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Recently, graph neural network (GNN)-based algorithms were proposed to solve
a variety of combinatorial optimization problems [M. J. Schuetz, J. K. Brubaker,
H. G. Katzgraber,Nat.Mach.Intell.4,367-377(2022)] .GNNwastestedinparticular
on randomly generated instances of these problems. The publication [M. ].
Schuetz, J. K. Brubaker, H. G. Katzgraber, Nat. Mach. Intell. 4, 367-377 (2022)]
stirred a debate whether the GNN-based method was adequately benchmarked
against best
priormethods.Inparticular,criticalcommentaries[M.C.Angelini,F.Ricci-

Tersenghi, Nat. Mach. Intell. 5, 29-31 (2023)] and [S. Boettcher, Nat. Mach.
Intell. 5, 24-25 (2023)] point out that a simple greedy algorithm performs better
than the GNN. We do not intend to discuss the merits of arguments and
counterarguments in these papers. Rather, in this note, we establish a
fundamental limitation for running GNN on random instances considered in
these references, for a broad range of choices of GNN architecture. Specifically,
these batriers hold when the depth of GNN does not scale with graph size (we
note that depth 2 was used in experiments in [M. J. Schuetz, J. K. Brubaker, H.
G. Katzgraber, Nat. Mach. Intell. 4, 367-377 (2022)]), and importantly, these
barriers hold regardless of any other parameters of GNN architecture. These
limitations arise from the presence of the overlap gap property (OGP) phase
transition, which is a batrier for many algorithms, including importantly local
algorithms, of which GNN is an example. At the same time, some algorithms
known prior to the introduction of GNN provide best results for these problems
up to the OGP phase transition. This leaves very little space for GNN to
outperform the known algorithms, and based on this, we side with the
conclusions made in [M. C. Angelini, F. Ricci-Tersenghi, Nat. Mach. Intell. 5,
29-31 (2023)] and [S. Boettcher, Nat. Mach. Intell. 5, 24-25 (2023)]. neural networks
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A class of problems discussed in ref. 1 and similarly in ref. 2, and attempted to be solved
using GNN-based methods falls into the domain of combinatorial optimization in
random graphs. For a similar approach regarding the problem of finding ground states
of spin glasses, see ref. 3. A graph G is a collection of nodes 1" and edges E, which is a
subset of unordered pairs or, more generally, tuples (hyperedges) of nodes. A generic
combinatorial optimization problem is defined by introducing a cost function C: {0,1}"
- R (also called Hamiltonian in physics jargon), which maps bit strings o € {0,1}" (aka
“decisions™) into real values C(&) (aka “cost” or “energy”), and solving the problem
max, C(0). An equivalent choice of o € {-1,1}" will be adopted hete often for
convenience. The presence of various kinds of combinatorial constraints on decisions
arising from the presence of edges and hyperedges can be encoded into the cost function
C.

A canonical example considered in the aforementioned references is the independent
set problem (which we abbreviate as IS) which is an NP-complete in the worst-case
problem of finding a largest in cardinality subset I € 17 such that no two nodes are
spanned by an edge. Namely, (4/) €/ E for all 47 € I. This corresponds to a special case

of C, where C(0) = (PZEV o)l gigi— 0. V(2 ) E). Another example discussed in the

same collection of references is the graph
maximum cut problem (which we
abbreviate as MAXCUT). This is (an
NP-complete in the worst-case) problem
of partitioning nodes of a graph into two
sets which maximizes the number of
crossed  edges. Formally, this
corresponds to the cost function C :

{=1,1}" > R defined by C(o) = ' (i)ex 1

gigi— 1). This model extends naturally
to hypergraphs as follows. A K -uniform
hypergraph is a pair of a node set " and
a collection E of hyperedges, where each
hyperedge is an unordered subset of K
nodes. Thus, 2-uniform
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hypergraph is just a graph. An extension
of MAXCUT to hypergraphs is obtained
by considering the cost function C( o) =

P, nee(o(i) o) oli) = -1).
1K
Our last example, arising from the
studies of spin glasses, corresponds
fixing an order p tensor | = (Ji,..intise.rri,
€ V') € R® and defining C(0) =

Areots€1 JienipO0 i - 0iy for each g €
{-1,1}" . The optimization problem is
one of finding the value of max, C( o).

In the random setting, either the cost
function C or the graph G (or both) is
generated randomly according to some
probability  distribution. The setting
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discussed in ref. 1 is IS problem when the underlying graph a random d-regular graph
on the set of 7 nodes denoted for convenience by 17" = {1,...,#}. d-regular means every
node has exactly 4 neighbors. The graph is generated uniformly at random from the
space of all d-regular graphs on
modes(seerefs.4and5forsomebackgroundregardingexistence and constructions). The
random graph constructed this way will be denoted by G,(#). The setting of spin glasses
corresponds to assuming that the entries of the tensor | are generated randomly and
independently from some common distribution with zero mean, such as the standard
normal disttibution.

Next, we turn to a generic description of GNN algorithms. We follow the notations
used in ref. 1. Given a graph G = (I/,E), the algorithm generates a sequence of node
and time-dependent features (4,,€ R%» € 17,72 0). Time is assumed to evolve in discrete
steps #=0,1,2,..., and d, represents the dimension of the feature space for node # The
feature vectors 4,,are generated as follows. The algorithm designer creates a node and
time-dependent functions (f,,# € 1/, 2 0) where each f,, maps Ra+Peni - Ra. Here,
N(#) denotes the set of neighbors of # ( the set of nodes » such that (%) € E). The
features are then updated accotding to the rule 4,41 = £,,(,,{5,,» € N(#)}). The update
rules f,,can be parametric or nonparametric (our conclusions do not depend on that)
and can be learned using various learning algorithms. The algorithmrunsforacertaintime#
= 0,1,...,R,whichisalsothe depth of the underlying neural architecture. The obtained
vector of features (4,r,# € 17) is then projected to a desited solution of the problem. As
we will see below, the actual details of how the update functions f,,come about and,
furthermore, regardless of the dimensions 4,# € 17 that the algorithm designers opt to
work with, the power of GNN algorithms is fundamentally limited by the overlap gap
property, which we turn to next.

Limits of GNN

We begin with some background on problems introduced earlier: IS and MAXCUT in
a setting of random graphs, and ground states of spin glasses. Let I,* denote (any)
maximum size independent set in G,(#), which we recall is a random d-regular

graph, and |I, | denote its size (cardinality). The following two facts were established in
refs. 6 and 7 respectively. For each 4, there exists @;such that |I,|/# converges to @ with
high probabilityas# . .9 = 2(1-+0y (‘i{ ) logd/d oo Furthermore, &.
Here, 0,(1) denotes a function which converges to zeto as d
- oo, Informally, we summarize this by saying that the size |,*| of alargest independent
set in G,(#) is approximately 2(log @/d)n.

Next, we turn to the discussion of algorithms for finding large independent sets in
G,(n). It turns out that the best-known algorithm for this problem is in fact the Greedy
algotithm (the algotithms discussed in refs. 8 and 9) which recovers a factor 1/2-
optimum independent set. More precisely, let Igreedy be the independent set produced by
the Greedy algorithm for

G,(n). Then,lim»eo ;! im, (| IGreeay|/77) = 1/2asd = oo, Exercise 6.7.20 in ref. 5. No
algorithm is known which beats Greedy by a factor nonvanishing in 4.

The theory based on the overlap gap property (OGP) explains this phenomenon
rigorously. The OGP for this problem was established in ref. 10 and it reads as follows:

For every factory
1/2 +1/(2 2) < #< 1, thete exists 0 < 1 < 1< 1 such that for every two independent
sets Ij,lo which ate #-optimal, namely |I1|/n 2 8aud, | 12| /n 2 Bad, it is the case that either
|Ln L|/n< viotr |1 nL|/n 2 v, f or all latge enough 4, with high probability as 7 =
oo, Informally, every two sufficiently large independent sets (namely those which are
multiplicative factor £-close to optimality) are either “close” to each other (overlap in at
least 257 many nodes) or “far” from each other (overlap in at most 17 many nodes).
Namely, solutions to the IS optimization problem with sufficiently large optimization
values exhibit a gap in the overlaps (hence the name of the property).

It turns out that OGP is a barrier to a broad class of algorithms, in particular,
algorithms which are local in an appropriately defined sense. This was established in the
same paper (10). We introduce the notion of locality only informally. The formal

3  https://doi.org/10.1073/pnas.2314092120

definition involves the concept of
Factors of IID for which we refer the
reader to ref. 10. An algorithm, which
maps graphs G to an independent set in
G is called R-local if for every node # of
the graph G, the algorithmic decision as
to whether to make this node a part of
the constructed independent set or not is
based entirely on the size R
neighborhood of this node « In
particular, we see that the GNN
algorithm is R-local provided that the
number of iterations #of GNN is at most
R. Importantly, this holds regardless of
the complexity of the feature dimensions
d,and the choice of update functions f, .
We recall that the GNN algorithm
reported in ref. 1 was based on 2
iterations and as such it is 2-local, that is,
R=2.

A main theorem proved in ref. 10
states that OGP is a barrier for all R-local
algorithms, as long as R is any constant
not growing with the size of the graph.
Specifically, for any R, consider any
algorithm A which is R-local. Then, the

independent sety

produced by A is at most (1/2 + 1/(2
2))a, for large enough 4 with high
probability as # —> e°. Using a more
sophisticated notion of multiovetlaps,
the result was improved in ref. 11 to
factor 1/2 of optimality for the same
class of all local algorithms. Importantly,
as we recall, 1/2 is the threshold
achievable by the Greedy algorithm. The
result was recently extended to the class
of algorithms based on low-degree
polynomials and smalldepth Boolean
circuits in refs. 12 and 13. It is
conjectured that beating the 1/2
threshold is not possible within the class
of polynomial time algorithms (but
showing this will amount to proving P
6= NP).

As a consequence of the discussion
above, we obtain an important
conclusion regarding the limits of GNN
for solving the IS problem in G,(#).

Theorem 0.1. Consider any architecture of
the GNN  algorithm with any choice of
dimensions (dyv € {1,2,...,n}), any choice of
Jeature functions b,, and any choice of npdate
Sunctions f,,. Suppose the GNIN algorithm
iterates for R steps and produces an independent
set Ionw in the random regular graph G (n).
Then, the size of IonN is at most half-optinum
asymptotically in d, for any value of R.
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We stress here that the depth parameter R can be arbitrarily large and, in particular, may
depend on the average degree d, provided it does not depend on the size 7 of the graph.
We recall that R = 2 in the implementation reported in ref. 1. Since the Greedy algorithm
already achieves 1/2 optimality, as we have rematked eatlier, this result leaves very little
space for the GNN to outperform the known (Greedy) algorithm for the IS defined on
random regular graphs.

Next, we turn to the MAXCUT problem on random graphs and random hypergraphs.
The situation here is rather similar, but better developed in the context of random
Erd6s-Rényi graphs and hypergraphs, as opposed to random regular graphs, and thus,
this is the class of random graphs we now turn to. A random Erdés-Rényi graph with
average degtee d denoted by G(#,d) is obtained by connecting every pair of nodes 4/
among # nodes with probability 4/#, independently across all unordered paits 7 6=_7. A
random K -uniform hypergraph is obtained similarly by creating a hyperedge from a

n—1
collection of nodes #,...,4 with probability J(2), We denote this graph by G(#,4K )
It is easytoseethattheaveragedegreeinbothG(n,d)andG (4K ) is d +o(1). It was known
for a while that the optimum values of MAXCUT iny G(#4K ) are of the form »
(d/(2K) + yj~/d +

o( d)) as n > oo, (14), for some constanty yi*. Namely, the optimum value is known up

to the order # d. yi* was computed in refs. 15 and 16 first for the case K = 2 and then

extended to general K in ref. 17. As it turns out, p4*is the value of the ground state of a
K -spin model, known since the work of Parisi (18), Talagrand (19), and Panchenko (20).

Interestingly, as far as the algorithms are concerned, there is a fundamental difference

between the case K = 2 (aka graphs) versus K 2 3. Specifically, algorithms achieving they
\

asymptotically optimal value #(d/(2K ) + pi* d + o( d)) are known based on local
Approximate Message Passing (AMP) schemes (21). Furthermore, conjecturally, the
OGP does not hold for this problem. However, when K 2 4 and is even, OGP provably
does hold and again presents a bartier to all local algorithms, as was established in ref.
17. Furthermore, a sophisticated version of the multi-OGP called BranchingOGP was
computed (22), the threshold for which, denoted by ps-ocpk matches the best-known
algorithms, which is again the AMP type. The formal statement of the OGP is very
similar to the one for the IS and we skip it. As an implication, we obtain our second
conclusion.

Theorem 0.2. Consider any architecture of the GNIN algorithm which produces a partition TGN
€ {1} in the random hypergraph G(n,d;K ). Suppose K 2 4 and is even. For sufficiently large degree

valnes d, the size of the cut associated with this solution isy N atmostn(df(2K )+ ys-ocex d+o(
d])wz'z‘b/ﬂz;g/ypmbahz'/@/, Sor any choice of R. This is suboptimal since ]/ﬁg—()(;p,](< }’f( .

1. M.J. Schuetz, J. K. Brubaker, H. G. Katzgraber, Combinatorial optimization with
physics-inspired graph neural networks. Nat. Mach. Intell. 4,367-377 (2022).

As the threshold p-ogpk is achievable
by the AMP algorithm, again this leaves
very little space for GNN to outperform
the bestknown (namely AMP) algorithm
for this problem when K 2 4. We should
note though that when K = 2 the
optimality might be achievable within
the framework of GNN, as in this case,
the optimality is reachable by local
(AMP) algorithms. In any event though,
GNN will not perform stronger than any
local algorithm.

The story for the problem of finding
near ground states in spin glasses is very
similar and is skipped. We refer the
reader to surveys (23) and (24) for details.

Discussion

In this paper, we have presented batriers
faced by GNN-based algorithms in
solving  combinatorial  optimization
problems in random graphs and random
structures. These barriers stem from the
complex solution space geometry
property in the form of the OGP, a
known barrier to broad classes of
algorithms, local algorithms in particular.
As GNN falls within the framework of
local algorithms, OGP is a barrier to
GNN as well. Since algorithms are
known which achieve the optimality
values just below the OGP phase
transition threshold, this leaves very little
room for the GNN to outperform the
known algorithms.
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