can improve the outcomes of
patients who required pacing. Our results highlight
the importance of taking into account the unique geo-
metrical and loading-induced growth patterns in
designing these treatment therapies. Moreover, the
developed framework could contribute to novel clin-
ical tools to test and optimize pacing locations, as

smaller prior studies have shown that more optimal
pacing locations can mitigate the adverse impact of
ventricular pacing (Chubb et al. 2022). In parallel, our
simulated results of interventricular dyssynchrony
show that loading-induced left ventricular enlarge-
ment can help restore a more synchronous activation
in the Fontan physiology. This is in line with recent
clinical efforts to restore biventricular function, albeit
in limited patient populations (Emani et al. 2012). We
believe that in-silico modeling approaches form a
promising future to guide more optimal personalized
treatments in the highly heterogeneous univentricular
patient population (Chubb et al. 2022).
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Appendix A.

Verification of the electrophysiology solver

Electrophysiology problem with complex ionic models
does not permit an analytical solution that could be used
to validate numerical solutions. Therefore, in Niederer



COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING . 17

150
— Ax=0.5mm
— Ax=0.2mm
> — Ax=0.lmm
E 1001
3
£
=
S
g
‘5 50
Q
<
0 T T :
0.0 10.7 21.4
Distance (mm)
Figure A1. Activation times along the diagonal line depicted

in Figure 1(b) of Niederer et al. (2011) between points P1 =
(0,0,0) and P8 = (20,7,3) of the solution domain, for solu-
tions with At = 0.005 ms and Ax = 0.1 mm (red line), Ax =
0.2 mm (green line) and Ax = 0.5 mm (blue line).

et al. (2011) authors have proposed an example problem
that could serve for this purpose. Nine research groups
have presented their numerical solutions to this example
problem using a range of solution techniques. This prob-
lem considers excitation of a representative tissue piece in
shape of a rectangular slab with dimensions of 20mm X

Table A1. Activation times at the corner (20mm,
7mm,3mm), for combinations of time and space
discretizations.

Ax = 0.1 mm Ax = 0.2 mm Ax = 0.5 mm
At = 0.05 ms 43.88ms 39.85ms 35.78 ms
At =0.01 ms 41.83ms 37.92ms 3441 ms
At = 0.005 ms 4137 ms 37.84ms 3432ms

7mm X 3mm. The slab was excited at the corner (0, 0, 0)
and activation was observed along the diagonal line con-
necting the corners (0, 0, 0) and (20, 7, 3). The problem
setting dictates the use of the Ten Tusscher-Panfilov
model Ten Tusscher and Panfilov (2006) with modified
parameters.

Nine research groups have submitted their solutions to
the example problem and authors have concluded the cor-
rect solution to the activation of the point
(20mm, 7mm, 3mm) should be between 42.5ms to 43.0 ms,
however, it should be noted that only two out of nine of
the solutions fell into this range. Our solution of the prob-
lem resulted in an activation time of 41.37 ms using the fin-
est time and space discretizations (see Table Al and Figure
Al). We note that we used central quadrature in solving
the diffusion problem (see Figure 2, left). We observed an
early activation, indicating increased conduction velocity,
with coarser space discretization. This behavior can be
modified by choosing different quadrature locations as
explained in Section 2.6.
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