

 | Microbial Ecology | Full-Length Text

Shifts in the coral microbiome in response to *in situ* experimental deoxygenation

Rachel D. Howard,¹ Monica D. Schul,¹ Lucia M. Rodriguez Bravo,^{2,3} Andrew H. Altieri,^{2,4} Julie L. Meyer¹

AUTHOR AFFILIATIONS See affiliation list on p. 13.

ABSTRACT Global climate change impacts marine ecosystems through rising surface temperatures, ocean acidification, and deoxygenation. While the response of the coral holobiont to the first two effects has been relatively well studied, less is known about the response of the coral microbiome to deoxygenation. In this study, we investigated the response of the microbiome to hypoxia in two coral species that differ in their tolerance to hypoxia. We conducted *in situ* oxygen manipulations on a coral reef in Bahía Almirante on the Caribbean coast of Panama, which has previously experienced documented episodes of hypoxia. Naïve coral colonies (previously unexposed to hypoxia) of *Siderastrea siderea* and *Agaricia lamarckii* were transplanted to a reef and either enclosed in chambers that created hypoxic conditions or left at ambient oxygen levels. We collected samples of surface mucus and tissue after 48 hours of exposure and characterized the microbiome by sequencing 16S rRNA genes. We found that the microbiomes of the two coral species were distinct from one another and remained so after exhibiting similar shifts in microbiome composition in response to hypoxia. There was an increase in both abundance and number of taxa of anaerobic microbes after exposure to hypoxia. Some of these taxa may play beneficial roles in the coral holobiont by detoxifying the surrounding environment during hypoxic stress or may represent opportunists exploiting host stress. This work describes the first characterization of the coral microbiome under hypoxia and is an initial step toward identifying potential beneficial bacteria for corals facing this environmental stressor.

IMPORTANCE Marine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels around *Siderastrea siderea* and *Agaricia lamarckii* colonies *in situ* to observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress.

KEYWORDS coral, microbiome, hypoxia, oxygen, *Agaricia lamarckii*, *Siderastrea siderea*, Panama

Marine deoxygenation is a devastating and global threat to oceanic and coastal ecosystems, with ecological, evolutionary, and social repercussions comparable to other major anthropogenic threats including warming and ocean acidification (1–3).

Editor Jennifer F. Biddle, University of Delaware, Lewes, Delaware, USA

Address correspondence to Rachel D. Howard, racheld.howard1@gmail.com.

The authors declare no conflict of interest.

See the funding table on p. 13.

Received 6 April 2023

Accepted 12 September 2023

Published 2 November 2023

Copyright © 2023 Howard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

While previous work has established hypoxia as a widespread threat to temperate marine ecosystems (2–5), it has only recently garnered attention in tropical marine systems as a cause of mass mortality that reduces biodiversity and productivity (6). Many marine species globally are already in decline due to oxygen levels at or below critical oxygen thresholds (7), and decreased oxygen availability will likely be responsible for large shifts in ecosystem structures (8). Localized coastal hypoxia in tropical and subtropical waters has recently become a substantial threat to corals (9). Prolonged exposure to hypoxia can have adverse effects on coral health and resiliency including bleaching, disease, and mortality (6, 10–12).

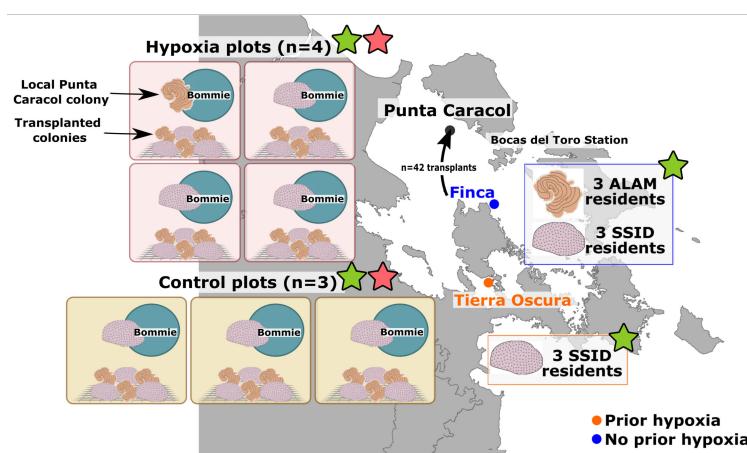
Though prolonged exposure to hypoxia will ultimately lead to death, corals and other reef-associated organisms may have an innate tolerance to periodic deoxygenation (6, 7, 13–16). Corals are able to actively stir water at their surface microenvironment with their epidermal cilia, which can transport oxygen and support molecular diffusion at the host surface (17). Corals undergo natural diel shifts in oxygen concentrations within their surface microenvironment (18–20). When sunlight is available in the photic zone during the day, oxygen produced by *Symbiodiniaceae* saturates the coral surface (18, 19). At night, coral holobiont respiration uses the free oxygen, creating a hypoxic microenvironment on the coral surface until sunlight triggers photosynthesis (18, 19). These diel changes in oxygen concentration can occur in the matter of minutes (20), yet the coral remains mostly undisturbed.

Corals may also exhibit some hypoxia tolerance during the periodic macroscale oxygen depletion that can occur naturally on reefs. These shifts in dissolved oxygen concentrations occur because of unusual weather patterns (21–23), reef geomorphology (21, 24–26), isolation of reefs during diel tidal cycles (24, 27), coral spawn slicks (22, 28), or other elements that reduce water column mixing and exchange with the open ocean (29). However, these natural occurrences of deoxygenation are exacerbated by eutrophication and climate change, intensifying the overall severity and duration of hypoxic events globally (1, 4, 9, 30, 31). With over 13% of the world's coral reefs at an elevated risk for deoxygenation (6), understanding the response of corals to hypoxia and implementing mitigation strategies to reefs is critical.

The coral microbiome is a source of resilience for environmental stressors including warming (32, 33) and may play a similarly important role for hypoxia. Members of the microbiome fill a variety of functional roles within the coral host (10, 34–36), including nutrient cycling within the holobiont (35–37), nitrogen fixation (35, 36, 38), and pathogen resistance (35–37, 39). If there is flexibility of microbial species in response to dynamic oxygen conditions, this could contribute to the observed ability of coral hosts to withstand exposure to hypoxic conditions. Here, we experimentally induced hypoxic conditions with an *in situ* reef experiment to test how the microbiomes of the hypoxia-resistant massive starlet coral (*Siderastrea siderea*) (40) and the hypoxia-sensitive whitestar sheet coral (*Agaricia lamarckii*) (6, 40) responded to hypoxia.

MATERIALS AND METHODS

Site description


Bahía Almirante in Bocas del Toro, Panama, is a large, semi-enclosed tropical embayment of 450 km² (6) and is home to many shallow-water (<25 m) coral reefs (41, 42). This basin on the Caribbean coast shares many features with temperate estuaries that experience bouts of hypoxia, including reduced exchange with the open ocean, seasonal cycles of low wind energy and high temperatures, and a watershed delivering excess nutrients from agricultural run-off and untreated sewage (41, 43). Because of these conditions, Bahía Almirante has experienced patches of hypoxic stress, with documented occurrences in 2010 and 2017 that caused extensive coral bleaching and necrosis in other marine invertebrates (6, 40). Due to these periodic hypoxic events, Bahía Almirante and its coral reefs are ideal study sites for assessing the response of coral health and resilience to hypoxia. We chose massive starlet coral (*Siderastrea siderea*) and whitestar sheet

coral (*Agaricia lamarcki*) as our study species because they are two of the predominant coral species in the region and exhibited strikingly different responses to prior hypoxia events, with *S. siderea* persisting at hypoxic sites (40) and *A. lamarcki* suffering near total mortality (6, 40).

In situ oxygen manipulation

To test the response of coral microbiomes to hypoxic stress, we conducted a field experiment in which we manipulated oxygen with benthic incubation chambers. The experiment was conducted at Punta Caracol, in the vicinity of areas with documented mortality associated with hypoxia (Fig. 1) (40, 44). Seven 60 × 60 cm plots were established and a miniDOT dissolved oxygen logger (Precision Measurement Engineering, Vista, CA) in each plot recorded oxygen concentration and temperature at 10-minute intervals. Four randomly selected plots were assigned to the hypoxia treatment, and the remaining three served as control plots (Fig. 1). Four-sided benthic incubation chambers made of greenhouse-grade plastic were used to locally reduce oxygen concentrations. The chambers were open at the bottom, with 15 cm flanges that were tucked into the sediment to better isolate the water within. A submersible aquarium pump was placed in each chamber to homogenize the water column and prevent stagnant water within. Control, oxygenated chambers employed the open plastic tent structure without the greenhouse-grade plastic.

Colonies of *A. lamarcki* and *S. siderea* (7–12 cm diameter) were collected at the Finca site from a depth of 5–10 m for transplantation to the experimental plots. Colonies were collected at least 2 m apart and likely represented independent genotypes. Coral colonies were transported in aerated seawater to Punta Caracol where they were randomly assigned to experimental plots. Each incubation chamber enclosed a local Punta Caracol bommie with a representative reef community that contained a mix of corals, sponges, and other benthic organisms that included either a *S. siderea* or *A. lamarcki* colony (Fig. 1). We transplanted three *S. siderea* and three *A. lamarcki* colonies to each plot by fastening the colonies to a mesh rack next to the bommie (Fig. 1). The experimental oxygen manipulation was conducted for 48 hours, at which time the coral surface microbiome was sampled.

FIG 1 Map of experimental sites in Bahía Almirante, Bocas del Toro, Panama. Resident corals were sampled from Tierra Oscura (TO) and Finca (F) to test for site variation in the microbiome. Corals from Finca were transplanted to Punta Caracol for oxygen manipulation experiments (control plots, hypoxic plots). Each of the seven plots contained a mixed species bommie with a local Punta Caracol colony attached. Three transplanted *S. siderea* and *A. lamarcki* colonies were also placed in each plot by fastening the colonies to a mesh rack. Samples designated with pink stars were used in all analyses. Samples designated with green stars were used in Analysis of Compositions of Microbiomes (ANCOM).

Coral microbiome sampling

In addition to coral colonies in the experimental plots, three colonies of *S. siderea* were sampled from Tierra Oscura where hypoxia has been previously documented and three colonies each of *A. lamarckii* and *S. siderea* were sampled from Finca where hypoxia has not been documented (Fig. 1) (40, 44, 45). Slurries of coral mucus/tissue were collected by agitation and suction of the coral surface with individual sterile needleless syringes. Syringes were transported in a cooler with ice to the lab, and mucus was allowed to settle in the syringes before expelling into a 2-mL cryovial with RNALater (Ambion, Austin, TX). Preserved samples were frozen until further processing at the University of Florida.

V4 amplicon library preparation

Extraction of genomic DNA was performed with a DNeasy Powersoil Kit (Qiagen, Germantown, MD) according to the manufacturer's instructions. The V4 region of the 16S rRNA gene was amplified in triplicate for each sample using the 515F (46) and 806RB (47) Earth Microbiome primers and thermocycler protocol (48) in 25 μ L reactions containing Phusion High-fidelity Master Mix (New England Biolabs, Ipswich, MA), 0.25 μ M of each primer, 3% dimethyl sulfoxide (as recommended by the manufacturer of the polymerase), and 2 μ L of DNA template. Triplicate reactions were consolidated and cleaned with a MinElute PCR Purification Kit (Qiagen) and quantified with a DS-11 FX+ spectrophotometer (DeNovix, Wilmington, DE). One DNA extraction kit blank without the addition of any starting coral biomass was produced alongside regular DNA extractions and then amplified and sequenced using a unique barcode. One final pool containing 240 ng of each amplicon library was submitted to the University of Florida Interdisciplinary Center for Biotechnology Research (RRID:SCR_019152) for sequencing on an Illumina MiSeq with the 2 \times 150bp v.2 cycle format.

Analysis of V4 Amplicon libraries

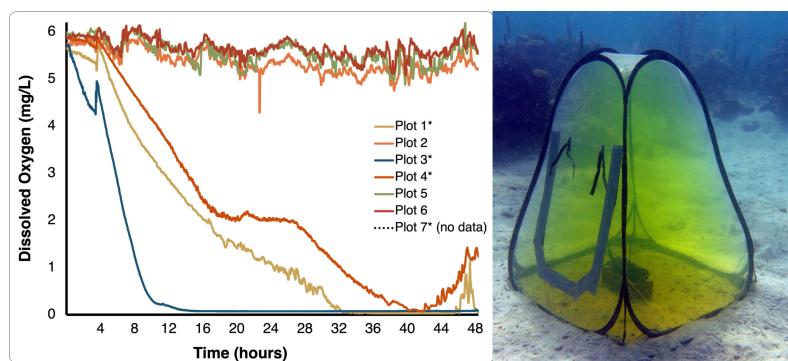
Adapters and primers were removed from raw sequencing reads with cutadapt v. 1.8.1 (49). Further processing of amplicon libraries was completed in RStudio v. 1.1.456 with R v. 4.0.4. Quality filtering, error estimation, merging of reads, dereplication, removal of chimeras, and selection of amplicon sequence variants (ASVs) were performed with DADA2 v. 1.18.0 (50) using the filtering parameters: filterAndTrim [fnFs, filtFs, fnRs, truncLen = c(150,150), maxN = 0, maxEE = [c(2,2), truncQ = 2, rm.phix = TRUE, compress = TRUE, multithread = TRUE]]. Taxonomy was assigned to ASVs using the SILVA small subunit rRNA database v. 132 (51). The ASV and taxonomy tables were imported into phyloseq v. 1.34.0 (52) for analysis and visualization of microbial community structure. ASVs with a mean read count of less than five across all samples were removed from the analysis, and ASVs assigned as chloroplast, mitochondria, or eukaryote were removed from further analysis. Remaining ASVs labeled only as "Bacteria" were searched with BLASTn, and those matching mitochondrial sequences were removed from the analysis.

Variation in community composition was determined using the Aitchison distance of centered log-ratio transformed, zero-replaced read counts using CoDaSeq v. 0.99.6 (53) and visualized with principal component analysis. Principal component analysis of the Aitchison distance was performed with the package prcomp in R and plotted with ggplot2 v. 3.3.3 (54). Permutational Multivariate Analysis of Variance (PERMANOVA) with vegan v. 2.5-7 (55) was used to test for differences in community structure by treatment and coral species.

We also estimated beta diversity dispersion using the dissimilarity matrix by estimating the distance to a group's centroid for each sample. This measure of multivariate dispersion was calculated using the betadisper function in vegan (55) and based on the treatment type (control plots, hypoxia plots) for both coral species. We examined beta diversity dispersion visually with a boxplot and tested differences in beta diversity dispersion between treatment types with ANOVA.

Original count data were used for the ANCOM statistics. For clarity, the nine coral microbiome samples collected at Tierra Oscura and Finca that were not part of the

experimental plots were only included in the ANCOM figures, as they did not provide sufficient statistical power for additional analyses (Fig. 1). ANCOM (56) was used to identify microbial families that were differentially abundant across treatments, using an ANOVA significance level of 0.05 and removing families with zero counts in 90% or more of samples. Only families detected in at least 70% of samples were reported. Finally, indic/species v. 1.7.9 (57) was used to identify differentially abundant ASVs amongst treatment types. The complete set of R scripts and metadata are available at github.com/meyermicrobiolab/Panama_Hypoxia.

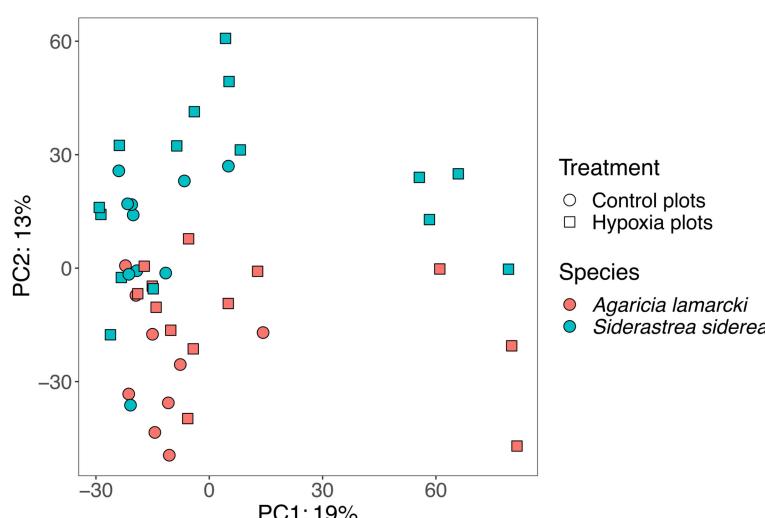

RESULTS

Experimental deoxygenation

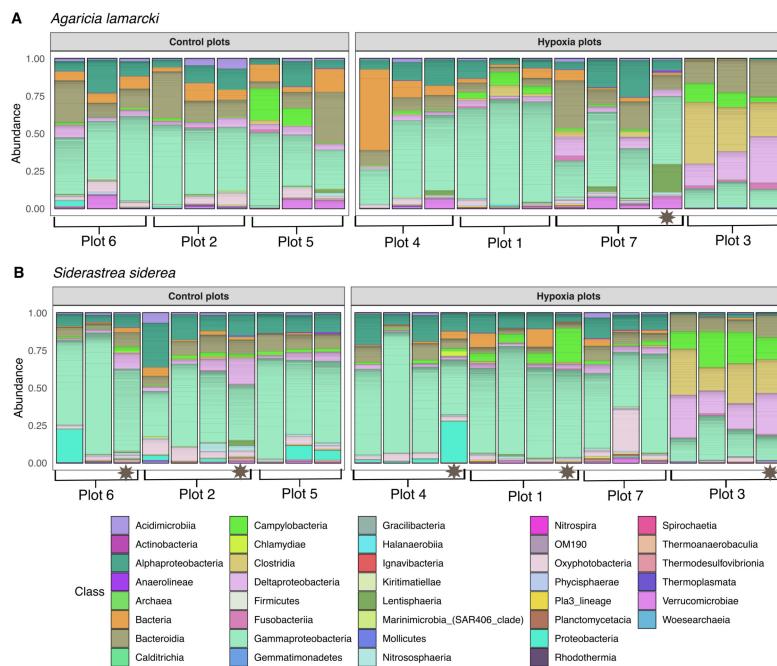
Dissolved oxygen (DO) concentrations (mg/L) in the control plots ranged from 4.29 mg/L to 6 mg/L throughout the experimental period, while DO concentrations in hypoxia chambers steadily decreased (Fig. 2A). Background-dissolved oxygen levels during the experimental period at our study site were considered well above conventional thresholds of hypoxia (2.8 mg/L), although equilibrium concentrations of dissolved oxygen were slightly lower than a saturation concentration of 6.2 mg/L (44). In the chamber associated with MiniDOT logger 3, DO concentrations decreased drastically starting at hour 5 and reached levels <0.1 mg/L at hour 15 of the experiment (Fig. 2A). At hour 15, hypoxia chamber plot 1 was at 2.46 mg/L DO and hypoxia chamber plot 4 was at 3.08 mg/L DO. Our open-chamber plots at the same time of incubation ranged from 5.5 to 6.0 mg/L DO. The oxygen concentrations in hypoxia chamber plots 1 and 4 continued to decline thereafter. We observed *in situ* that corals within chamber 3 experienced severe bleaching. Over the course of 48 hours, water temperature ranged from 29.42°C to 30.08°C in the Punta Caracol experimental plots (Fig. S1).

Microbial community characterization

Microbial communities were characterized for a total of 56 coral mucus samples from *Agaricia lamarckii* and *Siderastrea siderea* collected from three different sites in May 2019 (Fig. 1; Table S1). After quality filtering and joining, an average of 56,660 sequencing reads (11,273–116,996) per coral sample was used in the analysis (Table S1). A total of 157 archaeal ASVs and 22,666 bacterial ASVs were detected. After filtering ASVs with a mean read count of less than 5, a total of 2 archaeal ASVs and 877 bacterial ASVs were detected. One control sample from the extraction kit was also sequenced, and after quality filtering and joining, it had 22,860 reads, which were classified as 78 bacterial ASVs (Table S2). Sequencing reads with primers and adapters removed are available at NCBI's Sequence Read Archive under BioProject PRJNA641080.


FIG 2 (A) Dissolved oxygen concentrations (mg/L) in the hypoxic and control plots over 48 hours. Tent 3 became hypoxic rapidly and stayed hypoxic for the duration of the experiment. (B) An example of the greenhouse chamber used to simulate natural hypoxia in the marine environment. Fluorescein dye was used before trials to ensure the chambers could be secured with minimal flow-through and leaks.

Overall, the microbial community structure in the experimental plots differed by coral species, although the effect size was small (PERMANOVA, $P = 0.001$, $R^2 = 0.08$; Fig. 3). Additionally, the microbial community structure differed among corals in the control plots and the hypoxia plots, although the effect size was small (PERMANOVA, $P = 0.001$, $R^2 = 0.06$; Fig. 3). The interaction between coral species and treatment was not significant (PERMANOVA, $P > 0.05$, $R^2 = 0.02$). Additionally, there was no significant difference in coral microbial community structure between the unmanipulated *S. siderea* sampled in Tierra Oscura ($n = 3$), which had previously experienced hypoxia, and Finca ($n = 3$), which had no documented hypoxia (ANOSIM, $P > 0.05$, $R^2 = 0.63$).


Bacterial taxa belonging to the *Alphaproteobacteria*, *Gammaproteobacteria*, and *Bacteroidia* were commonly detected in all samples, regardless of treatment and species (Fig. 4), consistent with previous studies of coral microbiomes (58). All ASVs classified only as "Bacteria" ($n = 22$) were searched with BLASTn, and sequences labeled as mitochondria by NCBI were removed from the data set. Of the 22 ASVs classified only as "Bacteria," only one matched mitochondrial sequences (0.11% of ASVs). The most abundant ASV classified only as Bacteria in both species (Fig. 4) was 87% similar to an uncultivated bacterial sequence associated with the cold-water coral *Lophelia pertusa* sampled in Norway (GenBank Accession AM911366) (59) based on BLASTn searches. Additionally, the most abundant ASV classified only to class *Gammaproteobacteria* was 98% similar to a clone library sequence from an uncultivated Caribbean coral-associated bacterium (GenBank Accession KU243233) (60). The most abundant ASV classified only to phyla *Proteobacteria* in *S. siderea* (Fig. 4B) was 92% similar to a clone library sequence from an uncultivated *Delta proteobacteria* associated with the coral *Pavona cactus* originating from the Red Sea (GenBank Accession EU847601) (61). Overall, there were no apparent patterns or differences in alpha diversity between the treatment types.

Because stress often has a stochastic effect on microbial community composition (62), we examined the dispersion of beta diversity according to treatment type (Fig. 5). In both *A. lamarckii* and *S. siderea*, hypoxia had a clear stochastic effect on microbiome composition, as affected colonies had higher variation in their microbiomes. In colonies that only experienced normoxia, microbial community composition had lower variability (Fig. 5). Analysis of variance of the linear model showed that beta diversity dispersion was significantly different between the hypoxic and control treatments (ANOVA, $P = 0.02$), but not for coral species (ANOVA, $P = 0.09$) or the combined factors (ANOVA, $P = 0.88$).

Differences among treatments in the microbial community structure were primarily driven by 14 differentially abundant families (Fig. 6). These families were detected

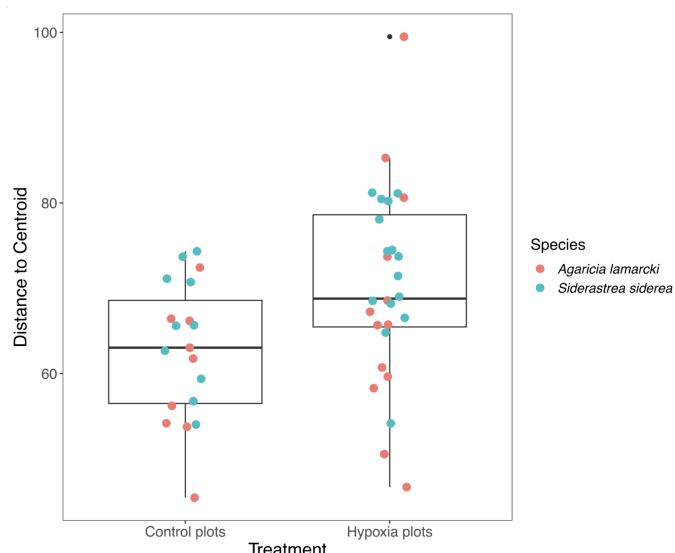


FIG 3 Principal component analysis of microbial community structure in corals in the control plots and corals in the hypoxia plots.

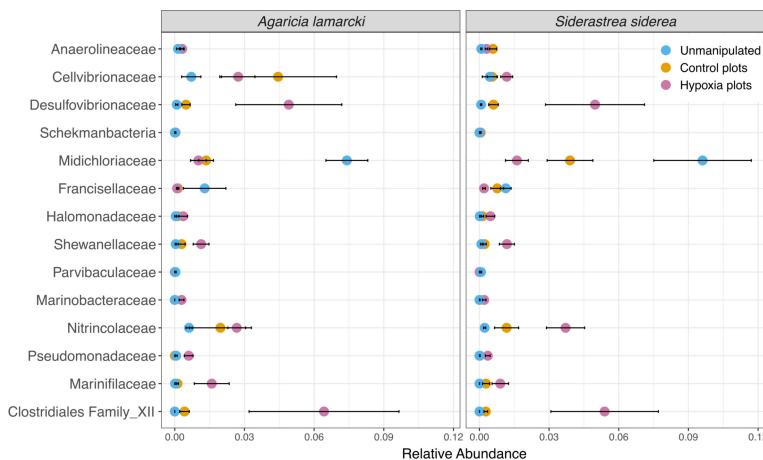


FIG 4 Relative abundance of amplicon sequence variants, colored by class, in corals in the control plots and corals in the hypoxia plots for *Agaricia lamarckii* (A) and *Siderastrea siderea* (B). Gray stars indicate local Punta Caracol coral colonies in the incubation chambers.

in at least 70% of the samples and were significantly different (ANOVA, $P = 0.05$) among unmanipulated corals from Tierra Oscura and Finca, control plots, and hypoxic plots (Fig. 6). The largest differences among treatment types were observed in families *Desulfovibrionaceae*, *Nitrinolaceae*, *Clostridiales Family XII*, and *Midichloriaceae*. The relative abundances of *Desulfovibrionaceae*, *Nitrinolaceae*, and *Clostridiales Family XII* were higher in the hypoxia treatment, whereas family *Midichloriaceae* was highest in the unmanipulated corals (Fig. 6). *Clostridiales Family XII* was more abundant in corals exposed to hypoxia and less abundant in unmanipulated and control plot corals.

FIG 5 The dispersion of beta diversity shown as the distance to centroid in microbial communities from *S. siderea* and *A. lamarckii* colonies in control, normoxic plots, and hypoxic plots.

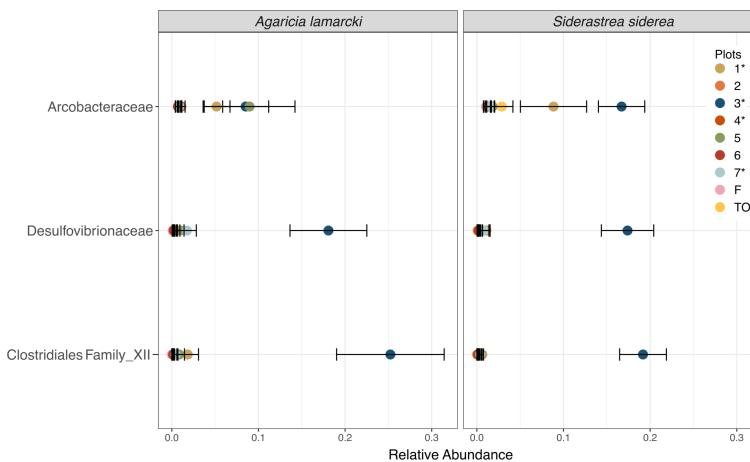


FIG 6 Mean relative abundance of 14 microbial families that were differentially abundant across treatment types: unmanipulated corals from Finca and Tierra Oscura, corals in the control plots, and corals in the hypoxic plots. Points represent the average relative abundance and error bars depict the standard error from analysis of all 56 coral samples. *Desulfovibrionaceae* and *Clostridiales Family XII* were each a magnitude more abundant in hypoxic plots than in control, oxygenated plots in both species.

Hypoxic chamber 3 experienced a sudden and dramatic drop in dissolved oxygen concentrations 5 hours following initiation of the incubation period and was completely hypoxic for 36 hours (Fig. 2A). This was associated with the largest magnitude response of the microbiome relative to the other plots. The seven microbial communities grouped on the right side of the PCA (Fig. 3) were from corals exposed to extremely low dissolved oxygen concentrations in chamber 3 (Fig. 2A) that ultimately bleached. The corals in this chamber included three colonies of *A. lamarcki* and four colonies of *S. siderea*, one of which was a local Punta Caracol *S. siderea* colony. Microbial community structure varied more by chamber (PERMANOVA, $P = 0.001$, $R^2 = 0.37$) than by either species or treatment. Increases in the typically anaerobic classes *Clostridia*, *Delta proteobacteria*, and *Campylobacteria* were detected in both coral species in hypoxic chamber 3 (Fig. 4) and this trend was further explored.

Differences among the plots were primarily driven by 40 differentially abundant bacterial families. Those that were detected in higher abundances in both coral species from chamber 3, the plot with the most prolonged hypoxia, include *Arcobacteraceae*, *Prolixibacteraceae*, *Marinilabiliaceae*, *Desulfovibacteraceae*, *Bacteroidales*, *Peptostreptococcaceae*, *Desulfovibrionaceae*, *Marinifilaceae*, and *Clostridiales Family XII* (Fig. S2). The relative abundances of *Midichloriaceae* were lowest in chamber 3, as were unclassified families of *Gammaproteobacteria* and *Proteobacteria* families (Fig. S2). Families *Colwelliaceae* and *Vibrionaceae* were detected in higher abundances in hypoxic chamber 1. Both coral species harbored several families in common that had similar responses to hypoxia, including *Arcobacteraceae*, *Desulfovibrionaceae*, and *Clostridiales Family XII* (Fig. 7). In *A. lamarcki* from hypoxic plot 3, families *Desulfovibrionaceae* and *Clostridiales Family XII* comprised an average of 18% and 25% of the microbiomes, respectively. In all other plots, *Desulfovibrionaceae* and *Clostridiales Family XII* comprised <2% of the microbiome from *A. lamarcki* (Fig. 7). These patterns are also reflected in *S. siderea* from hypoxic plot 3, in which families *Desulfovibrionaceae* and *Clostridiales Family XII* comprised an average of 17% and 19%, respectively. In all other plots, *Desulfovibrionaceae* and *Clostridiales Family XII* comprised <2% of the microbiome from *S. siderea* (Fig. 7). In *S. siderea*, family *Arcobacteraceae* comprised an average of 17% of the microbiome from hypoxic plot 3, 9% of the microbiome from hypoxic plot 1, and <2% of the microbiome from all other plots (Fig. 7).

To determine if differentially abundant families were driven by particular ASVs, an indicator species analysis was performed on all samples. Of the 878 ASVs tested, 144

FIG 7 Mean relative abundance of 3 families that were differentially abundant across chambers and in corals sampled in Finca (F) and Tierra Oscura (TO). Colored points represent the average relative abundance of the families in each plot, and error bars depict the standard error from analysis of 56 coral samples. Asterisks next to plot numbers represent hypoxic plots. Families *Arcobacteraceae*, *Clostridiales Family XII*, and *Desulfovibrionaceae* increased significantly in corals that experienced hypoxia for the longest (36 hours). *Arcobacteraceae* was specifically highest in *S. siderea* colonies that experienced hypoxia for the longest.

ASVs were considered indicator species for hypoxia, but only four ASVs had a correlation statistic ≥ 0.50 (Fig. S3). These include an *Alteromonas* ASV, a *Neptuniibacter* ASV, an *Aestuariicella* ASV, and a *Marinobacter* ASV (Table S3). We detected no indicator ASVs common to both *A. lamarckii* and *S. siderea* when exposed to hypoxic stress. Therefore, although the two coral species exhibited similar shifts in differentially abundant microbial families, these patterns were not driven by individual taxa (ASVs) common to both *A. lamarckii* and *S. siderea*.

DISCUSSION

We observed a shift in the microbial communities of corals *A. lamarckii* and *S. siderea* following just 48 hours of experimental deoxygenation. Though the overall microbiome shift was stochastic in response to hypoxic stress, certain bacterial groups responded deterministically in both coral species. In response to hypoxia, we saw increased variability of the coral microbial community composition, regardless of species. Hypoxic conditions resulted in an increase of anaerobic and potentially pathogenic bacteria in the classes *Delta proteobacteria*, *Campylobacteria*, and *Clostridia* in the microbiome of both *A. lamarckii* and *S. siderea*. This is most apparent in corals that experienced the most severe hypoxia associated with plot 3. Moreover, both coral species exhibited changes of similar magnitude in the relative abundances of many families, most notably *Arcobacteraceae*, *Desulfovibrionaceae*, *Clostridiales Family XII*, *Nitrincolaceae*, and *Midichloriaceae*. Although we detected statistically significant differences in microbial communities between oxygen treatments for both species, the effect size of that difference was relatively small.

Prior studies performed have shown primarily stochastic shifts in the microbiome in response to other environmental pressures and have corroborated our results. For example, stressors including nutrient pollution, overfishing, and thermal stress on reefs were correlated with an increase in the dispersion of beta diversity dispersion in the coral microbiome (62). Because of this, the combination of deterministic and stochastic outcomes from our study may suggest some host regulation of the microbiome in response to hypoxic stress. These corals may have curated the members of their microbial community to better deal with the stress of deoxygenation (63). However, increases in beta diversity and destabilization of the microbiome have also been

associated with host tissue loss (62), disease (34, 36), and mortality (34, 36, 62, 64). Because many taxa in our study are often associated with coral stress, it is likely that opportunistic taxa are being enriched in the microbiome under hypoxic conditions. Examining the functional role of these members may explain some uniformities of the microbiome across both coral species in response to hypoxia.

Functional significance of microbiome shifts

Under experimentally induced hypoxia, we documented an increase in *Delta*proteobacteria, specifically the family *Desulfovibrionaceae*. *Delta*proteobacteria are known for their role as sulfate-reducing microorganisms (SRM) (65, 66). In marine ecosystems, *Delta*proteobacteria are mainly found in sediment, where they are the predominant SRMs in terms of abundance and activity (67). *Desulfovibrionaceae*, a well-known family within *Delta*proteobacteria, includes numerous sulfate-reducing species which produce hydrogen sulfide that can degrade coral health and result in disease (68, 69). Members of this family have been implicated in Black Band Disease as a producer of sulfide (68, 69). Further, *Desulfovibrionaceae* were detected in corals infected with stony coral tissue loss disease (SCTLD), and the genera *Desulfovibrio* and *Halodesulfovibrio* have been recently described as bioindicators of the disease (70, 71). *Delta*proteobacteria in the coral microbiome are likely producing sulfide and playing an antagonistic role and may contribute to increased coral disease prevalence associated with reef hypoxia, but the definitive role of this class in the coral microbiome remains to be confirmed, particularly under environmental stressors like hypoxia.

We also documented an increase in the class *Campylobacteria* during experimental deoxygenation in the coral microbiome. Microbes within this taxonomic group, and many species of *Epsilon*bacterota in particular, play important roles in carbon, nitrogen, and sulfur cycling, especially in symbiosis with their host (72, 73). *Epsilon*bacterota thrive in anaerobic or microaerobic environments rich with sulfur (72), including hydrothermal vents (73) and sediments associated with seagrass roots (74). On corals experiencing hypoxia, members of *Campylobacteria* may alleviate stress by oxidizing some of the toxic sulfides produced by microbial respiration including *Delta*proteobacteria in the holobiont. The increase in sulfur-oxidizing *Campylobacteria* during hypoxia may therefore be a form of rapid adaptation to this stressor, conferring resilience to deoxygenation stress for corals. For instance, family *Arcobacteraceae*, which were enriched under the most extreme low-oxygen conditions here, are known for the sulfide-oxidizing capabilities (75, 76), producing both sulfate and filamentous sulfur (76), and may help detoxify the surrounding sulfidic microenvironment around corals. *Arcobacteraceae* are associated with changes in the coral holobiont under stress conditions, growing rapidly in the microbiome in thermally stressed corals (77) and corals living in polluted waters (78). Though members of this group have also been associated with coral diseases, such as white syndrome (79), brown band disease (79), white plague disease (80), and stony coral tissue loss disease (71), the role of *Arcobacteraceae* during hypoxic stress in the coral holobiont remains unknown.

Clostridia, including *Clostridiales* Family XII, also increased in abundance on both species of coral host in response to deoxygenation. This change was especially prominent in chamber 3, where hypoxia was most severe and sustained. *Clostridia* is a large polyphyletic class of obligate and facultative anaerobes known for producing the highest number of toxins of any bacterial group and causing severe disease in humans and animals (81). However, the role of *Clostridia* in coral remains ambiguous. Most Gram-positive sulfate-reducing bacteria belong to the class *Clostridia*, so these taxa may play a similar role to the *Delta*proteobacteria in the coral holobiont (82). Further, corals that harbor higher abundances of *Clostridia* ASVs are more often associated with disease (83). For example, *Clostridiales* ASVs are enriched in the surface mucus layer and tissue near stony coral tissue loss disease (SCTLD) lesions (71, 84, 85) and Black Band Disease mats (86, 87). An increase of *Clostridia* has also been documented in the microbiome when corals are exposed to thermal stress (88). Generally, higher

abundances of *Clostridia* in the coral microbiome are often associated with host stress. In our study, members of *Clostridia* are likely playing an antagonistic role in the coral holobiont as sulfide producers (82) or as opportunistic pathogens as oxygen levels decline (83). However, *Clostridia* remains unsubstantiated as the causative agent of any coral disease, and it may simply respond opportunistically to stress-associated changes in the holobiont.

Family *Nitrincolaceae*, belonging to class *Gammaproteobacteria*, was more abundant in corals exposed to hypoxia. This increase in *Nitrincolaceae* is consistent with observations in the microbial community in the water column above a reef during the 2017 hypoxic event in Bahía Almirante when *Nitrincolaceae* was found only in hypoxic water samples from that event, and not in oxygenated water samples at that site following the event or at a reference site (40). Species within this family have genes for nitrite reductase, nitric oxide reductase, and nitrous oxide reductase (89, 90). As such, members of *Nitrincolaceae* have the potential to produce nitrate (NO_3^-), nitrous oxide (N_2O), and dinitrogen (N_2). The denitrification of bioavailable nitrogen to nitrogen gas in low-oxygen systems may aid in mitigating the eutrophication that usually precedes and occurs with hypoxia (31). Taxa within this family have also been described as following short-term “feast and famine” dynamics of nutrient uptake and are aggressive heterotrophs (90). During seasonal transitions in the Southern Ocean, *Nitrincolaceae* rapidly take up nutrients from phytoplankton-derived organic matter and iron (90). In hypoxic conditions on coral reefs, it is possible that our observed increase in *Nitrincolaceae* signified their role as opportunistic heterotrophs. Their increase in the holobiont may be due to coral tissue decay, as death of both coral and associated *Symbiodiniaceae* may supply the bacteria with the organic matter and iron they need to thrive in this environment. Their increase may also be an opportunistic response to degrading host health, as some taxa within *Nitrincolaceae* are considered bioindicators for stony coral tissue loss disease in *S. siderea* (70).

Family *Midichloriaceae* (order *Rickettsiales*) decreased in all corals associated with hypoxic conditions, including those in chamber 3. *Rickettsiales* are obligate intracellular bacteria of eukaryotes and include well-known zoonotic pathogens (91). Though previously implicated in white band disease (92, 93), many recent studies have detected the *Rickettsiales* genus MD3-55 (*Candidatus Aquarickettsia rowheri*) as an abundant member of the apparently healthy *Acropora cervicornis* microbiome in the Cayman Islands (94), the Florida Keys (95–97), and Panama (98, 99). *Rickettsiales* have previously been found in low abundances on six healthy coral species sampled in the Bocas del Toro region of Panama (99). In our study, family *Midichloriaceae* were detected at lower relative abundances under hypoxic conditions. This may be due to some tissue loss in corals that experienced severe hypoxia in chamber 3 and indicate that *Rickettsiales* has a dependence or preference for healthy corals. Though their role in the coral microbiome remains unclear, our study provides further evidence that *Rickettsiales* is a constituent of healthy holobiont that declines in abundance with stress.

Holobiont response to hypoxic stress

Differences in hypoxia tolerance thresholds among coral species may be due to the regime of hypoxia exposure, host stress responses, or microbial function. Environmental history can also affect the survival of coral during subsequent exposures to low oxygen (100). Previous work has demonstrated that coral species vary in their susceptibility to hypoxia (6, 101–104). For example, *A. cervicornis* suffered tissue loss and mortality within a day of exposure to hypoxia in lab experiments, whereas *Orbicella faveolata* was unaffected after 11 days of continuous hypoxia exposure (101). *Stephanocoenia intersepta* from Bahía Almirante exhibited a threefold greater hypoxia tolerance than *A. lamarckii* in lab-based experiments (6). Further, following a deoxygenation event in Morrocoy National Park, Venezuela, *Acropora* and some *Montastrea* colonies exhibited bleaching, while *S. siderea*, *Porites astreoides*, and *P. porites* did not suffer any damage (102). These data follow a trend: plating and branching corals typically have a higher

mortality rate than massive and encrusting corals under hypoxic conditions (23, 28, 100, 102, 103). These differences in hypoxia tolerance have been observed in prior studies done in Bahía Almirante, which record *Agaricia* species as hypoxia sensitive (6, 40) and *S. siderea* as hypoxia resilient (40).

In addition to innate resilience that appears to vary with morphology, transcriptomic analysis has revealed that corals possess a complete and active hypoxia-inducible factor (HIF)-mediated hypoxia response system (HRS) that confers some hypoxia resilience (104). The effectiveness of this hypoxia response system can differ between coral species. For example, *Acropora tenuis* was more resistant to hypoxic stress when compared to *Acropora selago*. *A. tenuis* exhibited bleaching resistance and showed a strong inducibility of HIF genes in response to hypoxic stress. In contrast, *A. selago* exhibited a bleaching phenotypic response and was accompanied by lower gene expression of the hypoxia-inducible factor (HIF)-mediated hypoxia response system (104). Therefore, differences in coral response to hypoxia are in part due to the effectiveness of their HIF-HRSs.

Though historic exposure and the HIF-HRS each contribute to host survival, it is likely a synergistic effect between historic exposure, the HIF-HRS, and the coral microbiome that confer the most resilience to the holobiont during hypoxia. Past research has demonstrated that corals may shuffle members of their holobiont to bring about the selection of a more advantageous microbiome in response to environmental stressors (35, 105, 106). This microbial shuffling may act as a form of rapid adaptation to changing environmental conditions rather than mutation and natural selection (63). In our results, we observed a rapid shift in the community composition of the microbiome in response to hypoxia associated with the survival of corals through a period of intense deoxygenation stress. We presume that some microbial taxa that increased in abundance with hypoxia may play a role in host survival and resilience by eliminating toxic natural products around the microenvironment of the coral or by filling some metabolic needs during stress. This appears to be a common overall strategy across coral species that has developed in response to the selective pressure of hypoxia given that we observed it across two species that are distantly related taxonomically and are at opposite ends of the spectrum with regard to hypoxia tolerance. However, the exact ASV constituents that contributed to the shifts at the family level differed between the corals, suggesting different co-evolutionary pathways which may contribute to the difference in hypoxia tolerance of the coral hosts.

Conclusions

Marine deoxygenation will worsen with continued climate change, and with its potential to degrade coral reefs, it is essential to understand patterns of resilience revealed in the microbiome. Given the results of this study, we suspect that increased abundances in some microbial taxa with hypoxia may play a role in host resilience by detoxifying the microenvironment around the coral host, such as *Campylobacteria* (*Arcobacteraceae*). Other taxa, such as *Midichloriaceae* and *Clostridiales* Family XII, have more ambiguous roles in the coral microbiome, though their shifts in response to hypoxia warrant further investigation. Alternatively, the increases in these groups may indicate a shift in the coral microbial community towards opportunists exploiting host stress. We hypothesize that enhancement of these anaerobes, facultative anaerobes, or microaerophiles in the microbiome fill necessary and diverse metabolic niches in the holobiont during hypoxic stress while simultaneously indicating deoxygenation. Future studies that examine the functional roles of the coral microbiome through metagenomic or metatranscriptomic analyses can further advance our understanding by testing these hypotheses regarding how the microbiome can mitigate the degradation of coral reefs under hypoxic conditions.

ACKNOWLEDGMENTS

We thank the team at the Smithsonian Tropical Research Institute in Bocas del Toro, Panama, for their assistance in field monitoring and work. This research was

supported by the University of Florida start-up funds to A.H.A. and J.L.M. and NSF grant OCE-2048914 to A.H.A. and J.L.M.

AUTHOR AFFILIATIONS

¹Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA

²Smithsonian Tropical Research Institute, Balboa, Ancon, Panama

³Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

⁴Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA

AUTHOR ORCIDs

Rachel D. Howard <http://orcid.org/0009-0003-9190-8988>

Julie L. Meyer <http://orcid.org/0000-0003-3382-3321>

FUNDING

Funder	Grant(s)	Author(s)
National Science Foundation (NSF)	OCE-2048914	Andrew Altieri Julie L. Meyer

AUTHOR CONTRIBUTIONS

Rachel D. Howard, Formal analysis, Methodology, Visualization, Writing – original draft, Writing – review and editing | Monica D. Schul, Methodology, Visualization, Writing – review and editing | Lucia M. Rodriguez Bravo, Methodology, Writing – review and editing | Andrew H. Altieri, Conceptualization, Funding acquisition, Methodology, Writing – review and editing | Julie L. Meyer, Data curation, Funding acquisition, Methodology, Supervision, Visualization, Writing – review and editing

DATA AVAILABILITY

Sequences are available on the NCBI Sequence Read Archive (SRA) BioProject PRJNA641080 under accession numbers [SAMN15298019-SAMN15298075](https://www.ncbi.nlm.nih.gov/bioproject/PRJNA641080).

ADDITIONAL FILES

The following material is available [online](#).

Supplemental Material

Supplemental file 1 (AEM00577-23-S0001.pdf). Supplemental figures and tables

REFERENCES

- Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K, Jacinto GS, Limburg KE, Montes I, Naqvi SWA, Pitcher GC, Rabalais NN, Roman MR, Rose KA, Seibel BA, Telszewski M, Yasuhara M, Zhang J. 2018. Declining oxygen in the global ocean and coastal waters. *Science* 359:eaam7240. <https://doi.org/10.1126/science.aam7240>
- Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. *Science* 321:926–929. <https://doi.org/10.1126/science.1156401>
- Pezner AK, Courtney TA, Barkley HC, Chou W-C, Chu H-C, Clements SM, Cyronak T, DeGrandpre MD, Kekuewa SAH, Kline DL, Liang Y-B, Martz TR, Mitarai S, Page HN, Rintoul MS, Smith JE, Soong K, Takeshita Y, Tresguerres M, Wei Y, Yates KK, Andersson AJ. 2023. Increasing hypoxia on global coral reefs under ocean warming. *Nat. Clim. Chang* 13:403–409. <https://doi.org/10.1038/s41558-023-01619-2>
- Altieri AH, Gedan KB. 2015. Climate change and dead zones. *Glob Chang Biol* 21:1395–1406. <https://doi.org/10.1111/gcb.12754>
- Nilsson HC, Rosenberg R. 2000. Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile-imaging and by grab samples. *Mar Ecol Prog Ser* 197:139–149. <https://doi.org/10.3354/meps197139>
- Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N. 2017. Tropical dead zones and mass mortalities on coral reefs. *Proc Natl Acad Sci U S A* 114:3660–3665. <https://doi.org/10.1073/pnas.1621517114>
- Vaquer-Sunyer R, Duarte CM. 2008. Thresholds of hypoxia for marine biodiversity. *Proc Natl Acad Sci U S A* 105:15452–15457. <https://doi.org/10.1073/pnas.0803833105>

8. Diaz RJ, Rosenberg R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. *Oceanogr Mar Biol Annu Rev* 33:245–303.
9. Rabais NN, Turner RE, Diaz RJ, Justić D. 2009. Global change and eutrophication of coastal waters. *ICES J Mar Sci* 66:1528–1537. <https://doi.org/10.1093/icesjms/fsp047>
10. Baird AH, Keith SA, Woolsey E, Yoshida R, Naruse T. 2017. Rapid coral mortality following doldrums-like conditions on Iriomote. *F1000Res* 6:1728. <https://doi.org/10.12688/f1000research.12660.1>
11. Gajdzik L, DeCarlo T. 2017. The perfect calm: reoccurring mass die-offs on a remote coral atoll. *Matters*. <https://doi.org/10.19185/matters.20170700003>
12. Onton K, Page CA, Wilson SK, Neale S, Armstrong S. 2011. Distribution and drivers of coral disease at ningaloo reef. *Mar Ecol Prog Ser* 433:75–84. <https://doi.org/10.3354/meps09156>
13. Nilsson GE, Ostlund-Nilsson S. 2004. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes. *Proc Biol Sci* 271 Suppl 3:S30–S33. <https://doi.org/10.1098/rsbl.2003.0087>
14. Nilsson GE, Ostlund-Nilsson S, Penfold R, Grutter AS. 2007. From record performance to hypoxia tolerance: respiratory transition in damselfish larvae settling on a coral reef. *Proc Biol Sci* 274:79–85. <https://doi.org/10.1098/rspb.2006.3706>
15. Lucey NM, Collins M, Collin R. 2020. Oxygen-mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. *Ecol Evol* 10:1145–1157. <https://doi.org/10.1002/ece3.5929>
16. Hughes DJ, Alexander J, Cobbs G, Kühl M, Cooney C, Pernice M, Varkey D, Voolstra CR, Suggett DJ. 2022. Widespread oxyregulation in tropical corals under hypoxia. *Mar Pollut Bull* 179:113722. <https://doi.org/10.1016/j.marpolbul.2022.113722>
17. Shapiro OH, Fernandez VI, Garren M, Guasto JS, Debaillon-Vesque FP, Kramarsky-Winter E, Vardi A, Stocker R. 2014. Vortical ciliary flows actively enhance mass transport in reef corals. *Proc Natl Acad Sci U S A* 111:13391–13396. <https://doi.org/10.1073/pnas.1323094111>
18. Gardella DJ, Edmunds PJ. 1999. The oxygen microenvironment adjacent to the tissue of the scleractinian *Dichocoenia stokesii* and its effects on symbiont metabolism. *Marine Biology* 135:289–295. <https://doi.org/10.1007/s002270050626>
19. Shashar N, Cohen Y, Loya Y. 1993. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. *Biol Bull* 185:455–461. <https://doi.org/10.2307/1542485>
20. Kühl M, Cohen Y, Dalsgaard T, Jørgensen B, Revsbech N. 1995. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O₂, pH and light. *Mar Ecol Prog Ser* 117:159–172. <https://doi.org/10.3354/meps117159>
21. Andréfouët S, Dutheil C, Menkes CE, Bador M, Lengaigne M. 2015. Mass mortality events in atoll lagoons: environmental control and increased future vulnerability. *Glob Chang Biol* 21:195–205. <https://doi.org/10.1111/gcb.12699>
22. Hobbs J-PA, Macrae H. 2012. Unusual weather and trapped coral spawn lead to fish kill at a remote coral atoll. *Coral Reefs* 31:961–961. <https://doi.org/10.1007/s00338-012-0918-8>
23. Genin A, Lazar B, Brenner S. 1995. Vertical mixing and coral death in the red sea following the eruption of mount pinatubo. *Nature* 377:507–510. <https://doi.org/10.1038/377507a0>
24. Kraines S, Suzuki Y, Yamada K, Komiya H. 1996. Separating biological and physical changes in dissolved oxygen concentration in a coral reef. *Limnol Oceanogr* 41:1790–1799. <https://doi.org/10.4319/lo.1996.41.8.1790>
25. Guadayol Ò, Silbiger NJ, Donahue MJ, Thomas FIM. 2014. Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. *PLoS One* 9:e85213. <https://doi.org/10.1371/journal.pone.0085213>
26. Camp EF, Nitschke MR, Rodolfo-Metlapa R, Houlbreque F, Gardner SG, Smith DJ, Zampighi M, Suggett DJ. 2017. Reef-building corals thrive within hot-acidified and deoxygenated waters. *Sci Rep* 7:2434. <https://doi.org/10.1038/s41598-017-02383-y>
27. Hughes DJ, Alderdice R, Cooney C, Kühl M, Pernice M, Voolstra CR, Suggett DJ. 2020. Coral reef survival under accelerating ocean deoxygenation. *Nat Clim Chang* 10:296–307. <https://doi.org/10.1038/s41558-020-0737-9>
28. Simpson CJ, Cary JL, Masini RJ. 1993. Destruction of corals and other reef animals by coral spawn slicks on ningaloo reef, Western Australia. *Coral Reefs* 12:185–191. <https://doi.org/10.1007/BF00334478>
29. Nelson HR, Altieri AH. 2019. Oxygen: the universal currency on coral reefs. *Coral Reefs* 38:177–198. <https://doi.org/10.1007/s00338-019-01765-0>
30. Shepherd JG, Brewer PG, Oschlies A, Watson AJ. 2017. Ocean ventilation and deoxygenation in a warming world: introduction and overview. *Philos Trans A Math Phys Eng Sci* 375:20170240. <https://doi.org/10.1098/rsta.2017.0240>
31. Diaz RJ. 2001. Overview of hypoxia around the world. *J Environ Qual* 30:275–281. <https://doi.org/10.2134/jeq2001.302275x>
32. Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR. 2017. Bacterial community dynamics are linked to patterns of coral heat tolerance. *Nat Commun* 8:14213. <https://doi.org/10.1038/ncomms14213>
33. Doering T, Wall M, Putchim L, Rattanawongwan T, Schroeder R, Hentschel U, Roik A. 2021. Towards enhancing coral heat tolerance: a "microbiome transplantation" treatment using inoculations of homogenized coral tissues. *Microbiome* 9:102. <https://doi.org/10.1186/s40168-021-01053-6>
34. Thompson JR, Rivera HE, Closek CJ, Medina M. 2014. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. *Front Cell Infect Microbiol* 4:176. <https://doi.org/10.3389/fcimb.2014.00176>
35. Bourne DG, Morrow KM, Webster NS. 2016. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. *Annu Rev Microbiol* 70:317–340. <https://doi.org/10.1146/annurev-micro-102215-095440>
36. Peixoto RS, Rosado PM, Leite D de A, Rosado AS, Bourne DG. 2017. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. *Front Microbiol* 8:341. <https://doi.org/10.3389/fmicb.2017.00341>
37. van Oppen MJH, Blackall LL. 2019. Coral microbiome dynamics, functions and design in a changing world. *Nat Rev Microbiol* 17:557–567. <https://doi.org/10.1038/s41579-019-0223-4>
38. Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. 2015. Nitrogen cycling in corals: the key to understanding holobiont functioning? *Trends Microbiol* 23:490–497. <https://doi.org/10.1016/j.tim.2015.03.008>
39. Sweet MJ, Bulling MT. 2017. On the importance of the microbiome and pathobiome in coral health and disease. *Front Mar Sci* 4:9. <https://doi.org/10.3389/fmars.2017.00009>
40. Johnson MD, Scott JJ, Leray M, Lucey N, Bravo LMR, Wied WL, Altieri AH. 2021. Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. *Nat Commun* 12:4522. <https://doi.org/10.1038/s41467-021-24777-3>
41. Guzman HM, Barnes PAG, Lovelock CE, Feller IC. 2005. A site description of the CARICOMP mangrove, Seagrass and coral Reef sites in Bocas del Toro, Panama. *Caribb J Sci* 41:430–440. <https://repository.si.edu/handle/10088/3878>
42. Lucey N, Haskett E, Collin R. 2020. Multi-stressor extremes found on a tropical coral reef impair performance. *Front Mar Sci* 7:588764. <https://doi.org/10.3389/fmars.2020.588764>
43. Cramer KL. 2013. History of human occupation and environmental change in Western and central caribbean Panama. *BMS* 89:955–982. <https://doi.org/10.5343/bms.2012.1028>
44. Adelson AE, Altieri AH, Boza X, Collin R, Davis KA, Gaul A, Giddings SN, Reed V, Pawlak G. 2022. Seasonal hypoxia and temperature inversions in a tropical bay. *Limnol Oceanogr* 67:2174–2189. <https://doi.org/10.1002/lo.12196>
45. Figuerola B, Grossman EL, Lucey N, Leonard ND, O'Dea A. 2021. Millennial - scale change on a caribbean reef system that experiences hypoxia. *Ecography* 44:1270–1282. <https://doi.org/10.1111/ecog.05606>
46. Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. *Environ Microbiol* 18:1403–1414. <https://doi.org/10.1111/1462-2920.13023>
47. Apprill A, McNally S, Parsons R, Weber L. 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. *Aquat Microb Ecol* 75:129–137. <https://doi.org/10.3354/ame01753>

48. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *ISME J* 6:1621–1624. <https://doi.org/10.1038/ismej.2012.8>

49. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet J* 17:10. <https://doi.org/10.14806/ej.17.1.200>

50. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. *Nat Methods* 13:581–583. <https://doi.org/10.1038/nmeth.3869>

51. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO. 2014. The SILVA and “all-species living tree project (LTP). *Nucl Acids Res* 42:D643–D648. <https://doi.org/10.1093/nar/gkt1209>

52. McMurdie PJ, Holmes S. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS One* 8:e61217. <https://doi.org/10.1371/journal.pone.0061217>

53. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Microbiome datasets are compositional: and this is not optional. *Front Microbiol* 8:2224. <https://doi.org/10.3389/fmich.2017.02224>

54. Wickham H. 2016. *Ggplot2: elegant graphics for data analysis*. Springer, Cham.

55. Dixon P. 2003. VEGAN, a package of R functions for community ecology. *J Vegetation Science* 14:927–930. <https://doi.org/10.1111/j.1654-1103.2003.tb02228.x>

56. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. 2015. Analysis of composition of microbiomes: a novel method for studying microbial composition. *Microb Ecol Health Dis* 26:27663. <https://doi.org/10.3402/mehd.v26.27663>

57. De Cáceres M, Legendre P, Moretti M. 2010. Improving indicator species analysis by combining groups of sites. *Oikos* 119:1674–1684. <https://doi.org/10.1111/j.1600-0706.2010.18334.x>

58. Huggett MJ, Apprill A. 2018. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. *Environ Microbiol Rep* 11:372–385. <https://doi.org/10.1111/1758-2229.12686>

59. Neulinger SC, Järnegren J, Ludvigsen M, Lochte K, Dullo W-C. 2008. Phenotype-specific bacterial communities in the cold-water coral *Lophelia pertusa* (scleractinia) and their implications for the coral’s nutrition, health, and distribution. *Appl Environ Microbiol* 74:7272–7285. <https://doi.org/10.1128/AEM.01777-08>

60. Frade PR, Roll K, Bergauer K, Herndl GJ. 2016. Archaeal and bacterial communities associated with the surface mucus of caribbean corals differ in their degree of host specificity and community turnover over reefs. *PLoS One* 11:e0144702. <https://doi.org/10.1371/journal.pone.0144702>

61. Tremblay P, Weinbauer MG, Rottier C, Guérardel Y, Nozais C, Ferrier-Pagès C. 2011. Mucus composition and bacterial communities associated with the tissue and skeleton of three scleractinian corals maintained under culture conditions. *J Mar Biol Ass UK* 91:649–657. <https://doi.org/10.1017/S002531541000130X>

62. Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, Welsh R, Correa AMS, Lemoine NP, Rosales S, Fuchs C, Maynard JA, Thurber RV. 2016. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. *Nat Commun* 7:11833. <https://doi.org/10.1038/ncomms11833>

63. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. 2006. The coral probiotic hypothesis. *Environ Microbiol* 8:2068–2073. <https://doi.org/10.1111/j.1462-2920.2006.01148.x>

64. Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, Sandin SA, Smriga S, Hatay M, Rohwer FL. 2006. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. *Ecol Lett* 9:835–845. <https://doi.org/10.1111/j.1461-0248.2006.00937.x>

65. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, Loy A, Naganuma T, Nakai R, Whitman WB, Hahn MW, Kuever J, Hugenholtz P. 2020. Proposal to reclassify the proteobacterial classes *Delta proteobacteria* and *Oligoflexia*, and the phylum *Thermodesulfobacteria* into four phyla reflecting major functional capabilities. *Int J Syst Evol Microbiol* 70:5972–6016. <https://doi.org/10.1099/ijsem.0.004213>

66. Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. 2015. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. *ISME J* 9:1152–1165. <https://doi.org/10.1038/ismej.2014.208>

67. Robador A, Müller AL, Sawicka JE, Berry D, Hubert CRJ, Loy A, Jørgensen BB, Brüchert V. 2016. Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. *ISME J* 10:796–809. <https://doi.org/10.1038/ismej.2015.157>

68. Viehman S, Mills DK, Meichel GW, Richardson LL. 2006. Culture and identification of desulfovibrio spp. from corals infected by black band disease on dominican and florida keys reefs. *Dis Aquat Organ* 69:119–127. <https://doi.org/10.3354/dao069119>

69. Sato Y, Ling EYS, Turaev D, Laffy P, Weynberg KD, Rattei T, Willis BL, Bourne DG. 2017. Unraveling the microbial processes of black band disease in corals through integrated genomics. *Sci Rep* 7:40455. <https://doi.org/10.1038/srep40455>

70. Huntley N, Brandt ME, Becker CC, Miller CA, Meiling SS, Correa AMS, Holstein DM, Muller EM, Mydlarz LD, Smith TB, Apprill A. 2022. Experimental transmission of stony coral tissue loss disease results in differential microbial responses within coral mucus and tissue. *ISME COMMUN* 2:46. <https://doi.org/10.1038/s43705-022-00126-3>

71. Becker CC, Brandt M, Miller CA, Apprill A. 2022. Microbial bioindicators of stony coral tissue loss disease identified in corals and overlying waters using a rapid field-based sequencing approach. *Environ Microbiol* 24:1166–1182. <https://doi.org/10.1111/1462-2920.15718>

72. Campbell BJ, Engel AS, Porter ML, Takai K. 2006. The versatile epsilon-proteobacteria: key players in sulphidic habitats. *Nat Rev Microbiol* 4:458–468. <https://doi.org/10.1038/nrmicro1414>

73. Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, Sievert SM, Simon J, Campbell BJ, Hanson TE, Woyke T, Klotz MG, Hugenholtz P. 2017. Comparative genomic analysis of the class *Epsilonproteobacteria* and proposed reclassification to epsilonbacteraeota (Phyl. Nov.). *Front Microbiol* 8:682. <https://doi.org/10.3389/fmicb.2017.00682>

74. Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. 2019. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. *FEMS Microbiol Lett* 366:fzn057. <https://doi.org/10.1093/femsle/fzn057>

75. Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. *Appl Environ Microbiol* 62:1623–1629. <https://doi.org/10.1128/aem.62.5.1623-1629.1996>

76. Wirsén CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD. 2002. Characterization of an autotrophic sulfide-oxidizing marine *Arcobacter* sp. that produces filamentous sulfur. *Appl Environ Microbiol* 68:316–325. <https://doi.org/10.1128/AEM.68.1.316-325.2002>

77. Shiu J-H, Keshavmurthy S, Chiang P-W, Chen H-J, Lou S-P, Tseng C-H, Justin Hsieh H, Allen Chen C, Tang S-L. 2017. Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. *Sci Rep* 7:14933. <https://doi.org/10.1038/s41598-017-14927-3>

78. Ezzat L, Merolla S, Clements CS, Munsterman KS, Landfield K, Stensrud C, Schmeltzer ER, Burkepile DE, Vega Thurber R. 2021. Thermal stress interacts with surgeonfish feces to increase coral susceptibility to dysbiosis and reduce tissue regeneration. *Front Microbiol* 12:620458. <https://doi.org/10.3389/fmicb.2021.620458>

79. Sweet M, Bythell J. 2012. Ciliate and bacterial communities associated with white syndrome and brown band disease in reef-building corals. *Environ Microbiol* 14:2184–2199. <https://doi.org/10.1111/j.1462-2920.2012.02746.x>

80. Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, Medina M. 2009. Bacterial diversity and white plague disease-associated community changes in the caribbean coral *Montastraea faveolata*. *ISME J* 3:512–521. <https://doi.org/10.1038/ismej.2008.131>

81. Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, Marcellin E. 2019. Revisiting the evolution and taxonomy of *Clostridia*, a phylogenomic update. *Genome Biol Evol* 11:2035–2044. <https://doi.org/10.1093/gbe/evz096>

82. Muyzer G, Stams AJM. 2008. The ecology and biotechnology of sulphate-reducing bacteria. *Nat Rev Microbiol* 6:441–454. <https://doi.org/10.1038/nrmicro1892>

83. Mouchka ME, Hewson I, Harvell CD. 2010. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. *Integr Comp Biol* 50:662–674. <https://doi.org/10.1093/icb/icq061>

84. Meyer JL, Castellanos-Gell J, Aeby GS, Häse CC, Ushijima B, Paul VJ. 2019. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the florida reef tract. *Front Microbiol* 10:2244. <https://doi.org/10.3389/fmicb.2019.02244>

85. Clark AS, Williams SD, Maxwell K, Rosales SM, Huebner LK, Landsberg JH, Hunt JH, Muller EM. 2021. Characterization of the microbiome of corals with stony coral tissue loss disease along florida's coral reef. *Microorganisms* 9:2181. <https://doi.org/10.3390/microorganisms9112181>

86. Miller AW, Richardson LL. 2011. A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. *FEMS Microbiol Ecol* 75:231–241. <https://doi.org/10.1111/j.1574-6941.2010.00991.x>

87. Frias-Lopez J, Zerkle AL, Bonhoyo GT, Fouke BW. 2002. Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. *Appl Environ Microbiol* 68:2214–2228. <https://doi.org/10.1128/AEM.68.5.2214-2228.2002>

88. Tracy AM, Koren O, Douglas N, Weil E, Harvell CD. 2015. Persistent shifts in caribbean coral microbiota are linked to the 2010 warm thermal anomaly. *Environ Microbiol Rep* 7:471–479. <https://doi.org/10.1111/1758-2229.12274>

89. Mori JF, Chen L-X, Jessen GL, Rudderham SB, McBeth JM, Lindsay MBJ, Slater GF, Banfield JF, Warren LA. 2019. Putative mixotrophic nitrifying-denitrifying *Gammaproteobacteria* implicated in nitrogen cycling within the ammonia/oxygen transition zone of an oil sands pit Lake. *Front Microbiol* 10:2435. <https://doi.org/10.3389/fmicb.2019.02435>

90. Liu Y, Blain S, Crispí O, Rembaumville M, Obernosterer I. 2020. Seasonal dynamics of prokaryotes and their associations with diatoms in the Southern ocean as revealed by an autonomous sampler. *Environ Microbiol* 22:3968–3984. <https://doi.org/10.1111/1462-2920.15184>

91. Guo W-P, Tian J-H, Lin X-D, Ni X-B, Chen X-P, Liao Y, Yang S-Y, Dumler JS, Holmes EC, Zhang Y-Z. 2016. Extensive genetic diversity of *Rickettsiales* bacteria in multiple mosquito species. *Sci Rep* 6:38770. <https://doi.org/10.1038/srep38770>

92. Peters EC, Oprandy JJ, Yevich PP. 1983. Possible causal agent of “white band disease” in caribbean acroporid corals. *Journal of Invertebrate Pathology* 41:394–396. [https://doi.org/10.1016/0022-2011\(83\)90260-4](https://doi.org/10.1016/0022-2011(83)90260-4)

93. Casas V, Kline DI, Wegley L, Yu Y, Breitbart M, Rohwer F. 2004. Widespread association of a *Rickettsiales*-like bacterium with reef-building corals. *Environ Microbiol* 6:1137–1148. <https://doi.org/10.1111/j.1462-2920.2004.00647.x>

94. Miller N, Maneval P, Manfrino C, Frazer TK, Meyer JL. 2020. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared *Acropora cervicornis*. *PeerJ* 8:e9635. <https://doi.org/10.7717/peerj.9635>

95. Miller MW, Lohr KE, Cameron CM, Williams DE, Peters EC. 2014. Disease dynamics and potential mitigation among restored and wild staghorn coral, *Acropora cervicornis*. *PeerJ* 2:e541. <https://doi.org/10.7717/peerj.541>

96. Gignoux-Wolfsohn SA, Precht WF, Peters EC, Gintert BE, Kaufman LS. 2020. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral *Acropora cervicornis*. *Dis Aquat Organ* 137:217–237. <https://doi.org/10.3354/dao03441>

97. Baker LJ, Reich HG, Kitchen SA, Grace Klings J, Koch HR, Baums IB, Muller EM, Thurber RV. 2022. The coral symbiont *Candidatus avarickettiae* is variably abundant in threatened caribbean acroporids and transmitted horizontally. *ISME J* 16:400–411. <https://doi.org/10.1038/s41396-021-01077-8>

98. Gignoux-Wolfsohn SA, Vollmer SV. 2015. Correction: identification of candidate coral pathogens on white band disease-infected staghorn coral. *PLoS One* 10:e0142760. <https://doi.org/10.1371/journal.pone.0142760>

99. Chu ND, Vollmer SV. 2016. Caribbean corals house shared and host-specific microbial symbionts over time and space. *Environ Microbiol Rep* 8:493–500. <https://doi.org/10.1111/1758-2229.12412>

100. Adjeroud M, Andréfouët S, Payri C. 2001. Mass mortality of macrobenthic communities in the lagoon of Hikueru atoll (French Polynesia). *Coral Reefs* 19:287–291. <https://doi.org/10.1007/PL00006962>

101. Johnson MD, Swaminathan SD, Nixon EN, Paul VJ, Altieri AH. 2021. Differential susceptibility of reef-building corals to deoxygenation reveals remarkable hypoxia tolerance. *Sci Rep* 11:23168. <https://doi.org/10.1038/s41598-021-01078-9>

102. Laboy-Nieves EN, Klein E, Conde JE, Losada F, Cruz JJ, Bone D. 2001. Mass mortality of tropical marine communities in Morrocoy, Venezuela. *Bull Mar Sci* 68:163–179.

103. Guzmán HM, Cortés J, Glynn PW, Richmond RH. 1990. Coral mortality associated with dinoflagellate blooms in the Eastern Pacific (Costa Rica and Panama). *Mar Ecol Prog Ser* 60:299–303. <https://doi.org/10.3354/meps060299>

104. Alderdice R, Suggett DJ, Cárdenas A, Hughes DJ, Kühl M, Pernice M, Voolstra CR. 2021. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. *Glob Chang Biol* 27:312–326. <https://doi.org/10.1111/gcb.15436>

105. Voolstra CR, Ziegler M. 2020. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. *Bioessays* 42:e2000004. <https://doi.org/10.1002/bies.202000004>

106. Webster NS, Reusch TBH. 2017. Microbial contributions to the persistence of coral reefs. *ISME J* 11:2167–2174. <https://doi.org/10.1038/ismej.2017.66>