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Bacterial multispecies interaction mechanisms dictate 
biogeographic arrangement between the oral commensals 
Corynebacterium matruchotii and Streptococcus mitis
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ABSTRACT Polymicrobial biofilms are present in many environments particularly in the 
human oral cavity where they can prevent or facilitate the onset of disease. While 
recent advances have provided a clear picture of both the constituents and their 
biogeographic arrangement, it is still unclear what mechanisms of interaction occur 
between individual species in close proximity within these communities. In this study, 
we investigated two mechanisms of interaction between the highly abundant supragin­
gival plaque (SUPP) commensal Corynebacterium matruchotii and Streptococcus mitis 
which are directly adjacent/attached in vivo. We discovered that C. matruchotii enhanced 
the fitness of streptococci dependent on its ability to detoxify streptococcal-produced 
hydrogen peroxide and its ability to oxidize lactate also produced by streptococci. We 
demonstrate that the fitness of adjacent streptococci was linked to that of C. matruchotii 
and that these mechanisms support the previously described “corncob” arrangement 
between these species but that this is favorable only in aerobic conditions. Furthermore, 
we utilized scanning electrochemical microscopy to quantify lactate production and 
consumption between individual bacterial cells for the first time, revealing that lactate 
oxidation provides a fitness benefit to S. mitis not due to pH mitigation. This study 
describes mechanistic interactions between two highly abundant human commensals 
that can explain their observed in vivo spatial arrangements and suggest a way by which 
they may help preserve a healthy oral bacterial community.

IMPORTANCE As the microbiome era matures, the need for mechanistic interaction 
data between species is crucial to understand how stable microbiomes are preserved, 
especially in healthy conditions where the microbiota could help resist opportunistic or 
exogenous pathogens. Here we reveal multiple mechanisms of interaction between two 
commensals that dictate their biogeographic relationship to each other in previously 
described structures in human supragingival plaque. Using a novel variation for chemical 
detection, we observed metabolite exchange between individual bacterial cells in real 
time validating the ability of these organisms to carry out metabolic crossfeeding at 
distal and temporal scales observed in vivo. These findings reveal one way by which 
these interactions are both favorable to the interacting commensals and potentially the 
host.

KEYWORDS single cell, polymicrobial, microbiome, commensal

O ver the past decades, our knowledge of the human oral microbiome has increased 
drastically, revealing a robust polymicrobial biofilm in supragingival plaque (SUPP) 

that is present in healthy as well as in diseased conditions. While we know a great 
deal about what bacteria reside in SUPP (1–4), we know very little about the inter­
actions between taxa especially in healthy conditions relative to disease. Given that 
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dysbiosis of the healthy microbiota is often a prelude to oral disease (5–7), we 
wish to study interactions within the healthy community to potentially reveal 
any community members that might help preserve stable community structure and 
constituency, potentially preventing the onset of disease.

Previous studies have shown the importance of attachment to the development 
of the oral biofilm (8) and new data have identified and refined the spatial organiza­
tion/“biogeography” of abundant commensal organisms found in SUPP (9). Human 
microbiome project data and recent microscopy of healthy individuals have revealed 
that one of the most abundant and prevalent species in SUPP is Corynebacterium 
matruchotii (1, 4, 9). C. matruchotii has been correlated with good dental health and 
hypothesized to be important in the organization of some plaque biofilm structures 
particularly due to its ability to adhere to Streptococcus species forming a structure 
referred to as a “corncob” where the Corynebacterium filament is surrounded by 
streptococci (9), a role typically ascribed to Fusobacterium (8, 10). C. matruchotii has also 
been shown to help facilitate dental calculus formation via calcification (11). Previous 
studies have not likely appreciated the role C. matruchotii plays in bridging early and 
late colonizers within the plaque (8, 10) and its importance in the structuring of the 
plaque community as it is presumed to bind to an existing biofilm of Streptococcus and 
Actinomyces cells (9, 12). The spatial organization of microbes in these SUPP biofilm 
structures has been characterized in the “hedgehog” model (9) which visualizes C. 
matruchotii and its proximity to adjacent Streptococcus species, such as S. mitis at the 
SUPP perimeter (9, 13).

Streptococcus species, such as S. mitis, are one of the most abundant species in 
the oral microbiome (2) and are known for their ability to compete in their environ­
ment by producing antimicrobial metabolites like hydrogen peroxide (14) via the spxB 
gene product, pyruvate oxidase (15). Fermentation by streptococci (primarily lactate 
production) can decrease local pH which then selects for other microbes including S. 
mutans which thrive in the community causing caries (16–18). Streptococci can also 
co-aggregate with other species to benefit from their catalase activity (19) and we 
have previously shown that crossfeeding on Streptococcus-produced lactate by adjacent 
microbes increases their growth yields (20) and that co-proximity results in a catalase-
dependent removal of H2O2 (21). C. matruchotii, in close proximity with S. mitis, must 
survive in the presence of these same metabolites and how it does so is unknown. If their 
interaction were to result in Corynebacterium-mediated detoxification of streptococcal 
metabolites, then this could help stabilize a diverse bacterial biofilm community which 
may, in turn, enhance colonization resistance (i.e., the ability of these biofilms to limit the 
growth of opportunistic or exogenous pathogens).

We employed a reductionist approach to investigate the relationship between C. 
matruchotii  and S. mitis.  We discovered that S. mitis  has a considerable increase in 
growth yield with C. matruchotii  aerobically but not anaerobically where C. matru­
chotii  growth is also inhibited by S. mitis.  We also observed that C. matruchotii 
upregulated lactate catabolism genes in coculture with S. mitis  and surprisingly 
observed that oxidation of lactate by C. matruchotii  was a contributor to S. mitis 
growth enhancement and was pH independent. We then utilized scanning electro­
chemical microscopy (SECM) to demonstrate that C. matruchotii  lactate catabolism 
can deplete local concentrations of this organic acid swiftly in real time at sub­
micron scales, implying that metabolite consumption in coculture can occur in 
the observed in vivo  arrangements between these organisms. These data reveal 
mechanisms of interaction that support the in vivo  co-occurrence and biogeography 
between these species in healthy oral biofilms.

RESULTS

Using a reductionist approach, we utilized in vitro methods to identify and test hypothet­
ical mechanisms of interaction between C. matruchotii and S. mitis which live in direct 
proximity in the SUPP biofilm in vivo.
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C. matruchotii enhances the growth of S. mitis in aerobic conditions

We performed pairwise coculture experiments aerobically and anaerobically with a 
solid medium colony biofilm model (22) to quantify growth yield between mono- and 
cocultures of S. mitis with C. matruchotii (Fig. 1) observing a 954-fold growth yield 
enhancement of S. mitis in coculture. Unexpectedly, C. matruchotii had no significant 
difference in growth yield with S. mitis (Fig. 1A). While previous studies have hypothe­
sized that C. matruchotii–Streptococcus interactions occur in aerobic microenvironments 
within SUPP (9, 13), we also performed the same experiment in anaerobic conditions as a 
comparison (Fig. 1B). Interestingly, the coculture growth benefit for S. mitis was lost while 
C. matruchotii yield decreased ~130-fold.

C. matruchotii upregulates genes necessary for L-lactate catabolism and 
oxidative stress response

To investigate how C. matruchotii enhances S. mitis growth yield in coculture, we 
performed RNAseq to compare mono- vs coculture transcriptome data. C. matruchotii 
differentially expressed only 22 genes (greater than two-fold) in aerobic coculture with 
S. mitis (Table S1). Interestingly, C. matruchotii upregulated the lutABC operon (lutA, 
4.37-fold; lutB, 3.76-fold; and lutC, 3.20-fold), whose gene products in Bacillus subtilis 
catabolize L-lactate (23) using oxygen as a terminal electron acceptor. Thus, in the 
absence of oxygen, C. matruchotii is no longer able to catabolize L-lactate, as previously 
shown (24). C. matruchotii also significantly upregulates a bacterial non-heme ferritin-
encoding gene (2.39-fold) in coculture. This protein has been characterized in Mycobac­
terium smegmatis to sequester ferrous ions as part of the oxidative stress response 
(25). Given the coculture growth and transcriptome results, we broadly hypothesized 
that C. matruchotii crossfeeds on S. mitis-produced lactate while detoxifying S. mitis-pro­
duced H2O2 similar to other microbes in the oral cavity (19, 20). Given the fact that C. 
matruchotii cannot utilize L-lactate anaerobically and S. mitis only provided a growth 
benefit in the presence of oxygen, we believe these data suggest one mechanism by 
which the biogeography of these species in vivo could be influenced by their metabolic 
interactions.

FIG 1 Growth yield measurements of mono- vs coculture biofilms. Aerobic (A) and anaerobic (B) colony 

forming unit (CFU) counts of C. matruchotii (Cm) and S. mitis (Sm) in mono and cocultures. Data are mean 

CFU counts for n ≥ 3 and error bars represent 1 standard deviation. * denotes P < 0.05 using a Student 

t-test.
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Lactate utilization by C. matruchotii influences S. mitis growth yield

The growth enhancement of S. mitis in coculture with C. matruchotii is likely due to 
several factors, including H2O2 decomposition and lactate catabolism. It is unclear 
whether the removal of lactate itself or the removal of lactate and subsequent increase 
in pH is responsible for S. mitis growth yield enhancement. We first tested the impact 
of pH by performing growth experiments in the same medium with increased buffer 
capacity by adding 50 mM 3-(N-morpholino)propanesulfonic acid (MOPS). Qualitatively, 
we observed that S. mitis monoculture colonies no longer produced yellow coloration 
in buffered medium containing the pH indicator dye phenol red (i.e., no longer acidified 
the environment) compared to the original medium (data not shown). Quantitatively, 
we observed that S. mitis growth yield had no significant change in monoculture with 
additional MOPS (Fig. S1), indicating that pH was not responsible for S. mitis growth yield 
increases in coculture.

To determine whether the removal of lactate by C. matruchotii via catabolism was 
enhancing streptococcal fitness, we constructed a lutABC operon deletion mutant 
(ΔlutABC) since each gene within the lutABC operon had been described to be essential 
for L-lactate catabolism (23). The ΔlutABC strain was significantly impaired in L-lactate 
utilization showing a diminished growth rate (doubling times of 12.85 h for the wild 
type [WT], 50.07 h for ΔlutABC, and 13.45 h for the ΔlutABC strain with lutABC com­
plemented in trans) aerobically with L-lactate as the sole carbon source (Table 1). C. 
matruchotii possesses two additional annotated L-lactate dehydrogenases which may 
function bidirectionally allowing it to slowly oxidize L-lactate without a functional lutABC 
system. A lutA deletion strain was also created and showed similar results (Table 1).

We next tested the ΔlutABC mutant in mono- vs coculture with S. mitis to determine 
whether impaired lactate utilization led to a decrease in S. mitis yield in coculture with 
C. matruchotii. Using defined medium in glucose-limited conditions to force competition 
for limited glucose and/or promote crossfeeding on streptococcal-produced lactate, 
we observed that both S. mitis and C. matruchotii ΔlutABC fitness were significantly 
decreased in coculture (Fig. 2). Corynebacterium ΔlutABC can only poorly catabolize 
L-lactate (Table 1) and thus poorly crossfeed on S. mitis-produced L-lactate compared 
to the WT. As ΔlutABC and S. mitis are now forced to compete for limited glucose, both 
exhibit a decreased growth yield. This is in agreement with previous anaerobic data 
(Fig. 1B), where lactate oxidation by C. matruchotii does not occur. The growth yield 
increase in S. mitis in coculture is diminished when C. matruchotii cannot oxidize lactate, 
but this does not fully explain the total growth benefit provided, suggesting another 
mechanism(s) at work.

Catalase abundance leads to enhanced streptococcal growth yields

Given that lactate oxidation by C. matruchotii provides only a portion of the fitness 
benefit in coculture to S. mitis, we next investigated whether H2O2 detoxification by C. 
matruchotii also contributed to the fitness benefit. Surprisingly, in coculture with S. mitis, 
C. matruchotii did not upregulate the expression of the single catalase (katA) encoded 
on its chromosome (Table S2). We observed that catalase was maximally expressed 
aerobically and not expressed anaerobically (data not shown). To test whether catalase-
dependent H2O2 detoxification was important for C. matruchotii fitness in coculture and 

TABLE 1 Doubling times for C. matruchotii, C. matruchotii ΔlutA, ΔlutABC mutants, and ΔlutABC 
complemented in trans with lutABCa

Strain Doubling time t-test vs WT

C. matruchotii WT 12.83 h ± 1.3 h
C. matruchotii ΔlutABC 58.78 h ± 19.0 h 1.3 × 10−5

C. matruchotii ΔlutABC + empty vector (pCGL0243) 50.07 h ± 3.5 h 4.3 × 10−6

C. matruchotii ΔlutABC + lutABC complement vector 13.45 h ± 9.8 h 1.6 × 10−1

C. matruchotii ΔlutA 32.06 h ± 1.8 h 7.5 × 10−6

an = 3, Student’s t-test was performed for each group vs the WT.
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subsequent S. mitis growth yield enhancement, we generated the catalase gene deletion 
mutant, C. matruchotii ΔkatA. Interestingly, this mutant had to be generated entirely 
under anaerobic conditions and does not survive incubation in aerobic or microaero­
philic conditions, making it impossible to test this mutant in aerobic coculture with S. 
mitis. Instead, we determined the contribution of catalase to the growth of these species 
in medium amended with 100 U/mL of bovine catalase. Previous studies (19, 26, 27) have 
indicated that streptococcal-produced H2O2 is capable of limiting their own growth. 
We observed that adding exogenous catalase elevated the monoculture growth yield 
of S. mitis 6.42-fold (Fig. 3). This self-limitation by H2O2 production was also observed 
when comparing monoculture fold changes in S. mitis to the non-H2O2-producing ΔspxB 
mutant (Fig. 3). Interestingly, the growth benefit of S. mitis in coculture with C. matrucho­
tii dropped from 954-fold to 148-fold when amended with catalase.

FIG 2 Limiting glucose colony aerobic biofilm cocultures. Colony forming unit (CFU) counts of C. 

matruchotii (Cm), C. matruchotii ΔlutA, and S. mitis (Sm) in mono- and cocultures. Data are mean CFU 

counts for n ≥ 3 and error bars represent 1 standard deviation. * denotes P < 0.05 using a Student t-test.

FIG 3 S. mitis aerobic monoculture enhanced by exogenous catalase. (A)Colony forming unit (CFU) counts of S. mitis WT (Sm) 

in mono- and coculture with C. matruchotii (Cm) on media containing 100 U/mL of catalase vs without. (B) CFU counts of S. 

mitis ΔspxB in mono and coculture with Cm on media containing 100 U/mL of catalase vs without. * denotes P < 0.05 using a 

Student t-test.
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C. matruchotii requires a functional oxidative stress response to be fit to 
interact with S. mitis

In coculture with S. mitis, C matruchotii significantly upregulated a gene encoding ferritin, 
a bacterial non-heme protein involved in oxidative stress response (25). We hypothesized 
that ferritin was needed for C. matruchotii fitness with H2O2-producing streptococci. To 
test this hypothesis, we deleted the ferritin encoding gene generating C. matruchotii 
Δftn and performed cocultures with WT S. mitis and S. mitis ΔspxB (which is unable to 
produce H2O2) (14). In coculture with WT S. mitis, we observed that the Δftn mutant 
fitness decreased 7.35-fold (Fig. 4A) and this decrease was not observed in coculture with 
the S. mitis ΔspxB strain. S. mitis WT had a 4.6-fold significant decrease in growth yield 
with C. matruchotii Δftn compared to C. matruchotii WT, whereas there was no change 
in growth yield with S. mitis ΔspxB with either C. matruchotii strain. This shows that C. 
matruchotii needs a functional oxidative stress response to be fit in interactions with WT 
S. mitis. These data indicate that H2O2 detoxification is the largest contributor to enhance 
S. mitis fitness in coculture but also that other mechanisms, that is, C. matruchotii lactate 
oxidation, further enhance fitness.

SECM reveals oxidation of S. mitis-produced lactate by adjacent C. matrucho­
tii at submicron scale

To investigate lactate production and consumption in situ by bacteria as well as the 
topography of bacterial cells, a submicropipette-supported interface between two 
immiscible electrolyte solutions was employed (Fig. S2A) (28). The full methodology and 
findings of this work are part of a co-submitted manuscript (29). With this submicrotip, 
an etched Ni/Cu electrode in the internal organic electrolyte exerts a bias across the 
submicroscale liquid–liquid interface against an electrode in the aqueous solution to 
yield the amperometric tip current based on the selective interfacial transfer of a small 
probe ion (28). The coculture of C. matruchotii and S. mitis was immobilized over a poly 
L-lysine-coated glass slide and studied by scanning or approaching an 800-nm-diameter 
pipette tip over the bacteria. Further details are provided in the supplemental materials 
(Fig. S2C and D).

Imaging of cells by volume

We employed the constant height mode of submicronscale SECM to successfully image 
single bacterial cells in coculture (Fig. 5). The high spatial resolution was obtained using 
submicropipette tips, which were characterized by cyclic voltammetry for tetraethylam­
monium (TEA+) ion transfer (IT) in situ to obtain a diffusion limited current in the bulk 
solution, iT,∞ (Fig. S2B). Constant height imaging of cocultured bacteria for the probe 
ion TEA was obtained with the gap between the tip and the bacteria, dc = 0.75 µm (i.e., 

FIG 4 C. matruchotii ferritin knockout inhibited when cocultured with S. mitis. (A) Aerobic colony forming unit (CFU) counts 

of C. matruchotii WT (Cm) and ferritin knockout (Δftn) in mono- and coculture with S. mitis WT and strain lacking the ability to 

create H2O2 (ΔspxB). (B) CFU counts of Sm and ΔspxB in mono and coculture with Cm and Δftn. Data are mean CFU counts with 

error bars indicating standard deviation for n ≥ 3. * denotes P < 0.05 using a Student t-test compared to monoculture.
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1.80 normalized distance to tip radius [d/a]). This SECM image could not resolve each 
individual bacterial cell. For instance, a lump was identified in 25 µm × 20 µm image 
based on TEA+ IT, which did not resolve any difference between bacterial cells (Fig. 5B). 
Low tip current of ~80% of iT,∞ for TEA+ above these bacteria was obtained due to 
hindered diffusion of TEA+ by adjacent bacteria with partially permeable membranes to 
this probe ion.

Imaging of lactate gradients around cells

The same area in 25 µm × 20 µm was imaged based on lactate IT with the gap between 
the tip and the bacteria, dc = 0.50 µm (1.20 d/a), which could resolve individual S. mitis 
and C. matruchotii clearly (Fig. 5C). An initial current of 30 pA above a glass substrate 
corresponds to c.a. 0.26 mM of lactate produced by ensemble of S. mitis and diffused to 
bulk solution near bacteria according to equation 1 below.

(1)iT,∞ = 4xzFDCa
where iT,∞ is a current in bulk, x is the function of RG ratio (RG is the ratio of outer and 

inner diameters of a glass pipette, x = 1.16 for a RG 1.5 tip), z is the charge of lactate, F 
is Faraday constant (96,485 C/mol), D is the diffusion coefficient (6 × 10–6 cm2/s), C is a 
concentration of lactate (0.26 mM), and a is the inner radius of a pipette tip (430 nm).

In this SECM image, higher tip currents than iT,∞ for lactate are obtained above 
spherical S. mitis, while lower tip currents than iT,∞ are observed above filamentous C. 
matruchotii. Not only distinctive morphologies are clearly distinguished between two 
different bacteria as shown in an optical microscopic image (Fig. 5A), but also the 
production and consumption of lactate between them are visually confirmed in situ, 
where currents were dramatically transposed from an enhanced response over S. mitis to 
reduced ones over C. matruchotii, implying local increase in lactate produced by S. mitis 
and local depletion of lactate consumed by C. matruchotii. Notably, this SECM image 
successfully visualized the chemical interaction between two commensal oral microbes 

FIG 5 SECM detection of C. matruchotii oxidation of S. mitis-produced lactate. (A) Representative 

micrograph of C. matruchotii (red filament) and S. mitis (chained spheres) coculture. (B) Topographical 

SECM image based on TEA+ IT (obtained with a gap between the tip and the bacteria, dc = 1.8 d/a). 

Monotonic current decrease over bacterial “lump” is observed due to hindered diffusion of TEA+ through 

the bacterial membrane. (C) Lactate-mapping SECM image based on lactate IT (obtained at dc = 1.2 d/a). 

Sharp current transition between S. mitis and C. matruchotii is observed corresponding to simultaneous 

lactate production and consumption, respectively, with an estimated range of 0.5 mM at the S. mitis 

surface to 0.1 mM above C. matruchotii. SECM images were obtained in constant height mode.
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in real time and is the first SECM study to our knowledge that measures metabolite 
exchange between two individual bacterial cells. Specifically, S. mitis produces c.a. 
0.50 mM lactate locally, which is efficiently depleted by C. matruchotii (Fig. 5C; Fig. S2E), 
thus verifying a standing question about their commensal relationship that cannot be 
answered only by optical microscopic imaging. Quantitative analysis of the permeability 
of the bacterial membrane and the local concentration of lactate produced by S. mitis 
are discussed in the supplemental materials and companion manuscript detailing this 
methodology (29).

DISCUSSION

Interactions between commensal bacteria in the human microbiome are quite under­
studied. This is especially the case within healthy SUPP where they likely have a role in 
maintaining plaque homeostasis and host health compared to subgingival plaque and 
oral disease (8, 10, 30). While the organisms in plaque biofilms are in close proximity and 
capable of physical and biochemical interaction, the involved mechanisms are largely 
hypothetical (9). Characterizing the behavior of abundant SUPP commensal organisms 
can help reveal necessary interactions that could maintain a healthy microbiome as well 
as explain their biogeographic arrangements. One set of interactions is those between 
Corynebacterium matruchotii and Streptococcus spp. in previously described “hedgehog” 
structures (9, 13), where they occur at the presumed aerobic biofilm/saliva margin. This 
study investigates these interactions and provides novel data on metabolite exchange 
between individual cells that have broad implications on polymicrobial biofilms beyond 
the human oral cavity.

The importance of H2O2 production (via SpxB (31)) by oral streptococci has been 
intensively studied by many groups (32, 33). The ability of these species to generate 
H2O2 has been shown to modulate host immune responses (34) as well as compete with 
adjacent microbes including other streptococci, Porphyromonas gingivalis, and many 
others (35–37). In addition, the ability of oral streptococci to acidify their environment 
via lactate production is well understood, particularly for S. mutans and the ability of 
adjacent organisms to tolerate acid stress via neutralization or consumption of lactate 
is well documented (20, 24, 38). Lactate metabolism particularly defines the relationship 
between fermenting Streptococcus spp. and the lactate-oxidizing Veillonella spp. (39). We 
have also previously studied the impact of adjacent microbes on the mitigation of H2O2 
via SECM (21). These findings led us to make similar hypotheses for H2O2 and lactate 
metabolism regarding C. matruchotii–Streptococcus interactions and their influence on 
the fitness of either species. Our data indicate that S. mitis had a significant growth 
yield increase when cocultured with C. matruchotii (Fig. 1A) and this growth benefit 
was lost anaerobically (Fig. 1B) which can partly explain their proximal association only 
at the aerobic margin of hedgehog structures (9, 13). H2O2-producing Streptococcus 
and adjacent commensal species have been shown to coexist despite reactive oxygen 
species (ROS) production (19). C. matruchotii is uninhibited when cocultured with S. mitis 
aerobically likely due to its catalase production. While a C. matruchotii ΔkatA mutant 
could not grow aerobically, we were able to demonstrate that the addition of exogenous 
catalase to WT monoculture resulted in enhancing S. mitis yield like that of the non-per­
oxide-producing S. mitis spxB mutant but not to the same extent observed in coculture 
with C. matruchotii with or without exogenous catalase (Fig. 3). These data suggest 
that catalase can enhance S. mitis growth, even if produced by adjacent C. matruchotii, 
similar to observations we have made previously (21), but also suggest that additional 
benefits to S. mitis exist due to coculture. Interestingly, we observed that coculture led 
to upregulation in C. matruchotii of a gene encoding a protein that has 82% identity to 
ferritin from C. mustelae. Ferritins have been shown to protect from ROS by sequestering 
iron and binding to DNA (25) to prevent the production of hydroxyl radicals (40). A C. 
matruchotii Δftn mutant showed a significant yield decrease in coculture with S. mitis, 
but decreases were not observed with S. mitis ΔspxB (Fig. 4). We observed that any 
decreases in C. matruchotii yield were mirrored by decreases in S. mitis yield as well, 
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linking streptococcal fitness to that of C. matruchotii. We hypothesize that this should 
also be true for any other adjacent H2O2-producing streptococcal species. Transcriptional 
responses of S. mitis to C. matruchotii are part of a separate ongoing study and are not 
reflected here.

Of the 22 genes that C. matruchotii differentially expresses with S. mitis aerobically, 
three belong to the lactate oxidization encoding lutABC operon (23). C. matruchotii can 
only oxidize lactate aerobically and will not oxidize lactate anaerobically (24) which 
can explain its inability to grow with S. mitis in anerobic coculture (Fig. 1B). Initially, 
we hypothesized that C. matruchotii oxidation of streptococci-produced lactate could 
provide a growth benefit to adjacent streptococci by elevating the local pH. However, no 
amount of additional MOPS buffer was sufficient to increase S. mitis monoculture yields 
(Fig. S1), despite local acidification no longer being detectable via a phenol red indicator 
dye. Thus, we hypothesized that the removal of lactate itself (and elimination of feedback 
inhibition of this fermentation product) would benefit S. mitis in a pH-independent 
fashion by allowing it to ferment more carbohydrates. To test this, we deleted the lut 
operon in C. matruchotii and competed this strain in a glucose-limited coculture where C. 
matruchotii should rely on crossfeeding of streptococci-produced lactate. C. matruchotii 
ΔlutABC yields were significantly decreased in coculture with S. mitis in limiting glucose 
when compared to monoculture with a similar decrease in S. mitis yield (Fig. 2). While 
these changes were significant, they were modest, which is due to the ability of C. 
matruchotii ΔlutABC strains to still oxidize lactate to a minor extent, likely due to the 
presence of at least two potentially reversible lactate dehydrogenase encoding genes 
(Fig. S2). Even with only partial loss of function, these results indicate that C. matruchotii 
cannot compete for glucose with S. mitis and likely depends on crossfeeding of lactate 
when they are in direct proximity.

Using SECM, we were able to directly quantify lactate production by S. mitis and its 
oxidation by adjacent C. matruchotii in real time (Fig. 5) (29), indicating a sharp decrease 
in lactate concentration between individual cells. To the best of our knowledge, this is 
the first observation of metabolite exchange between individual bacterial cells by SECM. 
Based on these data, we believe that existing “corncob” configurations observed in vivo 
(9, 13) should readily be able to consistently remove lactate from their immediate area. 
Interestingly, we also observed in our companion study (29) that lactate utilization in an 
individual C. matruchotii filament was localized nearest to streptococcal cells which also 
fits well with their observed in vivo arrangement toward the aerobic-oriented pole of 
the corncob structure (9, 13). This would allow streptococcal metabolism to continue 
without inhibition while eliminating a source of acid stress to the host and other 
adjacent microbiota which contrasts well with the dense clustering biogeography of 
S. mutans observed on enamel during caries formation (17). This observation supports a 
mechanism, whereby the interaction between these two commensals may contribute to 
the lack of cariogenic activity in a healthy oral biofilm. Previous studies by Frenkel and 
Ribbeck (41, 42) have demonstrated that physical separation of streptococcal aggregates 
via mucins is sufficient to enhance the growth of competing species and limit damage 
to enamel. This is reminiscent of distal separation of streptococci bound to C. matruchotii 
“corncobs”; yet, these can be further enhanced by their ability to also remove lactate 
actively from the coculture environment with spatial heterogeneity that favors the 
observed biogeographic heterogeneity (9, 13).

This study has described two mechanisms of interaction between bacteria that exist 
in direct contact in vivo. Using a reductionist approach, we were able to ascertain how 
each mechanism contributed to fitness of both organisms. Advantages provided to each 
species when these mechanisms are intact also explain the positional/biogeographic 
arrangement of these species in vivo. In addition, we were able to demonstrate real-
time metabolite exchange between these species at submicron distances, indicating 
that crossfeeding between these organisms is likely occurring between them in vivo. 
These interactions reveal how structural orientation and species composition between 
commensals may contribute to host health and potentially be one way by which a 
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healthy biofilm composition is maintained in vivo and answer the hypotheses about 
mechanisms of interaction between these organisms that were hypothesized several 
years earlier (9).

MATERIALS AND METHODS

Strains and media

Strains and plasmids used in this study are listed in Table S1. C. matruchotii (ATCC 
14266) and S. mitis (ATCC 49456) were grown on the Brain Heart Infusion (BHI) media 
supplemented with 0.5% of yeast extract (YE) at 37°C in a static incubator with 5% CO2 
or in 5% H2, 10% CO2, and 85% N2 in anaerobic conditions. Escherichia coli was grown 
at 37°C in standard atmospheric conditions with liquid cultures shaken at 200 rpm. 
Antibiotics were used at the following concentrations: kanamycin 40  µg/mL for E. coli 
and 10 µg/mL for C. matruchotii.

Colony biofilm coculture/buffered coculture/ catalase coculture

Overnight cultures of C. matruchotii and S. mitis species were grown in BHI media 
supplemented with 0.5% of YE aerobically and anaerobically as described above. Colony 
biofilm assays were carried out as described previously (22). Briefly, a semipermea­
ble 0.22-µm polycarbonate membrane filter (43) was placed on solid BHI-YE media 
(supplemented with 1.6% agar). Ten microliters of each culture was spotted on the 
membrane filters and monocultures were spot with 10 µL of BHI-YE. The cultures were 
incubated for 48 h and the membranes were placed in a microcentrifuge tube with 1 mL 
of BHI-YE. The tubes were vortexed to resuspend into media and serially diluted and 
track plated (44) to count colony forming units per mL (CFU/mL). S. mitis was counted 
using BHI-YE plates and C. matruchotii on BHI-YE plates supplemented with 100  µg/mL 
of fosfomycin. Buffered and pH indicator cocultures were carried out with 50 mM MOPS 
and 18 mg/mL of phenol red added to BHI-YE. Catalase cocultures were carried out with 
100 U/mL of catalase added to BHI-YE.

RNAseq experiment and analysis

Mono and cocultures were prepared similar to the colony biofilm coculture with the 
exception that culture membranes were incubated for 24 h and moved to fresh media 
for an additional 4 h. Membranes were then removed from solid agar and immediately 
placed into RNALater (Ambion), where cells were removed by agitation and pelleted by 
centrifugation. Cell pellets were stored in the Trizol reagent at −80°C. Experiments were 
carried out in biological duplicates. RNA extraction, library preparation, and sequenc­
ing were then carried out by the Microbial ‘Omics Core facility at the Broad Institute. 
RNASeq libraries were generated using previously described methods (45). Sequence 
data were aligned using Bowtie2 (46) and read counts per coding sequence were 
called using HTSeq-Count (47). Statistical analysis was carried out via DESeq2 (29) to 
determine differentially expressed genes. Scripts of this pipeline can be found at https://
github.com/dasithperera-hub/RNASeq-analysis-toolkit. Sequence libraries are available 
through the NCBI short read archive under bioproject number PRJNA832032.

Gene deletions

All C. matruchotii gene deletions were carried out with sucrose counterselection using 
a suicide vector derived from pMRKO (20), pEAKO2 which contains sacB from pK19mob­
sacB (48). Approximately 1,000 bp upstream and downstream flanking regions for each 
gene were used for homologous recombination and fragments were cloned into pEAKO2 
via the Gibson Assembly (49). C. matruchotii cells were made as previously described 
(50). Transformations were carried out with 50 µL of competent cells and 1 µg of DNA 
electroporated with 0.2-cm gap cuvettes at a voltage of 2.5 kV, a resistance of 400 Ω, and 
a capacitance of 25 µF. After electroporation, 950 mL of prewarmed BHI-YE was added 
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to the cuvette and the mixture was then moved to a 46°C heat block for 6 min. After 
heat shock, transformations were shaken at 250 rpm at 37°C for 4 h. Transformations 
were plated on BHI-YE Kan10 plates and incubated for 4 d at 37°C. Mutants were verified 
through PCR.

Gene complementation

The lutABC coding sequence and its upstream native promoter region were ampli­
fied using primers with overlaps designed for Gibson Assembly (via https://neb­
uilder.neb.com/#!/). This 3,586 bp amplicon was cloned into the BamHI-digested 
pCGL0243 Corynebacterium shuttle vector (51) using identical methods to gene deletion 
constructs detailed above. The lutABC complement vector and empty pCGL0243 vectors 
were, respectively, electroporated into the C. matruchotii lutABC gene deletion strain 
and selected for growth on kanamycin. Successful vector assembly was confirmed by 
restriction digest mapping.

Limiting glucose coculture

Cultures were prepared like colony biofilm coculture described above except for being 
inoculated into 2 mL of liquid-defined medium. Modified RPMI medium (Gibco) was used 
as a base and supplemented with 8 mM glucose. Cocultures were inoculated for 48 h and 
track plated to determine CFU/mL.

SECM sample preparation

Bacterial sample preparation was performed using a previously described defined 
medium (52) and glucose at 10 mM. Further details are provided in the Supplemental 
Materials.

SECM acquisition

Scanning parameters and nano-probe design are similar to methods described 
previously (53–57). A full description of SECM calibration, sample acquisition, and 
metabolite quantification is provided in the Supplemental Materials and in a companion 
manuscript (48).
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