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A B S T R A C T   

Single-cell mechanics have gained much attention due to its importance in a broad range of biological appli-
cations. Different experimental approaches have been used for measuring the mechanical properties of individual 
cells. However, the technical demands and time-consuming nature of these procedures have limited the 
throughput of single-cell measurement, necessitating the development of alternative computational approaches. 
Recently, single-cell deformability can be predicted using a convolutional neural network (CNN) model, shed-
ding a light on using machine learning (ML) algorithms for high-throughput characterizations of single-cell 
mechanical properties. In this work, we developed a novel ML-based computational framework that can 
reproduce a physical microfluidic system to investigate the individual cell’s deformability. The datasets for the 
training and testing of our model were generated using high-fidelity fluid-structure interaction (FSI) simulations. 
Our FSI-based ML approach of adopting CNN algorithms demonstrated a highly accurate prediction for the 
membrane stiffness of a microcapsule (maximum R2 = 0.98) based on its deformed shape. In this paper, we show 
that by applying physical constraints including the microcapsule’s total surface area and total volume, we were 
able to build a physics-constrained ML model that possesses better convergence and higher stability during both 
training and validation. Finally, we found that ML models that used the three-dimensional geometry of the 
capsule as input could outperform the typical CNN models that relied solely on the two-dimensional images. We 
expect that this physics-constrained computational framework will serve as a basis for developing future tools for 
real-time biological applications through the integration of high-fidelity simulations with ML algorithms.   

1. Introduction 

The mechanical properties of the cell are the behaviors the cell ex-
hibits when physical force is applied to the cell, and play an important 
role in many biological activities, including cell growth, cell division, 
cell motility, and adhesion (Hao et al., 2020; Rodriguez et al., 2013). 
Several subcellular structures are involved in the mechanical behaviors 
of individual cells, including the cell membrane, cytosol, and cytoskel-
eton. Each of these structures requires different and specialized experi-
mental tools to perform a useful analysis (Chen, 2014). Moreover, the 
mechanical properties of cells are also heavily influenced by their ability 
to deform (a.k.a. their deformability) when they are subjected to an 
external force such as a shear flow or an acoustic force. Cell deform-
ability plays a vital role in many assays and procedures, including cell 
separation, disease diagnostics, drug testing, and immunity analysis. 
Because of this, the study of the mechanical properties of biological cells 
is of great interest to both academia and industry, particularly for cancer 

progression analysis (Smelser et al., 2015; Kashani and Packirisamy, 
2020). The migration of cancer cells has been shown to be associated 
with alterations in the cytoskeletal architecture of cells and, conse-
quently, their stiffness, which is one of their mechanical properties. 
These changes enable cancer cells to migrate and attack distant organs 
(Kashani and Packirisamy, 2020). Recent studies have confirmed that 
cancer cells have an elasticity that is significantly lower than that of 
healthy cells (Kwon et al., 2020; Han et al., 2020). Based on these 
findings, we aim to design a method to measure the elasticity of a cell 
and by extension, determine if it is cancerous. 

Single-cell mechanics analysis plays an important role when it comes 
to accurate diagnosis for some diseases like cancer where multi-cell 
mechanics find it challenging to consider different types of cells, espe-
cially the aggressive ones, within the tumor (Kozminsky and Sohn, 
2020). However, characterizing the mechanical properties of a single 
microcapsule or biological cell is difficult due to their fragility and small 
size. There are several experimental techniques used for measuring 
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single-cell deformability, including atomic force microscope (AFM), 
micropipette aspiration, parallel-plate technique, magnetic twisting 
cytometry, magnetic tweezers, optical stretcher, optical tweezers, 
acoustic methods, and particle-tracking micro-rheology (Unal et al., 
2014). Among them, AFM is one of the most popular tools (Haase and 
Pelling, 2015). Each of these methods is limited by a slow measurement 
speed, which does not allow for high throughput characterization of 
biological samples (Darling and Di Carlo, 2015). One method that ad-
dresses this shortcoming is the microfluidics method, which has a 
high-throughput rate in laboratory testing. Due to its ultra-high 
throughput rate (103–104 cells/s), microfluidics is commonly used to 
assess the mechanical properties of thousands of individual cells very 
quickly, especially the properties related to individual subcellular 
components. A common use of microfluidics is assessing the deforma-
tion of blood cells by putting them under a constricted channel. Through 
this assay, one could classify all the major blood cell types and patho-
logical changes due to certain disease conditions present in a human 
blood sample (Bento et al., 2018; Toepfner et al., 2018). Despite the high 
throughput rate afforded by microfluidics, data analysis methods have 
historically struggled to keep pace with the large amount of raw data 
generated. Time consuming image processing and analysis methods 
limit the effective application of microfluidics (Lin et al., 2021). Fortu-
nately, machine learning (ML) can help us overcome this bottleneck. ML 
algorithms allow for greatly enhanced image processing speeds. 
Combining ML image processing algorithms with the high throughput 
data of microfluidics allows for a versatile tool that can be used for 
real-time applications (Sarker, 2021). Some of current ML applications 
in biological field are listed in Table 1. 

According to Table 1, even though researchers have put more effort 
into developing ML tools for the prediction of cell and tissue mechanics, 
there are only a few ML-based prediction models developed to estimate 
the mechanical properties of an individual cell. The most recent ML- 
based work to predict a single capsule’s biomechanics was presented 

by Lin et al. (2021) using a combination of a deep convolutional neural 
network (DCNN) and a long short-term memory (LSTM), creating a 
so-called DCNN-LSTM network (Lin et al., 2021). This DCNN-LSTM 
framework predicted the membrane elasticity and viscosity of micro-
capsules from a series of their dynamic deformation images, taken while 
they were flowing in a branched microchannel. By doing so, the authors 
achieved mean absolute percentage errors as low as 3.65% and 3.42% 
for the predicted capillary number and membrane viscosity, respec-
tively. Even though this work could characterize the viscoelastic prop-
erties accurately, we observed that the fluid channel’s geometry used in 
this study is unable to represent standardized laboratory tests in reality, 
which is mostly focused on the microfluidic approach. Moreover, 
instead of using sequential images like their approach, we aim to take 
only the data of the deformed capsule at the end of the constricted 
channel to characterize the single capsule’s mechanical properties. This 
allows us to follow the experimental setup of microfluidic methods that 
usually capture the cell’s deformation in a region of interest (Urbanska 
et al., 2020). 

Previously, Marta Urbanska et al. (2020) authored a study where 
microfluidics was used to measure the deformability of individual cells. 
This inspired us to develop a practical ML-based computational frame-
work for predicting the mechanical properties of a single cell, trained on 
a dataset we developed. In the present study, we use our recently 
developed package for fluid-structure interaction (FSI) simulations, 
so-called OpenFSI (Ye et al., 2020), to generate various coarse-grained 
microcapsule geometries with different membrane deformability. We 
then use the FSI simulation-generated dataset as the input for a con-
volutional neural network (CNN) model with the desired output being 
the membrane stiffness of the capsules. A CNN can be used as a digital 
image processing system with the ability to resolve and evaluate the 
details of an input image. They are commonly used to recognize and 
classify specific objects or humanoid faces within pictures. Recently, 
CNN models have become powerful enough to take advantage of the 

Table 1 
Recent machine learning works on biological cells and tissues.  

No. ML models Application Input Main results Ref. 
1 NN Classification of red blood cells 

(RBC). 
RBC properties (estimated based on 
quantitative phase imaging), e.g., volume, 
surface area, etc. 

>98% accuracy Kim et al. (2019) 

2 CNNs Deformed cell images under capillary 
condition 

>80% accuracy Kihm et al. (2018) 

3 SVM RBC properties (estimated based on 
quantitative phase imaging with micro- 
spectrocolorimetry), e.g., area, perimeter, 
etc. 

>95% accuracy Singh et al. (2020) 

4 SVM Classification of various cell types 
(cancer cells and blood cells) in 
blood. 

2D morphological features (based on 
microscopic images) 

>80% accuracy Nissim et al. (2021) 

5 06 ML tools: 
AdaBoost, GB, 
KNN, RF, and 
SVM. 

Classification of white blood cells Morphological features (based on 
microscopic images) 

97% average F1-score Nassar et al. (2019) 

6 CNNs Prediction of collagenous tissue 
elastic properties 

Microscopy images Classification accuracy of 84%; stress- 
strain regression errors of 0.021 and 
0.031 were achieved 

Liang et al. (2017) 

7 RF Prediction of optical property Diffuse reflectance images in the spatial 
frequency domain 

Errors ~ 0.556% in absorption and 
0.126% in reduced scattering. 

Panigrahi and Gioux 
(2018) 

8 CNNs Prediction of the tissue 
deformation (strain field) 

Radio frequency Compute the strain field robustly and 
accurately 

Wu et al. (2018) 

9 DT, ERTs and RF Prediction of the real-time breast 
tissue deformation based on finite 
element (FE) simulations (ground 
truth). 

Magnetic resonance images Lowest errors correspond with ERTs; 
0.4% of the mean displacement and 
0.43% of the standard deviation. 

Martinez-Martinez 
et al. (2017) 

10 DCNN-LSTM Prediction of membrane elasticity 
and membrane viscosity 

Sequence of capsule deformed snapshots 
from dynamics simulations 

The mean absolute percentage error 
of the capillary number and 
membrane viscosity are 3.65% and 
3.42%, respectively. 

Lin et al. (2021) 

NN = neural networks; CNNs = convolutional neural networks; SVM = support vector machine; GB = gradient boosting; KNN = K-nearest neighbors; RF = random 
forest; DF = decision tree; ERTs = extremely randomized trees; DCNN-LSTM = deep convolutional neural network - long short-term memory. 
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large pre-existing dataset of biological cell images obtained from 
microscopic tools (Allier et al., 2022; Dietler et al., 2020; Oei et al., 
2019). Due to their exceptional image processing ability, CNN algo-
rithms have been used in various applications in biological systems 
including phenotyping single cells directly from microscopy images 
(Berryman et al., 2020) or assessing blood cell lesions at a level that 
surpasses human performance (Doan et al., 2020). Specially, U-Net is a 
powerful CNN-based framework that was recently developed for cell 
counting, detection, and morphometry (Falk et al., 2019). This study 
takes advantage of the image processing power of CNNs to measure the 
stiffness of cell membranes. We show that these CNN-based models can 
predict the mechanical properties of the single capsule accurately based 
on its two-dimensional (2D) deformed images and has improved accu-
racy when its three-dimensional (3D) deformed geometry is available. 

In this study, we build an efficient physics-constrained ML model for 
the sake of performance enhancement. Physics-informed ML models 
have been widely used to overcome the low data availability of some 
biological and engineering systems that makes most state-of-the-art ML 
techniques ineffective. These models add the knowledge of physical laws 
in the form of partial differential equations and constrain a given dataset 
in the training process (Raissi et al., 2019). This technique has been used 
for a wide variety of applications, including physics-informed prediction 
of the pressure and saturation plumes of multiphase flow (Yan et al., 
2022), simulation and synthesis of cyclic adsorption processes (Sub-
raveti et al., 2022), and modeling cyclic voltammetry with electro-
chemically consistent boundary conditions (Chen et al., 2022). Here, 
instead of using governing equations during the training process, we 
take into account physical quantities including total surface area and 
total volume of the capsule with an assumption that these values do not 
change after the capsule’s deformation. These physical constraints are 
incorporated into the loss function to enhance the convergence of ML 
models. We demonstrate that embedding this prior knowledge into a 
neural network can facilitate the learning process to get accurate results 
with relatively small datasets. We expect our physics-constrained CNN 
framework will be used as a novel computational approach to support 
real-time biomechanical measurement applications in the future. 

2. Computational model and methods 

The present method that predicts the membrane stiffness of a 
microcapsule from its corresponding dynamic deformation is based on a 
shear flow deformability cytometry (sDC). In this work, the membrane 
stiffness in this work corresponds to the membrane shear modulus, 
which appears for the elastic energy storage connected with the shear 
deformation of the capsule membrane. The computational framework 
consists of two parts. The first part is to build a microfluidic platform for 
a flow-induced capsule deformation, which is detailed in Section 2.1. 
The second part is to develop a CNN-based prediction algorithm. As 
described in Section 2.2, CNN model belongs to supervised learning, 
and can be used as an operator which establishes the relationship be-
tween input and output, which are the deformed geometry of a capsule 
and its membrane stiffness, respectively. 

2.1. Fluid–structure interaction (FSI) computational method 

The computational model is shown in Fig. 1A. An initially spherical 
capsule flows through a microfluidic channel, which is called sDC. In the 
sDC, the constricted channel has a square cross-section 20 × 20 μm2 with 
a length 300 μm that follows the corresponding experimental setup 
(Urbanska et al., 2020). 3D Cartesian coordinate is used with y-axis 
along the axis of the main channel. To quantify the deformability of the 
capsule, we calculated the deform value (D) of the capsule as D = 1 −
2 ̅̅̅̅̅̅̅̅̅̅

π Area√

Perimeter as presented in Ref (Urbanska et al., 2020). for all snapshots (2D 
top-view images) in Fig. 1A. Here, the deformability is the degree to 
which applying a force can change the shape of the capsule membrane. 
As the capsule gets more deformation, the shape ratio (2 ̅̅̅̅̅̅̅̅̅̅

π Area
√

Perimeter
) of the 

deformed capsule in the 2D top-view image gets smaller leading to 
increasing its D values. The length of the constricted region is long 
enough to allows the capsule to develop its deformation along the 
channel (Fig. 1B). We define a “region of interest” (ROI) at the end of the 
channel where the capsule reaches its maximum deformability. The data 
derived from the deformed capsule (2D top-view snapshot or 3D co-
ordinates of membrane’s vertices) in the ROI is then employed by a 
pre-trained CNN model to predict the membrane stiffness of capsule. 

The capsule’s membrane is discretized into a point system with 
triangular networks. The Lagrangian mesh of the membrane is approx-
imately uniform, and the mesh size is about 0.5 μm. The numbers of 
vertices and elements depend on the size of the capsule. For example, a 
membrane of a capsule with the radius of 6.5 μm will have 1896 vertices 
and 3788 elements (Fig. S1). The membrane structure is immersed in an 
incompressible flow (water). The flow viscosity and mean velocity used 
in the model are adjusted to match the experimental flow regime (Re =
0.4) (Urbanska et al., 2020) (Table 2 and Table S1). First, the capsule is 
placed in the center of the left end of a simulation box with the 
dimension of 60 × 440 × 25 μm3 (x × y × z). After that, the capsule is 
driven through the microfluidic channel by applying a body force in the 

Fig. 1. A model of a deformed capsule in a shear flow deformability 
cytometry. (A) Time-series snapshots of a capsule’s geometry in a shear flow 
microfluidic channel from t = 0 to t = 1.3 ms. The Reynold number (Re) is set at 
0.4 to reproduce the experimental flow condition (Urbanska et al., 2020). The 
top-view snapshot of the capsule at the end of the channel, so-called region of 
interest (ROI), shows a bullet-like shape of deformation compared to the 
experimental image in the inset (Urbanska et al., 2020). (B) The corresponding 
deformability of the capsule along the channel is calculated as D = 1− 2 ̅̅̅̅̅̅̅̅̅̅

π Area√
Perimeter , 

showing that the capsule reaches its maximum deformation at the ROI. The 2D 
snapshot and 3D geometry of the deformed capsule at the ROI are then used to 
predict the membrane stiffness of the capsule. 

Table 2 
Coarse-grained parameters for spherical microcapsule model with their corre-
sponding physical values.  

Parameters Simulation (LJ unit) Physical 
Energy scale (kBT) 6.57 × 10−6 4.14 × 10−21 N m 
Viscosity of fluid (h) 0.333 0.0057 Pa s 
Channel width × height 20 × 20 20 × 20 μm 
Mean flow velocity 0.0068 0.1 m s−1 

Applied stress 0.0796 ~1 kPa 
Reynold number 0.4 0.4 
Cell radius 4.0–9.0 4.0–9.0 × 10−6 m 
Cell shear modulus (μr) 0.0016–0.0635 1.0–40 × 10−6 N m−1 

Cell area constant (ka) 0.0012–0.0476 0.75–29.97 × 10−6 N m−1 

Cell local area constant (kd) 0.0582–2.3280 0.36–14.6 × 10−4 N m−1 

Cell volume constant (kv) 0.0627–2.5094 39.5–1580 N m−2 

Cell bending constant (kb) 0.0001–0.0050 0.79–31.75 × 10−19 N m  
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y-direction to mimic a pressure-driven flow with periodic boundary 
conditions only applied along this direction. 

The FSI computational framework used in this work has been 
introduced in our previous studies (Ye et al., 2017, 2019a, 2021). Here 
we just briefly introduce it for the sake of completeness of this study. 

2.1.1. Lattice Boltzmann method for fluid flow 
The fluid flow in the microfluidic channel is modeled as an incom-

pressible flow and governed by the continuity and the Navier-Stokes 
(NS) equations as follows: 
∇ • u= 0 (1)  

∂u

∂t
+ u • ∇u = −1

ρ
∇p + μ

ρ
∇2u + F (2)  

with u, ρ, p denoting fluid velocity, density and pressure, respectively. μ 

and F are the dynamic viscosity of the fluid and the body force, 
respectively. We use the Lattice Boltzmann method (LBM) to recover the 
NS equation instead of solving it directly. The details of how LBM can 
recover NS equation and the limitations can be found in (Chen and 
Doolen, 1998). LBM is an approach to solve the discrete Boltzmann 
equation. Based on the correlation between the mesoscopic Boltzmann 
and continuum NS equations, LBM can efficiently handle fluid dynamics 
(Chen and Doolen, 1998). Briefly, LBM is built on the Eulerian coordi-
nate system. The basic parameter in LBM is the density distribution 
function fi (x, t) at position x and time t. The linearized Boltzmann 
equation is introduced as: 

(∂t + eiα∂α)fi = − 1

τ
(fi − f

eq
i ) + Fi (3)  

where ei is the lattice velocity in the i-th direction. Here, fi (x, t) is split 
into two parts: streaming (L.H.S) and collision (R.H.S). The streaming 
part is discretized as fi (x + ei, t + 1) - fi (x, t) where fi (x, t) depends on 
both time and spatial spaces. The collision part is related to the relax-
ation process at state (x, t) towards the equilibrium state of the particle 
f eq
i through collision behavior. We choose the most popular scheme for 

the collision model, Bhatnagar–Gross–Krook (BGK) scheme where only 
relaxation time t is controlled (Qian et al., 1992). Last, Fi represents the 
external forcing term. Here, we use D3Q19 model, meaning that each 
point has 19 lattice velocities with different directions in the 
three-dimensional Eulerian system (Qian et al., 1992). The lattice ve-
locities can be written as:   

The equilibrium distribution function f eq
i (x, t) can be estimated using 

Maxwell distribution as: 

f
eq

i (x, t) =ωiρ

[

1+ ei • u

c2
s

+(ei • u)2

2c4
s

−(u)2

2c2
s

]

(4)  

where weighting coefficients ωi = 1/3 (i = 0), ωi = 1/18 (i = 1–6), ωi =
1/36 (i = 7–18); sound speed cs = Δx/( ̅̅̅3√

Δt) with Δx and Δt repre-
senting spatial and temporal discretization sizes, respectively. 

The dynamic viscosity in equation (2) can be expressed as: 

μ= ρ

(

τ− 1

2

)

c2
s Δt (5) 

The external forcing term can be discretized as: 

Fi =
(

1− 1

2τ

)

ωi

[

ei − u

c2
s

+(ei • u)
c4

s

ei

]

• F (6) 

After each time step, we collect the fi in the whole domain and 
calculate the fluid density and momentum using the relations: 

ρ=
∑

i

fi, ρu =
∑

i

fiei +
1

2
FΔt (7)  

2.1.2. Coarse-grained model for capsule 
According to some restrictions to the bio-membrane modeling (Tan 

et al., 2008), there are some assumptions that we imposed to our capsule 
model:  

o The capsule is spherical.  
o The capsule membrane is incompressible, homogeneous, isotropic, 

and elastic.  
o The total surface area and total volume of the capsule are kept 

constant. 

The capsule is modeled with coarse-grained method, where the 
capsule’s membrane is considered as point systems connected with 
specific triangular meshes (Fedosov et al., 2010). The capsule is repre-
sented by a 3D liquid-filled membrane immersed in the fluid. A spherical 
shape is chosen to represent the capsule with its radius varying from 4.0 
to 9.0 μm. The capsule’s membrane is discretized into a point system 
with the average distance between points of 0.5 μm. The mechanical 
properties of the membrane are implemented by applying potential 
functions on the triangular network, including in-plane and out-of-plane 
potentials. 

A harmonic bond potential Ubond is introduced to account for the in- 
plane interactions between the points within the capsule’s membrane: 
Ubond =K(r – r0)2 (8)  

where K is the bonded force constant, and r0 is the equilibrium bond 
length. 

In addition to the in-plane interaction, the out-of-plane bending of 
the membrane is applied with a bending potential function: 

Ubending =
∑

k∈1… Ns

kb[1− cos(θk − θ0)] (9)  

in which kb represents the bending stiffness of the membrane, θk appears 
for the dihedral angle between two adjacent triangular elements andθ0 is 
the corresponding initial value. Ns stands for the total number of dihe-
dral angles. 

We also apply an area conservation constraint for the capsule’s 
membrane as: 

Uarea =
∑

k∈1… Nt

kd(Ak − Ak0)2

2Ak0

+ ka(At − At0)2

2At

(10) 

[e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18]=

⎡

⎣

0 1 −1

0 0 0

0 0 0

0 0 0

1 −1 0

0 0 1

0 1 1

0 1 −1

−1 0 0

−1 −1 1

1 −1 0

0 0 1

−1 1 −1

0 0 0

1 −1 −1

0 0 0

1 1 −1

1 −1 1

0

−1

−1

⎤

⎦
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The area conservation includes local and global area conservations. 
The first term represents the local area constraint in which Ak is the k-th 
element area, Ak0 is its initial area, kd is the spring constant, and Nt is the 
total number of triangular elements. The second term is the global area 
constraint with spring constant ka, total area and its initial value At and 
At0, respectively. 

We also assume the volume of the capsule should be constant due to 
the presence of cytosol inside the cell. Therefore, we employ a simple 
harmonic function for the capsule’s total volume as: 

Uvolume =
kv(V − V0)2

2V0

(11)  

with spring constant kv. total volume V and its initial value V0, 
respectively. 

Finally, we combine all the potentials to calculate the force at each 
vertex of the capsule’s membrane as: 

f i = − ∂U([xi])
∂xi

(12)  

where U ([xi]) is the combination of potentials at coordinate xi. 

2.1.3. Coupling of fluid and coarse-grained models: immersed boundary 
method 

Since the capsule is immersed in a fluid flow, the immersed boundary 
method (IBM) is used to couple the coarse-grained model with the sur-
rounding fluid flow (Ye et al., 2017, 2019b; Liu et al., 2006; Mittal et al., 
2008; Zhang et al., 2004; Huang et al., 2007; Tian et al., 2011). In IBM, 
the coupling is achieved by interpolating the velocity and force at the 
interface of coarse-grained structure and fluid meshes (Fig. 2). The 
Lagrangian (moving freely) and Eulerian (fixed) coordinate systems are 
used to describe the coarse-grained membrane structure and the fluid 
flow, respectively. The IBM ensures no-slip boundary condition at the 
interface of the structure and the fluid. The structure (capsule’s mem-
brane) is allowed to move with the same velocity as the surrounding 
fluid, and the force acquired from the coarse-grained model will be 
spread to the adjacent Eulerian fluid meshes through interpolation, 
which is considered as an external force term in LBM. We assign the 
Eulerian coordinates x and Lagrangian coordinates s. The structure’s 
position can be denoted as X (s,t). The no-slip boundary condition is 

satisfied as long as: 
∂X(s, t)

∂t
= u(X(s, t)) (13)  

which means discretized vertices in the coarse-grained model will move 
with the same velocity as the nearby fluid meshes. Once the vertices 
move, we then calculate the structure force density F (s, t) through po-
tential functions and exert this force to the adjacent fluid meshes by: 

f fsi(x, t) =
∫

Ω

F(X, t)δ(x− x(X, t))dΩ (14)  

in which δ is a smoothed approximation for Dirac delta interpolation 
function. Here, we use the so-called 4-points stencil as: 

δ(x)=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

8

(

3 − 2|x| +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 4|x| − 4x2

√

)

, 0 ≤ |x| ≤ 1

1

8

(

5 − 2|x| +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−7 + 12|x| − 4x2

√

)

, 1 ≤ |x| ≤ 2

0, 2 ≤ |x|

(15) 

This stencil takes 64 fluid nodes into account, which has shown 
stability and fewer artifacts (Peskin, 2002). The force f fsi (x, t) is then 
used as a body force in the LBM. The same interpolation approach is 
used to get the velocities of the structure on the moving boundary by: 

u(X, t)=
∫

Ω

u(x, t)δ(x− x(X, t))dΩ (16) 

The channel (sDC) wall is considered as a stationary immersed 
boundary in the simulations. Our FSI computational framework has 
been validated by our previous studies (Ye et al., 2017, 2018, 2019b). 
All computational models were implemented using a recently developed 
package by Ye and co-workers, the so-called OpenFSI (Ye et al., 2020). 
Within this package, the structure dynamics are accounted for by a 
lattice model implemented by Large-scale Atomic/Molecular Massively 
Parallel Simulator (LAMMPS) (Plimpton, 1995). The parameters of the 
potentials and corresponding physical parameters of the capsule mem-
brane are presented in Table 2. The coefficients in the potential func-
tions are chosen based on our previous work on red blood cells 
suspension in a constricted channel (Ye et al., 2021). Freeze is set for the 
sDC channel and viscous effect is added in the simulation setup. The 

Fig. 2. Schematic of the IBM. Solid squares (grey) represent the Eulerian – surrounding fluid nodes (x), and solid circles denote vertices of the Lagrangian structure – 

capsule membrane nodes (X). 
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capsule parameters including cell area constant (ka), cell local area 
constant (kd), cell volume constant (kv) and cell bending constant (kb) 
are varied according to the change of membrane stiffness (μr). The lat-
tice spacing of fluid field dx is chosen to be 0.1 μm. 

2.2. Machine learning models 

2.2.1. Machine learning model’s architectures 
In this work, CNN models are developed to predict the membrane 

stiffness of a capsule from its deformed shape. CNN is a neural network 
of convolutional layers, which have a number of filters. In a typical CNN 
model, the convolutional layers in connection with pooling layer can 
repeat to reduce the size of the input image, and then being flattened 
into a single column prior to be fully connected in a neural network for 
prediction the output (classification or regression). Filter is a specific 
kernel that can be used for feature extraction in CNN during the training, 
and these filters will be learned and optimized during the training 
process. The filters will slide entirely the image and the output of 
convolved features is the elementwise scalar product of filter weights 
and each small region of image (Fig. S2A). Max pooling, normally used 
in CNN, is the sequential step to reduce the complex which keeps the 
maximum value in the pooling kernel (Fig. S2B). Going through the 
convolutional and pooling processes, the input image will be reduced 
significantly in its dimension, but the object and most important features 
remain. This is the best merit of using CNN for training perplexing im-
ages compared to the other algorithms. The next stage is to flatten the 
convolved features into a single-column feature vector prior to fully 
connecting it to a feedforward neural network for predicting the out-
comes (Fig. S2C). 

There are two CNN models that will be developed in this work. The 
first CNN model is built to predict the membrane stiffness of a capsule 
from its deformed 2D image in the ROI, so-called 2D-CNN model. The 
2D-CNN model uses a top-view snapshot of the deformed capsule in the 
ROI acquired from FSI simulations as input for training. As shown in 
Fig. 3A, our 2D-CNN model includes a series of convolutional, max 
pooling layers for feature extraction. Eventually, all extracted features 
are flattened and then fully connected to dense layers. The model is a 
regression model, and the output is the predicted membrane stiffness. 
The loss function is to minimize the mean absolute error (MAE) between 
the predicted stiffness and the ground truth during the training. In the 
physics-constrained ML models, along with the stiffness, the total 

surface area and total volume of the capsule are also embedded into the 
training process based on some restrictions imposed on bio-membrane 
(Tan et al., 2008). Therefore, in this situation, there will be three out-
puts instead of one output (Fig. 3). 

In detail, the images of deformed capsules are 2D matrix composed of 
0/1. When 1 is used to indicate a capsule pixel, 0 is used to dictate a non- 
capsule pixel. The size of the 2D matrix is 400 × 400. There will be many 
1s in the 2D matrix representing capsules with larger radius, yet there 
will be many 0s in the 2D matrix representing capsules with smaller 
radius. In addition, the neighbored 1 and 0 suggests the boundary of 
capsule. When a filter of a convolutional layer scans through the 2D 
matrix, the size, boundary, and shape of the capsules are expected to be 
recognized as key features. To characterize these features, pixels on the 
boundary of the capsule are more critical than those in the capsule. 
Fig. S3 demonstrates that key features are related to the boundary of the 
capsule after the last max pooling layer. Details of the 2D-CNN model’s 
layers are presented in Table 3. 

The second CNN model used in this work performs on the 3D ge-
ometry of the deformed capsule (3D-CNN). Instead of 2D images, 3D- 
CNN model uses the 3D coordinates of the vertices of the deformed 
capsule’s membrane derived from FSI simulations as the input (Fig. 3B). 
One question that arises is whether it is feasible to obtain 3D geometry 
data of cells in real experiments. While obtaining 2D images of cells is 
comparatively easier, generating a 3D structure is a more complex task. 
Nonetheless, it is achievable through experimentation. One promising 
approach is using a 3D imaging flow cytometer, as demonstrated by 
Zunming Zhang et al. (2022). This imaging technique captures 3D 

Fig. 3. Architectures of our (A) 2D-CNN and (B) 3D- 
CNN models. (A) The input of 2D-CNNs model is the 
top-view snapshot of the deformed capsule at the end 
of microfluidic channel derived from FSI simulations. 
The model includes a series of 2D convolutional and 
max pooling layers that are used for feature extrac-
tion. A flattened layer is then used for placing all the 
extracted features into a single-column feature vector 
prior to being fully connected in a neural network. 
The output is the predicted stiffness of the capsule’s 
membrane. In the case of using physical constraints, 
the output will account for stiffness, total surface area 
and total volume of the capsule. (B) The input of the 
3D-CNN model is the 3D coordinates of the vertices of 
the capsule’s membrane acquired from FSI simula-
tions. The 3D-CNN architecture includes a series of 
convolutional, batch normalization, activation, global 
max pooling, and dense layer for feature extractions. 
The output is the predicted stiffness of the capsule’s 
membrane. Like the 2D model, the outputs of the 3D 
physical-constrained model will include stiffness, 
total surface area and total volume of the capsule.   

Table 3 
Overview of the used layers in the 2D-CNN model.  

Layer Kernel size [px2] Subimage size [px2] 
Input layer – 400 × 400 
Convolutional layer 1.1 10 × 10 391 × 391 
Convolutional layer 1.2 4 × 4 388 × 388 
Max-pooling layer 1 2 × 2 194 × 194 
Convolutional layer 2.1 4 × 4 191 × 191 
Convolutional layer 2.2 4 × 4 188 × 188 
Max-pooling layer 2 2 × 2 94 × 94 
Fully connected layer 3 – 94 × 94 
Dense layer 4.1, 4.2, 4.3 – – 

Output layer, regression type – 1 × 1  
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images of cells at a rate of 1000 cells per second. When a cell passes 
through the laser interrogation area, it is illuminated by a scanning 
light-sheet with a scanning rate of 200-kHz. A spatial filter placed at the 

image plane contains a series of spatially positioned pinholes that are 
aligned with the cell flow direction by a predetermined separation. The 
photomultiplier tubes (PMTs) detect the emitted light from a specific 
portion of a cell. Finally, a spatial-temporal transformation is applied to 
reconstruct the 3D tomographic images. 

The 3D-CNN architecture is more complicated compared to that of 
the 2D-CNN model with a series of convolutional, batch normalization, 
activation, global max-pooling and dense layers. Similar to 2D-CNN 
models, the loss function needs to account for the total surface area 
and total volume of the capsule along with the membrane stiffness in 
case of using physical constraints. The 3D geometry data is made of a 
cloud of points on the surface of the deformed capsule. A 2D image can 
be regarded as the projection of the point cloud on a plane. Therefore, a 
3D point cloud keeps more comprehensive information of the deformed 
capsule than that in a 2D image. This study uses the PointNet model (Qi 
et al., 2017) to analyze the 3D data. The original purpose of the PointNet 
model is for object classification. It is found that the max pooling feature 
of the PointNet makes the model focus on the boundary of the 3D point 
cloud to better identify their geometries. For our dataset of deformed 
capsules, the 3D points are already on the surface of the capsule, so it is 
more straightforward for PointNet model to identify the deformed ge-
ometries. To accommodate the PointNet model to the stiffness regres-
sion problem, we replace the original classification layer with optimized 
dense layers before the last output layer for stiffness value. Detail of 
3D-CNN model’s layers is presented in Table 4. 

2.2.2. Dataset 
The training data for our CNN models contains 736 deformed cap-

sules obtained from the FSI simulations. The capsule’s physical param-
eters spread out in ranges of 4.0–9.0 μm for its radius and 1.0–40.0 μN/ 
m for membrane stiffness. We use the Latin hypercube design (LHD) 
(Viana, 2016) to effectively sample these capsules from this design 
space. This sampling technique is a better choice for experimenter to 

Table 4 
Overview of the used layers in the 3D-CNN model.  

Layer Output Shape Layer Output Shape 
InputLayer 3582 × 3 BatchNormalization 8 3582 × 16 
Conv1D 3582 × 16 Activation 8 3582 × 16 
BatchNormalization 3582 × 16 Conv1D 7 3582 × 32 
Activation 3582 × 16 BatchNormalization 9 3582 × 32 
Conv1D 1 3582 × 16 Activation 9 3582 × 32 
BatchNormalization 1 3582 × 16 GlobalMaxPooling1D 1 32 
Activation 1 3582 × 16 Dense 3 32 
Conv1D 2 3582 × 32 BatchNormalization 10 32 
BatchNormalization 2 3582 × 32 Activation 10 32 
Activation 2 3582 × 32 Dense 4 16 
GlobalMaxPooling1D 32 BatchNormalization 11 16 
Dense 32 Activation 11 16 
BatchNormalization 3 32 Dense 5 64 
Activation 3 32 Reshape 1 8 × 8 
Dense 1 16 Dot 1 3582 × 8 
BatchNormalization 4 16 Conv1D 8 3582 × 8 
Activation 4 16 BatchNormalization 12 3582 × 8 
Dense 2 9 Activation 12 3582 × 8 
Reshape 3 × 3 Conv1D 9 3582 × 16 
Dot 3582 × 3 BatchNormalization 13 3582 × 16 
Conv1D 3 3582 × 8 Activation 13 3582 × 16 
BatchNormalization 5 3582 × 8 Conv1D 10 3582 × 32 
Activation 5 3582 × 8 BatchNormalization 14 3582 × 32 
Conv1D 4 3582 × 8 Activation 14 3582 × 32 
BatchNormalization 6 3582 × 8 GlobalMaxPooling1D 2 32 
Activation 6 3582 × 8 Dense 6 32 
Conv1D 5 3582 × 16 Dense 7 32 
BatchNormalization 7 3582 × 16 Dense 8 1 
Activation 7 3582 × 16   
Conv1D 6 3582 × 16    

Fig. 4. Capsule’s deformability distribution over 
the dataset used in FSI simulations. (A) Capsules 
(radius = 6.5 μm) with three different membrane 
stiffness values show different deformability. These 
deformed values locate in the range of experimental 
deform values (scatter plot from (Urbanska et al., 
2020)). Snapshots of the deformed capsules in the 
ROI from the FSI simulations correspond to their 
membrane stiffness. The capsule with smaller stiff-
ness has higher deformability and vice versa. All 
snapshots are taken in the ROI and rendered using 
Paraview (Ahrens et al., 2005; Ayachit, 2015). (B) 
736 capsules in the sDC are implemented with FSI 
simulations. The design of engineering (DOE) points 
is generated using Latin hypercube sampling method 
to ensure a well-distributed dataset. Here, two design 
parameters of a capsule are studied including radius 
(4.0–9.0 μm) and membrane stiffness (1.0–40.0 
μN/m). (C) The 3D plot of distribution of deform-
ability for all 736 capsules obtained from FSI simu-
lations. Here, the deformability is unitless and 
calculated based on (Urbanska et al., 2020) as D =
1− 2 ̅̅̅̅̅̅̅̅̅̅

π Area√

Perimeter . The color of each point represents the 
level of deformability of the deformed cell. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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access the impact of the process variables on the output. Rather than 
building a complete random matrix, LHD tries to subdivide the sample 
space into smaller cells and choose only one element out of each sub cell. 
By doing so, a more “uniform spreading” of the random sample points 
can be obtained. After that, 736 capsule models are generated using our 
in-house MATLAB code, and then imported into OpenFSI (Ye et al., 
2020) to perform FSI simulations. Subsequently, we collected 736 
top-view snapshots as well as the 3D geometries of deformed capsules at 
the ROI for our ML’s training and testing. All snapshots are rendered 
using Paraview (Ahrens et al., 2005; Ayachit, 2015) which performs on 
the FSI trajectory dump files (LAMMPS trajectory). After establishing 
the ML models, we followed the same procedure to generate another 822 
capsules that are different from the training set for external validation. 
Thus, we need to run 1558 FSI simulations in total. 

3. Results and discussion 

3.1. Fluid–structure interaction simulations 

The implementation of the FSI model is demonstrated in Fig. 1. The 
spherical capsule gets deformed when it enters into the constricted 
channel. The capsule increases its deformation until it reaches the end of 
the channel (ROI) and then relaxes to its original spherical shape af-
terward (Fig. 1A). As shown in Fig. 1B, the capsule’s deformation rea-
ches its maximum value at the ROI and then decreases when the capsule 
leaves the channel. The deformed capsule at the ROI is in a bullet-like 
shape as being observed in the previous experiments (Urbanska et al., 
2020), indicating our FSI model successfully reproduced the sDC 
experiments. 

The main goal of this study is to develop an ML-based platform to 
predict the membrane stiffness of a capsule based on its deformed 

geometry. To acquire a reliable model, it is important to have a sufficient 
data source. First, we tested our FSI model with three different capsules 
having the same radius of 6.5 μm but different membrane stiffness (1.05, 
6.3 and 37.8 μN/m). The deformed shapes of the capsules at the ROI 
were acquired and compared to the previous experimental work 
(Urbanska et al., 2020) in Fig. 4A. The result confirms that the calculated 
deform values from the simulation reasonably located in the experi-
mental range of capsule’s deformability. After that, 736 data points of 
capsules with different sizes and stiffness were selected using LHD 
sampling method over the design space (Fig. 4B). After implementing 
the fluid dynamics simulations for all the capsules in the sDC, we plotted 
a 3D distribution of capsule deformability depending on their sizes and 
stiffness (Fig. 4C). We notice that capsules with smaller membrane 
stiffness underwent stronger deformation and vice versa (red-point 
projection plane), while the size effect on the deformation of a capsule 
seems to be less obvious than that of the stiffness (purple-point projec-
tion plane). 

3.2. Prediction performance of 2D-CNN models 

The ensemble method of three CNN models is used for training to 
achieve a better prediction performance compared to individual CNN 
models (Figs. S4–S5) (Džeroski et al., 2009). By taking average of the 
predictions from multiple models, this ensemble of models reduces the 
variance and improves the model performance. The number of models to 
be trained and combined is a hyperparameter which in our cases is 
optimized as three. Our dataset containing 736 deformed capsule’s in-
formation is split into the train:test dataset with the ratio of 8:2. Addi-
tionally, we aim to compare the prediction performance between 
non-physical and physical constraint-based ML models. The prediction 
performance of the non-constraint 2D model is shown in Fig. 5A with the 

Fig. 5. Ensemble performance results of 2D-CNN models. Comparison of prediction performance between non-constrained (A, B, C) and physical-constrained 2D- 
CNN models (D, E, F). (A) The CNN model without any constraints performs on training and test datasets with the R2 of 0.96 and 0.95, respectively. Dataset contains 
736 points (train:test = 8:2). (B) The loss (mean absolute error) history of the training and validation verse epochs of non-constrained model. (C) The pretrained 
model in (A) is validated on an external dataset containing 822 deformed capsules with the R2 score of 0.94. (D) The CNNs model with total area and volume 
constraints (as concurrent model’s outputs) demonstrates lower values of train and test R2 scores (0.93 and 0.90) compared to the non-constrained model. (E) The 
loss history of the training and validation of constrained model in (D) shows more stable than that of non-constrained model. (F) The pre-trained physics-constrained 
model is validated on the external dataset of 822 data points with the R2 score of 0.90. 
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average R2 scores of 0.96 and 0.95 for the training and testing, respec-
tively. This result indicates that our 2D-CNN model can effectively 
predict the stiffness of the capsule’s membrane solely based on their 
top-view 2D images. To validate the model, we use an external dataset 
containing 822 capsule images. This dataset was also acquired from 
running another 822 FSI simulations. Fig. 5C shows that pretrained 
model can make an excellent prediction for the stiffness of the capsules 
in the external dataset with the R2 score of 0.94. We then examine the 
predicting performance of the physic-constrained model. As shown in 
Fig. 5D, even though the constrained model’s prediction does not 
improve compared with the non-constrained one, using the constraints 
can enhance the convergence of the model in both training and vali-
dation. It is indicated in the loss history plot of constrained model 
(Fig. 5E) when compared with the non-constrained model (Fig. 5B). The 
constrained model also has a good performance on the external dataset 
(R2 score = 0.90) (Fig. 5F). However, both 2D-CNN models still over-
estimate the stiffness when the true membrane stiffness is low (<10 
μN/m) and underestimate the stiffness when the ground truth is high 
(>25 μN/m) in both training and validation. 

3.3. Prediction performance of 3D-CNN models 

Due to the underperforming of 2D-CNN models in some ranges of 
membrane stiffness, we built another type of CNN model that is expected 
to demonstrate better prediction accuracy. We exploit the geometry of 
the capsule’s membranes as the input for the model, so-called 3D-CNN 
model. Therefore, the model’s input is not a projected image of the 
deformed shape, but a collection of 3D coordinates of all vertices of the 
membrane. We hypothesize this 3D information can capture the 
deformability of the capsule more efficiently than its 2D images. After 
using ensemble method (Figs. S6–S7), we compared the performance of 

non-constrained (Fig. 6A) and physical-constrained models (Fig. 6D). 
We notice that 3D models’ average R2 scores of both training and testing 
performances are higher than that of 2D-CNN models, indicating the 3D- 
CNN models are more powerful in predicting the membrane stiffness of 
these capsules. Additionally, the physical-constrained 3D model out-
performs the non-constrained one in terms of the convergence according 
to their loss history plots (Fig. 6B, D). The model with constraints can 
converge after 100 epochs when compared to the non-constraint model 
with a significantly longer training process (400 epochs). Eventually, we 
also validated these 3D models using the external dataset (822 data). 
These models also present more accurate prediction than the 2D 
approach with higher R2 score between the predicted and the ground- 
truth values (Fig. 6C, F). Notably, the 3D-CNN models show that they 
do not under or over-estimate the membrane stiffness in the high or low 
true-stiffness domain that previously appeared in the 2D-CNN models. 
These results demonstrate the merit of using 3D-CNN approach. It is 

Fig. 6. Ensemble performance results of 3D-CNN models. Comparison of prediction performance between non-constrained (A, B, C) and physical-constrained 3D 
CNN models (D, E, F). (A) Prediction performance of CNN model without any constraints with R2 train of 0.98 and R2 test of 0.98 on the dataset of 736 points (train: 
test = 8:2). (B) The loss (mean absolute error) history of the training and validation verse epochs of the model in (A). (C) The pretrained model in (A) was validated 
with external dataset of 822 data points with the R2 score of 0.98. (D) The model with total area and volume constraints also demonstrates excellent prediction 
performance with high values of train and test R2 scores (0.98 and 0.98, respectively) compared to the non-constrained model in (A). (E) The loss history of the 
training and validation of physical-constrained model in (D) demonstrates better convergence when compared to the non-constrained model. (F) The pre-trained 
constrained model is validated with the external dataset of 822 data points with the R2 score of 0.98. 

Table 5 
Prediction performance of our CNN models for 736 training and 822 validation 
capsules.   

2D 
CNN 

2D CNN with 
constraints 

3D 
CNN 

3D CNN with 
constraints 

R2 training 0.96 0.93 0.98 0.98 
R2 validation 0.94 0.90 0.98 0.98 
RMSE training [μN/ 

m] 
2.40 3.20 1.60 1.60 

RMSE validation 
[μN/m] 

2.66 3.48 1.70 1.72 

Max error 
validation [μN/ 
m] 

9.61 12.73 6.62 6.76  
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more effective for predicting the membrane stiffness and able to over-
come the limitations of the 2D-CNN models. However, this 3D approach 
still faces high uncertainty when the true stiffness of the membrane is 
elevated (over 30 μN/m). 

We summarized the performance of all models in this work in 
Table 5. Our CNN-based models can perform accurate predictions with 
the maximum validation R2 value of 0.98. Additionally, to validate that 
our proposed method is convincing, we compared our model perfor-
mance to a baseline model where we derived the membrane stiffness 
based on the capsule size and deformability using surface fitting 
(Fig. S8). The validation R2 value obtained from this simple method is 
0.82. Compared to this baseline model, we conclude that our compu-
tational approach is powerful to predict the single-cell mechanics by 
taking advantage of CNN models. 

4. Conclusions 

In this work, we have presented a computational approach, by 
integrating high-fidelity FSI simulations and CNN algorithms, for accu-
rate prediction the flowing microcapsule’s membrane stiffness. We used 
our OpenFSI package to generate the training and validating datasets for 
our ML models. We have demonstrated that the ML models can accu-
rately predict the membrane stiffness in either presence or absence of 
physical constraints based on either 2D images or 3D coordinates of the 
deformed membrane. Interestingly, we have shown that our ML models 
could predict well only based on the static data of deformed capsule at 
the ROI instead of sequential data points. The present computational 
framework can be applied to realistic applications of high-throughput 
single cell characterization since it can reproduce the sDC experi-
mental results. Furthermore, our work also highlighted the importance 
of adding physical constraints to the ML models for the convergence 
improvement as well as the utilization of 3D geometry in the CNN model 
to overcome the underperformance of the 2D models. 

We have noticed that our study still needs further work in the near 
future. First, it needs to improve the underperformance of 2D models at 
some ranges of stiffness as well as reduce the high uncertainty of 3D 
models’ prediction when the membrane stiffness is high to make the 
model more robust and reliable. Second, the training dataset has only 
been derived from FSI simulations, and we have not validated on the 
experimental images of the cells. Therefore, the future collaboration 
with some experimentalists those have worked on the sDC/microfluidic 
methods will be great to validate the capability of ML framework in real- 
time high-throughput mechanical characterization. Finally, we aim to 
put more efforts on other characteristics of the cell along with its stiff-
ness for further medical or biological applications, such as monitoring 
cancer metastasis, vascular disorders, and understanding cell health. 
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