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Single-cell mechanics have gained much attention due to its importance in a broad range of biological appli-
cations. Different experimental approaches have been used for measuring the mechanical properties of individual
cells. However, the technical demands and time-consuming nature of these procedures have limited the
throughput of single-cell measurement, necessitating the development of alternative computational approaches.
Recently, single-cell deformability can be predicted using a convolutional neural network (CNN) model, shed-
ding a light on using machine learning (ML) algorithms for high-throughput characterizations of single-cell
mechanical properties. In this work, we developed a novel ML-based computational framework that can
reproduce a physical microfluidic system to investigate the individual cell’s deformability. The datasets for the
training and testing of our model were generated using high-fidelity fluid-structure interaction (FSI) simulations.
Our FSI-based ML approach of adopting CNN algorithms demonstrated a highly accurate prediction for the
membrane stiffness of a microcapsule (maximum R? = 0.98) based on its deformed shape. In this paper, we show
that by applying physical constraints including the microcapsule’s total surface area and total volume, we were
able to build a physics-constrained ML model that possesses better convergence and higher stability during both
training and validation. Finally, we found that ML models that used the three-dimensional geometry of the
capsule as input could outperform the typical CNN models that relied solely on the two-dimensional images. We
expect that this physics-constrained computational framework will serve as a basis for developing future tools for
real-time biological applications through the integration of high-fidelity simulations with ML algorithms.

1. Introduction progression analysis (Smelser et al., 2015; Kashani and Packirisamy,

2020). The migration of cancer cells has been shown to be associated

The mechanical properties of the cell are the behaviors the cell ex-
hibits when physical force is applied to the cell, and play an important
role in many biological activities, including cell growth, cell division,
cell motility, and adhesion (Hao et al., 2020; Rodriguez et al., 2013).
Several subcellular structures are involved in the mechanical behaviors
of individual cells, including the cell membrane, cytosol, and cytoskel-
eton. Each of these structures requires different and specialized experi-
mental tools to perform a useful analysis (Chen, 2014). Moreover, the
mechanical properties of cells are also heavily influenced by their ability
to deform (a.k.a. their deformability) when they are subjected to an
external force such as a shear flow or an acoustic force. Cell deform-
ability plays a vital role in many assays and procedures, including cell
separation, disease diagnostics, drug testing, and immunity analysis.
Because of this, the study of the mechanical properties of biological cells
is of great interest to both academia and industry, particularly for cancer

with alterations in the cytoskeletal architecture of cells and, conse-
quently, their stiffness, which is one of their mechanical properties.
These changes enable cancer cells to migrate and attack distant organs
(Kashani and Packirisamy, 2020). Recent studies have confirmed that
cancer cells have an elasticity that is significantly lower than that of
healthy cells (Kwon et al., 2020; Han et al., 2020). Based on these
findings, we aim to design a method to measure the elasticity of a cell
and by extension, determine if it is cancerous.

Single-cell mechanics analysis plays an important role when it comes
to accurate diagnosis for some diseases like cancer where multi-cell
mechanics find it challenging to consider different types of cells, espe-
cially the aggressive ones, within the tumor (Kozminsky and Sohn,
2020). However, characterizing the mechanical properties of a single
microcapsule or biological cell is difficult due to their fragility and small
size. There are several experimental techniques used for measuring
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Table 1

Recent machine learning works on biological cells and tissues.
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No. ML models

Application

Input

Main results

Ref.

RBC properties (estimated based on

quantitative phase imaging), e.g., volume,

Deformed cell images under capillary

RBC properties (estimated based on
quantitative phase imaging with micro-

spectrocolorimetry), e.g., area, perimeter,

2D morphological features (based on

>98% accuracy

>80% accuracy

>95% accuracy

>80% accuracy

97% average F1-score

Kim et al. (2019)

Kihm et al. (2018)

Singh et al. (2020)

Nissim et al. (2021)

Nassar et al. (2019)

1 NN Classification of red blood cells
(RBC).
surface area, etc.
2 CNNs
condition
3 SVM
etc.
4 SVM Classification of various cell types
(cancer cells and blood cells) in microscopic images)
blood.
5 06 ML tools: Classification of white blood cells Morphological features (based on
AdaBoost, GB, microscopic images)
KNN, RF, and
SVM.
6 CNNs Prediction of collagenous tissue Microscopy images
elastic properties
7 RF Prediction of optical property
frequency domain
8 CNNs Prediction of the tissue Radio frequency

deformation (strain field)
Prediction of the real-time breast
tissue deformation based on finite
element (FE) simulations (ground
truth).

Prediction of membrane elasticity
and membrane viscosity

9 DT, ERTs and RF

10 DCNN-LSTM

Diffuse reflectance images in the spatial

Magnetic resonance images

Sequence of capsule deformed snapshots
from dynamics simulations

Classification accuracy of 84%; stress-
strain regression errors of 0.021 and
0.031 were achieved

Errors ~ 0.556% in absorption and
0.126% in reduced scattering.
Compute the strain field robustly and
accurately

Lowest errors correspond with ERTs;
0.4% of the mean displacement and
0.43% of the standard deviation.

Liang et al. (2017)

Panigrahi and Gioux
(2018)
Wu et al. (2018)

Martinez-Martinez
et al. (2017)

The mean absolute percentage error Lin et al. (2021)
of the capillary number and
membrane viscosity are 3.65% and

3.42%, respectively.

NN = neural networks; CNNs = convolutional neural networks; SVM = support vector machine; GB = gradient boosting; KNN = K-nearest neighbors; RF = random
forest; DF = decision tree; ERTs = extremely randomized trees; DCNN-LSTM = deep convolutional neural network - long short-term memory.

single-cell deformability, including atomic force microscope (AFM),
micropipette aspiration, parallel-plate technique, magnetic twisting
cytometry, magnetic tweezers, optical stretcher, optical tweezers,
acoustic methods, and particle-tracking micro-rheology (Unal et al.,
2014). Among them, AFM is one of the most popular tools (Haase and
Pelling, 2015). Each of these methods is limited by a slow measurement
speed, which does not allow for high throughput characterization of
biological samples (Darling and Di Carlo, 2015). One method that ad-
dresses this shortcoming is the microfluidics method, which has a
high-throughput rate in laboratory testing. Due to its ultra-high
throughput rate (10%-10* cells/s), microfluidics is commonly used to
assess the mechanical properties of thousands of individual cells very
quickly, especially the properties related to individual subcellular
components. A common use of microfluidics is assessing the deforma-
tion of blood cells by putting them under a constricted channel. Through
this assay, one could classify all the major blood cell types and patho-
logical changes due to certain disease conditions present in a human
blood sample (Bento et al., 2018; Toepfner et al., 2018). Despite the high
throughput rate afforded by microfluidics, data analysis methods have
historically struggled to keep pace with the large amount of raw data
generated. Time consuming image processing and analysis methods
limit the effective application of microfluidics (Lin et al., 2021). Fortu-
nately, machine learning (ML) can help us overcome this bottleneck. ML
algorithms allow for greatly enhanced image processing speeds.
Combining ML image processing algorithms with the high throughput
data of microfluidics allows for a versatile tool that can be used for
real-time applications (Sarker, 2021). Some of current ML applications
in biological field are listed in Table 1.

According to Table 1, even though researchers have put more effort
into developing ML tools for the prediction of cell and tissue mechanics,
there are only a few ML-based prediction models developed to estimate
the mechanical properties of an individual cell. The most recent ML-
based work to predict a single capsule’s biomechanics was presented

by Lin et al. (2021) using a combination of a deep convolutional neural
network (DCNN) and a long short-term memory (LSTM), creating a
so-called DCNN-LSTM network (Lin et al., 2021). This DCNN-LSTM
framework predicted the membrane elasticity and viscosity of micro-
capsules from a series of their dynamic deformation images, taken while
they were flowing in a branched microchannel. By doing so, the authors
achieved mean absolute percentage errors as low as 3.65% and 3.42%
for the predicted capillary number and membrane viscosity, respec-
tively. Even though this work could characterize the viscoelastic prop-
erties accurately, we observed that the fluid channel’s geometry used in
this study is unable to represent standardized laboratory tests in reality,
which is mostly focused on the microfluidic approach. Moreover,
instead of using sequential images like their approach, we aim to take
only the data of the deformed capsule at the end of the constricted
channel to characterize the single capsule’s mechanical properties. This
allows us to follow the experimental setup of microfluidic methods that
usually capture the cell’s deformation in a region of interest (Urbanska
et al., 2020).

Previously, Marta Urbanska et al. (2020) authored a study where
microfluidics was used to measure the deformability of individual cells.
This inspired us to develop a practical ML-based computational frame-
work for predicting the mechanical properties of a single cell, trained on
a dataset we developed. In the present study, we use our recently
developed package for fluid-structure interaction (FSI) simulations,
so-called OpenFSI (Ye et al., 2020), to generate various coarse-grained
microcapsule geometries with different membrane deformability. We
then use the FSI simulation-generated dataset as the input for a con-
volutional neural network (CNN) model with the desired output being
the membrane stiffness of the capsules. A CNN can be used as a digital
image processing system with the ability to resolve and evaluate the
details of an input image. They are commonly used to recognize and
classify specific objects or humanoid faces within pictures. Recently,
CNN models have become powerful enough to take advantage of the
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A Shear flow deformability cytometry (sDC)

Marta Urbanska et al.
Nature Methods 2020
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Fig. 1. A model of a deformed capsule in a shear flow deformability
cytometry. (A) Time-series snapshots of a capsule’s geometry in a shear flow
microfluidic channel from t = 0 to t = 1.3 ms. The Reynold number (Re) is set at
0.4 to reproduce the experimental flow condition (Urbanska et al., 2020). The
top-view snapshot of the capsule at the end of the channel, so-called region of
interest (ROI), shows a bullet-like shape of deformation compared to the
experimental image in the inset (Urbanska et al., 2020). (B) The corresponding

deformability of the capsule along the channel is calculatedasD = 1 — %,Ve,fngﬁf,
showing that the capsule reaches its maximum deformation at the ROI The 2D
snapshot and 3D geometry of the deformed capsule at the ROI are then used to

predict the membrane stiffness of the capsule.

large pre-existing dataset of biological cell images obtained from
microscopic tools (Allier et al., 2022; Dietler et al., 2020; Oei et al.,
2019). Due to their exceptional image processing ability, CNN algo-
rithms have been used in various applications in biological systems
including phenotyping single cells directly from microscopy images
(Berryman et al., 2020) or assessing blood cell lesions at a level that
surpasses human performance (Doan et al., 2020). Specially, U-Net is a
powerful CNN-based framework that was recently developed for cell
counting, detection, and morphometry (Falk et al., 2019). This study
takes advantage of the image processing power of CNNs to measure the
stiffness of cell membranes. We show that these CNN-based models can
predict the mechanical properties of the single capsule accurately based
on its two-dimensional (2D) deformed images and has improved accu-
racy when its three-dimensional (3D) deformed geometry is available.
In this study, we build an efficient physics-constrained ML model for
the sake of performance enhancement. Physics-informed ML models
have been widely used to overcome the low data availability of some
biological and engineering systems that makes most state-of-the-art ML
techniques ineffective. These models add the knowledge of physical laws
in the form of partial differential equations and constrain a given dataset
in the training process (Raissi et al., 2019). This technique has been used
for a wide variety of applications, including physics-informed prediction
of the pressure and saturation plumes of multiphase flow (Yan et al.,
2022), simulation and synthesis of cyclic adsorption processes (Sub-
raveti et al., 2022), and modeling cyclic voltammetry with electro-
chemically consistent boundary conditions (Chen et al., 2022). Here,
instead of using governing equations during the training process, we
take into account physical quantities including total surface area and
total volume of the capsule with an assumption that these values do not
change after the capsule’s deformation. These physical constraints are
incorporated into the loss function to enhance the convergence of ML
models. We demonstrate that embedding this prior knowledge into a
neural network can facilitate the learning process to get accurate results
with relatively small datasets. We expect our physics-constrained CNN
framework will be used as a novel computational approach to support
real-time biomechanical measurement applications in the future.
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Table 2
Coarse-grained parameters for spherical microcapsule model with their corre-
sponding physical values.

Parameters Simulation (LJ unit) Physical

Energy scale (kgT) 6.57 x 107° 414 x 102! Nm

Viscosity of fluid (h) 0.333 0.0057 Pa s
Channel width x height 20 x 20 20 x 20 pm
Mean flow velocity 0.0068 01ms™!
Applied stress 0.0796 ~1 kPa

Reynold number 0.4 0.4

Cell radius 4.0-9.0 4.0-9.0 x 10 °m

Cell shear modulus (x;) 0.0016-0.0635 1.0-40 x 10°°*Nm™!
Cell area constant (k) 0.0012-0.0476 0.75-29.97 x 10 *Nm™?
Cell local area constant (kq) 0.0582-2.3280 0.36-14.6 x 107 *Nm™!
Cell volume constant (k) 0.0627-2.5094 39.5-1580 N m 2

Cell bending constant (k) 0.0001-0.0050 0.79-31.75 x 107° Nm

2. Computational model and methods

The present method that predicts the membrane stiffness of a
microcapsule from its corresponding dynamic deformation is based on a
shear flow deformability cytometry (sDC). In this work, the membrane
stiffness in this work corresponds to the membrane shear modulus,
which appears for the elastic energy storage connected with the shear
deformation of the capsule membrane. The computational framework
consists of two parts. The first part is to build a microfluidic platform for
a flow-induced capsule deformation, which is detailed in Section 2.1.
The second part is to develop a CNN-based prediction algorithm. As
described in Section 2.2, CNN model belongs to supervised learning,
and can be used as an operator which establishes the relationship be-
tween input and output, which are the deformed geometry of a capsule
and its membrane stiffness, respectively.

2.1. Fluid-structure interaction (FSI) computational method

The computational model is shown in Fig. 1A. An initially spherical
capsule flows through a microfluidic channel, which is called sDC. In the
sDG, the constricted channel has a square cross-section 20 x 20 pm? with
a length 300 pm that follows the corresponding experimental setup
(Urbanska et al., 2020). 3D Cartesian coordinate is used with y-axis
along the axis of the main channel. To quantify the deformability of the

capsule, we calculated the deform value (D) of the capsule as D =1 —
2vrArea a6 presented in Ref (Urbanska et al., 2020). for all snapshots (2D

Perimeter
top-view images) in Fig. 1A. Here, the deformability is the degree to

which applying a force can change the shape of the capsule membrane.

As the capsule gets more deformation, the shape ratio (%Tc/n@) of the
deformed capsule in the 2D top-view image gets smaller leading to
increasing its D values. The length of the constricted region is long
enough to allows the capsule to develop its deformation along the
channel (Fig. 1B). We define a “region of interest” (ROI) at the end of the
channel where the capsule reaches its maximum deformability. The data
derived from the deformed capsule (2D top-view snapshot or 3D co-
ordinates of membrane’s vertices) in the ROI is then employed by a
pre-trained CNN model to predict the membrane stiffness of capsule.
The capsule’s membrane is discretized into a point system with
triangular networks. The Lagrangian mesh of the membrane is approx-
imately uniform, and the mesh size is about 0.5 pm. The numbers of
vertices and elements depend on the size of the capsule. For example, a
membrane of a capsule with the radius of 6.5 pm will have 1896 vertices
and 3788 elements (Fig. S1). The membrane structure is immersed in an
incompressible flow (water). The flow viscosity and mean velocity used
in the model are adjusted to match the experimental flow regime (Re =
0.4) (Urbanska et al., 2020) (Table 2 and Table S1). First, the capsule is
placed in the center of the left end of a simulation box with the
dimension of 60 x 440 x 25 pm? (x x y x z). After that, the capsule is
driven through the microfluidic channel by applying a body force in the
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y-direction to mimic a pressure-driven flow with periodic boundary
conditions only applied along this direction.

The FSI computational framework used in this work has been
introduced in our previous studies (Ye et al., 2017, 2019a, 2021). Here
we just briefly introduce it for the sake of completeness of this study.

2.1.1. Lattice Boltzmann method for fluid flow

The fluid flow in the microfluidic channel is modeled as an incom-
pressible flow and governed by the continuity and the Navier-Stokes
(NS) equations as follows:

Veu=0 @
ou 1 J7—

—+ueVu=—-Vp+=—~NVu+F ()]
o p p

with u, p, p denoting fluid velocity, density and pressure, respectively. y
and F are the dynamic viscosity of the fluid and the body force,
respectively. We use the Lattice Boltzmann method (LBM) to recover the
NS equation instead of solving it directly. The details of how LBM can
recover NS equation and the limitations can be found in (Chen and
Doolen, 1998). LBM is an approach to solve the discrete Boltzmann
equation. Based on the correlation between the mesoscopic Boltzmann
and continuum NS equations, LBM can efficiently handle fluid dynamics
(Chen and Doolen, 1998). Briefly, LBM is built on the Eulerian coordi-
nate system. The basic parameter in LBM is the density distribution
function f; (x, t) at position x and time t. The linearized Boltzmann
equation is introduced as:

(O +ewdelfi =~ (i —f") + F, ®

where e; is the lattice velocity in the i-th direction. Here, f; (x, t) is split
into two parts: streaming (L.H.S) and collision (R.H.S). The streaming
part is discretized as f; (x + e, t + 1) - f; (x, t) where f; (x, t) depends on
both time and spatial spaces. The collision part is related to the relax-
ation process at state (x, t) towards the equilibrium state of the particle
f;* through collision behavior. We choose the most popular scheme for
the collision model, Bhatnagar—Gross-Krook (BGK) scheme where only
relaxation time t is controlled (Qian et al., 1992). Last, F; represents the
external forcing term. Here, we use D3Q;9 model, meaning that each
point has 19 lattice velocities with different directions in the
three-dimensional Eulerian system (Qian et al., 1992). The lattice ve-
locities can be written as:

—_

[60791792793-,04795-,96797798769731079117912,6137614-,0157elosen»els} =

coco
c o~
oo |

The equilibrium distribution function f/(x, t) can be estimated using
Maxwell distribution as:

eou (eou) (u)

+ —_—
2 2c4 2c?

x)=wp|l+ (@))

where weighting coefficients w; = 1/3 (i = 0), w; = 1/18 (i = 1-6), w; =
1/36 (i = 7-18); sound speed c¢; = Ax/(v/3 At) with Ax and At repre-
senting spatial and temporal discretization sizes, respectively.

The dynamic viscosity in equation (2) can be expressed as:

c—o
ol o
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1
U=p (‘r - z) At )
The external forcing term can be discretized as:

1 e —u (e eou)
F,-:<17§>w,{ 2 +7c;‘ e,} o F (6)

After each time step, we collect the f; in the whole domain and
calculate the fluid density and momentum using the relations:

1
p= i PU = E fi€: +5FAI (@]

2.1.2. Coarse-grained model for capsule

According to some restrictions to the bio-membrane modeling (Tan
etal., 2008), there are some assumptions that we imposed to our capsule
model:

o The capsule is spherical.

o The capsule membrane is incompressible, homogeneous, isotropic,
and elastic.

o The total surface area and total volume of the capsule are kept
constant.

The capsule is modeled with coarse-grained method, where the
capsule’s membrane is considered as point systems connected with
specific triangular meshes (Fedosov et al., 2010). The capsule is repre-
sented by a 3D liquid-filled membrane immersed in the fluid. A spherical
shape is chosen to represent the capsule with its radius varying from 4.0
to 9.0 pm. The capsule’s membrane is discretized into a point system
with the average distance between points of 0.5 pm. The mechanical
properties of the membrane are implemented by applying potential
functions on the triangular network, including in-plane and out-of-plane
potentials.

A harmonic bond potential Up,yq is introduced to account for the in-
plane interactions between the points within the capsule’s membrane:

Upona = K (1 = 10)’ ®

where K is the bonded force constant, and ry is the equilibrium bond
length.

In addition to the in-plane interaction, the out-of-plane bending of
the membrane is applied with a bending potential function:

o011 -1-11-11 -1020 0 0
10 01-11 -10 0 0 0 1 1 -1 -1
1 -1t00 0 O0O1 1 -1 -11-11 -1
Usenaing =Y, ko [1 — cos(6, — 6o)] ©)
kel... Ny

in which kp represents the bending stiffness of the membrane, 6 appears
for the dihedral angle between two adjacent triangular elements andé is
the corresponding initial value. N stands for the total number of dihe-
dral angles.

We also apply an area conservation constraint for the capsule’s
membrane as:

: LK, —An)’

Udrea =
2Ax0 24,

(10)
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Force distribution

Velocity interpolation

Fig. 2. Schematic of the IBM. Solid squares (grey) represent the Eulerian — surrounding fluid nodes (x), and solid circles denote vertices of the Lagrangian structure —

capsule membrane nodes (X).

The area conservation includes local and global area conservations.
The first term represents the local area constraint in which Ay is the k-th
element area, Ao is its initial area, kg is the spring constant, and N is the
total number of triangular elements. The second term is the global area
constraint with spring constant k,, total area and its initial value A; and
Ay, respectively.

We also assume the volume of the capsule should be constant due to
the presence of cytosol inside the cell. Therefore, we employ a simple
harmonic function for the capsule’s total volume as:

k(V = Vo)

Uvolume:
with spring constant k,. total volume V and its initial value Vj,
respectively.

Finally, we combine all the potentials to calculate the force at each
vertex of the capsule’s membrane as:

_0U([xi])
dxi

fi= 12)

where U ([x;]) is the combination of potentials at coordinate x;.

2.1.3. Coupling of fluid and coarse-grained models: immersed boundary
method

Since the capsule is immersed in a fluid flow, the immersed boundary
method (IBM) is used to couple the coarse-grained model with the sur-
rounding fluid flow (Ye et al., 2017, 2019b; Liu et al., 2006; Mittal et al.,
2008; Zhang et al., 2004; Huang et al., 2007; Tian et al., 2011). In IBM,
the coupling is achieved by interpolating the velocity and force at the
interface of coarse-grained structure and fluid meshes (Fig. 2). The
Lagrangian (moving freely) and Eulerian (fixed) coordinate systems are
used to describe the coarse-grained membrane structure and the fluid
flow, respectively. The IBM ensures no-slip boundary condition at the
interface of the structure and the fluid. The structure (capsule’s mem-
brane) is allowed to move with the same velocity as the surrounding
fluid, and the force acquired from the coarse-grained model will be
spread to the adjacent Eulerian fluid meshes through interpolation,
which is considered as an external force term in LBM. We assign the
Eulerian coordinates x and Lagrangian coordinates s. The structure’s
position can be denoted as X (s,t). The no-slip boundary condition is

satisfied as long as:

0X(s,1)
ot

= u(X(s,1)) (13)

which means discretized vertices in the coarse-grained model will move
with the same velocity as the nearby fluid meshes. Once the vertices
move, we then calculate the structure force density F (s, t) through po-
tential functions and exert this force to the adjacent fluid meshes by:

7= [ P00 - x(X, ) )

in which 6 is a smoothed approximation for Dirac delta interpolation
function. Here, we use the so-called 4-points stencil as:

%(3—2\x|+\/1+4|x| —4x2),0§ x| <1
1
8() 5 (5 — 2] + /=7 + 12)x] 74x2),1 <hl<2 s

0,2 < |

This stencil takes 64 fluid nodes into account, which has shown
stability and fewer artifacts (Peskin, 2002). The force f fsi (x, t) is then
used as a body force in the LBM. The same interpolation approach is
used to get the velocities of the structure on the moving boundary by:

u(X, t):Lu(x,t)é(x—x(X, 1))dQ (16)

The channel (sDC) wall is considered as a stationary immersed
boundary in the simulations. Our FSI computational framework has
been validated by our previous studies (Ye et al., 2017, 2018, 2019b).
All computational models were implemented using a recently developed
package by Ye and co-workers, the so-called OpenFSI (Ye et al., 2020).
Within this package, the structure dynamics are accounted for by a
lattice model implemented by Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) (Plimpton, 1995). The parameters of the
potentials and corresponding physical parameters of the capsule mem-
brane are presented in Table 2. The coefficients in the potential func-
tions are chosen based on our previous work on red blood cells
suspension in a constricted channel (Ye et al., 2021). Freeze is set for the
sDC channel and viscous effect is added in the simulation setup. The
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Fig. 3. Architectures of our (A) 2D-CNN and (B) 3D-

A

Training target

CNN models. (A) The input of 2D-CNNs model is the

>—| Stiffness

top-view snapshot of the deformed capsule at the end
of microfluidic channel derived from FSI simulations.
The model includes a series of 2D convolutional and
max pooling layers that are used for feature extrac-
tion. A flattened layer is then used for placing all the
extracted features into a single-column feature vector
prior to being fully connected in a neural network.
The output is the predicted stiffness of the capsule’s
membrane. In the case of using physical constraints,
the output will account for stiffness, total surface area

Training target

and total volume of the capsule. (B) The input of the

Input 3D Points

capsule parameters including cell area constant (k,), cell local area
constant (kq), cell volume constant (k,) and cell bending constant (kp)
are varied according to the change of membrane stiffness (u,). The lat-
tice spacing of fluid field dy is chosen to be 0.1 pm.

2.2. Machine learning models

2.2.1. Machine learning model’s architectures

In this work, CNN models are developed to predict the membrane
stiffness of a capsule from its deformed shape. CNN is a neural network
of convolutional layers, which have a number of filters. In a typical CNN
model, the convolutional layers in connection with pooling layer can
repeat to reduce the size of the input image, and then being flattened
into a single column prior to be fully connected in a neural network for
prediction the output (classification or regression). Filter is a specific
kernel that can be used for feature extraction in CNN during the training,
and these filters will be learned and optimized during the training
process. The filters will slide entirely the image and the output of
convolved features is the elementwise scalar product of filter weights
and each small region of image (Fig. S2A). Max pooling, normally used
in CNN, is the sequential step to reduce the complex which keeps the
maximum value in the pooling kernel (Fig. S2B). Going through the
convolutional and pooling processes, the input image will be reduced
significantly in its dimension, but the object and most important features
remain. This is the best merit of using CNN for training perplexing im-
ages compared to the other algorithms. The next stage is to flatten the
convolved features into a single-column feature vector prior to fully
connecting it to a feedforward neural network for predicting the out-
comes (Fig. S2C).

There are two CNN models that will be developed in this work. The
first CNN model is built to predict the membrane stiffness of a capsule
from its deformed 2D image in the ROI, so-called 2D-CNN model. The
2D-CNN model uses a top-view snapshot of the deformed capsule in the
ROI acquired from FSI simulations as input for training. As shown in
Fig. 3A, our 2D-CNN model includes a series of convolutional, max
pooling layers for feature extraction. Eventually, all extracted features
are flattened and then fully connected to dense layers. The model is a
regression model, and the output is the predicted membrane stiffness.
The loss function is to minimize the mean absolute error (MAE) between
the predicted stiffness and the ground truth during the training. In the
physics-constrained ML models, along with the stiffness, the total

3D-CNN model is the 3D coordinates of the vertices of
the capsule’s membrane acquired from FSI simula-
\ tions. The 3D-CNN architecture includes a series of
convolutional, batch normalization, activation, global
[ max pooling, and dense layer for feature extractions.
/ / b The output is the predicted stiffness of the capsule’s
membrane. Like the 2D model, the outputs of the 3D
physical-constrained model will include stiffness,
total surface area and total volume of the capsule.

Table 3
Overview of the used layers in the 2D-CNN model.

Layer Kernel size [px?] Subimage size [px?]
Input layer - 400 x 400
Convolutional layer 1.1 10 x 10 391 x 391
Convolutional layer 1.2 4 x4 388 x 388
Max-pooling layer 1 2x2 194 x 194
Convolutional layer 2.1 4x4 191 x 191
Convolutional layer 2.2 4 x4 188 x 188
Max-pooling layer 2 2x2 94 x 94
Fully connected layer 3 - 94 x 94
Dense layer 4.1, 4.2, 4.3 - -

Output layer, regression type - 1x1

surface area and total volume of the capsule are also embedded into the
training process based on some restrictions imposed on bio-membrane
(Tan et al., 2008). Therefore, in this situation, there will be three out-
puts instead of one output (Fig. 3).

In detail, the images of deformed capsules are 2D matrix composed of
0/1. When 1 is used to indicate a capsule pixel, 0 is used to dictate a non-
capsule pixel. The size of the 2D matrix is 400 x 400. There will be many
1s in the 2D matrix representing capsules with larger radius, yet there
will be many Os in the 2D matrix representing capsules with smaller
radius. In addition, the neighbored 1 and O suggests the boundary of
capsule. When a filter of a convolutional layer scans through the 2D
matrix, the size, boundary, and shape of the capsules are expected to be
recognized as key features. To characterize these features, pixels on the
boundary of the capsule are more critical than those in the capsule.
Fig. S3 demonstrates that key features are related to the boundary of the
capsule after the last max pooling layer. Details of the 2D-CNN model’s
layers are presented in Table 3.

The second CNN model used in this work performs on the 3D ge-
ometry of the deformed capsule (3D-CNN). Instead of 2D images, 3D-
CNN model uses the 3D coordinates of the vertices of the deformed
capsule’s membrane derived from FSI simulations as the input (Fig. 3B).
One question that arises is whether it is feasible to obtain 3D geometry
data of cells in real experiments. While obtaining 2D images of cells is
comparatively easier, generating a 3D structure is a more complex task.
Nonetheless, it is achievable through experimentation. One promising
approach is using a 3D imaging flow cytometer, as demonstrated by
Zunming Zhang et al. (2022). This imaging technique captures 3D
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Table 4

Overview of the used layers in the 3D-CNN model.
Layer Output Shape  Layer Output Shape
InputLayer 3582 x 3 BatchNormalization 8 3582 x 16
ConvlD 3582 x 16 Activation 8 3582 x 16
BatchNormalization 3582 x 16 ConvlD 7 3582 x 32
Activation 3582 x 16 BatchNormalization 9 3582 x 32
ConvlD 1 3582 x 16 Activation 9 3582 x 32
BatchNormalization 1 ~ 3582 x 16 GlobalMaxPoolinglD1 32
Activation 1 3582 x 16 Dense 3 32
ConvlD 2 3582 x 32 BatchNormalization 10 32
BatchNormalization 2 ~ 3582 x 32 Activation 10 32
Activation 2 3582 x 32 Dense 4 16
GlobalMaxPooling1D 32 BatchNormalization 11 16
Dense 32 Activation 11 16
BatchNormalization 3 32 Dense 5 64
Activation 3 32 Reshape 1 8x8
Dense 1 16 Dot 1 3582 x 8
BatchNormalization 4 16 ConvlD 8 3582 x 8
Activation 4 16 BatchNormalization 12 3582 x 8
Dense 2 9 Activation 12 3582 x 8
Reshape 3x3 ConvlD 9 3582 x 16
Dot 3582 x 3 BatchNormalization 13 3582 x 16
ConvlD 3 3582 x 8 Activation 13 3582 x 16
BatchNormalization 5 3582 x 8 Conv1D 10 3582 x 32
Activation 5 3582 x 8 BatchNormalization 14 ~ 3582 x 32
Conv1D 4 3582 x 8 Activation 14 3582 x 32
BatchNormalization 6 3582 x 8 GlobalMaxPoolinglD 2 32
Activation 6 3582 x 8 Dense 6 32
ConvlD 5 3582 x 16 Dense 7 32
BatchNormalization 7 3582 x 16 Dense 8 1
Activation 7 3582 x 16
ConvlD 6 3582 x 16

images of cells at a rate of 1000 cells per second. When a cell passes
through the laser interrogation area, it is illuminated by a scanning
light-sheet with a scanning rate of 200-kHz. A spatial filter placed at the

1.05 uN/m
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image plane contains a series of spatially positioned pinholes that are
aligned with the cell flow direction by a predetermined separation. The
photomultiplier tubes (PMTs) detect the emitted light from a specific
portion of a cell. Finally, a spatial-temporal transformation is applied to
reconstruct the 3D tomographic images.

The 3D-CNN architecture is more complicated compared to that of
the 2D-CNN model with a series of convolutional, batch normalization,
activation, global max-pooling and dense layers. Similar to 2D-CNN
models, the loss function needs to account for the total surface area
and total volume of the capsule along with the membrane stiffness in
case of using physical constraints. The 3D geometry data is made of a
cloud of points on the surface of the deformed capsule. A 2D image can
be regarded as the projection of the point cloud on a plane. Therefore, a
3D point cloud keeps more comprehensive information of the deformed
capsule than that in a 2D image. This study uses the PointNet model (Qi
etal., 2017) to analyze the 3D data. The original purpose of the PointNet
model is for object classification. It is found that the max pooling feature
of the PointNet makes the model focus on the boundary of the 3D point
cloud to better identify their geometries. For our dataset of deformed
capsules, the 3D points are already on the surface of the capsule, so it is
more straightforward for PointNet model to identify the deformed ge-
ometries. To accommodate the PointNet model to the stiffness regres-
sion problem, we replace the original classification layer with optimized
dense layers before the last output layer for stiffness value. Detail of
3D-CNN model’s layers is presented in Table 4.

2.2.2. Dataset

The training data for our CNN models contains 736 deformed cap-
sules obtained from the FSI simulations. The capsule’s physical param-
eters spread out in ranges of 4.0-9.0 pm for its radius and 1.0-40.0 pN/
m for membrane stiffness. We use the Latin hypercube design (LHD)
(Viana, 2016) to effectively sample these capsules from this design
space. This sampling technique is a better choice for experimenter to

Fig. 4. Capsule’s deformability distribution over
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Cell stiffness iN/my

the dataset used in FSI simulations. (A) Capsules
(radius = 6.5 pm) with three different membrane
stiffness values show different deformability. These
deformed values locate in the range of experimental
deform values (scatter plot from (Urbanska et al.,
2020)). Snapshots of the deformed capsules in the
ROI from the FSI simulations correspond to their
membrane stiffness. The capsule with smaller stiff-
ness has higher deformability and vice versa. All
snapshots are taken in the ROI and rendered using

wagewioyeq

Cell radius [um]

Deformability

6 7 8 9 Paraview (Ahrens et al., 2005; Ayachit, 2015). (B)

736 capsules in the sDC are implemented with FSI

simulations. The design of engineering (DOE) points

is generated using Latin hypercube sampling method

0.1 to ensure a well-distributed dataset. Here, two design

. parameters of a capsule are studied including radius

0.10 (4.0-9.0 pm) and membrane stiffness (1.0-40.0

puN/m). (C) The 3D plot of distribution of deform-

0.09 ability for all 736 capsules obtained from FSI simu-

' lations. Here, the deformability is unitless and

I 0.08 calculated based on (Urbanska et al., 2020) as D =
007 1- peke

Perimeter*
level of deformability of the deformed cell. (For

0.06 interpretation of the references to color in this figure
. legend, the reader is referred to the Web version of
0.05 this article.)

The color of each point represents the
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Fig. 5. Ensemble performance results of 2D-CNN models. Comparison of prediction performance between non-constrained (A, B, C) and physical-constrained 2D-
CNN models (D, E, F). (A) The CNN model without any constraints performs on training and test datasets with the R? of 0.96 and 0.95, respectively. Dataset contains
736 points (train:test = 8:2). (B) The loss (mean absolute error) history of the training and validation verse epochs of non-constrained model. (C) The pretrained
model in (A) is validated on an external dataset containing 822 deformed capsules with the R? score of 0.94. (D) The CNNs model with total area and volume
constraints (as concurrent model’s outputs) demonstrates lower values of train and test R? scores (0.93 and 0.90) compared to the non-constrained model. (E) The
loss history of the training and validation of constrained model in (D) shows more stable than that of non-constrained model. (F) The pre-trained physics-constrained
model is validated on the external dataset of 822 data points with the R? score of 0.90.

access the impact of the process variables on the output. Rather than
building a complete random matrix, LHD tries to subdivide the sample
space into smaller cells and choose only one element out of each sub cell.
By doing so, a more “uniform spreading” of the random sample points
can be obtained. After that, 736 capsule models are generated using our
in-house MATLAB code, and then imported into OpenFSI (Ye et al.,
2020) to perform FSI simulations. Subsequently, we collected 736
top-view snapshots as well as the 3D geometries of deformed capsules at
the ROI for our ML’s training and testing. All snapshots are rendered
using Paraview (Ahrens et al., 2005; Ayachit, 2015) which performs on
the FSI trajectory dump files (LAMMPS trajectory). After establishing
the ML models, we followed the same procedure to generate another 822
capsules that are different from the training set for external validation.
Thus, we need to run 1558 FSI simulations in total.

3. Results and discussion
3.1. Fluid-structure interaction simulations

The implementation of the FSI model is demonstrated in Fig. 1. The
spherical capsule gets deformed when it enters into the constricted
channel. The capsule increases its deformation until it reaches the end of
the channel (ROI) and then relaxes to its original spherical shape af-
terward (Fig. 1A). As shown in Fig. 1B, the capsule’s deformation rea-
ches its maximum value at the ROI and then decreases when the capsule
leaves the channel. The deformed capsule at the ROI is in a bullet-like
shape as being observed in the previous experiments (Urbanska et al.,
2020), indicating our FSI model successfully reproduced the sDC
experiments.

The main goal of this study is to develop an ML-based platform to
predict the membrane stiffness of a capsule based on its deformed

geometry. To acquire a reliable model, it is important to have a sufficient
data source. First, we tested our FSI model with three different capsules
having the same radius of 6.5 pm but different membrane stiffness (1.05,
6.3 and 37.8 pN/m). The deformed shapes of the capsules at the ROI
were acquired and compared to the previous experimental work
(Urbanska et al., 2020) in Fig. 4A. The result confirms that the calculated
deform values from the simulation reasonably located in the experi-
mental range of capsule’s deformability. After that, 736 data points of
capsules with different sizes and stiffness were selected using LHD
sampling method over the design space (Fig. 4B). After implementing
the fluid dynamics simulations for all the capsules in the sDC, we plotted
a 3D distribution of capsule deformability depending on their sizes and
stiffness (Fig. 4C). We notice that capsules with smaller membrane
stiffness underwent stronger deformation and vice versa (red-point
projection plane), while the size effect on the deformation of a capsule
seems to be less obvious than that of the stiffness (purple-point projec-
tion plane).

3.2. Prediction performance of 2D-CNN models

The ensemble method of three CNN models is used for training to
achieve a better prediction performance compared to individual CNN
models (Figs. S4-S5) (Dzeroski et al., 2009). By taking average of the
predictions from multiple models, this ensemble of models reduces the
variance and improves the model performance. The number of models to
be trained and combined is a hyperparameter which in our cases is
optimized as three. Our dataset containing 736 deformed capsule’s in-
formation is split into the train:test dataset with the ratio of 8:2. Addi-
tionally, we aim to compare the prediction performance between
non-physical and physical constraint-based ML models. The prediction
performance of the non-constraint 2D model is shown in Fig. 5A with the
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Fig. 6. Ensemble performance results of 3D-CNN models. Comparison of prediction performance between non-constrained (A, B, C) and physical-constrained 3D
CNN models (D, E, F). (A) Prediction performance of CNN model without any constraints with R? train of 0.98 and R? test of 0.98 on the dataset of 736 points (train:
test = 8:2). (B) The loss (mean absolute error) history of the training and validation verse epochs of the model in (A). (C) The pretrained model in (A) was validated
with external dataset of 822 data points with the R? score of 0.98. (D) The model with total area and volume constraints also demonstrates excellent prediction
performance with high values of train and test R? scores (0.98 and 0.98, respectively) compared to the non-constrained model in (A). (E) The loss history of the
training and validation of physical-constrained model in (D) demonstrates better convergence when compared to the non-constrained model. (F) The pre-trained
constrained model is validated with the external dataset of 822 data points with the R? score of 0.98.

average R? scores of 0.96 and 0.95 for the training and testing, respec-
tively. This result indicates that our 2D-CNN model can effectively
predict the stiffness of the capsule’s membrane solely based on their
top-view 2D images. To validate the model, we use an external dataset
containing 822 capsule images. This dataset was also acquired from
running another 822 FSI simulations. Fig. 5C shows that pretrained
model can make an excellent prediction for the stiffness of the capsules
in the external dataset with the R? score of 0.94. We then examine the
predicting performance of the physic-constrained model. As shown in
Fig. 5D, even though the constrained model’s prediction does not
improve compared with the non-constrained one, using the constraints
can enhance the convergence of the model in both training and vali-
dation. It is indicated in the loss history plot of constrained model
(Fig. 5E) when compared with the non-constrained model (Fig. 5B). The
constrained model also has a good performance on the external dataset
(R? score = 0.90) (Fig. 5F). However, both 2D-CNN models still over-
estimate the stiffness when the true membrane stiffness is low (<10
puN/m) and underestimate the stiffness when the ground truth is high
(>25 pN/m) in both training and validation.

3.3. Prediction performance of 3D-CNN models

Due to the underperforming of 2D-CNN models in some ranges of
membrane stiffness, we built another type of CNN model that is expected
to demonstrate better prediction accuracy. We exploit the geometry of
the capsule’s membranes as the input for the model, so-called 3D-CNN
model. Therefore, the model’s input is not a projected image of the
deformed shape, but a collection of 3D coordinates of all vertices of the
membrane. We hypothesize this 3D information can capture the
deformability of the capsule more efficiently than its 2D images. After
using ensemble method (Figs. S6-57), we compared the performance of

Table 5
Prediction performance of our CNN models for 736 training and 822 validation
capsules.

2D 2D CNN with 3D 3D CNN with
CNN constraints CNN constraints
R? training 0.96 0.93 0.98 0.98
R? validation 0.94 0.90 0.98 0.98
RMSE training [uN/  2.40 3.20 1.60 1.60
m]
RMSE validation 2.66 3.48 1.70 1.72
[uN/m]
Max error 9.61 12.73 6.62 6.76
validation [uN/
m]

non-constrained (Fig. 6A) and physical-constrained models (Fig. 6D).
We notice that 3D models’ average R? scores of both training and testing
performances are higher than that of 2D-CNN models, indicating the 3D-
CNN models are more powerful in predicting the membrane stiffness of
these capsules. Additionally, the physical-constrained 3D model out-
performs the non-constrained one in terms of the convergence according
to their loss history plots (Fig. 6B, D). The model with constraints can
converge after 100 epochs when compared to the non-constraint model
with a significantly longer training process (400 epochs). Eventually, we
also validated these 3D models using the external dataset (822 data).
These models also present more accurate prediction than the 2D
approach with higher R? score between the predicted and the ground-
truth values (Fig. 6C, F). Notably, the 3D-CNN models show that they
do not under or over-estimate the membrane stiffness in the high or low
true-stiffness domain that previously appeared in the 2D-CNN models.
These results demonstrate the merit of using 3D-CNN approach. It is
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more effective for predicting the membrane stiffness and able to over-
come the limitations of the 2D-CNN models. However, this 3D approach
still faces high uncertainty when the true stiffness of the membrane is
elevated (over 30 pN/m).

We summarized the performance of all models in this work in
Table 5. Our CNN-based models can perform accurate predictions with
the maximum validation R value of 0.98. Additionally, to validate that
our proposed method is convincing, we compared our model perfor-
mance to a baseline model where we derived the membrane stiffness
based on the capsule size and deformability using surface fitting
(Fig. S8). The validation R? value obtained from this simple method is
0.82. Compared to this baseline model, we conclude that our compu-
tational approach is powerful to predict the single-cell mechanics by
taking advantage of CNN models.

4. Conclusions

In this work, we have presented a computational approach, by
integrating high-fidelity FSI simulations and CNN algorithms, for accu-
rate prediction the flowing microcapsule’s membrane stiffness. We used
our OpenFSI package to generate the training and validating datasets for
our ML models. We have demonstrated that the ML models can accu-
rately predict the membrane stiffness in either presence or absence of
physical constraints based on either 2D images or 3D coordinates of the
deformed membrane. Interestingly, we have shown that our ML models
could predict well only based on the static data of deformed capsule at
the ROI instead of sequential data points. The present computational
framework can be applied to realistic applications of high-throughput
single cell characterization since it can reproduce the sDC experi-
mental results. Furthermore, our work also highlighted the importance
of adding physical constraints to the ML models for the convergence
improvement as well as the utilization of 3D geometry in the CNN model
to overcome the underperformance of the 2D models.

We have noticed that our study still needs further work in the near
future. First, it needs to improve the underperformance of 2D models at
some ranges of stiffness as well as reduce the high uncertainty of 3D
models’ prediction when the membrane stiffness is high to make the
model more robust and reliable. Second, the training dataset has only
been derived from FSI simulations, and we have not validated on the
experimental images of the cells. Therefore, the future collaboration
with some experimentalists those have worked on the sDC/microfluidic
methods will be great to validate the capability of ML framework in real-
time high-throughput mechanical characterization. Finally, we aim to
put more efforts on other characteristics of the cell along with its stiff-
ness for further medical or biological applications, such as monitoring
cancer metastasis, vascular disorders, and understanding cell health.

Author contributions

Danh Nguyen and Lei Tao: Conceptualization, Methodology, Soft-
ware, Data curation, Investigation, Visualization, Validation, Writing-
Original draft preparation, Writing-Reviewing and Editing. Huilin Ye:
Methodology, Software, Writing-Reviewing and Editing. Ying Li: Su-
pervision, Writing-Reviewing and Editing.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

10

Mechanics of Materials 180 (2023) 104631
Acknowledgement

Y.L. gratefully acknowledges financial support from the U.S. Na-
tional Science Foundation (OAC- 1755779, CMMI-1934829 and
CAREER Award CMMI-2046751) and 3 M’s Non-Tenured Faculty
Award. Any opinion, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the U.S. National Science Foundation. This research
also benefited in part from the computational resources and staff con-
tributions provided by the Booth Engineering Center for Advanced
Technology (BECAT) at the University of Connecticut. The authors also
acknowledge the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin (Frontera project and National Science
Foundation Award 1818253) and National Renewable Energy Labora-
tory (Eagle Computing System) for providing HPC resources that have
contributed to the research results reported within this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.mechmat.2023.104631.

References

Ahrens, J., Geveci, B., Law, C., 2005. 36 - ParaView: an end-user tool for large-data
visualization. In: Hansen, C.D., Johnson, C.R. (Eds.), Visualization Handbook.
Butterworth-Heinemann, Burlington, pp. 717-731.

Allier, C., et al., 2022. CNN-based cell analysis: from image to quantitative
representation. Frontiers in Physics 9.

Ayachit, U., 2015. The ParaView Guide: A Parallel Visualization Application. Kitware,
Inc.

Bento, D., et al., 2018. Deformation of red blood cells, air bubbles, and droplets in
microfluidic devices: flow visualizations and measurements. Micromachines 9 (4).

Berryman, S., et al., 2020. Image-based phenotyping of disaggregated cells using deep
learning. Commun Biol 3 (1), 674.

Chen, J., 2014. Nanobiomechanics of living cells: a review. Interface Focus 4 (2),
20130055.

Chen, S., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid
Mech. 30 (1), 329-364.

Chen, H., Katelhon, E., Compton, R.G., 2022. Predicting voltammetry using physics-
informed neural networks. J. Phys. Chem. Lett. 13 (2), 536-543.

Darling, E.M., Di Carlo, D., 2015. High-throughput assessment of cellular mechanical
properties. Annu. Rev. Biomed. Eng. 17, 35-62.

Dietler, N., et al., 2020. A convolutional neural network segments yeast microscopy
images with high accuracy. Nat. Commun. 11 (1), 5723.

Doan, M., et al., 2020. Objective assessment of stored blood quality by deep learning.
Proc. Natl. Acad. Sci. U. S. A. 117 (35), 21381-21390.

Dzeroski, S., Panov, P., Zenko, B., 2009. Machine learning, ensemble methods in. In:
Meyers, R.A. (Ed.), Encyclopedia of Complexity and Systems Science. Springer New
York, New York, NY, pp. 5317-5325.

Falk, T., et al., 2019. U-Net: deep learning for cell counting, detection, and morphometry.
Nat. Methods 16 (1), 67-70.

Fedosov, D.A., Caswell, B., Karniadakis, G.E., 2010. Systematic coarse-graining of
spectrin-level red blood cell models. Comput. Methods Appl. Mech. Eng. 199
(29-32).

Haase, K., Pelling, A.E., 2015. Investigating cell mechanics with atomic force
microscopy. J. R. Soc. Interface 12 (104), 20140970.

Han, Y.L., et al., 2020. Cell swelling, softening and invasion in a three-dimensional breast
cancer model. Nat. Phys. 16 (1), 101-108.

Hao, Y., et al., 2020. Mechanical properties of single cells: measurement methods and
applications. Biotechnol. Adv. 45, 107648.

Huang, W.-X., Shin, S.J., Sung, H.J., 2007. Simulation of flexible filaments in a uniform
flow by the immersed boundary method. J. Comput. Phys. 226 (2), 2206-2228.

Kashani, A.S., Packirisamy, M., 2020. Cancer cells optimize elasticity for efficient
migration. R. Soc. Open Sci. 7 (10), 200747.

Kihm, A., et al., 2018. Classification of red blood cell shapes in flow using outlier tolerant
machine learning. PLoS Comput. Biol. 14 (6), e1006278.

Kim, G., et al., 2019. Learning-based screening of hematologic disorders using
quantitative phase imaging of individual red blood cells. Biosens. Bioelectron. 123,
69-76.

Kozminsky, M., Sohn, L.L., 2020. The promise of single-cell mechanophenotyping for
clinical applications. Biomicrofluidics 14 (3), 031301.

Kwon, S., et al., 2020. Comparison of cancer cell elasticity by cell type. J. Cancer 11 (18),
5403-5412.

Liang, L., Liu, M., Sun, W., 2017. A deep learning approach to estimate chemically-
treated collagenous tissue nonlinear anisotropic stress-strain responses from
microscopy images. Acta Biomater. 63, 227-235.


https://doi.org/10.1016/j.mechmat.2023.104631
https://doi.org/10.1016/j.mechmat.2023.104631
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref1
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref1
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref1
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref2
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref2
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref3
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref3
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref4
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref4
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref5
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref5
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref6
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref6
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref7
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref7
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref8
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref8
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref9
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref9
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref10
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref10
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref11
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref11
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref12
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref12
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref12
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref13
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref13
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref14
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref14
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref14
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref15
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref15
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref16
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref16
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref17
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref17
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref18
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref18
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref19
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref19
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref20
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref20
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref21
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref21
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref21
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref22
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref22
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref23
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref23
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref24
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref24
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref24

D. Nguyen et al.

Lin, T., et al., 2021. A neural network-based algorithm for high-throughput
characterisation of viscoelastic properties of flowing microcapsules. Soft Matter 17
(15), 4027-4039.

Liu, W.K,, et al., 2006. Immersed finite element method and its applications to biological
systems. Comput. Methods Appl. Mech. Eng. 195 (13-16), 1722-1749.

Martinez-Martinez, F., et al., 2017. A finite element-based machine learning approach for
modeling the mechanical behavior of the breast tissues under compression in real-
time. Comput. Biol. Med. 90, 116-124.

Mittal, R., et al., 2008. A versatile sharp interface immersed boundary method for
incompressible flows with complex boundaries. J. Comput. Phys. 227 (10),
4825-4852.

Nassar, M., et al., 2019. Label-free identification of white blood cells using machine
learning. Cytometry 95 (8), 836-842.

Nissim, N., et al., 2021. Real-time stain-free classification of cancer cells and blood cells
using interferometric phase microscopy and machine learning. Cytometry 99 (5),
511-523.

Oei, R.W., et al., 2019. Convolutional neural network for cell classification using
microscope images of intracellular actin networks. PLoS One 14 (3), e0213626.

Panigrahi, S., Gioux, S., 2018. Machine learning approach for rapid and accurate
estimation of optical properties using spatial frequency domain imaging. J. Biomed.
Opt. 24 (7), 1-6.

Peskin, C.S., 2002. The immersed boundary method. Acta Numer. 11, 479-517.

Plimpton, S., 1995. Fast parallel algorithms for short-range molecular dynamics.

J. Comput. Phys. 117 (1), 1-19.

Qi, C., et al., 2017. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 77-85, 2017.

Qian, Y.H., D’Humieres, D., Lallemand, P., 1992. Lattice BGK models for Navier-Stokes
equation. Europhys. Lett. 17 (6), 479-484.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: a
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. J. Comput. Phys. 378, 686-707.

Rodriguez, M.L., McGarry, P.J., Sniadecki, N.J., 2013. Review on cell mechanics:
experimental and modeling approaches. Appl. Mech. Rev. 65 (6).

Sarker, I.H., 2021. Machine learning: algorithms, real-world applications and research
directions. SN Comput Sci 2 (3), 160.

Singh, V., Srivastava, V., Mehta, D.S., 2020. Machine Learning-Based Screening of Red
Blood Cells Using Quantitative Phase Imaging with Micro-spectrocolorimetry. Optics
& Laser Technology, p. 124.

11

Mechanics of Materials 180 (2023) 104631

Smelser, A.M., et al., 2015. Mechanical properties of normal versus cancerous breast
cells. Biomech. Model. Mechanobiol. 14 (6), 1335-1347.

Subraveti, S.G., et al., 2022. Physics-based neural networks for simulation and synthesis
of cyclic adsorption processes. Ind. Eng. Chem. Res. 61 (11), 4095-4113.

Tan, Y., et al., 2008. Mechanical modeling of biological cells in microinjection. IEEE
Trans. NanoBioscience 7 (4), 257-266.

Tian, F.B., et al., 2011. An efficient immersed boundary-lattice Boltzmann method for the
hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230 (19),
7266-7283.

Toepfner, N, et al., 2018. Detection of Human Disease Conditions by Single-Cell
Morpho-Rheological Phenotyping of Blood, vol. 7. Elife.

Unal, M., et al., 2014. Micro and nano-scale technologies for cell mechanics.
Nanobiomedicine (Rij) 1, 5.

Urbanska, M., et al., 2020. A comparison of microfluidic methods for high-throughput
cell deformability measurements. Nat. Methods 17 (6), 587-593.

Viana, F.A.C., 2016. A tutorial on Latin hypercube design of experiments. Qual. Reliab.
Eng. Int. 32 (5), 1975-1985.

Wu, S., et al., 2018. Direct reconstruction of ultrasound elastography using an end-to-end
deep neural network. In: Medical Image Computing and Computer Assisted
Intervention — MICCAI 2018. Springer International Publishing, Cham.

Yan, B., et al., 2022. A physics-constrained deep learning model for simulating
multiphase flow in 3D heterogeneous porous media. Fuel 313.

Ye, H., Shen, Z., Li, Y., 2017. Computational modeling of magnetic particle margination
within blood flow through LAMMPS. Comput. Mech. 62 (3), 457-476.

Ye, H., Shen, Z., Li, Y., 2018. Shear rate dependent margination of sphere-like, oblate-like
and prolate-like micro-particles within blood flow. Soft Matter 14 (36), 7401-7419.

Ye, H., Shen, Z., Li, Y., 2019a. Multiscale modeling of vascular dynamics of micro- and
nano-particles. In: Application to Drug Delivery System. Morgan & Claypool
Publishers.

Ye, H., Shen, Z., Li, Y., 2019b. Interplay of deformability and adhesion on localization of
elastic micro-particles in blood flow. J. Fluid Mech. 861, 55-87.

Ye, H., et al., 2020. OpenFSI: a highly efficient and portable fluid-structure simulation
package based on immersed-boundary method. Comput. Phys. Commun. 256.

Ye, H., et al., 2021. Red blood cell hitchhiking enhances the accumulation of nano- and
micro-particles in the constriction of a stenosed microvessel. Soft Matter 17 (1),
40-56.

Zhang, L., et al., 2004. Immersed finite element method. Comput. Methods Appl. Mech.
Eng. 193 (21-22), 2051-2067.

Zhang, Z., et al., 2022. A high-throughput technique to map cell images to cell positions
using a 3D imaging flow cytometer. Proc. Natl. Acad. Sci. U. S. A. 119 (8).


http://refhub.elsevier.com/S0167-6636(23)00077-7/sref25
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref25
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref25
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref26
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref26
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref27
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref27
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref27
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref28
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref28
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref28
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref29
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref29
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref30
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref30
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref30
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref31
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref31
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref32
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref32
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref32
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref33
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref34
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref34
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref35
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref35
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref35
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref36
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref36
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref37
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref37
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref37
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref38
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref38
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref39
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref39
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref40
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref40
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref40
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref41
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref41
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref42
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref42
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref43
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref43
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref44
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref44
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref44
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref45
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref45
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref46
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref46
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref47
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref47
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref48
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref48
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref49
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref49
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref49
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref50
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref50
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref51
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref51
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref52
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref52
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref53
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref53
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref53
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref54
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref54
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref55
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref55
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref56
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref56
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref56
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref57
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref57
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref58
http://refhub.elsevier.com/S0167-6636(23)00077-7/sref58

	Machine learning-based prediction for single-cell mechanics
	1 Introduction
	2 Computational model and methods
	2.1 Fluid–structure interaction (FSI) computational method
	2.1.1 Lattice Boltzmann method for fluid flow
	2.1.2 Coarse-grained model for capsule
	2.1.3 Coupling of fluid and coarse-grained models: immersed boundary method

	2.2 Machine learning models
	2.2.1 Machine learning model’s architectures
	2.2.2 Dataset


	3 Results and discussion
	3.1 Fluid–structure interaction simulations
	3.2 Prediction performance of 2D-CNN models
	3.3 Prediction performance of 3D-CNN models

	4 Conclusions
	Author contributions
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A Supplementary data
	References


