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Recently, graph neural network (GNN)-based algorithms were proposed to solve 
a variety of combinatorial optimization problems [M. J. Schuetz, J. K. Brubaker, 
H. G. Katzgraber,Nat.Mach.Intell.4,367–377(2022)].GNNwastestedinparticular 
on randomly generated instances of these problems. The publication [M. J. 
Schuetz, J. K. Brubaker, H. G. Katzgraber, Nat. Mach. Intell. 4, 367–377 (2022)] 
stirred a debate whether the GNN-based method was adequately benchmarked 
against best 
priormethods.Inparticular,criticalcommentaries[M.C.Angelini,F.Ricci-
Tersenghi, Nat. Mach. Intell. 5, 29–31 (2023)] and [S. Boettcher, Nat. Mach. 
Intell. 5, 24–25 (2023)] point out that a simple greedy algorithm performs better 
than the GNN. We do not intend to discuss the merits of arguments and 
counterarguments in these papers. Rather, in this note, we establish a 
fundamental limitation for running GNN on random instances considered in 
these references, for a broad range of choices of GNN architecture. Specifically, 
these barriers hold when the depth of GNN does not scale with graph size (we 
note that depth 2 was used in experiments in [M. J. Schuetz, J. K. Brubaker, H. 
G. Katzgraber, Nat. Mach. Intell. 4, 367–377 (2022)]), and importantly, these 
barriers hold regardless of any other parameters of GNN architecture. These 
limitations arise from the presence of the overlap gap property (OGP) phase 
transition, which is a barrier for many algorithms, including importantly local 
algorithms, of which GNN is an example. At the same time, some algorithms 
known prior to the introduction of GNN provide best results for these problems 
up to the OGP phase transition. This leaves very little space for GNN to 
outperform the known algorithms, and based on this, we side with the 
conclusions made in [M. C. Angelini, F. Ricci-Tersenghi, Nat. Mach. Intell. 5, 
29–31 (2023)] and [S. Boettcher, Nat. Mach. Intell. 5, 24–25 (2023)]. neural networks 
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A class of problems discussed in ref. 1 and similarly in ref. 2, and attempted to be solved 
using GNN-based methods falls into the domain of combinatorial optimization in 
random graphs. For a similar approach regarding the problem of finding ground states 
of spin glasses, see ref. 3. A graph G is a collection of nodes V and edges E, which is a 
subset of unordered pairs or, more generally, tuples (hyperedges) of nodes. A generic 
combinatorial optimization problem is defined by introducing a cost function C : {0,1}V 

→ R (also called Hamiltonian in physics jargon), which maps bit strings 𝜎 ∈ {0,1}V (aka 
“decisions”) into real values C(𝜎) (aka “cost” or “energy”), and solving the problem 
max𝜎 C(𝜎). An equivalent choice of 𝜎 ∈ {−1,1}V will be adopted here often for 
convenience. The presence of various kinds of combinatorial constraints on decisions 
arising from the presence of edges and hyperedges can be encoded into the cost function 
C. 

A canonical example considered in the aforementioned references is the independent 
set problem (which we abbreviate as IS) which is an NP-complete in the worst-case 
problem of finding a largest in cardinality subset I ⊂ V such that no two nodes are 
spanned by an edge. Namely, (i,j) ∈/ E for all i,j ∈ I. This corresponds to a special case 

of C, where C(𝜎) = (P
i∈V 𝜎i)1 𝜎i𝜎j . Another example discussed in the 

same collection of references is the graph 
maximum cut problem (which we 
abbreviate as MAXCUT). This is (an 
NP-complete in the worst-case) problem 
of partitioning nodes of a graph into two 
sets which maximizes the number of 
crossed edges. Formally, this 
corresponds to the cost function C : 
{−1,1}V → R defined by C(𝜎) = P(i,j)∈E 1 𝜎i𝜎j . This model extends naturally 
to hypergraphs as follows. A K -uniform 
hypergraph is a pair of a node set V and 
a collection E of hyperedges, where each 
hyperedge is an unordered subset of K 
nodes. Thus, 2-uniform 
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hypergraph is just a graph. An extension 
of MAXCUT to hypergraphs is obtained 
by considering the cost function C(𝜎) = 
P(i ,...,i )∈E 1(𝜎(i1)𝜎(i2)···𝜎(iK ) = −1). 

1 K 

Our last example, arising from the 
studies of spin glasses, corresponds 
fixing an order p tensor J = (Ji1,...,ip,i1,...,ip ∈ V ) ∈ Rn⊗p and defining C(𝜎) = 
P

i1,...,ip∈V Ji1,...,ip𝜎i1𝜎i2 ···𝜎ip for each 𝜎 ∈ 
{−1,1}V . The optimization problem is 
one of finding the value of max𝜎 C(𝜎). 

In the random setting, either the cost 
function C or the graph G (or both) is 
generated randomly according to some 
probability distribution. The setting 
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discussed in ref. 1 is IS problem when the underlying graph a random d-regular graph 
on the set of n nodes denoted for convenience by V = {1,...,n}. d-regular means every 
node has exactly d neighbors. The graph is generated uniformly at random from the 
space of all d-regular graphs on 
nnodes(seerefs.4and5forsomebackgroundregardingexistence and constructions). The 
random graph constructed this way will be denoted by Gd(n). The setting of spin glasses 
corresponds to assuming that the entries of the tensor J are generated randomly and 
independently from some common distribution with zero mean, such as the standard 
normal distribution. 

Next, we turn to a generic description of GNN algorithms. We follow the notations 
used in ref. 1. Given a graph G = (V,E), the algorithm generates a sequence of node 
and time-dependent features (hu,t ∈ Rdu,u ∈ V,t ≥ 0). Time is assumed to evolve in discrete 
steps t = 0,1,2,..., and du represents the dimension of the feature space for node u. The 
feature vectors hu,t are generated as follows. The algorithm designer creates a node and 
time-dependent functions (fu,t,u ∈ V,t ≥ 0) where each fu,t maps Rdu+Pv∈N(u) → Rdu. Here, N(u) denotes the set of neighbors of u ( the set of nodes v such that (u,v) ∈ E). The 
features are then updated according to the rule hu,t+1 = fu,t (hu,t,{hv,t,v ∈ N(u)}). The update 
rules fu,t can be parametric or nonparametric (our conclusions do not depend on that) 
and can be learned using various learning algorithms. The algorithmrunsforacertaintimet = 0,1,...,R,whichisalsothe depth of the underlying neural architecture. The obtained 
vector of features (hu,R,u ∈ V ) is then projected to a desired solution of the problem. As 
we will see below, the actual details of how the update functions fu,t come about and, 
furthermore, regardless of the dimensions du,u ∈ V that the algorithm designers opt to 
work with, the power of GNN algorithms is fundamentally limited by the overlap gap 
property, which we turn to next. 

Limits of GNN 

We begin with some background on problems introduced earlier: IS and MAXCUT in 
a setting of random graphs, and ground states of spin glasses. Let In

∗ denote (any) 
maximum size independent set in Gd(n), which we recall is a random d-regular ∗ 
graph, and |In | denote its size (cardinality). The following two facts were established in 
refs. 6 and 7 respectively. For each d, there exists 𝛼d such that |In|/n converges to 𝛼 with 
high probabilityasn → ∞.Furthermore,𝛼d. 
Here, od(1) denotes a function which converges to zero as d 
→ ∞. Informally, we summarize this by saying that the size |In

∗| of a largest independent 
set in Gd(n) is approximately 2(log d/d)n. 

Next, we turn to the discussion of algorithms for finding large independent sets in 
Gd(n). It turns out that the best-known algorithm for this problem is in fact the Greedy 
algorithm (the algorithms discussed in refs. 8 and 9) which recovers a factor 1/2-
optimum independent set. More precisely, let IGreedy be the independent set produced by 
the Greedy algorithm for 

Gd(n).Then,limd→∞𝛼d
−1 limn(|IGreedy|/n) = 1/2asd → ∞, Exercise 6.7.20 in ref. 5. No 

algorithm is known which beats Greedy by a factor nonvanishing in d. 
The theory based on the overlap gap property (OGP) explains this phenomenon 

rigorously. The OGP for this problem was established in ref. 10 and it reads as follows: 

For every factor√ 

1/2 + 1/(2 2) < 𝜃 < 1, there exists 0 < 𝜈1 < 𝜈2 < 1 such that for every two independent 
sets I1,I2 which are 𝜃-optimal, namely |I1|/n ≥ 𝜃𝛼d, |I2|/n ≥ 𝜃𝛼d, it is the case that either 
|I1∩ I2|/n ≤ 𝜈1 or |I1 ∩I2|/n ≥ 𝜈2, f or all large enough d, with high probability as n → 
∞. Informally, every two sufficiently large independent sets (namely those which are 
multiplicative factor 𝜃-close to optimality) are either “close” to each other (overlap in at 
least 𝜈2n many nodes) or “far” from each other (overlap in at most 𝜈1n many nodes). 
Namely, solutions to the IS optimization problem with sufficiently large optimization 
values exhibit a gap in the overlaps (hence the name of the property). 

It turns out that OGP is a barrier to a broad class of algorithms, in particular, 
algorithms which are local in an appropriately defined sense. This was established in the 
same paper (10). We introduce the notion of locality only informally. The formal 

definition involves the concept of 
Factors of IID for which we refer the 
reader to ref. 10. An algorithm, which 
maps graphs G to an independent set in 
G is called R-local if for every node u of 
the graph G, the algorithmic decision as 
to whether to make this node a part of 
the constructed independent set or not is 
based entirely on the size R 
neighborhood of this node u. In 
particular, we see that the GNN 
algorithm is R-local provided that the 
number of iterations t of GNN is at most 
R. Importantly, this holds regardless of 
the complexity of the feature dimensions 
du and the choice of update functions fu,t. 
We recall that the GNN algorithm 
reported in ref. 1 was based on 2 
iterations and as such it is 2-local, that is, 
R = 2. 

A main theorem proved in ref. 10 
states that OGP is a barrier for all R-local 
algorithms, as long as R is any constant 
not growing with the size of the graph. 
Specifically, for any R, consider any 
algorithm A which is R-local. Then, the 

independent set√ 

 

produced by A is at most (1/2 + 1/(2 
2))𝛼d for large enough d with high 
probability as n → ∞. Using a more 
sophisticated notion of multioverlaps, 
the result was improved in ref. 11 to 
factor 1/2 of optimality for the same 
class of all local algorithms. Importantly, 
as we recall, 1/2 is the threshold 
achievable by the Greedy algorithm. The 
result was recently extended to the class 
of algorithms based on low-degree 
polynomials and smalldepth Boolean 
circuits in refs. 12 and 13. It is 
conjectured that beating the 1/2 
threshold is not possible within the class 
of polynomial time algorithms (but 
showing this will amount to proving P 
6= NP). 

As a consequence of the discussion 
above, we obtain an important 
conclusion regarding the limits of GNN 
for solving the IS problem in Gd(n). 

Theorem 0.1. Consider any architecture of 
the GNN algorithm with any choice of 
dimensions (dv,v ∈ {1,2,...,n}), any choice of 
feature functions hu,t, and any choice of update 
functions fu,t. Suppose the GNN algorithm 
iterates for R steps and produces an independent 
set IGNN in the random regular graph Gd(n). 
Then, the size of IGNN is at most half-optimum 
asymptotically in d, for any value of R. 
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We stress here that the depth parameter R can be arbitrarily large and, in particular, may 
depend on the average degree d, provided it does not depend on the size n of the graph. 
We recall that R = 2 in the implementation reported in ref. 1. Since the Greedy algorithm 
already achieves 1/2 optimality, as we have remarked earlier, this result leaves very little 
space for the GNN to outperform the known (Greedy) algorithm for the IS defined on 
random regular graphs. 

Next, we turn to the MAXCUT problem on random graphs and random hypergraphs. 
The situation here is rather similar, but better developed in the context of random 
Erdös-Rényi graphs and hypergraphs, as opposed to random regular graphs, and thus, 
this is the class of random graphs we now turn to. A random Erdös-Rényi graph with 
average degree d denoted by G(n,d) is obtained by connecting every pair of nodes i,j 
among n nodes with probability d/n, independently across all unordered pairs i 6= j. A 
random K -uniform hypergraph is obtained similarly by creating a hyperedge from a 
collection of nodes i1,...,iK with probability d . We denote this graph by G(n,d;K ) 
It is easytoseethattheaveragedegreeinbothG(n,d)andG(n,d;K ) is d +o(1). It was known 

for a while that the optimum values of MAXCUT in√ G(n,d;K ) are of the form n

 

o( d)) as n → ∞, (14), for some constant√ 𝛾K
∗ . Namely, the optimum value is known up 

to the order n d. 𝛾K
∗ was computed in refs. 15 and 16 first for the case K = 2 and then 

extended to general K in ref. 17. As it turns out, 𝛾K
∗ is the value of the ground state of a 

K -spin model, known since the work of Parisi (18), Talagrand (19), and Panchenko (20). 
Interestingly, as far as the algorithms are concerned, there is a fundamental difference 

between the case K = 2 (aka graphs) versus K ≥ 3. Specifically, algorithms achieving the√ 
√ 

 

asymptotically optimal value n(d/(2K ) + 𝛾K
∗ d + o( d)) are known based on local 

Approximate Message Passing (AMP) schemes (21). Furthermore, conjecturally, the 
OGP does not hold for this problem. However, when K ≥ 4 and is even, OGP provably 
does hold and again presents a barrier to all local algorithms, as was established in ref. 
17. Furthermore, a sophisticated version of the multi-OGP called BranchingOGP was 
computed (22), the threshold for which, denoted by 𝛾B−OGP,K matches the best-known 
algorithms, which is again the AMP type. The formal statement of the OGP is very 
similar to the one for the IS and we skip it. As an implication, we obtain our second 
conclusion. 

Theorem 0.2. Consider any architecture of the GNN algorithm which produces a partition 𝜎GNN ∈ {±1}n in the random hypergraph G(n,d;K ). Suppose K ≥ 4 and is even. For sufficiently large degree 

values d, the size of the cut associated with this solution is√ √ atmostn(d/(2K )+𝛾B−OGP,K d+o( 
d))withhighprobability, for any choice of R. This is suboptimal since 𝛾B−OGP,K . 

As the threshold 𝛾B−OGP,K is achievable 
by the AMP algorithm, again this leaves 
very little space for GNN to outperform 
the bestknown (namely AMP) algorithm 
for this problem when K ≥ 4. We should 
note though that when K = 2 the 
optimality might be achievable within 
the framework of GNN, as in this case, 
the optimality is reachable by local 
(AMP) algorithms. In any event though, 
GNN will not perform stronger than any 
local algorithm. 

The story for the problem of finding 
near ground states in spin glasses is very 
similar and is skipped. We refer the 
reader to surveys (23) and (24) for details. 

Discussion 

In this paper, we have presented barriers 
faced by GNN-based algorithms in 
solving combinatorial optimization 
problems in random graphs and random 
structures. These barriers stem from the 
complex solution space geometry 
property in the form of the OGP, a 
known barrier to broad classes of 
algorithms, local algorithms in particular. 
As GNN falls within the framework of 
local algorithms, OGP is a barrier to 
GNN as well. Since algorithms are 
known which achieve the optimality 
values just below the OGP phase 
transition threshold, this leaves very little 
room for the GNN to outperform the 
known algorithms. 
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