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Abstract

Extreme heat is a current and growing global health concern. Current heat exposure models include
meteorological and human factors that dictate heat stress, comfort, and risk of illness. However, radiation
models simplify the human body to a cylinder, while convection ones provide conflicting predictions. To
address these issues, we introduce a new method to characterize human exposure to extreme heat with
unprecedented detail. We measure heat loads on 35 body surface zones using an outdoor thermal manikin
("ANDI") alongside an ultrasonic anemometer array and integral radiation measurements (IRM). We show
that regardless of body orientation, IRM and ANDI agree even under high solar conditions. Further, body
parts can be treated as cylinders, even in highly turbulent flow. This geometry-rooted insight yields a whole-
body convection correlation that resolves prior conflicts and is valid for diverse indoor and outdoor wind

flows. Results will inform decision-making around heat protection, adaptation, and mitigation.
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Environmental human heat exposure, air turbulence, convection, radiation, thermal manikin, integral

radiation measurement
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1.Introduction

Extreme heat seriously impacts human health, livability, productivity, and overall well-being (Ebi et
al., 2021a, 2021b; Vanos et al., 2023), with age, illness, and poverty aggravating the risk (Jay et al., 2021).
As researchers and practitioners seek to contend with increasing heat globally (Cissé et al., 2022; Powis et
al., 2023), advanced methods are required to understand the nuances of "heat" exposure—beyond air
temperature—that will affect human behavior, technological innovation, infrastructure change, and policy
creation (Cissé et al., 2022). These are all critical forms of adaptation that must be targeted to lessen global
suffering from heat.

Radiation and convection account for most heat exposure to the human body outdoors (Middel et al.,
2016; Parsons, 2019, 2014; Turner et al., 2023) but are more challenging to quantify in urban areas than
commonly reported measures of air temperature and humidity (Brown and Gillespie, 1995). The common
methods to quantify convective exchange with the human body have been created indoors and have not
been validated in real-world outdoor settings, while approaches used to measure radiation exposure (e.g.,
globe and cylindrical radiation thermometers or integral radiation measurements (IRM)) have not been
validated with an accurate, realistic representation of the human body. In particular, the models that intake
relevant environmental parameters (e.g., radiative fluxes or wind flow) and output radiative or convective
heat fluxes experienced by the human body are either based on simplistic assumptions about the body's
shape or provide disagreeing predictions.

The most advanced radiation field measurement method, the IRM, quantifies irradiation in two spectral
regions (shortwave and longwave) and six directions (Hoppe, 1992; Middel and Krayenhoff, 2019).
However, when calculating the radiation absorbed by the body based on the measured twelve fluxes, the
IRM assumes that a human body is a single vertical cylinder or box (Brown, 2019; Hoppe, 1992; Middel
and Krayenhoff, 2019). Exposure to thermal radiation in outdoor settings on human subjects has been
studied, but the fluxes were inferred from skin temperature measurements (Blazejczyk et al., 1993), which
can be prone to substantial errors (MacRae et al., 2021; Rykaczewski and Dhanote, 2022). Convective heat
transfer was also studied with human subjects by directly placing heat flux sensors on the skin (Danielsson,
1996) or measuring the sublimation rate of large naphthalene balls placed on the subject's bodies (Nishi and

Gagge, 1970). In both cases, the method could have interfered with airflow (De Dear et al., 1997) and
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yielded only point values that were not necessarily representative of convection from the local body parts.
Instead of working with subjects, more modern efforts to measure convective heat transfer use
computational and physical human-shaped thermal manikins (Holmér, 2004; Ichihara, 1997; Ito and Hotta,
2006; Li and Ito, 2012; Psikuta et al., 2017; Xu et al., 2019).

Further, over ten correlations have been developed to predict the forced convective heat transfer
coefficient for the human body or its parts based on indoor wind tunnel measurements with thermal
manikins or simulations with computational equivalents (Wissler, 2018; Xu et al., 2021). However, for the
same wind speed, the prediction of the various correlations can often vary by over 150% (Xu et al., 2021)
(see examples in the Supplemental Material—SM). Much of this disagreement stems from not considering
or being unable to account for the turbulence characteristics due to wind tunnel limitations. The few recent
efforts that account for turbulence intensity (ratio of the standard deviation of the speed fluctuations to its
mean value) and, in two cases, length scale (size of large energy-containing eddies) yield several
correlations with conflicting coefficients (Ichihara, 1997; Ono et al., 2008; Xu et al., 2021; Yu et al., 2020;
Zhou et al., 2022; Zhou and Niu, 2022; Zou et al., 2020). Legacy thermal manikins cannot directly measure
radiation, so additional errors might arise from how radiation is estimated and separated from net heat flux
to yield the convective flux (De Dear et al., 1997; Fojtlin et al., 2016; Zhou and Niu, 2022). In summary,
convective and radiative human heat exposure models use simplistic assumptions or provide conflicting
predictions and were not tested in realistic conditions (outdoors and with three-dimensional human body
representation). Thus, the multitude of studies applying such models to estimate uncompensable heat
outdoors (Coffel et al., 2017; Guzman-Echavarria et al., 2023; Powis et al., 2023; Sherwood and Huber,
2010) or heat balance of outdoors workers or athletes (Dunne et al., 2013; Guzman-Echavarria et al., 2023;
Rowlinson and Jia, 2014) may be missing critical aspects to estimate human heat gain and loss in complex
settings that people find themselves during heat events.

This paper introduces novel methods to study the impact of extreme heat—and the avenues of heat
transfer—on the human body. We leverage a one-of-a-kind thermal manikin—outdoor "ANDI" (see
Fig.1A-C) alongside a high-end three-level ultrasonic anemometer array and the "MaRTy"
biometeorological cart (Middel and Krayenhoff, 2019) (see Fig.1D). As legacy manikins, ANDI's shell

contains temperature sensors and can be resistively heated. In addition, ANDI’s shell has heat flux sensors
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and can be water-cooled with built-in liquid channels (see Fig.1B and 1C), thereby enabling convective
and direct radiative flux measurements in hot conditions unattainable with prior instrumentation. With a
few notable exceptions of legacy manikins being used in mild outdoor settings (e.g., within a car parked
outdoors (Danca et al., 2021), wearing protective clothing (Kuklane et al., 2006), or sitting under a shaded
lift-up building section (Zhou et al., 2022; Zhou and Niu, 2022)), thermal manikins are operated in pristine
climatic chambers while their support systems are in adjacent labs. In contrast, the entire ANDI system,
including power and control electronics and water chiller, is mobile and ruggedized to operate in extreme
heat and dust (e.g., the electronics are housed in a movable and sealed box with air conditioning, see
Fig.1D). Here, we deploy this unique suite of instruments for over 20 days in Tempe, Arizona, under
extremely hot conditions (air temperatures up to 47°C and irradiation over 1000 W-m™) to quantify
convective and radiative fluxes on ANDI's 35 surface zones. We use the experimental results to examine
common assumptions in advanced radiation measurements and provide new physical insight into
convection around the human body that sheds light on divergences in prior correlations. While ANDI
represents an average male, radiative and convective fluxes (i.e., per surface area) vary slightly with body
shape (Rykaczewski et al., 2022a; Viswanathan et al., 2023). The introduced methods are the most
advanced way to measure human heat exchange in extreme outdoor environments and provide a novel

quantitative understanding that can support better behavioral and policy decisions and optimize

technological adaptations.
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Fig.1 Images of A. the outdoor thermal manikin's ("ANDI" — Advanced Newton Dynamic Instrument)
exterior and B. interior (instrumented shell); C. cross-sectional schematic of the manikin's interior with heat
flux and temperature sensors, as well as heating and cooling ability that enables radiation and convection
measurements in extreme heat conditions, and D. "aerial" view of typical outdoor experimental set up
showing ANDI and its extreme heat-compatible support systems, the advanced mobile biometeorological

station "MaRTy" (Middel and Krayenhoff, 2019), and a three-level 3D ultrasonic anemometer array.

2.Materials and Methods
2.1 Instrumentation

We used a custom outdoor thermal manikin named "Advanced Newton Dynamic Instrument" or ANDI
(Thermetrics LLC, Seattle, USA) divided into 35 zones that each contain area-distributed resistive
temperature (£ 0.044 °C accuracy determined by manufacturer calibration) and heat flux sensors and have
heating and cooling ability. Each heat flux sensor is custom-made and has an accuracy determined through
manufacturer-performed calibration against the heat flux generated with the internal heater. For our thermal
manikin, the average absolute measured heat flux deviation from the generated heat flux for the 35 sensors
was 3.1% (6.2 W-m™) and at most was 9% (18 W-m). The manikin represents the 50" percentile of the
western male body, with a height of 1.78 meters and a surface area of 1.86 m?. While based on the base
ANDI model, our thermal manikin was customized to be routinely used in extreme heat outdoor conditions.
To withstand air temperatures of 50°C and high radiative fluxes (more than 1000 W-m), the internal part
of the shell that includes the cooling channels is made of a higher glass transition polymer than in the regular
model. To prevent shading, the manikin is attached to the stand from the back, not through the top of the
head as the base manikin model (Joshi et al., 2023). The manikin is suspended 24 cm meters above the
ground from a mobile stand covered with non-reflective adhesive (see Fig.1A and 1D). All power
electronics, controls, the manikin sweating system (not employed in the current study), and the laptop with
control software are housed within the air-conditioned and dust-proof mobile box shown in Fig.1D. These
systems, along with the water chiller and the manikin, are powered through a mobile gasoline power
generator (American Honda Power, Alpharetta, GA; model: EU7000iS). To minimize the impact of the

support systems on the manikin measurements, the insulated cooled water inlet and outlet lines and all
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connecting cables are over 5 m long to avoid any thermal interaction with ANDI. In the constant shell
temperature mode, the heat flux sensor, temperature measurements, and the thermofluidic system hardware
and controls respond and equilibrate to substantial external condition changes in 6 to 30 s (see the SM),
which is about an order of magnitude faster than legacy thermal manikin employed in a study (in sitting
position) in transient air flow conditions (Zhou et al., 2022; Zhou and Niu, 2022).

Alongside the thermal manikin, we conducted measurements using the MaR Ty biometeorological cart
(Middel and Krayenhoftf, 2019) and a high-end three-level ultrasonic anemometer array. MaRTy measured
shortwave and longwave irradiation fluxes in six directions (four cardinal directions, top, and bottom) using
pyranometers and pyrgeometers (both with +10% accuracy) and the air temperature using HygroClip2
T/RH probe (£0.1°C accuracy). We used two 3D ultrasonic anemometers (CSAT3B from Campbell
Scientific) to measure the outdoor air velocity and turbulence characteristics. A 2D anemometer (Windsonic
1 from Campbell Scientific) measured the wind direction. The anemometers were placed on a mobile cart
at a height of 1.8 m, 1.2 m, and 0.6 m from the ground (see Fig.1D), while data was collected using
CR1000X from Campbell Scientific logger. The logging frequency for 3D anemometers was set to 20 Hz,
while 2D anemometer logged data at 1 Hz. The instruments were separated by a distance of 1 to 1.5 m to

minimize impact on each other yet to provide measurements of each other (see Fig.1D).

2.2 The IRM absorbed radiation and Mean Radiant Temperature (MRT) calculations

We calculated the whole-body absorbed radiation (R, ) by weighting the shortwave (S;) and longwave
(Lj) irradiation fluxes measured using MaRTy with representative spectral band absorptivity values (ag of
0.7 for shortwave and a;, 0of 0.97 for longwave radiation (Kéntor and Unger, 2011)) and geometrical weights
(W) corresponding to a single-cylinder human (H6ppe, 1992; Middel and Krayenhoff, 2019; Vanos et al.,
2021) as follows:

Ry = 35, W; (asS) + ay Ly) (1)
The geometrical weight factor for the cardinal directions is 0.22 and 0.06 for the top and down irradiation.

The Mean Radiant Temperature (MRT) was calculated from the R, as:

MRT = 4/R—“ —273.15 )
aro
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Where o is the Stefan-Boltzmann constant equal to 5.67 x 1078 W-m2K* To compare ANDI's
measurements against the IRM, we summed the absorbed radiation (units of W) for each of the manikin's
zones and divided by the manikin's effective radiation surface area (i.e., area that participates in radiative

heat exchange, see the SM).

2.3 Wind flow measurement processing to determine the turbulence characteristics

The outdoor air velocity and turbulence characteristics are complex and non-stationary. We used
empirical mode decomposition (EMD) to separate the measured wind speed into time-varying mean and
fluctuating components (see the SM). Several studies applied the EMD method in analyzing non-linear and
non-stationary air velocity and turbulence characteristics (Jung and Masters, 2013; Ye et al., 2017; Zhou et
al., 2022; Zhou and Niu, 2022; Zou et al., 2021, 2020). Savitzky-Golay filtering, which is less cumbersome
than EMD analysis, yields closely matching 77 values (see the SM). The data from our study indicates that
the mean air speed is subject to a temporal trend. Therefore, the detrended air speed was considered for
calculating the turbulence intensity and length scale, as described in the SM.

The manikin and anemometers were positioned to align with the direction of the wind. Given the highly
variable nature of outdoor wind directions, we considered wind within +45 degrees of the manikin's front
exposure as facing the wind for analysis. To filter out any discontinuity in the front direction was also
necessary due to the fluctuating nature of outdoor wind directions. To address this, we assumed data
continuity if the wind direction deviation was less than 3 s (no more than one data point) from the target
wind direction. When narrowed down by the head-on wind direction (at least 30 s steady periods to
minimize transient effects), the sub-set of conditions represented the whole range and corresponded to 5,005

individual heat transfer coefficient measurements (143 measurements multiplied by 35 zones).

2.4 Radiation and convection measurements using the thermal manikin
We measured radiation and convection heat exchange at ANDI's skin surface at three locations on the
Arizona State University campus in Tempe, Arizona (see location maps in the SM) on clear days from early

July to late October 2023. These locations represented unobstructed solar radiation and two types of shade
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(industrial under a lift-up building and natural shade provided by native Palo Verde trees (Middel et al.,
2021)).

The ability to set ANDI's skin temperature ( Tsg;p,) to that of the surrounding air, achieved through sub-
ambient water cooling adjusted for each zone with heating, eliminates convection, leading to the
measurement of only the net radiative heat flux. To minimize the need for manual adjusting of the skin
temperature, we conducted experiments in the afternoons when the air temperature changes only by a
fraction of a degree per hour (see example the SM). In all, the air and shell temperature deviation rarely
exceeded 0.5 °C. Even with a large heat transfer coefficient of 30 W-m™2°C"!, such a temperature difference
would yield a 15 W-m that is negligible compared to the radiative fluxes. The thermal manikin measures
the net heat flux for (qpe¢,) in 2 s intervals for the entire body and individual zones (a negative heat flux

indicates that the manikin absorbs heat). To calculate the radiative flux absorbed by each zone (R 4y, Ii)’

we added the infrared radiation emitted from that zone into the environment (R, ,, ;) to the measured net
L

heat flux.
RaANDIi = ReANDIi —Qnet; = 0 g, FieTs4kini — Qnet; (3

Where i is i*" zone of the body and F;, is the zone-environment view factor simulated using an exact
3D manikin model (see the SM). These view factors are needed since other parts of the manikin receive a
fraction of the emitted radiation (all isothermal; consequently, there is no net radiation exchange between
the body parts).

For quantifying convective heat flux, ANDI's skin temperature was maintained at 5°C below than the
air temperature. This temperature difference is smaller than the 12°C specified by the relevant standard for
determining thermal insulation of clothing using a heated thermal manikin (ASTM F1291-16, 2004). While
such a temperature decrease below ambient was achievable with our system in even hot outdoor conditions,
switching between convection and radiation measuring modes required substantial time. Consequently, we
settled on the 5°C temperature differential, which owing to the high accuracy of the temperature and heat
flux sensors translated into an average and maximum convection measurement accuracy of 6% and 9%,

respectively. The net radiative heat flux component (Grqq 4y, )> calculated based on MaRTy-measured
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MRT, was subtracted from the net measured heat flux to isolate the convective component of the heat flux

(qCOTL'UANDI) as:

Qeconvyyp; = Gnet; — Qradayp; = 9net; — O € Fie(Tstcini - MRT4) 4)

In order to prevent airflow through the manikin's actuated joins, we covered these regions with masking
tape (blue tape is visible in Fig.1D). Control experiments described in the SM show that the tape had no

impact on the measurements.

3. Results
3.1 Radiation

We conducted radiation tests in direct sunlight during clear, sunny, and hot afternoons with stable
temperatures (less than 0.5°C per hour change, see SM) ranging from 28 to 43°C, relative humidity of 10
to 20%, wind speed of 0.1 to 5 m-s™!, and a solar zenith angle increasing from about 65° to 90°. The
maximum directional shortwave and longwave fluxes were observed for the lowest zenith angles (i.e.,
closer to solar noon) and reached about 800 W-m and 575 W-m, respectively (see the SM). We measured
only the net radiative heat flux by setting ANDI's exterior shell temperature to that of air, thereby

eliminating convection. To determine the absorbed radiation fluxes for each zone (R ), we added

AANDI;
longwave emissions from the shell to the net fluxes (see Methods). To quantify the impact of body
orientation to the sun, we measured front and side sun exposure on separate days with nearly identical

weather conditions (see comparison of the fluxes in the SM). The experiments yield R for each of

QANDI;
the 35 zones (see Fig.2A) with fast update period (the heat flux sensor equilibrates rapidly even in response
to substantial external changes; see the SM).

The manikin's thermofluidic controls can simultaneously quantify R across a broad range of

aANDI;

fluxes for nearby zones. Fig.2B shows that for solar zenith angle of 65° with front sun exposure, Rg 4y 1.

varies from about 1000 W-m on the chest to around 500 W-m™ on the upper back (values for all zones
are shown in the SM). The nearly flat zones that are directly facing the sun, as the chest, show the greatest

difference when the manikin is turned from front to side, with R being 350 W-m™ (35%) smaller

AANDI;
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when the sun is illuminating the manikin's side. In contrast to the flatter zones, the manikin's orientation to
the sun has a smaller impact on more convex zones that, in both cases, have large fractions of their area
exposed, such as the face (a 150 W-m or 18% difference between orientations). The whole-body absorbed
radiation flux (i.e., Ry) differs by less than 30 W-m™? between the two orientations, with the side sun
exposure values being lower. Next, we compare the R, measured using ANDI with those obtained using
the state-of-the-art MaRTy measurements (i.e., IRM), which cannot provide the radiation fluxes for

individual zones.

front (F)
:

g frontsun _ side sun | g

‘ exposure exposure

p of 16: 20 26: R-F 28: L-F whole
head chest back thigh thigh body

Fig.2 A. The layout of ANDI's 35 zones and B. Bar graph contrasting absorbed radiative heat flux

(Ra 4np;. ) On select zones under front and side sun exposure with a solar zenith angle of 65° (values for all
L

35 zones are shown in the SM). The experiments for the two orientations were conducted on separate days
but with closely matching conditions and maximum directional shortwave irradiation of about 800 W-m

and longwave irradiation of about 575 W-m™.

10
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Fig.3A and 3B provide a comparison of the R, measured using ANDI with varied sun-exposure
orientations against the IRM (Hoppe, 1992; Middel and Krayenhoff, 2019; Vanos et al., 2021). Given that
the exterior of the thermal manikin has nearly matching absorptivities (as of 0.68 for shortwave and a; of
0.98 for longwave) to the standard values used for the IRM (see Eqn. 1 in Methods), a direct comparison
of R, obtained using the two methods is possible. Overall, radiation results show that regardless of body
orientation to the sun, the IRM and ANDI measurements agree within instrument uncertainties (mostly
below or near 5% and rarely exceeding 10%; Fig.3C), even under high solar conditions (e.g., direct beam
shortwave radiation, computed from MaRTy fluxes using Holmer's method (Holmer et al., 2015;
Rykaczewski et al., 2022b), over 800 W-m?, see the SM), and with lower differences at higher zenith
angles. In quantitative terms, the R, provided by ANDI is at most about 50 to 60 W-m™ lower than the IRM
values at zenith angle of 60 to 65°. The decomposition of the IRM signal into the absorbed shortwave and
longwave components demonstrates that these differences stem from changes in absorbed shortwave fluxes,
given that the longwave fluxes remain constant through the experiments (Fig.3A and 3B). When the R, is
converted to mean radiant temperature (MRT, see Eqn.2 in Methods), the difference between ANDI and
IRM values are below 3 to 4°C for MRT values between 30 and 55°C. Above these MRT values in the most
extreme conditions, the difference reaches between about 6°C and 9°C for the front and side sun exposure,
respectively. Any differences between ANDI and IRM radiation measurements disappear when the
experiments are conducted in a shaded location (see the SM). This observation demonstrates that the IRM
method can accurately correct for radiation during manikin-based convection measurements, which we will

discuss next.
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Fig.3 Comparison of whole-body absorbed radiative heat flux (R,) calculated from ANDI and IRM
measurements as a function of solar zenith angle for A. front sun exposure and B. side sun exposure. The
bottom row plots show the difference between the two measurements in terms of C. percent and D. mean
radiant temperature (MRT). We present the fluxes in A to C as a function of the solar zenith angles to

facilitate direct comparison (zenith angle and fluxes variation with time is shown in the SM).

3.2 Convection

We conducted the convection experiments in shaded areas with air temperatures ranging from 39 to
45°C and relative humidity of 10 to 20%, wind speed of 0.7 to 4.5 m's™ (average of 2.3+0.8 m's ( £ 1
standard deviation)), turbulence intensity (77) of 0.1 to 46% (average of 15.5+5.5%), and turbulence length
scale (L) of 0.5 to 15 m (average of 5.31+3.6 m), as shown in Fig.4A-C. By setting ANDI's skin
temperature below that of air and accounting for radiation through MaRTy measurements, we calculated
the convective heat gain from each of the 35 zones (see Methods for details). These measurements are
specific to ANDI's zone distribution, which differs from other thermal manikins (De Dear et al., 1997; Li
and Ito, 2012; Xu et al., 2019; Zou et al., 2020). To generalize the outcomes beyond ANDI-specific zones,

we combined the heat transfer coefficients for individual zones into larger anatomical regions, as shown in

12
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Fig.4D. These regions were defined by grouping ANDI's most relevant zones to match anatomical regions
of other manikins for which heat transfer coefficients have been previously reported (De Dear et al., 1997,
Liand Ito, 2012; Xu et al., 2019; Zou et al., 2020). The regions might vary to some extent since the manikins
are not the same, even representing different genders. The heat transfer coefficients for all the anatomical
regions (e.g., calves in Fig.4E, see data for rest of the regions in the SM) and whole-body (Fig.4F) are

strongly correlated to the wind speed, but trends with turbulence characteristics are less evident.
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Fig. 4 Histograms of the probability of the A. air speed (V;;-), B. turbulence intensity (77), and C. turbulence
length scale (Lt); D. schematic of the anatomical regions grouping multiple ANDI zones, and example heat
transfer coefficient (4) measurements for E. calf and F. whole-body as a function of wind speed. The marker

color indicates the 77, while its size represents the L.

Simulated or measured convection coefficients for the human body are typically presented in terms of
empirical correlations that are either a function of wind speed only or also include 77 and Ly (see Table 1).
To facilitate comparison of eight prior correlations for whole-body h that are functions of wind speed only
(Vair), Wissler (Wissler, 2018) calculated modified coefficients, a,,,, forcing an exponent of d = 0.5 that is

expected for a flow around a cylinder (the unmodified exponents vary from 0.49 to 0.60). For our correlation
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of h = 11V%* (see Fig.4F), the modified a,, is 10.6, which is near the upper part of the 7.3 to 11 range
for prior correlations (see the SM). Our values are towards the upper portion of the range because the
turbulence intensity values during the outdoor experiments (average of 15%) were higher than in most wind
tunnel experiments. The discrepancies between our outdoor measurements and this simplistic correlation
can reach up to 30% (e.g., by 5 W-m2°C! from 15 W-m?°C"! at 2 m-s™!) but can be resolved when

turbulence intensity and length scale are considered.

Table 1. Common correlations used to fit convection measurements from the human body are functions of
wind speed (V,;,-) only or also include turbulence intensity (77) and length scale (Lt) as variables. The
functional form of these equations is based on correlations for cylinders (Hilpert, 1933; Kondjoyan and
Daudin, 1995; Sak et al., 2007; Zou et al., 2020) (both non-dimensional and dimensional forms are shown).
Nu is the Nusselt number, Re is the Reynold's number, Pr is the Prandtl's number, % is the heat transfer
coefficient, k4 is the thermal conductivity, v, is the kinematic viscosity, D the diameter of the cylinder,
while a, b, ¢, d, n, A, B, and 8 are empirical constants.

Function of V ;, only Function of V., TI, and Ly

Form (based on Hilpert (29)) (based on Kondjoyan-Doudin (43) and Sak (44))
L —-0.09
non-dimensional Nu = cRebpro33 Nu = 0.63Re%5(1.07 + 0.015TIRe®%) (%)
(cylinder)
k DV b kair DVqir DVair \ (Lr 0%
dimensional h = cpr033 ﬂ(ﬁ) h =0.63 D | 1.07 + 0.015T1 o <3)
(cylinder) D \ vy “r o
used in empirical h=aVl, h=AVy, (1+B-TI-Vg)(Lr/D)*
correlations

Zouetal. (Zouetal., 2020) and Yuetal.(Yuetal., 2020) proposed a functional form of the heat transfer
coefficient correlation, taking into account turbulence characteristics for each body part based on the
combination of two engineering correlations for turbulent cross-flow over a cylinder (see Table 1). The
terms involving Reynold's number (Re = DV,;;-/v,iy) and TI are based on Kondjoyan and Doudin
(Kondjoyan and Daudin, 1995) and represent the Nusselt number (Nu = hD /k;,-) for non-turbulent flow

and its enhancement with turbulence intensity. The (L7/D)~%% is based on Sak et al. (Sak et al., 2007)
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and accounts for the reduction of the Nu with L. Zou et al. (Zou et al., 2020), Yu et al.(Yu et al., 2020),
and Zhou et al. (Zhou et al., 2022; Zhou and Niu, 2022) have fitted their simulated or manikin-measured
convection measurements for different body regions to the functional form of this equation obtained after
substitution of all air properties (see bottom row in Table 1). This approach yields three to four empirical
coefficients and exponents per body part and wind direction (i.e., 60 or more empirical coefficients overall).
The coefficients for the same scenarios but from different authors vary substantially (see the SM), implying
narrow applicability only to the studied range of wind flow characteristics (e.g., Ly on the order of 1 m in
wind tunnel experiments). However, such discrepancies can be resolved using a body geometry-rooted
analysis approach, as shown below.

To provide better insight into the physics of the convective heat exchange, we fit our heat transfer
coefficient data for each anatomical section exposed to head-on flow to the dimensional form of the
Kondjoyan-Doudin-Sak equation (see Table 1), with the diameter being the only fitting parameter (besides
hands and feet; see the rationale in the SM). The resulting "experimental" diameters can be directly
compared against geometrical descriptors of the anatomical body parts, such as the hydraulic diameter (Dy,
is equal to four times the cross-sectional area divided by the perimeter of each "cut" (Bergman et al., 2011))
obtained from analyzing a 3D manikin model (see Fig.5A and discussion on head characteristic length in
the SM). The bar graph in Fig.5B shows that, when considering the variability in both parameters, the
diameters derived using the two approaches are in good agreement for nearly all the regions.

Using the diameters obtained from the experiment fitting process, we can non-dimensionalize the heat
transfer coefficients into equivalent Nusselt numbers (Nuyyp; = hanpiP/kqir) and readily compare all
measured values on a single plot against those predicted by substituting measured air flow data into the
non-dimensional form of the Kondjoyan-Doudin-Sak equation (Nug_p(D,V,ir, T1,L7)). The plot in
Fig.5C representing all convection measurements for head-on wind direction for all anatomical regions
demonstrates that the measured and predicted Nusselt numbers agree well. The scatter of up to 15% is well

within the typical spread of engineering convection correlations (often 20% (Bergman et al., 2011)).
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Fig. 5 A. Bar graph comparing equivalent diameters for the anatomical regions shown in Fig.4D derived
from the fitting of experimental data and from three-dimensional (3D) model analysis (hydraulic diameter);
the inset shows 3D model of ANDI's calf along with an illustrative cross-section used to calculate the
equivalent diameter from the cut's area and perimeter, and B. comparison of Nusselt numbers employing
the determined diameters to compare all convection measurements for the anatomical regions measured
using ANDI (Nunps) and against those calculated using measured wind characteristics substituted into the

combined Kondjoyan-Daudin-Sak correlation (Nuxk.p).

4. Discussion

We introduce novel methods to study the impact of extreme heat—and the avenues of heat transfer—
on the human body. We leverage a one-of-a-kind thermal manikin—outdoor "ANDI"—alongside a high-
end three-level ultrasonic anemometer array and the "MaRTy" biometeorological cart to perform advanced

measurements outdoors. The use of this fully portable measurement system enables convective and direct
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radiative flux measurements in diverse extremely hot outdoor environments, which has never before been
accomplished with a thermal manikin (with exception of few notable studies using thermal manikins in
mild outdoor settings (Danca et al., 2021; Kuklane et al., 2006; Zhou et al., 2022; Zhou and Niu, 2022), the
instruments are used within climatic chambers). Below, we discuss how radiation and convection
measurements conducted using ANDI facilitate validating prior assumptions underlying IRM method and

resolving significant discrepancies in convection correlations present in the literature.

4.1 Radiation

The absorbed radiation flux distribution over the body demonstrated here and measured using ANDI
has thus far only been available through advanced simulations (Kubaha et al., 2004, 2003; Rees et al., 2008;
Rykaczewski et al., 2022b, 2022a). Such detailed information can be used to quantify and improve thermal
comfort or heat stress under highly anisotropic radiation (e.g., reflective pavements (Schneider et al., 2023),
highly glazed surfaces (Oliveira and Pedrini, 2023; Rees et al., 2008), or hot equipment (Krishnamurthy et
al., 2017)) or to optimize the performance of garments made of textiles with engineered spectral properties
(Peng and Cui, 2020). However, human thermal radiation exposure is more often assessed in whole-body
terms.

Despite the IRM geometrical weights (see Eqn.1 in Methods) not considering the orientation of the
body to the solar radiation, even the largest differences between the radiometer-based and thermal manikin
measurements are comparable to the instrument accuracies (+10% of the value for IRM). As illustrated by
separate measurements using ANDI (front exposed to sun) on Sept-14 and Oct-18, shown in Fig.3C, a 5%
difference can also occur between different experimental repetitions. We note that the difference between
the IRM and ANDI experiments is at most 4% in the Sept-14 experiment with the manikin's front sun
exposed. Furthermore, the maximum difference observed is unlikely to be larger for lower zenith angles
(i.e., closer to noon) because shortwave radiation absorbed by the human body has a relatively small
variation at lower zenith angles (i.e., between 8:00-9:00 and 14:00-15:00 in the summertime in Tempe,
Arizona (Rykaczewski et al., 2022b; Vanos et al., 2021)), as shown in Fig.3A,D. Consequently, the
agreement between ANDI and the IRM measurement demonstrates that the latter provides a good measure

of the R, for a standing human, regardless of their orientation to the sun. This observation is essential as
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the IRM is often used as the "gold standard" for comparison of whole-body absorbed radiation flux
measured using a variety of lower cost and widely utilized instruments (e.g., globe, cylindrical, and ping-

pong ball radiation thermometers (Guo et al., 2020; Thorsson et al., 2007; Vanos et al., 2021)).

4.2 Convection

Fitting our data yields an equivalent diameter for the whole body of 17.3 cm, which when substituted
along with turbulence characteristics into the combination of two engineering correlations for a cylinder in
turbulent cross-flow (the dimensional form of the Kondjoyan-Doudin-Sak equation) provides matching
predictions to most convection correlations that otherwise provide conflicting outcomes. We note that this
equivalent diameter can also be obtained using an area-weighted average of diameters for the anatomical
regions. The plot in Fig.6A shows that our heat transfer coefficient predictions employing this diameter
closely match the correlations of De Dear et al. (19) and Oguro et al. (51). These correlations are only a
function of wind speed but were measured with T1 of 4% to 8% and Lt of about 1 m (generated using a
large vertical cylinder in the wind tunnel). When 77 is increased to the range that pedestrians experience
outdoors (about 20%), our predictions also match well with those of Yu et al.(Yu et al., 2020) and, below
3 m's!, with Zhou et al.(Zhou et al., 2022) (which is the upper wind speed limit of the latter correlation).
Similarly, when Ly is adjusted to likely low values (order of 5 to 10 ¢cm) in the works of Xu et al.(Xu et al.,
2021) and Ono et al.(Ono et al., 2008), our correlations are in good agreement (see Fig.6B and 6C).

From the correlations for which 77 and Ly are included or can be estimated, our correlation only differs
substantially from the simulation-based Zou et al.(Zou et al., 2020) correlation (see the SM). The latter
correlation predicts values at least 30% higher than many other reported values (Zou et al., 2020) but
roughly agree with those reported by Ichihara et al.(Ichihara, 1997) (which has insufficient information to
deduct 77 and L values). The discrepancy between our correlation and that of Zou et al. (Zou et al., 2020)
stems primarily from the higher weighting of 7/ (B = 2 vs. equivalent 1.53 for our work) and lower
exponent on Ly (8 =-0.05 vs. -0.09 for our work). It might be the result of varied methods, or the relatively
narrow Lp range (2.5 to 6 m) used in their simulations. Other sources of disagreement between the
convective correlations might be how radiative heat exchange is estimated for different body parts and

subtracted from measured heat flux to provide the convection value. Legacy thermal manikins used in past
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studies cannot directly measure radiation, so it was either minimized by adding low emissivity foil coatings
(De Dear et al., 1997; Fojtlin et al., 2016) or calculated using local view factors along with MRT (Zhou et
al., 2022; Zhou and Niu, 2022). The outcomes of the former method might have been skewed by air trapped
under the foil, while those of the latter method might have been impacted by the generic nature of the view
factors (not manikin and pose specific) and error-prone globe meters used to measure the MRT (Vanos et
al., 2021; Zhou et al., 2022; Zhou and Niu, 2022). Our convection measurements do not suffer such
shortcomings since we rely on IRM measurements validated against ANDI's equivalents and use view
factors specific to our manikin and its posture (see Methods and SM). We also note that changes in air
properties with temperatures in the 20 to 50°C range have a negligible net impact on the heat transfer
coefficient (Viswanathan et al., 2023).

Overall, our geometry-rooted approach demonstrates that different body parts are well-approximated
by cylinders even in turbulent flow and can also match most of the prior correlations for whole-body heat
transfer coefficients. We note that the diameter-based approach works well when ANDI faces the wind, as
body parts have a relatively small impact on the flow around each other and behave similarly to isolated
cylinders. Such interactions could be substantially higher with side-on flow. Although engineering heat
transfer correlations for flow over sequential tubes in a bank exist, they do not consider the flow's incoming
turbulence (Bergman et al., 2011). Consequently, an approach based on correlations with multiple fitting

parameters is more practical for such cases.
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Fig. 6 A-C: Comparison of current whole-body heat transfer coefficient (%) correlations against those in
the literature for varied turbulence intensity (77) and length scale (L) values (see the SM for tabulated

correlations).

4.3 Limitations
There are several limitations, areas for improvement, and opportunities for future studies beyond the
current work. Thus far, we only conducted measurements with the manikin in a static standing position,

emphasizing front wind exposure. Both the radiative (Fanger, 1972; Park and Tuller, 2011a, 2011b) and
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the convective (De Dear et al., 1997; Gaspar et al., 2006; Vogt et al., 1983a; Xu et al., 2021) heat exposure
are impacted by changes in posture (e.g., sitting vs. standing), the subject's motion, and the presence of
clothing. In contrast to the IRM, the thermal manikin cannot provide radiation measurements for spectral
regions that might clarify how to engineer radiative properties of the built environment (Schneider et al.,
2023) or clothing (Peng and Cui, 2020). In turn, for convection measurements, we employed the isotropic
radiation assumption that could impact some local convective fluxes. We note that we did conduct pilot
experiments switching between radiation (i.e., ANDI at air temperature) and convection (i.e., ANDI cooler
than the surrounding) measurement, but we found that the time required for this process was too long to do
continuously. In other words, we found better outcomes by using the MaRTy cart to quantify the radiation
at a fast rate, which captured small, but significant fluctuations in the irradiation. This point leads to the
primary limitation of our approach: the chaotic nature of the outdoor environments. The chaotic features
are most pronounced for wind flow, which can fluctuate substantially even within the 30 s periods we focus
on. In extremely hot desert conditions, short bursts of air can also be accompanied by locally higher air
temperature, which on rare occasions can overwhelm the thermofluidic systems on a zone or two (as
exemplified by occasional near zero heat transfer coefficients for 1/35 zones in a given time period).
Consequently, we can inherently expect outdoor measurements to produce a higher scatter in convective
measurements than equivalents in a wind tunnel. In addition, we note that clothing ventilation and pumping
effects induced by motion can substantially alter air flow and heat transfer around the body (Bouskill et al.,

2002; Kang et al., 2020; Vogt et al., 1983b), therefore will be included in future experimentation.

5. Conclusions

The introduced suite of instruments—including the outdoor thermal manikin ANDI, the MaRTy
biometeorological cart, and the ultrasonic anemometer array—is the most advanced way to characterize the
dominant components of the thermal load—convection and radiation—on humans exposed to extreme heat.
The thermal manikin was custom-designed and successfully deployed for routine outdoor measurements of
the radiative and convective heat fluxes on 35 human body surface areas in extremely hot conditions.

The simultancous ANDI and MaRTy radiative measurements allowed us to test the common

assumption of cylindrical body shape used in the IRM method. In particular, we showed that even under
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high solar conditions, IRM and ANDI agree with radiative measurements within instrument uncertainties
regardless of body orientation. Any disagreement in the measures of radiation absorbed by the whole-body
disappears when experiments are conducted in shaded conditions. While the overall difference in the R,
for the entire body remains negligible under different body orientations to the sun, it is noteworthy that
there are substantial deviations observed in local body parts. The high spatial resolution data from ANDI
allows us to delve deeper into the radiation fluxes at localized body parts. Considering the availability of
this detailed data, shedding light on these localized aspects can significantly contribute to a more
comprehensive and nuanced understanding in practical applications.

We used ANDI's convective measurements to show that anatomical body regions can be treated as
cylinders even in highly turbulent flow. This geometry-rooted analysis of the convective measurements
yields an appropriate equivalent diameter for the human body (17.3 cm). When this proper length scale for
the body and turbulence variables are substituted into traditional engineering correlation for a cylinder in
cross-flow, the results match predictions of most convection correlations that otherwise provide conflicting
outcomes. Consequently, the introduced physics-based correlation is universally applicable across a wide
range of wind speeds, 77, and L, covering indoor and outdoor settings, and based on our prior work, to
diverse human body shapes (Viswanathan et al., 2023). These results provide more advanced estimates of
human heat exchange in extreme outdoor environments, providing a novel quantitative understanding of
how a hot environment heats humans.

The ability to predict heat exchange experienced by ANDI based on microclimatic measurements (i.e.,
radiometers and anemometers) also lays the foundation for future work conducting outdoor "adaptive"
mode experiments. In this mode, the thermal manikin is controlled by a thermoregulation model and has
physiologically based responses to the environmental and metabolic heat loads (e.g., sweats more when hot
(Blood and Burke, 2010; Burke et al., 2010, 2009; Joshi et al., 2023; Psikuta et al., 2017)). Therefore, using
the introduced suite of instruments, we can quantify the dynamics of physiological responses (e.g., core and
skin temperatures; sweat rate) to specific combinations of hot microclimates (quantified using MaRTy and
anemometers) with human factors such as metabolic rates (adjusted for with ANDI) and clothing. This is a
unique method to test various scenarios, including experiments in which the thermal exposure and duration

become dangerous to humans and, therefore, cannot be conducted. Overall, current results and future
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adaptive experimentation in various outdoor settings contribute to developing strategies to adapt urban
planning, clothing design, and outdoor activity to changing climate conditions, thus supporting informed

decision-making around heat protection, adaptation, and mitigation.
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