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Abstract— Communication technologies enable coordination
among connected and autonomous vehicles (CAVs). However, it
remains unclear how to utilize shared information to improve
the safety and efficiency of the CAV system in dynamic and
complicated driving scenarios. In this work, we propose a
framework of constrained multi-agent reinforcement learning
(MARL) with a parallel Safety Shield for CAVs in challenging
driving scenarios that includes unconnected hazard vehicles.
The coordination mechanisms of the proposed MARL include
information sharing and cooperative policy learning, with
Graph Convolutional Network (GCN)-Transformer as a spatial-
temporal encoder that enhances the agent’s environment aware-
ness. The Safety Shield module with Control Barrier Functions
(CBF)-based safety checking protects the agents from taking
unsafe actions. We design a constrained multi-agent advantage
actor-critic (CMAAZ2C) algorithm to train safe and cooperative
policies for CAVs. With the experiment deployed in the CARLA
simulator, we verify the performance of the safety checking,
spatial-temporal encoder, and coordination mechanisms de-
signed in our method by comparative experiments in several
challenging scenarios with unconnected hazard vehicles. Results
show that our proposed methodology significantly increases
system safety and efficiency in challenging scenarios.

I. INTRODUCTION

Wireless communication technologies such as WiFi and
5G cellular networks enable vehicle-to-everything (V2X)
communication and help the autonomous vehicle to get
extra information about the driving environment beyond its
sensing capability [1], [2]. Shared information captured by
the onboard sensors such as cameras and LIDARs can be
used to improve connected autonomous vehicles’ (CAVs)
decision-making [3], [4], [5]. Shared basic safety messages
benefit the coordination and control decisions of CAVs in
scenarios such as intersections and lane-merging [6], [7].

However, it is not clear how information sharing benefits
connected autonomous vehicles in challenging scenarios.
Without communication or coordination, it is difficult for
CAVs to react to traffic-rule-violating behaviors or sudden
speeding/braking maneuvers taken by unconnected hazard
vehicles in mixed traffic conditions as in Fig. 1. When an
autonomous vehicle gets extra knowledge about the environ-
ment via coordinated V2X communication, how to design
a neural network structure to utilize the shared information
with spatial and temporal features and how to make prudent
decisions to improve collaborative safety remain unsolved.
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Fig. 1. Intersection ((a),(b),(c)) and Highway ((d),(e),(f)) scenarios: one
hazard vehicle runs the red light in Intersection scenario and one takes
a sudden hard-brake in Highway scenario. la, 1d: scenario initialization;
1b, le: successful cases of collaborative collision-avoidance from test runs
of our method; 1lc, 1f: collision cases from test runs of baseline model.
Connected autonomous vehicles (CAVs) are in green; unconnected vehicles
(UCVs) are in red; unconnected hazard vehicles (HAZV) are in red with
yellow triangle marks. Without the safety shield or coordination, CAVs are
likely to collide with HAZV or other vehicles as in 1c, 1f.

In this work, we design a spatial-temporal-aware con-
strained MARL framework with Safery Shield for cooperative
policy-learning of CAVs, to improve safety and efficiency of
the system utilizing V2X communication-based information-
sharing. In particular, we consider challenging driving sce-
narios with potential unconnected hazard vehicles (HAZV).
We adopt the prevailing Graph Convolutional Network
(GCN) and Transformer networks as spatial-temporal scene
encoders (Fig. 2a) for agents to raise their situation awareness
(Sec. III), and the actor-critic-cost neural network structure
of the proposed Constrained Multi-Agent Advantage Actor-
Critic (CMAA2C) method (Sec. IV-A). The complicated
dynamics and interactions among CAVs under challenging
scenarios provide strong motivations to design a Safety Shield
based on Control Barrier Functions (CBFs) for the policy
(Sec. IV-B). We further introduce the cooperative training
scheme of the CMAA2C algorithm in Sec. IV-C (Fig 2b). In
summary, the main contributions of this work are:

o We propose a Constrained Multi-Agent Advantage Ac-
tor Critic method with a Safety Shield to improve safety
and efficiency of the CAV system in challenging scenar-
ios. The coordination mechanisms include information-
sharing and cooperative policy-learning in CMAA2C.

e We design a GCN-Transformer encoder for the neural
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network structure of CMAA2C to utilize the shared
spatial and temporal information among CAVs and
improve the situation awareness of CAVs.

o We validate that the proposed CMAA2C MARL frame-
work significantly improves the collision-free rate and
overall returns of the CAV system with experiments.
Our results show that cooperation among CAVs, the
Safety Shield, and the GCN-Transformer encoder design
all contribute to the improvement.

II. RELATED WORK

a) Planning and Control of Autonomous Vehicles: To
learn the output controls for steering and throttle directly
based on observed environment, end-to-end learning is de-
signed in CNN-based supervised learning [8] and CBF-based
Deep Reinforcement Learning [9], when considering only
lane-keeping behaviors. Another popular way is separating
the learning and control phases. Learning methods can give
high-level decisions, such as “go left”, “go straight” [10],
or “yield” [11]. It also works to first extract image features
and then apply control upon these features [12]. However,
the mentioned works do not consider connections between
CAVs, while we consider how CAVs should use information
sharing to improve the safety and efficiency of the system,
and design an MARL-based algorithm such that CAVs co-
operatively take actions under challenging driving scenarios.

b) GCN, Transformer and Deep MARL: 1t has not been
addressed how to design a specific neural network structure
utilizing communications among CAVs to improve the sys-
tem safety or efficiency. Recent advances like GCN [13] and
Transformer [14], [15] show their advantages in acquiring
spatial and temporal properties from data and we use them to
encode the spatial-temporal information of driving scenarios.
To the best of our knowledge, we are the first to design
a GCN-Transformer-based deep constrained MARL frame-
work using shared information among CAVs. We validate
that this design improves the safety rates and total rewards
for CAVs in challenging scenarios with traffic hazards.

c) Constrained MDP and Safe RL: Existing multi-
agent reinforcement learning (MARL) literature [16], [17],
[18], [19] has not fully solved the challenges for CAVs.
Constrained Markov Decision Process (CMDP) [20], [21]
learns a policy maximizing the total reward while main-
taining the total cost under certain constraints. However, the
cost or the constraint does not explicitly represents all the
safety requirements of the physical dynamic systems and
cannot be directly applied to solve CAV challenges. The
recent advance with a formal safety guarantee is the model
predictive shielding (MPS) that also works for multi-agent
systems [22], [23]. However, their safety guarantee assumes
an accurate model of vehicles which is difficult to find in
reality. CBFs are used to map unsafe actions to a safe action
set in MARL [24], but they do not consider how to design
a spatial-temporal-aware network structure for challenging
scenarios. In this work, we first integrate the strengths of both
constrained MARL and CBF-based Safety Shield to further
improve the safety of CAVs under threats of traffic hazards.

III. PROBLEM FORMULATION
A. Problem Description

We consider the cooperative policy-learning problem for
CAVs in challenging scenarios occurred on a multi-lane
urban intersection or on a multi-lane highway (as shown in
Fig.1). Other traffic participants include unconnected vehicle
(UCVs) and a hazard vehicle (HAZV). Meanwhile infras-
tructures that have sensing, communication and computation
abilities also play a supportive role to CAVs.

A CAV agent or ego vehicle 7 is primarily supported with
its own observation o;, the shared observation op; from
neighboring agents N; based on V2V communication and
the shared observation o;,s from the road infrastructures.
Specifically, ego vehicle’s neighbors N; provides extra sen-
sor measurements and sensor-detection data, such as lane-
detection with camera images and object detection with
LiDARs [25]. The CAV neighbors N; also share their action
histories which are used by the Safety Shield in IV-B to avoid
merging conflict. oy, is broadcasted messages to CAVs from
road infrastructures, such as Radar that can broadcast the
detected speed and location of nearby vehicles.

B. Constrained MARL Problem Formulation

A Constrained MARL is defined as a tuple G =
(S, A, P {r;},{ci},G,v) where G = (N,€&) is the com-
munication network of all CAV agents; S is the joint state
space of all agents: S := &1 X --- X S,. The state space of
agent i: S; = {04, 0N/, 0ine} contains information from three
sources: self-observation o; by vehicle i’s own odometers
and sensors, observation oa;, shared by other connected
agents and observation oj,s shared by infrastructure. The
observation of CAV i is o; = {(l;,v;,a;),det;}, where
(l;,v;, ;) is the GPS location, velocity and acceleration of
agent ¢, det; is the vision-based sensors (on-board camera
and 3D point-cloud LiDAR) object detection results. The
joint action set is A = A; x --- x A, where 4; =
{ai1,a;2, -+ ,a;44r} is the discrete finite action space
for agent <. KEEP-LANE-SPEED (a;,1): CAV % maintains
current speed in the current lane. CHANGE-LANE-LEFT
(a;2): CAV 1 changes to its left lane. In experiment, by
taking a; » we set a target waypoint trajectory onto its left
neighboring lane [26]. CHANGE-LANE-RIGHT (a;,3): CAV
1 changes to its right lane. In experiment, by taking a; 3 we
set a target waypoint trajectory onto its right neighboring
lane. BRAKE (a;4): in the experiment, CAV ¢’s actuator
will compute a brake value within range brake! € [0,0.5] at
time ¢. THROTTLE: a;5,a;¢,--.,a;4+r are k discretized
throttle intervals. Given the available throttle value set in the
simulator as [0,1], we set a; 44+; = [%, %] By choosing
the action a; 5, for example, the actuator of the vehicle i
will maintain in current lane and compute a throttle value
throttle; € [%7 %] according to controller’s approach.

The state transition function is P : S x A x S — [0, 1].
The reward function r = § x A — R. With agent j’s
velocity defined as v;, agent ¢’s reward function is r;(s,a) =
> tijllvjll2, with p;; as non-negative weights. Every
agent aims to maximize the weighted sum of all agents’
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speed. The cost function ¢; = & X A — R is defined as
¢i(s,a) =min(||l; — ||, |1 = U,|| | V& € T;), in which we
consider the ego vehicle’s distance to its closest neighbors
and all the detected environment vehicles I'; for the current
step location I; and next step location I;. The local policy
with parameter ; used by agent i is defined as: 7% (a;|s;).
As shown in Fig. 2a, selected actions are examined by the
Safety Shield discussed in IV-B in order to guarantee the
satisfaction of safety constraints and only safe actions will
be implemented by lower level controllers.

C. Spatial-Temporal Encoding

Graph Convolutional Network and Transformer have
shown advantages in modeling spatial and sequential infor-
mation [14]. GCN has been utilized [13], [27], [28] to decode
interactions between vehicles for collision and trajectory
predictions. Transformer for sequential learning also achieves
superior performance in some trajectory prediction solu-
tions [15]. As in Fig. 2a, we design a GCN-Transformer mod-
ule utilizing shared information to encode spatial-temporal
features of driving environments for MARL. Ego vehicle’s
observation o;, shared observations op;, and ojn¢ from V2X
communication are used to construct graphs comprised of
vehicles, roads and intersections as nodes, and edges among
them [13]. Agents are enabled by GCN to characterize the
complex communication with other vehicles or road nodes;
we also down-sample the significant nodes in large graphs
with excessive nodes for scalability. With such graphs in
consecutive time steps as input, the Transformer module
encodes each agent i’s dynamic (I;, v;, a;) with their graph
neighbors and generates the spatial-temporal representations
of environment as inputs to the MARL model.

IV. METHODOLOGY

In this section, we introduce our major contribution,
the Constrained Multi-Agent Advantage Actor-Critic (C-
MAAZ2C) framework with a CBF-based Safety Shield and a
collaborative policy learning scheme. The proposed method-
ology improves the safety and efficiency of CAV systems and
defines the coordination mechanisms in both information-
sharing and the policy-learning process. We will introduce
the main Algorithm 1 CMAA2C in subsection IV-A, fol-
lowed by details of the safety checking and training process
in subsections IV-B and IV-C.

In particular, we adopt the GCN-Transformer neural net-
works to approximate the Q-function, cost function [20]
and policy for each agent. We use advantage to optimize
the policy under the constraint of the cost. During training,
agents also exchange the policy network parameters with
their neighboring agents [21] to approximate a global optimal
solution with distributed policy optimization.

We design a Safety Shield based on control barrier function
and quadratic programming (CBF-QP) for each agent to
check the safety of the action selected by the reinforcement
learning process and make corrections for the control input.
We design a barrier function that considers the acceleration in
both front and rear vehicles for changing lane maneuver [26].

We utilize shared action histories by neighboring agents to
build barrier functions for the rear vehicles in the CBF-QP,
to avoid merging conflict to the same lane by multiple CAVs.

A. Constrained Multi-Agent Advantage Actor-Critic

In Algorithm 1, we use centralized training decentralized
execution design. Each agent maintains a policy network
7% (“actor”) with parameter 6;, a Q(s,a) network with
parameter ¢, (“critic”) for the reward r;(s,a) and another
Q% (s,a) network with parameter w; (“cost”) for the cost
¢i(s,a) (as in Fig. 2a). 0 is defined as the parameter of the
joint policy taken by all agents. The algorithm operates in
forward view as agents interact within the environment. After
observing the state s;, the agent’s stochastic policy computes
for the probability over action set P(A;). Meantime, the
safety checking based on s; generates the safe action set A3
including all the safe candidate actions a;,. The eventual
behavior will be sampled from P(A$*) based on e-greedy.
After all agents instruct their selected behavior a; to con-
troller and have them executed, the algorithm synchronously
goes to the next step by observing the reward 7;(s,a), cost
¢i(s,a) and the new state s;. Specifically, all the CAVs want
to collaboratively optimize the total expected return of the
system defined as J7(0) = 3. _ - JF(6):

n

JR(G) = Z Eak,\,ﬂ-e(,lsk) [Z(’W)kﬁ(sk,ak)] (1)
iEN; k=0

where 7 = (7V,7.) are the discount factors for reward and
cost respectively. Maximizing objective (1) is equivalent to
minimizing the negative of such value, subject to the cost’s
lower-bound constraint (; that each agent i’s expected accu-
mulated cost J&(0) = Bk oro(sk) [Dopeo(ve) ei(s, a¥)]
should satisfy. Thus the constrained MARL problem is
defined as the following optimization problem

mgin—JR(G) st. JZ(0)>(,Vie N;©;, =055 €N;
2

where ©; = 0; x 0_; is defined as the local copy of
the policy 8 owned by agent ¢ according to [21]. By the
Lagrangian method [29], the problem (2) can be written as
the following problem solved through the training process:

minmax L£(0;,0_;, A, A_;) 3)
6,€6 A>0
st. ©;, =05 VjeN; Vi
where A;,A_; denote the dual wvariables, and

L0501, X, Ai) 2 530, n I 0) + (G = TE(8), M)

n

B. Safety Shield and Safety Checking

To enhance the safety of agents during their interactions,
we design a Safety Shield module to identify potential unsafe
actions that violate the safety requirements and update the
safe action set for the constrained MARL in Algorithm 1.
Given agent ¢’s state s;, safety checking will loop through all
candidate actions a; ,, € A; and judge if a; ., is safe based on
control barrier functions and quadratic programming (CBF-
QP). CBFs have been introduced to ensure set invariance
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Fig. 2.

Single agent’s model pipeline in 2a; Constrained MARL framework in 2b

Algorithm 1: Constrained Multi-Agent A2C

Algorithm 2: Safety_Checking

1 Initialize replay memory M = |, M;; Initialize
actor, critic and cost networks 0?, (j)?7 w?; Initialize
9 =0,2)=0;

2 for each episode € do

3 Initialize s =[], s; € S;
4 Initialize safe action set A% = I, _Asl.“fe = A;
5 for each training cycle T do
6 for each step do
7 Choose a; € A based on e-greedy, a = [] a;;
8 Execute action a, observe rewards r = {r; }, costs
¢ = {c;}, and the new state s’ =[], s/ ;
9 Store (si,ai,ri,ci,si),Vi in M;;
10 if collision then continue;
1 Update A% = Safety_Checking(s’);
12 s+ s';
13 end
14 Perform Training(7, M, 07, ¢] ,w], 97, A]);
15 end
16 end

with system dynamics knowledge [30], [31] and ensure safe
controller design of vehicles [26], [32], [33], [24].

Consider a nonlinear affine control system: & = f(x) +
g(x)u with state € R, input w € U C R™, U is
the admissible input set of the system, f and g are locally
Lipschitz. Define a superlevel set C C R™ of a differentiable
function h: C = {x € R" : h(x,t) > 0}. A set C C R" is
Sforward invariant if for every xg € C, the solution x(t) to
the system satisfies x(t) € C for all ¢ > 0. The system is
safe with respect to the set C if the set C is forward invariant
[30]. The function A is a control barrier function (CBF) for
the system on C if there exists v € Ko, [34]:

qup 1)

+ Lyh(x,t) + Loh(z, t)u] > —vh(x,t)
ueU ot

CBF evaluating the safety of an action a; , focuses on the
relevant vehicles given a; ,, will be executed. As is shown in
Fig. 3, if a change-lane action is evaluated, target vehicles
are the nearest neighbors from the front vehicles, front and
rear vehicles on the target lane, and front and rear CAVs on
the left/right other lane if such vehicle is also changing to
the lane that ego vehicle is targeting. Otherwise, only front
and rear neighbors in the current lane are concerned.

1 Input: s = [ s;; initialize A% = ();

2 for each agent i do

3 for each action a; ,, € A; do

4 if a; . is safe, i.e. CBF-QP has a feasible
solution then append a; , to A$%°;

5 end

6 | if A1 =0 then A?™ = [Emergency_stop);

7 end

We adopt the kinematic bicycle model for its simplicity
while considering the non-holonomic vehicle behaviors [35].
The state of the system & = [z, y, v, |7 are the coordinates,
velocity, orientation of the vehicle’s center of gravity (c.g.)
in an inertial frame (X,Y). The inputs w to the system are
acceleration at the vehicle’s c.g. o and the steering angle of
the vehicle ¢.

We consider the function of safgety following distance
Ds(v,vf) = Cl’L)Jng(mmZi(aH72|m;;f(af)‘)+D, if the target
vehicle is in the front on any lane, as in Fig. 3. It takes
the front and rear vehicles’ velocity as input, and considers
both the reaction delgty term c;v and the hard-braking
term cQ(MmZi(a)rle;fm 57) which is proportional to the
difference of hard-braking distances between the front and
following vehicles, with an extra buffer distance as constant
D. If target vehicle is behind, safety leading distance is de-
fined as Dy (v, vp) = crvp+ea(s m;xg(ab” — srmiaray)+D. Barrier
function h(x,t) can then be respectively given as hy¢(x,t) =
(xf—x)—Dys(v,v5) and hb(a:,t) ‘= (z—mz)—Di(v,vp). For each
candidate action a; ., u; is the corresponding control input
generated by a nominal controller, e.g. PID controller. Then
the safe candidate action can be evaluated by solving the
below quadratic program CBF-QP. If CBF-QP is solvable,
ai,. is safe; otherwise it is unsafe. As in Algorithm 2, an
emergency stop will be taken if no candidate action is safe.

1
CBF-QP: in — || u—u; |? 4
QP:  min o |lu—wu;| 4)

% + Lyh(z,t) + Lyh(z, t)yu > —vh(z, 1)
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Fig. 3. Safety checking for ego vehicle’s lane-change. We consider both
the vehicle f in the target lane and the vehicle b entering the target lane.

Algorithm 3: Training
1 Input: 7, M, 07, ] ,w], 9], AT

2 for each agentli do
3 Update the 9;+1 with (7);
Sample a batch B from M, Update ¢, w; with (9) respectively;

4
5 Calculate @91 fi(67 , A7), Update the 19Z+1 by (8);
6
7

Calculate (ZC)(GZJA), Update the A7+ by (10);
end

C. Training

As introduced in (IV-A), the algorithm operates in forward
view and updates the model parameters in every training
cycle. During the training, the algorithm loops through agents
and sequentially updates their policy parameters 6;, the critic
and cost network parameters ¢,,w;, the auxiliary policy
gradient variables 1¥; and the dual variable X\; with the
training batch B; sampled from memory. Steps are given
in algorithm 3.

Let F;(0,X;) & JE(O) + (¢ — JE(0),\;) ,Vi. The
estimated policy gradients regarding primal variables are

Vo, Fi(8,X:) =Vo,J'(0) — (Vo,JC (0). M), ¥i  (5)
and the policy gradients with respect to dual variables are
VA Fi(0i,Ai) = G — JE(6,), Vi (6)

The update of actor’s policy network follows the approach
from safe-Dec policy gradient algorithm [21], in which every
agent maintains a local policy with parameters 8; and a copy
of auxiliary policy gradients 1; computed based on local and
neighbors’ gradients. 9J; is initialized as 19? = 0. For each
training round 7, the new local policy OZ-T‘H is updated with
the current local policy 67, the local copy of policy gradients
9; and policies shared by its neighbors {07 }jcn; as in (7).
The update of policy gradient follows (8). In (7), (8), o7 is
the step size; W is weight matrix characterizing relations
among nodes in G introduced in [21].

OIH:ZJEN,; WWB;—JT'% (7)

O =5 cn, Wi 97 +Ve, Fi(6] 1 AT) =V, Fi (67 A]). Vi (8)
We use the temporal difference error defined in (9) for critic
and cost respectively, to compute the loss for two networks.
Specifically, R; — V;(s), RS — V. (s) are advantages [36] of
the return and cost to compute gradients of policy network
in Vg, J1(0) and Vg, J (0) respectively in (5).
(Rf - V:i(st>)27 Li,cost = (Ric’t - V;-C(St))2. (9)
The update of dual variable A\ follows the approach in [21]
as (10), where P, is the projection operator mapping A; to

a non-negative value and A = {\;|\; > 0}, Vi stands for the
feasible set of A;; p is the stepsize.

AT = Pa((1 = py))AT + pVa Fi(07 71 X))

Li,critic =

(10)

V. EXPERIMENTS AND EVALUATIONS

We deploy our experiment in the CARLA Simulator envi-
ronment [37], where each vehicle is configured with inborn
GPS and IMU sensors and a collision sensor that detects
the collision with other objects. We set the communication
range of all CAVs in simulation as 100m. The k-discretized
throttle ranges in action space .A4; is set as k = 3. We
set the training cycle as 16 steps, the discount factors as
Y = 0.99,49. = 0.9, and each model was trained 200
episodes in two scenarios. The constraints (; for agents are
10; the weight matrix W in training generally balances the
weights between ego and others’ policies and takes different
values based on the number of agents. The training and
testing of our algorithm and baselines took place in a server
configured with AMD Ryzen 3970X 32-Core processor and
four NVIDIA Quadro RTX 6000 GPUs. The experiments are
performed with CARLA 0.9.11, Python 3.7, PyTorch 1.10,
and CUDA 11.4.

A. Simulation with Challenging Scenario

We aim to deal with challenging scenarios in real life.
Specifically, safety-critical events such as running a red
light at an intersection, and hard-braking in highway traffic
incurred by another vehicle are usually immediate life threats
to drivers and passengers. In the experiment, apart from
the connected autonomous vehicles (CAVs) and unconnected
vehicles (UCVs), we explicitly define a hazard vehicle
(HAZV) taking the aforementioned dangerous behaviors in
3 respective scenarios as illustrated in Fig. 1 and 4.

1) Intersection: The first row of Fig. 1 are challenging
intersection scenarios where three CAVs (green) are driving
through the intersection and the HAZV (red) from the cross-
ing direction recklessly passes the intersection at the same
time. The throttle values taken by the HAZV in simulator
are randomly sampled from [0.65,0.85] plus a tiny step-
wise perturbation for continuous acceleration. In Fig. 1 we
present samples of initialization, success and failure cases of
collision avoidance in the experiment.

2) Highway: Figures in the second row of Fig. 1 illustrate
the challenging highway scenario, in which three CAVs, a
UCV (red) and a HAZV (yellow mark) are spawned to ride
on a multi-lane highway. The HAZV suddenly hard-brakes,
taking the step-wise brake values in simulator randomly
sampled from [0.9,1.0] and causing an immediate threat to
its rear CAVs. Meanwhile the UCV stays in its lane and takes
throttles in [0.3, 0.7] securing its smooth driving. Success and
failure of collision-avoidance cases are given in Fig. 1.

3) Highway-Hard: For testing, we also devised a more
difficult Highway-Hard scenario shown in Fig. 4. Ten vehi-
cles including 5 CAVs, 4 UCVs (red) and 1 HAZV (yellow
mark) are spawned in a compact traffic. The HAZV and
UCVs behave similarly as in Highway. The Highway-Hard is
comprehensively more challenging as it contains more agents
and UCVs, and the compact vehicles’ configuration produces
complex interactions.
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Fig. 4. Highway-Hard scenario for testing, with 10 vehicles. 4a: Highway-
Hard initialization; 4b: collision-free case with our method where agents
collaboratively change to different neighboring lanes to avoid the hard-
braking HAZV; 4c: CAV agent in baseline collides with HAZV.

TABLE I
TRAINING RESULTS IN TWO SCENARIO
Scenario Baselines Ours
w/o SST FC-CA2C? GT-CA2C3
Intersection 21%; 430.8 93%; 572.8 96%; 624.8
Highway 0%; 166.4 91%; 920.1 95%; 955.6

Iw/o SS: Ours GT-CA2C without Safety Shield; *FC-CA2C: Fully-
Connected Constrained Advantage Actor-Critic; 3GT-CA2C: GCN-
Transformer Constrained Advantage Actor-Critic

Each entry above is (collision-free rate; mean episode return). Our
method achieves highest safety and efficiency in the training phase.

TABLE II
TESTING RESULTS IN THREE SCENARIOS.

Scenario Baselines Ours

w/o SS FC-CA2C GT-CA2C
Intersection 20%; 444.8 86%; 579.6 94%; 586.8
Highway 2%; 185.3 90%; 922.6 90%; 926.7
Highway-Hard 0%; 108.6 70%; 706.4 78%; 724.3
Intersection - wlo 46, 435 3 44%; 4737 44%; 513.9
Communication
Highway-Hard wlo g, 110 ¢ 46%; 567.5  48%; 565.6
Communication

Each entry above is (collision-free rate; mean episode return). Our
method outperforms baselines in two metrics, proving the improved
safety and efficiency with GCN-Transformer and Safety Shield.

B. Experiment Results

We trained our model (GCN-Transformer Constrained
Advantage Actor-Critic; *GT-CA2C’ in the table I, II),
a baseline using our model without Safety Shield ("w/o
SS’ in tables) and another baseline "FC-CA2C’ with fully-
connected layers (replacing GCN-Transformer), constrained
advantage actor-critic and Safety Shield, each on Intersection
and Highway scenarios. Our method and baselines are all
under the multi-agent framework in Alg. 1. Training and
testing experiment results are presented in table I and II. We
highlight our method’s top leading performance among all
solutions. For each entry in tables, the left percentage is the
collision-free rate in simulation; the right number is the mean
episode return defined as the mean of agents’ sums over
stepwise rewards in every episode: > ., Avg, (>, rt)/m.
Examples of episode return values from testing our model
in Intersection are given in the scatter plot in Fig. 5a.

1) Effectiveness of Safety Shield: In all scenarios, our
approach outperforms baselines in collision-free rate and
overall return. Compared with the baseline 'w/o SS°, the
huge gaps in both metrics demonstrate improved safety and
efficiency with our CBF-based safety checking method.

2) GCN-Transformer and Improved Environment Aware-
ness: With the GCN-Transformer module applied compared

Collision-free Rates in Test Runs
. w/o SS
- FC-CA2C
. GT-CA2C

Agents' Average Return in Test Run

mean(Collision-free)
400 mean(Collision)

o Collision-free

o Collision

0 10 20 30 40 50
Episodes

% of Collision-free Rate

Intersection
Scenarios

(@) (b)
Fig. 5. 5a: Scatter plots of episode returns in Intersection; collision
could affect agents’ return greatly. 5b: Collision-free rates in normal
driving scenarios without hazard; our method achieves 100% safety in both
scenarios and leads all solutions.

to 'FC-CA2C’, our method has leading performance in
collision-free rates and mean episode returns in all three
testing scenarios. In Highway-Hard particularly, we find the
advantage of our method is enlarged compared with the
easier Highway, and this verifies the significance of enhanced
environment awareness with our approach under the more
challenging and hazardous scenarios.

3) Benefits of Coordination under Challenging Scenarios:
To verify the benefits of the coordination mechanisms, we
test our model against the absence of V2X communication
and observe the cascading performance without it in all
solutions. In Intersection scenario, the HAZV information
becomes unavailable until it appears in CAVs’ vision. In
Highway-Hard scenario, an ego vehicle is unaware of an-
other CAV’s intention to change lanes. From table II we
could see, although our method surpasses the baselines in
both metrics, the performance cannot match the excellence
in test runs with coordinated communications. The collision-
free rate drops from 94% to 44% in Intersection scenario,
and from 78% to 48% in Highway-Hard, and this also applies
to the baseline "FC-CA2C’. The above results could prove
the major contribution of coordination through information-
sharing based on V2X communication.

4) Performance in Normal Driving Scenario: Lastly, we
show results from testing in the remake hazard-free scenarios
Intersection-Normal and Highway-Normal in Fig. 5b, in
which the HAZV doesn’t break into the intersection or brake
abruptly. Our method can still perform well in the normal
driving scenario as it achieved 100% collision-free rate,
while Baselines *w/o SS” and "FC-CA2C’ both have collision
without hazard.

Highway

VI. CONCLUSION

In this work, we study the connected autonomous vehicles’
cooperative policy-learning problem in challenging driving
scenarios. We propose a constrained MARL coordinated
policy learning framework with a Safety Shield for CAVs
based on information-sharing. The GCN-Tranformer encoder
is introduced to MARL to raise agents’ spatial-temporal
awareness of the environment. In experiments, we verify
the effectiveness and advantage of our method and each
of its modules in both safety and efficiency by comparing
results with baseline models or settings, in challenging
driving scenarios with hazard vehicles in traffic. Future work
could extend to enhance the robustness of MARL algorithm
and CBF Safety Shield with noisy and erroneous shared
observations or models.
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