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Abstract— The recent advancements in wireless technology
enable connected autonomous vehicles (CAVs) to gather infor-
mation about their environment by vehicle-to-vehicle (V2V)
communication. In this work, we design an information-sharing-
based multi-agent reinforcement learning (MARL) framework
for CAVs, to take advantage of the extra information when
making decisions to improve traffic efficiency and safety. The safe
actor-critic algorithm we propose has two new techniques: the
truncated Q-function and safe action mapping. The truncated
Q-function utilizes the shared information from neighboring
CAVs such that the joint state and action spaces of the Q-function
do not grow in our algorithm for a large-scale CAV system.
We prove the bound of the approximation error between the
truncated-Q and global Q-functions. The safe action mapping
provides a provable safety guarantee for both the training and
execution based on control barrier functions. Using the CARLA
simulator for experiments, we show that our approach improves
the CAV system’s efficiency in terms of average velocity and
comfort under different CAV ratios and different traffic densities.
We also show that our approach avoids the execution of unsafe
actions and always maintains a safe distance from other vehicles.
We construct an obstacle-at-corner scenario to show that the
shared vision can help CAVs to observe obstacles earlier and
take action to avoid traffic jams. The experiment video is on
https://songyanghan.github.io/cavmarl/.

Index Terms— Autonomous vehicle, multi-agent reinforcement
learning, convolutional neural network, control barrier function.

I. INTRODUCTION

WIRELESS communication technologies such as WiFi
and 5G cellular networks enable vehicle-to-vehicle

(V2V) communication [1], [2]. The U.S. Department of Trans-
portation (DOT) estimated that V2V communication could
address up to 82% of crashes in the U.S. every year [3], [4].
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Sharing basic safety messages (BSMs) benefits the coordina-
tion of connected autonomous vehicles (CAVs) at intersections
and lane-merging scenarios [5], [6], [7], [8]. However, when
CAVs get extra environment knowledge via V2V commu-
nication, how to make prudent decisions to improve traffic
efficiency, and whether communication can bring benefits are
still unsolved challenges.

In this work, we consider utilizing V2V communication
among CAVs to make better behavior planning and control
decisions, such as lane-changing and lane-keeping, while
meeting safety requirements and improving traffic efficiency.
This problem is not well-studied. Most existing CAV frame-
works assume that the lane-changing or keeping decision has
already been made, such as platooning [4], adaptive cruise
control (ACC) [9], and cooperative adaptive cruise control
(CACC) [10]. Reinforcement learning (RL) has shown advan-
tages in decision-making for a single autonomous vehicle
in complex driving environments [8], [11], [12], [13], [14],
[15], and learning-based method for traffic flow management
of autonomous vehicle systems [16], [17]. However, the
RL-based decision-making method for multiple CAVs’ con-
sidering both the system-level objective and individual CAV’s
safety requirements has not been thoroughly researched [13].
To address this challenge, we design a multi-agent reinforce-
ment learning (MARL) approach. Existing MARL algorithms
usually require a centralized critic with access to the global
state and the global action [18], which poses three significant
challenges for real-world implementation:

• It is difficult for each CAV to get the global state and the
global action considering the communication overheads.

• The joint state and action spaces of the critic (Q-function)
grow combinatorially with the total number of CAVs. The
computational overheads become burdensome when the
total number of CAVs becomes very large.

• The action used for both training and execution may be
unsafe for the safety-critical CAV system [19].

To tackle these challenges, we design a new algorithm, called
the safe actor-critic algorithm, with two new techniques:
truncated Q-function and safe action mapping.

To the best of our knowledge, this is the first attempt
to design a safe MARL algorithm to solve the behavior
planning challenges for CAVs considering the dynamic control
process. We design a truncated Q-function with neighboring
vehicles’ states and actions to approximate the global action
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value function with global states and actions in the MARL.
We design a safe action mapping algorithm based on control
barrier functions (CBFs) to make sure that the actions trained
and executed by our proposed MARL algorithm are safe.
In experiments, we show that our approach increases traffic
efficiency and guarantees safety.

In summary, the main contributions of this work are:
• We propose a novel safe and efficient actor-critic

algorithm for behavior planning of CAVs based on two
new techniques: 1) Truncated Q-function (for the first
two challenges above): Each vehicle learns a truncated
Q-function as a critic that only needs the states and
actions from neighboring vehicles. The joint state and
action spaces of the truncated Q-function do not grow in
a large-scale CAV system. 2) Safe action mapping (for
the third challenge above): We map any action in the
action space to the safe action set so that the training and
execution have provable safety guarantees.

• To support the learning process of the truncated
Q-function, we propose a weight-pruned convolutional
neural network (CNN) technique to process the images
from the camera and point clouds from LIDAR fast
enough such that the vision information is always avail-
able for the learning of the truncated Q-function.

• We validate our algorithms in the CARLA simulator [20]
that can simulate complicated mixed traffic environments
including both autonomous and human-driven vehicles.
The experiments show that the safe actor-critic algorithm
can improve traffic efficiency with safety guarantees. We
also validate our MARL algorithm in challenging driving
scenarios like obstacle-at-corner, and the shared vision
with our algorithm helps vehicles to avoid traffic jams.

The rest of this paper is organized as follows. We introduce
the related work in Section II. In Section III, we introduce the
V2V communication setting, formulate the behavior planning
and control problem, and give an overview of our novel
solutions. In Section IV we propose the truncated Q-function
with provable approximation error. In Section V, we design a
safe action mapping technique and propose a safe actor-critic
algorithm for behavior planning. In Section VI, we show the
experimental results with safety and efficiency improvements.
Section VII concludes the work.

II. RELATED WORK

A. Deep Learning Framework For Autonomous Driving

Autonomous vehicles can learn the steering angle and accel-
eration directly based on vision perception, such as end-to-end
imitation learning [21], and end-to-end reinforcement learn-
ing [11], [12], [22]. However, end-to-end frameworks usually
only show effectiveness in lane-keeping scenarios without
lane-changing behaviors [11], [12], [22], [23]. Moreover, they
do not have a provable safety guarantee. We also show in our
experiments that vehicles have zigzag trajectories using end-
to-end learning without explicitly deciding to change lanes but
directly deciding steering angle and acceleration. Therefore,
the end-to-end framework does not fit our CAV problem.

When considering lane-changing behaviors, it is popular to
separate the learning and control modules [24], [25], [26],

[27]. The learning module makes a high-level decision, such
as “go straight”, “go left” [25], or “yield to another vehi-
cle” [24]. Then the control module implements the high-level
decision with a safety guarantee [25]. Therefore, we design
a discrete action space with continuous control inputs to
execute the lane-keeping or lane-changing maneuver in our
proposed MARL algorithm. Existing literature only considers
the learning and control for a single autonomous vehicle,
while in this work we solve the more challenging learning
and control problem for a multi-vehicle system.

B. Multi-Agent Reinforcement Learning

Existing multi-agent reinforcement learning (MARL) lit-
erature [28] has not fully solved the challenges for CAVs.
How communication among agents will improve systems’
safety or efficiency in policy learning has not been addressed.
Recent advancements like multi-agent deep deterministic pol-
icy gradient (MADDPG) [18], the attention mechanism [29],
cooperative MARL [30], [31], [32], [33], [34] and league
training [35], do not specify communication among agents
or safety guarantees for the learned policy. A recent MARL
work designs a scalable actor-critic algorithm for networked
systems [36], but the method cannot be applied to physi-
cal systems like CAVs or provide critical safety guarantees.
Moreover, their localized policy only relies on the local
state, while in our design the localized policy utilizes the
information sharing capability of CAVs and the shared states
from neighbors. Therefore, we consider a novel problem of
CAVs’ planning with information sharing and design a safe
MARL algorithm with a scalable critic function and provable
safety guarantees.

C. Safe RL and MARL

Safe reinforcement learning is an increasingly important
research area for real-world safety-critical applications [37],
[38]. The existing safe RL methods for single-agent RL cannot
be directly used to solve the challenges in MARL considered
in this work [22], [39], [40]. The Monte Carlo tree search
method is used to search for safe actions in single-agent
RL [39], but the search space grows combinatorially large
without a formal safety guarantee in MARL. Control barrier
functions (CBFs) have been applied to guarantee the safety
learning of continuous action space for a single vehicle [22].
The safe RL in [40] aims to maximize the expected reward
while keeping safety constraints for a single agent. However,
we consider a more challenging multi-agent problem with
discrete action and continuous control inputs.

The existing safe MARL methods either cannot solve the
CAV challenges or interrupt the learning process of the MARL
agents. Safe MARL methods mainly have two types: con-
strained MARL or shielding for exploration. In constrained
MARL [41], agents maximize the total expected return while
keeping the costs lower than the designed bounds. However,
the constraints in these methods cannot explicitly represent the
safety requirement at every timestep of a physical dynamic
system like CAVs, and safety constraints can be violated
in practice. The model predictive shielding (MPS) algorithm
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Fig. 1. The system modeling of the behavior planning and control problem
considered in this work. We design a novel safe behavior planning and control
framework with decentralized training and decentralized execution to tackle
the new challenges for CAVs.

provably guarantees safety for any learned MARL policy [42],
[43]. The basic idea is to use a backup controller to over-
ride the learned policy by dynamically checking whether the
learned policy can maintain safety. However, this overriding
interrupts the learning process. Our proposed algorithm maps
any action in the action space to a safe action such that the
MARL agent can keep learning without being interrupted, and
guarantees the safety of both training and execution of MARL
considering vehicles’ physical dynamics.

III. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

We consider behavior planning (such as deciding when to
change or keep lanes) and control of CAVs to improve traffic
efficiency with safety guarantees. The driving environment is
a multiple-lane freeway mixed with CAVs and human-driven
vehicles, and our decision-making framework is designed for
the CAVs. Human-driven vehicles are considered part of the
environment and can be observed by the onboard sensors.

We assume that each CAV receives the following informa-
tion from its neighboring CAVs by V2V communication:
• Each neighboring CAV’s position, velocity, and

acceleration.
• Each neighboring CAV’s vision information (detection

results) captured by the onboard camera and LIDAR
sensors and processed by a convolutional neural network.

• Each neighboring CAV’s action in the action set {Change
Left, Change Right, Keep Lane}.

Sharing vehicle’s states and actions has already been used in
many CAV applications [6], [8], [44], [45], our V2V commu-
nication demand is satisfied by the recent V2V communication
advances [2], [4].

One typical workflow for an autonomous vehicle includes
perception, prediction, mapping and localization, routing,
behavior planning, and control [25]. We focus on the last two
modules: the behavior planning module to determine whether
to change or keep lanes; the control module to control the
steering angle and the acceleration. The system modeling
is shown at the bottom of Fig. 1. In our framework, the
behavior planning module selects one of the discrete actions.
We aim to find a policy for each CAV to decide the action
to improve traffic efficiency with safe control inputs. For an

autonomous vehicle, the behavior planning module and the
control module work in different frequencies. One example
is that the behavior planning module updates at 2Hz and the
control module updates at 100Hz [46]. This is one reason why
we separate the behavior learning and control modules.

In summary, our goal is to design a behavior planning and
control framework for CAVs to improve the transportation
system’s safety and efficiency.

A. Problem Formulation

In this section, we formulate the problem for the MARL-
based behavior planning and the continuous space physical
dynamic control module in Fig. 1.

1) Behavior Planning: We consider n CAVs with an undi-
rected graph G = (N , E) as the communication connections.
The nodes N = {1, . . . , n} is the set of CAVs and E ⊂ N×N
is the edge set. Each vehicle i is associated with an action
ai
∈ Ai and a state si

∈ S i . The action set Ai is {Keep Lane
(KL), Change Left (CL), and Change Right (CR)}. The state
si of each vehicle is {position, velocity, acceleration, vision
information}, where the vision information is captured by the
onboard camera and LIDAR sensors and processed according
to the weight-pruned CNN to be introduced in Section IV-C.
The global state is s = (s1, . . . , sn) ∈ S := S1

× · · · × Sn .
The global action is a = (a1, . . . , an) ∈ A := A1

× · · · ×An .
Each vehicle has a stage-wise reward function r i (si , ai ) that

depends on its local state and action. The global stage-wise
reward is r(s, a) = 1

n
∑n

i=1 r i (si , ai ). Each vehicle is associ-
ated with a localized policy π i (ai

|s N i
) given the joint states

s N i
of its neighbors (including itself). We use π(a|s) to denote

the joint policy of n CAVs. The action-value function for the
joint policy π is

Q(s, a) = Eak∼π(a|s)

[
∞∑

k=0

γ krk+1(sk, ak)|s0 = s, a0 = a

]

=
1
n

n∑
i=1

Eak∼π(a|s)[
∞∑

k=0

γ kr i
k+1(s

i
k, ai

k)|s0 = s, a0 = a

]

:=
1
n

n∑
i=1

Qi (s, a), (1)

where Qi (s, a) is the action value function for each vehicle i
and γ ∈ (0, 1) is a discount factor.

The objective is to find a policy π to maximize the total
expected return of n CAVs:

G = Es0∼p0 Eak∼π(a|s)

[
∞∑

k=0

γ krk+1(sk, ak) | s0

]
, (2)

where p0 is the initial state distribution.
2) Control: As shown in Fig. 1, we consider the physical

dynamics for each vehicle i in the control affine form:

xt+1 = f (xt )+ g(xt )ut + wt .
1 (3)
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Fig. 2. Our proposed learning and control framework for the behavior
planning and control problem. We design a safe actor-critic MARL algorithm
to learn a policy to select actions. We use two new techniques in our algorithm:
truncated Q-function and safe action mapping. We also introduce a CBF-QP
controller to generate control inputs for steering angle and acceleration with
provable safety guarantees.

with f and g locally Lipschitz ,2 x ∈ X ⊂ Rnx is the control
state and u ∈ U ⊂ Rmu is the control input, w is the bounded
noise that satisfies ∥wt∥ ≤ W for all t ≥ 0.

We want to find control inputs such that xt is always in a
safe set C ⊆ X . In other words, the ego vehicle stays within
a given range or a bounding box of its planned trajectory and
does not collide with other vehicles or obstacles.

Note that we use t and k to distinguish between the
controller timestep and reinforcement learning timestep. We
want to find a policy π(ak |sk) to maximize the total expected
return G; meanwhile, there should exist control inputs ut ∈ U
for each vehicle to execute the action and guarantee that xt ∈ C
for all t ≥ 0 given the initial state x0 ∈ C.

B. Our Novel Solution Overview

In this work, we design a novel behavior learning and
control framework with a safe actor-critic algorithm for
decentralized training and decentralized execution as shown in
Fig. 2. We assume that all CAVs share their states (including
weight-pruned CNN processed vision information) and actions
with others. Each CAV uses minibatch gradient descent to
learn the truncated Q-function as a critic to be introduced
in Section IV. Then each CAV learns a localized policy
8(π(ai

|s N i
)) based on the learned critic with a safe action

mapping 8 to be introduced in Section V. The details of this
safe actor-critic algorithm will be introduced in Section V-A.

IV. TRUNCATED Q-FUNCTION

In this section, we introduce the design of truncated action
value function Q to solve the first two challenges mentioned
in the introduction such that the training process utilizes the

1The controller uses the same design for each vehicle i . We drop the
superscript i in control states and control inputs when there is no confusion.

2A function f : Rnx → R is called Lipschitz continuous over X if and
only if there exists a constant K ≥ 0 such that for any x1, x2 ∈ X ,

| f (x1)− f (x2)| ≤ K |x1 − x2| .

A function f : Rnx → R is called locally Lipschitz continuous if for every
x ∈ X there exists a neighborhood Xx of x such that f is Lipschitz continuous
over Xx .

information sharing capability of neighboring CAVs instead of
relying on the global states and actions of all agents. Moreover,
the joint state and action spaces of the truncated Q-function
do not grow with the total number of CAVs.

We first define a truncated Q-function in subsection A to
approximate the global Q-function and prove that the approx-
imation error is bounded in Theorem 1 and Theorem 2. This is
one main result of this work. Then, we introduce the truncated
Q-network design. At last, we introduce how to overcome the
challenges of sharing vision information (required in the input
of truncated Q-function) using the weight-pruned CNN.

A. Truncated Q-Function Approximation

To tackle the new challenges for the CAVs, we introduce
how to use the truncated Q-function to approximate the global
Q-function. The key idea is that the further the vehicles are
away from the ego vehicle,3 the less impact they will have on
the ego vehicle. To illustrate this idea, we first introduce one
assumption:

Assumption 1: At each time instant k, each vehicle i’s next
state si

k+1 is independently generated and only depends on its
neighbors, hence,

P(sk+1|sk, ak) =

n∏
i=1

P(si
k+1|s

N i

k , aN i

k ), (4)

where N i means the 1-hop neighborhood of vehicle i including
itself, s N i

and aN i
are the joint states and joint actions of N i .

This assumption follows the idea that vehicles far away
from the ego vehicle do not have a direct influence on the ego
vehicle. Then we introduce the definition of the exponential
decay property. We use N i

κ to denote the κ-hop neighborhood
of vehicle i for κ ≥ 1 (including all vehicles whose graph
distance to i is less than or equal to κ). We use N−i

κ to
denote the vehicles that are outside of vehicle i’s κ-hop
neighborhood. Then the global state s can be divided into
two parts (s N i

κ , s N−i
κ ). Similarly, we divide the global action

a into (aN i
κ , aN−i

κ ). The exponential decay property is defined
for the global Qi -function as follows.

Definition 1 (Exponential decay property [36]):
The (c, ρ)-exponential decay property holds for the global
Qi -function in (1) if there exists some c > 0 and 0 < ρ <

1 such that for any i ∈ N ,∀s N i
κ ∈ SN i

κ ,∀s N−i
κ ∈ SN−i

κ ,

∀s′N
−i
κ ∈ SN−i

κ ,∀aN i
κ ∈ AN i

κ ,∀aN−i
κ ∈ AN−i

κ ,∀a′N
−i
κ ∈ AN−i

κ ,
it holds that |Qi (s N i

κ , s N−i
κ , aN i

κ , aN−i
κ ) − Qi (s N i

κ , s′N
−i
κ , aN i

κ ,

a′N
−i
κ )| ≤ cρκ .

This property shows that the impact of the states and
the actions of the κ-hop neighborhood on the global
Qi -function decreases exponentially as κ increases. The fol-
lowing Theorem 1 shows that the exponential decay property
holds for the global Qi -function in our CAV MARL problem.
The proof of this theorem is postponed to Appendix B. This
property is utilized for CAVs to get rid of the dependence on
the global states and actions.

3We refer to the vehicle we focus on (vehicle i) as the ego vehicle.
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Fig. 3. The truncated Qi (s N i
κ , aN i

κ ) network for the behavior planning with the LSTM (long short-term memory) layer and FC (fully connected) layers.
We use truncated Q-function to approximate the centralized critic such that the training process utilizes the information sharing capability of CAVs instead
of relying on the global states and actions.

Theorem 1: If for all i ∈ N , the reward r i is upper bounded
by r̄ , then the ( r̄

1−γ ,
√
γ )-exponential decay property holds for

Qi in (1) under Assumption 1, where γ is the discount factor.
Proof: See Appendix B.

Theorem 1 shows that with the exponential decay property,
the states and actions of vehicles far away have limited con-
tribution to estimating the global Qi -function for the agent i .
Based on this property, we define a truncated Q-function as
follows to approximate the global Qi -function.

Definition 2 (Truncated Q-function): The truncated
Q-function for each vehicle i only takes in the states and
actions of the κ-hop neighborhood of vehicle i as follows:

Qi (s N i
κ , aN i

κ ) := Qi (s N i
κ , 0, aN i

κ , 0), (5)

where s N−i
κ and aN−i

κ are selected as 0 .4

The benefit of using the truncated Q-function to approxi-
mate the global Q-function is that the truncated Q-function
only needs the states and actions of the κ-hop neighborhood
of vehicle i instead of the global states and global actions.
The joint state and action spaces of the truncated Q-function
do not grow with the total number of CAVs. We have the
following theorem to give a bound of the approximation error
by using the truncated Q-function.

Theorem 2: If for all i ∈ N , the reward r i is upper bounded
by r̄ , then, under Assumption 1, it holds that for all s ∈ S and
a ∈ A, ∣∣∣Qi (s N i

κ , aN i
κ )− Qi (s, a)

∣∣∣ ≤ r̄
1− γ

γ
κ
2 . (6)

Proof: Since ∀i ∈ N , r i
≤ r̄ , the ( r̄

1−γ ,
√
γ )-

exponential decay property holds using Theorem 1. According
to Definition 1, ∀i ∈ N ,∀s N i

κ ∈ SN i
κ ,∀(s N−i

κ , s N−i
κ
∗ ) ∈

SN−i
κ ,∀aN i

κ ∈ AN i
κ ,∀(aN−i

κ , aN−i
κ
∗ ) ∈ AN−i

κ , we have
|Qi (s N i

κ , s N−i
κ
∗ , aN i

κ , aN−i
κ
∗ ) − Qi (s N i

κ , s N−i
κ , aN i

κ , aN−i
κ )| ≤

r̄
1−γ γ

κ/2. That is to say |Qi (s N i
κ , s N−i

κ
∗ , aN i

κ , aN−i
κ
∗ ) −

Qi (s, a)| ≤ r̄
1−γ γ

κ/2. By plugging in s N−i
κ
∗ and aN−i

κ
∗ as 0,

we have
∣∣∣Qi (s N i

κ , aN i
κ )− Qi (s, a)

∣∣∣ ≤ r̄
1−γ γ

κ/2.

Theorem 2 shows that the approximation error of the
truncated action value function Qi (s N i

κ , aN i
κ ) is bounded by

4We assume that 0 represents a valid state or action in SN−i
κ and AN−i

κ .

r̄
1−γ γ

κ/2. As the communication technology develops, the
κ becomes larger and this approximation error decreases
exponentially small. Information shared from neighbors shows
benefit in getting a scalable and well-approximated Q-function
for MARL-based CAV behavior learning. Results in Theo-
rem 1 and Theorem 2 show that the ego vehicle only needs
to get the states and actions of its neighboring vehicles rather
than that of all CAVs to learn the truncated Q-function.

B. Truncated Q-Network

The Qi (s N i
κ , aN i

κ )-network we use for the behavior planning
is shown in Fig. 3. We consider the action set A includes
{Keep Lane (KL), Change Left (CL), and Change Right
(CR)}. The inputs of the truncated Q-network include:
• Ego vehicle’s vision information including onboard cam-

era images and LIDAR data (point clouds);
• Shared states (including shared vision information) and

actions from neighboring CAVs via V2V;
• Ego vehicle’s state si and action ai .
The input design is based on Theorem 2. Since we can

use truncated Qi (s N i
κ , aN i

κ ) to approximate Qi (s, a) with
bounded approximation error, the input of the Qi (s N i

κ , aN i
κ )-

network does not rely on the global s and the global action a.
Meanwhile, the joint state and action spaces do not grow
even in a large-scale system. In this Q-network, we adopt the
ResNet-18 [47] structure to process the images and the Point-
Pillars [48] to process the point clouds. The implementation
details will be introduced in the experiment section.

Remark 1: Information sharing can be very useful for micro
control as it enables coordination and collaboration among
different entities. However, we emphasize that to achieve
system optimality, accurate prediction for decision-making is
equally crucial. While information sharing is an important
initial step toward achieving system optimality, it must be fol-
lowed by accurate prediction and decision-making. Therefore,
the goal should not be limited to sharing information, but
rather to use this information to make informed decisions.

C. Weight-Pruned CNN For Truncated Q-Function Learning

When updating the truncated Qi (s N i
κ , aN i

κ )-network,
we need the κ-hop neighborhood’s states including vision
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information captured by onboard cameras and LIDAR sensors.
Therefore, we assume all CAVs share their states by V2V
communication. However, it is unrealistic for CAVs to share
the raw camera images and point clouds with others due to
the following two reasons: (i) the limited bandwidth of a V2V
link prevents sharing the raw camera and LIDAR information
among vehicles [49]; (ii) the same shared information on
neighboring vehicles needs to be repeatedly learned for lane
information extraction, resulting in computing resource waste.

To overcome these challenges, we first process the vision
information locally using CNNs and then share the extracted
features with neighboring vehicles. We observe that the
processing time of point cloud data is significantly longer
(11.16×) than that of images. The point cloud data processing
becomes the “critical path” of the overall vision process since
the raw images and point clouds need to be synchronously
processed and shared for behavior planning. Previous research
has shown that there exists redundancy in CNN model param-
eters [50], [51]. Hence, we further develop a weight pruning
technique to speed up the slower process.

CNN weight pruning can be used to exploit the redundancy
in the parameterization of deep architectures while maintaining
the CNN model accuracy. The key idea is to represent a
neural network with a simpler model through pruning the
redundant weights (whose magnitudes are below a threshold).
We formulate the weight pruning problem in an N -layer CNN
as:

minimize
{Wi }

F
(
{Wi }

N
i=1

)
,

subject to cardinality(Wi ) ≤ li , i = 1, . . . , N , (7)

where Wi represents the weights in the i-th layer. F is the
CNN loss function with respect to Wi . Here, we use the
cross entropy loss as the CNN loss to measure the difference
between the real label and the predicted label, and minimize
the loss function to obtain a candidate solution that has
the lowest error [52]. We use li to represent the desired
numbers of non-zero weights [53]. Then we retrain the CNN
to fine-tune the weights of the remaining connections. Our
vision processing method is used to extract features of both
autonomous and human-driven vehicles in the mixed traffic
environment. The implementation details of the weight-pruned
CNN will be introduced in the experiment section.

V. BEHAVIOR PLANNING AND SAFETY

In this section, we introduce our main contribution, the safe
actor-critic MARL algorithm, to learn a behavior planning
policy 8(π) to select actions. A safe action mapping 8 based
on the control barrier function (CBF) is designed to solve
the last challenge mentioned in the introduction to guarantee
that the action explored in training and execution is safe with
feasible control inputs. The novel safe actor-critic algorithm
and the resulting localized policy design can utilize the unique
strength of CAVs to gather more information for decision
making based on V2V communication. We also introduce the
control barrier function (CBF)-based quadratic programming
(QP) controller in subsection B to generate control inputs for
steering angle and acceleration with provable safety.

Algorithm 1 Safe Action Mapping 8

1 Input: action set A, action ai
∈ A ;

2 Output: safe action ai
∈ CA ⊆ A ;

3 while True do
4 if ai is safe, i.e., the CBF-QP (introduced in

subsection B) has a feasible solution when
plugging in ai then

5 return ai ;
6 else
7 Remove ai from A;
8 if A is not empty then
9 find action in A with the highest Q value

and assign it to ai ;
10 else
11 return ai

= E S, emergency stop [54];
12 end
13 end
14 end

A. Behavior Planning Algorithm

Since autonomous driving is a safety-critical application,
the behavior policy used to explore different actions must be
designed rigorously to avoid potential accidents. The action
a generated by the traditional policy for exploration, like the
ϵ-greedy method [55], may not be safe to execute without
additional checking. For example, lane-changing may lead to
collisions with neighboring vehicles. To ensure that there are
no collisions during the training process, we design a safe
action mapping function 8 to map any action from the action
set A to the safe action set CA ⊆ A.

1) Safe Action Mapping: The safe action mapping 8 is
shown in Alg. 1. We use a CBF-QP controller (it is to be
introduced in subsection B) to evaluate whether an action is
safe or not. If a is safe, then return the safe action a; if not, the
controller will search other actions in A in descending order
according to their action value and find a safe one. If all the
actions in A are not safe in the worst case, then the controller
will apply the emergency stop (ES) process. In case when
the safe action set CA is empty, an emergency stop will be
executed, and the corresponding state will be marked unsafe
and receive a large penalty. The emergency stop will only be
performed in an emergency scenario where all normal actions
are not safe [54].

2) Safe Actor-Critic Algorithm: In our behavior planning
algorithm design, we use a decentralized training and decen-
tralized execution paradigm. Each CAV learns a truncated
critic Qi (s N i

κ , aN i
κ ) and then use it to train a localized pol-

icy 8(π i (ai
|s N i

)) for decentralized execution. We adopt an
actor-critic structure so that the actor and the critic can use
different information sets. We do not derive a policy directly
from the truncated Qi (s N i

κ , aN i
κ ) function but design an actor

besides the critic, because we want the policy for each CAV to
only depend on its available states information excluding the
κ-hop neighbors’ actions. Otherwise, there will be a deadlock
during execution, and CAVs will wait for each other’s actions.

Our main design, the safe actor-critic algorithm, is shown in
Alg. 2. We mainly design two new techniques in our algorithm:
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Algorithm 2 Safe Actor-Critic Algorithm

1 Randomly initialize the critic network Qi and the actor
network π i for agent i . Initialize target networks
Q′i , π ′i . Initialize replay buffers Di ;

2 for each episode do
3 Initialize the global state s;
4 for each timestep do
5 With probability ϵ, select action

ai
= 8(π i (s N i

)) for each agent i , where 8 is
the safe action mapping in Alg. 1. With
probability 1− ϵ, select an action ai for each
agent i in {8(ai )|ai

∈ A} randomly;
6 Execute actions a = (a1, . . . , an) and observe

reward r and new state s′;
7 for each agent i do
8 Store (s N i

κ , aN i
κ , r i , s′N

i
κ ) in replay buffer

Di ;
9 Sample a random minibatch with size K

from Di ;

10 Set yi
k = r i

k + γQ
′i (s′N

i
κ

k , a′N
i
κ

k )|a′i=π ′i (s′Ni
)
;

11 Update critic by minimizing the loss

L(θ i ) = 1
K

∑
k(y

i
k −Qi (s N i

κ

k , aN i
κ

k ))2;
12 Update actor using the gradient ∇θ i J =

1
K

∑
k ∇θ iπ i (s N i

)∇aiQi (s N i
κ

k , aN i
κ

k ) where
ai
= π i (s N i

);
13 Update target networks:

θ ′i ← τθ i
+ (1− τ)θ ′i .

14 end
15 Set s ← s′;
16 end
17 end

• Truncated Q-function: Each vehicle learns a truncated
Q-function in decentralized training such that the training
process does not rely on the global states and the global
actions. The joint state and action spaces of the truncated
Q-function do not grow in a large-scale CAV system.

• Safe action mapping: We map any action in the action
space to the safe action set so that the training and
execution have provable safety guarantees.

The transition experience in Alg. 2 is represented by
(s N i

κ , aN i
κ , r i , s′N

i
κ ), where s N i

κ and aN i
κ are the current states

and actions of the κ-hop neighborhood including vehicle i , r i

is the reward, s′N
i
κ is the next states of the κ-hop neighborhood

including vehicle i . This algorithm learns a truncated critic
Qi (s N i

κ , aN i
κ ) by minimizing the Bellman loss:

L(θ i ) = E
s Ni
κ ,aNi

κ ,r i ,s′N
i
κ

[
(yi
−Qi (s N i

κ , aN i
κ ; θ i ))2

]
, (8)

where yi
= r i
+γ ·Q′i (s′N i

κ , a′N
i
κ ; θ ′i )|a′i=π ′i (s′Ni

)
, γ is the dis-

count factor, Q′i is the target network for the critic, π ′i is the
target network for the actor. The safe action mapping assures
the policy used to produce a new transition experience is safe.
The generated experience is stored in a replay buffer Di . When
training the Qi -network, a mini-batch is sampled from Di to
decorrelate data. Then we use this truncated critic to train a

localized actor using the following gradient

∇θ i J = E
s Ni
κ ,aNi

κ∼Di

[
∇θ iπ

i (s N i
)∇aiQi (s N i

κ , aN i
κ )

]
. (9)

Remark 2: The safe actor-critic algorithm in Alg. 2 is
scalable for a large-scale CAV system for the following two
reasons: (i) The Alg. 2 learns a truncated action value function
Qi (s N i

κ , aN i
κ ) that only requires the states and actions of

vehicle i’s κ-hop neighborhood, i.e., the joint state and action
spaces of the truncated Q-function do not grow with the total
number of CAVs; (ii) The policy 8(π i (ai

|s N i
)) only depends

on the local states.

B. Safety For the Ego Vehicle

This section introduces the control barrier function (CBF)-
based quadratic programming (QP) controller design for the
ego vehicle to find the safe control inputs for the steering angle
and the acceleration. It is also used in the safe action mapping
algorithm (Alg. 1) to check the safety of CAVs’ actions. Since
the controller design is the same for each vehicle i , we drop the
superscript i when there is no confusion in this section. Before
we give the formulation of the CBF-QP controller, we first
introduce the concept of control barrier function, safe set, and
forward invariant.

Definition 3 (Control barrier function (CBF) [22], [56]):
A mapping h : X → R is a discrete-time exponential control
barrier function for dynamic system (3) if

1) h(x0) ≥ 0 and,
2) there exists a control input ut ∈ U and η ∈ (0, 1] such

that for all t ∈ N+,

h( f (xt )+ g(xt )ut + wt )+ (η − 1)h(xt ) ≥ 0, (10)

Definition 4 (Safe set [56], [57]): Denote the safe set C as

C : {x ∈ X ∈ Rnx | h(x) ≥ 0}, (11)

where h : X → R is a discrete-time exponential CBF.
Definition 5 (Forward invariant [56], [57]): For any initial

state x0 ∈ C, if the state xt is in C for all t ≥ 0, then the set
C is said to be forward invariant.

The system is safe with respect to set C if C is forward
invariant, i.e., the system state x always remains within the
safe set. The CBF is a condition to add the forward invariant
property to the system’s state x . For the CAV problem, we con-
sider an affine barrier function with the form h = pTx + q ,
(p ∈ Rnx , q ∈ R). This restriction means the set C is a
polytope constructed by the intersecting of half-spaces since
the safe area for a vehicle is usually represented by a bounding
box [58]. By applying a Frenét frame, the bounding box also
works for curve roads [59].

We formulate the following Quadratic Programming (QP)
based on the CBF condition (10) that can be solved efficiently
at each timestep:

argmin
ut ,ζ

∥ut −U · a∥2 + Mζ

s.t. pT f (xt )+ pTg(xt )ut + q − pTW · 1
≥ (1− η)h(xt )− ζ

ζ ≥ 0, (12)
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where M is a large constant, a is the action to change/keep
lane, and U · a is the control reference for action a. For any
action selected by the policy, we use state-of-the-art trajectory
tracking [58], [60] to calculate the control references. The
implementation details of the CBF-QP controller will be
introduced in the experiment section for our CAV problem.

The following theorem shows that the control inputs calcu-
lated by solving (12) can guarantee the safety of the system
xt+1 = f (xt )+ g(xt )ut + wt in (3) with bounded noise.

Theorem 3: When the physical dynamics of each
autonomous vehicle satisfy (3) with bounded noise
∥wt∥ ≤ W , if there exists η ∈ (0, 1] such that the
QP (12) has a solution for all xt ∈ C and the solution
satisfies ζ ≤ Z, then the controller derived from (12) renders
set C′ : {x ∈ Rnx | h′(x) = h(x)+ Z

η
≥ 0} forward invariant.

Proof: Since xt ∈ C, we have h(xt ) ≥ 0 according to
the Definition 4. From Z ≥ ζ ≥ 0 ≥ −ηh(xt ), we have
h(xt )+

Z
η
≥ 0. Thus, xt ∈ C′ with h′(xt ) ≥ 0. Also, we have

h(xt+1) = pTxt+1 + q

= pT f (xt )+ pTg(xt )ut + pTwt + q

≥ pT f (xt )+ pTg(xt )ut + q − pTW · 1
≥ (1− η)h(xt )− ζ ≥ (1− η)h(xt )− Z ,

(13)

where the first inequality follows ∥wt∥ ≤ W and the second
inequality follows the inequality constraints in the CBF-
QP (12). Adding Z/η to both sides of (13), we have

h(xt+1)+
Z
η
≥ (1− η)

[
h(xt )+

Z
η

]
,

h′(xt+1) ≥ (1− η)h′(xt ) ≥ 0. (14)

Thus, xt+1 ∈ C′ and C′ is forward invariant.
The value of Z denotes how large the CBF condition (10)

is violated from the original h(xt ). In this case, the safety
condition should be formulated according to the set C′.

Theorem 3 shows that the safe set C′ is forward invariant
using the control inputs calculated by the CBF-QP in (12),
that is to say, the ego vehicle’s control states are always in the
safe set and the ego vehicle is guaranteed to be safe. We also
use (12) in Alg. 1 for a safety checking by plugging in the
corresponding action a. As long as there is a feasible solution
to (12), we can find control inputs for this behavior action a
such that the control states are always in the safe set, in other
words, the action a is a safe action. In Appendix C, we show
how to formulate the CBF-QP for a system when we do not
need to consider the noise.

C. Safety For the Multi-Agent System

At last, we show the connection between the safety of a
single agent and the multi-agent system. Note that the CBF-
QP in (12) is defined for a single CAV, and xt in (12)
only includes the control state for a single CAV. Theo-
rem 3 shows the safety guarantee of each CAV. Consider the
multi-agent system with n agents, the joint control state is x =
(x1, . . . , xn) ∈ X := X 1

× · · · ×X n , the joint control input is

u = (u1, . . . , un) ∈ U := U1
× · · · × Un . The safe set defined

in Definition 4 can be extended for the joint control state as:

C : {x ∈ X ∈ Rn×nx | ∀i ∈ N , hi (x i ) ≥ 0}. (15)

The safety of a multi-agent system can be formally defined as
follows:

Definition 6 (Safety of a Multi-Agent System): For any ini-
tial state in the safe set x0 ∈ C, if the joint control state xt is
in C for all t ≥ 0, then the multi-agent system is safe with
respect to the safe set C.

We use a decentralized manner to find the safe control inputs
for each agent: at each time t , each agent solves its own CBF-
QP in (12) to find the safe control inputs for itself. Then we
have the following Proposition 1 to show the safety of the
multi-agent system when all agents follow the CBF-QP in (12).

Proposition 1: If there exists ηi
∈ (0, 1] such that the

QP (12) for each agent i ∈ N has a solution for all x i
t ∈

Ci and the solution satisfies ζ i
≤ Z i , then the controller

derived from (12) for each agent guarantees the safety of the
multi-agent system with respect to C′ : {x ∈ Rn×nx | ∀i ∈
N , hi ′(x i ) = hi (x i )+ Z i

ηi ≥ 0}.
Proof: According to Theorem 3, for each i ∈ N ,

the controller derived from (12) for each agent renders the
safe set Ci ′

: {x i
∈ Rnx | hi ′(x i ) = hi (x i ) + Z i

ηi ≥ 0}
forward invariant. Therefore, starting from any safe joint state
x0 ∈ C′, the control state x i

t is within Ci ′ for all i ∈ N and
all t ≥ 0 according to the forward invariant property defined
in Definition 5. Thus, the joint control state xt is within the
C′ : {x ∈ Rn×nx | ∀i ∈ N , hi ′(x i ) = hi (x i ) + Z i

ηi ≥ 0}, and
the multi-agent system is safe with respect to C′.

Proposition 1 shows that each agent only needs to care about
its own safety if all agents follow the same form of safety
rules, i.e., using the CBF-QP in (12) to find control inputs, and
the entire multi-agent system will be safe. This decentralized
controller design can significantly improve the scalability of
the CAV system and avoid using a centralized controller with
a combinatorially large joint control state space.

VI. EXPERIMENT

In this section, we first show the implementation details and
the evaluation of the weight-pruned CNN in subsection A. In
subsection B, we show our safe actor-critic algorithm improves
traffic efficiency under different CAV ratios and different
traffic densities. We also evaluate the truncated Q-function
technique in this set of experiments. Then in subsection C,
we show our approach guarantees the safety of the CAVs.
In subsection D, we construct an obstacle-at-corner scenario
to show the benefit of the shared vision. In all experiments,
we use CARLA [20], an open-source simulator that supports
the development training and validation of autonomous driving
systems, to validate our proposed safe actor-critic algorithm.
We select CARLA because it has a high-fidelity simulation
and supports a wide range of sensors.

All vehicles run on a 3-lane freeway as shown in Fig. 4.
Each CAV in CARLA has a camera for capturing RGB images
and a LIDAR for generating point clouds. The resolution of
the camera image is 375× 1, 242 pixels. We set row anchors
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Fig. 4. The example scenario of a 3-lane freeway in CARLA [20]. Vehicles
are scattered on the outer loop of the map “Town 05”. The environment is
mixed with both autonomous and human-driven vehicles.

TABLE I
SAFE ACTOR-CRITIC HYPERPARAMETERS

ranging from 100 to 370 with intervals of 10, and the number
of grids is 100. We scale each image to 288×800. Each point
cloud from LIDAR is stored with the 3 coordinates (the ego
vehicle being the origin), representing forward, left, and up
respectively, and an additional reflectance value. To augment
the dataset, we apply a random mirroring flip along the
forward axis, and a global rotation and scaling. In evaluation,
we set forward and up axes’ resolution to 0.16 m, max number
of pillars to 12,000, and max number of points per pillar
to 100. Images and point clouds are paired under the same
timestamp and are processed jointly under the CNN.

We assume all CAVs share their states (including vision
information) and actions with others. Each CAV uses mini-
batch gradient descent to learn the truncated Qi (s N i

κ , aN i
κ )

critic introduced in Section IV. Then each CAV learns a
localized policy 8(π i (ai

|s N i
)) based on the learned critic

with a safe action mapping 8 as our proposed Alg. 2. The
hyperparameters of Alg. 2 are shown in Table I.

The host machine adopted in our experiments is a server
configured with Intel Core i9-10900X processors and four
NVIDIA RTX2080Ti GPUs. Our experiments are performed
on Python 3.7.6, GCC7 7.5, PyTorch 1.6.0, and CUDA 11.0.

A. Safe Actor-Critic Algorithm Implementation Details

1) Reward Function: In the implementation of our safe
actor-critic algorithm, we consider a stage-wise reward for
the ego vehicle to improve velocity vi and comfort ci . The
comfort of a vehicle (for passenger’s experience) is defined
based on its acceleration and action as follows:

ci (v̇i , ai ) =


3, if |v̇i

| < 2 and ai
= K L;

2, if |v̇i
| ≥ 2 and ai

= K L;
1, if ai

= C L/C R;
0, if in E S.

(16)

Fig. 5. The ego vehicle should keep a safe distance from the front vehicle
when keeping lane. To show the idea of safe distance, each vehicle is treated
as a mass point at the CoG in this figure.

where v̇i is the acceleration, ai
∈ A is the MARL action, 2

is a predefined threshold. The reward function for vehicle i is
defined as:

r i (si , ai ) = ω · vi
+ ci (v̇i , ai ), (17)

where ω is a positive trade-off weight.
2) The CBF-QP: In the implementation of the CBF-

QP controller (12), the details of the system model are in
Appendix A. The control state xt = [px , py, ψ, v]

T
∈ X

includes the two coordinates of the center of gravity (CoG), its
orientation and velocity. The control input ut = [tan(δ), v̇] ∈
U includes the tangent of the steering angle and the accel-
eration. The action a = {a j |a j ∈ A} is selected based on
the policy learned by the safe actor-critic algorithm. In the
controller module, we use standard basis vectors in R|A| to
denote each discrete action, where |A| is the number of total
actions in the action set A. In our problem, the three actions
are represented as (1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T.

For each action selected by the behavior planning module,
we can use the state-of-the-art trajectory planning methods
to generate trajectories σ = [σ1, σ2]

T
= [px , py]

T, such as
potential fields, cell decomposition, model predictive control
(MPC) [58], [60]. We use endogenous transformation to com-
pute the controller’s references to track trajectories:

ure f 1 =
σ̇1σ̈1 + σ̇2σ̈2√
σ̇ 2

1 + σ̇
2
2

, ure f 2 =
σ̇1σ̈2 − σ̇2σ̈1

(σ̇ 2
1 + σ̇

2
2 )

3
2
. (18)

Assembling them in the matrix U as follows for all actions
a ∈ A:

U =
[

u1,re f 1 u2,re f 1 · · · u|A|,re f 1
u1,re f 2 u2,re f 2 · · · u|A|,re f 2

]
, (19)

where u j,re f 1, u j,re f 2 is the references for j-th action a j . We
can retrieve the references for a j by multiplying it with U in
the objective of the CBF-QP in Eq. (12).

Then we show how we define the CBF for each agent. With
respect to the ego vehicle, vehicle f c represents the vehicle
immediately in front of the ego vehicle in its current lane
as shown in Fig. 5. When the action of the ego vehicle is
changing lane, vehicle bt represents the vehicle immediately
behind the ego vehicle in the target lane, vehicle f t denotes
the vehicle immediately in front of the ego vehicle in the target
lane as shown in Fig. 6. We use △px,k = ∥px−px,k∥ to denote
the distance between ego vehicle and vehicle k ∈ { f c, f t, bt}.
Then we define the CBF along the px -axis as follows: when
the action of the ego vehicle is keeping lane, the CBF is:

h f c(x) = △px, f c − Psa f e, (20)

where Psa f e is the safe distance between the ego vehicle and
other vehicles. When the action of the ego vehicle is changing
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Fig. 6. The ego vehicle is changing from lane #2 to lane #1. Its safety
distance is considered on both the current lane (#2) and the target lane (#1).
In this figure, the length of each car is ignored for simplicity and the value
of safe distance already considers the length of the cars.

Fig. 7. Detailed structure of vision information processing. We combine
the lane segmentation and 3D object detection results to extract neighboring
vehicles’ features. The processed information is included in the state of each
CAV.

lanes, the CBF is:

h f c(x) = △px, f c − Psa f e,

h f t (x) = △px, f t − Psa f e,

hbt (x) = △px,bt − Psa f e, (21)

For the py-axis, we use CBF to limit the ego vehicle to move
within the range [Pmin

y , Pmax
y ] determined by the width of the

lanes:

hy,max (x) = −py + Pmax
y ,

hy,min(x) = py − Pmin
y . (22)

In the implementation of the CBF-QP controller (12),
we use a vectorized CBF. When the action of the ego vehicle is
keeping lane, h(x) = [h f c(x), hy,max (x), hy,min(x)]T. When
the action of the ego vehicle is changing lane, h(x) = [h f c(x),
h f t (x), hbt (x), hy,max (x), hy,min(x)]T.

B. CNN-Driven Shared Vision

We develop a CNN-driven shared vision solution to process
and share the vision information to support the learning of
the truncated Q-function, as shown in Fig. 7. The shared
vision model has two main branches. The first one is lane
segmentation and the second one is 3D object detection
(OD). We use the network architecture from Ultra-Fast-Lane-
Detection [61] for lane segmentation. It aggregates auxiliary
segmentation tasks to utilize multi-scale features. Table II
summarizes the evaluation metrics of several popular CNN

TABLE II
SPEED AND ACCURACY COMPARISON OF SEVERAL POPULAR CNN

BACKBONES. WE ADOPT RESNET-18 BECAUSE IT ACHIEVES HIGH
ACCURACY WITH FEWER PARAMETERS FOR FAST INFERENCE

backbones for object detection and segmentation that are
applied on ImageNet [62], including the total number of
parameters, test accuracy, and multiply-accumulate (MAC)
operation (accumulate the product of two numbers in a CNN
and can evaluate the computational complexity of each net-
work [63]). We adopt ResNet-18 [47] as the backbone since it
not only achieves high accuracy but also keeps a small number
of parameters and MAC operations. The lightweight feature
leads the model easier to be deployed for fast inference in
processing environment information.

In the lane segmentation model, the RGB images from the
onboard camera are divided into equal-sized grids, where grids
in the same rows are defined as row anchors. Grids with the
appearance of the lane mark on this row anchor will be colored
green. Detailed pixel coordinates of all four-lane marks of the
3-lane freeway will be generated by the neural network and
saved in a hash table.

The 3D OD takes LIDAR point cloud as input and uses
the architecture from PointPillars [48] with PointNets [67] as
backbone. The inputs are converted to sparse pseudo-images
through an encoder, which can learn a set of features from
the stacked pillars and then scatter those features back to
2D pseudo-images. A network similar to [68] is used to
process the pseudo-image into high-level representation by
first continuously down-sampling learned features to small
spatial resolution, then up-sampling and concatenating each
down-sampled feature. The detection head, single shot multi-
box detector (SSD) [69], is used to predict 3D bounding
boxes for neighboring vehicles with the features extracted
from the backbone. Finally, the vision information (including
the location of vehicles in camera coordinates, dimensions,
observation angle, distance, and rotation) will be generated.

As the camera RGB image and LIDAR point cloud are
paired under the same timestamp, we derive the lane index of
each neighboring vehicle by fusing the location and dimension
of the neighboring vehicle (obtained by 3D OD) with the
coordinate of lane marks obtained by lane segmentation. We
then send all vision information including lane index, distance,
observation angle, and rotation info to the safe actor-critic
algorithm for behavior planning.

For evaluation, PointPillars uses mean average precision
(mAP) as standard, while Ultra-Fast-Lane-Detection uses
“accuracy”:

∑
clip Cclip∑
clip Sclip

, where Cclip is the number of lane points
predicted correctly and Sclip is the total number of ground truth
in each clip. We show the performance (accuracy or mAP) and
running speed in Table III. The lane segmentation achieves
high accuracy with low latency. It can process 313 images
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TABLE III
SUMMARY OF RESULTS FROM VISION NETWORK. OUR WEIGHT-PRUNED

CNN INCREASES THE SPEED BY 3.5×WITH A VERY SMALL
ACCURACY DEGRADATION TO SATISFY THE REQUIREMENT

OF INFORMATION SHARING FOR SAFE
MARL BEHAVIOR PLANNING

per second. The 3D object detection has a running time of
28 images per second (img/s), which means 100 images can
be processed in around 3.6 seconds. Our weight pruning
technique significantly increases the speed by 3.5× with a
very small accuracy degradation. It decreases the processing
time of 100 images from 3.6 seconds to one second. Overall,
for parallel lane segmentation and 3D object detection, our
weight pruning technique significantly speeds up the CNN-
driven shared vision process to achieve real-time processing.
Our vision processing method can do lane segmentation and
object detection in mixed traffic with both autonomous and
human-driven vehicles.

C. System Efficiency Improvement

In this section, we show our algorithm improves the CAVs’
system efficiency in terms of the average velocity and the
average comfort as defined in the reward function (17).

1) Comparison Under Different CAV Ratios: Our approach
improves the average velocity and the average comfort as the
CAV ratios (the total CAV number divided by the total number
of all vehicles) get higher. In this set of experiments, the total
number of CAVs ranges from 0 to 30 as listed in Table IV.
We compare the average velocity and comfort for all vehicles
under different CAV ratios. The comfort of a single vehicle
is defined in Eq. (16). The velocity and comfort are averaged
over all the 40000 timesteps and all vehicles in the simulation.
The result of our approach is shown at the top of Table IV.
All CAVs use our safe actor-critic (Alg. 2) introduced in
Section V. The result in Table IV shows the average velocity
and comfort of the entire mixed traffic. We use CARLA’s
built-in human-driven vehicle in the mixed traffic [20]. In the
result of Table IV, the average velocity and comfort increase
when the CAV ratio gets higher. This gives us insights that the
penetration of the CAVs and the communication capabilities
can improve traffic efficiency in the future.

The truncated Q-function technique introduced in
Section IV is a good approximation of the centralized critic
Q(s, a) with the global s and the global a. We compare
our approach with the MADDPG [18] plus our safe action
mapping technique introduced in Section V. The reason
for adding the safe action mapping is that the MADDPG
algorithm stops early in each episode due to collisions. We
will further explain this in safety experiments. The MADDPG
uses the centralized critic Q(s, a). Hence, we use it as a
baseline to evaluate our truncated Q-function technique.
Compared with the baseline, our average velocity is 6.0%
smaller, and the average comfort is 3.9% smaller. Though

TABLE IV
THE SYSTEM EFFICIENCY COMPARISON UNDER DIFFERENT CAV RATIOS.

OUR APPROACH IMPROVES THE AVERAGE VELOCITY AND THE
AVERAGE COMFORT AS THE CAV RATIOS GET HIGHER

the system efficiency is sacrificed a little bit, our truncated
Q-function increases the scalability since it does not rely on
the global states or actions.

2) Comparison Under Different Traffic Densities: Our
approach improves the traffic flow and average comfort under
different traffic densities. The traffic density ρ is the ratio
between the total number of vehicles and the road length. We
compare the traffic flow and average comfort under different
traffic densities between our safe MARL approach using
Alg. 2 and an intelligent driving model (IDM) [70]. The
traffic flow reflects the quality of the road throughout with
respect to the traffic density. It is calculated as ρ × v̄, where
v̄ is the average velocity of all the vehicles [71]. The IDM
is a common baseline in autonomous driving. In IDM, the
vehicle’s acceleration is a function of its current speed, current
and desired spacing, and the leading and following vehicles’
speed [70]. Building on top of these IDM agents, we add
lane-changing functionality using the gap acceptance method
in [72]. In this set of experiments, we keep CAV ratios at 0.6.
As shown in Fig. 8, the safe MARL agent gets both larger
traffic flow and better driving comfort when traffic density ρ
is low. When ρ grows, the result of the safe MARL agent gets
worse, but it is still comparable with the IDM. When the road
is saturated, lane-changing tends to downgrade passengers’
comfort but cannot bring higher speed. Consequently, a better
choice is to keep lanes when ρ is high, and there is no
significant difference between the safe MARL and the IDM.
We also add the result using MADDPG in Fig. 8. Both the
traffic flow and the driving comfort are very small (a positive
number but close to 0) using MADDPG, and many collisions
occurred during the simulation. This is because the MADDPG
does not have a safety guarantee.

3) Cost-Benefit Analysis of Communication Range: As pre-
sented in Table V, we evaluate the learned policy of our
safe actor-critic algorithm using various communication ranges
under the CAV ratio of 0.9. The total episode reward in
the table is averaged over five random episodes for each
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Fig. 8. Our approach (safe MARL) improves the traffic flow and driving
comfort under different traffic densities.

TABLE V
THE COST-BENEFIT ANALYSIS OF COMMUNICATION RANGE AND

THE SYSTEM’S REWARD IMPROVEMENT

TABLE VI
TOTAL NUMBER OF UNSAFE ACTIONS EXECUTED BY THE SAFE MARL

AND MADDPG UNDER DIFFERENT TRAFFIC DENSITY ρ . OUR
APPROACH HAS 0 UNSAFE ACTION BY USING THE

SAFE ACTION MAPPING

policy. Each episode has a maximum timestep of 40000. As
the communication range increases, the vehicles can obtain
more information from their neighboring vehicles with higher
communication costs. As a result, we can observe that more
communication costs can lead to further enhancements and
more benefits in the traffic system’s rewards.

D. Safety Guarantee

In this section, we show our algorithm has a safety guar-
antee. We compare our safe actor-critic algorithm with the
MADDPG [18] algorithm. We assign a negative reward in
MADDPG for each collision. Our approach avoids the exe-
cution of unsafe actions that can lead to collisions. Table VI
shows the total number of unsafe actions executed by the safe
MARL and MADDPG under different traffic densities. The
traffic density ρ is the ratio between the total number of vehi-
cles and the road length. The number in Table VI is averaged
over the last 10 episodes, which has a maximum timestep of
40000. When ρ = 0.9, our approach has 0 unsafe actions while
the MADDPG has 242976 unsafe actions because it does not
have a safety module.

Our approach can maintain a safe headway with neighboring
vehicles while the MADDPG cannot. The headway is the
distance between two consecutive vehicles following each
other. In Fig. 9, the minimum headway across all the vehicles
is shown in the first 500 timesteps of one episode when

Fig. 9. Our approach (Safe MARL) can maintain a safe headway with
neighboring vehicles while the MADDPG cannot. The figure shows the
minimum headway across all the vehicles in the first 500 timesteps of one
episode when ρ = 0.6.

Fig. 10. Our approach (safe MARL) gets a higher total episode reward
compared to the MADDPG during the training process, because our approach
can guarantee a safe training process and run for the maximum episode length.

ρ = 0.6. We see that the headway is always greater than
0 using our safe actor-critic algorithm with a minimum value
of 18.5 meters. Nevertheless, the MADDPG is likely to have
a negative headway, which means collisions in reality. Note
that we set the minimum car-following distance of CAVs to
be 18.5 meters following the study of the safe car-following
distance of autonomous vehicles [73], but this value can be set
differently to satisfy the requirements in different scenarios.

Our approach gets a much larger total episode reward than
the MADDPG. The total episode reward is the summation of
all stage-wise rewards defined in Eq. 17 for each episode. As
shown on the left of Fig. 10, the maximum total episode reward
using our approach is about 1940, which is first reached in the
20th episode. In the right figure, the maximum total episode
reward using the MADDPG is about 7, because some collision
terminates the episode. They have different initial rewards
because the neural networks are randomly initialized and the
action is selected by the ϵ-greedy method with randomness.
Our approach runs about 30 minutes in each episode as it has
a safety guarantee and runs for the maximum episode length.
Yet, each episode stops quickly in about 5 seconds using the
MADDPG.

E. Obstacle-At-Corner Scenario and Benefit of Shared Vision

We construct a scenario called obstacle-at-corner to show
how sharing vision information can help autonomous vehicles
make wise lane-changing decisions ahead of time. As shown in
Fig. 11, there are obstacles at a left-turning corner (represented
by two stationary vehicles). The right bottom figure shows the
view of a vehicle that comes in the direction of this curved
road. It is quite difficult to observe the obstacles merely relying
on its own sensors. In this case, if the white front vehicle can
share its observation, the coming vehicle can get to know there
are obstacles before entering the turning corner.
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Fig. 11. The obstacle-at-corner scenario where there are obstacles in a
left-turning corner. The vehicles on the road are autonomous vehicles. The
coming vehicles’ view is blocked such that they cannot observe the obstacles.

Fig. 12. The trajectory is smooth when we separate the learning and control
modules in (b), but the trajectory is zigzag when we use the steering angle
and acceleration as the action space of our safe actor-critic algorithm in (a).

Separating the learning and control modules in our approach
is necessary. One alternative design is to output the control
inputs (steering angle and acceleration) directly [11], [12],
[23], [74]. But it is not suitable for our CAV problem consid-
ering the lane-changing behavior. As the subfigure (a) shown
in Fig. 12, we use the same truncated Q-network structure in
Fig. 3, but the action space of both the critic and the actor
networks is replaced by steering angle and acceleration. The
trajectory is zigzag because the learned policy does not have a
concept of changing/keeping lanes. The learned policy directly
outputs the steering angles and accelerations to maximize the
vehicle’s rewards. Since the steering angle and acceleration
are selected by the MARL agents, there is no need to use a
controller in subfigure (a). In subfigure (b), the trajectory is
smooth when we first find whether to change/keep lanes with
the policy learned by Alg. 2 and then implement this action
by a CBF-QP controller in Eq. (12).

Shared vision with our proposed safe MARL algorithm can
help CAVs avoid traffic jams. We test our learned policy in
the obstacle-at-corner scenario. When no vehicle can share
information in subfigure (a) of Fig. 13, there are more vehicles
blocked on the left-most lane causing a traffic jam. Subfigures
(b) and (c) are the screenshots taken in two close timesteps.
In subfigure (b), vehicle A is blocked in the left lane because
there is vehicle B in the middle lane and A does not realize
there are obstacles before it enters the corner (there is no
neighboring vehicle that can share the obstacle information
in advance in this scene; two obstacles are not CAVs). In
subfigure (c), the coming vehicle C in the left-most lane starts
to change to the middle lane before it observes the obstacles
because it gets the shared vision information either from A or
B. We use the safe action mapping introduced in Sec. V to
ensure the safety of this lane-changing.

Fig. 13. Without any information sharing, there is a traffic jam in the left
lane. With shared vision from A or B, using our safe MARL policy, vehicle
C can change its lane before it enters the left-turning corner.

VII. CONCLUSION

How to utilize V2V communication to improve traffic
efficiency while satisfying safety requirements is a challenging
problem for the behavior planning and control of CAVs.
We design a safe behavior learning and control framework,
which utilizes shared states and actions to safely explore a
behavior planning policy. We design two new techniques:
truncated Q-function and the safe action mapping. The trun-
cated Q-function utilizes the information-sharing capability
of the CAVs instead of depending on the global states and
actions, and we prove that the approximation error is bounded.
The safe action mapping guarantees the safety of the training
and execution process of the proposed MARL framework. In
experiments, our weighted-pruned CNN technique increases
the speed of the 3D object detection (OD) by 3.5× with small
accuracy degradation to support MARL. We also show that our
approach improves the average velocity and average comfort
under different CAV ratios and different traffic densities. Our
approach avoids unsafe actions and maintains a safe distance
from neighboring vehicles. We also construct the obstacle-at-
corner scenario to show that the shared vision can help vehicles
avoid traffic jams. It is considered future work to improve
the robustness of the MARL policy under state uncertainties
caused by communication or sensor measurement errors.

APPENDIX A
PHYSICAL DYNAMIC MODEL

The physical dynamics of a vehicle are described by a
kinematic bicycle model that achieves a good balance between
accuracy and complexity [75], [76]. The kinematic bicycle
model is a widely-used model in literature [26], [58], [77]
for the MPC-based and CBF-based controller design. The
discrete-time equations are obtained by applying an explicit
Euler method with a sampling time Ts = 0.01s:

xt+1 =


x1(t)+ x4(t) cos(x3(t))Ts
x2(t)+ x4(t) sin(x3(t))Ts

x3(t)
x4(t)


︸ ︷︷ ︸

f (xt )

+


0 0
0 0

x4(t)Ts
L 0
0 Ts


︸ ︷︷ ︸

g(xt )

ut + wt ,

(23)
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where x = [px , py, ψ, v]
T
∈ X includes the two coordinates

of the center of gravity (CoG), its orientation and velocity. The
input u = [tan(δ), v̇] ∈ U is the tangent of the steering angle
and acceleration. The parameter L = 2.51 m is the distance
between the front and rear axles.

APPENDIX B
EXPONENTIAL DECAY PROPERTY

As defined in Definition 1, the (c, ρ)-exponential decay
property for Qi -function means there exists some c > 0 and
0 < ρ < 1 such that for any i ∈ N ,∀s N i

κ ∈ SN i
κ ,

∀s N−i
κ ∈ SN−i

κ ,∀s′N
−i
κ ∈ SN−i

κ ,∀aN i
κ ∈ AN i

κ ,∀aN−i
κ ∈ AN−i

κ ,

∀a′N
−i
κ ∈ AN−i

κ , it holds that |Qi (s N i
κ , s N−i

κ , aN i
κ , aN−i

κ ) −

Qi (s N i
κ , s′N

−i
κ , aN i

κ , a′N
−i
κ )| ≤ cρκ .

Here we prove the following theorem that gives the condi-
tion when the exponential decay property holds.

Theorem 4: If for all i ∈ N , r i is upper bounded by r̄ , then
the ( r̄

1−γ ,
√
γ )-exponential decay property holds for Qi in (1)

under Assumption 1, where γ is the discount factor.
Proof: Denote s = (s N i

κ , s N−i
κ ), a = (aN i

κ , aN−i
κ ),

s′ = (s N i
κ , s′N

−i
κ ), a′ = (aN i

κ , a′N
−i
κ ). We use pi

k to represent
the distribution of the state-action pair (si

k, ai
k) under some

localized policy π i (ai
|s N i

) for vehicle i with the initial
condition (s0, a0) = (s, a). Here the policy π i can be any
feasible policy that is not required to be the optimal policy.
We use p′ik to represent the distribution of the state-action pair
(si

k, ai
k) under the same policy π i for vehicle i with the initial

condition (s0, a0) = (s′, a′). Because each vehicle i’s next
state si

k+1 is independently generated and only depends on its
1-hop neighbors, that is to say,

P(sk+1|sk, ak) =

n∏
i=1

P(si
k+1|s

N i

k , aN i

k ), (24)

and the localized policy π i only depends on s N i
, we have

pi
k = p′ik for k ≤ ⌊κ/2⌋.
Based on the definition of the action-value function, we have∣∣∣Qi (s, a)− Qi (s′, a′)

∣∣∣
≤

∞∑
k=0

∣∣∣∣ Eai
k∼π(a

i |s Ni
)

[
γ kr i

k+1(s
i
k, ai

k) | so = s, a0 = a
]

− Eai
k∼π(a

i |s Ni
)

[
γ kr i

k+1(s
i
k, ai

k) | so = s′, a0 = a′
] ∣∣∣∣

=

∞∑
k=0

∣∣γ k E(si ,ai )∼pi
k

[
r i

k+1(s
i
k, ai

k)
]

− γ k E(si ,ai )∼p′ik

[
r i

k+1(s
i
k, ai

k)
] ∣∣

=

∞∑
k=⌊κ/2⌋+1

∣∣∣γ k Epi
k

[
r i

k+1(s
i
k, ai

k)
]
− γ k Ep′ik

[
r i

k+1(s
i
k, ai

k)
]∣∣∣

≤

∞∑
k=⌊κ/2⌋+1

γ k r̄ × TV(pi
k, p′ik )

≤
r̄

1− γ
γ ⌊κ/2⌋+1

≤
r̄

1− γ
γ κ/2, (25)

where TV(pi
k, p′ik ) is the total variation distance between pi

k
and p′ik and upper bounded by 1 based on the definition of
total variation [78]. This shows the ( r̄

1−γ ,
√
γ )-exponential

decay property holds for Qi according to the definition of
the exponential decay property.

APPENDIX C
CBF-BASED QUADRATIC PROGRAMMING

In this section, we show how we can formulate a Quadratic
Programming (QP) based on the CBF condition (10) to guar-
antee the safety of a system without noise defined as follows:

xt+1 = f (xt )+ g(xt )ut , (26)

The CBF-QP for this system that can be solved efficiently at
each timestep is formulated as:

argmin
ut

∥ut −U · a∥2

s.t. pT f (xt )+ pTg(xt )ut + q ≥ (1− η)h(xt ). (27)

Lemma 1: For system (26), if there exists η ∈ (0, 1] such
that the QP (27) has a solution for all xt ∈ C (C is defined
in (11)), then the controller derived from (27) renders set C
forward invariant.

Proof: For any xt ∈ C, we have h(xt ) ≥ 0 according to
the Definition 4. Therefore,

h(xt+1) = pT f (xt )+ pTg(xt )ut + q

≥ (1− η)h(xt ) ≥ 0. (28)

Thus, xt+1 ∈ C and C is forward invariant.
We can relax the constraint in (27), and the forward invariant

property holds for a larger set. Consider:

argmin
ut ,ζ

∥ut −U · a∥2 + Mζ

s.t. pT f (xt )+ pTg(xt )ut + q ≥ (1− η)h(xt )− ζ

ζ ≥ 0, (29)

where M is a large constant.
Theorem 5: For system (26), if there exists η ∈ (0, 1] such

that the QP (29) has a solution for all xt ∈ C and the solution
satisfies ζ ≤ Z, then the controller derived from (29) renders
set C′ : {x ∈ Rnx | h′(x) = h(x)+ Z

η
≥ 0} forward invariant.

Proof: Since xt ∈ C, we have h(xt ) ≥ 0 according to
the Definition 4. From Z ≥ ζ ≥ 0 ≥ −ηh(xt ), we have
h(xt )+

Z
η
≥ 0. Thus, xt ∈ C′ with h′(xt ) ≥ 0. Also, we have

h(xt+1) = pT f (xt )+ pTg(xt )ut + q

≥ (1− η)h(xt )− ζ ≥ (1− η)h(xt )− Z , (30)

h(xt+1)+
Z
η
≥ (1− η)

[
h(xt )+

Z
η

]
,

h′(xt+1) ≥ (1− η)h′(xt ) ≥ 0. (31)

Thus, xt+1 ∈ C′ and C′ is forward invariant. Note that it is
simplified to be Lemma 1 with set C = C′ when Z = 0.

The value of Z denotes how large the CBF condition (10)
is violated from the original h(xt ). In this case, the safety
condition should be formulated according to the set C′.
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