
 | Microbial Ecology | Full-Length Text
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ABSTRACT Global climate change impacts marine ecosystems through rising surface 
temperatures, ocean acidification, and deoxygenation. While the response of the coral 
holobiont to the first two effects has been relatively well studied, less is known about 
the response of the coral microbiome to deoxygenation. In this study, we investigated 
the response of the microbiome to hypoxia in two coral species that differ in their 
tolerance to hypoxia. We conducted in situ oxygen manipulations on a coral reef 
in Bahía Almirante on the Caribbean coast of Panama, which has previously experi­
enced documented episodes of hypoxia. Naïve coral colonies (previously unexposed to 
hypoxia) of Siderastrea siderea and Agaricia lamarcki were transplanted to a reef and 
either enclosed in chambers that created hypoxic conditions or left at ambient oxygen 
levels. We collected samples of surface mucus and tissue after 48 hours of exposure 
and characterized the microbiome by sequencing 16S rRNA genes. We found that the 
microbiomes of the two coral species were distinct from one another and remained so 
after exhibiting similar shifts in microbiome composition in response to hypoxia. There 
was an increase in both abundance and number of taxa of anaerobic microbes after 
exposure to hypoxia. Some of these taxa may play beneficial roles in the coral holobiont 
by detoxifying the surrounding environment during hypoxic stress or may represent 
opportunists exploiting host stress. This work describes the first characterization of 
the coral microbiome under hypoxia and is an initial step toward identifying potential 
beneficial bacteria for corals facing this environmental stressor.

IMPORTANCE Marine hypoxia is a threat for corals but has remained understudied 
in tropical regions where coral reefs are abundant. Though microbial symbioses can 
alleviate the effects of ecological stress, we do not yet understand the taxonomic or 
functional response of the coral microbiome to hypoxia. In this study, we experimen­
tally lowered oxygen levels around Siderastrea siderea and Agaricia lamarcki colonies in 
situ to observe changes in the coral microbiome in response to deoxygenation. Our 
results show that hypoxia triggers a stochastic change of the microbiome overall, with 
some bacterial families changing deterministically after just 48 hours of exposure. These 
families represent an increase in anaerobic and opportunistic taxa in the microbiomes of 
both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and 
increases bacterial opportunism. This work provides novel and fundamental knowledge 
of the microbial response in coral during hypoxia and may provide insight into holobiont 
function during stress.

KEYWORDS coral, microbiome, hypoxia, oxygen, Agaricia lamarcki, Siderastrea siderea, 
Panama

M arine deoxygenation is a devastating and global threat to oceanic and coastal 
ecosystems, with ecological, evolutionary, and social repercussions comparable 

to other major anthropogenic threats including warming and ocean acidification (1–3). 
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While previous work has established hypoxia as a widespread threat to temperate 
marine ecosystems (2–5), it has only recently garnered attention in tropical marine 
systems as a cause of mass mortality that reduces biodiversity and productivity (6). 
Many marine species globally are already in decline due to oxygen levels at or below 
critical oxygen thresholds (7), and decreased oxygen availability will likely be responsible 
for large shifts in ecosystem structures (8). Localized coastal hypoxia in tropical and 
subtropical waters has recently become a substantial threat to corals (9). Prolonged 
exposure to hypoxia can have adverse effects on coral health and resiliency including 
bleaching, disease, and mortality (6, 10–12).

Though prolonged exposure to hypoxia will ultimately lead to death, corals and other 
reef-associated organisms may have an innate tolerance to periodic deoxygenation (6, 
7, 13–16). Corals are able to actively stir water at their surface microenvironment with 
their epidermal cilia, which can transport oxygen and support molecular diffusion at 
the host surface (17). Corals undergo natural diel shifts in oxygen concentrations within 
their surface microenvironment (18–20). When sunlight is available in the photic zone 
during the day, oxygen produced by Symbiodiniaceae saturates the coral surface (18, 19). 
At night, coral holobiont respiration uses the free oxygen, creating a hypoxic microenvir­
onment on the coral surface until sunlight triggers photosynthesis (18, 19). These diel 
changes in oxygen concentration can occur in the matter of minutes (20), yet the coral 
remains mostly undisturbed.

Corals may also exhibit some hypoxia tolerance during the periodic macroscale 
oxygen depletion that can occur naturally on reefs. These shifts in dissolved oxygen 
concentrations occur because of unusual weather patterns (21–23), reef geomorphology 
(21, 24–26), isolation of reefs during diel tidal cycles (24, 27), coral spawn slicks (22, 
28), or other elements that reduce water column mixing and exchange with the open 
ocean (29). However, these natural occurrences of deoxygenation are exacerbated by 
eutrophication and climate change, intensifying the overall severity and duration of 
hypoxic events globally (1, 4, 9, 30, 31). With over 13% of the world’s coral reefs at an 
elevated risk for deoxygenation (6), understanding the response of corals to hypoxia and 
implementing mitigation strategies to reefs is critical.

The coral microbiome is a source of resilience for environmental stressors including 
warming (32, 33) and may play a similarly important role for hypoxia. Members of the 
microbiome fill a variety of functional roles within the coral host (10, 34–36), includ­
ing nutrient cycling within the holobiont (35–37), nitrogen fixation (35, 36, 38), and 
pathogen resistance (35–37, 39). If there is flexibility of microbial species in response 
to dynamic oxygen conditions, this could contribute to the observed ability of coral 
hosts to withstand exposure to hypoxic conditions. Here, we experimentally induced 
hypoxic conditions with an in situ reef experiment to test how the microbiomes of the 
hypoxia-resistant massive starlet coral (Siderastrea siderea) (40) and the hypoxia-sensitive 
whitestar sheet coral (Agaricia lamarcki) (6, 40) responded to hypoxia.

MATERIALS AND METHODS

Site description

Bahiá Almirante in Bocas del Toro, Panama, is a large, semi-enclosed tropical embayment 
of 450 km2 (6) and is home to many shallow-water (<25 m) coral reefs (41, 42). This basin 
on the Caribbean coast shares many features with temperate estuaries that experience 
bouts of hypoxia, including reduced exchange with the open ocean, seasonal cycles of 
low wind energy and high temperatures, and a watershed delivering excess nutrients 
from agricultural run-off and untreated sewage (41, 43). Because of these conditions, 
Bahiá Almirante has experienced patches of hypoxic stress, with documented occurren­
ces in 2010 and 2017 that caused extensive coral bleaching and necrosis in other marine 
invertebrates (6, 40). Due to these periodic hypoxic events, Bahiá Almirante and its 
coral reefs are ideal study sites for assessing the response of coral health and resilience 
to hypoxia. We chose massive starlet coral (Siderastrea siderea) and whitestar sheet 

Full-Length Text Applied and Environmental Microbiology

November 2023  Volume 89  Issue 11 10.1128/aem.00577-23 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

04
 Ja

nu
ar

y 
20

24
 b

y 
26

00
:1

70
0:

46
00

:6
7d

0:
b1

15
:2

76
9:

ce
ee

:c
5e

.

https://doi.org/10.1128/aem.00577-23


coral (Agaricia lamarcki) as our study species because they are two of the predominant 
coral species in the region and exhibited strikingly different responses to prior hypoxia 
events, with S. siderea persisting at hypoxic sites (40) and A. lamarcki suffering near total 
mortality (6, 40).

In situ oxygen manipulation

To test the response of coral microbiomes to hypoxic stress, we conducted a field 
experiment in which we manipulated oxygen with benthic incubation chambers. The 
experiment was conducted at Punta Caracol, in the vicinity of areas with documented 
mortality associated with hypoxia (Fig. 1) (40, 44). Seven 60 × 60 cm plots were estab­
lished and a miniDOT dissolved oxygen logger (Precision Measurement Engineering, 
Vista, CA) in each plot recorded oxygen concentration and temperature at 10-minute 
intervals. Four randomly selected plots were assigned to the hypoxia treatment, and the 
remaining three served as control plots (Fig. 1). Four-sided benthic incubation chambers 
made of greenhouse-grade plastic were used to locally reduce oxygen concentrations. 
The chambers were open at the bottom, with 15 cm flanges that were tucked into the 
sediment to better isolate the water within. A submersible aquarium pump was placed 
in each chamber to homogenize the water column and prevent stagnant water within. 
Control, oxygenated chambers employed the open plastic tent structure without the 
greenhouse-grade plastic.

Colonies of A. lamarcki and S. siderea (7–12 cm diameter) were collected at the Finca 
site from a depth of 5–10 m for transplantation to the experimental plots. Colonies 
were collected at least 2 m apart and likely represented independent genotypes. Coral 
colonies were transported in aerated seawater to Punta Caracol where they were 
randomly assigned to experimental plots. Each incubation chamber enclosed a local 
Punta Caracol bommie with a representative reef community that contained a mix of 
corals, sponges, and other benthic organisms that included either a S. siderea or A. 
lamarcki colony (Fig. 1). We transplanted three S. siderea and three A. lamarcki colonies 
to each plot by fastening the colonies to a mesh rack next to the bommie (Fig. 1). The 
experimental oxygen manipulation was conducted for 48 hours, at which time the coral 
surface microbiome was sampled.

FIG 1 Map of experimental sites in Bahía Almirante, Bocas del Toro, Panama. Resident corals were 

sampled from Tierra Oscura (TO) and Finca (F) to test for site variation in the microbiome. Corals from 

Finca were transplanted to Punta Caracol for oxygen manipulation experiments (control plots, hypoxic 

plots). Each of the seven plots contained a mixed species bommie with a local Punta Caracol colony 

attached. Three transplanted S. siderea and A. lamarcki colonies were also placed in each plot by fastening 

the colonies to a mesh rack. Samples designated with pink stars were used in all analyses. Samples 

designated with green stars were used in Analysis of Compositions of Microbiomes (ANCOM).
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Coral microbiome sampling

In addition to coral colonies in the experimental plots, three colonies of S. siderea were 
sampled from Tierra Oscura where hypoxia has been previously documented and three 
colonies each of A. lamarcki and S. siderea were sampled from Finca where hypoxia has 
not been documented (Fig. 1) (40, 44, 45). Slurries of coral mucus/tissue were collected 
by agitation and suction of the coral surface with individual sterile needleless syringes. 
Syringes were transported in a cooler with ice to the lab, and mucus was allowed to settle 
in the syringes before expelling into a 2-mL cryovial with RNALater (Ambion, Austin, TX). 
Preserved samples were frozen until further processing at the University of Florida.

V4 amplicon library preparation

Extraction of genomic DNA was performed with a DNeasy Powersoil Kit (Qiagen, 
Germantown, MD) according to the manufacturer’s instructions. The V4 region of the 16S 
rRNA gene was amplified in triplicate for each sample using the 515F (46) and 806RB (47) 
Earth Microbiome primers and thermocycler protocol (48) in 25 µL reactions containing 
Phusion High-fidelity Master Mix (New England Biolabs, Ipswich, MA), 0.25 µM of each 
primer, 3% dimethyl sulfoxide (as recommended by the manufacturer of the polymer­
ase), and 2 µL of DNA template. Triplicate reactions were consolidated and cleaned with 
a MinElute PCR Purification Kit (Qiagen) and quantified with a DS-11 FX+ spectropho­
tometer (DeNovix, Wilmington, DE). One DNA extraction kit blank without the addition 
of any starting coral biomass was produced alongside regular DNA extractions and then 
amplified and sequenced using a unique barcode. One final pool containing 240 ng of 
each amplicon library was submitted to the University of Florida Interdisciplinary Center 
for Biotechnology Research (RRID:SCR_019152) for sequencing on an Illumina MiSeq 
with the 2 × 150bp v.2 cycle format.

Analysis of V4 Amplicon libraries

Adapters and primers were removed from raw sequencing reads with cutadapt v. 1.8.1 
(49). Further processing of amplicon libraries was completed in RStudio v. 1.1.456 with 
R v. 4.0.4. Quality filtering, error estimation, merging of reads, dereplication, removal 
of chimeras, and selection of amplicon sequence variants (ASVs) were performed with 
DADA2 v. 1.18.0 (50) using the filtering parameters: filterAndTrim {fnFs, filtFs, fnRs, 
truncLen = c(150,150), maxN = 0, maxEE = [c(2,2), truncQ = 2, rm.phix = TRUE, compress 
= TRUE, multithread = TRUE]}. Taxonomy was assigned to ASVs using the SILVA small 
subunit rRNA database v. 132 (51). The ASV and taxonomy tables were imported into 
phyloseq v. 1.34.0 (52) for analysis and visualization of microbial community structure. 
ASVs with a mean read count of less than five across all samples were removed from 
the analysis, and ASVs assigned as chloroplast, mitochondria, or eukaryote were removed 
from further analysis. Remaining ASVs labeled only as “Bacteria” were searched with 
BLASTn, and those matching mitochondrial sequences were removed from the analysis.

Variation in community composition was determined using the Aitchison distance 
of centered log-ratio transformed, zero-replaced read counts using CoDaSeq v. 0.99.6 
(53) and visualized with principal component analysis. Principal component analysis of 
the Aitchison distance was performed with the package prcomp in R and plotted with 
ggplot2 v. 3.3.3 (54). Permutational Multivariate Analysis of Variance (PERMANOVA) with 
vegan v. 2.5-7 (55) was used to test for differences in community structure by treatment 
and coral species.

We also estimated beta diversity dispersion using the dissimilarity matrix by 
estimating the distance to a group’s centroid for each sample. This measure of multivari­
ate dispersion was calculated using the betadisper function in vegan (55) and based on 
the treatment type (control plots, hypoxia plots) for both coral species. We examined 
beta diversity dispersion visually with a boxplot and tested differences in beta diversity 
dispersion between treatment types with ANOVA.

Original count data were used for the ANCOM statistics. For clarity, the nine coral 
microbiome samples collected at Tierra Oscura and Finca that were not part of the 
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experimental plots were only included in the ANCOM figures, as they did not provide 
sufficient statistical power for additional analyses (Fig. 1). ANCOM (56) was used to 
identify microbial families that were differentially abundant across treatments, using an 
ANOVA significance level of 0.05 and removing families with zero counts in 90% or more 
of samples. Only families detected in at least 70% of samples were reported. Finally, 
indicspecies v. 1.7.9 (57) was used to identify differentially abundant ASVs amongst 
treatment types. The complete set of R scripts and metadata are available at github.com/
meyermicrobiolab/Panama_Hypoxia.

RESULTS

Experimental deoxygenation

Dissolved oxygen (DO) concentrations (mg/L) in the control plots ranged from 4.29 
mg/L to 6 mg/L throughout the experimental period, while DO concentrations in 
hypoxia chambers steadily decreased (Fig. 2A). Background-dissolved oxygen levels 
during the experimental period at our study site were considered well above conven­
tional thresholds of hypoxia (2.8 mg/L), although equilibrium concentrations of dissolved 
oxygen were slightly lower than a saturation concentration of 6.2 mg/L (44). In the 
chamber associated with MiniDOT logger 3, DO concentrations decreased drastically 
starting at hour 5 and reached levels <0.1 mg/L at hour 15 of the experiment (Fig. 2A). At 
hour 15, hypoxia chamber plot 1 was at 2.46 mg/L DO and hypoxia chamber plot 4 was at 
3.08 mg/L DO. Our open-chamber plots at the same time of incubation ranged from 5.5 
to 6.0 mg/L DO. The oxygen concentrations in hypoxia chamber plots 1 and 4 continued 
to decline thereafter. We observed in situ that corals within chamber 3 experienced 
severe bleaching. Over the course of 48 hours, water temperature ranged from 29.42°C to 
30.08°C in the Punta Caracol experimental plots (Fig. S1).

Microbial community characterization

Microbial communities were characterized for a total of 56 coral mucus samples from 
Agaricia lamarcki and Siderastrea siderea collected from three different sites in May 2019 
(Fig. 1; Table S1). After quality filtering and joining, an average of 56,660 sequencing 
reads (11,273–116,996) per coral sample was used in the analysis (Table S1). A total of 
157 archaeal ASVs and 22,666 bacterial ASVs were detected. After filtering ASVs with 
a mean read count of less than 5, a total of 2 archaeal ASVs and 877 bacterial ASVs 
were detected. One control sample from the extraction kit was also sequenced, and after 
quality filtering and joining, it had 22,860 reads, which were classified as 78 bacterial 
ASVs (Table S2). Sequencing reads with primers and adapters removed are available at 
NCBI’s Sequence Read Archive under BioProject PRJNA641080.

FIG 2 (A) Dissolved oxygen concentrations (mg/L) in the hypoxic and control plots over 48 hours. Tent 

3 became hypoxic rapidly and stayed hypoxic for the duration of the experiment. (B) An example of the 

greenhouse chamber used to simulate natural hypoxia in the marine environment. Fluorescein dye was 

used before trials to ensure the chambers could be secured with minimal flow-through and leaks.
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Overall, the microbial community structure in the experimental plots differed by coral 
species, although the effect size was small (PERMANOVA, P = 0.001, R2 = 0.08; Fig. 3). 
Additionally, the microbial community structure differed among corals in the control 
plots and the hypoxia plots, although the effect size was small (PERMANOVA, P = 0.001, 
R2 = 0.06; Fig. 3). The interaction between coral species and treatment was not significant 
(PERMANOVA, P > 0.05, R2 = 0.02). Additionally, there was no significant difference in 
coral microbial community structure between the unmanipulated S. siderea sampled in 
Tierra Oscura (n = 3), which had previously experienced hypoxia, and Finca (n = 3), which 
had no documented hypoxia (ANOSIM, P > 0.05, R2 = 0.63).

Bacterial taxa belonging to the Alphaproteobacteria, Gammaproteobacteria, and 
Bacteroidia were commonly detected in all samples, regardless of treatment and species 
(Fig. 4), consistent with previous studies of coral microbiomes (58). All ASVs classified 
only as “Bacteria” (n = 22) were searched with BLASTn, and sequences labeled as 
mitochondria by NCBI were removed from the data set. Of the 22 ASVs classified only 
as “Bacteria,” only one matched mitochondrial sequences (0.11% of ASVs). The most 
abundant ASV classified only as Bacteria in both species (Fig. 4) was 87% similar to an 
uncultivated bacterial sequence associated with the cold-water coral Lophelia pertusa 
sampled in Norway (GenBank Accession AM911366) (59) based on BLASTn searches. 
Additionally, the most abundant ASV classified only to class Gammaproteobacteria was 
98% similar to a clone library sequence from an uncultivated Caribbean coral-associ­
ated bacterium (GenBank Accession KU243233) (60). The most abundant ASV classified 
only to phyla Proteobacteria in S. siderea (Fig. 4B) was 92% similar to a clone library 
sequence from an uncultivated Deltaproteobacteria associated with the coral Pavona 
cactus originating from the Red Sea (GenBank Accession EU847601) (61). Overall, there 
were no apparent patterns or differences in alpha diversity between the treatment types.

Because stress often has a stochastic effect on microbial community composition 
(62), we examined the dispersion of beta diversity according to treatment type (Fig. 5). 
In both A. lamarcki and S. siderea, hypoxia had a clear stochastic effect on microbiome 
composition, as affected colonies had higher variation in their microbiomes. In colonies 
that only experienced normoxia, microbial community composition had lower variability 
(Fig. 5). Analysis of variance of the linear model showed that beta diversity dispersion 
was significantly different between the hypoxic and control treatments (ANOVA, P = 
0.02), but not for coral species (ANOVA, P = 0.09) or the combined factors (ANOVA, P = 
0.88).

Differences among treatments in the microbial community structure were primarily 
driven by 14 differentially abundant families (Fig. 6). These families were detected 

FIG 3 Principal component analysis of microbial community structure in corals in the control plots and 

corals in the hypoxia plots.
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in at least 70% of the samples and were significantly different (ANOVA, P = 0.05) 
among unmanipulated corals from Tierra Oscura and Finca, control plots, and hypoxic 
plots (Fig. 6). The largest differences among treatment types were observed in fami­
lies Desulfovibrionaceae, Nitrincolaceae, Clostridiales Family XII, and Midichloriaceae. The 
relative abundances of Desulfovibrionaceae, Nitrincolaceae, and Clostridiales Family XII 
were higher in the hypoxia treatment, whereas family Midichloriaceae was highest in 
the unmanipulated corals (Fig. 6). Clostridiales Family XII was more abundant in corals 
exposed to hypoxia and less abundant in unmanipulated and control plot corals.

FIG 4 Relative abundance of amplicon sequence variants, colored by class, in corals in the control plots 

and corals in the hypoxia plots for Agaricia lamarcki (A) and Siderastrea siderea (B). Gray stars indicate local 

Punta Caracol coral colonies in the incubation chambers.

FIG 5 The dispersion of beta diversity shown as the distance to centroid in microbial communities from 

S. siderea and A. lamarcki colonies in control, normoxic plots, and hypoxic plots.
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Hypoxic chamber 3 experienced a sudden and dramatic drop in dissolved oxygen 
concentrations 5 hours following initiation of the incubation period and was completely 
hypoxic for 36 hours (Fig. 2A). This was associated with the largest magnitude response 
of the microbiome relative to the other plots. The seven microbial communities grouped 
on the right side of the PCA (Fig. 3) were from corals exposed to extremely low dissolved 
oxygen concentrations in chamber 3 (Fig. 2A) that ultimately bleached. The corals in 
this chamber included three colonies of A. lamarcki and four colonies of S. siderea, one 
of which was a local Punta Caracol S. siderea colony. Microbial community structure 
varied more by chamber (PERMANOVA, P = 0.001, R2 = 0.37) than by either species or 
treatment. Increases in the typically anaerobic classes Clostridia, Deltaproteobacteria, and 
Campylobacteria were detected in both coral species in hypoxic chamber 3 (Fig. 4) and 
this trend was further explored.

Differences among the plots were primarily driven by 40 differentially abundant 
bacterial families. Those that were detected in higher abundances in both coral species 
from chamber 3, the plot with the most prolonged hypoxia, include Arcobacteraceae, 
Prolixibacteraceae, Marinilabiliaceae, Desulfobacteraceae, Bacteroidales, Peptostreptococ­
caceae, Desulfovibrionaceae, Marinifilaceae, and Clostridiales Family XII (Fig. S2). The 
relative abundances of Midichloriaceae were lowest in chamber 3, as were unclassified 
families of Gammaproteobacteria and Proteobacteria families (Fig. S2). Families Colwellia­
ceae and Vibrionaceae were detected in higher abundances in hypoxic chamber 1. Both 
coral species harbored several families in common that had similar responses to hypoxia, 
including Arcobacteraceae, Desulfovibrionaceae, and Clostridiales Family XII (Fig. 7). In A. 
lamarcki from hypoxic plot 3, families Desulfovibrionaceae and Clostridiales Family XII 
comprised an average of 18% and 25% of the microbiomes, respectively. In all other 
plots, Desulfovibrionaceae and Clostridiales Family XII comprised <2% of the microbiome 
from A. lamarcki (Fig. 7). These patterns are also reflected in S. siderea from hypoxic plot 
3, in which families Desulfovibrionaceae and Clostridiales Family XII comprised an average 
of 17% and 19%, respectively. In all other plots, Desulfovibrionaceae and Clostridiales 
Family XII comprised <2% of the microbiome from S. siderea (Fig. 7). In S. siderea, family 
Arcobacteraceae comprised an average of 17% of the microbiome from hypoxic plot 3, 
9% of the microbiome from hypoxic plot 1, and <2% of the microbiome from all other 
plots (Fig. 7).

To determine if differentially abundant families were driven by particular ASVs, an 
indicator species analysis was performed on all samples. Of the 878 ASVs tested, 144 

FIG 6 Mean relative abundance of 14 microbial families that were differentially abundant across 

treatment types: unmanipulated corals from Finca and Tierra Oscura, corals in the control plots, and 

corals in the hypoxic plots. Points represent the average relative abundance and error bars depict the 

standard error from analysis of all 56 coral samples. Desulfovibrionaceae and Clostridiales Family XII were 

each a magnitude more abundant in hypoxic plots than in control, oxygenated plots in both species.
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ASVs were considered indicator species for hypoxia, but only four ASVs had a correlation 
statistic ≥0.50 (Fig. S3). These include an Alteromonas ASV, a Neptuniibacter ASV, an 
Aestuariicella ASV, and a Marinobacter ASV (Table S3). We detected no indicator ASVs 
common to both A. lamarcki and S. siderea when exposed to hypoxic stress. There­
fore, although the two coral species exhibited similar shifts in differentially abundant 
microbial families, these patterns were not driven by individual taxa (ASVs) common to 
both A. lamarcki and S. siderea.

DISCUSSION

We observed a shift in the microbial communities of corals A. lamarcki and S. siderea 
following just 48 hours of experimental deoxygenation. Though the overall microbiome 
shift was stochastic in response to hypoxic stress, certain bacterial groups responded 
deterministically in both coral species. In response to hypoxia, we saw increased 
variability of the coral microbial community composition, regardless of species. Hypoxic 
conditions resulted in an increase of anaerobic and potentially pathogenic bacteria in 
the classes Deltaproteobacteria, Campylobacteria, and Clostridia in the microbiome of 
both A. lamarcki and S. siderea. This is most apparent in corals that experienced the most 
severe hypoxia associated with plot 3. Moreover, both coral species exhibited changes of 
similar magnitude in the relative abundances of many families, most notably Arcobacter­
aceae, Desulfovibrionaceae, Clostridiales Family XII, Nitrincolaceae, and Midichloriaceae. 
Although we detected statistically significant differences in microbial communities 
between oxygen treatments for both species, the effect size of that difference was 
relatively small.

Prior studies performed have shown primarily stochastic shifts in the microbiome 
in response to other environmental pressures and have corroborated our results. For 
example, stressors including nutrient pollution, overfishing, and thermal stress on reefs 
were correlated with an increase in the dispersion of beta diversity dispersion in the 
coral microbiome (62). Because of this, the combination of deterministic and stochas­
tic outcomes from our study may suggest some host regulation of the microbiome 
in response to hypoxic stress. These corals may have curated the members of their 
microbial community to better deal with the stress of deoxygenation (63). However, 
increases in beta diversity and destabilization of the microbiome have also been 

FIG 7 Mean relative abundance of 3 families that were differentially abundant across chambers and 

in corals sampled in Finca (F) and Tierra Oscura (TO). Colored points represent the average relative 

abundance of the families in each plot, and error bars depict the standard error from analysis of 

56 coral samples. Asterisks next to plot numbers represent hypoxic plots. Families Arcobacteraceae, 

Clostridiales Family XII, and Desulfovibrionaceae increased significantly in corals that experienced hypoxia 

for the longest (36 hours). Arcobacteraceae was specifically highest in S. siderea colonies that experienced 

hypoxia for the longest.
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associated with host tissue loss (62), disease (34, 36), and mortality (34, 36, 62, 64). 
Because many taxa in our study are often associated with coral stress, it is likely that 
opportunistic taxa are being enriched in the microbiome under hypoxic conditions. 
Examining the functional role of these members may explain some uniformities of the 
microbiome across both coral species in response to hypoxia.

Functional significance of microbiome shifts

Under experimentally induced hypoxia, we documented an increase in Deltaproteo­
bacteria, specifically the family Desulfovibrionaceae. Deltaproteobacteria are known for 
their role as sulfate-reducing microorganisms (SRM) (65, 66). In marine ecosystems, 
Deltaproteobacteria are mainly found in sediment, where they are the predominant 
SRMs in terms of abundance and activity (67). Desulfovibrionaceae, a well-known family 
within Deltaproteobacteria, includes numerous sulfate-reducing species which produce 
hydrogen sulfide that can degrade coral health and result in disease (68, 69). Members 
of this family have been implicated in Black Band Disease as a producer of sulfide 
(68, 69). Further, Desulfovibrionaceae were detected in corals infected with stony coral 
tissue loss disease (SCTLD), and the genera Desulfovibrio and Halodesulfovibrio have been 
recently described as bioindicators of the disease (70, 71). Deltaproteobacteria in the 
coral microbiome are likely producing sulfide and playing an antagonistic role and may 
contribute to increased coral disease prevalence associated with reef hypoxia, but the 
definitive role of this class in the coral microbiome remains to be confirmed, particularly 
under environmental stressors like hypoxia.

We also documented an increase in the class Campylobacteria during experimental 
deoxygenation in the coral microbiome. Microbes within this taxonomic group, and 
many species of Epsilonbacterota in particular, play important roles in carbon, nitrogen, 
and sulfur cycling, especially in symbiosis with their host (72, 73). Epsilonbacterota thrive 
in anaerobic or microaerobic environments rich with sulfur (72), including hydrother­
mal vents (73) and sediments associated with seagrass roots (74). On corals experienc­
ing hypoxia, members of Campylobacteria may alleviate stress by oxidizing some of 
the toxic sulfides produced by microbial respiration including Deltaproteobacteria in 
the holobiont. The increase in sulfur-oxidizing Campylobacteria during hypoxia may 
therefore be a form of rapid adaptation to this stressor, conferring resilience to deoxy­
genation stress for corals. For instance, family Arcobacteraceae, which were enriched 
under the most extreme low-oxygen conditions here, are known for the sulfide-oxidizing 
capabilities (75, 76), producing both sulfate and filamentous sulfur (76), and may help 
detoxify the surrounding sulfidic microenvironment around corals. Arcobacteraceae are 
associated with changes in the coral holobiont under stress conditions, growing rapidly 
in the microbiome in thermally stressed corals (77) and corals living in polluted waters 
(78). Though members of this group have also been associated with coral diseases, such 
as white syndrome (79), brown band disease (79), white plague disease (80), and stony 
coral tissue loss disease (71), the role of Arcobacteraceae during hypoxic stress in the 
coral holobiont remains unknown.

Clostridia, including Clostridiales Family XII, also increased in abundance on both 
species of coral host in response to deoxygenation. This change was especially 
prominent in chamber 3, where hypoxia was most severe and sustained. Clostridia is 
a large polyphyletic class of obligate and facultative anaerobes known for producing 
the highest number of toxins of any bacterial group and causing severe disease in 
humans and animals (81). However, the role of Clostridia in coral remains ambiguous. 
Most Gram-positive sulfate-reducing bacteria belong to the class Clostridia, so these taxa 
may play a similar role to the Deltaproteobacteria in the coral holobiont (82). Further, 
corals that harbor higher abundances of Clostridia ASVs are more often associated 
with disease (83). For example, Clostridiales ASVs are enriched in the surface mucus 
layer and tissue near stony coral tissue loss disease (SCTLD) lesions (71, 84, 85) and 
Black Band Disease mats (86, 87). An increase of Clostridia has also been documented 
in the microbiome when corals are exposed to thermal stress (88). Generally, higher 
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abundances of Clostridia in the coral microbiome are often associated with host stress. 
In our study, members of Clostridia are likely playing an antagonistic role in the coral 
holobiont as sulfide producers (82) or as opportunistic pathogens as oxygen levels 
decline (83). However, Clostridia remains unsubstantiated as the causative agent of any 
coral disease, and it may simply respond opportunistically to stress-associated changes 
in the holobiont.

Family Nitrincolaceae, belonging to class Gammaproteobacteria, was more abundant 
in corals exposed to hypoxia. This increase in Nitrincolaceae is consistent with observa­
tions in the microbial community in the water column above a reef during the 2017 
hypoxic event in Bahiá Almirante when Nitrincolaceae was found only in hypoxic water 
samples from that event, and not in oxygenated water samples at that site following 
the event or at a reference site (40). Species within this family have genes for nitrite 
reductase, nitric oxide reductase, and nitrous oxide reductase (89, 90). As such, members 
of Nitrincolaceae have the potential to produce nitrate (NO3), nitrous oxide (N2O), and 
dinitrogen (N2). The denitrification of bioavailable nitrogen to nitrogen gas in low-oxy­
gen systems may aid in mitigating the eutrophication that usually precedes and occurs 
with hypoxia (31). Taxa within this family have also been described as following short-
term “feast and famine” dynamics of nutrient uptake and are aggressive heterotrophs 
(90). During seasonal transitions in the Southern Ocean, Nitrincolaceae rapidly take up 
nutrients from phytoplankton-derived organic matter and iron (90). In hypoxic condi­
tions on coral reefs, it is possible that our observed increase in Nitrincolaceae signified 
their role as opportunistic heterotrophs. Their increase in the holobiont may be due to 
coral tissue decay, as death of both coral and associated Symbiodiniaceae may supply the 
bacteria with the organic matter and iron they need to thrive in this environment. Their 
increase may also be an opportunistic response to degrading host health, as some taxa 
within Nitrincolaceae are considered bioindicators for stony coral tissue loss disease in S. 
siderea (70).

Family Midichloriaceae (order Rickettsiales) decreased in all corals associated with 
hypoxic conditions, including those in chamber 3. Rickettsiales are obligate intracellu­
lar bacteria of eukaryotes and include well-known zoonotic pathogens (91). Though 
previously implicated in white band disease (92, 93), many recent studies have detected 
the Rickettsiales genus MD3-55 (Candidatus Aquarickettsia rowherii) as an abundant 
member of the apparently healthy Acropora cervicornis microbiome in the Cayman 
Islands (94), the Florida Keys (95–97), and Panama (98, 99). Rickettsiales have previously 
been found in low abundances on six healthy coral species sampled in the Bocas del 
Toro region of Panama (99). In our study, family Midichloriaceae were detected at lower 
relative abundances under hypoxic conditions. This may be due to some tissue loss in 
corals that experienced severe hypoxia in chamber 3 and indicate that Rickettsiales has a 
dependence or preference for healthy corals. Though their role in the coral microbiome 
remains unclear, our study provides further evidence that Rickettsiales is a constituent of 
healthy holobiont that declines in abundance with stress.

Holobiont response to hypoxic stress

Differences in hypoxia tolerance thresholds among coral species may be due to the 
regime of hypoxia exposure, host stress responses, or microbial function. Environmental 
history can also affect the survival of coral during subsequent exposures to low oxygen 
(100). Previous work has demonstrated that coral species vary in their susceptibility 
to hypoxia (6, 101–104). For example, A. cervicornis suffered tissue loss and mortality 
within a day of exposure to hypoxia in lab experiments, whereas Orbicella faveolata 
was unaffected after 11 days of continuous hypoxia exposure (101). Stephanocoenia 
intersepta from Bahiá Almirante exhibited a threefold greater hypoxia tolerance than 
A. lamarcki in lab-based experiments (6). Further, following a deoxygenation event in 
Morrocoy National Park, Venezuela, Acropora and some Montastrea colonies exhibited 
bleaching, while S. siderea, Porites astreoides, and P. porites did not suffer any damage 
(102). These data follow a trend: plating and branching corals typically have a higher 
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mortality rate than massive and encrusting corals under hypoxic conditions (23, 28, 100, 
102, 103). These differences in hypoxia tolerance have been observed in prior studies 
done in Bahiá Almirante, which record Agaricia species as hypoxia sensitive (6, 40) and S. 
siderea as hypoxia resilient (40).

In addition to innate resilience that appears to vary with morphology, transcriptomic 
analysis has revealed that corals possess a complete and active hypoxia-inducible factor 
(HIF)-mediated hypoxia response system (HRS) that confers some hypoxia resilience 
(104). The effectiveness of this hypoxia response system can differ between coral species. 
For example, Acropora tenuis was more resistant to hypoxic stress when compared to 
Acropora selago. A. tenuis exhibited bleaching resistance and showed a strong inducibility 
of HIF genes in response to hypoxic stress. In contrast, A. selago exhibited a bleaching 
phenotypic response and was accompanied by lower gene expression of the hypoxia-
inducible factor (HIF)-mediated hypoxia response system (104). Therefore, differences in 
coral response to hypoxia are in part due to the effectiveness of their HIF-HRSs.

Though historic exposure and the HIF-HRS each contribute to host survival, it is likely 
a synergistic effect between historic exposure, the HIF-HRS, and the coral microbiome 
that confer the most resilience to the holobiont during hypoxia. Past research has 
demonstrated that corals may shuffle members of their holobiont to bring about the 
selection of a more advantageous microbiome in response to environmental stressors 
(35, 105, 106). This microbial shuffling may act as a form of rapid adaptation to chang­
ing environmental conditions rather than mutation and natural selection (63). In our 
results, we observed a rapid shift in the community composition of the microbiome in 
response to hypoxia associated with the survival of corals through a period of intense 
deoxygenation stress. We presume that some microbial taxa that increased in abundance 
with hypoxia may play a role in host survival and resilience by eliminating toxic natural 
products around the microenvironment of the coral or by filling some metabolic needs 
during stress. This appears to be a common overall strategy across coral species that 
has developed in response to the selective pressure of hypoxia given that we observed 
it across two species that are distantly related taxonomically and are at opposite ends 
of the spectrum with regard to hypoxia tolerance. However, the exact ASV constituents 
that contributed to the shifts at the family level differed between the corals, suggesting 
different co-evolutionary pathways which may contribute to the difference in hypoxia 
tolerance of the coral hosts.

Conclusions

Marine deoxygenation will worsen with continued climate change, and with its potential 
to degrade coral reefs, it is essential to understand patterns of resilience revealed in 
the microbiome. Given the results of this study, we suspect that increased abundances 
in some microbial taxa with hypoxia may play a role in host resilience by detoxifying 
the microenvironment around the coral host, such as Campylobacteria (Arcobacteraceae). 
Other taxa, such as Midichloriaceae and Clostridiales Family XII, have more ambiguous 
roles in the coral microbiome, though their shifts in response to hypoxia warrant further 
investigation. Alternatively, the increases in these groups may indicate a shift in the 
coral microbial community towards opportunists exploiting host stress. We hypothesize 
that enhancement of these anaerobes, facultative anaerobes, or microaerophiles in the 
microbiome fill necessary and diverse metabolic niches in the holobiont during hypoxic 
stress while simultaneously indicating deoxygenation. Future studies that examine the 
functional roles of the coral microbiome through metagenomic or metatranscriptomic 
analyses can further advance our understanding by testing these hypotheses regard­
ing how the microbiome can mitigate the degradation of coral reefs under hypoxic 
conditions.
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