Joint Rebalancing and Charging for Shared Electric
Micromobility Vehicles with Energy-informed Demand

Heng Tan Yukun Yuan
Lehigh University University of Tennessee at
Bethlehem, USA Chattanooga
het221@lehigh.edu Chattanooga, USA
yukun-yuan@utc.edu
ABSTRACT

Shared electric micromobility (e.g., shared electric bikes and electric
scooters), as an emerging way of urban transportation, has been in-
creasingly popular in recent years. However, managing thousands
of micromobility vehicles in a city, such as rebalancing and charging
vehicles to meet spatial-temporally varied demand, is challenging.
Existing management frameworks generally consider demand as
the number of requests without the energy consumption of these re-
quests, which can lead to less effective management. To address this
limitation, we design RECOMMEND, a rebalancing and charging
framework for shared electric micromobility vehicles with energy-
informed demand to improve the system revenue. Specifically, we
first re-define the demand from the perspective of energy consump-
tion and predict the future energy-informed demand based on the
state-of-the-art spatial-temporal prediction method. Then we fuse
the predicted energy-informed demand into different components
of a rebalancing and charging framework based on reinforcement
learning. We evaluate the RECOMMEND system with 2-month real-
world electric micromobility system operation data. Experimental
results show that our method can be easily integrated into a general
RL framework and outperform state-of-the-art baselines by at least
26.89% in terms of net revenue.
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1 INTRODUCTION

Background and Goal: Shared micromobility (e.g., shared bikes
and scooters), as an emerging way of urban transportation, has
been increasingly popular in recent years. For example, Lime, a
major shared micromobility service provider, serves more than 155
million users in 2022 [19]. As an alternative way to conventional
automobiles, users use shared micromobility vehicles for short-
distance trips such as from bus stops to home, enabling convenient
mobility through multi-modal transportation [42] and less environ-
mental impact by reducing emission from traffic congestion in rush
hours [40]. The success of shared micromobility largely depends on
the effective and efficient management of micromobility vehicles
(e.g., bikes or scooters). With thousands of micromobility vehicles
spreading in cities, it is challenging to effectively manage these
vehicles, e.g., rebalancing vehicles to different regions to meet the
spatial-temporally varied demand [11]. Further, recent blooming
of electric micromobility vehicles (e.g., e-bikes or e-scooters) in-
troduces additional management challenges as charging has to be
considered simultaneously, e.g., minimizing charging cost while
rebalancing [38]. Thus, the goal of this work is to design an efficient
shared electric micromobility management framework considering
both rebalancing and charging.

State-of-The-Art (SoTA) and Limitations: Existing vehicle man-
agement works have been designed for two main scenarios, includ-
ing (i) conventional non-electric vehicles such as taxis [1, 5, 20, 35,
37] and bikes [1, 6, 14, 16, 17, 24, 26, 32] and (ii) electric vehicles such
as e-taxis [38, 39], e-buses [25, 34], shared e-cars [2, 8, 22, 30, 41],
and e-scooters [11, 12, 29]. For works of non-electric vehicles, they
focus on rebalancing vehicles to different regions to match future
demand and lack charging scheduling capacity, so they cannot be
applied in our scenario. For works of electric vehicles, they consider
both rebalancing and charging. They generally follow a paradigm
that first predicts the number of future requests as demand and
rebalances vehicles to meet the future demand. When vehicles’
energy level is lower than a certain threshold (e.g., 15% [4]), a charg-
ing schedule is planned to recharge those low-energy vehicles. We
argue that a key limitation of such a paradigm is that it does not
consider future energy consumption while predicting future de-
mand. That is, the demand is defined only as the number of requests
without the energy consumption of these requests, which can lead
to less effective scheduling. For example, the number of rebalanced
vehicles meets the number of future requests, but the vehicles’ re-
maining energy is not sufficient for future trips. This limitation can
be even more significant for shared micromobility considering the
limited battery capacity of micromobility vehicles (e.g., e-bikes or
e-scooters), compared to electric cars.
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Opportunities and Challenges: In this work, we re-define the
demand from the perspective of energy consumption and aim to
design a framework of using energy-informed demand (i.e., con-
sidering both trip demand and trip energy consumption) to guide
micromobility vehicles scheduling (i.e., rebalancing and charging).
Specifically, we take advantage of the recent advancement of re-
inforcement learning (RL) in vehicle scheduling [30][22] and aim
to incorporate energy-informed demand prediction into RL-based
vehicle scheduling. There are two challenges. First, RL-based sched-
uling methods generally consist of multiple components such as
state, policy, and reward. It is challenging to seamlessly integrate
predicted energy-informed demand with these components in a
general RL framework. Second, managing thousands of micromo-
bility vehicles in a city is computationally expensive [13] consid-
ering the large searching space (i.e., the large number of possible
rebalancing and charging strategies). It is non-trivial to design a
computationally efficient method to find the optimal strategy.
Our work: We design RECOMMEND, a rebalancing and charging
framework for shared electric micromobility vehicles with energy-
informed demand. We first formally define the micromobility ve-
hicle rebalancing and charging problem and introduce a general
RL-based rebalancing and charging framework. Then we adopt
a state-of-the-art spatial-temporal prediction method to predict
energy-informed demand. Based on the prediction, we incorporate
the prediction as add-on modules into the RL framework. Specifi-
cally, we integrate the demand modules into components, including
the state, action, and reward. We further design a demand-guided
method to guide the charging and rebalancing policy learning pro-
cess for faster convergence. Results show that our methods can be
easily integrated into a general RL framework and achieve supe-
rior performance compared with state-of-the-art baselines. The key
contributions of this work are as follows:

(1) We are the first to solve the problem of rebalancing and
charging shared electric micromobility vehicles considering energy-
informed demand.

(2) Technically, we design a RL-based framework where energy-
informed demand is seamlessly fused in different components and
supervises policy search to improve the efficiency of policy learning.

(3) We collaborate with a micromobility service provider and
evaluate our approach based on real-world data in a city with more
than 900 deployed vehicles. Our experimental results show that
our method outperforms the state-of-the-art baselines by at least
26.89% in terms of net revenue. An ablation study is performed to
show the effectiveness of different technical components.

2 BACKGROUND & MOTIVATION

In this section, we first introduce how a gerneral shared electric
micromobility vehicle system works and its operational data. Then
we motivate our work by analyzing the importance of energy-
informed demand from two perspectives: rebalancing and charging.

2.1 Electric Micromobility Vehicle System

Fig. 1 shows the operation of a general shared electric micromobility
vehicle system, including four key elements: the system operation
center, users, the electric micromobility vehicles, and the trucks.
The system generally works with two phases: the usage phase (e.g.,
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users request and use vehicles) and the scheduling phase (e.g.,
trucks rebalance and charge vehicles). In the usage phase, a user
first unlocks an available vehicle from the user’s smartphone and
then rides this vehicle to the destination. The vehicle automatically
records and uploads its status (e.g., location and energy level) to the
system operation center. After a certain usage period (e.g., 1 day),
in the scheduling phase, the system operation center generates
a rebalancing and charging plan (e.g., which vehicles to relocate,
which vehicles to charge, and a suggested truck route) based on
the status of all the vehicles and sends the plan to trucks. The
trucks follow the plan to perform rebalancing and charging. In our
work, we specifically consider charging through battery swapping
[27], which our partner currently uses. Our work can also be easily
generalized to other charging methods, such as centralized charging
by relocating vehicles to a charging station for overnight charging
[30] (detailed discussion in Section 6).
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Figure 1: Electric micromobility system operation

2.2 Data Description

We use a real-world dataset provided by a shared electric micromo-
bility service provider with whom we cooperate. This dataset spans
two months, from August 2021 to September 2021, and consists of
54,021 trips and 912 shared electric micromobility vehicles. When-
ever there is a change in the vehicle status, such as location and
availability, real-time status updates are uploaded to the platform.
These updates include the vehicle ID, vehicle status, event types
(e.g., trip start or trip end), vehicle GPS location, battery energy
level (measured as a percentage), timestamp, and other relevant
information (details in Table 1).

2.3 Why Energy-informed Demand Matters

Our work is built upon the assumption that energy-informed de-
mand is important for shared electric micromobility management.
In this part, we perform data-driven investigation to verify this
assumption from two perspective: rebalancing and charging.

2.3.1 Significance of Energy-informed Demand on Rebalancing. For
rebalancing, the key goal is to move vehicles to meet users’ future



Joint Rebalancing and Charging for Shared Electric Micromobility Vehicles with Energy-informed Demand

Table 1: Attributes in each record

Vehicle Id Vehicle Latitude Vehicle Longitude Event Types
trip-start / trip-end /
battery-low /
e.g., 30100292 e.g., 40.5214 e.g., -74.4567 battery-charged /
rebalance-pick-up/
rebalance-drop-off
Vehicle State Event Time Event Id Vehicle Energy (%)
available /fon-trip o 001 06311810 e, e5b149bc-4400 e.g. 73%

unavailable

requests in different regions. We analyze the difference of the num-
ber of trips and the average trip energy consumption in a region
and discuss how they behave differently toward the goal from both
the spatial and temporal perspective.

Spatial Perspective: Fig. 2a shows the average trip energy con-
sumption and the number of trips in different regions. Each region
is defined as a 800 meters X 800 meters grid, following the existing
practice [22, 24]. In the conventional scheduling methods, the goal
is to meet the number of trips (i.e., requests) in each region, without
differentiating vehicles with different energy levels. However, as
shown in Fig. 2a, two regions with a similar number of trips can
have significantly different energy consumption (e.g., region 16 and
region 18). This is mainly because the demand in different regions
can vary a lot (e.g., people in some regions may tend to ride further
or shorter than others). That indicates we cannot simply regard user
demand as only number of requests without considering energy
consumption.

—— Energy consumption

—— Energy consumption
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(a) Spatial perspective (b) Temporal perspective
Figure 2: The significance of energy-informed demand on
rebalancing compared with trip-informed demand from the
spatial and temporal perspectives

Temporal Perspective: Fig. 2b shows the average trip energy con-
sumption and the number of trips at different time slots of a day.
Compared to the number of trips, it shows energy consumption has
a significantly different pattern. For example, the number of trips
reaches to the lowest between 4 pm and 10 pm, but the average
energy consumption is relatively high. Therefore, besides preparing
enough shared electric micromobility vehicles, we need to relocate
vehicles with certain remaining energy based on the temporal dis-
tributions of energy consumption to avoid the unsatisfied demand
due to the lack of energy.

Based on the above analysis, we argue that energy-informed
demand is important for rebalancing from both the spatial and
temporal perspectives, compared with trip-informed demand. In
addition, to meet users’ demand, we need to consider both the
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remaining energy of vehicles and users’ energy-informed demand
when we rebalance those vehicles in the system.

2.3.2  Significance of Energy-informed Demand on Charging. One
important question of charging electric micromobility vehicles is
when to charge the vehicles. Traditional methods generally set a
static charging threshold and charge vehicles when the remaining
energy is lower than the threshold. We argue that without consid-
ering the energy-informed demand, traditional methods can result
in two issues. First, if the charging threshold is too low (i.e., many
vehicles are not charged) and the future energy consumption is
high, then the future demand cannot be satisfied. Second, if the
charging threshold is too high (i.e., most vehicles are charged) but
the future energy consumption is low, then vehicles may still sat-
isfy the demand based on their remaining energy without charging,
leading to wasted unnecessary charging. To quantitatively study
these two issues, we define two corresponding metrics: (1) the de-
mand satisfaction rate representing the ratio of satisfied demand
(i.e., totalsatisfied demand ) 4 (2) the unnecessary charging rate rep-

. total demand )
resenting the ratio of vehicles that do not need be charged but
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Figure 3: Demand satisfaction rate and unnecessary charging
rate under different charging threshold

As shown in Fig. 3, the charging threshold impacts the demand
satisfaction rate and unnecessary charging rate significantly. Even
if we set the charging threshold as 100% (i.e., fully charge all the
vehicles), there are still nearly 10% trips in one day that cannot be
satisfied. It also shows that if we set the charging threshold as 100%,
there are nearly 80% of them are unnecessary. As a result, we simply
waste the operation time and increase the charging cost, potentially
damaging the vehicles because of frequent battery swapping [28].
In addition, if we set the charging threshold as 0%, the unnecessary
charging rate is nearly 0, while the satisfaction rate decreases to
approximately 80%. It means that many vehicles’ remaining energy
cannot support users’ daily trip energy consumption, leading to
unsatisfied demand. In summary, knowing the energy-informed
demand is important for deciding the charging strategy.

3 PROBLEM FORMULATION

In this section, we formulate the problem of rebalancing and charg-
ing shared electric micromobility vehicles.

DEFINITION 1 (SHARED ELECTRIC MICROMOBILITY VEHICLE RE-
BALANCING AND CHARGING PROBLEM). Given the spatial-temporal
distribution of users’ demand, the location and energy status of elec-
tric micromobility vehicles, and the number of available trucks, we
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aim to answer two questions: (1) which region each vehicle should
be dispatched to and (2) which vehicle should be charged, so as to
maximize the total revenue of a shared electric micromobility system
while minimizing the charging cost and traveling cost of trucks.

Problem Setting: We partition a city into N equal size grids
(i-e., {#1, 22, ..., 2N }) and each grid is considered as a region. A day
is divided into T equal-length time intervals. We discretize vehicles’
amount of energy into L different levels. Q trucks are available
for the system to rebalance and charge micromobility vehicles. To
describe the spatial-temporal distribution of shared electric micro-
mobility vehicles in a city, we use Si’l to denote the number of
shared electric micromobility vehicles with energy level [ in region

i at the beginning of time slot ¢.

We define the energy -informed demand as F, Ll e N, represent-
ing the number of users’ requests from region i to region j at time
slot t that need to consume energy by [ levels. Therefore, for the
whole city, we define the vehicle supply and demand during time
slottasS, € NNXL(s, = (st} vie N,VI e L)andFt € NNXNxL
(F; = {F, i.J: l} Vi, j€ N,VIe L), respectively T! trip represents the

revenue of the system from users’ usage at time slot ¢, related to
the users’ demand and the supply of vehicles, formulated as:

trlp - ﬁrlp(sta Ft) (1)

Scheduling: When making the rebalancing and charging de-
cisions, the operator considers the current vehicle supply S; and

the energy-informed demand of the future h time slots, i.e., Fy.;,p-
i,j,0,t

We deﬁnea ENNXNXL (areb—{areb LYi,jeNVI€L)as
the rebalancmg strategy and a 2 € NNXNXL (acha = {ai’}{’;’t}, v

i,je N,VIeL)asthe Charging strategy at time slot ¢, considering
the scheduling of the vehicles of different remaining energy levels
o . ij Lt i,j Lt
in different regions. a anda ;"

strategies for vehicles with remaining energy level [ between region

i and region j. So, the scheduling {aieb, aiha} is formulated as:

{aieh’ aiha} = f?(sb Ft:t+h)’ (2)
where f; is the function taking the vehicle supply and future de-
mand as input and outputting the rebalancing and charging strat-
egy-

Cost: After determining {areb, cha} we compute the optimal
truck routes for the actual rebalaning and charging, which intro-
duces monetary cost to the system operator, i.e., electricity payment
for charging batteries C{ and traveling cost of trucks C}. In sum-
mary, we use the following equation to describe the monetary cost
of scheduling:

are rebalancing and charging

Cs(areb’ cha) = Clc‘ + Clr‘ ®)
Note that other potential costs can be easily integrated in the equa-
tion.

Objective: Our goal is to develop an optimal algorithm to provide
effective rebalancing and charging schedules for shared electric
micromobility vehicles, in order to maximize the total net revenue R
(i.e., total income from serving users minus the cost of rebalancing

and charging):

argmax
Dreb>

T T
_ . _ S (b t
al,. R= ; frip(St, Fr) ; G (areb’ acha) @
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4 DESIGN

In this section, we first introduce our rebalancing and charging
framework based on multi-agent reinforcement learning (MARL).
Then we introduce how energy-informed demand is fused into
different parts of our framework.

4.1

Motivated by existing work [30], we model the problem of rebal-
ancing and charging shared electric micromobility vehicles as a
cooperative Markov game G for N agents, which is defined by a
tuple G = {S, A, R, P, y}. S represents the set of states. A denotes
the action space of agents. R is the reward function. £ denotes the
transition probability function. y is the discounted factor. We give
the definitions of these notations as follows.

Agent: We define an agent for each region, which decides rebal-
ancing and charging for all the vehicles in the region. The reason
that we define an agent for each region rather than a centralized
agent for the whole city is that a centralized agent can introduce
large action and state space [21, 33], which is computationally in-
tractable.

State: At the beginning of the time slot ¢, the state of region i is
defined as si = {S;, Fiqn}- Sg denotes the set of available vehicles

Multi-agent Reinforcement Learning

in region i at time slot ¢. Specifically, S;"l is the number of available
vehicles with remaining energy level [ in region i at time slot ¢.
F;.;+p denotes the energy-informed demand from slot ¢ to ¢ + h,

which is predicted by a pre-trained prediction model[33].
ijLt
reb ’

denotes the shared elec-

Action: Agent i for region i takes a set of actions ai ={a

j k t} given the current state s[ a, ] Lo

tr1c mlcromoblllty vehicles with remamlng energy level [ that are
relocated from region i to region j at time slot ¢, and @b s the
proportion of the vehicles with energy level [ that are rebalanced
from region i to region j and charged at time slot .

Reward: The reward of an agent is defined by the trip revenue
from serving users, the average traveling cost of truck-based sched-
uling, and the cost of charging vehicles (i.e., the number of vehicles’

batteries swapping).

t
Ttrlp

©)

L A
o- Ea’] = M,
ch

I=1

1=
1P]=

i=1j

where Tttr ip is the total trip revenue at time slot ¢, « is the coefficient
of the transformation to monetary reward, which is determined
by the vehicle electricity volume and current electricity price.
is another coefficient of the transformation to monetary reward,
determined by truck fuel consumption and current fuel price. M is
the total truck mileage for the whole city.

Transition probability function: Transition probability func-
tion denotes the probability of state s; transferred to the next state
st+1 given the action a;.

Discounted factor: Discounted factor y represents the extent
that the agents pay attention to the future reward compared with
the immediate reward, y € [0,1). If y = 0, it indicates that the agent
only cares about the immediate reward and learns the actions that
cause the immediate reward.
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Based on the above setting, the objective of all region agents is
to collaboratively maximize expected average cumulative reward,
ie, Gy = [X72 yi! Zfil R(s;, ay)|s1 = s]. The Q-value of joint
state s; and action a; under policy 7y is denoted by: Q™ (s;, a;) =

o kyN i i
E[Zk:O 14 Zi:l R(st+k+1’ at+k+1) |70 5. a .

4.2 Design Overview

We design a framework based on multi-agent reinforcement learn-
ing for rebalancing and charging shared electric micromobility
vehicles, as shown in Fig. 4. We regard the problem as interactions
between region agents and the shared electric micromobility system
environment. Consequently we formulate it as a Markov Decision
Process (MDP). In the MDP, we define an agent for each region and
region agents make decisions about how to rebalance and charge
the shared electric micromobility vehicles in their regions. Based
on the historical records, demand prediction module aims to pre-
dict the future energy-informed demand as a part of the inputs
of agents’ policies and action supervision module. Based on the
current states, region agents’ policies output the rebalancing and
charging strategies to meet the future energy-informed demand.
To prevent region agents from selecting inefficient actions, the pre-
dicted energy-informed demand is fused to supervise the actions
that region agents provide. Given the rebalancing and charging
strategies provided by region agents, the truck route optimization
module is used to provide optimal truck routes for schedules, reduc-
ing truck traveling cost. The immediate reward is the net revenue,
covering the trip revenue, truck traveling cost for rebalancing, and
charging cost. Then the region agents try to improve their own
policies based on the reward. Our objective is to maximize the
long-term net revenue of the whole system.

\\ Q‘\N J_\N % | Demand prediction
=~ EID

Agents
b
Qﬁ} State Action )
Ij' Supervision
—o -
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Action
Reward
t=0 t=1 t=2 t=k t=k+1 t=T

Figure 4: An overview of DRL framework for rebalancing
and charging e-scooter sharing system with energy-informed
demand (EID)

4.3 Prediction of Energy-informed Demand

In our model, the energy-informed demand plays an important role
in replacing and charging where we consider both trip-informed
demand prediction and energy consumption estimation.

For the trip-informed demand prediction, we predict the number
of trips between each region pair at each time slot before the next
scheduling, i.e., fkl] (ke {t,t+1,...,t +h}). Here, fk” denotes the
number of trips from region i to region j at time slot k. To achieve
the trip-informed demand prediction, we regard the whole city as
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a graph where each grid is a node and use a spatial temporal graph
convolutional network [36], which inputs the historical shared
electric micromobility vehicle usage, so as to predict the future
vehicle flows.

In energy consumption estimation, our goal is to predict the
energy consumption distributions of trips between each pair of re-

gions, denoted as ek’J’ (ket,t+1,..,t+h). Here, ek’J’
the ratio of trips starting from region i to region j during time slot k
with energy consumption [. To achieve this estimation, we employ
an XGBoost-based model[3]. This model takes into consideration
various factors such as spatial features (e.g., region index, points of
interest), temporal features (e.g., day of the week, hour of the day),
external factors (temperature, weather), and historical records as
inputs to predict the distributions of different energy consumption
levels.

After getting the predicted number of trips and energy consump-
tion distributions, we combine them together to get the predicted
energy-informed demand of each region pair:

represents

,J l f i.j 1,] l (6)
where F]i’j ! denotes the number of trips with energy consumption
level [ starting from region i to region j at time slot k, k € {¢,t +
1,...,t + h}, and the predicted energy-informed demand beginning

at timeslot k is defined as: F. = {F]i’j’l}, Vi,je N,VI€L.

4.4 Incorporate Energy-informed Demand into
Different Steps

In this section, we introduce how energy-informed demand is fused
in different steps of the general RL-based framework.

4.4.1 RL agent with energy-informed demand: In order to fulfill
users’ energy consumption requests, region agents in MARL aim
to develop effective strategies for rebalancing and charging shared
electric micromobility vehicles within their respective regions. Con-
sidering the energy-informed demand, we classify the vehicles in
each region into several groups based on their remaining energy
levels, i.e., S;’l, which denotes the number of vehicles with energy
level [ in region i at time slot . We then include the predicted
energy-informed demand F;.;,, as part of an agent’s state. Conse-
quently, the policy of each region agent considers the distributions
of the vehicles with different remaining energy levels in its own
region and the future energy-informed demand.

A vehicle not only needs to be vacant but also must have suf-
ficient energy to transport a user from the origin to the destina-
tion. To accommodate as much of the energy-informed demand
as possible, we differentiate the vehicles based on their remaining
energy and rebalance vehicles with varying energy levels among
the regions. This approach allows us to integrate energy-informed
demand into the agent’s action. The rebalancing action of a region
agent is defied as ai’g ;j’t, which denotes the proportion of shared
electric micromobility vehicles with remaining energy level [ to
be rebalanced from region i to region j at time slot ¢t. Considering
the dynamic spatio-temporal energy consumption, some vehicles
have to be charged before rebalancing, even though their remaining

energy is still high, while some vehicles don’t have to be charged
ijlLt

even though their remaining energy is still low. So, we definea ;" ",
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which denotes the proportion of shared electric micromobility vehi-
cles of energy level [ to be rebalanced from region i to region j and
need to be charged at time slot ¢. The supply of vehicles is changed
by the above actions:

N ] N L

il i,j,Lt Lt

St+1 - S (1= Z areb Z %reb ) )

Jj=1 Jj=1

N N L-1 .

i,L Loy i,j,L,t szt Z 11 t
St+1 - S (1 Z areb + reb + cha
Jj=1 Jj=1 j=11=1

From the above definitions, we build the relationship between state
and action, with energy-informed demand.

4.4.2 Demand-Guided Policy Learning: Even though we consider
each region as an agent, the process of rebalancing and charging
shared electric micromobility vehicles with different remaining
energy levels among regions is still complicated, considering the
division of regions and energy levels. As a result, the search space
of agent policies needs to be narrowed down. Specifically, we aim
to prevent the agent from selecting inefficient actions. Therefore,
we design action supervision module to achieve this goal.

In this module, we utilize the future h-hour energy-informed
demand F;.;,p to supervise the actions taken by region agents.
Specifically, we use these demands to simulate the operation of an
electric micromobility system, allowing us to determine the number
of user requests that can be satisfied. Each predicted demand can
only be fulfilled by vehicles with remaining energy levels equal
to or higher than its energy consumption level. The remaining
energy levels of the vehicles decrease after completing trips based
on the energy consumption levels associated with their matched
demand. Following the simulation of the system using predicted
energy-informed demand, we calculate the trip revenue by consid-
ering the number of users’ predicted demand satisfaction and the
average trip duration based on historical data of shared electric
micromobility vehicle usage. Hence, we obtain the predicted net
revenue, considering future trip revenue, truck traveling cost, and
charging cost:

N
XY — B Mpre,  (9)

Jj=1

Mz

Zaljlt
C

1

L
t
Rpre(Ft:t+h) ay) = Tpre
=

I
-

where Ty and Mp,, are the total time duration and truck mileage
cost in the simulation of the electric micromobility system operation
with predicted energy-informed demand. The definitions of & and
B are the same as those in Eq. (5). We then determine whether the
actions provided by region agents should be executed, considering
whether the future net revenue is non-negative. Since our aim is
to ensure that the joint actions of rebalancing and charging have a
long-term impact on future vehicle usage, it indicates that region
agents are choosing ineffective actions if they do not result in
positive future trip revenue. In such cases, these actions may be
abandoned, and no schedules will be generated for shared electric
micromobility vehicles in the current time slot:

0or a;
ar

RjtJre (Frtnar) <0
R;:re(Ft:t+h) at) >0
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4.5 Truck Route Optimization

In this section, we formulate the truck route optimization problem
as a spatial-temporal mixed integer programming (STMIP) problem
and introduce its objectives and constraints to generate optimal
truck routes for scheduling shared electric micromobility vehicles.

Since the electric micromobility system after rebalancing try to
satisfy all the demand in the next m hours, we assume that the
truck-based rebalancing needs to be done in the next one hour
to minimize the impact of demand loss. Accordingly, we divide
one hour into T’ time slots. Through scheduling policies, we can
easily know the energy distribution of shared electric micromobility
vehicles before and after the scheduling, denoted as d” d ;- They
are sent as inputs to STMIP to generate the feasible truck routes for
rebalancing and charging shared electric micromobility vehicles.

The variables used in the model are defined as follows: x; j o+
denotes if truck o visits region i at the beginning of time slot ¢ and
departs from region i to region j at the end of time slot ¢. Based
on xj j,.t, we define 0;,; that if truck o is present in region i at
time slot ¢. P;;,; and D;,,; denote the number of shared electric
micromobility vehicles of energy level [ to be picked up and dropped
off by truck v in region i at time slot ¢ respectively.

Since we know dgl, dr’ P the distribution of shared electric mi-
cromobility vehicles of different energy levels before and after the
rebalancing, we want to finally transform the origin distribution to
the rebalanced distribution, as shown in the following equation:

+ZZDzlvtelvt Zzpllvtelvt_drl

t=1 v= t=1 v=1

(10)

We define Q,; that represents the truck load of truck v at time
slot t to build the temporal relationship between P;;, , and D;

N L N L
Qor = Qur-1+ (Z Z Pifos = Z Z Dit0,)0i0.

i=1 |=1 i=1 |=1

(11)

To make sure that each truck visits and departs from only one
region, we define 6; ,, ; that represents if truck v is present in region
i at time slot t. We also set the constraints on it:

(12)

N N
Oior = in,j,v,ts Z Oior =1
= i=1

Besides x; jo,t, we also define ¢; ; and Dyqax as the distance
between region i and region j and the longest distance that truck can
reach in one time slot, so as to set a constraint on truck reachability:

CijXijot < Dmax (13)

The objective of our STMIP model is to minimize the final total
truck mileage cost, formulated as follows:

vV T

53939 ) YA

v=1 t=1 i=1 j=1

(14)

5 EVALUATION

In this section, we conduct experiments to evaluate our models,
answering the following research questions:
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RQ1: How does our model perform, compared with other base-
lines?

RQ2: How effective are the energy-informed demand (EID) in
the scheduling of rebalancing and charging shared e-scooters in
our model?

RQ3: How much impact does the action supervision module (AS)
have on the convergence of our model?

RQ4: How do factors impact the performance?

5.1 Evaluation Methodology

Dataset: We conduct our experiments based on a real-world shared
e-scooter usage data. More details can be seen in Section 2.
Experiment settings: We divide the dataset into two parts: one
month’s usage data is used for the training set, and another month’s
data is used for the test set. We divide the remaining energy and
energy consumption into 10 levels, ranging from 0 to 100. In terms
of region division, each region has a size of 800 meters X 800 meters
in the experiments. We divide a day into 24 equally-length time
intervals, and the interval of rebalancing and charging schedules is
12 hours. For truck route optimization, we set the max truck load
to be 30 e-scooters, the max truck number to be 20. The maximum
reachable distance per unit time interval is 5km. We divide one
hour into 20 equally-length time intervals for truck routes. The trip
revenue is $0.5 per minute. The truck traveling cost per kilometer
is set at $2.422. The charging cost is valued at $0.69 per e-scooter.
Implementation: We implement our method and baselines with
PyTorch 1.9.1, Python-mip 1.14.2, gym 0.21.0 in Python 3.7 environ-
ment and train it with 32 GB memory and GeForce RTX 3080 Ti
GPU. Stochastic gradient descent optimizer is applied to minimize
the loss, and the learning rate is le-4. The max training episode
number is 1900, and discounted rate y = 0.99. Abandonment rate
in the action supervision module is 0.5.

Baselines: We evaluate the performance of our model with the
following four baselines:

e No Rebalance & Charging (NRC): It simulates the e-scooter
sharing system operation without rebalancing and charging ac-
tions.

State-of-The-Practice (SOTP): It represents the practice sched-
uling used by our platform collaboration, which is based on a
static charging threshold.

MADDPG [21]: It is a multi-agent reinforcement learning frame-
work to achieve the cooperative or competitive relationship of
agents in the environment.

Record [30]: It is a state-of-the-art electric carsharing rebal-
ancing and charging algorithm based on the definition of the
dynamic deadline for scheduling.

Variants of our model: We also consider the significance of dif-
ferent variants of our models:

e Our model without energy-informed demand (w/o EID):
In order to verify the importance of energy-informed de-
mand, we remove it and use trip-informed demand instead.
However, we still use demand with energy consumption
during real-world simulation in the environment to get the
trip revenue. Besides this, we replace the dynamic charging
threshold with the static charging threshold.
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e Our model without action supervision module (w/o
AS): To demonstrate the effect of action supervision, we
remove this module. Therefore, any rebalancing or charging
action is directly sent to truck route optimization module.

5.2 Overall Performance (RQ1)
ﬁ307— RECOMMEND
.§§25 —— NRC
%520 ....... Record
E 215/ ---- soTP
gi,§10 —-— MADDPG R el
gt g
gg S Sl
S| T g OV Jusi R R p— -
CF ] —m—— g
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Figure 5: Total net revenue of different approaches

To evaluate the model performance, we focus on the cumulative
net revenue in one month. Fig 5 shows that the final cumulative
net revenue of RECOMMEND is higher than that of other baselines
obviously. The daily revenue is also higher than others in most of
the time. Compared with state-of-the-art works, RECOMMEND
achieves a significant improvement in net revenue, with an increase
of 26.89%. One possible reason is that other baselines assume that
other baselines assume homogeneity among trips within the same
region pair and simply attempt to match the number of available
e-scooters with the incoming demand. As a result, the scheduled ve-
hicles may not be qualified to be picked up by users due to the limit
of remaining energy. Even though these vehicles may temporarily
satisfy immediate energy consumption requests, their low-battery
status prevents them from being used multiple times before the
next scheduling. In addition, other baselines may cause too much
unnecessary charging because of their static charging threshold.
For example, if certain vehicles can fulfill user demands with low-
energy consumption for several days in regions where demand is
scarce, they may not need to be charged even if their remaining en-
ergy falls below the charging threshold. Conversely, some vehicles
may require premature charging when there are future requests
with high energy consumption, even if their remaining energy is
higher than the static charging threshold. Table 2 demonstrates
that not only does RECOMMEND outperform other baselines in
terms of trip revenue and average satisfaction rate, but it also ex-
hibits lower total costs, particularly in regard to charging costs.
This provides further support for our assertion.

Though the demand prediction and energy consumption esti-
mation are challenging problems, they are not the focus of our
work. The key contribution is to consider energy-informed demand
in the rebalancing and charging of shared electric micromobil-
ity systems, leading to our key technical design of incorporating
energy-informed demand in a MARL-based framework. We use
metrics of mean absolute error (MAE) and mean square error (MSE)
to evaluate the performance of trip-informed demand prediction
and energy consumption estimation. The evaluation results are
shown in Table 3. How to improve the prediction performance will
be our future work.
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Table 2: Performance comparison of different approaches on the real-world data

Method Trip Revenue ($) Total Cost ($) Net Revenue ($) Charging Cost ($) Daily Average Revenue ($) Average Satisfaction Rate (%)
Record [30]  24236.90 (£196.19)  3655.52 (+86.21) 2058138 (£140.38)  992.22 (+23.39) 807.90 (+6.54) 81.6
MADDPG [21]  23766.0 (189.14)  5505.89 (£79.50)  18260.11 (£121.97)  1696.71 (+24.49) 792.20 (+6.30) 79
SoTP 23842.28 6104.80 17737.47 2066.55 794.74 81.25
NRC 2340 - 2340 - 78 7.9
RECOMMEND  28062.5 (+185.78) 1946.38 (+67.62) 26116.12 (+114.46) 511.29 (+17.76) 935.41 (+£6.19) 94.5

Table 3: Performance of energy-informed demand prediction

Category MAE (%) MSE (%)
Trip-informed demand prediction 3.24 2.96
Energy consumption estimation 3.09 1.23

Table 4: Performance comparison of different variants in EID

Net Revenue ($)

20321.01 (+114.64)
19357.84 (£120.09)

Method

w/o EID in state
w/o EID in action

Total Cost ($)

3286.49 (+62.14)
5422.15 (£74.64)

Trip Revenue ($)

22607.50 (+183.84)
24779.99 (+180.23)

RECOMMEND 28062.5 (+185.78) 1946.38 (+67.62) 26116.12 (+114.46)
0 2287 pecommenn 26
z824 .
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Figure 6: The effect of
energy-informed demand

Figure 7: The significance of
action supervision

5.3 Ablation Study (RQ2 & RQ3)

The effect of energy-informed demand: Fig. 6 shows the cumu-
lative net revenue of our model and its variant EID. When we do
not consider the energy-informed demand, and charge e-scooters
according to the static charging threshold instead, even if the sys-
tem sometimes is able to satisfy all the real-world demands, it first
cannot make vehicles charged ahead of time to meet the users’
energy consumption requests which are higher than the charging
threshold, and unnecessarily charge the vehicles in the regions
with few low-energy consumption demands. As a result its total
cumulative net revenue must be lower than our model (less trip
revenue and more charging cost). We also develop two variants
by removing the EID module from the state part and the action
supervision part, respectively. The evaluation results in Table 4 can
demonstrate the importance of EID structure.

The significance of action supervision: After each episode, we
save the total net revenue to see the changes of total net revenue of
our model in the training process. Fig. 7 shows the progression of
the net revenue as we train models. And we can see that compared
with the variant AS, our model is faster to converge by 16.8%. The
possible reason is that the action supervision possibly filters the
inefficient scheduling strategies and narrows the search space for
policy optimization. Without it, the model may usually choose the
"bad" behaviors and need more time to improve its policy.
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Table 5: Performance comparison under different scheduling
intervals
Method
3-hour interval

24-hour interval
12-hour interval

Trip Revenue ($) Total Cost ($) Net Revenue ($)
27830.93 (+186.79) 7523.86 (£69.17) 20307.07 (£124.04)
26017.07 (£182.71)  1428.12 (£65.83)  24588.95 (109.85)

28062.5 (+185.78) 1946.38 (£67.62) 26116.12 (+114.46)

3-hour interval

g g30 —— 12-hour interval =7 g
£ 805 ' -8 1 Net revenue s
= ; === 24-hour interval Q:’ S 3. =1 Prediction error =
2 £20 = 208
g o Z&2 8
32 15 == g
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Figure 8: The effect of sched-
ule interval

Figure 9: The effect of region
size

Table 6: Net revenue under different prediction errors

2.32 2.62 3.38 3.39
2.37 2.28 2.09 2.08

Prediction error (%)
Net revenue ($/trip)

5.4 Impact of Factors (RQ4)

Rebalancing & charging interval: Fig. 8 shows the performance
comparison w.r.t. interval of scheduling of rebalancing and charg-
ing for shared electric micromobility system. The best interval of
scheduling is 12 hours. It indicates that even though short-interval
scheduling may satisfy more user’s energy-informed demand, it
increases much more scheduling costs, which decreases the final
net revenue. In addition, although long-interval scheduling reduces
the scheduling cost, it makes more energy-informed demand un-
satisfied, under the quantity limit of shared electric micromobility
vehicles in a region, which also decreases the final net revenue. The
results in Table 5 support our opinion.

Region size: Fig. 9 displays the average cumulative net revenue
and prediction error of energy-informed demand under different
region sizes. The optimal region size is 800m X 800m. It indicates
that the smaller region size leads to more individual regions in a
city, which complicates the truck routes and causes more truck
traveling costs. In addition, the smaller region size leads to the
bigger size of the flow matrix of the system vehicle usage, which
complicates the prediction task, causing higher prediction error.
However, too big size of region will lose the mobility of vehicles of
the city, and the inter-region scheduling problem may transform
into an intra-region scheduling problem.

Prediction error: We conduct experiments to reveal how the pre-
diction error affects the model performance, as shown in Table 6.
It shows that the prediction error has a significant impact on the
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Table 7: Performance comparison under differernt prediction errors

Method Trip Revenue ($) Total Cost ($) Net Revenue ($) Charging Cost ($)  Average Satisfaction Rate (%)
Oracle 29083.93 (£184.61)  1953.77 (£63.57)  27130.16 (£110.43)  687.44 (£15.84) 97.9
w/o prediction  24039.9 (+201.11)  3834.29 (£89.72)  20205.61 (+154.17)  1014.36 (+24.19) 79.2
RECOMMEND  28062.5 (+185.78) 1946.38 (+67.62) 26116.12 (+114.46)  511.29 (+17.76) 9.5

model performance, and the worse prediction generally leads to
worse performance. In addition, we introduce an oracle method
(i.e., the prediction is 100% correct) as an upper bound of the perfor-
mance and a variant without future prediction. The results in Table 7
show that our performance is very close to the oracle method with
an overall low prediction error.

6 DISCUSSION

Lessons: Based on the results from our work, we summarize the
following learned lessons:

e Rebalancing and charging shared electric micromobility vehicles
should take the energy-informed demand into consideration, which
makes it significantly different from the traditional rebalancing
and charging approaches based on trip-informed demands.As
shown in Table. 2, both the trip revenue and the scheduling cost
are directly impacted when ignoring the energy consumption of
users’ demands.

Multi-agent reinforcement learning should consider filtering im-
possible actions considering the large optimization space, which
improves its efficiency to converge, shown in Fig. 7.

Limitations: (i) We evaluate our model RECOMMEND on a real-
world dataset. However, due to its privacy, the period of the evalu-
ation dataset is only one month and only in New Brunswick. We
expect to analyze our model in multiple scales of cities as well as
long terms. (ii) we only consider directly utilizing predicted energy-
informed demand to help generate and supervise the rebalancing
and charging actions. The further use of energy-informed demand
will be considered as our future work.

Ethics and privacy: The vehicle and trip information utilized in
our work is offered by a shared electric micromobility provider. For
trip information, all the user ID, trip ID, and vehicle ID have been
anonymized by the provider. We utilize the vehicle information
(locations, time, remaining energy) when the vehicle state changes
and generate the vehicle mobility in the system.

Different charging methods: Our work uses battery-swapping as
the charging method, given the practice from our platform collabo-
ration. However, we envision our methods can be easily extended
to other charging methods, such as centralized charging by mov-
ing vehicles to a charging station. Note that the output from our
reinforcement learning is which vehicle to relocate and which to
charge. This is independent of the concrete charging methods. The
only adaption needed is to change the truck routing, which can be
achieved by modifying Equation 14 with additional travel distances
between regions and the charging station.

7 RELATED WORK

Non-electric vehicle rebalancing: Some researchers have fo-
cused on the rebalancing non-electrically-driven shared vehicles,
such as shared bicycles [7, 10, 15, 17, 18, 23, 24, 33]. A budgeting
system was constructed to motivate users to help the bike-sharing
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system relocate bicycles after travel, and a deep reinforcement
learning framework was designed, which has widely used in real-
world resource allocation system [7, 15, 24, 33], to simulate this
user-motivated bicycle rebalancing problem. [18, 23] considered
rebalancing bikes on use of bike-trailers. [10, 17] considered the
shared bike rebalancing problem as a truck-based rebalancing prob-
lem, and clustered the regions based on station community discov-
ery and generate the rebalancing problem as a spatial-temporal
mixed integer programming problem.

Electric vehicle rebalancing & charging: Another part of re-
search focuses on the electricity-driven vehicles, such as shared
electric cars [9, 22, 30, 31, 38, 41]. [41] cared about the investment
cost of purchasing electric cars and hiring staff for rebalancing.
They formulate this problem as a mixed integer linear program-
ming optimization problem to find the best scheduling strategy.
[38] designed a novel charging strategy of proactive partial charg-
ing, which allows e-taxis to get partially charged before they are
in battery-low status. They considered the idle time to travel to
charging stations and waiting time at charging stations as costs
and proposed a charging and SPMIP-based relocating framework to
optimize the scheduling strategy. [22] cared about the increase of
stations that store shared electric cars and achieved rebalancing and
charging by giving users monetary reward to encourage them to
rebalance electric cars after use. They try to maximize the revenue
of the electric car sharing system with minimum cost on user in-
centives. [30, 38] tried to find the dynamic deadline for rebalancing
and charging shared electric cars. Besides caring about the overall
profit efficiency, [9, 31] focused on the profit fairness of electric taxi
fleets by considering both the passenger travel demand and taxi
charging demand, designing a centralized multi-agent actor-critic
approach to tackle this problem. Different from their works, we
focus on energy-informed demand and design a rebalancing and
charging framework with energy-informed demand.

8 CONCLUSION

In this work, we focus on the problem of rebalancing and charging
shared electric micromobility vehicles. We design a multi-agent
reinforcement learning framework called RECOMMEND, which
incorporates energy-informed demand and an action supervision
module, to make vehicles meet as many users’ energy consumption
requests as possible while reducing the unnecessary charging cost.
The evaluation results show that RECOMMEND achieves an im-
provement of at least 26.89% in net revenue compared with other
state-of-the-art works.
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