

1 **Characterization of human extreme heat exposure using an outdoor thermal manikin**

2 Ankit Joshi,^{1,2} Shri H. Viswanathan,¹ Ankush K. Jaiswal,^{1,2} Kambiz Sadeghi,^{1,2†} Lyle Bartels,¹ Rajan M.

3 Jain,¹ Gokul Pathikonda,¹ Jennifer K. Vanos,^{2,3} Ariane Middel,^{2,4,5} and Konrad Rykaczewski^{1,2*}

4

5 *1. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA*

6 *2. Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, USA*

7 *3. School of Sustainability, Arizona State University, Tempe, AZ, USA*

8 *4. School for Arts, Media and Engineering, Arizona State University, Tempe, AZ, USA*

9 *5. School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA*

10

11 *corresponding author email: konradr@asu.edu

12 **Abstract**

13 Extreme heat is a current and growing global health concern. Current heat exposure models include
14 meteorological and human factors that dictate heat stress, comfort, and risk of illness. However, radiation
15 models simplify the human body to a cylinder, while convection ones provide conflicting predictions. To
16 address these issues, we introduce a new method to characterize human exposure to extreme heat with
17 unprecedented detail. We measure heat loads on 35 body surface zones using an outdoor thermal manikin
18 ("ANDI") alongside an ultrasonic anemometer array and integral radiation measurements (IRM). We show
19 that regardless of body orientation, IRM and ANDI agree even under high solar conditions. Further, body
20 parts can be treated as cylinders, even in highly turbulent flow. This geometry-rooted insight yields a whole-
21 body convection correlation that resolves prior conflicts and is valid for diverse indoor and outdoor wind
22 flows. Results will inform decision-making around heat protection, adaptation, and mitigation.

23

24 **Keywords**

25 Environmental human heat exposure, air turbulence, convection, radiation, thermal manikin, integral
26 radiation measurement

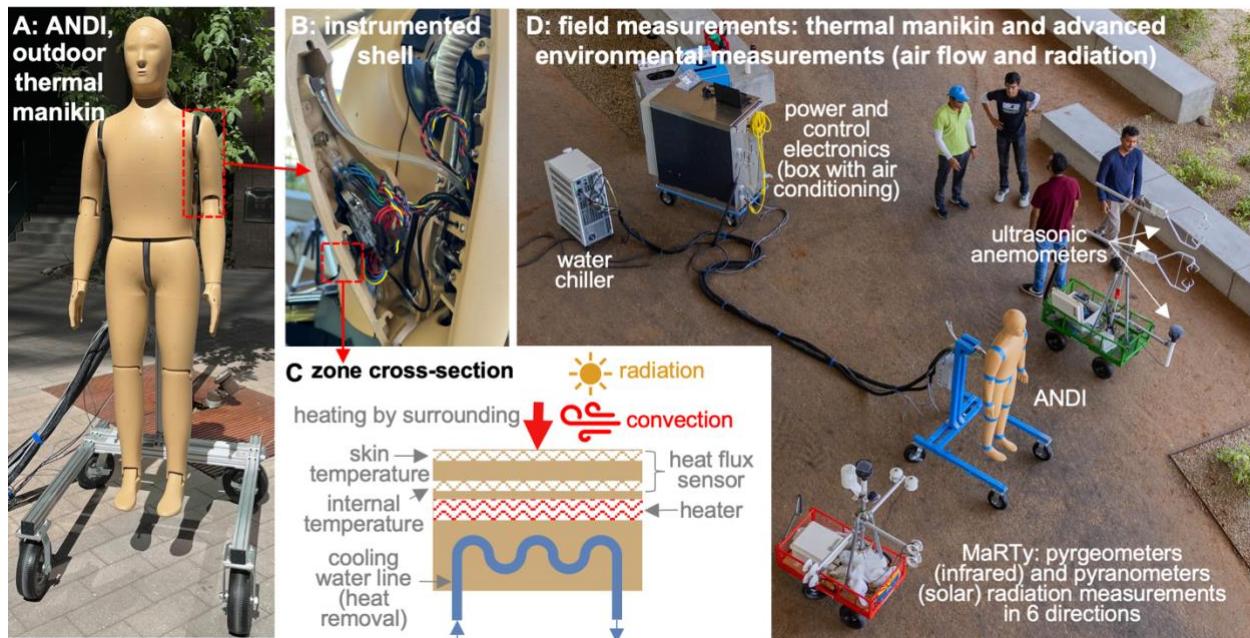
27

28 **1. Introduction**

29 Extreme heat seriously impacts human health, livability, productivity, and overall well-being (Ebi et
30 al., 2021a, 2021b; Vanos et al., 2023), with age, illness, and poverty aggravating the risk (Jay et al., 2021).

31 As researchers and practitioners seek to contend with increasing heat globally (Cissé et al., 2022; Powis et
32 al., 2023), advanced methods are required to understand the nuances of "heat" exposure—beyond air
33 temperature—that will affect human behavior, technological innovation, infrastructure change, and policy
34 creation (Cissé et al., 2022). These are all critical forms of adaptation that must be targeted to lessen global
35 suffering from heat.

36 Radiation and convection account for most heat exposure to the human body outdoors (Middel et al.,
37 2016; Parsons, 2019, 2014; Turner et al., 2023) but are more challenging to quantify in urban areas than
38 commonly reported measures of air temperature and humidity (Brown and Gillespie, 1995). The common
39 methods to quantify convective exchange with the human body have been created indoors and have not
40 been validated in real-world outdoor settings, while approaches used to measure radiation exposure (e.g.,
41 globe and cylindrical radiation thermometers or integral radiation measurements (IRM)) have not been
42 validated with an accurate, realistic representation of the human body. In particular, the models that intake
43 relevant environmental parameters (e.g., radiative fluxes or wind flow) and output radiative or convective
44 heat fluxes experienced by the human body are either based on simplistic assumptions about the body's
45 shape or provide disagreeing predictions.


46 The most advanced radiation field measurement method, the IRM, quantifies irradiation in two spectral
47 regions (shortwave and longwave) and six directions (Höppe, 1992; Middel and Krayenhoff, 2019).
48 However, when calculating the radiation absorbed by the body based on the measured twelve fluxes, the
49 IRM assumes that a human body is a single vertical cylinder or box (Brown, 2019; Höppe, 1992; Middel
50 and Krayenhoff, 2019). Exposure to thermal radiation in outdoor settings on human subjects has been
51 studied, but the fluxes were inferred from skin temperature measurements (Blazejczyk et al., 1993), which
52 can be prone to substantial errors (MacRae et al., 2021; Rykaczewski and Dhanote, 2022). Convective heat
53 transfer was also studied with human subjects by directly placing heat flux sensors on the skin (Danielsson,
54 1996) or measuring the sublimation rate of large naphthalene balls placed on the subject's bodies (Nishi and
55 Gagge, 1970). In both cases, the method could have interfered with airflow (De Dear et al., 1997) and

56 yielded only point values that were not necessarily representative of convection from the local body parts.
57 Instead of working with subjects, more modern efforts to measure convective heat transfer use
58 computational and physical human-shaped thermal manikins (Holmér, 2004; Ichihara, 1997; Ito and Hotta,
59 2006; Li and Ito, 2012; Psikuta et al., 2017; Xu et al., 2019).

60 Further, over ten correlations have been developed to predict the forced convective heat transfer
61 coefficient for the human body or its parts based on indoor wind tunnel measurements with thermal
62 manikins or simulations with computational equivalents (Wissler, 2018; Xu et al., 2021). However, for the
63 same wind speed, the prediction of the various correlations can often vary by over 150% (Xu et al., 2021)
64 (see examples in the Supplemental Material—SM). Much of this disagreement stems from not considering
65 or being unable to account for the turbulence characteristics due to wind tunnel limitations. The few recent
66 efforts that account for turbulence intensity (ratio of the standard deviation of the speed fluctuations to its
67 mean value) and, in two cases, length scale (size of large energy-containing eddies) yield several
68 correlations with conflicting coefficients (Ichihara, 1997; Ono et al., 2008; Xu et al., 2021; Yu et al., 2020;
69 Zhou et al., 2022; Zhou and Niu, 2022; Zou et al., 2020). Legacy thermal manikins cannot directly measure
70 radiation, so additional errors might arise from how radiation is estimated and separated from net heat flux
71 to yield the convective flux (De Dear et al., 1997; Fojtlín et al., 2016; Zhou and Niu, 2022). In summary,
72 convective and radiative human heat exposure models use simplistic assumptions or provide conflicting
73 predictions and were not tested in realistic conditions (outdoors and with three-dimensional human body
74 representation). Thus, the multitude of studies applying such models to estimate uncompensable heat
75 outdoors (Coffel et al., 2017; Guzman-Echavarria et al., 2023; Powis et al., 2023; Sherwood and Huber,
76 2010) or heat balance of outdoors workers or athletes (Dunne et al., 2013; Guzman-Echavarria et al., 2023;
77 Rowlinson and Jia, 2014) may be missing critical aspects to estimate human heat gain and loss in complex
78 settings that people find themselves during heat events.

79 This paper introduces novel methods to study the impact of extreme heat—and the avenues of heat
80 transfer—on the human body. We leverage a one-of-a-kind thermal manikin—outdoor "ANDI" (see
81 **Fig.1A-C**) alongside a high-end three-level ultrasonic anemometer array and the "MaRTy"
82 biometeorological cart (Middel and Krayenhoff, 2019) (see **Fig.1D**). As legacy manikins, ANDI's shell
83 contains temperature sensors and can be resistively heated. In addition, ANDI's shell has heat flux sensors

84 and can be water-cooled with built-in liquid channels (see **Fig.1B** and **1C**), thereby enabling convective
 85 and direct radiative flux measurements in hot conditions unattainable with prior instrumentation. With a
 86 few notable exceptions of legacy manikins being used in mild outdoor settings (e.g., within a car parked
 87 outdoors (Danca et al., 2021), wearing protective clothing (Kuklane et al., 2006), or sitting under a shaded
 88 lift-up building section (Zhou et al., 2022; Zhou and Niu, 2022)), thermal manikins are operated in pristine
 89 climatic chambers while their support systems are in adjacent labs. In contrast, the entire ANDI system,
 90 including power and control electronics and water chiller, is mobile and ruggedized to operate in extreme
 91 heat and dust (e.g., the electronics are housed in a movable and sealed box with air conditioning, see
 92 **Fig.1D**). Here, we deploy this unique suite of instruments for over 20 days in Tempe, Arizona, under
 93 extremely hot conditions (air temperatures up to 47°C and irradiation over 1000 W·m⁻²) to quantify
 94 convective and radiative fluxes on ANDI's 35 surface zones. We use the experimental results to examine
 95 common assumptions in advanced radiation measurements and provide new physical insight into
 96 convection around the human body that sheds light on divergences in prior correlations. While ANDI
 97 represents an average male, radiative and convective fluxes (i.e., per surface area) vary slightly with body
 98 shape (Rykaczewski et al., 2022a; Viswanathan et al., 2023). The introduced methods are the most
 99 advanced way to measure human heat exchange in extreme outdoor environments and provide a novel
 100 quantitative understanding that can support better behavioral and policy decisions and optimize
 101 technological adaptations.

103 **Fig.1** Images of **A.** the outdoor thermal manikin's ("ANDI" – Advanced Newton Dynamic Instrument)
104 exterior and **B.** interior (instrumented shell); **C.** cross-sectional schematic of the manikin's interior with heat
105 flux and temperature sensors, as well as heating and cooling ability that enables radiation and convection
106 measurements in extreme heat conditions, and **D.** "aerial" view of typical outdoor experimental set up
107 showing ANDI and its extreme heat-compatible support systems, the advanced mobile biometeorological
108 station "MaRTy" (Middel and Krayenhoff, 2019), and a three-level 3D ultrasonic anemometer array.

109

110 **2. Materials and Methods**

111 **2.1 Instrumentation**

112 We used a custom outdoor thermal manikin named "Advanced Newton Dynamic Instrument" or ANDI
113 (Thermetrics LLC, Seattle, USA) divided into 35 zones that each contain area-distributed resistive
114 temperature (± 0.044 °C accuracy determined by manufacturer calibration) and heat flux sensors and have
115 heating and cooling ability. Each heat flux sensor is custom-made and has an accuracy determined through
116 manufacturer-performed calibration against the heat flux generated with the internal heater. For our thermal
117 manikin, the average absolute measured heat flux deviation from the generated heat flux for the 35 sensors
118 was 3.1% ($6.2 \text{ W}\cdot\text{m}^{-2}$) and at most was 9% ($18 \text{ W}\cdot\text{m}^{-2}$). The manikin represents the 50th percentile of the
119 western male body, with a height of 1.78 meters and a surface area of 1.86 m². While based on the base
120 ANDI model, our thermal manikin was customized to be routinely used in extreme heat outdoor conditions.
121 To withstand air temperatures of 50°C and high radiative fluxes (more than 1000 W·m⁻²), the internal part
122 of the shell that includes the cooling channels is made of a higher glass transition polymer than in the regular
123 model. To prevent shading, the manikin is attached to the stand from the back, not through the top of the
124 head as the base manikin model (Joshi et al., 2023). The manikin is suspended 24 cm meters above the
125 ground from a mobile stand covered with non-reflective adhesive (see **Fig.1A** and **1D**). All power
126 electronics, controls, the manikin sweating system (not employed in the current study), and the laptop with
127 control software are housed within the air-conditioned and dust-proof mobile box shown in **Fig.1D**. These
128 systems, along with the water chiller and the manikin, are powered through a mobile gasoline power
129 generator (American Honda Power, Alpharetta, GA; model: EU7000iS). To minimize the impact of the
130 support systems on the manikin measurements, the insulated cooled water inlet and outlet lines and all

131 connecting cables are over 5 m long to avoid any thermal interaction with ANDI. In the constant shell
132 temperature mode, the heat flux sensor, temperature measurements, and the thermofluidic system hardware
133 and controls respond and equilibrate to substantial external condition changes in 6 to 30 s (see the SM),
134 which is about an order of magnitude faster than legacy thermal manikin employed in a study (in sitting
135 position) in transient air flow conditions (Zhou et al., 2022; Zhou and Niu, 2022).

136 Alongside the thermal manikin, we conducted measurements using the MaRTy biometeorological cart
137 (Middel and Krayenhoff, 2019) and a high-end three-level ultrasonic anemometer array. MaRTy measured
138 shortwave and longwave irradiation fluxes in six directions (four cardinal directions, top, and bottom) using
139 pyranometers and pyrgeometers (both with $\pm 10\%$ accuracy) and the air temperature using HygroClip2
140 T/RH probe ($\pm 0.1^\circ\text{C}$ accuracy). We used two 3D ultrasonic anemometers (CSAT3B from Campbell
141 Scientific) to measure the outdoor air velocity and turbulence characteristics. A 2D anemometer (Windsonic
142 1 from Campbell Scientific) measured the wind direction. The anemometers were placed on a mobile cart
143 at a height of 1.8 m, 1.2 m, and 0.6 m from the ground (see **Fig.1D**), while data was collected using
144 CR1000X from Campbell Scientific logger. The logging frequency for 3D anemometers was set to 20 Hz,
145 while 2D anemometer logged data at 1 Hz. The instruments were separated by a distance of 1 to 1.5 m to
146 minimize impact on each other yet to provide measurements of each other (see **Fig.1D**).
147

148 **2.2 The IRM absorbed radiation and Mean Radiant Temperature (MRT) calculations**

149 We calculated the whole-body absorbed radiation (R_a) by weighting the shortwave (S_j) and longwave
150 (L_j) irradiation fluxes measured using MaRTy with representative spectral band absorptivity values (α_S of
151 0.7 for shortwave and α_L of 0.97 for longwave radiation (Kántor and Unger, 2011)) and geometrical weights
152 (W_j) corresponding to a single-cylinder human (Höppe, 1992; Middel and Krayenhoff, 2019; Vanos et al.,
153 2021) as follows:

$$154 \quad R_a = \sum_{j=1}^6 W_j (\alpha_S S_j + \alpha_L L_j) \quad (1)$$

155 The geometrical weight factor for the cardinal directions is 0.22 and 0.06 for the top and down irradiation.
156 The Mean Radiant Temperature (MRT) was calculated from the R_a as:

$$157 \quad MRT = \sqrt[4]{\frac{R_a}{\alpha_L \sigma}} - 273.15 \quad (2)$$

158 Where σ is the Stefan-Boltzmann constant equal to $5.67 \times 10^{-8} \text{ W}\cdot\text{m}^{-2}\text{K}^{-4}$. To compare ANDI's
159 measurements against the IRM, we summed the absorbed radiation (units of W) for each of the manikin's
160 zones and divided by the manikin's effective radiation surface area (i.e., area that participates in radiative
161 heat exchange, see the SM).

162

163 **2.3 Wind flow measurement processing to determine the turbulence characteristics**

164 The outdoor air velocity and turbulence characteristics are complex and non-stationary. We used
165 empirical mode decomposition (EMD) to separate the measured wind speed into time-varying mean and
166 fluctuating components (see the SM). Several studies applied the EMD method in analyzing non-linear and
167 non-stationary air velocity and turbulence characteristics (Jung and Masters, 2013; Ye et al., 2017; Zhou et
168 al., 2022; Zhou and Niu, 2022; Zou et al., 2021, 2020). Savitzky-Golay filtering, which is less cumbersome
169 than EMD analysis, yields closely matching *TI* values (see the SM). The data from our study indicates that
170 the mean air speed is subject to a temporal trend. Therefore, the detrended air speed was considered for
171 calculating the turbulence intensity and length scale, as described in the SM.

172 The manikin and anemometers were positioned to align with the direction of the wind. Given the highly
173 variable nature of outdoor wind directions, we considered wind within ± 45 degrees of the manikin's front
174 exposure as facing the wind for analysis. To filter out any discontinuity in the front direction was also
175 necessary due to the fluctuating nature of outdoor wind directions. To address this, we assumed data
176 continuity if the wind direction deviation was less than 3 s (no more than one data point) from the target
177 wind direction. When narrowed down by the head-on wind direction (at least 30 s steady periods to
178 minimize transient effects), the sub-set of conditions represented the whole range and corresponded to 5,005
179 individual heat transfer coefficient measurements (143 measurements multiplied by 35 zones).

180

181 **2.4 Radiation and convection measurements using the thermal manikin**

182 We measured radiation and convection heat exchange at ANDI's skin surface at three locations on the
183 Arizona State University campus in Tempe, Arizona (see location maps in the SM) on clear days from early
184 July to late October 2023. These locations represented unobstructed solar radiation and two types of shade

185 (industrial under a lift-up building and natural shade provided by native Palo Verde trees (Middel et al.,
186 2021)).

187 The ability to set ANDI's skin temperature (T_{skin_i}) to that of the surrounding air, achieved through sub-
188 ambient water cooling adjusted for each zone with heating, eliminates convection, leading to the
189 measurement of only the net radiative heat flux. To minimize the need for manual adjusting of the skin
190 temperature, we conducted experiments in the afternoons when the air temperature changes only by a
191 fraction of a degree per hour (see example the SM). In all, the air and shell temperature deviation rarely
192 exceeded 0.5 °C. Even with a large heat transfer coefficient of $30 \text{ W} \cdot \text{m}^{-2} \text{C}^{-1}$, such a temperature difference
193 would yield a $15 \text{ W} \cdot \text{m}^{-2}$ that is negligible compared to the radiative fluxes. The thermal manikin measures
194 the net heat flux for (q_{net_i}) in 2 s intervals for the entire body and individual zones (a negative heat flux
195 indicates that the manikin absorbs heat). To calculate the radiative flux absorbed by each zone (R_{aANDI_i}),
196 we added the infrared radiation emitted from that zone into the environment (R_{eANDI_i}) to the measured net
197 heat flux.

198
$$R_{aANDI_i} = R_{eANDI_i} - q_{net_i} = \sigma \alpha_L F_{ie} T_{skin_i}^4 - q_{net_i} \quad (3)$$

199 Where i is i^{th} zone of the body and F_{ie} is the zone-environment view factor simulated using an exact
200 3D manikin model (see the SM). These view factors are needed since other parts of the manikin receive a
201 fraction of the emitted radiation (all isothermal; consequently, there is no net radiation exchange between
202 the body parts).

203 For quantifying convective heat flux, ANDI's skin temperature was maintained at 5°C below than the
204 air temperature. This temperature difference is smaller than the 12°C specified by the relevant standard for
205 determining thermal insulation of clothing using a heated thermal manikin (ASTM F1291-16, 2004). While
206 such a temperature decrease below ambient was achievable with our system in even hot outdoor conditions,
207 switching between convection and radiation measuring modes required substantial time. Consequently, we
208 settled on the 5°C temperature differential, which owing to the high accuracy of the temperature and heat
209 flux sensors translated into an average and maximum convection measurement accuracy of 6% and 9%,
210 respectively. The net radiative heat flux component ($q_{radANDI}$), calculated based on MaRTy-measured

211 MRT, was subtracted from the net measured heat flux to isolate the convective component of the heat flux
212 ($q_{conv_{ANDI}}$) as:

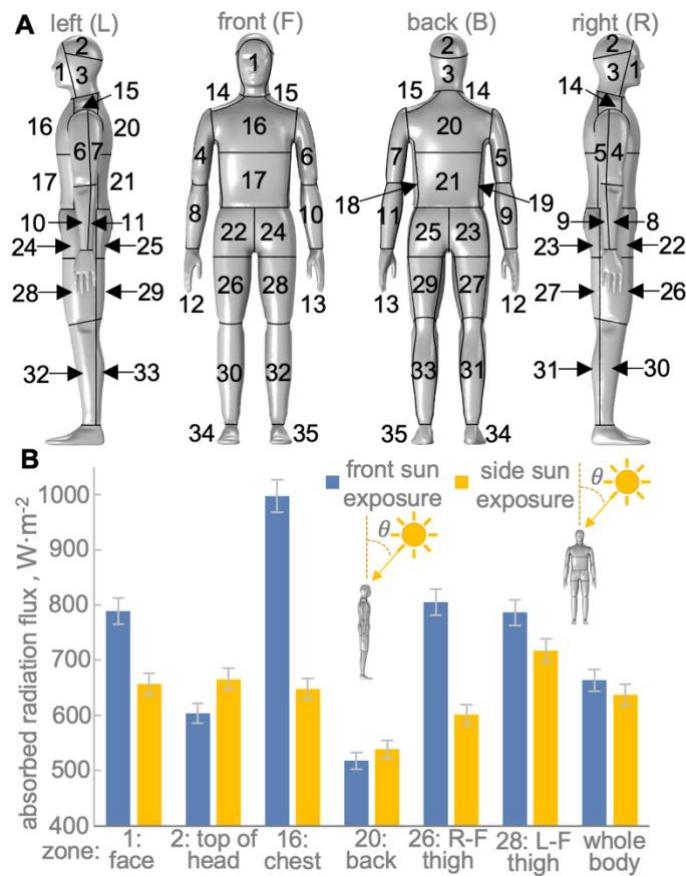
213
$$q_{conv_{ANDI}} = q_{net_i} - q_{rad_{ANDI}} = q_{net_i} - \sigma \varepsilon F_{ie} (T_{skin_i}^4 - MRT^4) \quad (4)$$

214

215 In order to prevent airflow through the manikin's actuated joins, we covered these regions with masking
216 tape (blue tape is visible in **Fig.1D**). Control experiments described in the SM show that the tape had no
217 impact on the measurements.

218

219 **3. Results**

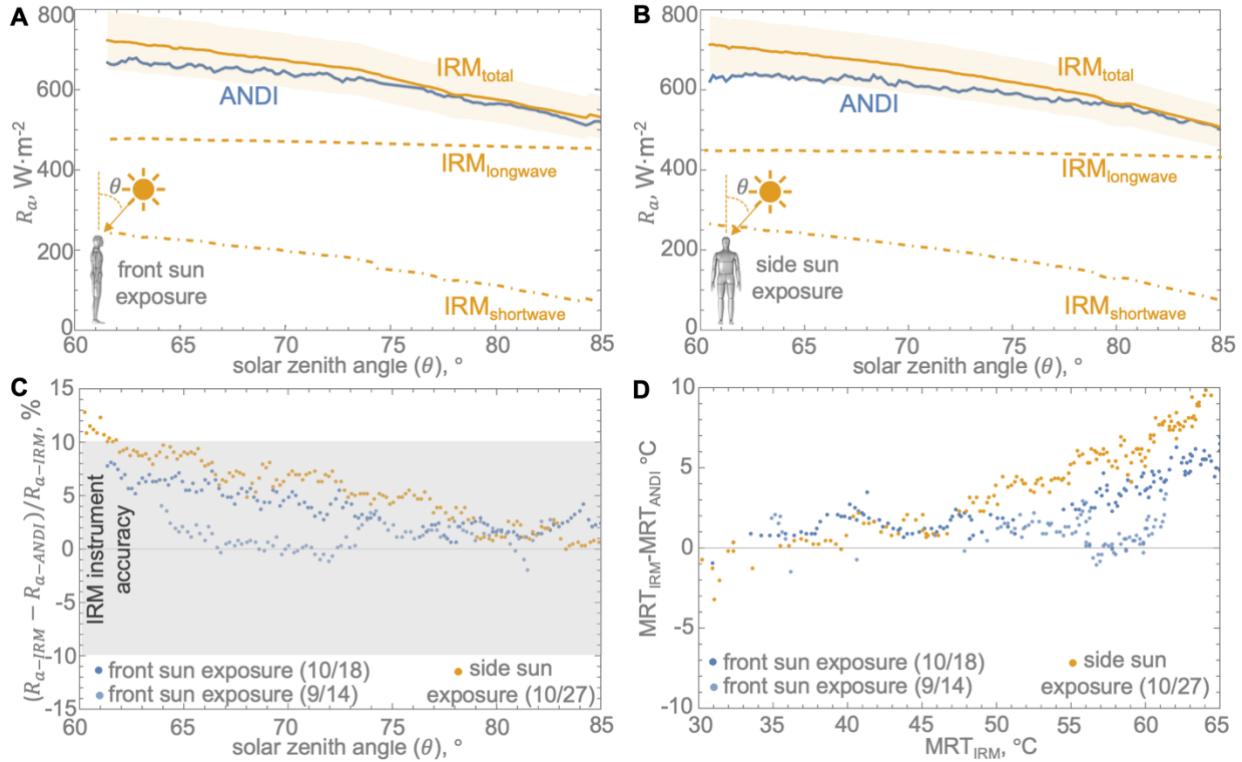

220 **3.1 Radiation**

221 We conducted radiation tests in direct sunlight during clear, sunny, and hot afternoons with stable
222 temperatures (less than 0.5°C per hour change, see SM) ranging from 28 to 43°C, relative humidity of 10
223 to 20%, wind speed of 0.1 to 5 m·s⁻¹, and a solar zenith angle increasing from about 65° to 90°. The
224 maximum directional shortwave and longwave fluxes were observed for the lowest zenith angles (i.e.,
225 closer to solar noon) and reached about 800 W·m⁻² and 575 W·m⁻², respectively (see the SM). We measured
226 only the net radiative heat flux by setting ANDI's exterior shell temperature to that of air, thereby
227 eliminating convection. To determine the absorbed radiation fluxes for each zone ($R_{a_{ANDI_i}}$), we added
228 longwave emissions from the shell to the net fluxes (see Methods). To quantify the impact of body
229 orientation to the sun, we measured front and side sun exposure on separate days with nearly identical
230 weather conditions (see comparison of the fluxes in the SM). The experiments yield $R_{a_{ANDI_i}}$ for each of
231 the 35 zones (see **Fig.2A**) with fast update period (the heat flux sensor equilibrates rapidly even in response
232 to substantial external changes; see the SM).

233 The manikin's thermofluidic controls can simultaneously quantify $R_{a_{ANDI_i}}$ across a broad range of
234 fluxes for nearby zones. **Fig.2B** shows that for solar zenith angle of 65° with front sun exposure, $R_{a_{ANDI_i}}$
235 varies from about 1000 W·m⁻² on the chest to around 500 W·m⁻² on the upper back (values for all zones
236 are shown in the SM). The nearly flat zones that are directly facing the sun, as the chest, show the greatest
237 difference when the manikin is turned from front to side, with $R_{a_{ANDI_i}}$ being 350 W·m⁻² (35%) smaller

238 when the sun is illuminating the manikin's side. In contrast to the flatter zones, the manikin's orientation to
 239 the sun has a smaller impact on more convex zones that, in both cases, have large fractions of their area
 240 exposed, such as the face (a $150 \text{ W}\cdot\text{m}^{-2}$ or 18% difference between orientations). The whole-body absorbed
 241 radiation flux (i.e., R_a) differs by less than $30 \text{ W}\cdot\text{m}^{-2}$ between the two orientations, with the side sun
 242 exposure values being lower. Next, we compare the R_a measured using ANDI with those obtained using
 243 the state-of-the-art MaRTy measurements (i.e., IRM), which cannot provide the radiation fluxes for
 244 individual zones.

245


246

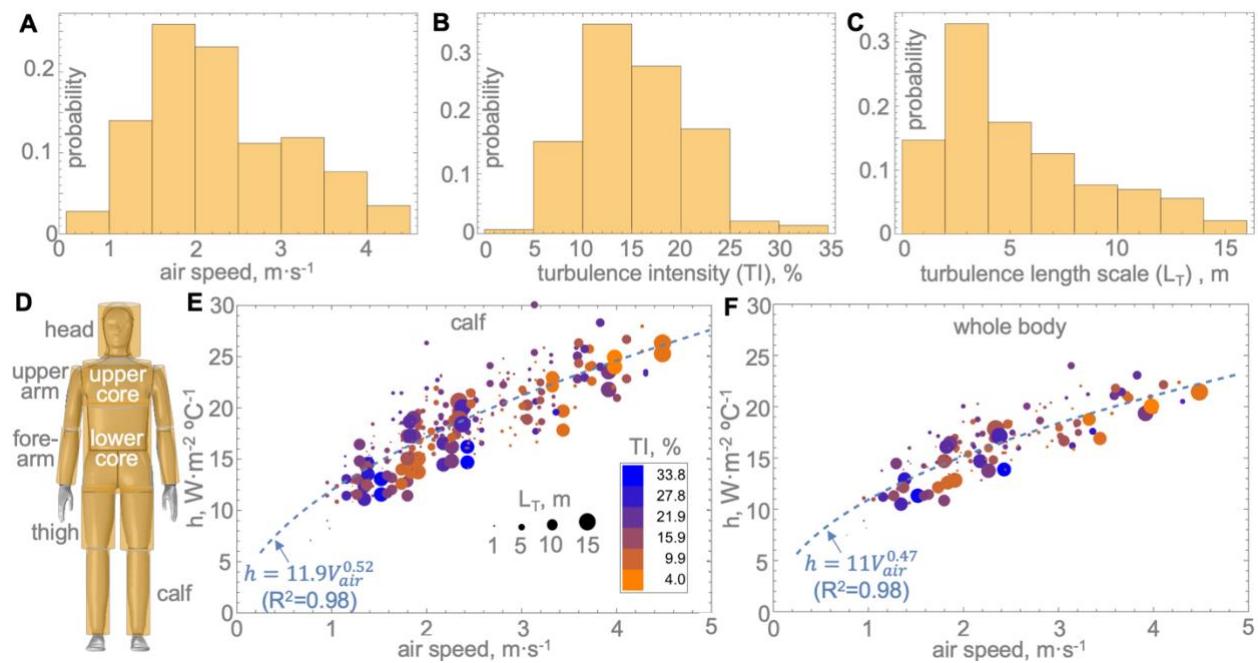
247 **Fig.2 A.** The layout of ANDI's 35 zones and **B.** Bar graph contrasting absorbed radiative heat flux
 248 (R_{aANDI_i}) on select zones under front and side sun exposure with a solar zenith angle of 65° (values for all
 249 35 zones are shown in the SM). The experiments for the two orientations were conducted on separate days
 250 but with closely matching conditions and maximum directional shortwave irradiation of about $800 \text{ W}\cdot\text{m}^{-2}$
 251 and longwave irradiation of about $575 \text{ W}\cdot\text{m}^{-2}$.

252

253 **Fig.3A** and **3B** provide a comparison of the R_a measured using ANDI with varied sun-exposure
254 orientations against the IRM (Höppe, 1992; Middel and Krayenhoff, 2019; Vanos et al., 2021). Given that
255 the exterior of the thermal manikin has nearly matching absorptivities (α_S of 0.68 for shortwave and α_L of
256 0.98 for longwave) to the standard values used for the IRM (see **Eqn. 1** in Methods), a direct comparison
257 of R_a obtained using the two methods is possible. Overall, radiation results show that regardless of body
258 orientation to the sun, the IRM and ANDI measurements agree within instrument uncertainties (mostly
259 below or near 5% and rarely exceeding 10%; **Fig.3C**), even under high solar conditions (e.g., direct beam
260 shortwave radiation, computed from MaRTy fluxes using Holmer's method (Holmer et al., 2015;
261 Rykaczewski et al., 2022b), over 800 $\text{W}\cdot\text{m}^{-2}$, see the SM), and with lower differences at higher zenith
262 angles. In quantitative terms, the R_a provided by ANDI is at most about 50 to 60 $\text{W}\cdot\text{m}^{-2}$ lower than the IRM
263 values at zenith angle of 60 to 65°. The decomposition of the IRM signal into the absorbed shortwave and
264 longwave components demonstrates that these differences stem from changes in absorbed shortwave fluxes,
265 given that the longwave fluxes remain constant through the experiments (**Fig.3A** and **3B**). When the R_a is
266 converted to mean radiant temperature (MRT, see **Eqn.2** in Methods), the difference between ANDI and
267 IRM values are below 3 to 4°C for MRT values between 30 and 55°C. Above these MRT values in the most
268 extreme conditions, the difference reaches between about 6°C and 9°C for the front and side sun exposure,
269 respectively. Any differences between ANDI and IRM radiation measurements disappear when the
270 experiments are conducted in a shaded location (see the SM). This observation demonstrates that the IRM
271 method can accurately correct for radiation during manikin-based convection measurements, which we will
272 discuss next.

273

274


275 **Fig.3** Comparison of whole-body absorbed radiative heat flux (R_a) calculated from ANDI and IRM
276 measurements as a function of solar zenith angle for **A**. front sun exposure and **B**. side sun exposure. The
277 bottom row plots show the difference between the two measurements in terms of **C**. percent and **D**. mean
278 radiant temperature (MRT). We present the fluxes in **A** to **C** as a function of the solar zenith angles to
279 facilitate direct comparison (zenith angle and fluxes variation with time is shown in the SM).

280

281 **3.2 Convection**

282 We conducted the convection experiments in shaded areas with air temperatures ranging from 39 to
283 45°C and relative humidity of 10 to 20%, wind speed of 0.7 to $4.5 \text{ m}\cdot\text{s}^{-1}$ (average of $2.3 \pm 0.8 \text{ m}\cdot\text{s}^{-1}$ (± 1
284 standard deviation)), turbulence intensity (TI) of 0.1 to 46% (average of $15.5 \pm 5.5\%$), and turbulence length
285 scale (L_T) of 0.5 to 15 m (average of 5.3 ± 3.6 m), as shown in **Fig.4A-C**. By setting ANDI's skin
286 temperature below that of air and accounting for radiation through MaRTy measurements, we calculated
287 the convective heat gain from each of the 35 zones (see Methods for details). These measurements are
288 specific to ANDI's zone distribution, which differs from other thermal manikins (De Dear et al., 1997; Li
289 and Ito, 2012; Xu et al., 2019; Zou et al., 2020). To generalize the outcomes beyond ANDI-specific zones,
290 we combined the heat transfer coefficients for individual zones into larger anatomical regions, as shown in

291 **Fig.4D.** These regions were defined by grouping ANDI's most relevant zones to match anatomical regions
 292 of other manikins for which heat transfer coefficients have been previously reported (De Dear et al., 1997;
 293 Li and Ito, 2012; Xu et al., 2019; Zou et al., 2020). The regions might vary to some extent since the manikins
 294 are not the same, even representing different genders. The heat transfer coefficients for all the anatomical
 295 regions (e.g., calves in **Fig.4E**, see data for rest of the regions in the SM) and whole-body (**Fig.4F**) are
 296 strongly correlated to the wind speed, but trends with turbulence characteristics are less evident.
 297

298 **Fig. 4** Histograms of the probability of the **A.** air speed (V_{air}), **B.** turbulence intensity (TI), and **C.** turbulence
 299 length scale (L_T); **D.** schematic of the anatomical regions grouping multiple ANDI zones, and example heat
 300 transfer coefficient (h) measurements for **E.** calf and **F.** whole-body as a function of wind speed. The marker
 301 color indicates the TI, while its size represents the L_T .
 302

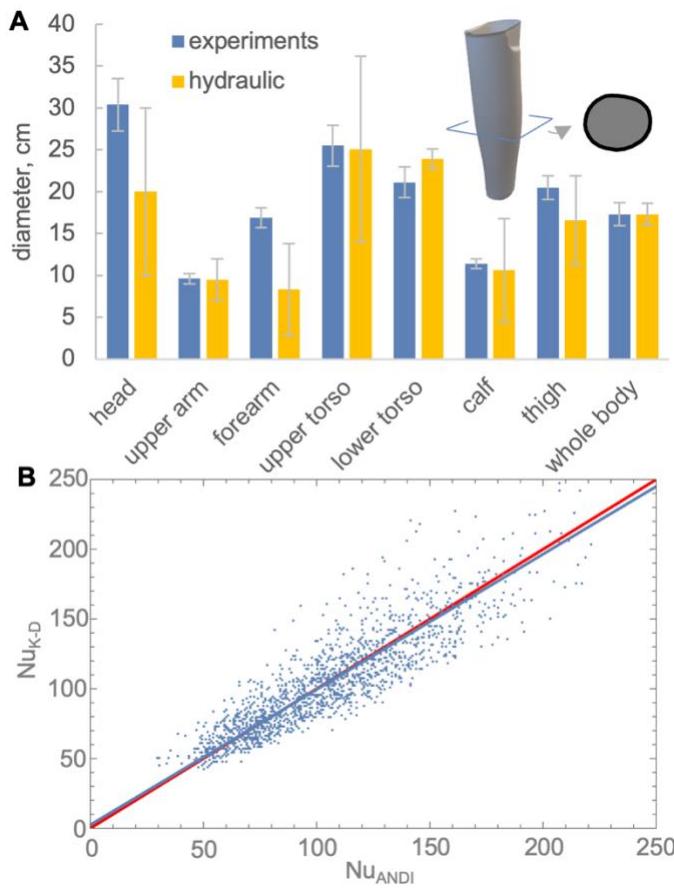
303
 304 Simulated or measured convection coefficients for the human body are typically presented in terms of
 305 empirical correlations that are either a function of wind speed only or also include TI and L_T (see **Table 1**).
 306 To facilitate comparison of eight prior correlations for whole-body h that are functions of wind speed only
 307 (V_{air}), Wissler (Wissler, 2018) calculated modified coefficients, a_m , forcing an exponent of $d = 0.5$ that is
 308 expected for a flow around a cylinder (the unmodified exponents vary from 0.49 to 0.60). For our correlation

309 of $h = 11V_{air}^{0.47}$ (see Fig.4F), the modified a_m is 10.6, which is near the upper part of the 7.3 to 11 range
 310 for prior correlations (see the SM). Our values are towards the upper portion of the range because the
 311 turbulence intensity values during the outdoor experiments (average of 15%) were higher than in most wind
 312 tunnel experiments. The discrepancies between our outdoor measurements and this simplistic correlation
 313 can reach up to 30% (e.g., by $5 \text{ W}\cdot\text{m}^{-2}\text{C}^{-1}$ from $15 \text{ W}\cdot\text{m}^{-2}\text{C}^{-1}$ at $2 \text{ m}\cdot\text{s}^{-1}$) but can be resolved when
 314 turbulence intensity and length scale are considered.

315

316 **Table 1.** Common correlations used to fit convection measurements from the human body are functions of
 317 wind speed (V_{air}) only or also include turbulence intensity (TI) and length scale (L_T) as variables. The
 318 functional form of these equations is based on correlations for cylinders (Hilpert, 1933; Kondjoyan and
 319 Daudin, 1995; Sak et al., 2007; Zou et al., 2020) (both non-dimensional and dimensional forms are shown).
 320 Nu is the Nusselt number, Re is the Reynold's number, Pr is the Prandtl's number, h is the heat transfer
 321 coefficient, k_{air} is the thermal conductivity, ν_{air} is the kinematic viscosity, D the diameter of the cylinder,
 322 while a , b , c , d , n , A , B , and β are empirical constants.

Form	Function of V_{air} only (based on Hilpert (29))	Function of V_{air} , TI , and L_T (based on Kondjoyan-Doudin (43) and Sak (44))
non-dimensional (cylinder)	$Nu = cRe^b Pr^{0.33}$	$Nu = 0.63Re^{0.5}(1.07 + 0.015TIRe^{0.5})\left(\frac{L_T}{D}\right)^{-0.09}$
dimensional (cylinder)	$h = cPr^{0.33} \frac{k_{air}}{D} \left(\frac{DV_{air}}{\nu_{air}}\right)^b$	$h = 0.63 \frac{k_{air}}{D} \sqrt{\frac{DV_{air}}{\nu_{air}}} \left(1.07 + 0.015TI \sqrt{\frac{DV_{air}}{\nu_{air}}}\right) \left(\frac{L_T}{D}\right)^{-0.09}$
used in empirical correlations	$h = aV_{air}^d$	$h = AV_{air}^n(1 + B \cdot TI \cdot V_{air}^{0.5})(L_T/D)^\beta$


323

324 Zou et al. (Zou et al., 2020) and Yu et al. (Yu et al., 2020) proposed a functional form of the heat transfer
 325 coefficient correlation, taking into account turbulence characteristics for each body part based on the
 326 combination of two engineering correlations for turbulent cross-flow over a cylinder (see Table 1). The
 327 terms involving Reynold's number ($Re = DV_{air}/\nu_{air}$) and TI are based on Kondjoyan and Doudin
 328 (Kondjoyan and Daudin, 1995) and represent the Nusselt number ($Nu = hD/k_{air}$) for non-turbulent flow
 329 and its enhancement with turbulence intensity. The $(L_T/D)^{-0.09}$ is based on Sak et al. (Sak et al., 2007)

330 and accounts for the reduction of the Nu with L_T . Zou et al. (Zou et al., 2020), Yu et al.(Yu et al., 2020),
331 and Zhou et al. (Zhou et al., 2022; Zhou and Niu, 2022) have fitted their simulated or manikin-measured
332 convection measurements for different body regions to the functional form of this equation obtained after
333 substitution of all air properties (see bottom row in Table 1). This approach yields three to four empirical
334 coefficients and exponents per body part and wind direction (i.e., 60 or more empirical coefficients overall).
335 The coefficients for the same scenarios but from different authors vary substantially (see the SM), implying
336 narrow applicability only to the studied range of wind flow characteristics (e.g., L_T on the order of 1 m in
337 wind tunnel experiments). However, such discrepancies can be resolved using a body geometry-rooted
338 analysis approach, as shown below.

339 To provide better insight into the physics of the convective heat exchange, we fit our heat transfer
340 coefficient data for each anatomical section exposed to head-on flow to the dimensional form of the
341 Kondjoyan-Doudin-Sak equation (see **Table 1**), with the diameter being the only fitting parameter (besides
342 hands and feet; see the rationale in the SM). The resulting "experimental" diameters can be directly
343 compared against geometrical descriptors of the anatomical body parts, such as the hydraulic diameter (D_h
344 is equal to four times the cross-sectional area divided by the perimeter of each "cut" (Bergman et al., 2011))
345 obtained from analyzing a 3D manikin model (see **Fig.5A** and discussion on head characteristic length in
346 the SM). The bar graph in **Fig.5B** shows that, when considering the variability in both parameters, the
347 diameters derived using the two approaches are in good agreement for nearly all the regions.

348 Using the diameters obtained from the experiment fitting process, we can non-dimensionalize the heat
349 transfer coefficients into equivalent Nusselt numbers ($Nu_{ANDI} = h_{ANDI}D/k_{air}$) and readily compare all
350 measured values on a single plot against those predicted by substituting measured air flow data into the
351 non-dimensional form of the Kondjoyan-Doudin-Sak equation ($Nu_{K-D}(D, V_{air}, TI, L_T)$). The plot in
352 **Fig.5C** representing all convection measurements for head-on wind direction for all anatomical regions
353 demonstrates that the measured and predicted Nusselt numbers agree well. The scatter of up to 15% is well
354 within the typical spread of engineering convection correlations (often 20% (Bergman et al., 2011)).

355

356 **Fig. 5 A.** Bar graph comparing equivalent diameters for the anatomical regions shown in Fig.4D derived
 357 from the fitting of experimental data and from three-dimensional (3D) model analysis (hydraulic diameter);
 358 the inset shows 3D model of ANDI's calf along with an illustrative cross-section used to calculate the
 359 equivalent diameter from the cut's area and perimeter, and **B.** comparison of Nusselt numbers employing
 360 the determined diameters to compare all convection measurements for the anatomical regions measured
 361 using ANDI (Nu_{ANDI}) and against those calculated using measured wind characteristics substituted into the
 362 combined Kondjoyan-Daudin-Sak correlation (Nu_{K-D}).

363

364

365 **4. Discussion**

366 We introduce novel methods to study the impact of extreme heat—and the avenues of heat transfer—
 367 on the human body. We leverage a one-of-a-kind thermal manikin—outdoor "ANDI"—alongside a high-
 368 end three-level ultrasonic anemometer array and the "MaRTy" biometeorological cart to perform advanced
 369 measurements outdoors. The use of this fully portable measurement system enables convective and direct

370 radiative flux measurements in diverse extremely hot outdoor environments, which has never before been
371 accomplished with a thermal manikin (with exception of few notable studies using thermal manikins in
372 mild outdoor settings (Danca et al., 2021; Kuklane et al., 2006; Zhou et al., 2022; Zhou and Niu, 2022), the
373 instruments are used within climatic chambers). Below, we discuss how radiation and convection
374 measurements conducted using ANDI facilitate validating prior assumptions underlying IRM method and
375 resolving significant discrepancies in convection correlations present in the literature.

376

377 **4.1 Radiation**

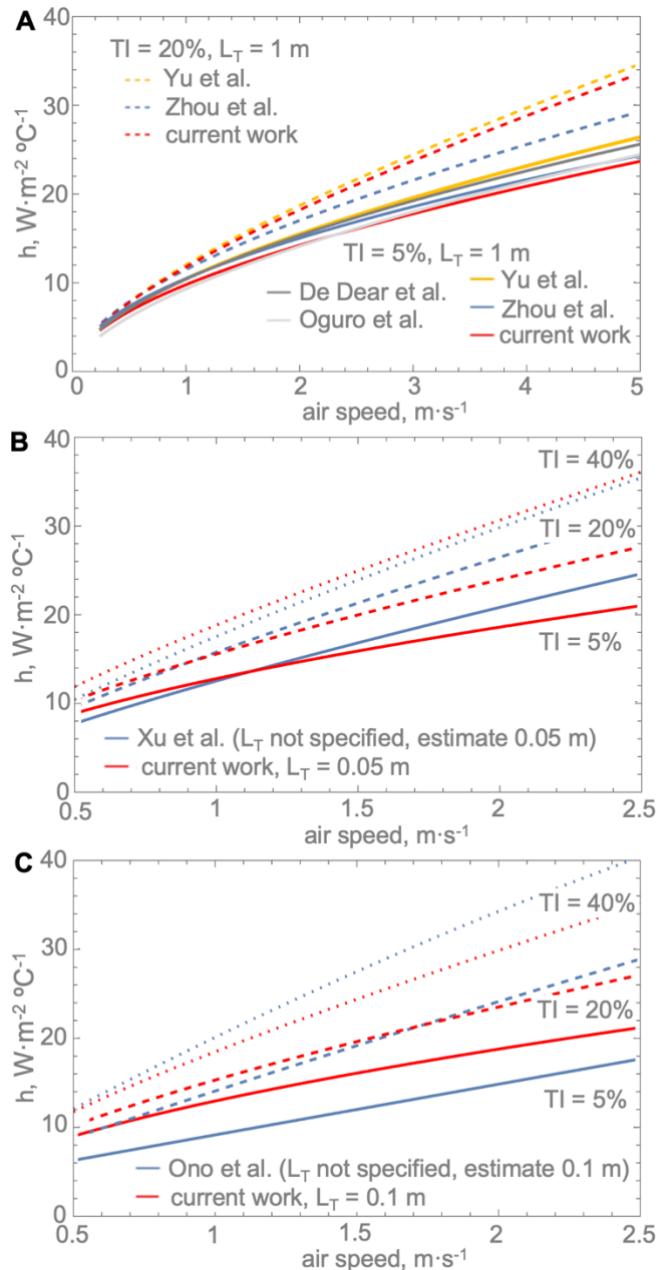
378 The absorbed radiation flux distribution over the body demonstrated here and measured using ANDI
379 has thus far only been available through advanced simulations (Kubaha et al., 2004, 2003; Rees et al., 2008;
380 Rykaczewski et al., 2022b, 2022a). Such detailed information can be used to quantify and improve thermal
381 comfort or heat stress under highly anisotropic radiation (e.g., reflective pavements (Schneider et al., 2023),
382 highly glazed surfaces (Oliveira and Pedrini, 2023; Rees et al., 2008), or hot equipment (Krishnamurthy et
383 al., 2017)) or to optimize the performance of garments made of textiles with engineered spectral properties
384 (Peng and Cui, 2020). However, human thermal radiation exposure is more often assessed in whole-body
385 terms.

386 Despite the IRM geometrical weights (see **Eqn.1** in Methods) not considering the orientation of the
387 body to the solar radiation, even the largest differences between the radiometer-based and thermal manikin
388 measurements are comparable to the instrument accuracies ($\pm 10\%$ of the value for IRM). As illustrated by
389 separate measurements using ANDI (front exposed to sun) on Sept-14 and Oct-18, shown in **Fig.3C**, a 5%
390 difference can also occur between different experimental repetitions. We note that the difference between
391 the IRM and ANDI experiments is at most 4% in the Sept-14 experiment with the manikin's front sun
392 exposed. Furthermore, the maximum difference observed is unlikely to be larger for lower zenith angles
393 (i.e., closer to noon) because shortwave radiation absorbed by the human body has a relatively small
394 variation at lower zenith angles (i.e., between 8:00-9:00 and 14:00-15:00 in the summertime in Tempe,
395 Arizona (Rykaczewski et al., 2022b; Vanos et al., 2021)), as shown in **Fig.3A,D**. Consequently, the
396 agreement between ANDI and the IRM measurement demonstrates that the latter provides a good measure
397 of the R_a for a standing human, regardless of their orientation to the sun. This observation is essential as

398 the IRM is often used as the "gold standard" for comparison of whole-body absorbed radiation flux
399 measured using a variety of lower cost and widely utilized instruments (e.g., globe, cylindrical, and ping-
400 pong ball radiation thermometers (Guo et al., 2020; Thorsson et al., 2007; Vanos et al., 2021)).

401

402 4.2 Convection


403 Fitting our data yields an equivalent diameter for the whole body of 17.3 cm, which when substituted
404 along with turbulence characteristics into the combination of two engineering correlations for a cylinder in
405 turbulent cross-flow (the dimensional form of the Kondjoyan-Doudin-Sak equation) provides matching
406 predictions to most convection correlations that otherwise provide conflicting outcomes. We note that this
407 equivalent diameter can also be obtained using an area-weighted average of diameters for the anatomical
408 regions. The plot in **Fig.6A** shows that our heat transfer coefficient predictions employing this diameter
409 closely match the correlations of De Dear et al. (19) and Oguro et al. (51). These correlations are only a
410 function of wind speed but were measured with TI of 4% to 8% and L_T of about 1 m (generated using a
411 large vertical cylinder in the wind tunnel). When TI is increased to the range that pedestrians experience
412 outdoors (about 20%), our predictions also match well with those of Yu et al. (Yu et al., 2020) and, below
413 $3 \text{ m}\cdot\text{s}^{-1}$, with Zhou et al. (Zhou et al., 2022) (which is the upper wind speed limit of the latter correlation).
414 Similarly, when L_T is adjusted to likely low values (order of 5 to 10 cm) in the works of Xu et al. (Xu et al.,
415 2021) and Ono et al. (Ono et al., 2008), our correlations are in good agreement (see **Fig.6B** and **6C**).

416 From the correlations for which TI and L_T are included or can be estimated, our correlation only differs
417 substantially from the simulation-based Zou et al. (Zou et al., 2020) correlation (see the SM). The latter
418 correlation predicts values at least 30% higher than many other reported values (Zou et al., 2020) but
419 roughly agree with those reported by Ichihara et al. (Ichihara, 1997) (which has insufficient information to
420 deduct TI and L_T values). The discrepancy between our correlation and that of Zou et al. (Zou et al., 2020)
421 stems primarily from the higher weighting of TI ($B = 2$ vs. equivalent 1.53 for our work) and lower
422 exponent on L_T ($\beta = -0.05$ vs. -0.09 for our work). It might be the result of varied methods, or the relatively
423 narrow L_T range (2.5 to 6 m) used in their simulations. Other sources of disagreement between the
424 convective correlations might be how radiative heat exchange is estimated for different body parts and
425 subtracted from measured heat flux to provide the convection value. Legacy thermal manikins used in past

426 studies cannot directly measure radiation, so it was either minimized by adding low emissivity foil coatings
427 (De Dear et al., 1997; Fojtlín et al., 2016) or calculated using local view factors along with MRT (Zhou et
428 al., 2022; Zhou and Niu, 2022). The outcomes of the former method might have been skewed by air trapped
429 under the foil, while those of the latter method might have been impacted by the generic nature of the view
430 factors (not manikin and pose specific) and error-prone globe meters used to measure the MRT (Vanos et
431 al., 2021; Zhou et al., 2022; Zhou and Niu, 2022). Our convection measurements do not suffer such
432 shortcomings since we rely on IRM measurements validated against ANDI's equivalents and use view
433 factors specific to our manikin and its posture (see Methods and SM). We also note that changes in air
434 properties with temperatures in the 20 to 50°C range have a negligible net impact on the heat transfer
435 coefficient (Viswanathan et al., 2023).

436 Overall, our geometry-rooted approach demonstrates that different body parts are well-approximated
437 by cylinders even in turbulent flow and can also match most of the prior correlations for whole-body heat
438 transfer coefficients. We note that the diameter-based approach works well when ANDI faces the wind, as
439 body parts have a relatively small impact on the flow around each other and behave similarly to isolated
440 cylinders. Such interactions could be substantially higher with side-on flow. Although engineering heat
441 transfer correlations for flow over sequential tubes in a bank exist, they do not consider the flow's incoming
442 turbulence (Bergman et al., 2011). Consequently, an approach based on correlations with multiple fitting
443 parameters is more practical for such cases.

444

445

446 **Fig. 6 A-C:** Comparison of current whole-body heat transfer coefficient (h) correlations against those in
447 the literature for varied turbulence intensity (TI) and length scale (L_T) values (see the SM for tabulated
448 correlations).

449

450 **4.3 Limitations**

451 There are several limitations, areas for improvement, and opportunities for future studies beyond the
452 current work. Thus far, we only conducted measurements with the manikin in a static standing position,
453 emphasizing front wind exposure. Both the radiative (Fanger, 1972; Park and Tuller, 2011a, 2011b) and

454 the convective (De Dear et al., 1997; Gaspar et al., 2006; Vogt et al., 1983a; Xu et al., 2021) heat exposure
455 are impacted by changes in posture (e.g., sitting vs. standing), the subject's motion, and the presence of
456 clothing. In contrast to the IRM, the thermal manikin cannot provide radiation measurements for spectral
457 regions that might clarify how to engineer radiative properties of the built environment (Schneider et al.,
458 2023) or clothing (Peng and Cui, 2020). In turn, for convection measurements, we employed the isotropic
459 radiation assumption that could impact some local convective fluxes. We note that we did conduct pilot
460 experiments switching between radiation (i.e., ANDI at air temperature) and convection (i.e., ANDI cooler
461 than the surrounding) measurement, but we found that the time required for this process was too long to do
462 continuously. In other words, we found better outcomes by using the MaRTy cart to quantify the radiation
463 at a fast rate, which captured small, but significant fluctuations in the irradiation. This point leads to the
464 primary limitation of our approach: the chaotic nature of the outdoor environments. The chaotic features
465 are most pronounced for wind flow, which can fluctuate substantially even within the 30 s periods we focus
466 on. In extremely hot desert conditions, short bursts of air can also be accompanied by locally higher air
467 temperature, which on rare occasions can overwhelm the thermofluidic systems on a zone or two (as
468 exemplified by occasional near zero heat transfer coefficients for 1/35 zones in a given time period).
469 Consequently, we can inherently expect outdoor measurements to produce a higher scatter in convective
470 measurements than equivalents in a wind tunnel. In addition, we note that clothing ventilation and pumping
471 effects induced by motion can substantially alter air flow and heat transfer around the body (Bouskill et al.,
472 2002; Kang et al., 2020; Vogt et al., 1983b), therefore will be included in future experimentation.

473

474 **5. Conclusions**

475 The introduced suite of instruments—including the outdoor thermal manikin ANDI, the MaRTy
476 biometeorological cart, and the ultrasonic anemometer array—is the most advanced way to characterize the
477 dominant components of the thermal load—convection and radiation—on humans exposed to extreme heat.
478 The thermal manikin was custom-designed and successfully deployed for routine outdoor measurements of
479 the radiative and convective heat fluxes on 35 human body surface areas in extremely hot conditions.

480 The simultaneous ANDI and MaRTy radiative measurements allowed us to test the common
481 assumption of cylindrical body shape used in the IRM method. In particular, we showed that even under

482 high solar conditions, IRM and ANDI agree with radiative measurements within instrument uncertainties
483 regardless of body orientation. Any disagreement in the measures of radiation absorbed by the whole-body
484 disappears when experiments are conducted in shaded conditions. While the overall difference in the R_a
485 for the entire body remains negligible under different body orientations to the sun, it is noteworthy that
486 there are substantial deviations observed in local body parts. The high spatial resolution data from ANDI
487 allows us to delve deeper into the radiation fluxes at localized body parts. Considering the availability of
488 this detailed data, shedding light on these localized aspects can significantly contribute to a more
489 comprehensive and nuanced understanding in practical applications.

490 We used ANDI's convective measurements to show that anatomical body regions can be treated as
491 cylinders even in highly turbulent flow. This geometry-rooted analysis of the convective measurements
492 yields an appropriate equivalent diameter for the human body (17.3 cm). When this proper length scale for
493 the body and turbulence variables are substituted into traditional engineering correlation for a cylinder in
494 cross-flow, the results match predictions of most convection correlations that otherwise provide conflicting
495 outcomes. Consequently, the introduced physics-based correlation is universally applicable across a wide
496 range of wind speeds, TI , and L_T , covering indoor and outdoor settings, and based on our prior work, to
497 diverse human body shapes (Viswanathan et al., 2023). These results provide more advanced estimates of
498 human heat exchange in extreme outdoor environments, providing a novel quantitative understanding of
499 how a hot environment heats humans.

500 The ability to predict heat exchange experienced by ANDI based on microclimatic measurements (i.e.,
501 radiometers and anemometers) also lays the foundation for future work conducting outdoor "adaptive"
502 mode experiments. In this mode, the thermal manikin is controlled by a thermoregulation model and has
503 physiologically based responses to the environmental and metabolic heat loads (e.g., sweats more when hot
504 (Blood and Burke, 2010; Burke et al., 2010, 2009; Joshi et al., 2023; Psikuta et al., 2017)). Therefore, using
505 the introduced suite of instruments, we can quantify the dynamics of physiological responses (e.g., core and
506 skin temperatures; sweat rate) to specific combinations of hot microclimates (quantified using MaRTy and
507 anemometers) with human factors such as metabolic rates (adjusted for with ANDI) and clothing. This is a
508 unique method to test various scenarios, including experiments in which the thermal exposure and duration
509 become dangerous to humans and, therefore, cannot be conducted. Overall, current results and future

510 adaptive experimentation in various outdoor settings contribute to developing strategies to adapt urban
511 planning, clothing design, and outdoor activity to changing climate conditions, thus supporting informed
512 decision-making around heat protection, adaptation, and mitigation.

513

514 **Acknowledgments**

515 This research was supported by the National Science Foundation Leading Engineering for America's
516 Prosperity, Health, and Infrastructure (LEAP HI) #2152468 award, while the thermal manikin was funded
517 by a National Science Foundation Major Research Instrumentation grant #2117917. We also thank Rick
518 Burke from Thermetrics LLC for his technical support and Samantha Chow Arizona State University for
519 permission to use "aerial view" photograph of the thermal manikin setup in Fig.1D. The authors gratefully
520 acknowledge the use of spectroscopy equipment within the Eyring Center for Solid State Science at Arizona
521 State University.

522

523 **Author Contributions**

524 Conceptualization: KR, JKV, AM

525 Methodology: KR, AM, AJ, LB, SHV, GP

526 Investigation: AJ, SHV, AKJ, LB, RMJ, KS, KR

527 Visualization: KR, AJ, SHV, LB

528 Supervision: KR, JKV, AM

529 Writing—original draft: AJ, KR, JKV, AM

530 Writing—reviewing and editing: KR, AJ, JKV, AM, LB, SHV, GP, RMJ, KS

531

532 **Competing Interests:** Authors declare that they have no competing interests.

533

534 **Data Availability**

535 The heat transfer coefficients for all zones and processing Matlab codes will be available on
536 <https://dataVERSE.asu.edu/> upon publication.

537

538 **Supplementary Materials**

539 Is available and covers details of the measurements and further comparisons of outcomes against
540 correlations in the literature.

541

542

543 **References**

544 ASTM F1291-16, 2004. Standard Test Method for Measuring the Thermal Insulation of
545 Clothing Using a Heated Manikin. American Society for Testing and Materials Book of
546 Standards .

547 Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P., 2011. Fundamentals of heat and
548 mass transfer. John Wiley & Sons, Inc, New York.

549 Blazejczyk, K., Nilsson, H., Holmér, I., 1993. Solar heat load on man. *Int J Biometeorol* 37,
550 125–132.

551 Blood, K., Burke, R., 2010. Further validation of the model-controlled Newton thermal
552 manikin against historical human studies, in: 8th International Meeting for Thermal
553 Manikin and Modeling (8I3M), Victoria, Canada.

554 Bouskill, L.M., Havenith, G., Kuklane, K., Parsons, K.C., Withey, W.R., 2002. Relationship
555 between clothing ventilation and thermal insulation. *AIHA journal* 63, 262–268.

556 Brown, R.D., 2019. Correcting the Error in Measuring Radiation Received by a Person:
557 Introducing Cylindrical Radiometers. *Sensors* 19, 5085.

558 Brown, R.D., Gillespie, T.J., 1995. Microclimate Landscape Design. John Wiley & Sons, Inc.

559 Burke, R., Blood, K., Deaton, A.S., Barker, R., 2010. Application of model-controlled manikin
560 to predict human physiological response in firefighter turnout gear, in: 8th
561 International Meeting for Thermal Manikin and Modeling (8I3M), Victoria, Canada.

562 Burke, R., Curran, A., Hepokoski, M., 2009. Integrating an active physiological and comfort
563 model to the Newton sweating thermal manikin, in: 13th International Conference on
564 Environmental Ergonomics. Boston, USA.

565 Cissé, G., McLeman, R., Adams, H., Aldunce, P., Bowen, K., Campbell-Lendrum, D., Clayton, S.,
566 Ebi, K.L., Hess, J., Huang, C., 2022. 2022: health, wellbeing, and the changing structure
567 of communities.

568 Coffel, E.D., Horton, R.M., De Sherbinin, A., 2017. Temperature and humidity based
569 projections of a rapid rise in global heat stress exposure during the 21st century.
570 *Environmental Research Letters* 13, 014001.

571 Danca, P.A., Nastase, I., Croitoru, C., Bode, F., Sandu, M., 2021. Thermal comfort evaluation
572 inside a car parked under sun and shadow using a thermal manikin, in: IOP Conference
573 Series: Earth and Environmental Science. IOP Publishing, p. 012064.

574 Danielsson, U., 1996. Convection coefficients in clothing air layers.

575 De Dear, R.J., Arens, E., Hui, Z., Oguro, M., 1997. Convective and radiative heat transfer
576 coefficients for individual human body segments. *Int J Biometeorol* 40, 141–156.

577 Dunne, J.P., Stouffer, R.J., John, J.G., 2013. Reductions in labour capacity from heat stress
578 under climate warming. *Nat Clim Chang* 3, 563.

579 Ebi, K.L., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R.S.,
580 Ma, W., Malik, A., 2021a. Hot weather and heat extremes: health risks. *The lancet* 398,
581 698–708.

582 Ebi, K.L., Vanos, J., Baldwin, J.W., Bell, J.E., Hondula, D.M., Errett, N.A., Hayes, K., Reid, C.E.,
583 Saha, S., Spector, J., 2021b. Extreme weather and climate change: population health
584 and health system implications. *Annu Rev Public Health* 42, 293.

585 Fanger, P.O., 1972. Thermal Comfort. McGraw-Hill Book Company, New York.

586 Fojtlín, M., Fišer, J., Jícha, M., 2016. Determination of convective and radiative heat transfer
587 coefficients using 34-zones thermal manikin: Uncertainty and reproducibility
588 evaluation. *Exp Therm Fluid Sci* 77, 257–264.

589 Gaspar, A.R., Oliveira, A. V., Quintela, D.A., 2006. Effects of walking and air velocity on
590 convective heat transfer from a nude manikin, in: Winsdor Conference: Comfort and
591 Energy Use in Buildings: Getting Them Right—International Conference, Windsor Great
592 Park, UK. pp. 27–30.

593 Guo, H., Aviv, D., Loyola, M., Teitelbaum, E., Houchois, N., Meggers, F., 2020. On the
594 understanding of the mean radiant temperature within both the indoor and outdoor
595 environment, a critical review. *Renewable and Sustainable Energy Reviews* 117,
596 109207.

597 Guzman-Echarria, G., Middel, A., Vanos, J., 2023. Beyond heat exposure—new methods to
598 quantify and link personal heat exposure, stress, and strain in diverse populations and
599 climates: The journal temperature toolbox. *Temperature* 1–21.

600 Hilpert, R., 1933. Heat transfer from cylinders. *Forsch. Geb. Ingenieurwes* 4, 215.

601 Holmer, B., Lindberg, F., Rayner, D., Thorsson, S., 2015. How to transform the standing man
602 from a box to a cylinder—a modified methodology to calculate mean radiant
603 temperature in field studies and models, in: Proceedings of the 9th International
604 Conference on Urban Climate (ICUC9), Toulouse, France. pp. 20–24.

605 Holmér, I., 2004. Thermal manikin history and applications. *Eur J Appl Physiol* 92, 614–618.

606 Höppe, P., 1992. Ein neues Verfahren zur Bestimmung der mittleren Strahlungstemperatur
607 im Freien. *Wetter und Leben* 44, 147–151.

608 Ichihara, M., 1997. Measurement of Convective and Radiative Heat Transfer Coefficients for
609 the Standing and Sitting Human Body Using a Thermal Manikin. *J. Archit. Plann.*
610 *Environ. Eng.*, AIJ 501, 45–51.

611 Ito, K., Hotta, T., 2006. Development of Virtual Manikins and its grid library for CFD
612 Analysis. *空気調和・衛生工学会論文集* 27–33.

613 Jay, O., Capon, A., Berry, P., Broderick, C., de Dear, R., Harenith, G., Honda, Y., Kovats, R.S.,
614 Ma, W., Malik, A., 2021. Reducing the health effects of hot weather and heat extremes:
615 from personal cooling strategies to green cities. *The Lancet* 398, 709–724.

616 Joshi, A., Bartels, L., Viswanathan, S.H., Martinez, D.M., Sadeghi, K., Jaiswal, A.K., Collins, D.,
617 Rykaczewski, K., 2023. Evaluation of thermal properties and thermoregulatory
618 impacts of lower back exosuit using thermal manikin. *Int J Ind Ergon* 98, 103517.

619 Jung, S., Masters, F.J., 2013. Characterization of open and suburban boundary layer wind
620 turbulence in 2008 Hurricane Ike. *Wind and structures* 17, 135–162.

621 Kang, Z., Shou, D., Fan, J., 2020. Numerical modeling of body heat dissipation through static
622 and dynamic clothing air gaps. *Int J Heat Mass Transf* 157, 119833.
623 <https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2020.119833>

624 Kántor, N., Unger, J., 2011. The most problematic variable in the course of human-
625 biometeorological comfort assessment—the mean radiant temperature. *Central
626 European Journal of Geosciences* 3, 90–100.

627 Kondjoyan, A., Daudin, J.-D., 1995. Effects of free stream turbulence intensity on heat and
628 mass transfers at the surface of a circular cylinder and an elliptical cylinder, axis ratio
629 4. *Int J Heat Mass Transf* 38, 1735–1749.

630 Krishnamurthy, M., Ramalingam, P., Perumal, K., Kamalakannan, L.P., Chinnadurai, J.,
631 Shanmugam, R., Srinivasan, K., Venugopal, V., 2017. Occupational heat stress impacts
632 on health and productivity in a steel industry in Southern India. *Saf Health Work* 8, 99–
633 104.

634 Kubaha, K., Fiala, D., Lomas, K.J., 2003. Predicting human geometry-related factors for
635 detailed radiation analysis in indoor spaces.

636 Kubaha, K., Fiala, D., Toftum, J., Taki, A.H., 2004. Human projected area factors for detailed
637 direct and diffuse solar radiation analysis. *Int J Biometeorol* 49, 113–129.

638 Kuklane, K., Gao, C., Holmér, I., 2006. Effects of natural solar radiation on manikin heat
639 exchange, in: 3rd European Conference on Protective Clothing and NOKOBETEF 8.
640 Protective Clothing-towards Balanced Protection. Central Institute for Labour
641 Protection, Warszawa, Poland.

642 Li, C., Ito, K., 2012. Numerical analysis of convective heat and mass transfer around human
643 body under strong wind. *International Journal of High-Rise Buildings* 1, 107–116.

644 MacRae, B.A., Spengler, C.M., Psikuta, A., Rossi, R.M., Annaheim, S., 2021. A thermal skin
645 model for comparing contact skin temperature sensors and assessing measurement
646 errors. *Sensors* 21, 4906.

647 Middel, A., Alkhaled, S., Schneider, F., Hagen, B., Coseo, P., 2021. 50 Grades of Shade. *Bull Am
648 Meteorol Soc* 1–35.

649 Middel, A., Krayenhoff, E.S., 2019. Micrometeorological determinants of pedestrian thermal
650 exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy
651 observational platform. *Science of the total environment* 687, 137–151.

652 Middel, A., Selover, N., Hagen, B., Chhetri, N., 2016. Impact of shade on outdoor thermal
653 comfort—a seasonal field study in Tempe, Arizona. *Int J Biometeorol* 60, 1849–1861.

654 Nishi, Y., Gagge, A.P., 1970. Direct evaluation of convective heat transfer coefficient by
655 naphthalene sublimation. *J Appl Physiol* 29, 830–838.

656 Oliveira, A., Pedrini, A., 2023. Thermal performance of highly glazed office buildings in the
657 tropics: Contradicting architect's expectations. *Energy Build* 296, 113344.

658 Ono, T., Murakami, S., Ooka, R., Omori, T., 2008. Numerical and experimental study on
659 convective heat transfer of the human body in the outdoor environment. *Journal of*
660 *Wind Engineering and Industrial Aerodynamics* 96, 1719–1732.

661 Park, S., Tuller, S.E., 2011a. Human body area factors for radiation exchange analysis:
662 standing and walking postures. *Int J Biometeorol* 55, 695–709.

663 Park, S., Tuller, S.E., 2011b. Comparison of human radiation exchange models in outdoor
664 areas. *Theor Appl Climatol* 105, 357–370.

665 Parsons, K., 2019. Human heat stress. CRC Press.

666 Parsons, K., 2014. Human thermal environments: the effects of hot, moderate, and cold
667 environments on human health, comfort, and performance. CRC press.

668 Peng, Y., Cui, Y., 2020. Advanced textiles for personal thermal management and energy.
669 Joule 4, 724–742.

670 Powis, C.M., Byrne, D., Zobel, Z., Gassert, K.N., Lute, A.C., Schwalm, C.R., 2023. Observational
671 and model evidence together support wide-spread exposure to noncompensable heat
672 under continued global warming. *Sci Adv* 9, eadg9297.

673 Psikuta, A., Allegrini, J., Koelblen, B., Bogdan, A., Annaheim, S., Martínez, N., Derome, D.,
674 Carmeliet, J., Rossi, R.M., 2017. Thermal manikins controlled by human
675 thermoregulation models for energy efficiency and thermal comfort research—A
676 review. *Renewable and Sustainable Energy Reviews* 78, 1315–1330.

677 Rees, S.J., Lomas, K.J., Fiala, D., 2008. Predicting local thermal discomfort adjacent to
678 glazing.

679 Rowlinson, S., Jia, Y.A., 2014. Application of the predicted heat strain model in development
680 of localized, threshold-based heat stress management guidelines for the construction
681 industry. *Annals of occupational hygiene* 58, 326–339.

682 Rykaczewski, K., Bartels, L., Martinez, D.M., Viswanathan, S.H., 2022a. Human body
683 radiation area factors for diverse adult population. *Int J Biometeorol* 66, 2357–2367.

684 Rykaczewski, K., Dhanote, T., 2022. Analysis of thermocouple-based finger contact
685 temperature measurements. *J Therm Biol* 103293.

686 Rykaczewski, K., Vanos, J.K., Middel, A., 2022b. Anisotropic radiation source models for
687 computational thermal manikin simulations based on common radiation field
688 measurements. *Build Environ* 208, 108636.

689 Sak, C., Liu, R., Ting, D.-K., Rankin, G.W., 2007. The role of turbulence length scale and
690 turbulence intensity on forced convection from a heated horizontal circular cylinder.
691 *Exp Therm Fluid Sci* 31, 279–289.

692 Schneider, F.A., Ortiz, J.C., Vanos, J.K., Sailor, D.J., Middel, A., 2023. Evidence-based guidance
693 on reflective pavement for urban heat mitigation in Arizona. *Nat Commun* 14, 1467.

694 Sherwood, S.C., Huber, M., 2010. An adaptability limit to climate change due to heat stress.
695 *Proceedings of the National Academy of Sciences* 107, 9552–9555.

696 Thorsson, S., Lindberg, F., Eliasson, I., Holmer, B., 2007. Different methods for estimating
697 the mean radiant temperature in an outdoor urban setting. *Int J Climatol* 27, 1983–
698 1993.

699 Turner, V.K., Middel, A., Vanos, J.K., 2023. Shade is an essential solution for hotter cities.
700 *Nature* 619, 694–697.

701 Vanos, J., Guzman-Echavarria, G., Baldwin, J.W., Bongers, C., Ebi, K.L., Jay, O., 2023. A
702 physiological approach for assessing human survivability and liveability to heat in a
703 changing climate. *Nat Commun* 14, 7653. <https://doi.org/10.1038/s41467-023-43121-5>

705 Vanos, J.K., Rykaczewski, K., Middel, A., Vecellio, D.J., Brown, R.D., Gillespie, T.J., 2021.
706 Improved methods for estimating mean radiant temperature in hot and sunny outdoor
707 settings. *Int J Biometeorol* 65, 967–983.

708 Viswanathan, S.H., Martinez, D.M., Bartels, L., Guddanti, S.S., Rykaczewski, K., 2023. Impact
709 of human body shape on forced convection heat transfer. *Int J Biometeorol* 1–9.

710 Vogt, J.J., Meyer, J.P., Candas, V., Libert, J.P., Sagot, J.C., 1983a. Pumping effects on thermal
711 insulation of clothing worn by human subjects. *Ergonomics* 26, 963–974.

712 Vogt, J.J., Meyer, J.P., Candas, V., Libert, J.P., Sagot, J.C., 1983b. Pumping effects on thermal
713 insulation of clothing worn by human subjects. *Ergonomics* 26, 963–974.

714 Wissler, E.H., 2018. *Human Temperature Control: A quantitative Approach*, 1st ed.
715 Springer, Berlin, Germany.

716 Xu, J., Psikuta, A., Li, J., Annaheim, S., Rossi, R.M., 2021. A numerical investigation of the
717 influence of wind on convective heat transfer from the human body in a ventilated
718 room. *Build Environ* 188, 107427.

719 Xu, J., Psikuta, A., Li, J., Annaheim, S., Rossi, R.M., 2019. Influence of human body geometry,
720 posture and the surrounding environment on body heat loss based on a validated
721 numerical model. *Build Environ* 166, 106340.

722 Ye, X.W., Xi, P.S., Su, Y.H., 2017. Analysis of non-stationary wind characteristics at an arch
723 bridge using structural health monitoring data. *J Civ Struct Health Monit* 7, 573–587.

724 Yu, Y., Liu, J., Chauhan, K., de Dear, R., Niu, J., 2020. Experimental study on convective heat
725 transfer coefficients for the human body exposed to turbulent wind conditions. *Build*
726 *Environ* 169, 106533.

727 Zhou, S., Niu, J., 2022. Measurement of the convective heat transfer coefficient of the human
728 body in the lift-up design, in: E3S Web of Conferences. EDP Sciences, p. 03001.

729 Zhou, S., Yu, Y., Niu, J., 2022. Field Measurement of the Human Body Convective Heat
730 Transfer Outdoors. Available at SSRN 4283460.

731 Zou, J., Liu, J., Niu, J., Yu, Y., Lei, C., 2020. Convective heat loss from computational thermal
732 manikin subject to outdoor wind environments. *Build Environ* 107469.

733 Zou, J., Yu, Y., Liu, J., Niu, J., Chauhan, K., Lei, C., 2021. Field measurement of the urban
734 pedestrian level wind turbulence. *Build Environ* 194, 107713.

735

736

737 .