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Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the autonomous vehicles’
practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles could exhibit sudden abnormal
behaviors such as unpredictably switching to dangerous driving modes — putting its neighboring vehicles under risks; such
undesired mode switching could arise from numbers of human driver factors, including fatigue, drunkenness, distraction,
aggressiveness, etc. On the other hand, modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous
vehicles to efficiently and reliably share the scarce run-time information with each other [21]. In this paper, we propose, to the
best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction by effectively fusing
the run-time information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect abnormal
human driving mode switches or abnormal driving behavior with formal assurance without hurting human drivers’ privacy.

To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and Argoverse datasets
and show that our proposed predictor outperforms the baseline methods. Then through extensive experiments on SUMO
simulator, we show that our proposed algorithm has great detection performance in both highway and urban traffic. The best
performance achieves detection rate of 97.3%, average detection delay of 1.2s, and 0 false alarm.

CCS Concepts: « Computer systems organization — Embedded systems; Redundancy; Robotics; « Networks — Network
reliability.

Additional Key Words and Phrases: datasets, neural networks, gaze detection, text tagging

1 INTRODUCTION
Despite the rapid development of autonomous vehicles in past decades, hybrid traffic which involves both
autonomous and human-driven vehicles would be a norm for a long time [11, 35, 74]. In this work, we exploit
the safety advantages raised by the extended sensing capability of autonomous vehicles through beneficial
information sharing.

Enabling safe autonomy of the autonomous vehicles in the presence of human-driven vehicles is challenging.
Human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous
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driving modes. These switches might arise from factors such as fatigue, drunkenness, distraction, and aggres-
siveness. If not detected in a timely manner, such unannounced switches could quickly put their neighboring
vehicles under serious safety threats. To the best of our knowledge, most literature on abnormal driving behavior
detection has been focusing on monitoring either behavioral parameters such as eye blinking and yawning
[34, 43, 60, 65, 78], or vehicular parameters such as speed variability, steering wheel angle, and steering wheel
grip force [45, 83], which require placing sensors on vehicle parts like steering wheel, accelerator or brake
pedal; see Section 2.3 for details. Unfortunately, human-driven vehicles in the hybrid traffic might not have
the required sensor placements to collect the relevant run-time measurements. Moreover, such measurements,
even if available, are privacy sensitive and may not be shared with other vehicles. When autonomous vehicles
does not have the direct measurement data from on-board sensors of the human-driven vehicles, and can only
observe human-driven vehicles as part of the driving environment based on autonomous vehicle sensors, it is
still challenging to detect abnormal driving behavior.

On the positive side of hybrid traffic, modern vehicle-to-vehicle (V2V) communication technologies enable
the autonomous vehicles to efficiently and reliably share the scarce run-time information with each other [21].
Sharing such information can be highly beneficial: the U.S. Department of Transportation (DOT) has estimated
that V2V communication can address up to 82% of all crashes in the United States involving unimpaired drivers,
potentially saving thousands of lives and billions of dollars [36]. In addition, navigation and control strategies
based on V2V shared information can also improve both traffic efficiency and safety [31].

Contributions: We propose, to the best of our knowledge, the first efficient algorithm that can (1) significantly
improve trajectory prediction accuracy by effectively fusing the run-time information shared by surrounding
autonomous vehicles, and can (2) accurately and quickly detect abnormal human driving mode switches with
formal assurance without hurting human drivers’ privacy. Our algorithm consists of two major components:
trajectory prediction component and switch detection component.

e On trajectory prediction: We adapt the recently proposed transformer network to the applications of
connected and autonomous vehicles (CAVs). Moreover, we propose multi-encoder attention mechanism to
effectively using the shared information among CAVs. Our model is named as Multi-Encoder Attention
based Trajectory Predictor (MEATP). We evaluate our proposed MEATP on NGSIM [20] and Argoverse [17]
datasets, the experiment results show that MEATP with information sharing outperforms the well-adopted
Long-Short Term Memory (LSTM) [32] and some transformer [71] based trajectory predictors. Moreover,
information sharing improves the prediction performance of MEATP by 50%.

e On switch detection: We adapt the CuSum algorithm [56] and its variant to monitor the patterns of the
run-time prediction errors observing that the prediction errors before and after abnormal driving behaviors
can be well captured by two different probability distributions. The choice of the CuSum algorithm is
motivated by its ease of implementation and strong provably optimality guarantees for formal assurance.
In this work, we consider two popular scenarios: (1) CAVs have full knowledge of both the pre-change
and post-change probability distributions and (2) CAVs have full knowledge of the pre-change distribution
only and partial knowledge of the post-change distribution. Note that before the change happens, the
driving mode of the human driver is deemed to be normal. Hence the corresponding prediction error
distribution can be efficiently computed from existing datasets. Through experiments on SUMO-generated
highway and urban traffic datasets, we show that: our proposed algorithm has great detection performance
in both highway and urban traffic; it can be generalized to different scenarios where we have full or partial
knowledge about post-change distributions; equipped with MEATP with shared information, it is robust
to the noises in observations of the surrounding autonomous vehicles. The best performance achieves
detection rate of 97.3%, average detection delay of 1.2s, and 0 false alarm.
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2 RELATED WORK
2.1 Trajectory prediction and transformer neural network

Trajectory prediction is challenging because of the large amount of latent variables involved such as end goals,
intentions at each moment, driving styles of human drivers and interactions with other vehicles. There has
been extensive progress in vehicle trajectory prediction. Existing literature is divided into three categories:
physics-based model, maneuver-based model and interaction-aware model [42].

Classical dynamic or kinetic model based methods have been designed to predict the future trajectories based
on the current state of the vehicles [7, 8, 50, 68, 72]. However, they are unable to predict any change in the vehicle
motion caused by a particular maneuver or external factors. Deep learning techniques have been widely utilized
in maneuver-based model and interaction-aware model, yielding higher accuracy and longer prediction time
[44, 63]. It has also been shown that the interaction-aware model outperforms in the three classes [42]. Therefore,
deep learning-based interaction-aware trajectory prediction has become the main steam in recent years. Many
methods have been proposed, including (but not limit to): LSTM combined with convolutional neural network
(CNN) to predict the vehicle trajectories on US highways from NGSIM dataset [23], LSTM encoder-decoder to
produce the probabilistic future location of the vehicles over occupancy grid map [57], LSTM combined with
dynamic geometric graph to predict the vehicle trajectories and road agent behavior [15]. In addition, attempts
have been made to integrate deep learning with model predictive control to reason about the future behavior of
nearby vehicles [18].

A transformer network was originally designed for natural language processing [71], recently it has also been
modified to process spatial-temporal data, for traffic flow prediction [77], pedestrian trajectory prediction [29]
and vehicle trajectory prediction. An encoder-decoder architecture based on multi-head attention generates the
distribution of the predicted trajectories for multiple vehicles in parallel [37]. Dong et al. present a dynamic
graph attention network to deal with social interactions and predict multi-modal trajectories with probability
[24]. Messaoud et al. apply multi-head attention by considering a joint representation of the static scene and
surrounding agents to generate future trajectories [52]. There are other works applying attention mechanism to
trajectory prediction[10, 47]. These works employ attention mechanism to detect vehicles that are more likely
to affect the target vehicle’s trajectory and pay more attention to them. The temporal dynamics of target and
surrounding vehicles’ trajectories, however, are not considered.

There are two types of predictions based on the design of the neural networks: (1) One autonomous vehicle
(ego vehicle) predicts its surrounding vehicles’ trajectories, thus all the surrounding vehicles are target vehicles.
In this case, the input contain the past trajectories of the ego vehicle and the target vehicles, the outputs are the
predicted trajectories of the target vehicles [37, 57]. This type of prediction, however, doesn’t take the trajectories
of the vehicles thatare around the target vehicle into consideration. As these vehicles interact with the target
vehicle, missing their trajectories may result in inaccurate prediction. (2) One autonomous vehicle predicts
one target vehicle’s trajectory [3, 15, 18, 23, 24, 52]. In this case, the input contain the past trajectories of the
target vehicle and its neighboring vehicles. These works assume that the trajectories of target vehicle and all its
neighboring vehicles are available. However this assumption is too strong in real world, one autonomous vehicle
won’t be able to get all vehicles’ data around target vehicle for prediction. Therefore, in this work, we propose
an multi-encoder attention based predictor that fuses the shared information among connected autonomous
vehicles (CAVs) to predict the human-driven vehicles’ trajectories.

2.2 Information sharing for connected vehicles

Connected autonomous vehicles (CAVs) have been proposed and studied for a long time. Information sharing of
basic safety messages (BSMs) (velocity, position, heading angle, and yaw rate) is beneficial to autonomous vehicles’
learning and control approaches in scenarios such as freeways, intersections, and lane-merging [31, 41, 55, 61].
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Besides BSMs, environment information captured by vision sensors (such as cameras and Lidars) is also useful to
improve autonomous vehicles’ decision-making, trajectory planning, and perceptions [12, 38, 53]. GPS reports
from neighboring vehicles can be used to identify driving hazards [79]. It has also been shown that the V2V
communications among the autonomous vehicles can improve traffic safety, traffic flow stability and throughput
[25, 67, 80].

There have been concerns about the privacy when sharing the data with other vehicles. V2V and V21 com-
munications allow information to be transmitted between vehicles for safety reasons, but they also expose the
vehicle’s movements and geographical location to external networks, from which people can access to locate a
vehicle driver [30]. This is a serious problem with location-based data, as human traces are unique, enabling an
adversary to trace movements even with limited side information [27, 28]. Also, access to the interconnected
AVs’ wireless network enables public and private agencies to conduct remote surveillance of AV users, which can
undermine individual autonomy through psychological manipulation and intimidation [30]. Schoonmaker [64]
highlights the inadequacies of protecting location-based data based on customer consent, as customers accept
the terms and conditions without fully understanding them. Surveys are also being conducted to investigate
public attitude towards the privacy concerns brought by sharing the data, there are low confident on how the
information should be exchanged between two vehicles [2, 76]. In the US, the new SPY Car Act gives NHTSA the
authority to protect the use of (and access to) driving data in all vehicles manufactured for sale in the US [66]. All
vehicles must provide owners or lessees the ability to stop the data collection, except for data essential for safety
and post-incident investigations, and manufacturers are prohibited from using the collected data for marketing
or advertising without consent from the owners or lessees [66]: Therefore, in this work, the hybrid traffic is
consisted by human-driven vehicles that cannot communicate or don’t willing to communicate, and the CAVs.

2.3 Abnormal human driver’s behavior detection

Existing work on abnormal human driver’s behavior detection is mostly restricted to monitoring driver’s
behavioral parameters or vehicular parameters. Specifically, there is a large body of literature that uses camera to
extract the behavioral parameters such as eye closure ratio, eye blinking, head position, facial expressions, and
yawning, to classify whether the driver is in fatigued driving or distracted driving mode [34, 65, 78]. A handful of
work monitor vehicular parameters such as changing patterns, vehicle speed variability, steering wheel angle,
and steering wheel grip force — assuming sensor placements on vehicle parts like steering wheel, accelerator or
brake pedal [45, 83]. However, due to the privacy sensitive nature of the human drivers images and the detailed
sensor measurements, none of these methods are applicable to our setting of hybrid traffic. In this work, we focus
on a different challenge of detecting abnormal behavior based only on the observations of the CAVs.

3 PROBLEM DESCRIPTION

Unpredictable human driver abnormal behavior is a great obstacle to safe autonomy in hybrid traffic systems.
The autonomous vehicles might also have problems during driving. There have been large numbers of work
dealing with problems in perception [70], behavior planning [9, 75], and control of autonomous vehicles [40],
these specific problems about autonomous vehicles are out of our scope in this paper. In this work, the challenge
we focus on is: how to detect the human driver’s abnormal behavior with high accuracy in a short time based on
shared sensing information among CAVs, without violence of human driver’s privacy. Normal driving behavior
can be characterized by well-controlled speed, reasonable headways, mild accelerations, decelerations, and
lane changes. In contrast, as human driver’s abnormal behaviors are often caused by human factors such as
drunkenness, aggressiveness, and fatigue, the resulting abnormal behaviors usually show up with unreasonable
operations on vehicles, which provides useful clues for detecting them. First, regarding aggressive driving, the
drivers’ abnormal behavior can be reflected by observable signs from the perspective of autonomous vehicles,
such as accelerating suddenly, violating the speed limit, and making frequent lane changes to surpass the other
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Fig. 1. Hybrid traffic with information sharing.

vehicles [6]. Second, considering the drunk and fatigued driving, when the driver is intoxicated by alcohol, or
affected by tiredness, he or she is more likely to issue a sudden acceleration or deceleration due to a response
delay [22, 33], therefore the velocity control can be poor. From this perspective, when we are trying to predict
the trajectory of a human-driven vehicle, the distributions of the prediction errors of normal driving mode and
abnormal driving mode could be quite different.

To address the above challenge, in this work, we propose an algorithm that is composed by trajectory predictor
component and driving mode switch detection component to detect the abnormal driving behaviors. Our
proposed algorithm takes advantages of information sharing among CAVs to boost both prediction and detection
performance. In this section, we first describe the hybrid traffic system including autonomous vehicles and
human-driven vehicles, then illustrate the details of information sharing that will be utilized in both trajectory
prediction and abnormal behavior detection.

3.1 Hybrid traffic system description

The traffic is comprised by autonomous vehicles that are connected via V2V communication and human-driven
vehicles. For ease of exposition, we refer to the autonomous vehicle that is doing prediction as the ego vehicle
(EV), other autonomous vehicles that are within the communication range of the ego vehicle as surrounding
vehicles (SV), and the human-driven vehicles is being predicted and as target vehicle (TV). Without loss of
generality, we focus on one TV. It is easy to see that our algorithm works for the general multiple target vehicles
setting under which we can run the algorithm in parallel for different target vehicles. Notably, the human-driven
vehicles are not communicating with others. The system is illustrated in Fig. 1.

We define a stationary reference frame based on the TV. At time step t,, the origin are set at TV’s current
location, X — axis is lateral direction, while the Y — axis is longitudinal direction. In the range of y = —30m to
y = 30m, there are in total N neighboring vehicles that interact with the TV, including N4 autonomous vehicles
and Ny human-driven vehicles. The range of +30 meters and -30 meters is proposed by Deo et al. [23] and still
widely used in recent works [46, 52]. This setting has been tested and validated on Highway and Urban datasets
including NGSIM and nuScenes.
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3.2 Information shared to the ego vehicle

All surrounding vehicles’ observations include point cloud data from Lidar and camera image. With the Lidar-
camera fusion techniques [13], surrounding vehicles can get the locations of the nearby human-driven vehicles.
At time fo, For each surrounding vehicle, the information it shares with EV include:

(1) its own GPS locations in the past t;, time steps,
(2) locally sensed GPS locations of the nearby human-driven vehicles in the past t; time steps.

Upon receiving the shared information, EV transfers the GPS locations into the coordinates in current reference
frame: for i € [0, N] vehicles, coordinates in the past t, + 1 time steps: x;(fy — ), yi (to — tp), - . ., xi(to), yi(to)-

In real world applications, it’s unrealistic for the EV to get accurate GPS locations of all the human-driven
vehicles only from the observations of the CAVs. There will be noises in the measurement due to a variety of
factors such as the limitation of on board sensors, the error of object detection and tracking algorithms, etc
[18, 26, 81]. In this work, we discuss two cases: first is an ideal case, where (1) and (2) are all accurate GPS
locations without noise, second is a more realistic case, where (1) are accurate and (2) are noisy. We will elaborate
and validate our abnormal behavior detection algorithm against noises in inputs in Section 4.3.4 and Section 5
respectively.

It’s worth noting that, information sharing among CAVs has more advantages at gathering neighboring vehicles’
data compared to existing prediction methods. Multi-agent prediction, usually with multi encoders have been
widely used in the existing works [3, 15, 18, 23, 24, 52]. Each encoder corresponds to one vehicle’s data around
the target vehicle. However, these existing works assume that the ego vehicle can get all the vehicles’ trajectories
around the target vehicles, which can be a too strong assumption in some scenarios. When the target vehicle is
driving in front of or behind the ego vehicle, shown in Fig. 1, the target vehicle will certainly block part of the
ego vehicle’s Lidar signal and camera view, therefore the ego vehicle won’t be able to get the trajectories of the
vehicles that are in front of or behind the target vehicle. The information, however, is vital to predict the target
vehicle’s trajectory, since the neighboring vehicles’ movement can affect the trajectory of the target vehicle. For
instance, if the vehicle in front slows down, the target vehicle will also need to slow down to keep a safe distance.
In this work, with the shared information among CAVs, other autonomous vehicles can extract, compute, and
send the information to the ego vehicle. To the best of our knowledge, we are the first to propose a multi-encoder
attention based trajectory predictor that fuses the shared information among the CAVs, and utilize the prediction
for our proposed abnormal driving behavior detection Algorithm 1.

4 ABNORMAL BEHAVIOR DETECTION FRAMEWORK

To make the discussion concrete, we present our framework in Section 4.2 — right after the presentation of
our proposed trajectory prediction method (Section 4.1). Though our framework is stated w. r. t. the trajectory
predictor proposed in Section 4.1 only, it works for more general predictors. Our framework is also generic in its
abnormal behavior detection component. In Section 4.3, we present three different concrete instantiations to
compute the crucial statistic used in the framework.

4.1 Multi-encoder attention based trajectory predictor (MEATP)

We propose a trajectory predictor, named as multi-encoder attention based trajectory predictor (MEATP) to fuse
the real-time measurement data and utilize the benefit of shared sensing information among CAVs. We specify
its inputs and outputs in Section 4.1.1, introduce its network architecture in Section 4.1.2, and present the loss
function used in its training in Section 4.1.3.

Transformer based network has been applied in vehicle trajectory prediction[10, 24, 37, 47, 52]. They use
attention mechanism to distinguish the vehicles that are more likely to affect the target vehicle’s trajectory and
give them more attention. In this work, our proposed multi-encoder attention layer, not only finds the more
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influential vehicles by assigning the corresponding encoder larger weights, but also finds the more important time
steps that affects the trajectory of the target vehicles using the multi-head attention layer in the multi-encoder
attention. Therefore, our proposed model can find the important features in both spatial and temporal dimensions,
whereas the existing works’ attention mechanism only focus on spatial dimension.

4.1.1 Inputs and outputs. The inputs to the MEATP include (I.1) the trajectories of neighboring vehicles, denoted
by C;(1y) for i € [1, N], and (I.2) the trajectories of the target vehicles, denoted by S(;). Both (L.1) and (1.2) are
over a sliding time window {ty — tp,tg — 5, + 1,- - - , to}, formally,

Ci(to) = [ci(to —tn), -+ ,ci(to —th + ), , ci(to)] (1)
with ¢;(ty — tp +€) = [x;(8o — ty + £), yi(to — tp + £)] being the 2-dimensional position of the i—th neighboring
vehicle at time slot ty — ¢, + £ for £ =0, - - , t, and

S(to) = [s(to —th),...,s(tg —th +1),...,s(ty)] (2)

with s(ty —tp, +£) = [xo(to — tp, + ), yo(to — ty, + £)] being the 2-dimensional vector that records the TV’s position
at time slot ty —t, + £ for £ =0,--- , t.

The outputs of the MEATP are the distributions of the future trajectory of the TV over time window {#o+1,- - -,
to + tr}. Assume the predicted future trajectory follows bivariate Gaussian distribution [14, 23], notably, this
assumption has been widely adopted in the literature [14, 15, 23, 37, 52], tested in numbers of real-world trace
datasets, including NGSIM Lyft Level 5, Argoverse Motion Forecasting, and the Apolloscape Trajectory [16, 19, 51].
the output of the decoder is the bivariate Gaussian parameters at every time step in the future ¢ time steps:

Q= [Q(ty+1),...,Q(t + 1) (3)
where
Q(t) = [p(t), o(t), p(t)] = [ (1), py(2), 0x(t), oy (2), p(2)], for t € [to + 1,20 + t£],

where (pix(t), ox(t)) and (py(t), oy (t)) are the mean and standard deviation in x-axis and y-axis, respectively,
and p(t) is the corresponding correlation-coefficient.

4.1.2  Network architectures. Our network architecture is illustrated in Fig. 2. To effectively utilize the shared
information, instead of the single-encoder single-decoder transformer architecture, we use a multi-encoder
single-decoder architecture. Having multiple encoders enables the EV to learn the spatial and temporal features
from the trajectories of the TV and of neighboring vehicles. As can be seen from Table 4 of our experimental
results, compared with CS-LSTM, MEATP can more effectively extract the relevant information contained in the
shared trajectories, hence can achieve smaller mean and variance of the prediction errors.

Our proposed architecture contains N + 1 encoders. For ease of exposition, we index these encoders from 0
to N. Encoder 0 takes S(#y) — the target vehicle’s trajectory over time window {ty — tp, - - - , o} — as its input.
Encoder i (fori=1,---, N) takes C;(t,) — the i—th vehicle’s trajectory over time window {ty — tp, - - - ,tp} — as its
input. The inputs plus the positional encoding are then sent to the next layer as queries Q, keys K, and values V.
Positional encoding is just an embedding mechanism to ensure the order of the input. Following the seminal
work [71], each of the encoder consists of two sub-layers. The first is a multi-head attention mechanism, and the
second is a simple, positionwise fully connected feed-forward network. We use residual connection around each
of the two sub-layers, followed by layer normalization. Multi-head attention layer is composed by h heads of
scaled dot-product attentions, each of which is expressed as:

Attention(Q, K, V) = softmax (QKT) Vv (4)
b b - \/d— bl
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where dy, is the dimension of keys. The scaling factor Ldkis used to prevent the dot product from being numerically

too large. Scaled dot-product attention allows the model to pay more attention to one time step in the input that
is useful for the prediction. Multi-head attention executes the h scaled dot product attention heads in parallel.

b

Add & Norm
Feed 0(to + t)
Foward
Add & Norm
Add & Norm
Multi-Head
Attention Feed
f A } Foward

Positional Encoding —-@) A5 N

Multi-Encoder

xn(to — tr), yn(to — th), ..., Xy (£0), yn (o) Attention
: 1
[ ‘
Add & Norm Add & Norm
Feed Masked
Foward Multi-Head
‘ Attention
Add & Norm uu
Multi-Head D«—— Positional Encoding
Attention 1&
7}
[} L} Oty + 1), ., 2(to + 1, — 1)
Positional Encoding D
3

Xo(to — trh), Yo(to — tn), -, Xo (to), Yo (to)

Fig. 2. MEATP network architecture. The Multi-Encoder Attention Mechanism in decoder is shown in Fig. 3

Attention outputs are concatenated and linearly transformed into the same dimension of Q. Therefore:
Multihead(Q, K, V) = concat(heady, . . ., head;,) W° (5)

where head; = Attention(QWlQ, K WIK , VWIV). With the multi-head attention layer, multiple (instead of just one)
time steps of historical data are processed simultaneously. Each encoder i passes its value V; and key K;. to the
multi-encoder attention layer of decoder.

Different from the encoders, at time step t,,, the decoder takes the outputs in the past t, — 1 steps as inputs, and
outputs the bivariate Gaussian parameters, which represent the probability distribution of the target vehicle’s
future coordinates. To be noticed that, the key part in the decoder is the multi-encoder attention. As shown in Fig.
3, the multi-encoder attention in the decoder is composed by N+1 multi-head attention. Query Q,, which comes
from the decoder, interacts with each pair of keys and values Kj, V; in a multi-head attention. The outputs of the
multi-head attention are concatenated and linearly transformed into dimension of Qy. Multi-encoder attention
are expressed as:

Multiencoder(Qo, K, V) = concat(M,, . .., My) WM (6)
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where M; = Multihead(Qy, Kj, V;). The idea of multi-encoder attention comes from the road traffic interaction.
Since the target vehicle is continuously interacting with its neighboring vehicles, the past trajectories of the
neighboring vehicles, and itself, together influence its future trajectory. By letting query Qo, which corresponds to
the target vehicle, interact with Kj, V;, the decoder learns both temporal and spatial information of the neighboring
vehicles and target vehicle itself.

Multi-Encoder Attention

Linear
A

Concat Concat
E%:l E«;

Scaled Dot-Product
Attention

Scaled Dot-Product
Attention

Fig. 3. Multi-encoder attention in the decoder

4.1.3  Loss function. Since we assume the output at each future time step follows bivariate Gaussian distribution,
we train our neural network base on the weighted sum of two losses below:

t0+l‘f

D (=logP(Z(1)|u(t), (1), p(1))),
t:)i)l;l (7)

>z - p@)ll,

t=to+1

Ly

L,

where Z(t) = [x0(t), yo(#)] is the true coordinates of target vehicle at future time step t. L; is the sum (in future
tr time steps) of negative log likelihood of true trajectory given the predicted trajectory distribution. L; is the
I norm between true trajectory and predicted trajectory in future ¢ time steps. Note that here we choose the
mean on x and y axis p(t) = [p (1), py(¢)] in output distribution as target vehicle’s predicted future trajectory.
By minimizing the loss function, we make the predicted trajectory stay close to the future true trajectory. To
be noticed that, these two loss functions have been widely used in the exiting literature [14, 15, 23, 37, 52], it
is not specifically for transformer networks, all the existing literature uses the true future trajectory in their
training phase. In this work, in order to make our abnormal behavior detection algorithm work better, we
want the distance between the predicted and true trajectory to be as small as possible. Therefore, the loss
function L2 are assigned with larger weight. If we denote our proposed predictor as a function fiy, with W
being the weight parameters, including Wy, Wk, Wy, in scaled dot-product attention layers, W in Multihead
attention layers, Wjs in Multiencoder attention layers, and the weights in the feed forward layers. we have
[Qto+1),...,Q(ta+tr)] = fw (S(to), C1(to), - - ,Cn(to)). Therefore, by minimizing the loss functions in training
phase, we are actually doing gradient decent on the weight parameters W of our proposed model.
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4.2 Shared information based abnormal behavior detection algorithm

Recall that the EV is the one that executes the MEATP and monitors whether the TV is in an abnormal driving
mode or not. Figuring out which statistic to monitor is highly non-trivial as the driving mode of the TV can
switch to an abnormal driving mode at any unknown time, and the underlying prediction error distributions prior
and posterior to the switch time are different. To make the discussion concrete, we use y to denote this unknown
switch time. We consider the most challenging scenario wherein no prior information on y is available.

Recall that ¢ is the variable that indicates the current system time; its value increases by 1 as each time goes
by. At each time, the EV first receives the shared GPS locations from its SVs, transforms them into S(;) and
{C,-(to)}fi 1> and then passes them as inputs to the MEATP to obtain p(t, + 1). Finally, when the true Z(#, + 1) is
revealed, the EV computes its prediction error

en+1 = [|Z(to +1) — p(to + ]|, ®)

As ty increases over time, via the above process, the EV computes a sequence of prediction errors {e,,n = 1,2, - - - }.
We use f and g to denote the distribution of e, when n < y and n > y, respectively. Clearly, if y > 1o, i.e., the

TV’s driving mode has not switched yet, the TV is currently in a normal mode with e, v 4 fforn=1,2---,t.

If y < 1o, i.e,, the TV is in the abnormal mode, then e, i-id. g forn =ty,---. Atany time, the EV is interested in
knowing whether a mode switch has occurred or not and wants to detect such switch as soon as possible under a
given false alarm budget.

Therefore we formulate the problem of detecting abnormal human driver behaviors as detecting
the change in distributions of the sequence of random prediction errors {e,,n = 1,2,-- - }. The “distance”
between f and g can be captured by the Kullback-Leibler divergence Dxy (f, g), defined as

0 <Dxr(f,9) = /f(x) log (]ﬁ) dx < oo. 9)
g9(x)
Definition 1 (Detection algorithm as a stopping time). A stopping time w.r.t. the sequence of random prediction
errors {e,,n =1,2,-- -} is a random variable z with the property that for each n, the event {r = n} is measurable
w.rt.o(ey, - ,e,) — the o-algebra generated by ey, - - - , e,. Formally, {r = n} € o(ey,---,e,) for each n. A
detection algorithm is a stopping time of random prediction errors that declare the detection of a change [73].

Remark 1. A detection algorithm should be a stopping time otherwise it is not implementable due to lack of
information, i.e., {r = n} ¢ o(ey, - - ,e,) for some n. When used as a detection algorithm, the event 7 = n is
interpreted as “a distribution change is declared at time n”.

Given the random sequence prediction error {e,,n = 1,2,---}, it’s hard to tell when the distribution has
changed by manual inspection, instead, we compute a statistics W,, given {e,,n = 1,2,---}, which will be
specified in Section 4.3. Once the statistic W,, exceeds some threshold b, we declare the change in distributions, i.e.,
abnormal driving behavior happened. We propose Algorithm 1 to illustrate how EV detects whether one TV has
turned into abnormal driving mode. Notably, this algorithm can be ran in parallel to detect multiple TVs. Based
on the shared information, the EV equipped with trained predictor computes the prediction errors at each time
step, the statistic W,, is then updated accordingly. Once the statistic W,, exceeds the threshold, the EV declares
the detection of abnormal behavior. We consider different scenarios regarding the amount of knowledge known
on probability distributions f and g: (1) We have full knowledge of the pre-change and post-change distributions
of f and g, (2) we have full knowledge of pre-change distribution f, but we only have partial knowledge about
the post-change distribution g. Assuming full knowledge on pre-change distribution is standard in the literature
on quickest change detection [73]. Beside, this assumption can be easily satisfied in our applications: before
the change happens, the driving mode of the human driver is deemed to be normal. Hence the corresponding
prediction error distribution can be efficiently computed from existing datasets. Based on whether we have full
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knowledge about the post-change distributions or not and, if not, how much we know about it, the statistic
W, can be calculated in CuSum algorithm [56], MCuSum algorithm [5, 69], or generalized likelihood ratio test
(GLRT) [49] approach. We elaborate the details of those algorithms and how to update statistic W, in Section 4.3.

Algorithm 1: Abnormal Behavior Detection based on Shared Information
Initialize Wy « 0, ty « 0, u(ty) «— Z(to);
Choose CuSum/ MCuSum/ GLRT algorithm based on the knowledge of the post-change distribution;
if Using MCuSum then
Set threshold b «— log(%) ; /% a is the given false alarm budget and M is the number of
possible g */
else
‘ Set threshold b « |loga|;
end
while true do
Receive information shared by the SVs;

Update S(ty) and {C,—(to)}f\i | by incorporating this newly received information ;
u(to+1) — fiw(S(t), {C,-(to)}fil) ; /* Compute p(ty+1) by calling MEATP =*/
ey, — |1Z(5) — p(to)ll;
Compute statistic W ;
if W;, > b then
Declare the detection of abnormal behavior;
Break;
end
tg «— to+1;
end

Minimax quickest change detection (QCD): Next we state the performance metrics of the detection algorithms.
Observing that in practice the prior knowledge on the switch timing of the driving modes is barely available, we
do not impose any distributional assumption of y. Instead, we allow y to be an arbitrary and unknown value
which can even vary across executions. In other words, we consider minimax QCD. The measure of the false
alarm is the false alarm rate in the literature [73]:

FAR(7) = (10)

1
Eo(7)’
where E, stands for the expectation measure that the change happens at time oo, i.e., the change doesn’t occur.

To provide strong safety guarantee, we adopt the Lorden’s minimax formulation [49] in which the detection
delay is measured via

WADD(r) = sup ess sup E,[(t —n)*les, -, en], (11)

nx>1

where (-)* = max{0, -}, E,[-] is the expectation operator when the change occurs at time n, and ess sup(-) of a
scalar-valued random variable is the sup of its support.
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4.3 Algorithms to calculate W,, for abnormal behavior detection

In this section, we illustrate the abnormal behavior detection component. Given whether we have full knowledge
about the post-change distributions or not, we update the statistic W,, based on CuSum algorithm, MCuSum
algorithm and generalized likelihood ratio test (GLRT) algorithm. We provide details of adopting these algorithms
in our problem.

4.3.1  CuSum algorithm with full knowledge of pre-change and post-change distributions. We first consider the
best case, where we have have full knowledge of the probability distributions f and g. For ease of exposition, we
assume that f and g are gaussian distributions; they can be parameterized by their means and standard deviations
as fs and gg, where each of ¢ and 0 is a tuple of mean and standard deviation. We adapt the CuSum algorithm to
detect the abnormal human driver behaviors.

CuSum’s algorithm [56]: For some given b > 0 (chosen later in Proposition 1),

r2inf{n >1: W, > b}, (12)

where

W, =

max{W,_; +logL(ey,), 0}, forn > 1;
0, forn=0.

and L(e,) = go(en)/f3(en) is the likelihood ratio.

The intuitions behind the CuSum algorithm are as follows: Upon and after the change point y, the prediction
error e, follows the distribution gy, and E,»[log (gg(en)/ﬁzg(en))] = DxL(gs, f) > 0. Similarly, before y, the
prediction error e, follows the distribution f, and E,<,[log (go(ex)/f3(en))] = —=Dxi(f3, go) < 0. Thus, with
more and more observations on the prediction errors, we expect Y. .-, log (90(en)/f3(en)) to bypass the given
threshold b. In a sense, the max{-, 0} operation in W,, has two effects: (1) it makes a tentative guess on y and
(2) it does the first level protection against the random fluctuation in log (g (en)/f} (€,)). A more fine-grained
protection against the random fluctuation is controlled by the choice of b; the larger the b, the more accurate the
detection yet the longer delay.

Clearly, there is a trade-off between the false alarm rate FAR(7) and the detection delay; if we can tolerate
arbitrary FAR(7), we can achieve 0 detection delay by trivially set 7 = 0. It has been proved in the literature that
the CuSum algorithm is optimal [54, 62].

Proposition 1. [73] The CuSum algorithm with b = |log a| for any given a € (0, 1) is first order asymptotically
optimal. Furthermore, the false alarm rate and the average detection of the CuSum algorithm are bounded as follows:

|log )
Dxi(9.f))

4.3.2  MCuSum with unknown parameters. Recall that we assume that f; and gg are the gaussian distributions.
Denote the mean and variance of f3 and gg as (po, 09) and (p1, 01), respectively. Thus, we have:

FAR(7) < a, and WADD(t) = O (

(en - ,Uo)2 (en - ,111)2 0o
- + log(— 13
707 sz los(0) (13)

log L(e,) =

In CuSum’s algorithm, we assume that we have full knowledge about the pre-change distribution parameters
o, 09 and post-change distribution parameters 1, o;. However, when the human driver switches to abnormal
driving mode, it’s more realistic that we cannot know the exact post-change prediction error distributions. But
instead, we have some prior knowledge about the post-change distribution and estimate the parameters based on
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our prior knowledge. In this section, we assume that we have full knowledge of the pre-change distribution f,
the post-change distribution g with parameter 6:

0cO=1{01,0...0m) (14)

Therefore, the unknown post-change distribution belongs to a finite set of distributions. In this scenario, We
adopt the MCuSum algorithm to detect the abnormal driver’s behavior:
MCuSum algorithm [69]:

e = inf{n >1: max Wn(ej) > b}, (15)
je{l’...’M}
where
) ggj(en) ]+ > 1
W, (6) = [Wn_l(Qj) +10g(—f¢(en) , n>1; (16)
) n= 0.

In Eq. (15), [x]* 2 max{x, 0}, and, denoting ¢ = (uo, 09) and 6; = (;, 5;), the log likelihood can be written as

96; (en) _ (en — ,Uo)2 (e, — /11-)2 0
log ( ﬁ;,(en) ) = 20_3 - 20_12 +10g(O_—J) (17)

Thus, to detect a change when the post-change parameter is unknown, M CuSum algorithms are executed in
parallel, one for each post-change parameter. A change is declared the first time a change is detected in any one of
the CuSum algorithms. In our context, in order to detect the abnoermal human driver behavior, we choose several
possible means and standard deviations based on the prior information we have about the prediction errors
after the abnormal behavior happens. Then we compute the CuSum algorithm in parallel based on each pair of
the possible mean and standard deviation, we declare the detection of the abnormal behavior once the statistic
evolves above the threshold in any one of the CuSum algorithm. The asymptotic optimality of the MCuSum
algorithm is proved in [69].

Proposition 2. [69] The MCuSum algorithm with b = log % for any given a > 0 is first order asymptotically
optimal. Furthermore, the false alarm rate and the average detection of the MCuSum algorithm are bounded as
follows:

|log af
Dki.(g, f)

4.3.3 Generalized likelihood ratio test with unknown parameters. In this subsection, we further relax our require-
ments on the post-change distributions. We assume that we know the values g, 0y, and we only have partial
prior information about the distribution p, o1:

FAR(tpe) < a, and WADDQ(TMc) < ( ) asa — 0,Y0 € ©

M= o 2= Vi, 01 — 00 2 O

Then we can no longer use the recursive form to update W, since we don’t know p4, o;. We adopt the generalized
likelihood ratio test based approach, we see the sum of log likelihood from k to n as a function of unknown
parameter 6,

C - go(e:)
ST(0) = > logL(e;) = > log( ) (18)
¢ Z;:‘ ¢ ; * ole
then we have double maximization:
W, = max sup S (6) (19)
1<k<n ¢

Therefore, we can adopt the generalized likelihood ratio test (GLRT) to test the abnormal driving behavior:
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GLRT algorithm [49]:
rZinf{n>1:W, > b}, (20)

where

W, = max sup S;(6)
1<k<n 0

Next we elaborate how to deal with the double maximization in statistic W,,. since we know the minimum
magnitude change of the parameter 0;, we have:

W, = max sup S;(0) (21)

1<ks<n O:p11 — 110> Vi >0,01— 09 =5 >0
since

(en — ,UO)2 _ (en — ,Ul)2 (en — ,UO)2 _ (en — ,ul)2

+log(z—?) > + log(%))

207 207 205 205

we can use the cumulative sum:
H1— o /10
Sy = Z( e - +log(—>> (22)
o
let us introduce v = py — o, & = 01 — 0p. then W,, can be written as :
n 2
v(e; = 1% o
W, = max sup [(I—ZHO) -— +10g(—0)] (23)
1<kSn 9.y> 1 >0,6> 5, >0 4 i—k 0, 20’0 oo+ 90

in such case, the constrained maximization over 6; is:

n A L ~2
W, = max Z[V"(e—z”‘)) - 2 b log(—2-)] (24)
1<k<n ~ o 20; oo +
where:
. >y lei = ol 5
Dy = (’nk_ﬁ — V) + Vi, 8 = Om (25)

4.3.4 Noisy HV location measurements. When SVs share noisy human driven vehicles’ GPS locations to the
EV, due to the difference in the inputs to our proposed MEATP, the distribution of prediction error changes
accordingly. However, the measurement noises have no impacts on y. Our algorithm can still detect the change
in the distributions even with the noises. For instance, considering MCuSum algorithm, with the noises in the
inputs to MEATP, the pre-change distribution of the prediction error changes from fj to fg/, where ¢ = (p, o),
similarly, post-change distribution changes from gy, to 9o, where 0} = (,u;., 0}). For each 0, the log likelihood
becomes:

90, (en) (en—pp)*  (en— IJ})Z o,
1 = - log(—).
J
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5 EXPERIMENTS
5.1 Trajectory prediction

5.1.1 Experiment details. In this section, we use NGSIM [20] and Argoverse 1 motion forecasting[17] datasets for
evaluation. NGSIM dataset consists of trajectories of freeway (US-101 and I-80) traffic sampled at frequency 10Hz
over 45 minutes. Argoverse dataset is a curated collection of 324,557 scenarios with each 5 seconds long. Each
scenario contains the 2D, birds-eye-view centroid of each tracked object sampled at 10 Hz. We train our model
using Adam optimizer with learning rate of 0.01. The dimension of the model, also known as number of features,
is 16. The number of heads is 8. For the feed forward layer, it contains a linear layer of size (16, 32), a Relu Layer,
and another linear layer of size (32,16) in sequential. For NGSIM dataset, We use 3s of historical trajectories to
predict the trajectories in future 5s with sample frequency of 5Hz. For Argoverse dataset, the length of historical
trajectory is 2s and the length of predicted trajectory is 3s. In our experiments, we use a server configured with
Intel Core i9-10900X processors and four NVIDIA RTX2080Ti GPUs. Our experiments are performed on Python
3.6.0, PyTorch 1.6.0, and CUDA 11.0. For trajectory prediction, we use the standard metrics followed by prior
trajectory prediction approaches[15, 23, 37]:

e Root mean square error (RMSE) of the predicted trajectories with respect to the true future trajectories.

e Average displacement error (ADE): The average RMSE of all the predicted positions and real positions
during the prediction window.

o Final displacement error (FDE): The RMSE distance between the final predicted positions at the end of the
predicted trajectory and the corresponding true location.

5.1.2  Prediction results. We compare our methods with baselines below:

e S-LSTM [3]: This model uses a fully connected social pooling layer to deal with the LSTM encoder output,
and generates a unimodal distribution for future coordinates.

o CS-LSTM [23]: This model devises a convolutional social social pooling layer to process the LSTM encoder
output, and generates a unimodal distribution for future coordinates.

o MHAPTP [37]: This method uses multi-head attention based model for probabilistic vehicle trajectory
prediction.

o TraPHic [14]: This approach uses spatial attention based pooling to perform trajectory prediction of road
agents in dense and heterogeneous traffic.

o MATF-D and MATF-GAN [82]: A Multi-agent tensor fusion network for contextual trajectory prediction.

e CAM and ATTGLOBAL-CAM-NF [58]: A cross-agent attention model with understanding of the scene
contexts for trajectory prediction.

We evaluate our model in two modes: with and without shared information. When there is no information
sharing, we assume that the EV can only get the trajectories of the vehicles that are around it. While with
information sharing, we assume that the EV is able to get the TV’s neighboring vehicles’ historical trajectories
and feed them into encoders.

Based on the prediction results in Table 1 and Table 2 we show that:

o Our proposed MEATP with shared information has better prediction performance compared with LSTM
based models and transformer based models on NGSIM dataset. This shows the advantages of our multi-
encoder attention mechanism at encoding both spatial and temporal features. Information sharing among
the CAVs largely improves the prediction performance.

o Our proposed MEATP with shared information outperforms most baseline methods on Argoverse dataset.
It shows slightly worse prediction performance compared with GLOBAL-CAM-NF [58]. This is because
GLOBAL-CAM-NF encodes the scene context, which requires the bird’s eye view of the entire driving
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environment. However, this information may not be available in real world when predicting the trajectories.
Compare to this method, our model doesn’t need the scene contexts for prediction.

Table 1. Prediction results on NGSIM dataset. Root mean square error (RMSE) over 5 seconds of
prediction horizon for models are compared. Our Proposed model MEATP without shared information
has better prediction performance than the baselines. Our MEATP with information sharing signifi-
cantly decreases the RMSE values, at 4s and 5s, the RMSE values are less than half of baselines.

MEATP

Evaluation Prediction w/o MEATP w
. Horizon S-LSTM CS-LSTM  MHAPTP . shared in-

Metric shared in- 3
(s) . formation

formation

1 0.65 0.61 0.55 0.70 0.51

2 1.31 1.27 0.60 1.03 0.76

3 2.16 2.09 1.12 1.26 0.85

RMSE (m) 4 3.25 3.10 - 1.59 1.05

5 4.55 4.37 - 2.17 1.36

Table 2. Prediction results on Argoverse dataset. ADE and FDE of models are compared. Our
Proposed model MEATP with shared information has better prediction performance than most

methods.
MEATP
GLOBAL- w
Evaluation  CS- MATF- MATEF- .
Metric LSTM D GAN TraPHic CAM CAM- 'shared
NF informa-
tion
ADE (m) 139 1.35 1.26 1.04 1.13 0.80 1.13
FDE (m) 2.57 2.48 2.31 3.08 2.50 1.25 2.07

5.2  Human driver abnormal behavior detection

5.2.1 Experiment details. In this section, we use open source simulator Simulation of Urban Mobility (SUMO) [48]
to generate the dataset. We first construct a highway scenario: a highway with 5 lanes, 1000m length. The traffic
volume is 8000 Veh/Hour. Without loss of generality, We then set another urban traffic scenario. We construct a
city street with 5 lanes, 1000m length. Two intersections with traffic lights are set 300m and 600m away from the
start point of the street. Each branch road contains 4 lanes, with 2 lanes in each direction. Regarding the traffic
lights, each of them are set to green light status 80% of one cycle, where one cycle is two minutes. The Traffic
volumes are 7000 Veh/Hour on the main road and 200 Veh/Hour on each branch road. The total simulation time
is one hour in both scenarios. Notebly, we set the traffic volume according to the real world traffic report [1]. The
vehicles are simulated using Krauf} car following model [39]. 1000 vehicles are switched to abnormal mode once
they pass a random location on the road. In our experiment, abnormal behaviors include unusual speed control,
larger accelerations, decelerations, frequent lane-changing, and small headways, etc. They differ from the normal
driving behaviors with altered parameters as shown in Table 3. Vehicle trajectories are collected at frequency of
10Hz in one hour with label of whether the vehicle has turned into abnormal driving mode. Both highway and
urban traffic datasets are divided into training and testing set by the ratio of 7:3.
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Table 3. Parameters of different driving behavior types. On longitudinal direction: vehicles
in abnormal driving mode have larger acceleration and deceleration abilities, nonusual maximum
speed, smaller minimum gaps to leading vehicles, and less perfect driving (sigma denotes the driver
imperfection in Krauf} car following model, the larger the more imperfection). On lateral direction:
vehicles in abnormal driving mode are less willing to perform cooperative lane changing (larger
IcCooperative), they will tend to change lane more frequently to gain high speed (larger IcSpeedGain),
and less perfect in lane changing (larger IcSigma).

Parameters Normal driving behavior =~ Abnormal driving behavior
accel (m/s?) 2.6 7
decel (m/s?) 45 8
miniGap (m) 2.5 1.0
sigma 0.1 0.8
maxSpeed (highway) (m/s) 30 20 or 45
maxSpeed (urban) (m/s) 16 7 or 25
speedFactor 1.0 1.2
IcCooperative 1.0 0.1
lcSpeedGain 1.0 5.0
IcSigma 0.1 0.8

Table 4. Distributions of prediction errors on highway dataset. MEATP with shared information
has the smallest mean and the smallest standard deviation. With all the three predictors, the mean
and the standard deviation of the prediction errors on abnormal vehicles are larger than those on
normal vehicles.

Prediction MEATP w/o MEATP w
Parameters . CS-LSTM shared shared
horizon (s) . . . .

information information

Normal Abnormal Normal Abnormal Normal Abnormal

Mean (m) 1 0.89 1.43 0.68 1.41 0.59 1.07

2 1.30 1.96 0.85 1.72 0.73 1.54

3 2.71 3.59 1.23 2.23 0.89 1.93

1 0.93 1.52 1.00 1.35 0.62 1.36

SD (m) 2 1.68 2.50 1.47 2.37 0.79 1.98

3 1.94 3.73 1.57 3.56 0.88 3.17

5.2.2 Detection results. We train our proposed MEATP and the baseline CS-LSTM separately on the normal
vehicles’ trajectories in SUMO-generated highway and urban traffic datasets. We apply the trained predictors to
testing set, then compute the mean and standard deviations of the prediction errors in future 3s. The distributions
of the prediction errors on highway and urban traffic are shown in table 4 and table 5 respectively. It can be
clearly seen that the means and standard deviations of prediction errors on the abnormal vehicles are larger
than those of normal vehicles. This is consistent with our expectation, since the prediction will be less accurate
when the abnormal vehicles have more unreasonable behaviors, such as sudden accelerations and decelerations,
frequent lane changes, etc. What’s more, our proposed MEATP with shared information has smallest mean and
standard deviation among three predictors.
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Table 5. Distributions of prediction errors on urban traffic dataset.

Prediction MEATP w/o MEATP w
Parameters . CS-LSTM shared shared
horizon (s) . . . .
information information
Normal Abnormal Normal Abnormal Normal Abnormal
Mean (m) 1 1.09 1.36 0.78 1.29 0.67 0.95
2 1.62 2.00 0.96 1.65 0.83 1.42
3 2.78 3.43 1.32 2.40 1.01 1.83
1 0.88 1.73 0.89 1.31 0.69 1.35
SD (m) 2 1.71 2.84 1.56 2.66 1.02 1.88
3 2.89 4.60 2.48 3.72 1.13 2.92

Based on the trained predictors and the probability distributions, we apply proposed algorithm 1 to detect
the abnormal behaviors. For each target vehicle, at every time step, we use the trained predictor to predict the
trajectory in future 5s, then compute the prediction error e, based on the true trajectory and predicted trajectory.
After that, W, is computed based on e,, and compared with threshold b to detect the change point. For each target
vehicle, the inference runtime of our detection algorithm equipped with MEATP is 4.8 ms per time step. To be
noticed that, depending on whether we have full knowledge of the post-change distribution g, we evaluate the
algorithm 1 based on three different methods: CuSum, MCuSum and GLRT algorithm in highway and urban traffic
datasets respectively. We add four levels of Gaussian noise to the neighboring vehicles’ coordinates, with mean
and SD being (0.3m, 0.2m), (0.3m, 0.4m), (0.6m, 0.2m), (0.6m, 0.4m) respectively based on the exiting 3D object
detection and tracking algorithms [4, 59, 81], level 0 means no noise in inputs. The detection results are shown in
Table 6 to Table 8. Notably, ADD represents average detection delay in unit of sample. We first summarize our
findings based on the results and analyze them separately in the following parts. Our findings:

e Our proposed algorithm 1, equipped with well trained predictor, has shown great detection performance in
both highway and urban traffic scenarios.

o Information sharing among CAVs helps increase the detection rate, lower the false alarms and average
detection delay.

e our proposed algorithm 1 can be generalized to different scenarios: (1) we have full knowledge about
the pre-change distribution f and post-change distribution g; (2) We have full knowledge about the pre-
change distribution f and only partial knowledge about the post-change distribution g. In both scenarios,
algorithm 1 shows remarkable detection performance. When having least information about the post-
change distributions, algorithm 1 equipped with MEATP with shared information still achieves: detection
rate 91.0%, average detection delay 24.9 samples, 16 false alarms in 300 vehicles.

o Equipped with MEATP with shared information, our detection algorithm is robust to the noises in observa-
tions of the surrounding autonomous vehicles.

Fig. 4 and Fig. 5 show the statistic evolution given the prediction errors of an abnormal vehicle and a normal
vehicle. Notably, the change point, which corresponds to the distribution change, is the point where driver
switches from normal driving mode to abnormal driving mode.

Detection results based on CuSum algorithm. In first scenario, we have full knowledge of the pre-change
distribution f and post-change distribution g. We update statistics W,, based on CuSum algorithm, the detection
results are shown in table 6. It can be seen that, when having full knowledge of the pre-change and post-change
distributions, our proposed algorithm 1 equipped with the well trained predictor can detect the most of the
abnormal driving behavior within a short time in both highway and urban traffic scenarios. Even using the
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Fig. 4. Abnormal behavior statistics. Threshold b = 5. The abnormal vehicle changes from normal driving mode to
aggressive driving mode at time step 190. At time step 215, the statistic W}, exceeds the threshold, thus the detection of
abnormal behavior is declared. Detection delay is 25 samples in this case.
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Fig. 5. Normal behavior statistics. Threshold b = 5. Since W, never exceeds the threshold, the change point, namely the
abnormal behavior is not detected.

baseline CS-LSTM as predictor, our proposed algorithm 1 can achieve around 89.0% of detection rate with ADD
of 18.7 samples. Compared with the baseline predictor CS-LSTM, our proposed predictor MEATP with shared
information outperforms among three predictors, it achieves detection rate of 97.6%, 12.3 samples of ADD, and
zero false alarms in highway traffic scenario. Because the shared information enables the predictor to learn
more about the interactions between target vehicles and its neighboring vehicles, the prediction performance is
much better. Based on the small means and standard deviations of the prediction errors, the detection algorithm
is more likely to detect the changes in the distributions, less likely to declare false alarm, rendering highest
detection rate, smallest false alarms and detection delay. Compared with detection results in highway traffic
datasets, the detection results in urban traffic have similar detection rate, yet more false alarms, this may be
caused by larger variance in prediction errors in urban traffic dataset. Notably, the detection delay in unit of
second is proportional to the sampling rate. The average detection delay of 12.3 samples with 10 Hz sampling rate
rendering the detection delay to be around 1.2s. If we want to detect the abnormal human driver’s behavior as
soon as possible, we can increase the sampling rate. Thus, our proposed abnormal behavior detection algorithm
is generic, the detection delay can be improved by improving the hardware sampling capabilities.
By analysis on CuSum algorithm based detection results, we show that:
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e When having full knowledge of pre-change and post-change probability distributions, our proposed
detection algorithm 1, equipped with well trained predictor, is able to detect most of the abnormal behaviors
in short time with small amount of false alarms.

e Our algorithm 1 has remarkable detection performance in both highway and urban traffic scenarios. In
highway traffic, the best detection performance is: 0 false alarms, detection rate of 97.6%, and ADD 12.3
samples. in urban traffic, the best detection performance is: detection rate 96.3%, ADD 18.4 samples , and 6
false alarms in 300 vehicles.

o The shared information among autonomous vehicles increases the detection rate and lowers the detection
delay, while maintains least false alarms.

Table 6. Detection Results on SUMO dataset based on CuSum

highway traffic urban traffic
Models  Parameters noise level noise level
0 1 2 3 4 0 1 2 3 4
detected 267 264 263 239 226 271 262 258 225 223
false alarm 7 16 26 31 59 20 22 35 59 67

CS-LSTM i pp 187 313 304 287 255 301 251 326 334 317
detreactzon 89.0% 88.0% 87.7% 79.7% 75.3% 90.3% 87.3% 86.0% 75.0% 74.3%
MEATP  detected 282 278 270 261 250 277 273 269 270 259
w/o false alarm 7 16 21 33 42 13 17 25 28 35
shared ADD 220 254 243 255 30. 255 303 282 273 275
information detre:ttelon 94.0% 92.7% 90.0% 87.0% 83.3% 92.3% 89.6% 91.0% 90.0% 86.3%

MEATP detected 293 291 290 288 285 289 284 286 286 283
w shared false alarm 0 1 1 2 4 6 10 8 8 11
information ADD 123 183 17.1 196 23.2 184 136 148 152 18.7
detection
rate

97.6% 97.0% 96.7% 96.0% 95.0% 96.3% 94.7% 95.3% 95.3% 94.3%

Detection results based on MCuSum algorithm. In second scenario, we have full knowledge of the pre-
change distribution f, the unknown post-change distribution g with parameter 6 belongs to a finite set of
distributions: 8. € © = {0y,0,,...0)}. Regarding the true post-change parameters yy, oy, we add two small
magnitude (less than 0.3) gaussian noise to each of them separately, meaning M = 4 in this case. The detection
results based on MCuSum algorithm are shown in table 7. The overall detection performance are slightly worse
than the first scenario where we have full knowledge of distributions f and g. This is consistent with our
expectations. Since we only have partial knowledge about the post-change distributions g, we can only use the
possible set 6 € © = {6, 05, ... 0 }. We perform M CuSum algorithms in parallel, at every time step, we choose
the maximum W, (6) to see whether it exceeds the threshold.

By analysis on MCuSum algorithm based detection results, it shows that:

o There is a trade off between the knowledge we have about post-change distributions and abnormal driving

behavior detection performance.
o When we have full knowledge about pre-change distribution f, and the unknown post-change distribution
g belongs to a finite set, our proposed algorithm 1 still has remarkable detection performance in both
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Table 7. Detection Results on SUMO dataset based on MCuSum

highway traffic urban traffic
Models  Parameters noise level noise level
0 1 2 3 4 0 1 2 3 4
detected 263 258 241 225 213 265 260 224 219 207
false alarm 18 32 42 49 60 17 29 51 65 71

CS-LSTM

ADD 373 240 167 145 117 125 159 168 11.6 128

detre:ttéon 87.7% 86.0% 80.3% 75.0% 71.0% 88.3% 86.7% 74.7% 73.0% 69.0%
MEATP  detected 271 267 262 255 253 263 257 253 251 228
w/o false alarm 12 23 23 26 31 14 21 25 27 57
shared ADD 339 279 30.2 286 273 207 237 272 27.6 257

information detre;téon 90.3% 89.0% 87.3% 85.0% 84.3% 87.6% 85.6% 84.3% 83.7% 76.0%

MEATP detected 291 288 287 284 283 287 283 283 281 278
w shared false alarm 4 6 8 10 10 6 10 11 11 15
information ADD 149 18.2 23.7 225 20.1 16.0 198 18.6 18.1 19.5
detection
rate

97.0% 96.0% 95.7% 94.7% 94.3% 95.7% 94.3% 94.3% 93.6% 92.6%

Table 8. Detection Results on SUMOQO urban dataset based on GLRT

highway traffic urban traffic
Models  Parameters noise level noise level
0 1 2 3 4 0 1 2 3 4
detected 252 233 234 220 201 243 229 231 218 195
false alarm 24 32 36 56 74 26 32 44 75 75

CS-LSTM

ADD 271 275 237 245 263 243 290 287 282 293
detreactt;on 84.0% 77.7% 78.0% 73.3% 67.0% 81.0% 76.3% 77.0% 72.7% 65.0%
MEATP _ detected 271 259 260 258 248 268 254 253 250 245
w/o falsealarm 18 23 27 27 38 25 32 34 37 50
shared ADD 225 257 201 22.6 250 314 33.2 317 321 335
information detection

rate 90.3% 86.3% 86.7% 86.0% 82.7% 89.3% 84.7% 84.3% 83.3% 81.7%

MEATP detected 287 286 283 280 279 283 283 280 278 273
w shared false alarm 5 6 7 11 13 10 11 13 14 16
information ADD 214 20.1 21.8 233 239 23.0 204 21.0 20.2 249
detection

rate

95.7% 95.3% 94.3% 93.3% 93.0% 94.3% 94.3% 93.3% 92.7% 91.0%

highway and urban traffic scenario. Best detection performance based on MEATP with shared information
In highway traffic: detection rate detection rate 97.0%, ADD 14.9 samples, 4 false alarms in 300 vehicles; in
urban traffic: detection rate 95.7%, ADD 16 samples , 6 false alarms in 300 vehicles.
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Detection results based on GLRT algorithm. In the third scenario, we have full knowledge of the pre-change
distribution f with parameter ¢ (y, 0y), for the unknown post-change distribution g with parameter 6(yy, 1), we
only know the minimum magnitude change compared with pre-change parameters: j; — pig > vV, 01 — 09 > Spp.
The detection results based on GLRT algorithm are shown in table 8. As can be seen, since we have even less
information about the post-change distributions, the detection performance slightly drop compared with second
scenario.

By analysis on GLRT algorithm based detection results, we show that:

e When we have full knowledge of the pre-change distribution parameter ¢, and we only know that the
minimum magnitude difference between post-change parameter 6 and pre-change parameter ¢, our
proposed algorithm 1 still shows great detection performance. MEATP with shared information in highway
traffic: detection rate 95.7%, ADD 21.40 samples, 5 false alarms in 300 vehicles; in urban traffic: detection
rate 94.3%, ADD 23.0 samples, 10 false alarms in 300 vehicles.

6 CONCLUSION

This paper proposes abnormal human driving behavior detection algorithm for CAVs based on shared sensing
information in hybrid traffic system. This work, to the best of our knowledge, is the first efficient algorithm that
can accurately and quickly detect abnormal human driving mode switches based on CAVs sensing data without
using in-vehicle sensing data that may hurt human-driver privacy. We first propose a multi-encoder attention
based interaction-aware trajectory prediction model called MEATP. Based on the predictor MEATP, we further
develop an abnormal behavior detection method. Through extensive experiments on both public dataset and
simulator, We show that (1) our proposed MEATP predictor outperforms the baselines; (2) our proposed algorithm
detects abnormal behaviors with remarkable high accuracy (the best performance achieves detection rate of
97.3%) and low detection delay; (3) shared information boosts the performance of both trajectory prediction and
abnormal behavior detection.

REFERENCES

[1] [n.d.]. Caltrans. https://dot.ca.gov/programs/traffic-operations/census/traffic-volumes. Accessed: 2022-02-18.

[2] Nedaa Baker Al Barghuthi and Huwida Said. 2019. Readiness, Safety, and Privacy on Adopting Autonomous Vehicle Technology: UAE
Case Study. In 2019 Sixth HCT Information Technology Trends (ITT). IEEE, 47-52.

[3] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. 2016. Social Istm: Human
trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition. 961-971.

[4] Alireza Asvadi, Pedro Girdo, Paulo Peixoto, and Urbano Nunes. 2016. 3D object tracking using RGB and LIDAR data. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 1255-1260.

[5] Taposh Banerjee and Venugopal V Veeravalli. 2014. Data-efficient quickest change detection with unknown post-change distribution. In
2014 IEEE International Symposium on Information Theory. IEEE, 741-745.

[6] Tobias Bar, Dennis Nienhiiser, Ralf Kohlhaas, and ] Marius Zéllner. 2011. Probabilistic driving style determination by means of a
situation based analysis of the vehicle data. In 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE,
1698-1703.

[7] Alexander Barth and Uwe Franke. 2008. Where will the oncoming vehicle be the next second?. In 2008 IEEE Intelligent Vehicles Symposium.
IEEE, 1068-1073.

[8] Thomas Batz, Kym Watson, and Jurgen Beyerer. 2009. Recognition of dangerous situations within a cooperative group of vehicles. In
2009 IEEE Intelligent Vehicles Symposium. IEEE, 907-912.

[9] Andrew Best, Sahil Narang, Daniel Barber, and Dinesh Manocha. 2017. Autonovi: Autonomous vehicle planning with dynamic maneuvers
and traffic constraints. In 2017 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS). IEEE, 2629-2636.

[10] Manoj Bhat, Jonathan Francis, and Jean Oh. 2020. Trajformer: Trajectory prediction with local self-attentive contexts for autonomous
driving. arXiv preprint arXiv:2011.14910 (2020).

[11] Keshav Bimbraw. 2015. Autonomous cars: Past, present and future a review of the developments in the last century, the present scenario
and the expected future of autonomous vehicle technology. In 2015 12th international conference on informatics in control, automation
and robotics (ICINCO), Vol. 1. IEEE, 191-198.

ACM Trans. Cyber-Phys. Syst.


https://dot.ca.gov/programs/traffic-operations/census/traffic-volumes

(12]
(13]

(14]

(15]

[16]

(17]

Detecting Abnormal Behavior via Information Sharing « 23

Noam Buckman, Alyssa Pierson, Sertac Karaman, and Daniela Rus. 2020. Generating Visibility-Aware Trajectories for Cooperative and
Proactive Motion Planning. In ICRA 2020. IEEE, 3220-3226.

Luca Caltagirone, Mauro Bellone, Lennart Svensson, and Mattias Wahde. 2019. LIDAR-camera fusion for road detection using fully
convolutional neural networks. Robotics and Autonomous Systems 111 (2019), 125-131.

Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Dinesh Manocha. 2019. Traphic: Trajectory prediction in dense and hetero-
geneous traffic using weighted interactions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
8483-8492.

Rohan Chandra, Tianrui Guan, Srujan Panuganti, Trisha Mittal, Uttaran Bhattacharya, Aniket Bera, and Dinesh Manocha. 2020.
Forecasting trajectory and behavior of road-agents using spectral clustering in graph-lstms. IEEE Robotics and Automation Letters 5, 3
(2020), 4882-4890.

M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays. 2019. Argoverse:
3D Tracking and Forecasting with Rich Maps. In Proceedings of (CVPR) Computer Vision and Pattern Recognition. 8740 — 8749.
Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey,
Deva Ramanan, et al. 2019. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 8748-8757.

Kyunghoon Cho, Timothy Ha, Gunmin Lee, and Songhwai Oh. 2019. Deep predictive autonomous driving using multi-agent joint
trajectory prediction and traffic rules. In 2019 IEEE/RST International Conference on Intelligent Robots and Systems (IROS). IEEE, 2076-2081.

19] James Colyar and John Halkias. 2007. Us highway 101 dataset. Highway Administration (FHWA), Tech. Rep (2007), 07-030.
20] James Colyar and John Halkias. 2007. Us highway I-80 dataset. Highway Administration (FHWA), Tech. Rep (2007), 07-030.

(19]
[20]
(21]
[22]
(23]

DSRC Committee et al. 2009. Dedicated short range communications (DSRC) message set dictionary. SAE Standard F 2735 (2009), 2015.
Drew Dawson and Kathryn Reid. 1997. Fatigue, alcohol and performance impairment. Nature 388, 6639 (1997), 235-235.

Nachiket Deo and Mohan M Trivedi. 2018. Convolutional social pooling for vehicle trajectory prediction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 1468-1476.

Bo Dong, Hao Liu, Yu Bali, Jinbiao Lin, Zhuoran Xu, Xinyu Xu, and Qi Kong. 2021. Multi-modal trajectory prediction for autonomous
driving with semantic map and dynamic graph attention network. arXiv preprint arXiv:2103.16273 (2021).

Daniel J Fagnant and Kara Kockelman. 2015. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommen-
dations. Transportation Research Part A: Policy and Practice 77 (2015), 167-181.

[26] Jamil Fayyad, Mohammad A Jaradat, Dominique Gruyer, and Homayoun Najjaran. 2020. Deep learning sensor fusion for autonomous

[27]
(28]
[29]

(30
(31]

=

(32]

vehicle perception and localization: A review. Sensors 20, 15 (2020), 4220.

Sébastien Gambs, Marc-Olivier Killijian, and Miguel Nuiiez del Prado Cortez. 2014. De-anonymization attack on geolocated data. J.
Comput. System Sci. 80, 8 (2014), 1597-1614.

Matthew Gillespie. 2016. Shifting automotive landscapes: Privacy and the right to travel in the era of autonomous motor vehicles. Wash.
UJL & Pol’y 50 (2016), 147.

Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. 2021. Transformer Networks for Trajectory Forecasting. In 2020
25th International Conference on Pattern Recognition (ICPR). 10335-10342. https://doi.org/10.1109/ICPR48806.2021.9412190

Dorothy ] Glancy. 2012. Privacy in autonomous vehicles. Santa Clara L. Rev. 52 (2012), 1171.

S. Han, J. Fu, and F. Miao. 2019. Exploiting Beneficial Information Sharing Among Autonomous Vehicles. In 2019 IEEE 58th Conference
on Decision and Control (CDC). 2226-2232.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735-1780.

[33] Jie Hu, Li Xu, Xin He, and Wugiang Meng. 2017. Abnormal driving detection based on normalized driving behavior. IEEE Transactions

(34]
(35]
(36]
(37]

(38]

on Vehicular Technology 66, 8.(2017), 6645-6652.

Yaocong Hu, Mingqi Lu, and Xiaobo Lu. 2019. Driving behaviour recognition from still images by using multi-stream fusion CNN.
Machine Vision and Applications 30, 5 (2019), 851-865.

WuLing Huang, Kunfeng Wang, Yisheng Lv, and FengHua Zhu. 2016. Autonomous vehicles testing methods review. In 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 163-168.

J. B. Kenney. 2011. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 99, 7 (July 2011), 1162-1182.
https://doi.org/10.1109/JPROC.2011.2132790

Hayoung Kim, Dongchan Kim, Gihoon Kim, Jeongmin Cho, and Kunsoo Huh. 2020. Multi-head attention based probabilistic vehicle
trajectory prediction. In 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 1720-1725.

Seong-Woo Kim and Wei Liu. 2015. The impact of cooperative perception on decision making and planning of autonomous vehicles.
IEEE Intell. Transp. Syst. Mag. 7, 3 (2015), 39-50.

Stefan Krauf. 1998. Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics. (1998).

Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah. 2020. A survey of deep learning applications to autonomous
vehicle control. IEEE Transactions on Intelligent Transportation Systems 22, 2 (2020), 712-733.

ACM Trans. Cyber-Phys. Syst.


https://doi.org/10.1109/ICPR48806.2021.9412190
https://doi.org/10.1109/JPROC.2011.2132790

24

[41]
[42]
(43]
[44]
(45]
[46]
(47]
(48]
(49]
(50]
(51]
(52]

(53]
(54]

[59]

(60]

[61]

(63]

[64]
[65]

[66]
[67]

[68]

«  Wang, Su, Han, Song, and Miao

J. Lee and B. Park. 2012. Development and Evaluation of a Cooperative Vehicle Intersection Control Algorithm Under the Connected
Vehicles Environment. IEEE Trans. Intell. Transp. Syst. 13, 1 (March 2012), 81-90. https://doi.org/10.1109/TITS.2011.2178836
Stéphanie Lefévre, Dizan Vasquez, and Christian Laugier. 2014. A survey on motion prediction and risk assessment for intelligent
vehicles. ROBOMECH journal 1, 1 (2014), 1-14.

Joseph Lemley, Anuradha Kar, Alexandru Drimbarean, and Peter Corcoran. 2019. Convolutional neural network implementation for
eye-gaze estimation on low-quality consumer imaging systems. IEEE Transactions on Consumer Electronics 65, 2 (2019), 179-187.
Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. 2019. Conditional generative neural system for probabilistic trajectory prediction.
arXiv preprint arXiv:1905.01631 (2019).

Zuojin Li, Shengbo Eben Li, Renjie Li, Bo Cheng, and Jinliang Shi. 2017. Online detection of driver fatigue using steering wheel angles
for real driving conditions. Sensors 17, 3 (2017), 495.

Lei Lin, Weizi Li, Huikun Bi, and Linggiao Qin. 2021. Vehicle trajectory prediction using LSTMs with spatial-temporal attention
mechanisms. IEEE Intelligent Transportation Systems Magazine (2021).

Yicheng Liu, Jinghuai Zhang, Liangji Fang, Qinhong Jiang, and Bolei Zhou. 2021. Multimodal motion prediction with stacked transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7577-7586.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterd, Robert Hilbrich, Leonhard Liicken,
Johannes Rummel, Peter Wagner, and Evamarie Wiefiner. 2018. Microscopic Traffic Simulation using SUMO, In The 21st IEEE International
Conference on Intelligent Transportation Systems. IEEE Intelligent Transportation Systems Conference (ITSC). https://elib.dlr.de/124092/
Gary Lorden et al. 1971. Procedures for reacting to a change in distribution. The Annals of Mathematical Statistics 42, 6 (1971), 1897-1908.
Panagiotis Lytrivis, George Thomaidis, and Angelos Amditis. 2008. Cooperative path prediction in vehicular environments. In 2008 11th
International IEEE Conference on Intelligent Transportation Systems. IEEE, 803-808.

Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh Manocha. 2019. Trafficpredict: Trajectory prediction for
heterogeneous traffic-agents. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 6120-6127.

Kaouther Messaoud, Nachiket Deo, Mohan M Trivedi, and Fawzi Nashashibi. 2021. Trajectory prediction for autonomous driving based
on multi-head attention with joint agent-map representation. In 2021 IEEE Intelligent Vehicles Symposium (IV). IEEE, 165-170.

Aaron Miller and Kyungzun Rim. 2020. Cooperative Perception and Localization for Cooperative Driving. In ICRA 2020. IEEE, 1256-1262.
George V Moustakides et al. 1986. Optimal stopping times for detecting changes in distributions. Annals of Statistics 14, 4 (1986),
1379-1387.

Teddy Ort, Liam Paull, and Daniela Rus. 2018. Autonomous vehicle navigation in rural environments without detailed prior maps. In
ICRA 2018. IEEE, 2040-2047.

Ewan S Page. 1954. Continuous inspection schemes. Biometrika 41, 1/2 (1954), 100-115.

Seong Hyeon Park, ByeongDo Kim, Chang Mook Kang, Chung Choo Chung, and Jun Won Choi. 2018. Sequence-to-sequence prediction
of vehicle trajectory via LSTM encoder-decoder architecture. In 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 1672-1678.
Seong Hyeon Park, Gyubok Lee, Jimin Seo, Manoj Bhat, Minseok Kang, Jonathan Francis, Ashwin Jadhav, Paul Pu Liang, and Louis-
Philippe Morency. 2020. Diverse and admissible trajectory forecasting through multimodal context understanding. In European Conference
on Computer Vision. Springer, 282-298.

Zengyi Qin, Jinglu Wang, and Yan Lu. 2019. Monogrnet: A geometric reasoning network for monocular 3d object localization. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 8851-8858.

Bhargava Reddy, Ye-Hoon Kim, Sojung Yun, Chanwon Seo, and Junik Jang. 2017. Real-time driver drowsiness detection for embedded
system using model compression of deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 121-128.

J. Rios-Torres and A. A. Malikopoulos. 2017. A Survey on the Coordination of Connected and Automated Vehicles at Intersections and
Merging at Highway On-Ramps. IEEE Trans. Intell. Transp. Syst. 18, 5 (May 2017), 1066-1077. https://doi.org/10.1109/TITS.2016.2600504
Ya’acov Ritov. 1990. Decision theoretic optimality of the CUSUM procedure. The Annals of Statistics (1990), 1464-1469.

Abbas Sadat, Mengye Ren, Andrei Pokrovsky, Yen-Chen Lin, Ersin Yumer, and Raquel Urtasun. 2019. Jointly learnable behavior and
trajectory planning for self-driving vehicles. arXiv preprint arXiv:1910.04586 (2019).

Joshua Schoonmaker. 2016. Proactive privacy for a driverless age. Information & Communications Technology Law 25, 2 (2016), 96—128.
Mohammad Shahverdy, Mahmood Fathy, Reza Berangi, and Mohammad Sabokrou. 2020. Driver behavior detection and classification
using deep convolutional neural networks. Expert Systems with Applications 149 (2020), 113240.

Araz Taeihagh and Hazel Si Min Lim. 2019. Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity,
and industry risks. Transport reviews 39, 1 (2019), 103-128.

Alireza Talebpour and Hani S Mahmassani. 2016. Influence of connected and autonomous vehicles on traffic flow stability and throughput.
Transportation Research Part C: Emerging Technologies 71 (2016), 143-163.

Han-Shue Tan and Jihua Huang. 2006. DGPS-based vehicle-to-vehicle cooperative collision warning: Engineering feasibility viewpoints.
IEEE Transactions on Intelligent Transportation Systems 7, 4 (2006), 415-428.

ACM Trans. Cyber-Phys. Syst.


https://doi.org/10.1109/TITS.2011.2178836
https://elib.dlr.de/124092/
https://doi.org/10.1109/TITS.2016.2600504

[69]
[70]
(71]
(72]
(73]
(74]
[75]
[76]
(7]

(78]

(79]
(80]
(81]

(82]

(83]

Detecting Abnormal Behavior via Information Sharing « 25

Alexander G Tartakovsky and Aleksey S Polunchenko. 2008. Quickest changepoint detection in distributed multisensor systems under
unknown parameters. In 2008 11th International Conference on Information Fusion. IEEE, 1-8.

Jessica Van Brummelen, Marie O’Brien, Dominique Gruyer, and Homayoun Najjaran. 2018. Autonomous vehicle perception: The
technology of today and tomorrow. Transportation research part C: emerging technologies 89 (2018), 384-406.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. arXiv preprint arXiv:1706.03762 (2017).

Harini Veeraraghavan, Nikos Papanikolopoulos, and Paul Schrater. 2006. Deterministic sampling-based switching Kalman filtering for
vehicle tracking. In 2006 IEEE Intelligent Transportation Systems Conference. IEEE, 1340-1345.

Venugopal V Veeravalli and Taposh Banerjee. 2014. Quickest change detection. In Academic Press Library in Signal Processing. Vol. 3.
Elsevier, 209-255.

Sandor M Veres, Levente Molnar, Nick K Lincoln, and Colin P Morice. 2011. Autonomous vehicle control systems—a review of decision
making. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 225, 2 (2011), 155-195.
Junqing Wei, Jarrod M Snider, Tianyu Gu, John M Dolan, and Bakhtiar Litkouhi. 2014. A behavioral planning framework for autonomous
driving. In 2014 IEEE Intelligent Vehicles Symposium Proceedings. IEEE, 458—464.

Jingwen Wu, Hua Liao, and Jin-Wei Wang. 2020. Analysis of consumer attitudes towards autonomous, connected, and electric vehicles:
A survey in China. Research in transportation economics 80 (2020), 100828.

Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi, and Hongkai Xiong. 2021. Spatial-Temporal Transformer
Networks for Traffic Flow Forecasting. arXiv:2001.02908 [eess.SP]

Chao Yan, Frans Coenen, Yong Yue, Xiaosong Yang, and Bailing Zhang. 2016. Video-based classification of driving behavior using a
hierarchical classification system with multiple features. International Journal of Pattern Recognition and Artificial Intelligence 30, 05
(2016), 1650010.

Siqian Yang, Cheng Wang, Hongzi Zhu, and Changjun Jiang. 2019. APP: augmented proactive perception for driving hazards with
sparse GPS trace. In Proceedings of the twentieth ACM international symposium on mobile Ad Hoc networking and computing. 21-30.
Lanhang Ye and Toshiyuki Yamamoto. 2019. Evaluating the impact of connected and autonomous vehicles on traffic safety. Physica A:
Statistical Mechanics and its Applications 526 (2019), 121009.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. 2021. Center-based 3d object detection and tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11784-11793.

Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi, Chris Baker, Yibiao Zhao, Yizhou Wang, and Ying Nian Wu. 2019. Multi-agent
tensor fusion for contextual trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12126-12134.

Gao Zhenhai, Le DinhDat, Hu Hongyu, Yu Ziwen, and Wu Xinyu. 2017. Driver drowsiness detection based on time series analysis of
steering wheel angular velocity. In 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).
IEEE, 99-101.

ACM Trans. Cyber-Phys. Syst.


https://arxiv.org/abs/2001.02908

	Abstract
	1 Introduction
	2 Related Work
	2.1 Trajectory prediction and transformer neural network
	2.2 Information sharing for connected vehicles
	2.3 Abnormal human driver's behavior detection

	3 Problem Description
	3.1 Hybrid traffic system description
	3.2 Information shared to the ego vehicle

	4 Abnormal Behavior Detection Framework
	4.1 Multi-encoder attention based trajectory predictor (MEATP)
	4.2 Shared information based abnormal behavior detection algorithm
	4.3 Algorithms to calculate Wn for abnormal behavior detection

	5 Experiments
	5.1 Trajectory prediction
	5.2 Human driver abnormal behavior detection

	6 Conclusion
	References

