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Abstract

Semantic relationships, such as hyponym-hypernym, cause-effect, meronym-
holonym etc., between a pair of entities in a sentence are usually reflected
through syntactic patterns. Automatic extraction of such patterns benefits
several downstream tasks, including, entity extraction, ontology building,
and question answering. Unfortunately, automatic extraction of such pat-
terns has not yet received much attention from NLP and information retrieval
researchers. In this work, we propose an attention-based supervised deep
learning model, ASPER, which extracts syntactic patterns between entities
exhibiting a given semantic relation in the sentential context. We validate
the performance of ASPER on three distinct semantic relations—hyponym-
hypernym, cause-effect, and meronym-holonym on six datasets. Experimen-
tal results show that for all these semantic relations, ASPER can automati-
cally identify a collection of syntactic patterns reflecting the existence of such
a relation between a pair of entities in a sentence. In comparison to the ex-
isting methodologies of syntactic pattern extraction, ASPER’s performance
is substantially superior.

1. Introduction

In natural language text, often the entities in a sentence are related
through various semantic relationships, such as, hyponym-hypernym, cause-
effect, meronym-holonym, etc. For instance, in a sentence like Sigmoid is a
kind of activation function, sigmoid and activation function share
a hyponym-hypernym relationship. Similarly, in a sentence like COVID-19
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causes breathing difficulty in some patients, there exists a cause-
effect relation between COVID-19 and breathing difficulty. Extracting
such relationship between entities is an important task for natural language
understanding. To extract semantic relationship between entities, human re-
lies on some token-based template like Hearst pattern [I]. For instance, the
template u is a kind of w denotes that there is a hyponym-hypernym re-
lation between u, and w. Moreover, u causes w template suggests that u
and w exhibit cause-effect relationship between themselves. Finally, there is a
meronym-holonym relationship between u and w in the template © comprise
of w. For a given semantic relation, there may exist many such templates
in a language, but building a comprehensive list of templates for a relation is
a challenging task. Besides, one will have to build a new list of templates for
every new relation, so an approach for automatic extraction of such template
patterns is of paramount importance.

Automatic extraction of template patterns is an important natural lan-
guage processing task, as such patterns can be used to extract entity pairs
exhibiting various semantic relationships [2, [3], a prerequisite for building a
question-answering system [4, 5]. In the medical domain such patterns can
help discover relations between disease, symptoms, and medication [2] [6].
Specifically, questions regarding the causes or the symptoms of a disease can
be answered by extracting cause and effect terms from sentences in medical
articles. Hyponym-hypernym patterns can also be used for ontology build-
ing [7, 8, 9] 10], and various methods are available for extracting hyponym-
hypernym pairs from large corporalll, 12, 13] 14, 15]. Although supervised
learning methods can be used for some of the above NLP tasks, lack of la-
beled data always remains a challenge [16] for using a supervised learning
method effectively. A major value proposition of template patterns is that
such patterns can be used to create large (possibly noisy) labeled data, which
can later be used for training of a supervised learning based model.

Developing an automated method for extracting patterns for an arbitrary
semantic relation is a challenging task. While humans can easily recognize
template patterns through a neuro-cognitive process that enables them to
perceive a subject as a structured whole consisting of objects arranged in
space or sequence, the same does not hold for a machine learning-based agent,
which is better at statistical pattern recognition than template-based pattern
recognition. Besides, an automated system lacks semantic understanding of
the entities, so template patterns which only contain word tokens are not
adequate for an automated system—a richer representation of each of the



tokens is needed for an ML-based method. So, it is no wonder that existing
computational NLP and Al research have not ventured much into the auto-
matic identification of token-based template patterns from natural language
text. In this work, we enrich the tokens in a sentence using the dependency
relations, and POS tags, and then apply a deep learning-based method to
automatically identify a collection of template patterns of an arbitrary se-
mantic relationship. Note that, when the tokens of a template pattern are
enriched by using dependency relations and POS tags, we call them syntactic
patterns; For instance, u causes w is a template pattern. To form a syntac-
tic pattern, we add POS and dependency relation tags to each of the tokens.
Excluding the keywords u, and w, we use lexicalization, and lemmatization
of other tokens to avoid the form changes of words with respect to number,
gender, tense, etc. Note that, for both the template patterns, u causes w
and u caused w, u, and w are nouns, u is a subject, the lemmatized form
of the principal verb is the cause, and the dependency relation of w with
the cause is dobj, as w is a direct object of the verb. If we put the infor-
mation together, the following, [(u,noun,nsubj,cause), (cause,verb,dobj,w)], is
the corresponding generic syntactic pattern for both the template patterns.

In the existing literature, manual or semi-automatic approaches have been
used for the extraction of template patterns. The earliest among these works
was Hearst’s seminal contribution [I, [I7] on finding token-based template
patterns for hyponym-hypernym relation through manual inspection. Sim-
ilar manual approaches have also been used for extraction of token-based
template patterns denoting cause-effect [16] and meronym-holonym [I8] re-
lations. But, the manual approach for pattern extraction is laborious and
time-consuming. Besides, for every new semantic relationship, an indepen-
dent inquiry needs to be pursued to obtain a collection of such patterns
encoding that relationship.

Snow et al.[19] have proposed one of the earliest semi-automatic syntac-
tic pattern extraction methods. However, the method is proposed consider-
ing only one kind of semantic relationship, hyponym-hypernym. From the
methodological aspect, the proposed method uses a raw frequency thresh-
old of sentential structures over the corpus for selecting a pattern, which
generally produces patterns of poor quality. Subsequent to Snow et al.’s
work, another semi-automatic work is proposed [20] for extracting meronym-
holonym patterns. This method is also based on frequency threshold, and
the authors themselves have reported that most of the extracted patterns are
false positive. Though the extraction of syntactic patterns is not the focus of



most of the works, a number of works have devoted to utilize syntactic pat-
terns for classifying whether a semantic relationship between a pair of entities
exists or not [19, 2], 22, 23| 24]. Note that, extraction of syntactic patterns
is orthogonal to the task of relation classification; the former extracts syn-
tactic patterns from the sentences reflecting semantic relationship, whereas
the latter classifies whether a semantic relationship between a pair of entities
exists or not. In this paper, our focus is on the former task—extraction of
syntactic patterns.

Machine learning based methods are also used for predicting seman-
tic relations between a pair of entities in a sentence. Majority of these
works [25], 206], 27, 28] consider the hyponym-hypernym relationship and solve
a binary classification problem to identify whether such a relation holds be-
tween a given pair of entities. Such approaches are often designed to achieve
high classification accuracy, but they are not capable of extracting syntac-
tic patterns [29, B0, B1]. To summarize, automatic extraction of syntactic
patterns for an arbitrary semantic relation is yet an unsolved task.

In this paper, we propose ASPEREL a generic attention-based deep learn-
ing model that can identify syntactic patterns for any semantic relation-
ship. ASPER follows a supervised learning approach—the model is trained
through a collection of sentences; for each sentence, an ordered pair of en-
tities are identified and a binary label is provided which denotes whether
the entities are involved in a specific semantic relationship in that sentence.
The output of the model is a collection of syntactic patterns which reflect the
semantic relationship between entities involved in a chosen semantic relation-
ship. By changing the training data ASPER can return syntactic patterns
for any semantic relationship. To obtain the patterns of a given relation-
ship, ASPER uses a bi-directional LSTM [32] with an attention layer [33],
which highlights the part-of sentence (pattern) that are important to decide
whether the identified pair of entities in the sentence are involved in that
relationship. Importantly, in the data representation, ASPER does not use
the embedding vectors of the entities whose relationship is inquired by the
model, which compels ASPER to answer the query by discovering syntactic
patterns capturing that relationship. Experiments on multiple datasets show
ASPER’s effectiveness.

LASPER is composed of the bold letters in Attention-based Syntactic Pattern
Extraction for Semantic Relation



We claim the following contributions:

e We propose ASPER, a novel deep learning model which can extract
syntactic patterns of a chosen semantic relationship between entities in
a sentence, effectively and efficiently.

e Experiments on multiple semantic relationships, such as hyponym-
hypernym, meronym-holonym, and cause-effect show that ASPER can
identify most of the previously reported syntactic patterns of these rela-
tions. It can also identify a few patterns which have not been explicitly
noted in earlier works.

2. Related Works

Related works are discussed in two groups. The first group comprises
the works which do not extract syntactic patterns, rather perform semantic
relationship classification. A subset of these works first manually collects
patterns and then use them for pattern-based semantic relationship classifi-
cation.

Semantic relationship classification approaches can be broadly catego-
rized as distributional approaches, path-based approaches, and pattern-based
approaches. Distributional approaches classify entity pairs based on the dis-
tinct contexts in which the two entities appear. Some of these works focus
on building term embeddings for classification [34], B35l 136, [37, 38, [39, [40].
Path-based approaches instead consider contexts in which an entity-pair co-
occurs. The lexico-syntactic paths which connect entity pairs in such contexts
are leveraged in order to classify the pairs. We have already discussed one
of the path-based approaches before [19]. An existing work [41] compared
several path-based and distributional approaches and concluded that path-
based approaches achieve better performance. Authors of [42, 43] proposed
supervised approaches for relationship extraction in which they combine both
path-based and distributional approaches in order to achieve state-of-the-art
classification results. Some of the recent works among these use deep learning
with attention for classification [44], [45] [46]. These works retrieve semantic
embeddings and POS encodings for each term of a sentence in which an en-
tity pair co-occurs. They also encode the proximity of each sentence term to
the entities of interest. A supervised attention-based classifier is then trained
to identify which terms within the sentences are important in determining if



the entity pair shares a certain type of semantic relationship. However, the
attentions are not used to mine syntactic patterns, rather to validate whether
the model is concentrating on the important segment of the sentence. The
third group uses patterns for semantic relation classification [20] [I]. These
methods can be benefited by the availability of an automated pattern extrac-
tion tool, like ASPER.

The second group of works either focus on manual or automatic pat-
tern extraction. Within this group, some works extract patterns manually,
some depend on taxonomies like WordNet, others are contingent upon sen-
tential context. The first work which deals with hyponym-hypernym pattern
extraction is carried out by Hearst [I] who manually extracts a few hyponym-
hypernym syntactic patterns, now known as Hearst Patterns. A few research
works later propose general pattern extraction methods which could be used
for various semantic relationships. Hearst [I7] designs a frequency-based
approach using WordNet [47] entity pairs. Their approach simply scrapes
sentences from a large corpus in which WordNet entity pairs of a certain
relationship type co-occur. The syntactic patterns which are frequent across
scraped sentences are then extracted. Motivated from the above works, some
researches explicitly focus on automatic pattern extraction. For instance,
authors of [I9] first obtain dependency trees, and then apply a frequency
threshold over the dependency tree edges to obtain hyponym-hypernym pat-
terns. There exists another frequency-based unsupervised approach [48] for
hyponym-hypernym relationship, which creates pattern clusters; the patterns
are manually evaluated afterwards and the filtered list of patterns are then
used for entity extraction. In another work on hypernym-hyponym template
pattern extraction [49], authors follow an observation based semi-automated
approach; however, the pattern extraction process is oblivious of syntax and
dependency relation, which is important for obtaining high quality patterns.
Finally, there are some research works, which focus on non-English hyponym-
hypernym patterns [50, 12} 13|, 51], 52].

Similarly, while meronym-holonym relation has been an important re-
search topic in the literature due to various applications [53], 54, 55, 56,
57, B8, [59L [60], only a few research works have been performed in the area
of meronym pattern extraction. Winston et. al. [61] manually developed
a taxonomy of meronym patterns. For meronym-holonym pattern extrac-
tion, a Google search-based semi-automatic, frequency-based approach ex-
ists in the literature [20]. The authors report finding 1000 snippets, and
4503 unique patterns for 503 part-whole pairs. Top 300 frequent patterns
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out of 4503 patterns are manually validated and they claim to get only
12 correct patterns. Generally, frequency-based, or bootstrapping meth-
ods generate a large number of noisy and false positive patterns [20, [62],
which are later evaluated manually. There are some research works which
emphasize on meronym-holonym patterns in other languages [63, 57]. Cause-
effect relation has also received substantial attention in the existing litera-
ture [64 [65] [66], 67, [68] [69] (70}, [71]. The supervised methods for cause-effect
pairs extraction lack annotated dataset [64) [7T] which is also true for other re-
lations. However, for cause-effect relation, some works exist in the literature
which depend on causative verbs, causal links, prepositions, and human ex-
tracted patterns [72,22] [73]. Among them, the logical pattern-based semantic
pair extraction method extracts causal patterns based on word dependencies
in a given sentence over four sets of rules with define regular expressions
[22]. The other method uses word vector-based similarity to find causative
verbs; those verbs with some observed syntactic rules are then introduced as
cause-effect patterns [72].

Our task of syntactic pattern extraction is related to other tasks, such as
named entity recognition [74] [75], as input to both tasks are sequence data.
For sequential inputs, besides LSTM, transformer architecture is also used,
which is based on attention mechanisms, dispensing with recurrence and
convolutions entirely [76]. The transformer can substitute recurrent neural
networks, i.e, LSTM for text summarization [77,[78], machine translation 79,
80], etc. The main advantage of transformer over LSTM is that the former
is order-independent as the attention mechanism of the transformer allows
the model to work with any place of a sequence. Order-independence of the
transformer also enables parallelism for processing the input sequence. For
our task, the syntactic patterns that we extract are ordered, so a lighter
model like LSTM suffices. Another appeal of the transformer is that it can
handle longer sequence reducing the vanishing gradient problem of RNN.
From our observation, syntactic patterns are shorter for which, LSTM works
well. For sequential tasks, CRF [81] is also widely used, but for CRF the
tokens are labeled; but in our dataset the labels are assigned to a sentence,
not to its tokens, so CRF is a poor fit for this task. We are aware that some
works extract cause-effect entity pairs using CRF [82]; but the same cannot
be used for extracting syntactic patterns.

3. Methods



In this section, we begin by formally defining the relationship-based syn-
tactic pattern extraction task. We then describe the LSTM architecture of
ASPER along with its input representation and loss function. Finally, we
describe how ASPER extracts syntactic patterns, and provide a pseudo-code
of the end-to-end system.

3.1. Problem Formulation

Given a sentence S, and a pair of entities (words or phrases) u,w in S
exhibiting a specific semantic relationship R (e.g. hypernymy, meronymy,
causality, etc.), the task of syntactic pattern extraction is to extract a syn-
tactic pattern, P, which manifests that the entity pairs (u,w) are related
through the relation R. To extract such patterns, in this work, we adopt
a supervised learning model. As input, the model takes a set of triplets,
T = {(us, w;), Si, yi }ioy, where (u;, w;) is a directed pair of entities, S; is a
sentence in which words u; and w; co-occur, and y; is a binary label indi-
cating if the directed entity pair (u;, w;) exhibits the relationship R in the
contextual scope of S;; A is the number of distinct triples in 7. The objective
of the model is to extract all syntactic patterns P such that, P is associated
with one or multiple sentences in 7 indicating that the entity pairs (u;, w;)
in those sentences are related through the relation R.

Recall that, a syntactic pattern is a sequence of tokens, along with POS
tags, and dependency relations of the tokens. For example, the sentence LSTM
is a type of neural network that exhibits hyponym-hypernym relation
between LSTM, and neural network—the template pattern isu is a type
of w, and the syntactic pattern is —

[(u,noun,nsubj,be), (be,aux,attr,like), (type,noun,prep,of ), (of,adp,pobj,w)].
The purpose of ASPER is to extract such syntactic patterns from the input
sentences.

3.2. Model Architecture

To successfully extract a syntactic pattern that demonstrates the rela-
tionship R in entity pair (u,w) in S, we must first determine whether u
and w exhibit the relationship R. To make such distinctions, we train a bi-
nary classifier using a supervised approach through a set of training triples,
T = {(u,w),S,y}. Since our main objective is to extract syntactic pat-
terns from sentences, a classification model that works with sequential data
is needed. In addition, the model should be able to identify the parts of



the sentence which contribute the most to making the relationship predic-
tion decision. For these reasons, we use a bi-directional Long Short-Term
Memory (Bi-LSTM) [32] augmented with an attention layer [33, 83] as our
binary classifier. The Bi-LSTM model is able to leverage the sequential na-
ture of our sentence representation. Furthermore, as a result of supervised
learning, the model’s attention layer will be trained to highlight the parts
of the sentence that are particularly useful in determining the presence of
relationship R between the entity pair (u,w). We can, therefore, observe
the attention layer to identify the important sentential constructs, which can
then be composed to generate the syntactic pattern, P. For a sentence, the
Bi-LSTM model takes a vector-sequence representation of the sentence and
outputs a prediction of the binary label. The complete model is shown in
Fig. [1]

As shown in the bottom layer of Fig. [} the input to the Bi-LSTM is the
vector sequence representation of a sentence S. This representation denoted
as, X, has K edge embeddings in a sequence, each with dimension D, where
the K edges are obtained from the dependency tree of the input sentence.
The vector representation of a sentence, composed of a sequence of edge
embeddings, is discussed in detail in Section [3.3]

The Bi-LSTM layer, L, takes x; € X as input and outputs two hidden
state vectors. The first hidden state vector, h;, is the forward state output,
and the second hidden state vector, E, is the backward state output. Let h;
be the concatenated output of h; and E Also, we define H, which is the
concatenation of each h; output from L for a single sentence representation
X.

ﬁ)i = L(ﬁi—:[)xi)J %z - £<<ﬁi+1’xi)
-

hi =R B, H = [hy, ho....hg]

Recall that, the shape of a single sentence representation, X, is K X
D, where K is the number of edges in the sentence representation from
the dependency tree and D is the dimension of each edge representation.
Therefore, when given a single sentence representation, X, the Bi-LSTM
layer, £, produces a concatenated output, H, of shape K x 2% N,,, where N,
specifies the size of a single hidden vector. For our experiments, we set N,
to be equal to 256.

Following the Bi-LSTM layer, £, output H is used as input to the at-
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Figure 1: Description of LSTM with attention layer for binary semantic relationship clas-

sification.

tention layer, Att. The attention layer produces, A;, a vector of size K x 1
where each a; € A; is a value within a fixed range, a; € [0,1]. Each such
attention value, a;, will encode the relative importance of edge embedding z;
in making the binary classification decision. A; is computed as below.

Temp = Tanh(H x W) * W

A, = Softmax(Temp)
R = At * H

Here W is a trainable matrix of shape 2 x N, x 2 x N,, Wy is another
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trainable matrix of shape 2% N, x 1. The shape of temporary variable Temp
is K, on which we apply Softmax activation to retrieve A,.

Next, the model uses both A; and H as inputs for the repetition layer,
Rep. The repetition layer, Rep, outputs R of shape K x 2% N,. R is simply
the scalar multiplication of each hidden input h; € H with its corresponding
scalar attention value, a; € A;.

Then, the model uses R as input for the aggregation layer, Agg. The
aggregation layer simply computes the column-wise sum of R in order to
yield the 2 x N, shape output, A,. In short, A, outputs the weighted sum
of H where weights are the attention values.

A, = Summation(R)

A, is then used as input to a fully-connected layer with a sigmoid acti-
vation function, whose output is a scalar, ¢, which denotes the prediction of
a binary label, y, of a triplet, t € T.

y = Sigmoid(Ag * W3)

Here W3 is a randomly initialized weight matrix of shape 2 x N, x 1.

Using these constructs, we train the binary classifier using the sentence
embeddings generated from a collection of triplets, 7. We train the model
using standard binary cross-entropy loss: Loss = —% Y et Ui * log(ge) +
(1 —y) *log(1 — y;) Using Early Stopping [84], we train the model until the
validation loss does not decrease at the end of an epoch and then load the
model parameters of the previous epoch with least validation loss.

3.3. Sentence Representation

To identify syntactic patterns from a sentence using machine learning,
the sentence should be embedded in a form so that its syntactic structure is
preserved. For this, we generate a dependency tree of a sentence [85] and use
it as input to our learning model. The motivation is that the dependency
tree of a sentence captures the syntactic structure of the sentence through
a parse-tree like structure (see Fig. [2). However, the dependency tree only
provides a symbolic representation, so we obtain a vector representation of it
to be used as input to our model. Given an N-word sentence, S, we obtain
a dependency tree of S by using a dependency parser.
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In our implementation, we have employed two dependency parsers - Spacy
and Stanza. We have utilized Spacy 2.2.3 [86]’s en,core,web,srrﬂ package
which is trained on a dataset of English sentences consisting of internet blogs,
news, and comments. Additionally, the parser is ClearNLP parser, trained
on OntoNotes corpusﬂ. In contrast to Spacy, Stanza 1.2.2 [87] is trained
on a total of 112 datasets of 66 human languages including the Universal
Dependencies treebanks and other multilingual corpora.

While both the parsers produce different acyclic directed dependency tree,
the tokens and their dependency relations may differ. Let G = (V, €) denote
any such dependency tree. Fig. 2| presents an example of such a dependency
tree from Spacy. As shown in this figure, each vertex, v; € V is a tuple
representing a word (or phrase) from S and the part-of-speech (POS) tag
(e.g. noun, verb, adverb, adjective, etc.) of that word (|V| = N). The edge-
set, £, is the set of all directed edges in the dependency tree with cardinality
€] = M (M < N). Each dependency edge e;; links a parent vertex v; to a
child vertex v;, and is labeled by the type of syntactic dependency (attribute,
coordinating conjunction, compound, etc.) between the words at the two
end-vertices of the edge. However, Stanza can also generate a similar type
of dependency tree as shown in Fig 3]

In general, the dependency tree of a sentence, G, may contain many ver-
tices and edges which do not contribute to conveying if entity pair (u, w) share
relationship R. For example, consider the sentence: The cat, a type of
animal, enjoys laying around and eating. In this sentence, the first
half of the sentence is critical in establishing that the cat is a type of animal.
Clearly though, enjoys laying around and eating plays no role in estab-
lishing a semantic relationship between cat and animal. In our sentence
representation, we discard such vertices and associated edges. Specifically,
we preserve all vertices and edges which are along the shortest path connect-
ing word pair u, and w. We also preserve descendants of u and w along with
the edges which connect v and w to their descendants. Next, we organize
the edges of the filtered tree into a fixed ordering, in which the edges in the
shortest path between u and w come first, followed by the descendant edges
of u and w.

In Fig.[2] the spacy dependency tree of the sentence, Like most mammals,

Zhttps://spacy.io/models/en
3https://catalog.ldc.upenn.edu/LDC2013T19
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Like most mammals, dogs have body hair

SCONJ ADJ NOUN NOUN AUX NOUN NOUN

Figure 2: Spacy dependency tree with part-of-speech tags.

case obl obj
amod nsubj compound
| Like ‘ |most| |mamma|s, H dogs | ’ have | ’ body ‘ ’ hair ‘
ADP ADJ NOUN NOUN VERB NOUN NOUN

Figure 3: Stanza dependency tree with part-of-speech tags.

dogs have body hair is shown. Note that, the entities mammals, and dogs
are provided for pattern extraction. All the edges along the shortest path
from mammals to dogs are parts of ASPER’s sentence representation. To
make the patterns general, the entities mammals, and dogs are replaced with
w, and u respectively. However, most, which is the descendant of mammals,
is part of the desired syntactic pattern, Like most w, u. That is why the
descendants of v and w are also important. But, neither all words on the
shortest path, nor the descendants are part of the pattern. Similar argu-
ment goes for Stanza dependency tree in Fig. |3 That’s why ASPER is an
attention-based approach, so that the important words and edges for pat-
terns can be extracted. For instance, for the above example, the token most
needs to get attention by the attention mechanism. Likewise, ASPER’s at-
tention mechanism can deal with other determiners and modifiers as well in
this way. Finally, once the edges are selected by attention mechanism, a fre-
quent itemset mining algorithm is necessary to find the frequent edges which
will be the desired syntactic pattern.

To generate the representation of a sentence, we embed each of the se-
lected edges in sorted order and compose the resulting ordered edge repre-
sentations, wxy, into a single vector sequence representation of &, X. The
embedding of an edge e, = (v;, v;) (defined with variable ) is composed of
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the following:

1. semantic embedding of the root word (or phrase) corresponding to the
parent vertex v,

2. encoding of POS tag corresponding to root word (or phrase) corre-
sponding to parent vertex v;,

3. one-hot encoding of syntactic dependency between v; and v;, and

4. semantic embedding of the word (or phrase) corresponding to child
vertex v;.

Zero vectors of appropriate dimension are used for the semantic embed-
ding of both the entities v and w. This forces ASPER to use only syntactical
structural information entailing from sentence structure for predicting the
relation between v and w, ignoring semantic information from these entity
pairs. For the words, except u and w, we use 512-dimensional universal sen-
tence encoder (USE) vectors [88]. Note that, one may use other choices, such
as word2vec, or Glove, instead of USE. For the POS tags, we use two repre-
sentations with Spacy both having 18 dimensions. First, which we refer as
One-Hot-POS Rep, use one-hot encoding of the POS tags. Second, which
we refer as (Continuous-Prob-POS Rep) concatenates the probabilities
of all the POS tags for a token obtained from Spacy. For syntactic depen-
dency types, we use one-hot-embedding which forms 58-dimensional vectors
using Spacy. In contrast, using Stanza we have only one representation using
one-hot encoding. Note that using Stanza we have 20 dimensions for POS
tags and 60 dimensional one-hot vectors for dependency types. Therefore,
any edge embedding has a fixed dimension D although D varies among rep-
resentation methods. Finally, we fix vector sequence X to a fixed-length K
(the number of edges) by either removing edge embeddings from the end of
the sequence or adding zero-padding vectors of size D. This ensures that any
sentence representation, X, is of a fixed size, K x D. Clearly, our sentence
representation, X, is agnostic to the relationship R, so it is capable of en-
coding an arbitrary semantic relationship between a given entity pair u and
w.

3.4. Pattern Eztraction Pipeline and Pseudo-code

After training the supervised learning model as discussed in Section [3.2]
the model can be used for classifying whether an unseen pair of entities
(within the context of a sentence) shares a relationship or not. This works
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for an arbitrary semantic relationship as long as we can gather training data
for that relationship. Since the entity pairs, u and w, are represented with
zero vectors, model is oblivious of the semantic meaning of the entities; as a
result the model is forced to predict the relationship by using the dependency
edges and their syntactic augmentation. Our assumption is that important
edges receive high attention value, and hence for each sentence (with positive
label) we construct a candidate edge-list comprising of edges receiving high
attention values. Now, to construct syntactic patterns, we apply frequent
itemset mining (FIM) algorithm, ECLAT [89], over the candidate edge-set
of the positively labeled sentences of 7T, considering each edge as an item.
FIM outputs a collection of edge-sets, such that each of the edge-sets exceeds
the minimum frequency threshold (supp) over the sentences, i.e., they must
appear in at least supp% of sentences. Frequent edge-sets, the output of FIM
constitute the desired syntactic patterns, as each of these edge-set represents
a syntactical unit of the sentence which receives high attention, and also
appears in many positively labeled sentences (high support). The support
(supp) value is a hyper-parameter of ECLAT algorithm, which we tune. The
higher the supp, the more strict the quality control, resulting in a smaller
number of false positive patterns. On the other hand, the lower the supp,
the higher the chance that a pattern will be discovered.

ECLAT builds the frequent itemset iteratively. In the first iteration,
it obtains itemsets of length one (consisting of a single edge) and filters any
edge which does not have the desired minimum support. In the £’'th iteration,
it constructs candidate itemsets of size k + 1, computes their support and
filters the candidates which do not have the minimum support. The process
completes when an iteration yields candidates such that none of them are
frequent. The output edge-sets of ECLAT algorithm are numerous, because if
a set of edges is extracted by ECLAT algorithm, all the subsets of that set will
also be extracted by ECLAT as the subsets will also meet supp threshold.
So, we keep only the maximal subset of edges. For all such edge-sets, we
maintain the edge order and introduce that as a pattern.

The pseudo-code of ASPER is given in Algorithm [I For a triplet
t(u,w,S) in a given collection T, we first train the model and predict the
label § and the attention values, A, associated to the edges of ¢ (Line 3-7).
Next, we consider each ¢ € T, for which the model predicts positively i.e.,
confirms the existence of relationship R in entity pair (u,w) in the sentence
S (Line 8) . For the qualified triples, we normalized the attention values of
their edges, and by using an importance threshold, att (a value between 0
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Algorithm 1: Pattern Extraction
1 Extract_Pattern (7, Model, att_thresh, supp)

2 edge_accum = [|
3 fort €7 do
4 {(uuw)vsvy}:t
5 E = SentenceRepresentation(S, u,w)
6 X = Embed(FE)
7 7, Ay = Model(X)
8 if § == 1 then
9 At = lOg(At)
10 edge_index_mask = A¢[A; > att * maz(Ay)]
11 edge_accum.append(E[edge_index_mask])
12 end
13 end
14 P = ECLAT (edge_accum, supp)
15 return P
16

and 1), filter out the edges of lesser relative importance (Line 11). As the
attention values are on an exponential scale (output of a Softmax function),
before applying the threshold, we take the logarithm of the attention values
and then use min-max normalization to scale the attention values between
0 and 1 (Line 9-10). Corresponding to each triple, we accumulate an edge-
set considering only the important edges (Line 11). Then frequent pattern
mining algorithm is used to obtain a syntactic pattern-set (Line 14).

4. Experiments and Results

As ASPER is relation-agnostic, we validate its performance in extracting
syntactic patterns for multiple relations; specifically, we choose hyponym-
hypernym, cause-effect, and meronym-holonym relationships, as these three
are well-studied semantic relations in the literature. We also compare the
performance of ASPER with Snow’s method [19], the only semi-automatic
method (to be best of our knowledge) that extracts syntactic patterns. How-
ever, Snow’s method works only for the hyponym-hypernym relation, so we
compare with this method for results on this relation. For the other rela-
tions that we experimented with, we are not aware of a method, barring from
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Table 1: Dataset Statistics

# Pairs # Sent
Relation Dataset Train Val Test Train Val Test

Hyponym- LEX 20,335 1,350 6,610 104,117 1,305 33,701
Hypernym RND 49,475 3,534 17,670 236,859 3,435 89,383

Cause- SemPEval 6,914 1,053 2,838 7,157 1,166 2,861
Effect ADE 70917 1,625 6,340 8162 1,636 6,503

BLESS 11,151 3,225 10,163 23,412 3,889 19,512
Phi 4,638 812 2,853 7,938 1,587 6,352
SemEval 7,025 982 2,111 6,930 1,027 2,569

Meronym-
Holonym

manual methods [16, [18], so for these relations, we show results on ASPER
only.

4.1. Datasets

We use six datasets for validating the performance of ASPER. The statis-
tics of the datasets are shown in Table [I and some examples from each
dataset are shown in Table 2] Among these, LEX and RND are used for
hyponym-hypernym pattern extraction; SemEval and ADE datasets are used
to perform cause-effect pattern extraction; and SemEval, Bless, and Phi’s
datasets are used for meronym-holonym pattern extraction tasks. Note that
we use SemEval dataset for two relations.

Our problem formulation requires context sentences for the entity pairs,
but four of the six datasets do not have any context sentence associated with
the entity-pair. We obtain context sentences from Wikipedia. For this, we
download the latest Wikipedia dump and extract all the sentences. Then, if a
pair of entities co-occur in a sentence, we extract and associate that sentence
with the entity pair. Note that, in this way, a given pair can be associated
with multiple sentences.

It is important to understand that not every sentence has a pattern even
if the sentence contains an entity-pair. On some occasions, sentences merely
list a pair of entities, but do not imply a relationship between them in the
sentential context. For instance, a row from the RND dataset is {anthemis,
genus, True} which is shown in Table . We parse a sentence from Wikipedia
for this row which is Anthemis is a genus of aromatic flowering plants in the
family Asteraceae. Note that the sentence preserves a pattern between the
corresponding entity pair. In contrast, let there be another instance of a
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Table 2: Instances from Datasets

Dataset U w Sentence Label
LEX aarau place Aarau retain their place in the Swiss Super League. True
cotmanhay england Cotmanhay is a village in Derbyshire, England. False
RND anthemis genus Anthemis is a genus of aromatic flowering plants in the family Asteraceae True
chuck biscuits black flag 1t is the only official Black Flag release to feature Chuck Biscuits on drums False
musle fatigue muscle pain Musle fatigue is the number one cause of muscle pain. True
SemEval C N
castle museum The castle was inside a museum. False
ADE clozapine td Several case reports have suggested that clozapine could also cause TD True
castle museum The castle was inside a museum. False
., microphone mics The microphone is made of four mics True
BLESS . . . . o .
warrior face covering The warrior wore a white cloak with a brown face covering. False
. committee five members The committee consists of five members True
Phi . . . . .
zula village Zula is a village in central Eritrea. False

positive pair from the LEX dataset be {aarau, place, True}. One extracted
sentence of this is Aarau retain their place in the Swiss Super League. Note
that although the pair exhibits hyponym-hypernym relation, the sentence
does not actually imply that. Yet in our dataset the sentence is a positive
instance. This does not pose a significant problem because the frequent
itemset method does not extract any pattern for this case as the candidate
sequence of edges for this sentence is infrequent. For the true negative pairs
the extracted sentences are unlikely to contain any pattern. More details of

these

datasets are provided below.

LEX & RND: These datasets are obtained from [90]. They list
a set of entity pairs with a label denoting whether the entity pair
have a hyponym-hypernym relation (positive) or not (negative) with-
out context sentences for an entity-pair. As discussed above, we use
Wikipedia for obtaining context sentences for an entity-pair. Since mul-
tiple Wikipedia sentences can be associated with a given entity pair, for
both the datasets, we allow at most five sentences to be associated with
an entity pair. Both LEX and RND datasets are balanced having the
same number of positive and negative sentences. Also, these datasets
are already split into train, test, and validation partitions which we re-
spected. In LEX dataset, disjoint entity pairs are used in train and test
partition; while RND is split randomly, so the same entity pair may
appear in training, validation, and test partitions, but with distinct
sentences.

Bless: We use this dataset for evaluating meronym-holonym pattern
extraction. It was used in [91] for classifying different semantic relation-
ships. It does not have any context sentence, so we extract sentences
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from Wikipedia for these pairs. Since this dataset has entity pairs for
many relations, we consider meronym-holonym entity pairs as positive
class and others as negative class. For both positive and negative entity
pairs, we allow at most 3 sentences for each pair. Finally, we maintain
positive and negative sentence ratio as 1:1; split the dataset into train-
ing, test and validation maintaining 50%, 40%, 10%, respectively.

Phi: This dataset is used in this paper [24], in which authors (Phi
et al., whose name is used for naming this dataset) used word embed-
ding for extracting different kinds of meronym-holonym relationships
between entities. We use this dataset for evaluating meronym-holonym
pattern extraction. This dataset contains only positive pairs with dif-
ferent kinds of part-whole relationships, such as component-of (11.2%),
member-of (22.21%), stuff-of (18.89%), participates-in (15.23%), etc.,
as labels. For the negative pair sentence instances, we borrow from
Bless dataset. We maintain a positive negative sentence ratio of 1:1 so
that the dataset is balanced. Finally, we split the dataset randomly
for training, test, and validation partitions maintaining 50%, 40%, and
10% instances respectively.

SemEval: This is a well-used dataset, built by combining the SemEval
2007 Task 4 dataset [92] and the SemEval 2010 Task 8 datasets [93].
A row for SemEval datasets contains a term pair, and a sentence con-
taining this pair which may exhibit a semantic relation. The SemEval
2007 Task 4 possesses 7 semantic relations whereas the SemEval 2010
Task 8 describes 9 relations. However, only two relations are common
between these two, i.e., Cause-Effect and Meronym-Holonym relations.
The datasets include predefined train and test partitions. For building
validation partition, we borrow from the train partition. Train, test
and validation partitions are then merged to concatenate into a single
dataset. Note that, the merged dataset contains 14 relations. Now to
create a dataset for Cause-Effect relation only, the sentences contain-
ing Cause-Effect relation are treated as positive sentences. The nega-
tive sentences are sampled randomly from other relations. Meronym-
Holonym dataset is created in a similar manner; each row for both of
these datasets contains a term pair, a sentence exhibiting the relation,
and a binary label to denote whether the sentence preserves the rela-
tion. Moreover, for both the datasets, the ratio of positive and negative
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sentences is 1:5, so the datasets are somewhat imbalanced, unlike other
datasets. Finally, the percentage of the training, test, and validation
sentences is 60%, 30%, and 10% respectively.

e ADE: The adverse drug effect (ADE) dataset [94] includes a set of
predefined positive and negative examples. In the case of the positive
examples, the cause-effect entity pair is given along with a correspond-
ing sentence. On the other hand, the negative examples are only a
collection of sentences that do not exhibit the cause-effect semantic re-
lationship. In order to have entity pairs for each negative sentence, we
randomly obtain two noun phrases from each negative sentence. This
dataset is balanced in terms of the number of sentences and training,
test, and validation partitions contain 50%, 40% and 10% data respec-
tively.

4.2. Hyper-Parameters Discussion

For training using LSTM model we need to define a set of parameters.
They are: (1) K (the maximum number of dependency tree edges in the
sentence representation); (2) batchSize (total number of train instances in
a batch); (3) the size of the hidden layer (N,) in a Bi-LSTM unit; and (4)
the learning rate. We fix the hidden layer size at 256, without tuning. We
use Adam optimizer with its default learning rate (0.01), and early stopping.
We tune K from the value between 30 and 40, and tune batchsize from the
values {128, 256,512},

For LEX, RND, SemEval (Cause-Effect), ADE, BLESS and Phi datasets
using One-Hot-POS Rep, we find the best results for K = 30, but for the ADE,
and SemEval (Meronym-Holonym) K = 35. While using Continuous-Prob-P0S
Rep, the best results are found for K = 30 in LEX, RND, SemEval(both),
ADE, BLESS datasets. For Phi dataset, K = 35 achieves the best re-
sult.Additionally, using Stanza for ADE, Phi datasets K = 35 achieves the
best performance. But for all other datasets, using Stanza we find the best
score for K = 30. For all datasets, batchSize equal to 128 produces the
best result for both the representations with Spacy for all datasets except
for the RND dataset, which requires batchSize equal to 256 to achieve the
best result for Continuous-Prob-POS Rep. The reason that for the ADE,
and SemEval datasets K = 35 provides the best result may be due to the
fact that the dependency edges found for these datasets are comparatively
larger. Note that K is contingent upon the maximum number of dependency
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tree edges in the sentence representation. If K is kept large extra padding
is added in the representation of sentence which may affect the performance
of the model, otherwise pattern information will be missing because some
edges will be skipped by a lower K value. However, for all the datasets using
Stanza batchSize = 256 achieves the best score. The tuning of batchSize in
all our experiments seem to have little effect on performance change.

To extract patterns from the important dependency edges by using fre-
quent itemset mining, we use supp (minimum support threshold in per-
centage) as a hyper-parameter. Another hyper-parameter is att (Attention
threshold) which is used to filter the important edges. att is tuned for the
values between 0.1 to 0.9 at 0.1 interval. We get good patterns for att = 0.6
for all the datasets using both representations of Spacy except Phi where
att = 0.1 works well. For all the datasets, typically the most important
edges are the edges which have at least 60% attention value of overall max-
imum value of that sentence. However, Phi dataset is an anomaly of this
claim, as best att is 0.1 for this. One way to explain this can be — to find
the patterns from Phi dataset we need to explore more edges which are com-
paratively less important. In contrast, using Stanza for RND, LEX, and
SemEval(both) datasets att = 0.5 achieves the best patterns. For all other
datasets except Phi att = 0.6. For Phi dataset using Stanza, we got att = 0.2
for the better patterns.

supp is tuned using a validation set from values between 0.1% to 3.0% at
0.1 interval; the patterns that we obtain from the validation set are manually
scanned to choose the optimal values of supp. For a small value of supp,
we find noisy and incomplete patterns, which do not qualify as syntactic
patterns of a relation. Alternatively, if those values are too large, we find
too few patterns. We find that a small support threshold works the best as
they obtained larger patterns, denoting a full syntactic pattern, conveying a
semantic relationship. For LEX and RND datasets, the optimum supp values
are 0.28% and 1.3% using One-Hot-POS Rep; while the best supp values are
0.25% and 1.2% for Continuous-Prob-P0OS Rep. For the SemEval (Cause-
Effect), ADE, and SemEval (Meronym-Holonym), the optimum supp values
are 0.3%, 0.5%, 0.4% using One-Hot-POS Rep. For Continuous-Prob-P0S
Rep, the best supp values are 0.4%, 0.5%, 0.4% for the same datasets. Finally,
for Bless and Phi datasets, the best supp values are 0.3%, 1.0%, respectively
using One-Hot-POS Rep and 0.4%, 0.9% using Continuous-Prob-POS Rep.
On the contrary, for SemEval (both), ADE, and Bless datasets using Stanza
the optimum supp value is 0.4%. However, for Lex, RND and Phi datasets
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the optimum supp values are 0.25%, 1.3%, and 0.9% respectively.

We perform an ablation study over supp (results shown in Section [4.7]).
One observation is that the optimum support values for both One-Hot-P0OS
Rep, and Continuous-Prob-P0OS Rep are almost similar. The reason is that
both methods are approximately similar except the difference of adding prob-
abilities in stead of one hot encoding values. The optimum support values
for all the methods are typically in the range 0.1% to 1.3%. The reason for
this small support values is that patterns do not appear frequently among
sentences. A large supp value will skip many edges which make the extracted
patterns incomplete. Moreover, we need to provide a substantial number of
edges to algorithm (1| to ensure extraction of complete patterns. Note that
edges can be filtered and merged by algorithm [1{ for complete and significant
number of patterns. However, supp values less than 0.1% typically provide
noisier edges to algorithm [I} which makes the algorithm extract edges which
are not part of the patterns.Similar logic applies for the experiments with
Stanza as well. However, we need to remember that the patterns found by
Stanza are different than those with Spacy. This is due to the fact that the
tokens, dependency relation differ between these two parsers.

4.83. Pattern Evaluation

Evaluating a pattern extraction is a difficult task as the ground truth
for a pattern extraction method is not available. Existing works, manual or
semi-automated only perform a qualitative evaluation. In this work, we have
proposed two quantitative metrics for evaluating the performance of pattern
extraction. For both the evaluation metrics, we use syntactic patterns to
check whether two patterns match. We discuss the evaluation metrics below.

Evaluation on Sentence

Our first evaluation method builds ground truth by manually extracting pat-
terns directly from the sentences in a dataset. Unfortunately, such an effort
is time consuming and difficult for large datasets. So such an evaluation is
only possible by sampling a subset of sentences in a dataset. So, given a
potentially large test dataset, we first choose a random subset of sentences
(around 1000) from the positive class (where the entity pair in the sentence
exhibit the relation). For each of these sentences, we manually extract the
pattern and make a ground truth pattern set over a sample of the dataset.
If P, is the total pattern set and P, is the obtained pattern set over the
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same sentences in the sample of the dataset, the following equations define
precision and recall of pattern extraction by a method.

|Po NPy |Po NPy
prec = ————,rec = ————

|P| Py

A problem with the previous evaluation metric is that it is computed
over a random sample of sentences in the dataset, not the entire dataset. In
fact, it is impractical to extract patterns manually over all the sentences in a
dataset. But for any semantic relation, there generally exist a finite number
of important frequent patterns, and it is easier to validate these patterns
without observing them in the sentential context. In this evaluation method,
we manually evaluate the precision of extracted patterns (over the entire
dataset) by a method without evaluating them in the sentences. In other
words, all the correctly predicted patterns in an extracted pattern set are
considered to be the ground truth, and precision is computed as the ratio of
correctly predicted patterns over all the extracted patterns. If we have more
than one pattern extraction methods, we collect all the correctly predicted
patterns by all of the methods and consider that to be the ground truth
pattern-set and report precision on the basis of this set. Evaluation on a
pattern is easier because the number of patterns is generally less than a
hundred for a given semantic relation, and manual evaluation of a pattern is
still possible without considering it in the sentential context. Let P; be set of
collected patterns in the ground dataset and P/ be the obtained pattern set
by a specific method. Then, we define the precision and recall of the method
with similar equations as before.

Py P [Py 0P
prec = P ,rec = I

However, note that in this kind of evaluation, a method is not penalized
for not discovering a pattern as long as no other competing methods is able
to discover that pattern.

4.4. Quantitative Pattern Extraction Results

In this section, we first discuss the performance of ASPER using both
representations with Spacy for its ability to extract patterns for three distinct
relationships: Hypernym-Hyponym, Cause-Effect, and Meronym-Holonym
and seven datasets; two for Cause-Effect, two for Hyponym-Hypernym, and
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Table 3: Pattern Extraction Results of ASPER Evaluated on Sentence: One-Hot-POS
Rep (Labeled as Rep 1 on Left), Continuous-Prob-POS Rep (Labeled as Rep 2 on Right)

Rep 1 Rep 2
Relation Dataset Prec Rec F; Relation Dataset Prec Rec F;
Hyponym- Lex 0.78 0.7 0.74 Hyponym- Lex 0.74 0.67 0.7
Hypernym RND 0.88 0.720.80 Hypernym RND 0.84 0.710.77
Meronvm Bless 0.52 0.58 0.54 Meronvm Bless 0.49 0.530.51
Y phi 0.62 0.67 0.64 Y phi 0.62 0.66 0.64
Holonym Holonym

Semeval 0.69 0.730.71 Semeval 0.65 0.720.68

Cause- ADE 0.69 0.610.65 Cause- ADE 0.65 0.590.62
Effect Semeval 0.71 0.710.71 Effect Semeval 0.68 0.73 0.7

three for Meronym-Holonym relations. In Table [3], we present the results for
all the datasets showing the precision, recall, and F; metrics using One-Hot-P0S
Rep on the left; and Continuous-Prob-P0S Rep on the right side for sentence-
based evaluation. Overall the datasets and various relations, ASPER’s
performance using One-Hot-P0OS Rep is the best for detecting patterns for
Hyponym-Hypernym relation with an F} score of 0.74 and 0.80 on Lex and
RND datasets respectively. The poorest performance of ASPER for both
representations was for the Meronym-Holonym pattern with an I} score 0.54,
0.64 for Bless and Phi datasets. On the other hand the Semeval (Meronym-
Holonym) dataset achieves an Fj score 0.71. The reason for the best perfor-
mance for Hyponym-Hypernym relation is possibly due to well-established
patterns for expressing this relation in a sentence. For the other two rela-
tions, the syntactic patterns are more fluid and hence, hard to recognize by
an automated method. That means, even if a pair holds a semantic relation,
only a few sentences have a syntactic pattern. We observe this from sampled
test dataset which is labeled manually. A similar argument holds for ADE
cause-effect dataset. The performances on both Semeval sub-datasets are
comparatively better. This dataset was created for competition and many of
the sentences in this dataset are constructed with true cause-effect patterns.
Finally, although there are already sentences for Phi dataset, the sentences do
not always have consistent syntactic patterns. The right side of Table[3|shows
the sentence based pattern extraction results using Continuous-Prob-P0S
Rep. The performance of Continuous-Prob-POS Rep never outperforms that
of One-Hot-POS Rep. One possible reason for that can be the probability val-
ues do not actually add information in the pattern extraction task; rather at
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times those values can add noise. For instance, if a POS label for a token is
NN, the probability of that token being ADP is probably a noise. The result
also indicates that, the POS tags are important. If ASPER is integrated
into other languages, an accurate dependency parser, and POS tagger would
be needed for discovering syntactic patterns.

Table 4: Pattern Extraction Results of ASPER Evaluated on Sentence: One-
Hot-POS-Stanza Rep on Left, Evaluated on Pattern: One-Hot-POS-Stanza
Rep on Right

Evaluated on Sentence Evaluated on Pattern

Relation Dataset Prec Rec F; Relation Dataset Prec
Hyponym- Lex 0.8 0.7 0.75 Hyponym- Lex 0.75
Hypernym RND 0.86 0.73 0.79 Hypernym RND 0.84
Meronym- Bless 0.47 0.58 0.52 Meronyvm- Bless 0.5
Holon ym Phi 062 068 065 = ym Phi 0.6

Y™ Semeval 0.69 0.73  0.71 Y Semeval 0.66
Cause- ADE 0.66 0.6 0.63 Cause- ADE 0.64
Effect Semeval 0.7 0.69 0.7 Effect Semeval 0.66

However, in our experiments with Stanza, we obtained comparable per-
formance to the One-Hot-P0OS Rep of Spacy. Table 4] shows the experimen-
tal results, with the left side providing the results evaluated on sentences
and the right side providing the pattern evaluated performance. Compar-
ing the results in Table 4| with other results, we observe that Stanza per-
forms slightly better on the Hyponym-Hypernym relation. However, for the
Meronym-Holonym relation, the performance is almost the same, and for the
Cause-Effect relation, the performance deteriorates. Therefore, we cannot
draw a definitive conclusion regarding which representation between Spacy
and Stanza provides better patterns.

In Table [5| we show the results using the evaluated pattern approach for
both representations. The finding is very similar to the results in Table [3]
Note that for the evaluation metric based on pattern, only precision is shown.
This is due to the fact that for pattern-based evaluation when only one
extraction method is used, we have no knowledge about false-negative, so
recall cannot be computed.

We compare the performance of ASPER using One-Hot-POS Rep with
[19]’s work, which works only for Hyponym-Hypernym pattern extraction.
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Table 5: Pattern Extraction Results of ASPER Evaluated on Pattern: One-Hot-POS Rep
(Labeled as Rep 1 on Left), Continuous-Prob-POS Rep (Labeled as Rep 2 on Right)

Lex, Evaluated on Context

Rep 1 Rep 2

Relation Dataset Prec Relation Dataset Prec
Hyponym- Lex 0.81 Hyponym- Lex 0.78
Hypernym RND 0.88 Hypernym RND 0.83
M Bless 0.54 M Bless 0.54
o elm“ym' Phi 064 5 elr oYM phy 0.58

olonym Semeval 0.68 olonym Semeval 0.68
Cause- ADE 0.68 Cause- ADE 0.58
Effect Semeval 0.73 Effect Semeval 0.68

Lex, Evaluated on Pattern
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Figure 4: Hyponym-Hypernym Pattern Extraction Results

So we show comparison results on Lex and RND datasts for the Hyponym-
Hypernym pattern extraction task. This comparison result is shown in the
bar charts of Figure [4] using precision, recall and F values of both the pattern
evaluation metrics. Both the methods are tuned for the highest F} score. As
we can see from the bar chart, for both the datasets (Lex on the Left, RND
on the right), with respect to both evaluation metrics, ASPER beats Snow’s
method significantly. In fact, precision, recall, and F; of Snow’s method are
substantially lower (50% lower) than ASPER for both evaluation metrics in
both datasets. Although we could not compare ASPER with other methods
for meronym-holonym and cause effect patterns extraction due to scarcity of
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enough automatic pattern extraction works, the results in Table[5, and Table
clearly indicate that ASPER performs well on pattern extraction for other
relation.

The first column of Figure [5| shows some of the extracted patterns for
all the semantic relations using Spacy we work within this research. While
there are 29 human readable patterns are shown for hyponym-hypernym re-
lation, the number of syntactic patterns for this relation is 16. Out of this
13 are extracted in Lex dataset, and 14 are extracted in RND. Similarly
for meronym-holonym relation, 22 unique syntactic patterns are extracted;
among those 12, 14, and 15 patterns are extracted from Bless, Phi, and Se-
meval datasets respectively. Finally, for cause-effect semantic relation out
of 22 unique syntactic patterns, 15 comes from ADE and 16 comes from Se-
meval datasets. However, our experiments with Stanza led to the discovery of
17 syntactic dependency patterns for the hyponym-hypernym relation, which
can be transformed into 28 human-readable patterns. These patterns include
13 from the Lex dataset and 15 from the RND dataset. In the case of the
meronym-holonym relation, we found 22 syntactic dependency patterns, with
all three datasets (Bless, Phi, and Semeval) contributing 14 patterns each.
For the cause-effect relation, we found 22 syntactic dependency patterns,
with ADE contributing 17 patterns and Semeval contributing 15 patterns.
However, we did not uncover any new human-readable patterns for any of the
semantic relations using Stanza. As a result, we only showcase the patterns
obtained from Spacy in this research paper.

4.5. Qualitative Pattern Fxtraction Results

In Figure [5] we show some of the patterns extracted by ASPER. The
first column shows the human readable patterns; the second column shows
the entity pairs which exhibit the semantic relationship, and finally, the third
column shows the sentences with the corresponding semantic pairs and the
syntactic patterns extracted by ASPER.
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Sentence

u consist of w

(treatment,
chemotherapy)

<VERB, NSUBJ> <VERB,/EE\‘£P>/_<ADQ1OBJ>

Treatment may also consist of chemotherapy

w component of u

(photosynthesis, water)

<AUX, Nw <AUX, ATTR> <NOUN, PREP> <ADP, POBJ>
Gt e ¥

s S /A
Water is a primary component omsymhesis

u compose of w

(tables, rows)

<AUX, NSUBJ> <NOUN, PREP>

s Va V'
Tables are composed of rows

<AUX, ATTR>  <ADP, POBJ>
<AUX,NSUBJ> <ADP, POBJ>
e —a A
u o
w part of (GRU, ALL) ALU is a fundamental part of CPU
<AUX, ATTR> <NOUN, PREP>
<AUX,NSUBJ>_ <AUX, ATTR> <NOUN, PREP>
. S TS PG A
w element for u (life, water) = Ry

— g
Water is an essential element for life
<ADP, POBJ>

Figure 5: Example extracted syntactic patterns
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For example, the second row of Hyponym-Hypernym patterns in Figure[5]
contains the pattern the w of u. The word Aasu is a hyponym of the hy-
pernym, village. For this hyponym-hypernym pair, the sentence A hiking
trail leads to the village of Aasu is extracted from Wikipedia from
which ASPER identifies the dependency edges village — the, village
— of and of — Aasu; from the attention values and itemset mining. If
we replace Aasu with u, and village with w we get the hyponym-hypernym
pattern, the w of uin the first column, which is not reported by Hearst and
Snow [I, 19]. Along with finding new hyponym-hypernym patterns, ASPER
re-discovers most of the Hearst patterns except some rare ones. For instance,
the pattern u is a special case of w is infrequent, and ASPER failed
to extract it.

On the contrary, ASPER can extract some new patterns which are
not reported before. The third row of cause-effect patterns in Figure [5}
w generated by u is a pattern that is not reported by [2I], and the fourth
row, w influenced by u is not used by [22] for classification. For meronym-
homonym, w element for u is not used by [23].

4.6. Usability of Syntactic patterns

We also perform experiments to show the utility of syntactic patterns in
extracting entities from sentences in an unsupervised fashion. For this ex-
periment, we choose cause-effect relation as this relation is studied well in
medical literature for extracting cause and effect entities involving disease,
symptoms, etc [95]. Note that, the supervised entity recognition tasks for
extracting cause and effect phrases depend on labeled dataset [71]. However,
labelling sentence token for a pattern is a time consuming task. In contrast,
the syntactic pattern-based approach can extract cause-effect entities effec-
tively, which we want to demonstrate through the results of this experiment.
We run this experiment on SemEval dataset.

To find the cause-effect terms, at first, all the noun phrase pairs of a
sentence are collected using Spacy 2.2.3 [86] and en_core_web_sm package.
Secondly, for each pair, dependency edges on the shortest path are collected
in the same fashion as described in Subsection [3.3] Now if any syntactic pat-
tern of cause-effect relation matches with the dependency edge-list of a pair
of noun phrases, the noun phrases are considered as cause and effect terms.
To illustrate with an example let us consider the following sentence “Most
AE-COPD cases are attributed to bacterial or viral respiratory infections.”.
If only noun phrases are extracted from this sentence, we have one possible
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option u = bacterial or viral respiratory infection, and w = Most AE-COPD
cases where u, w represent probable cause and effect term respectively. The
edges in the shortest path from u to w in the dependency tree parsed with
Spacy are: [(w, noun, nsubj,attribute),(attribute,verb,prep,to),(to,adp,pobj,u)]

w be attributed to u is a cause-effect template pattern; its syntactic pat-
tern matches with the Spacy shortest path edges for v to w. From this,
we can extract bacterial or viral respiratory infection as a cause term and
Most AE-COPD cases as an effect term. We can also allow partial match
by considering a fraction of matching edges, where the fraction can be de-
cided through a tunable threshold thr. For this experiment, we tuned thr is
between [50%, 100%)] with an interval of 5%. The less this threshold is, the
more noisy the extracted candidate pairs are. For our dataset, we find the
best result for thr = 100%.

We compare the performance with existing pattern-based approaches,
i.e., logical rule-based approach [22] and word vector mapping-based ap-
proach [72]. For the rule-based approach, a collection of cause-effect rules
are used to extract cause effect candidates in an unsupervised manner. Unlike
syntactic patterns, these rules consist of different causative verbs in active or
passive form, with or without the preposition. These rules are matched in
given sentences to obtain cause and effect phrase candidates. However, not
all the candidates they extract contain causal relationship. So, in a second
step, they use a supervised binary classification to filter out false positive
pairs. To train the classification model, they use the train partition of Se-
mEval dataset, and classify based on that trained model. The word vector
mapping based method is proposed for building a causal graph from medi-
cal corpora, but this method can extract cause-effect terms as well [72]. Tt
is an unsupervised method that uses regular expression based-dependency
parsing. Then pre-trained Skip-Gram method of Word2Vec [96] is used to
discover causative verbs with cosine similarity. From those causative verbs
and regular expression-based Parts of Speech parsing the authors extract
cause-effect terms from sentences. Extracted cause-effect terms are then
used to form a causal graph. We use the causality extraction ability of this
method and introduce it as one of the causality extraction baseline methods.
Note that, we choose the above baseline methods for fair comparison given
that the ASPER’s syntactic pattern based entity extraction and both the
baseline methods are unsupervised.

Table [6] shows the performance of our method along with the three base-
line methods discussed above. As we can see from the results, syntactic
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Table 6: Performance of PatternCausality and other methods in SemEval Dataset

Method Prec|Rec| F4
Logical-Rule Based 0.7110.47(0.57
Word Vector Mapping Based 0.7410.47|0.58
Syntactic Pattern from ASPER|0.75|0.51/0.61

— Precision
— Recall
— F1

—— Precision —— Precision

— Recall — Recall

0.6
06 — F1 . — F1

0.4

0.2

T T 0.0 T T
05 1.0 15 2.0 25 0.0 0.5 10 15 2.0 0.0 0.5 1.0 15 2.0 25 3.0

supp threshold supp threshold supp threshold

(a) RND Ablation (b) ADE ablation (c) Phi ablation

Figure 6: Ablation Study with ASPER (One-Hot-POS Rep)

patterns from ASPER has better results than the competitive methods.

4.7. Ablation Study

The main hyper-parameters of ASPER which affect its pattern extrac-
tion performance are supp, and att. If supp is fixed, and att is set to a lower
value, the probability of getting noisy edges is high. On the contrary, higher
att values lead to missing of the important edges. As the number of pat-
terns hardly change in this process, we show ASPER’s performance using
One-Hot-POS Rep (which performs best) over varying supp values keeping
att unchanged. The findings are shown in Figure[6] In this Figure, for each
plot, support values are shown along with the z-axis and performance values
(precision, recall, F}) are shown along the y-axis. From all the three plots,
the Fi-score values increase as supp increases reaching the peak, then grad-
ually decreases. With larger supp precision always increases, as with higher
support more stringent requirements are imposed for the selection of a pat-
tern. On the other hand, the recall curves always go downward direction
since the number of predicted patterns decreases as supp increases.
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5. Future Works and Conclusion

We present ASPER, a novel deep learning model which can extract syn-
tactic patterns shared between entity pairs within a sentential context to con-
vey a semantic relation. It works for any relation, it can predict the existence
of a relation, and it can also extract syntactic patterns of that relation—a
unique feature that no existing method can offer. We demonstrate ASPER’s
performance on multiple relations, each on multiple datasets—both bench-
marked, and our own creation. The experimental results show that ASPER
can extract all known syntactic patterns of a relation, including a few new
patterns which are not explicitly stated in the previous works.

Among the weakness, ASPER has a high dependency on the collection
of sentences used for extracting syntactic patterns, and the value of support
threshold used in ECLAT. So, ASPER often fails to extracts patterns that
are rare, and sufficient support for them is absent in the dataset. To overcome
this challenge, one need to tune the support threshold thoroughly by using a
validation dataset. ASPER may sometimes find only partial patterns or a
false positive pattern, however this issue can easily be fixed through human
validation. The syntactic patterns that ASPER returns are meant to be
used as templates for entity pair extraction from sentences. In that task,
several issues may arise. For instance, pattern matching may erroneously
declare that the token “insects” holds “is-a” relationship with mammal from
a negative statement like It is not the case that insects are a type of mam-
mal. In another case, syntactic pattern matching on the sentence, Deficiency
i Vitamin D can cause increased mortality rate in Covid-19 patients may
erroneously extract that “Vitamin D is a cause of mortality”, whereas the
culprit is “Deficiency in Vitamin D” not Vitamin D itself. So, one needs to
use more sophisticated methodologies than simple syntactic pattern match-
ing for entity extraction.

One future work of this research can be to use ASPER for extracting
syntactic patterns of other languages. Considering the fact that ASPER
is domain-neutral and it only uses dependency tree parser, it can easily be
adapted for any other language, assuming that there is an accurate depen-
dency parser for that language and some annotated data. Another future
work is to apply ASPER’s output patterns for extracting entities from long
and complex sentences. Such keywords can then be used as labeled (possibly
noisy) training data for a more sophisticated supervised learning models for
entity extraction.
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7. Appendix

Table [7] shows all the hyponym-hypernym human readable patterns ex-
tracted by ASPER. However, the first three template patterns we show are
syntactically similar. We group the patterns for the sake of presentation.
Most of the patterns shown in a group can be generalized by syntactic syn-
tactic patterns. The ability to generalize different patterns is a strength for
syntactic patterns. That is why the number of syntactic patterns we found
are actually less than human readable patterns. Table 8, and [9 show the
cause-effect and meronym-holonym patterns retrieved by ASPER respec-
tively.

44


https://doi.org/10.1016/j.jbi.2012.04.008

Table 7: All Hyponym-Hypernym patterns extracted by ASPER

Pattern | u | w | Sentence

u, a class of w Core 2 Duo microprocessor Core 2 Duo, a class of early Desktop micro-
processor had much lower core frequency and
approximately the same FSB frequency and
level 2 cache size as Pentium D microprocessors

a class of w, u Core 2 Duo MIiCroprocessor A class of early Desktop micro-processor, Core
2 Duo, had much lower core frequency and ap-
proximately the same FSB frequency and level
2 cache size as Pentium D microprocessors.

u be a class of w Core 2 Duo microprocessor Core 2 Duo is a class of early Desktop micro-
processor which had much lower core frequency
and approximately the same FSB frequency and
level 2 cache size as Pentium D microprocessors.

u, a family of w Vinyasa yoga Vinyasa, a family of yoga is dynamic and

a family of w, u ever-flowing.

u be a family of w

u, a type of w system computer The system software, a type of computer

a type of w, u software software software is designed for running the

u be a type of w computer hardware parts and the application
programs

u, a kind of w panda bear Panda, a kind of bear is found only in

a kind of w, u China.

u be a kind of w

w, including u Asiatic black bear Some species of bears, including Asiatic

w which/that bear black bears and sun bears, are also

include u threatened by the illegal wildlife trade.

w include u

w, such as u sheep domesticated Domesticated animals, such as sheep or

w, for example u animal rabbits, may have agricultural uses for

w, like u meat, hides and wool.

like many w, u

the w of u Aasu village The village of Aasu along with Aoloau are
jointly called O Leasina

u be w panda bear The giant pandas are true bears, and part

u be the w of the family Ursidae

u be aw

u become w kizzy singer Tn 2005, Kizzy became the lead singer of the ”Bo
Winiker Orchestra” with whom she performed
for Bill Clinton, Glenn Close and with whom
she gained critical acclaim for performing songs
in Hebrew.

w named u ponikve village Like other villages named Ponikve and similar

w called u names, it refers to a local landscape element.

w as u Emperor band Since the 1990s, Norway’s export of black metal,
a lo-fi, dark and raw form of heavy metal,
has been developed by such bands as Emperor,
Darkthrone, Gorgoroth, Mayhem, Burzum and
Immortal.

wu” Clarens village A commission was appointed in 1912 to final-
ize negotiations, and a decision was made to
name the village ”Clarens” in honour of Presi-
dent Paul Kruger influence in the area.
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Table 8: All Cause-Effect patterns extracted by ASPER

Pattern | u | w | Sentence

w caused by u In this article, we describe a japanese

u cause w sorafenib severe patient with severe interstitial

u be a cause of w treatment interstitial pneumonia probably caused by

w be attributed to u pneumonia sorafenib treatment for

u be causes of w metastatic renal cell carcinoma.

w induced by u mizoribin A case of stadh | A case of STADH induced by mizoribin

u induce w administration administration.

u lead to w peripheral neu- | Iinezolid However, peripheral neuropathy and bone

ropathy marrow depression led to linezolid with-
drawal in seven patients, and neuropathy
may not be fully reversible in all patients.

w be associated | sulfasalazine pulmonary 1in- | Pulmonary infiltrates and skin pigmenta-

with u filtrates tion are associated with sulfasalazine. .

w related to u flecainide interstitial We describe a case of interstitial hypox-
hypoxaemiant aemiant pneumonitis probably related to
pneumonitis flecainide in a patient with the LEOPARD

syndrome, a rare congenital disorder. .

u result in w flucloxacillin fatal hepatic in- | Tt is well-recognized that flucloxacillin may
jury

w be result of u occasionally result in fatal hepatic injury.

w from u exertion satisfaction Thave always drawn satisfaction from exer-

tion, straining my muscles to their limits.

w be triggered by u | earthquake tsunami A'Targe tsunami is triggered by the earth-

quake

u trigger w spread outward from off the Sumatran

coast.

w come from u fear blockage Sometimes the blockage comes from fear,

as for a CEO who hates public speaking
but must give frequent speeches. .

w be the effect of u acupuncture pain relief Pain relief is the effect of acupuncture

which lasts

w, the effect of u for an extended period of time, sometimes

months
after the needle was removed.

u produce w Ambient irritation Ambient vanadium pentoxide dust pro-

duces

w produced by u vanadium pen- irritation of the eyes, nose and throat.

toxide dust

u promote w antiwar demon- | positive values He created and advocated flower power,”a

strators strategy in which antiwar demonstrators
promoted positive values like peace and
love to dramatize their opposition to the
destruction and death caused by the war
in Vietnam.”

u generate w tunable Jaser optical signal The optical signal is generated by a tun-

able laser.

w generated by u

u influence w tumorigenicity immunoprotective The tumorigenicity of clones may be influ-

of clones effects enced by immunoprotective effects.

w influenced by u

w due to u Incorrect design | Failure in | Failures in physical containment may oc-
physical  con- | cur due to incorrect design.
tainment

w because of u
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Table 9: All Meronym-Holonym patterns extracted by ASPER

Pattern | u | w | Sentence
u consist of w treatment chemotherapy Treatment may also consist of chemother-
u comprise of w apy
w part of u Lowe Group Lowe Lowe is part of the Lowe Group, one of the
w element for u three large subsidiaries of Interpublic.
w source of u
w component of u
w constituent of u
u made of w Gene DNA Genes are made of DNA
w block of u Muscle Protein Protein is the building block of muscle
u have w The  commis- | seven members | The commission shall have seven members.
sion
u group of w arthropods invertebrates Arthropods are a group of invertebrates.
hypoxaemiant
pneumonitis
u mixture of w Concrete cement Concrete is a mixture of cement.
u have number of w | Arrays elements Arrays can have any number of elements.
u combination of w | green blue Green is a combination of blue and yellow.
u collection of w society individual Society is now a collection of individuals
u branch of w Chinese Medical Qigong | Medical Qigong is a branch of traditional
medicine Chinese medicine
w of u government member The prime minister shall inform all mem-
bers of the government
w ingredient in u Ephedrine Ephedra Ephedra is a key ingredient in Ephedrine
w with u peacock overgrown beak | I have an Indian Blue peacock with an

overgrown beak

w member of u

United Nations

Israel

Israel is a member of the United Nations.

u include w

Symptom

vomiting

Symptoms can include vomiting
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