

1
2
3 ***In vitro* formation and extended culture of highly metabolically active and contractile tissues**
4
5 **Isabella A. Bagdasarian¹, Thamidul Islam Tonmoy¹, B. Hyle Park¹, Joshua T. Morgan^{1*}**
6 ¹Department of Bioengineering, University of California, Riverside, CA 92521
7
8 * Corresponding author: jmorgan@engr.ucr.edu (JTM)
9
10
11
12

13 **Abstract**

14 3D cell culture models have gained popularity in recent years as an alternative to animal
15 and 2D cell culture models for pharmaceutical testing and disease modeling. Polydimethylsiloxane
16 (PDMS) is a cost-effective and accessible molding material for 3D cultures; however, routine
17 PDMS molding may not be appropriate for extended culture of contractile and metabolically active
18 tissues. Failures can include loss of culture adhesion to the PDMS mold and limited culture
19 surfaces for nutrient and waste diffusion. In this study, we evaluated PDMS molding materials and
20 surface treatments for highly contractile and metabolically active 3D cell cultures. PDMS
21 functionalized with polydopamine allowed for extended culture duration (14.8 ± 3.97 days) when
22 compared to polyethylamine/glutaraldehyde functionalization (6.94 ± 2.74 days); Additionally,
23 porous PDMS extended culture duration (16.7 ± 3.51 days) compared to smooth PDMS ($6.33 \pm$
24 2.05 days) after treatment with TGF- β 2 to increase culture contraction. Porous PDMS additionally
25 allowed for large (13 mm tall \times 8 mm diameter) constructs to be fed by diffusion through the mold,
26 resulting in increased cell density (0.0210 ± 0.0049 mean nuclear fraction) compared to controls
27 (0.0045 ± 0.0016 mean nuclear fraction). As a practical demonstration of the flexibility of porous
28 PDMS, we engineered a vascular bioartificial muscle model (VBAM) and demonstrated extended
29 culture of VBAMs anchored with porous PDMS posts. Using this model, we assessed the effect
30 of feeding frequency on VBAM cellularity. Feeding 3 \times /week significantly increased nuclear
31 fraction at multiple tissue depths relative to 2 \times /day. VBAM maturation was similarly improved in
32 3 \times /week feeding as measured by nuclear alignment ($23.49^\circ \pm 3.644$) and nuclear aspect ratio
33 (2.274 ± 0.0643) relative to 2x/day ($35.93^\circ \pm 2.942$) and (1.371 ± 0.1127), respectively. The
34 described techniques are designed to be simple and easy to implement with minimal training or
35 expense, improving access to dense and/or metabolically active 3D cell culture models.

37 **Introduction**

38 Animal models have long been mainstays of biomedical research. While *in vivo* model systems
39 by their nature include important systemic factors, they often fail to recapitulate the physiology of
40 human tissues [1,2]. There is variability in how animals develop pathologies and respond to
41 pharmaceuticals, compared to humans [3–5]. For example, the cholesterol lowering drug
42 cerivastatin was withdrawn from the US market in 2001 after cases of fatal rhabdomyolysis were
43 reported, despite minimal adverse effects being observed in preclinical animal studies [6–10].
44 Two-dimensional (2D) *in vitro* cell culture systems are linked to increased throughput, cost-
45 effectiveness, and experimental simplicity [11–14]. Despite these clear advantages, 2D models are
46 also associated with poor drug sensitivity [13–15], improper cellular organization and morphology
47 [16], and altered gene and protein expression [14,17,18]. In response to these limitations and other
48 needs, significant effort has been placed in the development of 3-dimensional (3D) cell culture
49 models as an additional tool. These systems circumvent the systemic variables, timescale, and
50 ethical challenges associated with animal models, while providing increased physiological
51 relevance compared to conventional *in vitro* methods. [14,17].

52 3D tissue culture and organoid formation have become increasingly relevant tools to model
53 complex tissues *in vitro* [19]. Despite progress, several engineering challenges remain. Many
54 tissues have dense cell populations, which are difficult to mimic *in vitro*, due to the high contractile
55 loads produced by cells, leading to collapse of a structured tissue [20]. Uncontrolled contraction
56 of 3D collagen yields highly variable and unrepeatable cultures [21]. Specifically, it is well
57 documented that 3D culture collapse alters cell density and hydrogel porosity, due to the reduced
58 volume of the culture [21,22]. Ultimately, this compromises the intended geometry and
59 microarchitecture of the culture, and limits overall maturation of the tissue [21–23]. Uncontrolled

60 matrix contraction becomes especially problematic when fabricating naturally contractile cultures,
61 including striated muscle (e.g. skeletal or cardiac muscle) and fibrosis models.

62 *In vitro* engineered tissues and 3D cell cultures are often formed within a mold, such as
63 polydimethylsiloxane (PDMS). PDMS is a favorable molding material due to its accessibility,
64 biocompatibility, low-cost, optical transparency, and tunable mechanical properties [24,25]. Yet,
65 the innate hydrophobicity of PDMS does not promote long term adhesion of hydrophilic
66 extracellular matrix proteins and cells, necessitating the need for separate functionalization steps.

67 Immobilization of 3D cultures to a PDMS mold is frequently accomplished through chemical
68 modification of the surface. One of the most common methods of chemical functionalization is
69 polyethylenimine-glutaraldehyde (PEI/GA) crosslinking of collagen to a PDMS mold, although
70 several other techniques exist for varying biomaterials [26]. Importantly, glutaraldehyde surface
71 treatments are associated with potential adverse health risks [27–29] and negative environmental
72 impacts [30,31]. Further, PEI/GA treatments are not always successful in immobilizing cell-laden
73 collagen gels during extended culture with high cell densities [32].

74 Polydopamine (PDA), a bioinspired coating agent, is a potential alternative to PEI/GA. A wide
75 variety of material surfaces (including PDMS) can be made adhesive to a broad range of
76 biomolecules via simple dip-coating into an aqueous PDA solution [33]. Importantly, this coating
77 technique does not require specialized equipment, making it accessible to a broad group of
78 researchers. Dual functionalization of PDMS surfaces with PDA and ECM protein films such as
79 collagen I or gelatin have previously been shown to improve adhesion and longevity of 2D cell
80 culture studies [25,34–37]. However, it has not yet been demonstrated that PDMS coated with
81 PDA improves the bulk anchoring of 3D cell culture matrix.

82 Surface roughness of PDMS varies with the fabrication and molding methods, but is generally
83 in the range of 1-20 nm [38–41]. Limited PDMS surface roughness contributes to poor collagen
84 adherence, resulting in hydrogel collapse under cell-generated loads. It has recently been
85 demonstrated that increasing the surface roughness of the PDMS bulk improves collagen film
86 adhesion in 2D [39]. Porous PDMS (P-PDMS) is known to have increased surface roughness and
87 can be readily fabricated through the incorporation of sacrificial structures, such as water, salt, or
88 sugar. Importantly, cells seeded in P-PDMS scaffolds have improved biomolecule and cell
89 adhesion relative to normally fabricated smooth PDMS (S-PDMS) [41–44]. Yet, P-PDMS
90 scaffolds as a molding material for bulk anchoring of 3D cell cultures in collagen have not been
91 previously investigated. Improved anchoring may be especially beneficial for 3D cultures.

92 Indeed, strong anchoring of hydrogels to matrix attachment points is especially relevant for
93 engineering contractile tissues, such as skeletal muscle. Tissue engineered skeletal muscle
94 constructs, termed bioartificial muscle models (BAMs), are fabricated from undifferentiated
95 muscle cells (myoblasts) suspended in an extracellular matrix and cast around anchor points
96 within a simple cylindrical mold [45]. These anchors maintain passive tension within the
97 differentiating tissue. In recent years, the matrix anchoring points have been fabricated from a
98 variety of different materials, including: S-PDMS posts [46–48], 3D printed plastics [49] and
99 hydrogels [50], mesh [51,52], velcro [53–55], and silk sutures [56,57]. Although many of these
100 systems are low-cost and simple to fabricate, there have been reports of the engineered muscle
101 rupturing off the anchors, especially when seeded at higher densities [52,58,59]. P-PDMS may
102 mitigate incidences of tissue rupture due to its increased surface area, allowing for extended culture
103 and maturation of the constructs.

104 In addition to collagen detachment, 3D cultures also exhibit increased metabolic demands.
105 A well known limitation of 3D cultures and tissue is the diffusion limit; that is, cells do not receive
106 adequate nutrient delivery or waste clearance beyond a few hundred microns of thickness in static
107 culture conditions [60–64]. These challenges hinder the scalability and duration these tissues can
108 be cultured *in vitro*. Efforts to support the metabolic activity of *in vitro* tissues often focus on the
109 development of optimized culture media blends [65,66]; media supplements such as insulin,
110 transferrin, selenium, glucocorticoids, vitamins, and pH buffers are known to improve cell growth
111 and metabolism [65]. Further, optimization of feeding may improve cell and tissue health in 3D
112 culture. Often, this is accomplished through the addition of direct tissue perfusion systems
113 designed to increase mass transport within the culture. Perfusion systems have been incorporated
114 in engineered bone [67–69], cartilage [70,71], cardiac [72], and skeletal muscle [73] and have been
115 thoroughly reviewed [74–76]. Despite progress, perfusion systems are often optimized for specific
116 research needs and are difficult for non-specialist research groups to utilize. P-PDMS can be
117 fabricated to have interconnected pores [77–79]. With interconnected pores, there is the potential
118 for P-PDMS to allow for media diffusion through the adhesion surface of the mold.

119 In this study, we validate the use of P-PDMS as a molding material to support contractile
120 and metabolically active cultures in 3D collagen. Specifically, we compare PEI/GA and PDA
121 chemistries for their ability to stably support contractile cells at high density. Further, we
122 demonstrate that culture media can diffuse through the P-PDMS mold materials, improving health
123 of metabolically active 3D cultures. As a further test case, we demonstrate P-PDMS as suitable
124 anchor points for long term culture of vascularized BAMs (VBAMs); and demonstrate the effect
125 of feeding frequency on skeletal muscle maturation over 5 weeks. Overall, we demonstrate PDA

126 treated P-PDMS molds as a simple and adaptable strategy in 3D cultures, especially where PEI/GA

127 treated S-PDMS molding is unsuitable due to contractile or metabolic concerns.

128

129 **Materials and Methods**

130 **Collagen isolation**

131 Collagen Type I was isolated from rat tail tendons as previously described [26,80,81].
132 Briefly, collagen fibers were retrieved from the fibers of rat tail (Pel-Freez Biologicals, Rogers,
133 AR) tendons and soaked in 1x PBS. Afterwards, fibers were incubated in acetone and 70%
134 isopropanol for 5 min each. Fibers were split evenly among conical tubes and swelled in 0.1%
135 glacial acetic acid for 7 d on a rocker at 4°C. Dissolved collagen was centrifuged at ~20,000 x g
136 for 1 h at 4°C to remove impurities. The collagen-containing supernatant was frozen at -80°C
137 overnight and lyophilized to generate a collagen sponge. Prior to use, collagen sponges were
138 dissolved in 0.1% glacial acetic acid to 8 mg/mL and stored at 4°C.

139 **Cell culture**

140 All cells were routinely cultured at 37°C and 5% CO₂. IMR90s (human lung myofibroblast;
141 passage 17-19; ATCC, VA, USA), MDCKs (canine kidney epithelial; ATCC), HMEC1s (human
142 microvascular endothelial; passage 8-10; ATCC), C2C12s (mouse myoblasts; passage 19; ATCC),
143 and ASC52telos (human adipose derived stem cells; passage 7, ATCC), were maintained in their
144 respective media blends (S1 Table) prior to 3D culture.

145 Fluorescent expressing C2C12s and HMEC1 cells were generated using lentiviral
146 transduction. Transgenes were transduced into cells through 2nd generation lentiviral system.
147 Briefly, 70% confluent HEK293TN (System Biosciences, Palo Alto, CA) cells were triple
148 transfected (TransIT-Lenti, Mirus Bio, Madison, WI) with plasmids for viral packaging (psPAX2
149 was a gift from Didier Trono; Addgene plasmid #12260; <http://n2t.net/addgene:12260>;
150 RRID:Addgene_12260), viral envelope (pMD2.G was a gift from Didier Trono; Addgene plasmid

151 #12259; <http://n2t.net/addgene:12259>; RRID:Addgene_12259). At 48 and 72 h post transfection,
152 viral supernatant was collected, centrifuged to remove cellular debris, and filtered through a 0.45
153 μ m cellulose acetate filter (Corning). Viral particles were stored at 4°C and used within 48 h by
154 addition to culture media at a 1:2 ratio. Fluorescent expressing C2C12s were created by
155 introducing copGFP (pCDH-EF1-copGFP-T2A-Puro was a gift from Kazuhiro Oka (Addgene
156 plasmid # 72263; <http://n2t.net/addgene:72263>; RRID:Addgene_72263) and fluorescent HMEC1s
157 were created by introducing mCherry (pCDH-CMV-mCherry-T2A-Puro was a gift from Kazuhiro
158 Oka (Addgene plasmid # 72264; <http://n2t.net/addgene:72264> ; RRID:Addgene_72264) plasmids.
159 Positively expressing cells were selected using Puromycin at 1 μ g/mL (C2C12 cells) or 0.1 μ g/mL
160 (HMEC1 cells) for 2 weeks.

161 **S-PDMS mold fabrication & surface treatments**

162 PDMS (Sylgard 184; Dow Corning, Midland MI) prepolymer was molded around a 3D printed
163 mold (acrylonitrile butadiene styrene) creating wells 7 mm in diameter and 1.5 mm deep. S-PDMS
164 was cured in the oven for 48 h at 55 °C and autoclaved prior to functionalization with
165 (poly)ethylenimine/glutaraldehyde (PEI/GA) or polydopamine (PDA). Briefly, naïve S-PDMS
166 molds were incubated in 2% PEI for 30 min, rinsed 3 times with autoclaved deionized water, dried,
167 and immersed in 0.2% GA for 1 h, rinsed, and dried again [26,32]. Alternatively, naïve S-PDMS
168 molds were incubated overnight in 2 mg/mL PDA solution made from dopamine hydrochloride
169 (Sigma-Aldrich, St. Louis, MO) in 10 mM Tris Buffer (pH ~8.5; Apex Bioresearch Products,
170 Boston, MA) as previously described [25]. S-PDMS molds were rinsed in autoclaved deionized
171 water and dried prior to cell culture.

172

173 **Figure 1. Fabrication of S-PDMS and P-PDMS molds.** (A) PDMS pre-polymer is cast
174 around a sugar cube template and thermally cured. Sugar granules are leached out in water and the
175 molds are dried, revealing P-PDMS. (B) P-PDMS is molded around a 3D print to form wells 7
176 mm in diameter and 1.5 mm tall. (C) S-PDMS is molded around a 3D print to form VBAM outer
177 chambers (20 mm x 1 mm x 1.5 mm). P-PDMS posts are punched to be 1/8" in diameter and
178 adhered to glass inside the S-PDMS outer chambers.

179

180 **P-PDMS mold fabrication**

181 Two methods were used to form P-PDMS molds for 3D cell culture and are described in detail
182 in Supplemental Methods (S1 File). Briefly, granulated sugar and sugar cubes were used as a
183 sacrificial template to generate pores in molded PDMS (Fig 1). For collagen contractility studies
184 granulated sugar was packed around a 3D printed mold (Fig 1B) and PDMS prepolymer was
185 poured onto the sugar and around the mold and cured at 55°C. The P-PDMS was demolded from
186 the 3D print and leached in water for 7 d at 40° C (Fig 1A). P-PDMS molds were adhered to 22
187 mm x 40 mm glass coverslips with a thin layer of PDMS prepolymer, cured in the oven, and
188 autoclaved prior to functionalization as described above. For 3D culture metabolic studies, P-
189 PDMS was fabricated using sugar cubes as a sacrificial template to ensure pores were
190 interconnected [82–84]. After leaching in water, 3D culture molds were formed using a 1/4 in
191 punch to create a well for collagen cultures, cut to be 1/2 in tall, then adhered to glass coverslips
192 (22 mm x 40 mm) with PDMS prepolymer (Fig 1A). Prior to PDA functionalization, P-PDMS was
193 rewet in an ethanol gradient. VBAM mold posts were also fabricated from P-PDMS sugar cubes.
194 Posts for matrix attachment were made using a 1/8 in diameter punch and cut to be ~3 mm tall.
195 Posts were functionalized in PDA, dried, and were adhered to glass as described above. S-PDMS

196 outer chambers were fabricated from PDMS prepolymer molded around a 3D print design
197 (acrylonitrile butadiene styrene). Each outer chamber has dimensions of 20 mm x 1 mm x 2.5 mm
198 (LxWxH) (Fig 1C). After curing, S-PDMS was demolded and individual chambers were trimmed,
199 placed around the posts, and autoclaved.

200 *Assessment of PDMS surface treatments*

201 S-PDMS molds were prepared and treated with either PEI/GA, PDA, or left naïve (control)
202 as described. IMR90s were suspended in 3 mg/mL rat tail collagen type I at 2×10^6 cells/mL and
203 gelled at 37°C for 30 min and then submerged in IMR90 medium (S1 Table). Cultures were
204 monitored daily for loss of adhesion from the S-PDMS mold. Cultures were considered de-adhered
205 when more than 270° of the perimeter had detached from the S-PDMS wall. Survival past this
206 point was quantified relative to the number of days it took the naïve cultures to detach (Fig 2).

207

208 **Figure 2. Loss of S-PDMS/collagen adhesion.** (Top) IMR90s are seeded in a collagen matrix in
209 a naïve S-PDMS mold. (Bottom) By day 6 of culture the collagen has completely unadhered from
210 S-PDMS wall.

211

212 **Assessment of P-PDMS/collagen adhesion**

213 S-PDMS and P-PDMS molds were prepared, treated with PDA, and seeded with IMR90s
214 at 2×10^6 cells/mL as described above. After gelation samples were submerged in IMR90 medium
215 with/without 2 ng/mL TGF-β2 (100-35B; PeproTech, Cranbury, NJ). Cultures were monitored for
216 loss of collagen adhesion and contraction of the gel for 21 d and survival was quantified as
217 described above.

218 **Assessment of P-PDMS nutrient diffusion**

219 For metabolic studies, 13 mm tall \times 8 mm diameter S-PDMS and P-PDMS molds were
220 fabricated and seeded with MDCK cells at 2×10^6 cells/mL. In the case of the P-PDMS molds,
221 collagen that leaked through the porous mold was cut away after gelation. The molds and collagen
222 were placed in 12 well plates and media was added to be level with the mold surface, but not
223 covering the culture (the top of the culture was at the air-liquid interface). Samples were fed at
224 days 1,2, and 4 of culture. Media was isolated for downstream glucose assays at days 1 and 5.
225 After 5 days of culture, samples were fixed for immunofluorescence.

226 **VBAM model fabrication**

227 To facilitate live imaging throughout culture, VBAMs were fabricated from C2C12s
228 expressing copGFP and HMEC1 cells expressing mCherry. C2C12s, HMEC1s, and ASC52telos
229 were trypsinized and suspended in a 2 mg/mL type I rat tail collagen matrix (3440-100-01; R&D
230 Biosystems, Minneapolis, MN) at 10×10^6 cells/mL, 2×10^6 cells/mL, and 0.5×10^6 cells/mL,
231 respectively. Cell laden collagen was seeded in S-PDMS chambers 20 mm \times 1 mm \times 2.5 mm
232 around P-PDMS posts of 1/8 in diameter (Fig 1C). After a 60 minute gelation, constructs were
233 submerged in VBAM growth media (S1 Table) supplemented with 1 ng/mL VEGF. VBAM
234 growth media was exchanged every other day until day 5 of culture to allow for myoblast
235 proliferation. At this time media was replaced with VBAM differentiation media (S1 Table).
236 Microvessel self-assembly was promoted through VEGF supplementation for another 2 weeks
237 before being replace with 0.1 ng/mL PDGF-BB for the remainder of the culture period [85,86].
238 These conditions were shown to result in robust microvessel networks in prior experiments without
239 muscle cells (S1 Fig). After 3-4 days in differentiation media, S-PDMS chambers were removed
240 to expose a larger surface area of the tissue to culture media. VBAMs were differentiated for 5
241 weeks prior to tissue fixation.

242 To test the effects of sample feeding frequency during differentiation we implemented the
243 following media exchange regimes: 3x a week on Monday, Wednesday, and Friday (MWF), daily,
244 or every 12 h (B.I.D). Feedings performed every 12 hrs were controlled via an automated syringe
245 pump system described in detail in Supplemental Methods (S1 File).

246 **3D culture fixation and staining**

247 3D IMR90 cultures were fixed in 4% paraformaldehyde in PBS with 0.5% Triton X-100
248 *in situ* for 2 h at room temperature followed by an overnight permeabilization in 0.5% Triton X-
249 100 in PBS at 4°C. Following fixation, samples were demolded and placed in 1.7 mL tubes and
250 stained against F-actin and nuclei using Phalloidin and DRAQ7 in blocking buffer (S2 Table) on
251 a rocker for 48 h at 4°C. 3D MDCK cultures were fixed 4% paraformaldehyde in PBS with 0.5%
252 Triton X-100 *in situ* for 2 hr at room temperature followed by an overnight fixation and
253 permeabilization in fresh 4% paraformaldehyde and 0.5% Triton X-100 in PBS at 4°C. After
254 fixation, samples were demolded and transferred to a 48 well plate to maintain spatial orientation
255 during staining. Nuclei were labeled with DRAQ7 as described above.

256 To ensure sufficient penetration of antibodies into VBAM models, we adopted a modified
257 version of Dent's fixation [87,88]. Briefly, VBAMs were triple rinsed in PBS containing calcium
258 and magnesium (21-030-CM; Corning). Samples were fixed *in situ* in [4:1] methanol and DMSO
259 (BP231-1; Fisher BioReagents; Waltham, MA) at 4°C overnight. The following day VBAMs were
260 demolded and transferred to a 24 well plate and dehydrated with 3x methanol incubations for 20
261 min at 4°C. After, samples were incubated in Dent's bleach solution consisting of [4:1:1]
262 methanol:DMSO:30% hydrogen peroxide for 2 h at room temperature. Samples were rehydrated
263 in a descending methanol gradient in PBS: 100%, 75%, 50%, 25% methanol and 100% 1× PBS
264 for 10 min at room temperature, before incubating in blocking buffer for 2 h. VBAMs were stained

265 against markers of terminal muscle differentiation and for mCherry labeled HMEC1 cells (S2
266 Table) for 72 h on a rocker at 4°C followed by secondary antibody staining for 48 h on a rocker
267 at 4°C (S2 Table).

268 **Image acquisition, tissue clearing, and volumetric quantification**

269 All samples were imaged on a Leica TCS SPE-II laser scanning confocal microscope
270 (Leica, Buffalo Grove, IL). For 3D culture experiments with IMR90s, MDCKs, and VBAMs, a
271 total volume of 0.5 mm³, 3 - 7.5 mm³, and 0.25 - 1.20 mm³ were acquired, respectively. Samples
272 were imaged in S-PDMS chambers attached to glass with PBS and acquisition settings were held
273 constant within experimental groups. VBAM and MDCK experiments were imaged before and
274 after clearing. Tissue clearing was performed similar to previously published protocols [89].
275 Briefly, samples were dehydrated in excess methanol on a rocker at 4°C 3× for 20 min. Samples
276 were then transferred to glass petri dishes and cleared in methyl salicylate for 7× 10 min
277 incubations at room temperature. Samples were imaged in methyl salicylate in S-PDMS chambers
278 sealed to coverslip glass with silicone grease. Confocal tiles cans were acquired of the culture base
279 and stitched into a single volume for MDCK experiments. VBAMs were imaged end to end via
280 sequential tiles cans.

281 Prior to analysis all tiles can volumes were aligned and stitched together using a custom
282 MATLAB implementation of the Phase Correlation Method previously described [90]. Nuclear
283 volume fraction was quantified using custom algorithms. Detailed filtering and segmentation steps
284 are described in Supplemental Methods (S1 File).

285 To quantify annular nuclear volume fraction in VBAMs, we first stitched and filtered
286 tiles cans as described in the Supplemental Methods (S1 File). Muscle bulk was segmented using
287 the myosin or titin channel via hysteresis thresholding. Debris and artifacts were removed from

288 the binary muscle bulk volume with morphological opening and closing using a disk structuring
289 element of radius 1.79 μm and 5.38 μm , respectively. Similarly, the nuclei channel was segmented
290 via hysteresis thresholding and artifacts were removed. A Euclidean distance transform was
291 performed on the muscle bulk starting at the outer edge of the nuclear layer and used to determine
292 voxel location from the tissue surface. Annular rings moving from the tissue surface inwards were
293 spaced at 14.3 μm . Nuclear volume fraction was defined within each annulus. Annular nuclear
294 fraction was quantified for 5 annular rings, with a max depth of 75 μm (Fig 3).

295

296 **Figure 3. Annular nuclear volume fraction demonstration.** VBAM nuclei (transverse) and
297 muscle volumes are segmented. A distance transform is performed on the segmented muscle
298 volume to define how far each pixel in the tissue is from the tissue surface. Annular rings are
299 defined using the distance transform volume and integrated nuclear intensity is quantified within
300 them.

301 To quantify nuclear angle and aspect ratio we stitched and filtered the VBAM tiles and
302 segmented the muscle bulk as described above, with an additional watershedding step to separate
303 individual nuclei. Nuclear eigenvectors and principal axis length were output. To account for tilt
304 in the acquired tiles we solved for local muscle eigenvectors along the skeletonized muscle
305 volume. To accomplish this, we defined seed points at opposite edges of the muscle volume and
306 used an adaption of fast marching skeletonization previously described [32,91,92]. Local 3D
307 orientation along the skeletonization and nuclear angle was quantified as the orientation of the
308 major axis of a best fit ellipsoid. Nuclear aspect ratio was quantified by solving for the ratio of
309 nuclei major principal axis length to minor principal axis length, where a perfectly spherical nuclei

310 would have an aspect ratio equal to 1. Example code used to quantify VBAM annular nuclear
311 volume fraction, nuclear angle, and aspect ratio is provided (S1 File).

312 **Polarization-sensitive optical coherence tomography**

313 To further assess myofiber alignment fixed and uncleared VBAM samples (two MWF and
314 two B.I.D) were scanned with a custom-built spectral domain PS-OCT system, a detailed
315 description of which is described in a previous report [93]. Detailed methods are provided in
316 Supplemental Methods (S1 File). Briefly, post-processing was performed in MATLAB. The
317 structural intensity images were generated with standard Fourier domain processing method [94–
318 98] which shows the intensity of light backscattered from the samples. Muscle tissue also exhibits
319 form birefringence [99], an optical property arising from the structural anisotropy of long, parallel
320 fibrils embedded in a medium of different refractive index. PS-OCT can measure this phase
321 retardation and optic axis [100–103] which are measures of the degree of organization and
322 orientation of the fibrous structure, respectively. We used the spectral binning algorithm [104] to
323 measure the local phase retardation ρ and optic axis θ , which were later combined for generating
324 vectorial birefringence images [105].

325 For quantitative comparison, we used the phase retardation of the samples. In each cross-
326 section, the tissue region was first identified using an intensity-based threshold of the background
327 (60 dB). The average phase retardation inside these tissue regions were measured and plotted as a
328 function of length of the samples in Fig S2A. The mean phase retardation over the length of the
329 samples were then used for quantitatively comparing the two experimental groups.

330

331 **Glucose assay**

332 A colorimetric glucose assay (10009582; Cayman Chemical, Ann Arbor, MI) was
333 performed to assess metabolic activity in 3D P-PDMS cultures. A detailed description of the
334 glucose assay procedure can be found in Supplemental Methods (S1 File). Isolated media samples
335 and control MDCK media were diluted in assay buffer and quantified on a plate reader
336 (SpectraMax M2, Molecular Devices, San Jose, CA) at 513 nm relative to provided glucose
337 standards.

338

339 **Data analysis & statistics**

340 For 3D IMR90 experiments, data was reported as mean days without collagen detachment
341 \pm SEM. PEI/GA and PDA surface treatments (n = 4) were tested for statistically significant
342 differences using a paired sample t-test. Comparisons of S-PDMS and P-PDMS cultures (n = 3)
343 were tested for statistically significant differences using a 2-way analysis of variance (ANOVA)
344 followed by Tukey's honestly significant difference (HSD) *post hoc* test for effects of +/- TGF- β 2
345 and S-PDMS vs P-PDMS cultures. Similarly, glucose assay (n = 3) results are reported as mean
346 normalized absorbances and were tested using ANOVA followed by Tukey's HSD post hoc test.
347 Nuclear fraction quantification is reported as mean \pm SEM and assessed using a two-sample t-test
348 For VBAMs each sample fabricated was treated as a biological replicate (n = 6). Phase retardation
349 is reported as mean \pm SEM (n = 2) and assessed using a two-sample t-test. Annular nuclear
350 fraction, nuclear angle, and nuclear aspect ratio are reported as mean \pm SEM and data was
351 compared with a paired t-test (n = 6).

352

353 **Results**

354 **Polydopamine surface treatment extends S-PDMS/collagen adhesion**

355 S-PDMS surfaces were functionalized with PEI/GA or PDA and seeded with IMR90s suspended
356 in a collagen gel, as described above. All samples were fed regularly and were monitored until loss
357 of collagen adhesion. PEI/GA and PDA culture detachment was quantified relative to the
358 detachment of naïve controls (e.g. days past naïve detachment). PEI/GA samples survived on 6.94 ± 2.74 days past naïve, while PDA cultures survived 14.8 ± 3.97 days (Fig 4A). To visualize the
359 cell population in PDA samples, we fixed at day 4 and day 12 and stained for f-actin and nuclei.
360 Confocal imaging of these samples revealed high cellularity with spread morphology and stress
361 fibers, consistent with a dense, highly contractile culture (Fig 4B).
362

363

364 **Fig 4. Effect of surface treatment and surface area on collagen adhesion.** (A) Quantification
365 of S-PDMS/collagen adhesion relative to the naïve control for each replicate reveals that samples
366 in PDA molds maintained adherence longer than PEI-GA molds ($n = 4$, $p < 0.05$; paired sample t-
367 test). Mean is indicated by black bars and triangle markers are data points. (B) PDA cultures were
368 fixed at day 4 and day 12 and imaged for f-actin and nuclei. Representative intensity-based
369 maximum projections qualitatively confirm cultures had high cell density at both time points . (C)
370 IMR90s suspended in collagen gels molded by PDA treated S-PDMS or P-PDMS were fixed and
371 stained for f-actin and nuclei at day 11. Representative intensity-based maximum projections
372 demonstrate consistent cellularity regardless of molding method or TGF- β 2 supplementation. (D)
373 Culture survival was defined as the number of days samples lasted prior to loss of PDMS/collagen
374 adhesion. Samples molded by P-PDMS exhibited increased survival, even when cultured in the

375 presence of TGF- β 2. (n = 3, p <0.05; 2-way ANOVA and Tukey's HSD post hoc test). Mean is
376 indicated by black bars and triangle markers are data points.

377

378 **Porous PDMS extends PDMS/collagen adhesion during contractile**
379 **culture**

380 S-PDMS and P-PDMS molds were fabricated and treated with PDA prior to seeding with
381 IMR90s in collagen. To increase culture contraction, samples were cultured without/with ((-)/(+))
382 2 ng/mL TGF- β 2 after day 1 of culture. Samples were fixed and stained against f-actin and nuclei
383 at day 11 of culture to compare cellularity. Samples cultured with TGF- β 2 ((+)) TGF- β 2
384 demonstrated a qualitative increase in stress fiber formation in both S-PDMS and P-PDMS molds
385 (Figs 4C & 4D). There were no qualitative differences in cell density between S-PDMS and P-
386 PDMS samples (-)/(+) TGF- β 2. S-PDMS cultures (-) TGF- β had a mean time to detachment of
387 10.3 ± 4.22 days, the presence of TGF- β 2 reduced that to 6.33 ± 2.05 days. P-PDMS cultures (-)
388 TGF- β 2 showed no indications of contraction or loss of adhesion with the mold; at day 21, all
389 remaining cultures were ended. With TGF- β 2, P-PDMS samples still demonstrated a significant
390 increase in time before detachment when compared to S-PDMS (+) TGF- β 2, 16.7 ± 3.51 days.

391 **Cultures in porous PDMS molds can be maintained through side wall**
392 **diffusion**

393 To assess media diffusion in P-PDMS molds, 13 mm tall by 8 mm diameter PDMS molds
394 were used. Both S-PDMS and P-PDMS wells were filled with cell-laden collagen; the P-PDMS
395 molds had interconnected pores[82–84]. Media was added to the top level of the molds but did not
396 cover the top surface, only diffusion through the mold was possible. On day 5, samples were fixed,

397 stained against nuclei, and cleared as described above. Confocal tiles cans were acquired of the
398 culture base and stitched into a single volume.

399 When compared to S-PDMS samples, P-PDMS samples had higher cell densities and well-formed
400 spheroids, indicating robust cell growth (Fig 5A). To quantify this, nuclear volume fraction was
401 quantified in both S-PDMS and P-PDMS samples (Figs 5B & S3); S-PDMS cultures had a mean
402 nuclear fraction of 0.0045 ± 0.0016 , while P-PDMS cultures had a mean value of 0.0210 ± 0.0049
403 ($p = 0.01$). To assess media depletion, culture media was isolated at day 1 and day 5 of culture to
404 assay glucose levels (fresh media was added at day 0, day 1, day 2, and day 4). Glucose levels in
405 S-PDMS cultures at days 1 and 5 was 64% and 45% of complete DMEM media at 4.5 g/L, while
406 P-PDMS samples were 16% and 25% of complete media, respectively; these results indicate
407 increased glycolysis of the P-PDMS cultures compared to S-PDMS, consistent with increased cell
408 numbers and metabolism (Fig 5C).

409

410 **Figure 5. Side wall diffusion through S-PDMS and P-PDMS molds.** (A) MDCKs suspended in
411 collagen gels molded by PDA treated S-PDMS or P-PDMS were fed through the side walls. After
412 7 days of culture, samples were fixed, stained for nuclei, and imaged from one end of the culture
413 to the opposite end. Shown are intensity-based maximum projections of stitched tiles cans (scalebar
414 = 500 μ M) and insets depict zoomed in regions. P-PDMS samples formed distinct spheroids, while
415 S-PDMS sample nuclei remained sparse and scattered. (B) P-PDMS samples had increased nuclear
416 volume fractions relative to S-PDMS ($n = 4$, $p < 0.01$; paired sample t-test). (C) Spent culture media
417 was isolated from S-PDMS and P-PDMS samples at days 1 and 5. P-PDMS cultures consumed
418 significantly more glucose than S-PDMS cultures ($n = 3$, $p < 0.05$, N-way ANOVA and Tukey's
419 HSD post hoc test). Mean is indicated by black bars and triangle markers are data points.

420

421 **Porous PDMS anchors VBAM cultures**

422 As an additional demonstration of P-PDMS functionality, we fabricated P-PDMS posts to
423 serve as matrix attachment sites for VBAMs (Fig 1C). Briefly, copGFP C2C12s, mCherry
424 HMEC1s, and ASC52telos were suspended in a collagen matrix and seeded around P-PDMS posts
425 inside a S-PDMS chamber at 12.5 million cells/mL total (Fig 1C). Despite its importance to tissue
426 maturation, extended culture of dense skeletal muscle constructs remains a challenge due to the
427 contractile nature of the tissue, causing it to rupture and detach from anchor points [52,58,59]. In
428 this study, 24 VBAMs were cultured for 40 days without detachment, prior to downstream
429 processing (Fig 6A). For a subset ($n = 12$) of this population, we observed maturation of the tissues
430 via confocal live imaging of the endogenous fluorophores at days 2 and 21 of differentiation (Fig
431 6A). Early into the differentiation period, muscle cells can be seen stretching out to form
432 myofibers, although void space and rounded cells remain. By day 21 no rounded cells remain, and
433 myofibers are elongated and more compact. We also observed the formation of microvessel-like
434 structures in fixed VBAMs; these structures were predominated localized to the VBAM surface
435 (Figs 6B & 6C).

436

437 **Fig 6. P-PDMS posts support VBAM culture.** (A) Shown are intensity-based maximum
438 projections of stitched tilescans encompassing ~25% of VBAM culture at days 2, 21, and 40
439 demonstrating stability throughout extended culture. (B) Intensity-based maximum projection of
440 fixed VBAM shows vascular endothelial structures (mCherry) aligning parallel to myofibers
441 (Myosin) (scalebar = 100 μ M). (C) Segmented muscle and endothelial channels were used to

442 generate a 3D volume rendering. This 3D model demonstrates the predominant localization of
443 vascular structures on the surface of the VBAM (0.2 mm x 0.4 mm x 0.5mm).

444

445 **Increased feedings do not improve tissue maturation**

446 We additionally tested the impact of feeding frequency on VBAM morphology and
447 maturation. Maturation was evaluated via immunostaining against terminal differentiation
448 markers, myosin (Figs 7A & 7B) or titin (Figs 7C & 7D). In cultures that were fed MWF we
449 observed elongated myofibers with global alignment between the attachment posts (Figs 7A &
450 7C). Additionally, striations are present, consistent with sarcomere formation and functional
451 maturity [106–108] (Figs 7A & 7C, insets). In contrast, B.I.D cultures have myoblasts appeared
452 that have a more rounded shape with little alignment (Figs 7B & 7D, insets) and no visible
453 striations; this is characteristic of undifferentiated myoblast cells (Figs 7B & 7D, insets).

454 To gain insight into VBAM nuclear alignment, we imaged cleared samples and quantified
455 nuclear angle and nuclear aspect ratio. MWF VBAMs have a mean nuclear angle of $23.49^\circ \pm 3.64^\circ$
456 and B.I.D VBAMs have a mean nuclear angle of $35.93^\circ \pm 2.94^\circ$ (Fig 8E). MWF VBAMs have a
457 mean nuclear aspect ratio of 2.27 ± 0.06 and B.I.D VBAMs have a mean value of 1.37 ± 0.11 ,
458 further indicating MWF VBAMs have improved differentiation (Fig 7F).

459

460 **Fig 7. Effects of feeding frequency on VBAM maturation.** (A & C) After 5 weeks of culture
461 VBAMs were fixed and stained against myosin (B & D) and titin. Intensity-based maximum
462 projections of MWF VBAMs demonstrate highly aligned myofibers and the presence of striations
463 (insets, white arrowhead). B.I.D VBAMs remained myoblast-like and mononucleated without
464 striations (scalebar = 50 μm). (E) Nuclei in MWF VBAMs have increased alignment relative to

465 B.I.D nuclei (n=6, $p = 0.064$; paired sample t-test). (F) Nuclei in MWF VBAMs have an increased
466 aspect ratio relative to B.I.D nuclei (n = 6, $p < 0.01$; paired sample t-test). Mean is indicated by
467 black bars and triangle markers are data points.

468

469 To qualitatively and quantitatively analyze tissue scale fiber alignment, we analyzed PS-
470 OCT data acquired from the uncleared samples. Figs 8A-H shows representative cross-sectional
471 intensity, phase retardation, orientation, and vectorial birefringence images of MWF and B.I.D
472 samples. The intensity images (Figs 8A & 8E) show the overall structure of the sample. From the
473 phase retardation images (Figs 8B & 8F), we observe that the MWF samples have higher phase
474 retardation (4.28 ± 0.47 rad/mm) than the B.I.D samples (1.78 ± 0.12 rad/mm) which demonstrate
475 a statistically significant difference ($p = 0.04$) between the two experimental groups (Fig 8K). The
476 difference in phase retardation agrees with the difference in morphology of the VBAMs observed
477 in the immunostained images (Figs 7A-D). The structural anisotropy arising from the elongated
478 myofibers causes higher phase retardation in the MWF samples. The phase retardation of the MWF
479 samples is higher (>2.8 rad/mm) throughout the length of the samples compared to the B.I.D
480 samples. One interesting characteristic of the MWF samples, is that the phase retardation in the
481 middle of the samples is on average 20% higher compared to the two ends. This suggests that the
482 muscle fibers are more organized and uniformly oriented in the middle as evident from the *en face*
483 phase retardation images (S2B & S2C Figs).

484 The orientation images (Figs 8C & 8G) also exhibit more uniform fiber orientation in the
485 MWF sample ($12.02^\circ \pm 14.44^\circ$) compared to the B.I.D sample ($21.69^\circ \pm 35.37^\circ$). This is also in
486 line with the immunostained images (Figs 7A-D) where we observe well aligned elongated
487 myofibers with striations in the MWF samples compared to rounded myoblasts with little

488 alignment and no striations in the B.I.D samples. The vectorial birefringence images (Figs 8D &
489 8H) combine the phase retardation and the optic axis images using HSV colormap. The cross-
490 sectional vectorial birefringence images were compiled in Amira to generate the 3D vectorial
491 birefringence images (Figs 8I-J). The uniformity in color throughout the volume of the MWF
492 sample demonstrates the presence of more highly organized and uniformly orientated muscle
493 fibers than the B.I.D sample.

494

495 **Figure 8. PS-OCT analysis of the effects of feeding frequency on VBAM maturation.**
496 (A-D) shows representative cross-sectional intensity (in dB), phase retardation (in rad/mm),
497 orientation (in degree) and vectorial birefringence images, respectively, from MWF sample
498 (scalebar = 100 μ m) (E-G) shows the similar cross-sections from B.I.D sample. The MWF samples
499 exhibit higher phase retardation and more uniform orientation compared to the B.I.D samples
500 (scalebar = 100 μ m) . (I-J) shows representative 3D vectorial birefringence images of 4 mm long
501 segment of MWF and B.I.D samples, respectively (scalebar = 500 μ m). The MWF sample has
502 highly organized and uniformly orientated muscle fibers throughout the volume compared to the
503 B.I.D sample. (K) Quantification of the mean phase retardation of the MWF and B.I.D samples
504 statistically improved differentiation ($p = 0.04$) in the MWF samples.

505

506 **Increased feedings do not improve tissue viability**

507 VBAM cellularity was evaluated using DRAQ7 to label cell nuclei in cleared samples.
508 Volumes were acquired with a confocal microscope and transverse projections of nuclei signal
509 were reconstructed in MATLAB (Fig 9A). In MWF tissues cell nuclei are detected throughout the
510 bulk, but there is increased signal at the tissue surface. This indicates that myofibers are

511 preferentially located at the tissue exterior, consistent with cell organization noted in literature
512 [54,109]. We observed 2 morphologies of nuclear organization in the B.I.D tissues. The first of
513 which is that the constructs remained cellular (Fig 9A, B.I.D Morph. #1), but undifferentiated (Figs
514 7B & 8D). More commonly, there was a considerable decrease in nuclei signal (Fig 9A, B.I.D
515 Morph. #2). To better assess the spatial distribution of cells, nuclei signal was segmented, and 3D
516 volume renderings were generated (Figs 9B & S4), further confirming that MWF samples had
517 improved cell organization. We additionally tried an intermediate feeding schedule with daily
518 media changes, no improvement in cellularity over MWF was observed (S5 Fig).

519 To quantify volumetric cellularity, we measured the annular fraction of positively labeled
520 nuclei voxels near the tissue surface (0-15 μm) and deeper into the tissue (15-30 μm , 30-45 μm ,
521 45-60 μm , and 60-75 μm) (Fig 9C). In MWF samples, positive annular nuclear fraction at the
522 tissue surface was significantly higher, with a value of 0.30 ± 0.04 , relative to B.I.D, with a mean
523 value of 0.03 ± 0.02 . This trend continued at 10-20 μm and 20-30 μm deep into the samples, further
524 supporting the observation that more frequent media changes led to decreased tissue cellularity.
525

526 **Figure 9. Effects of feeding frequency on VBAM cellularity.** (A) Representative
527 transverse projections of VBAM nuclei demonstrate nuclei density and organization throughout
528 the VBAM bulk. MWF VBAMs appear to have increased nuclei density relative to B.I.D
529 morphology #1 and B.I.D morphology #2. (B) 3D volume renderings were generated to visualize
530 the spatial organization of VBAM nuclei, further confirming that MWF VBAMs have increased
531 nuclei density (1 mm x 0.5mm x 0.6 mm). (C) Annular nuclear fraction was quantified in
532 increments of $\sim 15 \mu\text{m}$ radiating inward from the VBAM surface. MWF VBAMs have a
533 significantly higher annular nuclear fraction at 0-15 μm ($p < 0.01$), 15- 30 μm ($p < 0.01$), and 30-

534 45 μ m (p < 0.05) than B.I.D VBAMs. Mean is indicated by bold blue and magenta lines with +/-
535 SEM shown. Transparent lines show the mean annular nuclear fraction for individual biological
536 replicates (n = 6, paired sample t-test).

537

538

539 Discussion

540 Improving 3D cell culture models provides researchers with an important tool for when animal
541 models and traditional 2D culture models are inappropriate. For example, animal models provide
542 important systemic context for disease progression and pharmaceutical response, yet high-
543 throughput and detailed molecular studies can be challenging [2,110]. Similarly, 2D cell culture
544 models offer increased simplicity and throughput, but lack critical systemic factors and native
545 tissue characteristics (Soares *et al.*, 2012; Ravi *et al.*, 2015; Costa *et al.*, 2016; Jensen and Teng,
546 2020). Current progress in 3D cell culture models allow for the balancing of increased complexity
547 and physiological relevance with increased control of *in vitro* systems. However, further
548 development of these methods is required to expand applicability to more tissue types and increase
549 researcher access. Key challenges addressed in this study include uncontrolled contraction of the
550 extracellular matrix and mass transfer limitations. Here we introduce a novel culture system for
551 3D models, capable of supporting highly contractile myofibroblast cells using PDA coated P-
552 PDMS and additionally demonstrate the use of P-PDMS molds to increase cell health in thick
553 cultures. We further apply these techniques to skeletal muscle tissue engineering and demonstrate
554 that PDA coated P-PDMS is a suitable matrix anchor for dense VBAM models. Finally, we
555 evaluate the effect of tissue feeding frequency on overall VBAM health and organization.

556 Unconstrained cell-mediated gel contraction is a significant challenge with respect to 3D cell
557 culture and tissue engineering [20]. Collapse of the extracellular matrix typically occurs in an
558 uncontrolled manner, leading to highly variable outputs for the experiment [21]. In the context of
559 skeletal muscle tissue engineering this problem is particularly detrimental, as it can result in tissue
560 rupture, rendering the construct unusable. While researchers can address this problem by varying
561 the culture length, ECM density, and seeding density, these may reduce maturation, physiological
562 relevance, or otherwise limit the possible experimental conditions [32]. To address this, 3D culture
563 molds are frequently surface modified to improve ECM adhesion to the mold interface. For
564 instance, PEI/GA surface treatment is often used to improve adhesion of collagen biomaterials to
565 S-PDMS molds [26], but this linkage still fails when seeding density or matrix stiffness is not
566 optimal [32]. The bioinspired coating PDA has previously been used to anchor thin biomaterial
567 films to S-PDMS but has not previously been shown to anchor 3D collagen-based cell cultures
568 (Chuah *et al.*, 2015; Fu *et al.*, 2016; Jeong *et al.*, 2016; Lee *et al.*, 2018; Harati *et al.*, 2022). Here
569 we demonstrate the novel application of using S-PDMS-PDA to anchor 3D collagen bulks under
570 cell-mediated contractile loading. We evaluated the efficacy of S-PDMS-PEI/GA surface
571 treatments in comparison to S-PDMS-PDA surface treatments and found that PDA coating
572 significantly attenuated cell-mediated gel detachment (Figs 4A & 4B). S-PDMS-PDA is an
573 improved collagen molding method when culturing dense 3D tissue constructs.

574 We further hypothesized that increased surface area of the PDMS molding material would
575 improve collagen adhesion [111,112]. Prior work has shown P-PDMS can be used as a scaffold
576 for 2D cell culture and cell migration studies [113–116]. However, P-PDMS has not previously
577 been shown to be used as a molding material to anchor 3D collagen bulk matrices. To demonstrate
578 this in the context of 3D collagen molding, we fabricated P-PDMS and examined PDA coated S-

579 PDMS and P-PDMS culture molds and maintained IMR90 cultures for up to 21 days before
580 terminating the experiment. P-PDMS molding markedly improved collagen attachment (Figs 4C
581 & 4D). P-PDMS as a mold offers improved collagen attachment for longer duration highly
582 contractile cultures.

583 We were further interested in the impact of P-PDMS on mass transfer in 3D collagen cell
584 culture models. Mass transfer limitations remains a fundamental problem for tissue engineering.
585 Poor diffusion of nutrients and waste products result in cell death deep in cultures and chemotaxis
586 to the more nutrient rich regions of the tissue [60–64]. While bioreactors and tissue perfusion can
587 help resolve this issue, these techniques are not always readily available to non-specialist labs and
588 may not be appropriate for all experiments. Here we describe the novel use of a P-PDMS mold
589 capable of supporting cultures solely via diffusion through the side wall of the mold, keeping the
590 top of the culture at the air-liquid interface (Figs 5 & S3). While still diffusion limited, the easy
591 fabrication of permeable culture molds allows for increasing the scale of a culture or the
592 incorporation of air-liquid interfaces. Potential applications include epithelial and stromal co-
593 cultures where the epithelium is brought to the air-liquid interface, but the culture is too thick to
594 be fed purely through a permeable support (e.g., a cell culture insert).

595 P-PDMS-PDA is also adaptable for 3D skeletal muscle cultures, a challenging *in vitro* model
596 due to the high contractility. As a proof of concept, we showed that P-PDMS-PDA can be used at
597 matrix attachment points for VBAMs, with no evidence of tissue rupture or detachment after 5
598 weeks of culture (Fig 6). In an effort to improve VBAM maturation and cellularity in the absence
599 of tissue perfusion, we evaluated the effect of media change frequency. We initially hypothesized
600 that more frequent feeding of the VBAM tissues would enhance myotube differentiation (Fig 7)
601 and cellular organization (Figs 9 & S4), yet we observed an adverse effect. This lack of maturation

602 with increased feeding volume, while surprising, has been observed before [117]. While the
603 mechanism is unknown, one possibility is the loss of paracrine signals vital to muscle
604 differentiation that accumulate in the culture media; regular removal of those factors too quickly
605 may impair overall VBAM health. Alternatively, the more frequent feeding may mechanically
606 disrupt the cells.

607 Here, we demonstrated P-PDMS-PDA can support VBAM models with promising cellularity
608 and myotube differentiation, however the vascular cells present in the model failed to form
609 extensive microvessel networks when cultured with muscle cells (Fig 6). Instead, microvessel
610 structures were limited to the VBAM surface. This may be due to competition from the densely
611 seeded myoblasts, availability of nutrients, or the increased density of the culture following
612 contraction. Incorporation of perfusion through the VBAM is a promising avenue to resolve
613 nutrient diffusion issues, while providing mechanical signaling that supports microvessel
614 formation [61,118,119].

615 A key advantage of the P-PDMS mold described in this work is the low cost and high
616 accessibility, including the use of commercially available sugar cubes as a sacrificial template.
617 There are drawbacks associated with sugar cube templating, such as fixed pore size based on the
618 diameter of sugar granules, which cannot be readily tuned by the investigator. Should they be
619 required, alternative fabrication strategies are available. P-PDMS can be formed via emulsion
620 templating, phase separation, or use of sacrificial 3D printed templates [57,77,120]. These methods
621 provide more flexibility in mold dimensions and porosity, but generally rely on complex
622 fabrication techniques. Strategies to generate P-PDMS are thoroughly reviewed by Zhu and
623 colleagues [121].

624 Additionally, we provide automated MATLAB algorithms that can be used to volumetrically
625 quantify VBAM nuclei organization, alignment, and morphology in confocal microscopy data (S2
626 & S3 Files). Often, these parameters are quantified manually at pre-defined regions within 3D cell
627 constructs, potentially concealing important spatial information. The described automated image
628 analysis methods improve robustness by allowing for the entire 3D bulk to be analyzed and
629 avoiding potential bias that may arise when manually selecting regions to quantify. Measurement
630 of annular nuclear fraction provides further context into the distribution of cells within the tissue.
631 Importantly, these algorithms can be implemented to assess nuclei organization and morphology
632 in a broad range of engineered tissues.

633 VBAM maturation was further validated with PS-OCT. This imaging modality has previously
634 been used to monitor collagen fiber alignment in engineered tendon constructs [122,123]. In this
635 study, the presence of well aligned elongated myofibers in the MWF samples was evident from
636 the phase retardation and orientation images which conforms with the immunostained images. The
637 3D vectorial birefringence images, which combine the information of the phase retardation and
638 orientation, demonstrated highly organized and uniformly orientated muscle fibers throughout the
639 volume of the MWF samples compared to the B.I.D samples. The quantitative comparison based
640 on the phase retardation also exhibited improved differentiation in the MWF samples. All these
641 results suggest that PS-OCT is a promising imaging modality for studying engineered tissue
642 because it can non-invasively generate multi-modal 3D volumetric images and allow quantitative
643 analysis without the use of any external agent.

644 **Conclusion**

645 We have demonstrated a novel culture molding technique capable of supporting contractile
646 and metabolically active engineered tissues by varying S-PDMS surface functionalization and

647 increasing the surface area with P-PDMS molds. P-PDMS molds functionalized with PDA were
648 shown to be suitable anchors for multiple 3D culture types and durations, including VBAMs.
649 Overall, the fabrication methods described are readily extensible to research groups across a broad
650 range of disciplines working on other contractile or metabolically active tissues such as fibrosis
651 models, smooth muscle, and cardiac muscle.

652

654 **References**

- 655 1. Greek R, Menache A. Systematic Reviews of Animal Models: Methodology versus
656 Epistemology. *Int J Med Sci.* 2013;10: 206–221. doi:10.7150/ijms.5529
- 657 2. Sutherland ML, Fabre KM, Tagle DA. The National Institutes of Health
658 Microphysiological Systems Program focuses on a critical challenge in the drug discovery
659 pipeline. *Stem Cell Research & Therapy.* 2013;4: I1. doi:10.1186/scrt361
- 660 3. Lipsky MS, Sharp LK. From idea to market: the drug approval process. *J Am Board Fam
661 Pract.* 2001;14: 362–367.
- 662 4. Dyson A, Singer M. Animal models of sepsis: why does preclinical efficacy fail to
663 translate to the clinical setting? *Crit Care Med.* 2009;37: S30-37.
664 doi:10.1097/CCM.0b013e3181922bd3
- 665 5. Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, et al. Innovative
666 Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal
667 Testing. *Bioengineering.* 2020;7: 115. doi:10.3390/bioengineering7030115
- 668 6. Bischoff H, Heller AH. Preclinical and clinical pharmacology of cerivastatin. *The
669 American Journal of Cardiology.* 1998;82: 18J-25J. doi:10.1016/S0002-9149(98)00433-0
- 670 7. Bischoff H, Angerbauer R, Boberg M, Petzinna D, Schmidt D, Steinke W, et al.
671 Preclinical review of cerivastatin sodium—a step forward in HMG-CoA reductase
672 inhibition. *Atherosclerosis.* 1998;139: 7–13. doi:10.1016/S0021-9150(98)00188-9
- 673 8. Keutz E von, Schlüter G. Preclinical safety evaluation of cerivastatin, a novel HMG-CoA
674 reductase inhibitor. *The American Journal of Cardiology.* 1998;82: 11J-17J.
675 doi:10.1016/S0002-9149(98)00424-X
- 676 9. Thompson PD, Clarkson PM, Rosenson RS. An Assessment of Statin Safety by Muscle
677 Experts. *The American Journal of Cardiology.* 2006;97: S69–S76.
678 doi:10.1016/j.amjcard.2005.12.013
- 679 10. Gaukler SM, Ruff JS, Galland T, Underwood TK, Kandaris KA, Liu NM, et al.
680 Quantification of cerivastatin toxicity supports organismal performance assays as an
681 effective tool during pharmaceutical safety assessment. *Evolutionary Applications.*
682 2016;9: 685–696. doi:10.1111/eva.12365
- 683 11. Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug
684 discovery. *Drug Discovery Today.* 2013;18: 240–249. doi:10.1016/j.drudis.2012.10.003

685 12. Kapałczyńska M, Kolenda T, Przybyła W, Zajęczkowska M, Teresiak A, Filas V, et al. 2D
686 and 3D cell cultures - a comparison of different types of cancer cell cultures. *Arch Med*
687 *Sci.* 2018;14: 910–919. doi:10.5114/aoms.2016.63743

688 13. Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and
689 Drug Repositioning. *Frontiers in Pharmacology*. 2018;9. Available:
690 <https://www.frontiersin.org/articles/10.3389/fphar.2018.00006>

691 14. Jensen C, Teng Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? *Frontiers*
692 in Molecular Biosciences. 2020;7. Available:
693 <https://www.frontiersin.org/articles/10.3389/fmolb.2020.00033>

694 15. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, et al.
695 Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer.
696 *Oncology Reports*. 2015;33: 1837–1843. doi:10.3892/or.2015.3767

697 16. Soares CP, Midlej V, Oliveira MEW de, Benchimol M, Costa ML, Mermelstein C. 2D and
698 3D-Organized Cardiac Cells Shows Differences in Cellular Morphology, Adhesion
699 Junctions, Presence of Myofibrils and Protein Expression. *PLOS ONE*. 2012;7: e38147.
700 doi:10.1371/journal.pone.0038147

701 17. Ravi M, Paramesh V, Kaviya S r., Anuradha E, Solomon FDP. 3D Cell Culture Systems:
702 Advantages and Applications. *Journal of Cellular Physiology*. 2015;230: 16–26.
703 doi:10.1002/jcp.24683

704 18. Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ. 3D
705 tumor spheroids: an overview on the tools and techniques used for their analysis.
706 *Biotechnology Advances*. 2016;34: 1427–1441. doi:10.1016/j.biotechadv.2016.11.002

707 19. Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new
708 models of aging. *J Cell Biol*. 2018;217: 39–50. doi:10.1083/jcb.201709054

709 20. Kosnik PE, Faulkner JA, Dennis RG. Functional Development of Engineered Skeletal
710 Muscle from Adult and Neonatal Rats. *Tissue Engineering*. 2001;7: 573–584.
711 doi:10.1089/107632701753213192

712 21. Machour M, Hen N, Goldfracht I, Safina D, Davidovich-Pinhas M, Bianco-Peled H, et al.
713 Print-and-Grow within a Novel Support Material for 3D Bioprinting and Post-Printing
714 Tissue Growth. *Advanced Science*. 2022;n/a: 2200882. doi:10.1002/advs.202200882

715 22. Ahearne M. Introduction to cell–hydrogel mechanosensing. *Interface Focus*. 2014;4:
716 20130038. doi:10.1098/rsfs.2013.0038

717 23. Gillette BM, Jensen JA, Tang B, Yang GJ, Bazargan-Lari A, Zhong M, et al. In situ
718 collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices.
719 *Nature Mater*. 2008;7: 636–640. doi:10.1038/nmat2203

720 24. Brown XQ, Ookawa K, Wong JY. Evaluation of polydimethylsiloxane scaffolds with
721 physiologically-relevant elastic moduli: interplay of substrate mechanics and surface
722 chemistry effects on vascular smooth muscle cell response. *Biomaterials*. 2005;26: 3123–
723 3129. doi:10.1016/j.biomaterials.2004.08.009

724 25. Chuah YJ, Koh YT, Lim K, Menon NV, Wu Y, Kang Y. Simple surface engineering of
725 polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion
726 and multipotency. *Sci Rep*. 2015;5: 18162. doi:10.1038/srep18162

727 26. Cross VL, Zheng Y, Won Choi N, Verbridge SS, Sutermaster BA, Bonassar LJ, et al.
728 Dense type I collagen matrices that support cellular remodeling and microfabrication for
729 studies of tumor angiogenesis and vasculogenesis in vitro. *Biomaterials*. 2010;31: 8596–
730 8607. doi:10.1016/j.biomaterials.2010.07.072

731 27. Beauchamp RO, St Clair MBG, Fennell TR, Clarke DO, Morgan KT, Karl FW. A Critical
732 Review of the Toxicology of Glutaraldehyde. *Critical Reviews in Toxicology*. 1992;22:
733 143–174. doi:10.3109/10408449209145322

734 28. Rideout K, Teschke K, Dimich-Ward H, Kennedy SM. Considering risks to healthcare
735 workers from glutaraldehyde alternatives in high-level disinfection. *Journal of Hospital
736 Infection*. 2005;59: 4–11. doi:10.1016/j.jhin.2004.07.003

737 29. Zeiger E, Gollapudi B, Spencer P. Genetic toxicity and carcinogenicity studies of
738 glutaraldehyde—a review. *Mutation Research/Reviews in Mutation Research*. 2005;589:
739 136–151. doi:10.1016/j.mrrev.2005.01.001

740 30. Leung H-W. Ecotoxicology of Glutaraldehyde: Review of Environmental Fate and Effects
741 Studies. *Ecotoxicology and Environmental Safety*. 2001;49: 26–39.
742 doi:10.1006/eesa.2000.2031

743 31. Jolibois B, Guerbet M, Vassal S. Glutaraldehyde in Hospital Wastewater. *Arch Environ
744 Contam Toxicol*. 2002;42: 137–144. doi:10.1007/s00244-001-0011-8

745 32. Morgan JT, Shirazi J, Comber EM, Eschenburg C, Gleghorn JP. Fabrication of
746 centimeter-scale and geometrically arbitrary vascular networks using in vitro self-
747 assembly. *Biomaterials*. 2019;189: 37–47. doi:10.1016/j.biomaterials.2018.10.021

748 33. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-Inspired Surface Chemistry
749 for Multifunctional Coatings. *Science*. 2007;318: 426–430. doi:10.1126/science.1147241

750 34. Fu J, Quek KY, Chuah YJ, Lim CS, Fan C, Wang D. The effects of gelatin–dopamine
751 coating on polydimethylsiloxane substrates on pluripotency maintenance and myocardial
752 differentiation of cultured mouse embryonic stem cells. *Journal of Materials Chemistry B*.
753 2016;4: 7961–7973. doi:10.1039/C6TB02631A

754 35. Jeong S-Y, Lee J-H, Shin Y, Chung S, Kuh H-J. Co-Culture of Tumor Spheroids and
755 Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal

756 Activation in Solid Tumor Microenvironment. PLOS ONE. 2016;11: e0159013.
757 doi:10.1371/journal.pone.0159013

758 36. Lee J-H, Kim S-K, Khawar IA, Jeong S-Y, Chung S, Kuh H-J. Microfluidic co-culture of
759 pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation
760 of stroma-mediated cell motility and drug resistance. Journal of Experimental & Clinical
761 Cancer Research. 2018;37: 4. doi:10.1186/s13046-017-0654-6

762 37. Harati J, Tao X, Shahsavarani H, Du P, Galluzzi M, Liu K, et al. Polydopamine-Mediated
763 Protein Adsorption Alters the Epigenetic Status and Differentiation of Primary Human
764 Adipose-Derived Stem Cells (hASCs). Front Bioeng Biotechnol. 2022;10: 934179.
765 doi:10.3389/fbioe.2022.934179

766 38. Prasad BR, Brook MA, Smith T, Zhao S, Chen Y, Sheardown H, et al. Controlling cellular
767 activity by manipulating silicone surface roughness. Colloids and Surfaces B:
768 Biointerfaces. 2010;78: 237–242. doi:10.1016/j.colsurfb.2010.03.006

769 39. Juárez-Moreno JA, Ávila-Ortega A, Oliva AI, Avilés F, Cauich-Rodríguez JV. Effect of
770 wettability and surface roughness on the adhesion properties of collagen on PDMS films
771 treated by capacitively coupled oxygen plasma. Applied Surface Science. 2015;349: 763–
772 773. doi:10.1016/j.apsusc.2015.05.063

773 40. Hwang Y, Seo D, Roy M, Han E, Candler RN, Seo S. Capillary Flow in PDMS
774 Cylindrical Microfluidic Channel Using 3-D Printed Mold. Journal of
775 Microelectromechanical Systems. 2016;25: 238–240. doi:10.1109/JMEMS.2016.2521858

776 41. Jang Y, Lee M, Kim H, Cha C, Jung J, Oh J. Comprehensive tuning of bioadhesive
777 properties of polydimethylsiloxane (PDMS) membranes with controlled porosity.
778 Biofabrication. 2019;11: 035021. doi:10.1088/1758-5090/ab1da9

779 42. Pedraza E, Brady A-C, Fraker CA, Molano RD, Sukert S, Berman DM, et al.
780 Macroporous Three-Dimensional PDMS Scaffolds for Extrahepatic Islet Transplantation.
781 Cell Transplant. 2013;22: 1123–1135. doi:10.3727/096368912X657440

782 43. Riesco R, Boyer L, Blosse S, Lefebvre PM, Assemat P, Leichle T, et al. Water-in-PDMS
783 Emulsion Templating of Highly Interconnected Porous Architectures for 3D Cell Culture.
784 ACS Appl Mater Interfaces. 2019;11: 28631–28640. doi:10.1021/acsami.9b07564

785 44. Varshney N, Sahi AK, Vajanthri KY, Poddar S, Balavigneswaran CK, Prabhakar A, et al.
786 Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS
787 scaffolds: towards skin dressing material. Cytotechnology. 2019;71: 287–303.
788 doi:10.1007/s10616-018-0285-6

789 45. Vandenburg HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured
790 avian skeletal myotubes in collagen gel. In Vitro Cellular & Developmental Biology.
791 1988;24: 166–174. doi:10.1007/BF02623542

792 46. Vandenburg H, Shansky J, Benesch- Lee F, Barbata V, Reid J, Thorrez L, et al. Drug-
793 screening platform based on the contractility of tissue-engineered muscle. *Muscle &*
794 *Nerve*. 2008;37: 438–447. doi:10.1002/mus.20931

795 47. Bian W, Bursac N. Engineered skeletal muscle tissue networks with controllable
796 architecture. *Biomaterials*. 2009;30: 1401–1412. doi:10.1016/j.biomaterials.2008.11.015

797 48. Iuliano A, van der Wal E, Ruijtmeeck CWB, in 't Groen SLM, Pijnappel WWMP, de
798 Greef JC, et al. Coupling 3D Printing and Novel Replica Molding for In House
799 Fabrication of Skeletal Muscle Tissue Engineering Devices. *Advanced Materials*
800 Technologies. 2020;5: 2000344. doi:10.1002/admt.202000344

801 49. Capel AJ, Rimington RP, Fleming JW, Player DJ, Baker LA, Turner MC, et al. Scalable
802 3D Printed Molds for Human Tissue Engineered Skeletal Muscle. *Front Bioeng*
803 *Biotechnol*. 2019;7. doi:10.3389/fbioe.2019.00020

804 50. Christensen RK, von Halling Laier C, Kiziltay A, Wilson S, Larsen NB. 3D Printed
805 Hydrogel Multiassay Platforms for Robust Generation of Engineered Contractile Tissues.
806 *Biomacromolecules*. 2020;21: 356–365. doi:10.1021/acs.biomac.9b01274

807 51. Mudera V, Smith A s. t., Brady M a., Lewis M p. The effect of cell density on the
808 maturation and contractile ability of muscle derived cells in a 3D tissue-engineered
809 skeletal muscle model and determination of the cellular and mechanical stimuli required
810 for the synthesis of a postural phenotype. *Journal of Cellular Physiology*. 2010;225: 646–
811 653. doi:10.1002/jcp.22271

812 52. Wragg NM, Player DJ, Martin NRW, Liu Y, Lewis MP. Development of tissue-
813 engineered skeletal muscle manufacturing variables. *Biotechnology and Bioengineering*.
814 2019;116: 2364–2376. doi:10.1002/bit.27074

815 53. Gefen A, Cornelissen LH, Gawlitza D, Bader DL, Oomens CWJ. The free diffusion of
816 macromolecules in tissue-engineered skeletal muscle subjected to large compression
817 strains. *Journal of Biomechanics*. 2008;41: 845–853. doi:10.1016/j.jbiomech.2007.10.023

818 54. Hinds S, Bian W, Dennis RG, Bursac N. The Role of Extracellular Matrix Composition in
819 Structure and Function of Bioengineered Skeletal Muscle. *Biomaterials*. 2011;32: 3575–
820 3583. doi:10.1016/j.biomaterials.2011.01.062

821 55. van der Schaft DWJ, van Spreeuwel ACC, Boonen KJM, Langelaan MLP, Bouter CVC,
822 Baaijens FPT. Engineering Skeletal Muscle Tissues from Murine Myoblast Progenitor
823 Cells and Application of Electrical Stimulation. *J Vis Exp*. 2013; 4267. doi:10.3791/4267

824 56. Dennis RG, Kosnik PE. Excitability and isometric contractile properties of mammalian
825 skeletal muscle constructs engineered in vitro. In *Vi^o Cell Dev Biol-Animal*. 2000;36:
826 327–335. doi:10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2

827 57. Huang Y-C, Dennis RG, Larkin L, Baar K. Rapid formation of functional muscle in vitro
828 using fibrin gels. *Journal of Applied Physiology*. 2005;98: 706–713.
829 doi:10.1152/japplphysiol.00273.2004

830 58. Smith AST, Passey S, Greensmith L, Mudera V, Lewis MP. Characterization and
831 optimization of a simple, repeatable system for the long term in vitro culture of aligned
832 myotubes in 3D. *Journal of Cellular Biochemistry*. 2012;113: 1044–1053.
833 doi:10.1002/jcb.23437

834 59. Alave Reyes-Furrer A, De Andrade S, Bachmann D, Jeker H, Steinmann M, Accart N, et
835 al. Matrikel 3D bioprinting of contractile human skeletal muscle models recapitulating
836 exercise and pharmacological responses. *Commun Biol*. 2021;4: 1–12.
837 doi:10.1038/s42003-021-02691-0

838 60. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. *Nature
839 Reviews Molecular Cell Biology*. 2006;7: 211–224. doi:10.1038/nrm1858

840 61. Zohar B, Blinder Y, Mooney DJ, Levenberg S. Flow-Induced Vascular Network
841 Formation and Maturation in Three-Dimensional Engineered Tissue. *ACS Biomater Sci
842 Eng*. 2018;4: 1265–1271. doi:10.1021/acsbiomaterials.7b00025

843 62. Buchwald P. FEM-based oxygen consumption and cell viability models for avascular
844 pancreatic islets. *Theoretical Biology and Medical Modelling*. 2009;6: 5.
845 doi:10.1186/1742-4682-6-5

846 63. Enrico A, Voulgaris D, Östmans R, Sundaravadivel N, Moutaux L, Cordier A, et al. 3D
847 Microvascularized Tissue Models by Laser-Based Cavitation Molding of Collagen.
848 *Advanced Materials*. 2022;34: 2109823. doi:10.1002/adma.202109823

849 64. Karande TS, Ong JL, Agrawal CM. Diffusion in Musculoskeletal Tissue Engineering
850 Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient
851 Mixing. *Ann Biomed Eng*. 2004;32: 1728–1743. doi:10.1007/s10439-004-7825-2

852 65. van der Valk J, Brunner D, De Smet K, Fex Svenningsen Å, Honegger P, Knudsen LE, et
853 al. Optimization of chemically defined cell culture media – Replacing fetal bovine serum
854 in mammalian in vitro methods. *Toxicology in Vitro*. 2010;24: 1053–1063.
855 doi:10.1016/j.tiv.2010.03.016

856 66. Quiroga-Campano AL, Panoskaltsis N, Mantalaris A. Energy-based culture medium
857 design for biomanufacturing optimization: A case study in monoclonal antibody
858 production by GS-NS0 cells. *Metabolic Engineering*. 2018;47: 21–30.
859 doi:10.1016/j.ymben.2018.02.013

860 67. Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, et
861 al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow
862 stromal osteoblasts in a dose-dependent manner. *Proc Natl Acad Sci USA*. 2002;99:
863 12600–12605. doi:10.1073/pnas.202296599

864 68. Sikavitsas VI, Bancroft GN, Lemoine JJ, Liebschner MAK, Dauner M, Mikos AG. Flow
865 Perfusion Enhances the Calcified Matrix Deposition of Marrow Stromal Cells in
866 Biodegradable Nonwoven Fiber Mesh Scaffolds. *Ann Biomed Eng.* 2005;33: 63–70.
867 doi:10.1007/s10439-005-8963-x

868 69. Grayson WL, Bhumiratana S, Cannizzaro C, Chao P-HG, Lennon DP, Caplan AI, et al.
869 Effects of Initial Seeding Density and Fluid Perfusion Rate on Formation of Tissue-
870 Engineered Bone. *Tissue Engineering Part A.* 2008;14: 1809–1820.
871 doi:10.1089/ten.tea.2007.0255

872 70. Pazzano D, Mercier KA, Moran JM, Fong SS, DiBiasio DD, Rulfs JX, et al. Comparison
873 of Chondrogenesis in Static and Perfused Bioreactor Culture. *Biotechnol Prog.* 2000;16:
874 893–896. doi:10.1021/bp000082v

875 71. Davisson T, Sah RL, Ratcliffe A. Perfusion Increases Cell Content and Matrix Synthesis
876 in Chondrocyte Three-Dimensional Cultures. *Tissue Engineering.* 2002;8: 807–816.
877 doi:10.1089/10763270260424169

878 72. Vollert I, Seiffert M, Bachmair J, Sander M, Eder A, Conradi L, et al. In Vitro Perfusion
879 of Engineered Heart Tissue Through Endothelialized Channels. *Tissue Engineering Part*
880 *A.* 2013;20: 854–863. doi:10.1089/ten.tea.2013.0214

881 73. Kim H, Osaki T, Kamm RD, Asada HH. Multiscale engineered human skeletal muscles
882 with perfusable vasculature and microvascular network recapitulating the fluid
883 compartments. *Biofabrication.* 2022;15: 015005. doi:10.1088/1758-5090/ac93d

884 74. Martin I, Wendt D, Heberer M. The role of bioreactors in tissue engineering. *Trends in*
885 *Biotechnology.* 2004;22: 80–86. doi:10.1016/j.tibtech.2003.12.001

886 75. Li Z, Cui Z. Three-dimensional perfused cell culture. *Biotechnology Advances.* 2014;32:
887 243–254. doi:10.1016/j.biotechadv.2013.10.006

888 76. Gelinsky M, Bernhardt A, Milan F. Bioreactors in tissue engineering: Advances in stem
889 cell culture and three-dimensional tissue constructs. *Engineering in Life Sciences.*
890 2015;15: 670–677. doi:10.1002/elsc.201400216

891 77. Thurgood P, Baratchi S, Szydzik C, Mitchell A, Khoshmanesh K. Porous PDMS
892 structures for the storage and release of aqueous solutions into fluidic environments. *Lab*
893 *on a Chip.* 2017;17: 2517–2527. doi:10.1039/C7LC00350A

894 78. Yu C, Yu C, Cui L, Song Z, Zhao X, Ma Y, et al. Facile Preparation of the Porous PDMS
895 Oil-Absorbent for Oil/Water Separation. *Advanced Materials Interfaces.* 2017;4: 1600862.
896 doi:10.1002/admi.201600862

897 79. Zhang L, Zhang Y, Chen P, Du W, Feng X, Liu B-F. Paraffin Oil Based Soft-Template
898 Approach to Fabricate Reusable Porous PDMS Sponge for Effective Oil/Water
899 Separation. *Langmuir.* 2019;35: 11123–11131. doi:10.1021/acs.langmuir.9b01861

900 80. Rajan N, Habermehl J, Coté M-F, Doillon CJ, Mantovani D. Preparation of ready-to-use,
901 storable and reconstituted type I collagen from rat tail tendon for tissue engineering
902 applications. *Nat Protoc.* 2006;1: 2753–2758. doi:10.1038/nprot.2006.430

903 81. García-Gareta E. Collagen gels and the “Bornstein legacy”: from a substrate for tissue
904 culture to cell culture systems and biomaterials for tissue regeneration. *Exp Dermatol.*
905 2014;23: 473–474. doi:10.1111/exd.12404

906 82. Ren X, Lu H, Zhou JG, Chong PL-G, Yuan W, Noh M. Porous Polydimethylsiloxane as a
907 Gas–Liquid Interface for Microfluidic Applications. *Journal of Microelectromechanical
908 Systems.* 2017;26: 120–126. doi:10.1109/JMEMS.2016.2618395

909 83. González-Rivera J, Iglio R, Barillaro G, Duce C, Tinè MR. Structural and
910 Thermoanalytical Characterization of 3D Porous PDMS Foam Materials: The Effect of
911 Impurities Derived from a Sugar Templatting Process. *Polymers.* 2018;10: 616.
912 doi:10.3390/polym10060616

913 84. Li Q, Duan T, Shao J, Yu H. Fabrication method for structured porous
914 polydimethylsiloxane (PDMS). *J Mater Sci.* 2018;53: 11873–11882. doi:10.1007/s10853-
915 018-2396-z

916 85. Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio–temporal VEGF and PDGF Delivery
917 Patterns Blood Vessel Formation and Maturation. *Pharm Res.* 2007;24: 258–264.
918 doi:10.1007/s11095-006-9173-4

919 86. Han F, Jia X, Dai D, Yang X, Zhao J, Zhao Y, et al. Performance of a multilayered small-
920 diameter vascular scaffold dual-loaded with VEGF and PDGF. *Biomaterials.* 2013;34:
921 7302–7313. doi:10.1016/j.biomaterials.2013.06.006

922 87. Dent JA, Polson AG, Klymkowsky MW. A whole-mount immunocytochemical analysis
923 of the expression of the intermediate filament protein vimentin in *Xenopus*. *Development.*
924 1989;105: 61–74. doi:10.1242/dev.105.1.61

925 88. Ahnfelt-Rønne J, Jørgensen MC, Hald J, Madsen OD, Serup P, Hecksher-Sørensen J. An
926 Improved Method for Three-dimensional Reconstruction of Protein Expression Patterns in
927 Intact Mouse and Chicken Embryos and Organs. *J Histochem Cytochem.* 2007;55: 925–
928 930. doi:10.1369/jhc.7A7226.2007

929 89. Sanchez MM, Morgan JT. Generation of Self-assembled Vascularized Human Skin
930 Equivalents. *JoVE.* 2021; e62125. doi:10.3791/62125

931 90. Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic
932 image acquisitions. *Bioinformatics.* 2009;25: 1463–1465.
933 doi:10.1093/bioinformatics/btp184

934 91. Van Uitert R, Bitter I. Subvoxel precise skeletons of volumetric data based on fast
935 marching methods. *Medical Physics.* 2007;34: 627–638. doi:10.1118/1.2409238

936 92. Shirazi J, Morgan JT, Comber EM, Gleghorn JP. Generation and morphological
937 quantification of large scale, three-dimensional, self-assembled vascular networks.
938 MethodsX. 2019;6: 1907–1918. doi:10.1016/j.mex.2019.08.006

939 93. Wang Y, Oh CM, Oliveira MC, Islam MS, Ortega A, Park BH. GPU accelerated real-time
940 multi-functional spectral-domain optical coherence tomography system at 1300nm. Opt
941 Express, OE. 2012;20: 14797–14813. doi:10.1364/OE.20.014797

942 94. Mitsui T. Dynamic Range of Optical Reflectometry with Spectral Interferometry. Jpn J
943 Appl Phys. 1999;38: 6133. doi:10.1143/JJAP.38.6133

944 95. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human
945 retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002;7:
946 457. doi:10.1117/1.1482379

947 96. Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier
948 domain optical coherence tomography. Opt Express. 2003;11: 2183.
949 doi:10.1364/OE.11.002183

950 97. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-
951 noise ratio in spectral-domain compared with time-domain optical coherence tomography.
952 Opt Lett. 2003;28: 2067. doi:10.1364/OL.28.002067

953 98. Nassif N, Cense B, Hyle Park B, Yun SH, Chen TC, Bouma BE, et al. In vivo human
954 retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt
955 Lett. 2004;29: 480. doi:10.1364/OL.29.000480

956 99. Haskell RC, Carlson FD, Blank PS. Form birefringence of muscle. Biophysical Journal.
957 1989;56: 401–413. doi:10.1016/S0006-3495(89)82686-4

958 100. Hee MR, Huang D, Swanson EA, Fujimoto JG. Polarization-sensitive low-coherence
959 reflectometer for birefringence characterization and ranging. J Opt Soc Am B, JOSAB.
960 1992;9: 903–908. doi:10.1364/JOSAB.9.000903

961 101. de Boer JF, Milner TE, Van Gemert MJC, Nelson JS. Two-dimensional birefringence
962 imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt
963 Lett. 1997;22: 934. doi:10.1364/OL.22.000934

964 102. Park BH, Saxter C, Srinivas SM, Nelson JS, de Boer JF. In vivo burn depth determination
965 by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed
966 Opt. 2001;6: 474. doi:10.1117/1.1413208

967 103. Park BH, Pierce MC, Cense B, de Boer JF. Optic axis determination accuracy for fiber-
968 based polarization-sensitive optical coherence tomography. Opt Lett. 2005;30: 2587.
969 doi:10.1364/OL.30.002587

970 104. Villiger M, Zhang EZ, Nadkarni SK, Oh W-Y, Vakoc BJ, Bouma BE. Spectral binning for
971 mitigation of polarization mode dispersion artifacts in catheter-based optical frequency
972 domain imaging. *Opt Express*. 2013;21: 16353. doi:10.1364/OE.21.016353

973 105. Nam AS, Easow JM, Chico-Calero I, Villiger M, Welt J, Borschel GH, et al. Wide-Field
974 Functional Microscopy of Peripheral Nerve Injury and Regeneration. *Sci Rep*. 2018;8:
975 14004. doi:10.1038/s41598-018-32346-w

976 106. Selman Sakar M, Neal D, Boudou T, A. Borochin M, Li Y, Weiss R, et al. Formation and
977 optogenetic control of engineered 3D skeletal muscle bioactuators. *Lab on a Chip*.
978 2012;12: 4976–4985. doi:10.1039/C2LC40338B

979 107. Duffy RM, Feinberg AW. Engineered skeletal muscle tissue for soft robotics: fabrication
980 strategies, current applications, and future challenges. *Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology*. 2014;6: 178–195. doi:10.1002/wnan.1254

982 108. Mueller C, Trujillo-Miranda M, Maier M, Heath DE, O'Connor AJ, Salehi S. Effects of
983 External Stimulators on Engineered Skeletal Muscle Tissue Maturation. *Advanced
984 Materials Interfaces*. 2021;8: 2001167. doi:10.1002/admi.202001167

985 109. Ariyasinghe NR, Santoso JW, Gupta D, Pincus MJ, August PR, McCain ML. Optical
986 Clearing of Skeletal Muscle Bundles Engineered in 3-D Printed Templates. *Ann Biomed
987 Eng*. 2021;49: 523–535. doi:10.1007/s10439-020-02583-0

988 110. Brancato V, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Could 3D models of cancer
989 enhance drug screening? *Biomaterials*. 2020;232: 119744.
990 doi:10.1016/j.biomaterials.2019.119744

991 111. King MG, Baragwanath AJ, Rosamond MC, Wood D, Gallant AJ. Porous PDMS force
992 sensitive resistors. *Procedia Chemistry*. 2009;1: 568–571.
993 doi:10.1016/j.proche.2009.07.142

994 112. Park E, Hur J. Three-dimensionally interconnected porous PDMS decorated with
995 poly(dopamine) and Prussian blue for floatable, flexible, and recyclable photo-Fenton
996 catalyst activated by solar light. *Applied Surface Science*. 2021;545: 148990.
997 doi:10.1016/j.apsusc.2021.148990

998 113. Díaz Lantada A, Alarcón Iniesta H, Pareja Sánchez B, García-Ruiz JP. Free-Form Rapid
999 Prototyped Porous PDMS Scaffolds Incorporating Growth Factors Promote
1000 Chondrogenesis. *Advances in Materials Science and Engineering*. 2014;2014: e612976.
1001 doi:10.1155/2014/612976

1002 114. Si J, Cui Z, Xie P, Song L, Wang Q, Liu Q, et al. Characterization of 3D elastic porous
1003 polydimethylsiloxane (PDMS) cell scaffolds fabricated by VARTM and particle leaching.
1004 *Journal of Applied Polymer Science*. 2016;133. doi:10.1002/app.42909

1005 115. Zargar R, Nourmohammadi J, Amoabediny G. Preparation, characterization, and
1006 silanization of 3D microporous PDMS structure with properly sized pores for endothelial

1007 cell culture. *Biotechnology and Applied Biochemistry*. 2016;63: 190–199.
1008 doi:10.1002/bab.1371

1009 116. Quirós-Solano WF, Gaio N, Stassen OMJA, Arik YB, Silvestri C, Van Engeland NCA, et
1010 al. Microfabricated tuneable and transferable porous PDMS membranes for Organs-on-
1011 Chips. *Sci Rep.* 2018;8: 13524. doi:10.1038/s41598-018-31912-6

1012 117. Cooper ST, Maxwell AL, Kizana E, Ghoddusi M, Hardeman EC, Alexander IE, et al.
1013 C2C12 Co-culture on a fibroblast substratum enables sustained survival of contractile,
1014 highly differentiated myotubes with peripheral nuclei and adult fast myosin expression.
1015 *Cell Motility*. 2004;58: 200–211. doi:10.1002/cm.20010

1016 118. Galie PA, Nguyen D-HT, Choi CK, Cohen DM, Janmey PA, Chen CS. Fluid shear stress
1017 threshold regulates angiogenic sprouting. *Proceedings of the National Academy of
1018 Sciences*. 2014;111: 7968–7973. doi:10.1073/pnas.1310842111

1019 119. Kinstlinger IS, Calderon GA, Royse MK, Means AK, Grigoryan B, Miller JS. Perfusion
1020 and endothelialization of engineered tissues with patterned vascular networks. *Nat Protoc.*
1021 2021; 1–25. doi:10.1038/s41596-021-00533-1

1022 120. Montazerian H, Mohamed MGA, Mohaghegh Montazeri M, Kheiri S, Milani AS, Kim K,
1023 et al. Permeability and mechanical properties of gradient porous PDMS scaffolds
1024 fabricated by 3D-printed sacrificial templates designed with minimal surfaces. *Acta
1025 Biomaterialia*. 2019 [cited 1 Jul 2019]. doi:10.1016/j.actbio.2019.06.040

1026 121. Zhu D, Handschuh-Wang S, Zhou X. Recent progress in fabrication and application of
1027 polydimethylsiloxane sponges. *Journal of Materials Chemistry A*. 2017;5: 16467–16497.
1028 doi:10.1039/C7TA04577H

1029 122. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre
1030 alignment in tissue-engineered tendon by PS-OCT. *Journal of Tissue Engineering and
1031 Regenerative Medicine*. 2008;2: 521–524. doi:10.1002/term.124

1032 123. Yang Y, Ahearne M, Wimpenny I, Guijarro-Leach J, Torbet J. Investigation of a tissue
1033 engineered tendon model by PS-OCT. In: Kirkpatrick SJ, Wang R, editors. San Francisco,
1034 California; 2010. p. 75660A. doi:10.1117/12.842302

1035

1036 **Supporting information**

1037 **S1 Table. Media formulations.** Composition of media blends that are used for cell culture.

1038 **S2 Table. Antibody staining reagents.** A summary of primary and secondary antibodies used for
1039 3D cell culture staining.

1040 **S1 File. Supplementary materials and methods.** Extended experimental procedures.

1041 **S2 File. MATLAB code for VBAM annular nuclear fraction quantification and nuclear
1042 aspect ratio.**

1043

1044 **S3 File. MATLAB code for VBAM nuclear alignment.**

1045

1046 **S1 Fig. VBAM differentiation media supports vascular network formation in EC/ASC co-
1047 culture.** ECs and ASCs were cultured in VBAM differentiation media with VEGF (weeks 0-2)
1048 or PDGF-BB (weeks 2-4) before being fixed and stained against collagen IV (EC basement
1049 membrane marker). Shown is a depth-coded projection of a stitched tilescan demonstrating
1050 vascular networks have assembled and are present through the culture bulk (scalebar = 250 μ m).
1051

1052 **S2 Fig. (A) The average phase retardation as a function of sample length for the MWF and
1053 B.I.D samples.** The whole length of the B.I.D2 sample could not be obtained because of the pins
1054 used to fix the samples during imaging. (B-C) Representative en face phase retardation images
1055 (in rad/mm) taken from the middle of the MWF1 and BID1, respectively (scalebar = 1 mm). The
1056 MWF samples have higher phase retardation throughout the length of the samples compared to
1057 the B.I.D samples.
1058

1059 **S3 Fig. 3D renderings of segmented nuclei of S-PDMS and P-PDMS cultures maintained
1060 via side wall diffusion.** Stitched tilescans were rendered in 3D to visualize spatial distribution of
1061 nuclei. Density of P-PDMS nuclei appears increased with evidence of dense aggregate formation
1062 relative to S-PDMS.
1063

1064 **S4 Fig. 3D renderings of segmented nuclei in stitched tilescans of MWF and B.I.D Morph
1065 #1 (3 mm x 1 mm x 0.6 mm).** Nuclei density is increased with consistent organization globally
1066 in MWF VBAMs.
1067

1068 **S5 Fig. Effects of daily feeding on VBAM cellularity.** (A) Representative transverse projection
1069 of VBAM nuclei after 5 weeks of daily media changes show similar nuclei density to MWF
1070 samples. (B) 3D rendering of segmented nuclei of daily fed VBAM indicate similar spatial
1071 organization of the nuclei to MWF samples.
1072

1073

Figure 1

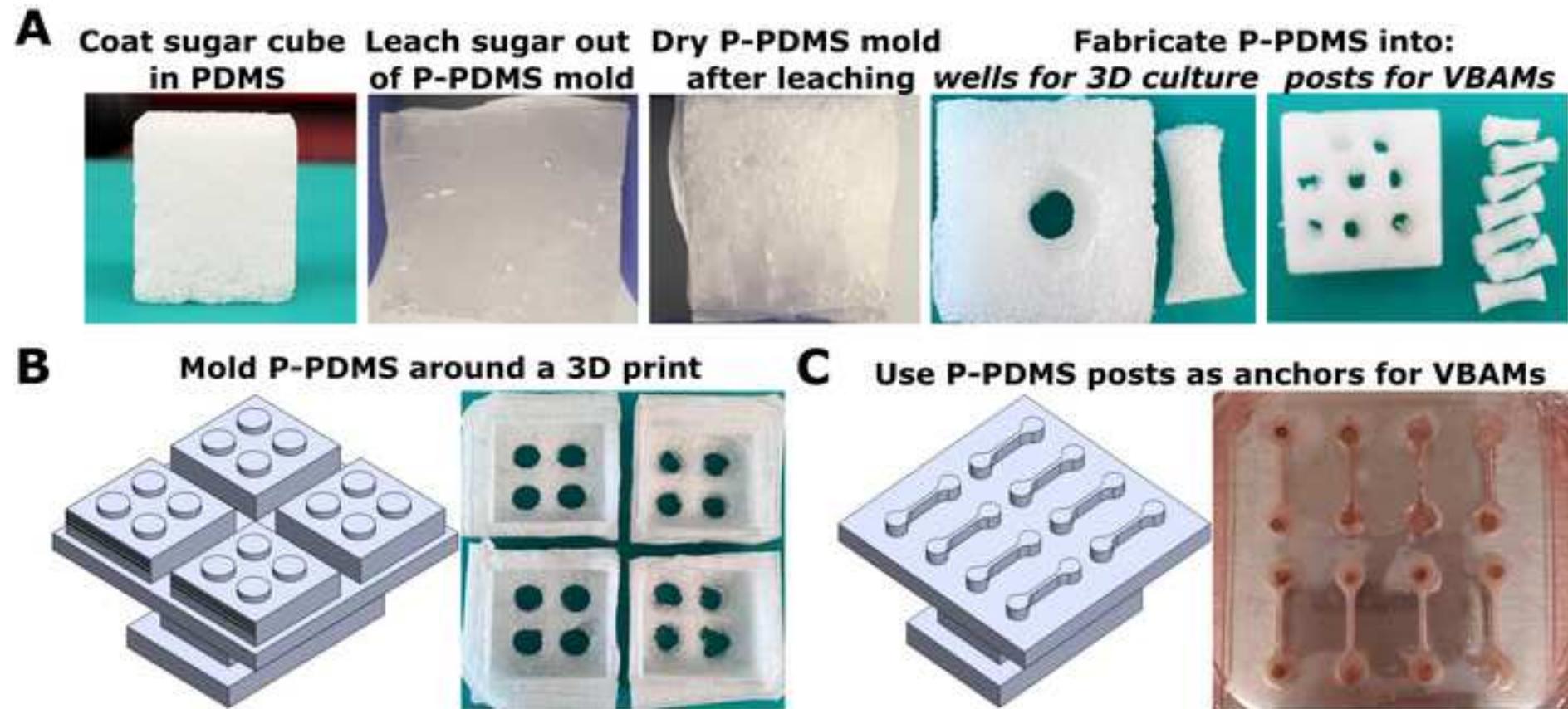


Figure 2

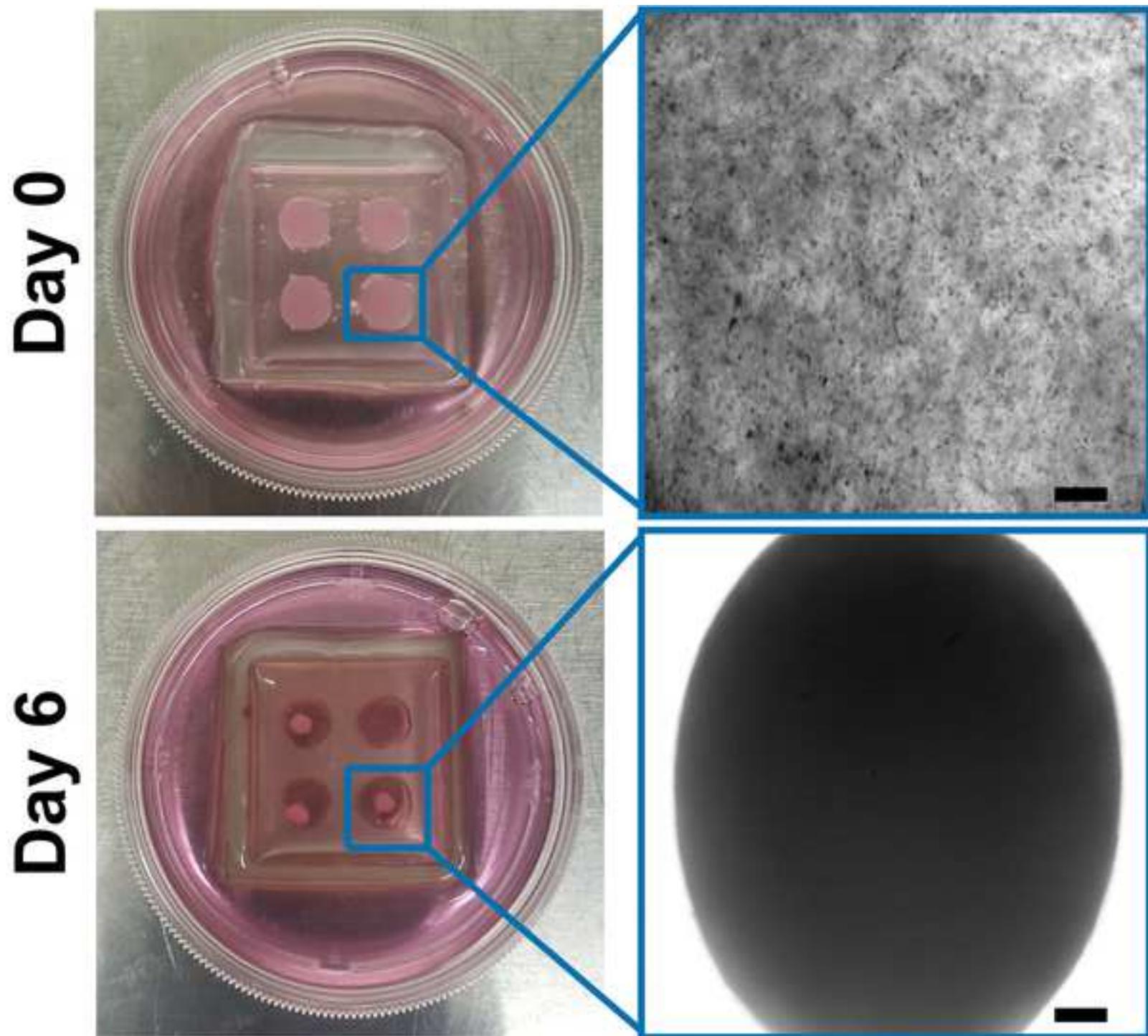
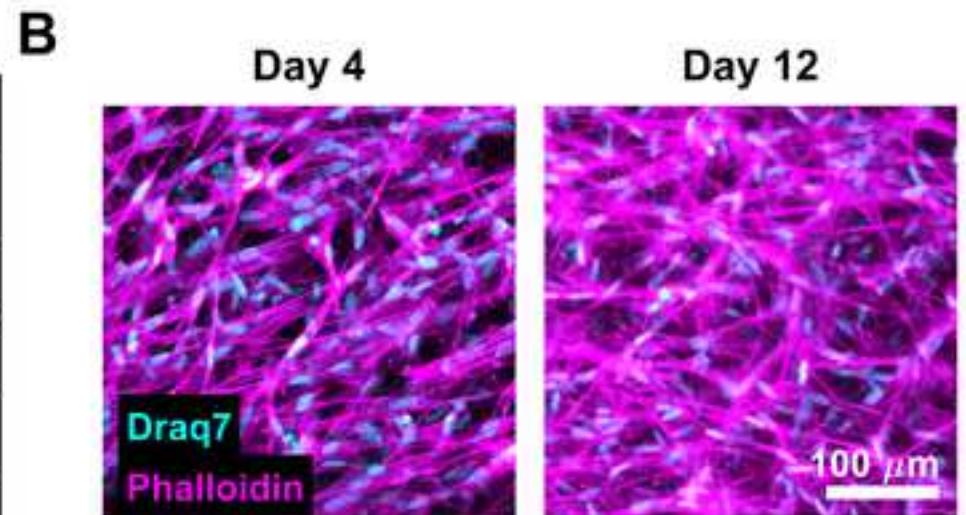
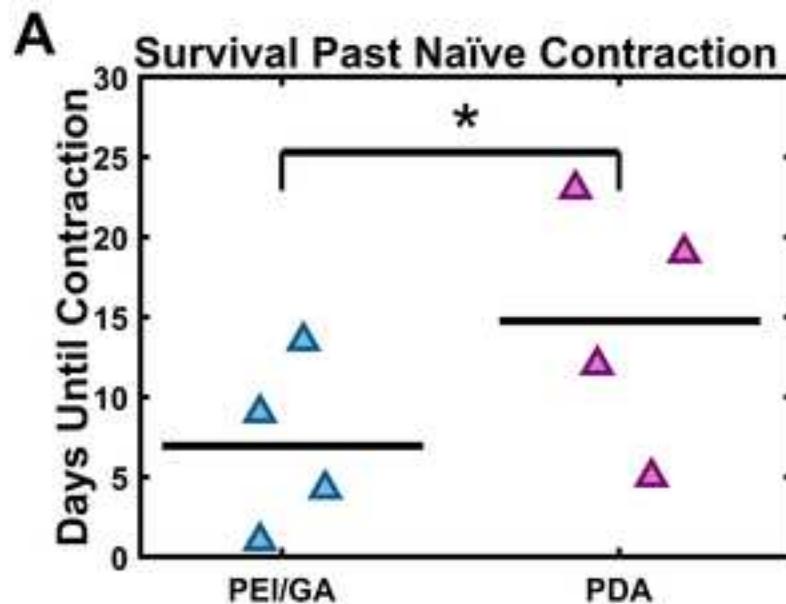




Figure 3

SURFACE TREATMENT

SURFACE AREA

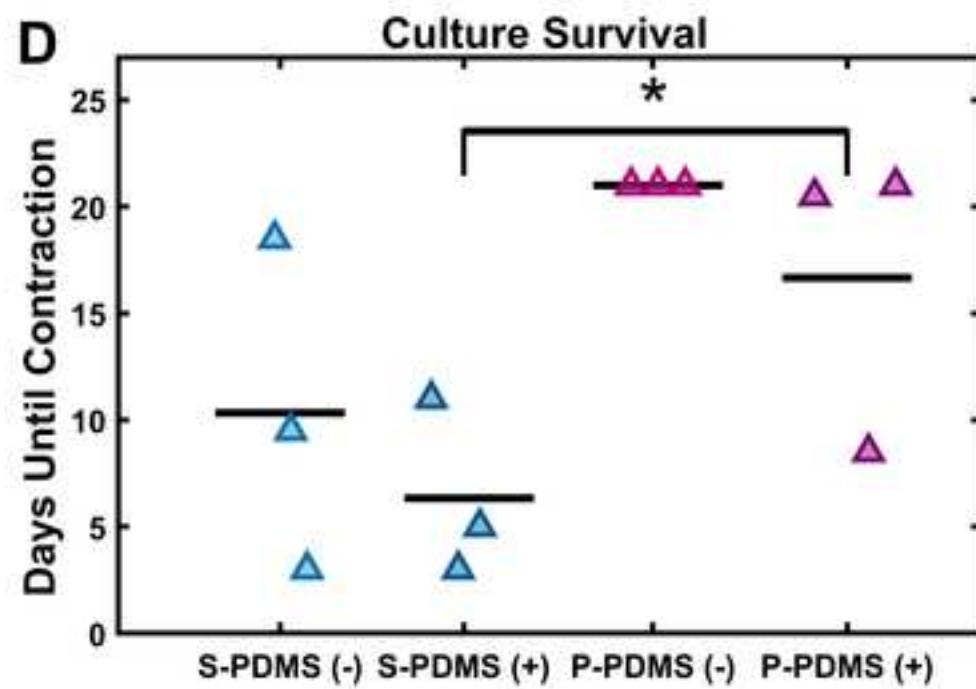
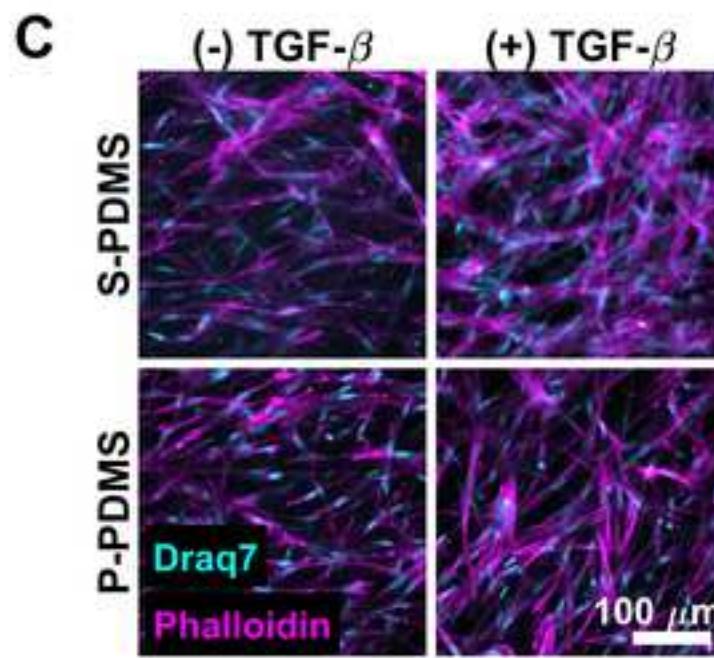



Figure 5

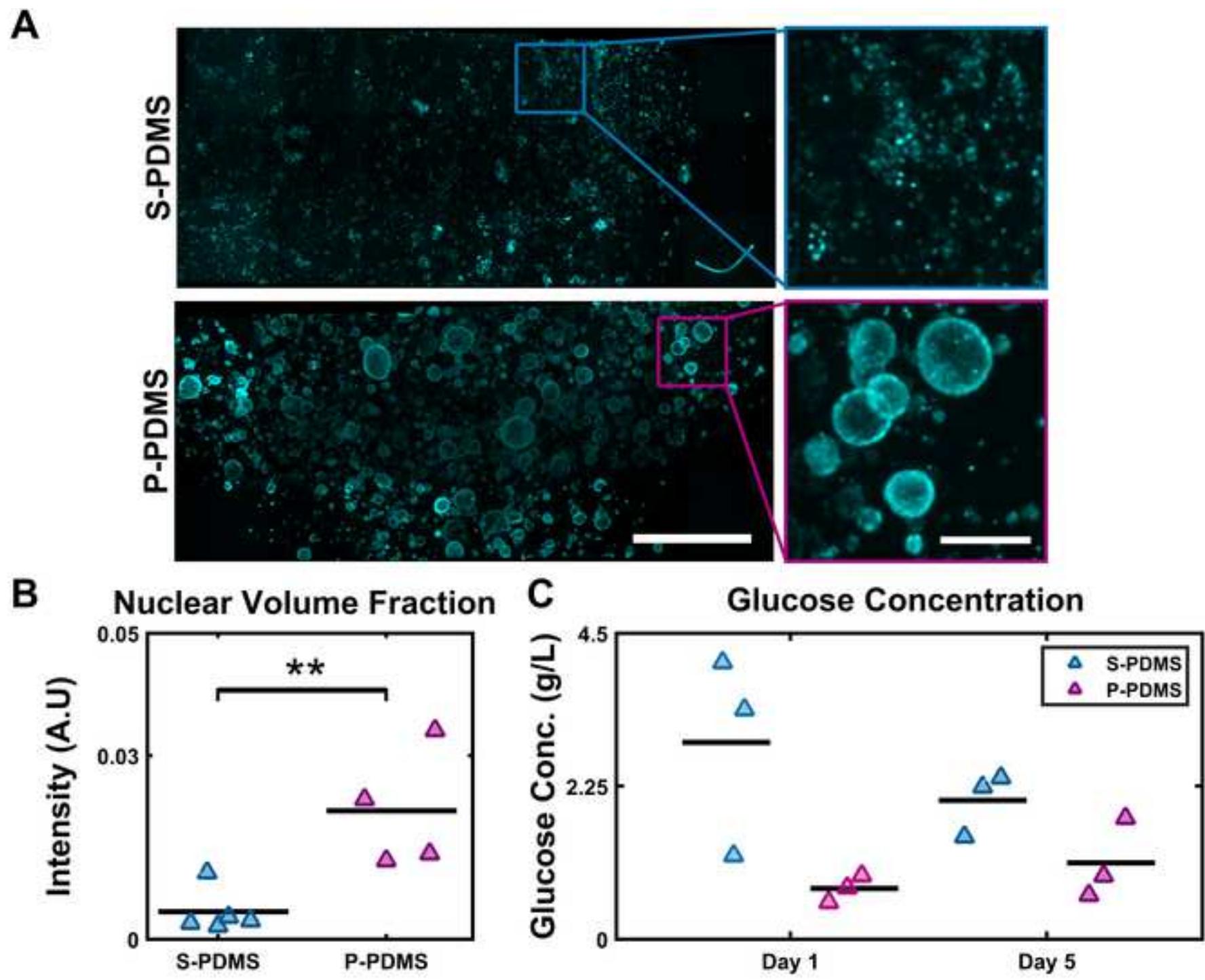


Figure 6

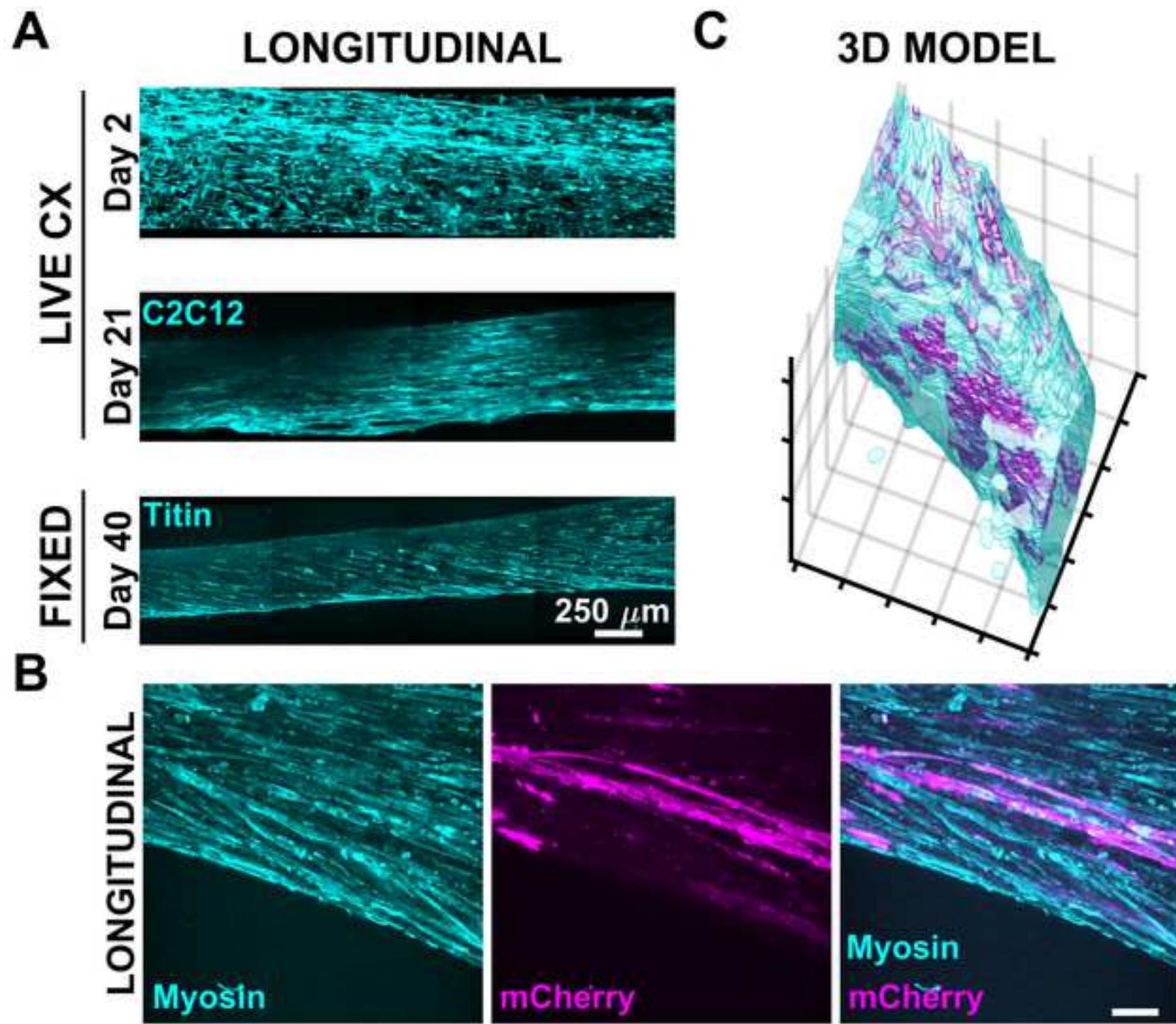


Figure 7

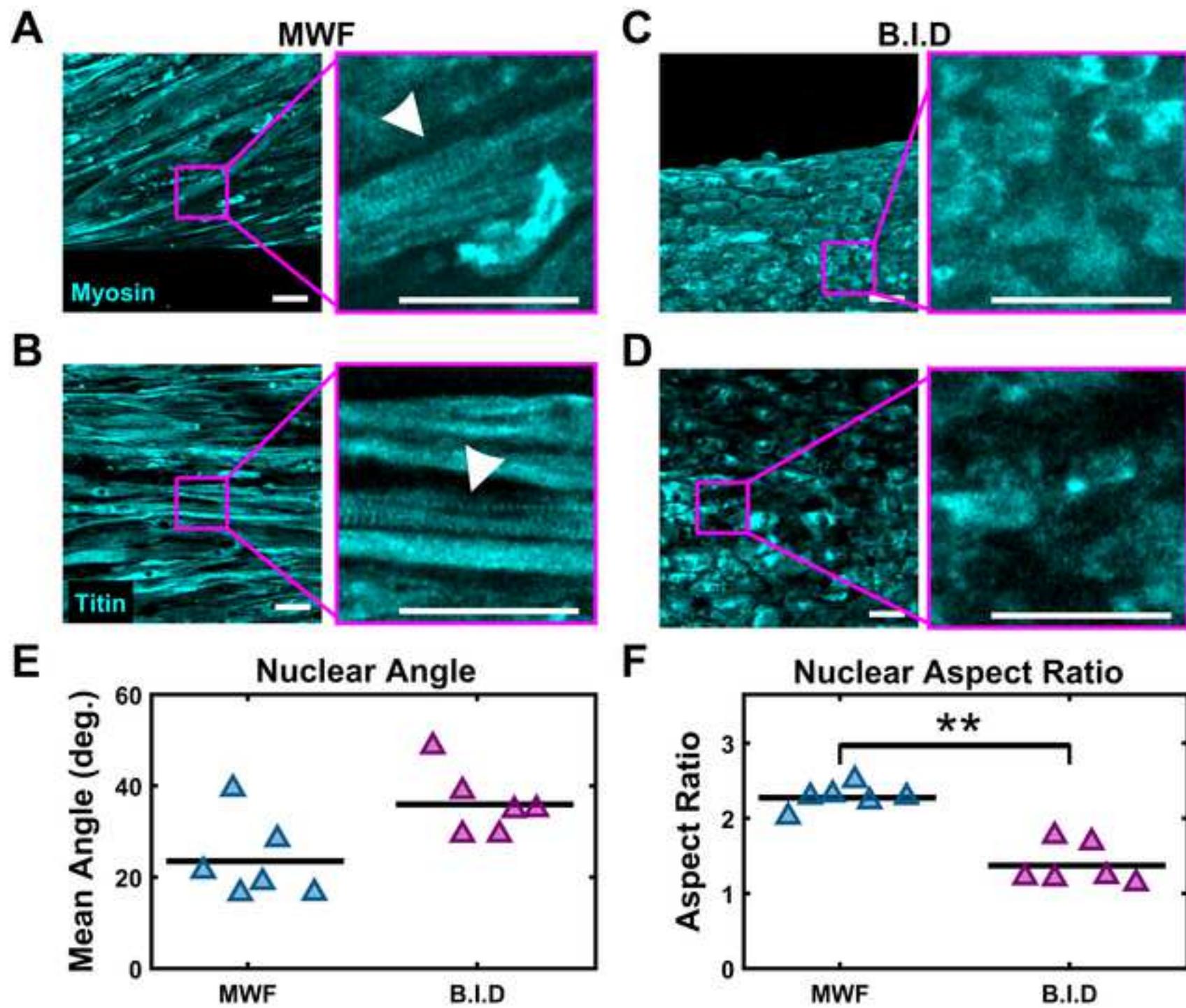


Figure 8

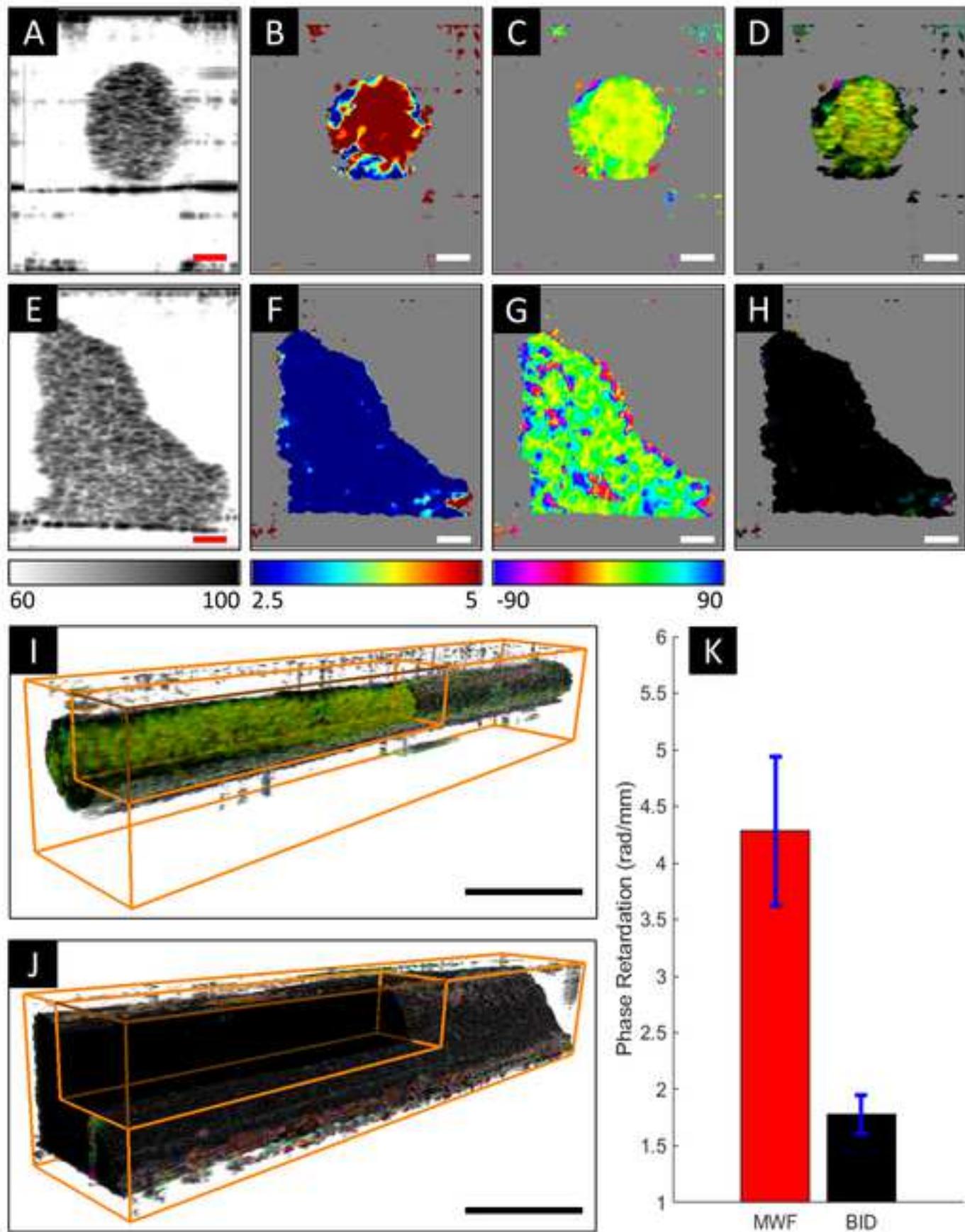
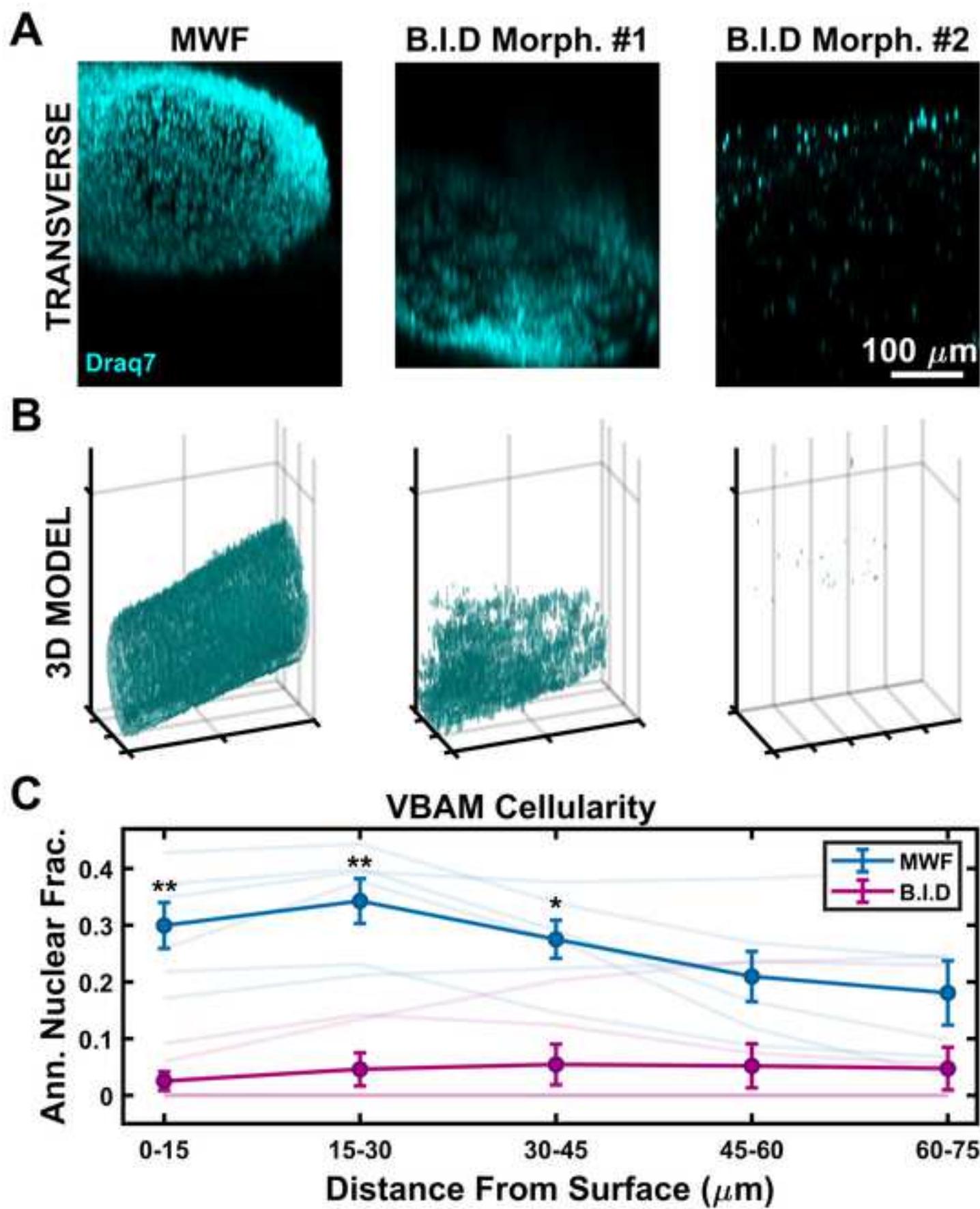



Figure 9

