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ABSTRACT

Shared electric micromobility (e.g., shared electric bikes and electric

scooters), as an emerging way of urban transportation, has been in-

creasingly popular in recent years. However, managing thousands

of micromobility vehicles in a city, such as rebalancing and charging

vehicles to meet spatial-temporally varied demand, is challenging.

Existing management frameworks generally consider demand as

the number of requests without the energy consumption of these re-

quests, which can lead to less effective management. To address this

limitation, we design RECOMMEND, a rebalancing and charging

framework for shared electric micromobility vehicles with energy-

informed demand to improve the system revenue. Specifically, we

first re-define the demand from the perspective of energy consump-

tion and predict the future energy-informed demand based on the

state-of-the-art spatial-temporal prediction method. Then we fuse

the predicted energy-informed demand into different components

of a rebalancing and charging framework based on reinforcement

learning. We evaluate the RECOMMEND system with 2-month real-

world electric micromobility system operation data. Experimental

results show that our method can be easily integrated into a general

RL framework and outperform state-of-the-art baselines by at least

26.89% in terms of net revenue.
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1 INTRODUCTION

Background and Goal: Shared micromobility (e.g., shared bikes

and scooters), as an emerging way of urban transportation, has

been increasingly popular in recent years. For example, Lime, a

major shared micromobility service provider, serves more than 155

million users in 2022 [19]. As an alternative way to conventional

automobiles, users use shared micromobility vehicles for short-

distance trips such as from bus stops to home, enabling convenient

mobility through multi-modal transportation [42] and less environ-

mental impact by reducing emission from traffic congestion in rush

hours [40]. The success of shared micromobility largely depends on

the effective and efficient management of micromobility vehicles

(e.g., bikes or scooters). With thousands of micromobility vehicles

spreading in cities, it is challenging to effectively manage these

vehicles, e.g., rebalancing vehicles to different regions to meet the

spatial-temporally varied demand [11]. Further, recent blooming

of electric micromobility vehicles (e.g., e-bikes or e-scooters) in-

troduces additional management challenges as charging has to be

considered simultaneously, e.g., minimizing charging cost while

rebalancing [38]. Thus, the goal of this work is to design an efficient

shared electric micromobility management framework considering

both rebalancing and charging.

State-of-The-Art (SoTA) and Limitations: Existing vehicle man-

agement works have been designed for two main scenarios, includ-

ing (i) conventional non-electric vehicles such as taxis [1, 5, 20, 35,

37] and bikes [1, 6, 14, 16, 17, 24, 26, 32] and (ii) electric vehicles such

as e-taxis [38, 39], e-buses [25, 34], shared e-cars [2, 8, 22, 30, 41],

and e-scooters [11, 12, 29]. For works of non-electric vehicles, they

focus on rebalancing vehicles to different regions to match future

demand and lack charging scheduling capacity, so they cannot be

applied in our scenario. For works of electric vehicles, they consider

both rebalancing and charging. They generally follow a paradigm

that first predicts the number of future requests as demand and

rebalances vehicles to meet the future demand. When vehicles’

energy level is lower than a certain threshold (e.g., 15% [4]), a charg-

ing schedule is planned to recharge those low-energy vehicles. We

argue that a key limitation of such a paradigm is that it does not

consider future energy consumption while predicting future de-

mand. That is, the demand is defined only as the number of requests

without the energy consumption of these requests, which can lead

to less effective scheduling. For example, the number of rebalanced

vehicles meets the number of future requests, but the vehicles’ re-

maining energy is not sufficient for future trips. This limitation can

be even more significant for shared micromobility considering the

limited battery capacity of micromobility vehicles (e.g., e-bikes or

e-scooters), compared to electric cars.

 

2392

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614942&domain=pdf&date_stamp=2023-10-21


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Heng Tan, Yukun Yuan, Shuxin Zhong, and Yu Yang

Opportunities and Challenges: In this work, we re-define the

demand from the perspective of energy consumption and aim to

design a framework of using energy-informed demand (i.e., con-

sidering both trip demand and trip energy consumption) to guide

micromobility vehicles scheduling (i.e., rebalancing and charging).

Specifically, we take advantage of the recent advancement of re-

inforcement learning (RL) in vehicle scheduling [30][22] and aim

to incorporate energy-informed demand prediction into RL-based

vehicle scheduling. There are two challenges. First, RL-based sched-

uling methods generally consist of multiple components such as

state, policy, and reward. It is challenging to seamlessly integrate

predicted energy-informed demand with these components in a

general RL framework. Second, managing thousands of micromo-

bility vehicles in a city is computationally expensive [13] consid-

ering the large searching space (i.e., the large number of possible

rebalancing and charging strategies). It is non-trivial to design a

computationally efficient method to find the optimal strategy.

Our work: We design RECOMMEND, a rebalancing and charging

framework for shared electric micromobility vehicles with energy-

informed demand. We first formally define the micromobility ve-

hicle rebalancing and charging problem and introduce a general

RL-based rebalancing and charging framework. Then we adopt

a state-of-the-art spatial-temporal prediction method to predict

energy-informed demand. Based on the prediction, we incorporate

the prediction as add-on modules into the RL framework. Specifi-

cally, we integrate the demand modules into components, including

the state, action, and reward. We further design a demand-guided

method to guide the charging and rebalancing policy learning pro-

cess for faster convergence. Results show that our methods can be

easily integrated into a general RL framework and achieve supe-

rior performance compared with state-of-the-art baselines. The key

contributions of this work are as follows:

(1) We are the first to solve the problem of rebalancing and

charging shared electric micromobility vehicles considering energy-

informed demand.

(2) Technically, we design a RL-based framework where energy-

informed demand is seamlessly fused in different components and

supervises policy search to improve the efficiency of policy learning.

(3) We collaborate with a micromobility service provider and

evaluate our approach based on real-world data in a city with more

than 900 deployed vehicles. Our experimental results show that

our method outperforms the state-of-the-art baselines by at least

26.89% in terms of net revenue. An ablation study is performed to

show the effectiveness of different technical components.

2 BACKGROUND & MOTIVATION

In this section, we first introduce how a gerneral shared electric

micromobility vehicle system works and its operational data. Then

we motivate our work by analyzing the importance of energy-

informed demand from two perspectives: rebalancing and charging.

2.1 Electric Micromobility Vehicle System

Fig. 1 shows the operation of a general shared electric micromobility

vehicle system, including four key elements: the system operation

center, users, the electric micromobility vehicles, and the trucks.

The system generally works with two phases: the usage phase (e.g.,

users request and use vehicles) and the scheduling phase (e.g.,

trucks rebalance and charge vehicles). In the usage phase, a user

first unlocks an available vehicle from the user’s smartphone and

then rides this vehicle to the destination. The vehicle automatically

records and uploads its status (e.g., location and energy level) to the

system operation center. After a certain usage period (e.g., 1 day),

in the scheduling phase, the system operation center generates

a rebalancing and charging plan (e.g., which vehicles to relocate,

which vehicles to charge, and a suggested truck route) based on

the status of all the vehicles and sends the plan to trucks. The

trucks follow the plan to perform rebalancing and charging. In our

work, we specifically consider charging through battery swapping

[27], which our partner currently uses. Our work can also be easily

generalized to other chargingmethods, such as centralized charging

by relocating vehicles to a charging station for overnight charging

[30] (detailed discussion in Section 6).

1 am 2 am 3 am 11 pm 12 am

Usage phase System 
operation

center

User request

Vehicle status

1 am…

Micromobility
vehicles

Rebalancing &
charging plan

Trucks

Scheduling phase

Figure 1: Electric micromobility system operation

2.2 Data Description

We use a real-world dataset provided by a shared electric micromo-

bility service provider with whom we cooperate. This dataset spans

two months, from August 2021 to September 2021, and consists of

54,021 trips and 912 shared electric micromobility vehicles. When-

ever there is a change in the vehicle status, such as location and

availability, real-time status updates are uploaded to the platform.

These updates include the vehicle ID, vehicle status, event types

(e.g., trip start or trip end), vehicle GPS location, battery energy

level (measured as a percentage), timestamp, and other relevant

information (details in Table 1).

2.3 Why Energy-informed Demand Matters

Our work is built upon the assumption that energy-informed de-

mand is important for shared electric micromobility management.

In this part, we perform data-driven investigation to verify this

assumption from two perspective: rebalancing and charging.

2.3.1 Significance of Energy-informed Demand on Rebalancing. For

rebalancing, the key goal is to move vehicles to meet users’ future
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Table 1: Attributes in each record

Vehicle Id Vehicle Latitude Vehicle Longitude Event Types

e.g., 30100292 e.g., 40.5214 e.g., -74.4567

trip-start / trip-end /

battery-low /

battery-charged /

rebalance-pick-up/

rebalance-drop-off

Vehicle State Event Time Event Id Vehicle Energy (%)

available / on-trip

unavailable
e.g., 2021-08-31 18:10 e.g., e5b149bc-4400 e.g., 73%

requests in different regions. We analyze the difference of the num-

ber of trips and the average trip energy consumption in a region

and discuss how they behave differently toward the goal from both

the spatial and temporal perspective.

Spatial Perspective: Fig. 2a shows the average trip energy con-

sumption and the number of trips in different regions. Each region

is defined as a 800 meters × 800 meters grid, following the existing

practice [22, 24]. In the conventional scheduling methods, the goal

is to meet the number of trips (i.e., requests) in each region, without

differentiating vehicles with different energy levels. However, as

shown in Fig. 2a, two regions with a similar number of trips can

have significantly different energy consumption (e.g., region 16 and

region 18). This is mainly because the demand in different regions

can vary a lot (e.g., people in some regions may tend to ride further

or shorter than others). That indicates we cannot simply regard user

demand as only number of requests without considering energy

consumption.

(a) Spatial perspective (b) Temporal perspective

Figure 2: The significance of energy-informed demand on

rebalancing compared with trip-informed demand from the

spatial and temporal perspectives

Temporal Perspective: Fig. 2b shows the average trip energy con-

sumption and the number of trips at different time slots of a day.

Compared to the number of trips, it shows energy consumption has

a significantly different pattern. For example, the number of trips

reaches to the lowest between 4 pm and 10 pm, but the average

energy consumption is relatively high. Therefore, besides preparing

enough shared electric micromobility vehicles, we need to relocate

vehicles with certain remaining energy based on the temporal dis-

tributions of energy consumption to avoid the unsatisfied demand

due to the lack of energy.

Based on the above analysis, we argue that energy-informed

demand is important for rebalancing from both the spatial and

temporal perspectives, compared with trip-informed demand. In

addition, to meet users’ demand, we need to consider both the

remaining energy of vehicles and users’ energy-informed demand

when we rebalance those vehicles in the system.

2.3.2 Significance of Energy-informed Demand on Charging. One

important question of charging electric micromobility vehicles is

when to charge the vehicles. Traditional methods generally set a

static charging threshold and charge vehicles when the remaining

energy is lower than the threshold. We argue that without consid-

ering the energy-informed demand, traditional methods can result

in two issues. First, if the charging threshold is too low (i.e., many

vehicles are not charged) and the future energy consumption is

high, then the future demand cannot be satisfied. Second, if the

charging threshold is too high (i.e., most vehicles are charged) but

the future energy consumption is low, then vehicles may still sat-

isfy the demand based on their remaining energy without charging,

leading to wasted unnecessary charging. To quantitatively study

these two issues, we define two corresponding metrics: (1) the de-

mand satisfaction rate representing the ratio of satisfied demand

(i.e., total satisfied demand
total demand ) and (2) the unnecessary charging rate rep-

resenting the ratio of vehicles that do not need be charged but

still can satisfy future demand (i.e.,
| {𝑣𝑖 :𝑒

𝑐𝑡
𝑖 >1−𝑒

𝑐𝑡+1
𝑖 } |

| {𝑣𝑖 :𝑒
𝑐𝑡
𝑖 <𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 } |

where 𝑣𝑖 is

vehicle 𝑖 , 𝑒𝑐𝑡𝑖 is the energy level of 𝑣𝑖 before the 𝑡𝑡ℎ charging).

Figure 3: Demand satisfaction rate and unnecessary charging

rate under different charging threshold

As shown in Fig. 3, the charging threshold impacts the demand

satisfaction rate and unnecessary charging rate significantly. Even

if we set the charging threshold as 100% (i.e., fully charge all the

vehicles), there are still nearly 10% trips in one day that cannot be

satisfied. It also shows that if we set the charging threshold as 100%,

there are nearly 80% of them are unnecessary. As a result, we simply

waste the operation time and increase the charging cost, potentially

damaging the vehicles because of frequent battery swapping [28].

In addition, if we set the charging threshold as 0%, the unnecessary

charging rate is nearly 0, while the satisfaction rate decreases to

approximately 80%. It means that many vehicles’ remaining energy

cannot support users’ daily trip energy consumption, leading to

unsatisfied demand. In summary, knowing the energy-informed

demand is important for deciding the charging strategy.

3 PROBLEM FORMULATION

In this section, we formulate the problem of rebalancing and charg-

ing shared electric micromobility vehicles.

Definition 1 (Shared Electric Micromobility Vehicle Re-

balancing and Charging Problem). Given the spatial-temporal

distribution of users’ demand, the location and energy status of elec-

tric micromobility vehicles, and the number of available trucks, we
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aim to answer two questions: (1) which region each vehicle should

be dispatched to and (2) which vehicle should be charged, so as to

maximize the total revenue of a shared electric micromobility system

while minimizing the charging cost and traveling cost of trucks.

Problem Setting: We partition a city into 𝑁 equal size grids

(i.e., {𝑧1, 𝑧2, ..., 𝑧𝑁 }) and each grid is considered as a region. A day

is divided into𝑇 equal-length time intervals. We discretize vehicles’

amount of energy into 𝐿 different levels. 𝑄 trucks are available

for the system to rebalance and charge micromobility vehicles. To

describe the spatial-temporal distribution of shared electric micro-

mobility vehicles in a city, we use 𝑆𝑖,𝑙𝑡 to denote the number of

shared electric micromobility vehicles with energy level 𝑙 in region

𝑖 at the beginning of time slot 𝑡 .

We define the energy-informed demand as 𝐹
𝑖, 𝑗,𝑙
𝑡 ∈ N, represent-

ing the number of users’ requests from region 𝑖 to region 𝑗 at time

slot 𝑡 that need to consume energy by 𝑙 levels. Therefore, for the
whole city, we define the vehicle supply and demand during time

slot 𝑡 as 𝑆𝑡 ∈ N
𝑁×𝐿 (𝑆𝑡 = {𝑆𝑖,𝑙𝑡 },∀ 𝑖 ∈ 𝑁 ,∀ 𝑙 ∈ 𝐿) and 𝐹𝑡 ∈ N

𝑁×𝑁×𝐿

(𝐹𝑡 = {𝐹
𝑖, 𝑗,𝑙
𝑡 }, ∀ 𝑖, 𝑗 ∈ 𝑁 , ∀ 𝑙 ∈ 𝐿), respectively 𝑇 𝑡

𝑡𝑟𝑖𝑝 represents the

revenue of the system from users’ usage at time slot 𝑡 , related to

the users’ demand and the supply of vehicles, formulated as:

𝑇 𝑡
𝑡𝑟𝑖𝑝 = 𝑓𝑡𝑟𝑖𝑝 (𝑆𝑡 , 𝐹𝑡 ) (1)

Scheduling: When making the rebalancing and charging de-

cisions, the operator considers the current vehicle supply 𝑆𝑡 and
the energy-informed demand of the future ℎ time slots, i.e., 𝐹𝑡 :𝑡+ℎ .

We define 𝑎𝑡
𝑟𝑒𝑏

∈ N𝑁×𝑁×𝐿 (𝑎𝑡
𝑟𝑒𝑏

= {𝑎
𝑖, 𝑗,𝑙,𝑡
𝑟𝑒𝑏

},∀ 𝑖, 𝑗 ∈ 𝑁,∀ 𝑙 ∈ 𝐿) as

the rebalancing strategy and 𝑎𝑡
𝑐ℎ𝑎

∈ N𝑁×𝑁×𝐿 (𝑎𝑡
𝑐ℎ𝑎

= {𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

},∀
𝑖, 𝑗 ∈ 𝑁,∀ 𝑙 ∈ 𝐿) as the charging strategy at time slot 𝑡 , considering
the scheduling of the vehicles of different remaining energy levels

in different regions. 𝑎
𝑖, 𝑗,𝑙,𝑡
𝑟𝑒𝑏

and 𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

are rebalancing and charging

strategies for vehicles with remaining energy level 𝑙 between region
𝑖 and region 𝑗 . So, the scheduling {𝑎𝑡

𝑟𝑒𝑏
, 𝑎𝑡

𝑐ℎ𝑎
} is formulated as:

{𝑎𝑡𝑟𝑒𝑏 , 𝑎
𝑡
𝑐ℎ𝑎} = 𝑓𝑠 (𝑆𝑡 , 𝐹𝑡 :𝑡+ℎ), (2)

where 𝑓𝑠 is the function taking the vehicle supply and future de-

mand as input and outputting the rebalancing and charging strat-

egy.

Cost: After determining {𝑎𝑡
𝑟𝑒𝑏

, 𝑎𝑡
𝑐ℎ𝑎

}, we compute the optimal

truck routes for the actual rebalaning and charging, which intro-

duces monetary cost to the system operator, i.e., electricity payment

for charging batteries 𝐶𝑐
𝑡 and traveling cost of trucks 𝐶𝑟

𝑡 . In sum-

mary, we use the following equation to describe the monetary cost

of scheduling:

𝐶𝑠
𝑡 (𝑎

𝑡
𝑟𝑒𝑏 , 𝑎

𝑡
𝑐ℎ𝑎) = 𝐶𝑐

𝑡 +𝐶
𝑟
𝑡 (3)

Note that other potential costs can be easily integrated in the equa-

tion.

Objective: Our goal is to develop an optimal algorithm to provide

effective rebalancing and charging schedules for shared electric

micromobility vehicles, in order to maximize the total net revenue 𝑅
(i.e., total income from serving users minus the cost of rebalancing

and charging):

𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡
𝑟𝑒𝑏

,𝑎𝑡
𝑐ℎ𝑎

𝑅 =
𝑇∑
𝑡=1

𝑓𝑡𝑟𝑖𝑝 (𝑆𝑡 , 𝐹𝑡 ) −
𝑇∑
𝑡=1

𝐶𝑠
𝑡 (𝑎

𝑡
𝑟𝑒𝑏 , 𝑎

𝑡
𝑐ℎ𝑎) (4)

4 DESIGN

In this section, we first introduce our rebalancing and charging

framework based on multi-agent reinforcement learning (MARL).

Then we introduce how energy-informed demand is fused into

different parts of our framework.

4.1 Multi-agent Reinforcement Learning

Motivated by existing work [30], we model the problem of rebal-

ancing and charging shared electric micromobility vehicles as a

cooperative Markov game 𝐺 for 𝑁 agents, which is defined by a

tuple𝐺 = {S,A,R,P, 𝛾}. S represents the set of states.A denotes

the action space of agents. R is the reward function. P denotes the

transition probability function. 𝛾 is the discounted factor. We give

the definitions of these notations as follows.

Agent: We define an agent for each region, which decides rebal-

ancing and charging for all the vehicles in the region. The reason

that we define an agent for each region rather than a centralized

agent for the whole city is that a centralized agent can introduce

large action and state space [21, 33], which is computationally in-

tractable.

State: At the beginning of the time slot 𝑡 , the state of region 𝑖 is
defined as s𝑖𝑡 = {𝑆𝑖𝑡 , 𝐹𝑡 :𝑡+ℎ}. 𝑆

𝑖
𝑡 denotes the set of available vehicles

in region 𝑖 at time slot 𝑡 . Specifically, 𝑆𝑖,𝑙𝑡 is the number of available

vehicles with remaining energy level 𝑙 in region 𝑖 at time slot 𝑡 .
𝐹𝑡 :𝑡+ℎ denotes the energy-informed demand from slot 𝑡 to 𝑡 + ℎ,
which is predicted by a pre-trained prediction model[33].

Action: Agent 𝑖 for region 𝑖 takes a set of actions 𝑎𝑖𝑡 = {𝑎
𝑖, 𝑗,𝑙,𝑡
𝑟𝑒𝑏

,

𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

}, given the current state 𝑠𝑖𝑡 . 𝑎
𝑖, 𝑗,𝑙,𝑡
𝑟𝑒𝑏

denotes the shared elec-

tric micromobility vehicles with remaining energy level 𝑙 that are

relocated from region 𝑖 to region 𝑗 at time slot 𝑡 , and 𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

is the

proportion of the vehicles with energy level 𝑙 that are rebalanced
from region 𝑖 to region 𝑗 and charged at time slot 𝑡 .

Reward: The reward of an agent is defined by the trip revenue

from serving users, the average traveling cost of truck-based sched-

uling, and the cost of charging vehicles (i.e., the number of vehicles’

batteries swapping).

𝑟 𝑖𝑡 = 𝑇 𝑡
𝑡𝑟𝑖𝑝 − 𝛼 ·

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝐿∑
𝑙=1

𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

− 𝛽 ·𝑀, (5)

where𝑇 𝑡
𝑡𝑟𝑖𝑝 is the total trip revenue at time slot 𝑡 , 𝛼 is the coefficient

of the transformation to monetary reward, which is determined

by the vehicle electricity volume and current electricity price. 𝛽
is another coefficient of the transformation to monetary reward,

determined by truck fuel consumption and current fuel price.𝑀 is

the total truck mileage for the whole city.

Transition probability function: Transition probability func-

tion denotes the probability of state 𝑠𝑡 transferred to the next state

𝑠𝑡+1 given the action 𝑎𝑡 .
Discounted factor: Discounted factor 𝛾 represents the extent

that the agents pay attention to the future reward compared with

the immediate reward, 𝛾 ∈ [0, 1). If 𝛾 = 0, it indicates that the agent

only cares about the immediate reward and learns the actions that

cause the immediate reward.
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Based on the above setting, the objective of all region agents is

to collaboratively maximize expected average cumulative reward,

i.e., 𝐺𝑡 = [
∑∞
𝑡=1 𝛾

𝑡−1∑𝑁
𝑖=1 𝑅(𝑠

𝑖
𝑡 , 𝑎

𝑖
𝑡 ) |𝑠1 = 𝑠]. The Q-value of joint

state 𝑠𝑡 and action 𝑎𝑡 under policy 𝜋𝜃 is denoted by: 𝑄𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 ) =
𝐸 [

∑∞
𝑘=0 𝛾

𝑘 ∑𝑁
𝑖=1 𝑅(𝑠

𝑖
𝑡+𝑘+1

, 𝑎𝑖
𝑡+𝑘+1

) |𝜋𝜃 , 𝑠𝑡 , 𝑎𝑡 ].

4.2 Design Overview

We design a framework based on multi-agent reinforcement learn-

ing for rebalancing and charging shared electric micromobility

vehicles, as shown in Fig. 4. We regard the problem as interactions

between region agents and the shared electric micromobility system

environment. Consequently we formulate it as a Markov Decision

Process (MDP). In the MDP, we define an agent for each region and

region agents make decisions about how to rebalance and charge

the shared electric micromobility vehicles in their regions. Based

on the historical records, demand prediction module aims to pre-

dict the future energy-informed demand as a part of the inputs

of agents’ policies and action supervision module. Based on the

current states, region agents’ policies output the rebalancing and

charging strategies to meet the future energy-informed demand.

To prevent region agents from selecting inefficient actions, the pre-

dicted energy-informed demand is fused to supervise the actions

that region agents provide. Given the rebalancing and charging

strategies provided by region agents, the truck route optimization

module is used to provide optimal truck routes for schedules, reduc-

ing truck traveling cost. The immediate reward is the net revenue,

covering the trip revenue, truck traveling cost for rebalancing, and

charging cost. Then the region agents try to improve their own

policies based on the reward. Our objective is to maximize the

long-term net revenue of the whole system.

Environment

t = 0 t = 1 t = 2 t = k t = k + 1 t = T

Agents

Demand prediction

State

Action

EID

Action 
Supervision

… …

Reward

Figure 4: An overview of DRL framework for rebalancing

and charging e-scooter sharing systemwith energy-informed

demand (EID)

4.3 Prediction of Energy-informed Demand

In our model, the energy-informed demand plays an important role

in replacing and charging where we consider both trip-informed

demand prediction and energy consumption estimation.

For the trip-informed demand prediction, we predict the number

of trips between each region pair at each time slot before the next

scheduling, i.e., 𝑓
𝑖, 𝑗
𝑘

(𝑘 ∈ {𝑡, 𝑡 + 1, ..., 𝑡 + ℎ}). Here, 𝑓
𝑖, 𝑗
𝑘

denotes the

number of trips from region 𝑖 to region 𝑗 at time slot 𝑘 . To achieve

the trip-informed demand prediction, we regard the whole city as

a graph where each grid is a node and use a spatial temporal graph

convolutional network [36], which inputs the historical shared

electric micromobility vehicle usage, so as to predict the future

vehicle flows.

In energy consumption estimation, our goal is to predict the

energy consumption distributions of trips between each pair of re-

gions, denoted as 𝑒
𝑖, 𝑗,𝑙
𝑘

(𝑘 ∈ 𝑡, 𝑡 + 1, ..., 𝑡 + ℎ). Here, 𝑒
𝑖, 𝑗,𝑙
𝑘

represents

the ratio of trips starting from region 𝑖 to region 𝑗 during time slot 𝑘
with energy consumption 𝑙 . To achieve this estimation, we employ

an XGBoost-based model[3]. This model takes into consideration

various factors such as spatial features (e.g., region index, points of

interest), temporal features (e.g., day of the week, hour of the day),

external factors (temperature, weather), and historical records as

inputs to predict the distributions of different energy consumption

levels.

After getting the predicted number of trips and energy consump-

tion distributions, we combine them together to get the predicted

energy-informed demand of each region pair:

𝐹
𝑖, 𝑗,𝑙
𝑘

= 𝑓
𝑖, 𝑗
𝑘

𝑒
𝑖, 𝑗,𝑙
𝑘

, (6)

where 𝐹
𝑖, 𝑗,𝑙
𝑘

denotes the number of trips with energy consumption

level 𝑙 starting from region 𝑖 to region 𝑗 at time slot 𝑘 , 𝑘 ∈ {𝑡, 𝑡 +
1, ..., 𝑡 + ℎ}, and the predicted energy-informed demand beginning

at timeslot k is defined as: 𝐹𝑘 = {𝐹
𝑖, 𝑗,𝑙
𝑘

}, ∀ 𝑖, 𝑗 ∈ 𝑁 , ∀ 𝑙 ∈ 𝐿.

4.4 Incorporate Energy-informed Demand into
Different Steps

In this section, we introduce how energy-informed demand is fused

in different steps of the general RL-based framework.

4.4.1 RL agent with energy-informed demand: In order to fulfill

users’ energy consumption requests, region agents in MARL aim

to develop effective strategies for rebalancing and charging shared

electric micromobility vehicles within their respective regions. Con-

sidering the energy-informed demand, we classify the vehicles in

each region into several groups based on their remaining energy

levels, i.e., 𝑆𝑖,𝑙𝑡 , which denotes the number of vehicles with energy

level 𝑙 in region 𝑖 at time slot 𝑡 . We then include the predicted

energy-informed demand 𝐹𝑡 :𝑡+ℎ as part of an agent’s state. Conse-

quently, the policy of each region agent considers the distributions

of the vehicles with different remaining energy levels in its own

region and the future energy-informed demand.

A vehicle not only needs to be vacant but also must have suf-

ficient energy to transport a user from the origin to the destina-

tion. To accommodate as much of the energy-informed demand

as possible, we differentiate the vehicles based on their remaining

energy and rebalance vehicles with varying energy levels among

the regions. This approach allows us to integrate energy-informed

demand into the agent’s action. The rebalancing action of a region

agent is defied as 𝑎
𝑖, 𝑗,𝑙,𝑡
𝑟𝑒𝑏

, which denotes the proportion of shared

electric micromobility vehicles with remaining energy level 𝑙 to
be rebalanced from region 𝑖 to region 𝑗 at time slot 𝑡 . Considering
the dynamic spatio-temporal energy consumption, some vehicles

have to be charged before rebalancing, even though their remaining

energy is still high, while some vehicles don’t have to be charged,

even though their remaining energy is still low. So, we define 𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

,
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which denotes the proportion of shared electric micromobility vehi-

cles of energy level 𝑙 to be rebalanced from region 𝑖 to region 𝑗 and
need to be charged at time slot 𝑡 . The supply of vehicles is changed

by the above actions:

𝑆𝑖,𝑙𝑡+1 = 𝑆𝑖,𝑙𝑡 (1 −

𝑁∑
𝑗=1

𝑎
𝑖, 𝑗,𝑙,𝑡
𝑟𝑒𝑏

+

𝑁∑
𝑗=1

𝑎
𝑗,𝑖,𝑙,𝑡
𝑟𝑒𝑏

) (7)

𝑆𝑖,𝐿𝑡+1 = 𝑆𝑖,𝐿𝑡 (1 −

𝑁∑
𝑗=1

𝑎
𝑖, 𝑗,𝐿,𝑡
𝑟𝑒𝑏

+

𝑁∑
𝑗=1

𝑎
𝑗,𝑖,𝐿,𝑡
𝑟𝑒𝑏

+

𝑁∑
𝑗=1

𝐿−1∑
𝑙=1

𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

) (8)

From the above definitions, we build the relationship between state

and action, with energy-informed demand.

4.4.2 Demand-Guided Policy Learning: Even though we consider

each region as an agent, the process of rebalancing and charging

shared electric micromobility vehicles with different remaining

energy levels among regions is still complicated, considering the

division of regions and energy levels. As a result, the search space

of agent policies needs to be narrowed down. Specifically, we aim

to prevent the agent from selecting inefficient actions. Therefore,

we design action supervision module to achieve this goal.

In this module, we utilize the future ℎ-hour energy-informed

demand 𝐹𝑡 :𝑡+ℎ to supervise the actions taken by region agents.

Specifically, we use these demands to simulate the operation of an

electric micromobility system, allowing us to determine the number

of user requests that can be satisfied. Each predicted demand can

only be fulfilled by vehicles with remaining energy levels equal

to or higher than its energy consumption level. The remaining

energy levels of the vehicles decrease after completing trips based

on the energy consumption levels associated with their matched

demand. Following the simulation of the system using predicted

energy-informed demand, we calculate the trip revenue by consid-

ering the number of users’ predicted demand satisfaction and the

average trip duration based on historical data of shared electric

micromobility vehicle usage. Hence, we obtain the predicted net

revenue, considering future trip revenue, truck traveling cost, and

charging cost:

𝑅𝑡𝑝𝑟𝑒 (𝐹𝑡 :𝑡+ℎ, 𝑎𝑡 ) = 𝑇𝑝𝑟𝑒 − 𝛼 ·

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝐿∑
𝑙=1

𝑎
𝑖, 𝑗,𝑙,𝑡
𝑐ℎ𝑎

− 𝛽 ·𝑀𝑝𝑟𝑒 , (9)

where 𝑇𝑝𝑟𝑒 and𝑀𝑝𝑟𝑒 are the total time duration and truck mileage

cost in the simulation of the electric micromobility system operation

with predicted energy-informed demand. The definitions of 𝛼 and

𝛽 are the same as those in Eq. (5). We then determine whether the

actions provided by region agents should be executed, considering

whether the future net revenue is non-negative. Since our aim is

to ensure that the joint actions of rebalancing and charging have a

long-term impact on future vehicle usage, it indicates that region

agents are choosing ineffective actions if they do not result in

positive future trip revenue. In such cases, these actions may be

abandoned, and no schedules will be generated for shared electric

micromobility vehicles in the current time slot:

𝑎′𝑡 =

{
0 𝑜𝑟 𝑎𝑡 𝑅𝑡𝑝𝑟𝑒 (𝐹𝑡 :𝑡+ℎ, 𝑎𝑡 ) < 0

𝑎𝑡 𝑅𝑡𝑝𝑟𝑒 (𝐹𝑡 :𝑡+ℎ, 𝑎𝑡 ) ≥ 0

4.5 Truck Route Optimization

In this section, we formulate the truck route optimization problem

as a spatial-temporal mixed integer programming (STMIP) problem

and introduce its objectives and constraints to generate optimal

truck routes for scheduling shared electric micromobility vehicles.

Since the electric micromobility system after rebalancing try to

satisfy all the demand in the next 𝑚 hours, we assume that the

truck-based rebalancing needs to be done in the next one hour

to minimize the impact of demand loss. Accordingly, we divide

one hour into 𝑇 ′ time slots. Through scheduling policies, we can

easily know the energy distribution of shared electric micromobility

vehicles before and after the scheduling, denoted as 𝑑𝑜
𝑖,𝑙
, 𝑑𝑟

𝑖,𝑙
. They

are sent as inputs to STMIP to generate the feasible truck routes for

rebalancing and charging shared electric micromobility vehicles.

The variables used in the model are defined as follows: 𝑥𝑖, 𝑗,𝑣,𝑡
denotes if truck 𝑣 visits region 𝑖 at the beginning of time slot 𝑡 and
departs from region 𝑖 to region 𝑗 at the end of time slot 𝑡 . Based
on 𝑥𝑖, 𝑗,𝑣,𝑡 , we define 𝜃𝑖,𝑣,𝑡 that if truck 𝑣 is present in region 𝑖 at
time slot 𝑡 . 𝑃𝑖,𝑙,𝑣,𝑡 and 𝐷𝑖,𝑙,𝑣,𝑡 denote the number of shared electric

micromobility vehicles of energy level 𝑙 to be picked up and dropped
off by truck 𝑣 in region 𝑖 at time slot 𝑡 respectively.

Since we know 𝑑𝑜
𝑖,𝑙
, 𝑑𝑟

𝑖,𝑙
, the distribution of shared electric mi-

cromobility vehicles of different energy levels before and after the

rebalancing, we want to finally transform the origin distribution to

the rebalanced distribution, as shown in the following equation:

𝑑𝑜𝑖,𝑙 +
𝑇 ′∑
𝑡=1

𝑉∑
𝑣=1

𝐷𝑖,𝑙,𝑣,𝑡𝜃𝑖,𝑣,𝑡 −
𝑇 ′∑
𝑡=1

𝑉∑
𝑣=1

𝑃𝑖,𝑙,𝑣,𝑡𝜃𝑖,𝑣,𝑡 = 𝑑𝑟𝑖,𝑙 (10)

We define 𝑄𝑣,𝑡 that represents the truck load of truck v at time

slot 𝑡 to build the temporal relationship between 𝑃𝑖,𝑙,𝑣,𝑡 and 𝐷𝑖,𝑙,𝑣,𝑡 :

𝑄𝑣,𝑡 = 𝑄𝑣,𝑡−1 + (

𝑁∑
𝑖=1

𝐿∑
𝑙=1

𝑃𝑖,𝑙,𝑣,𝑡 −
𝑁∑
𝑖=1

𝐿∑
𝑙=1

𝐷𝑖,𝑙,𝑣,𝑡 )𝜃𝑖,𝑣,𝑡 (11)

To make sure that each truck visits and departs from only one

region, we define 𝜃𝑖,𝑣,𝑡 that represents if truck 𝑣 is present in region

𝑖 at time slot 𝑡 . We also set the constraints on it:

𝜃𝑖,𝑣,𝑡 =
𝑁∑
𝑗=1

𝑥𝑖, 𝑗,𝑣,𝑡 ,
𝑁∑
𝑖=1

𝜃𝑖,𝑣,𝑡 = 1 (12)

Besides 𝑥𝑖, 𝑗,𝑣,𝑡 , we also define 𝑐𝑖, 𝑗 and 𝐷𝑚𝑎𝑥 as the distance

between region 𝑖 and region 𝑗 and the longest distance that truck can
reach in one time slot, so as to set a constraint on truck reachability:

𝑐𝑖, 𝑗𝑥𝑖, 𝑗,𝑣,𝑡 < 𝐷𝑚𝑎𝑥 (13)

The objective of our STMIP model is to minimize the final total

truck mileage cost, formulated as follows:

min

𝑉∑
𝑣=1

𝑇 ′∑
𝑡=1

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑐𝑖, 𝑗𝑥𝑖, 𝑗,𝑣,𝑡 (14)

5 EVALUATION

In this section, we conduct experiments to evaluate our models,

answering the following research questions:
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• RQ1: How does our model perform, compared with other base-

lines?

• RQ2: How effective are the energy-informed demand (EID) in

the scheduling of rebalancing and charging shared e-scooters in

our model?

• RQ3: How much impact does the action supervision module (AS)

have on the convergence of our model?

• RQ4: How do factors impact the performance?

5.1 Evaluation Methodology

Dataset: We conduct our experiments based on a real-world shared

e-scooter usage data. More details can be seen in Section 2.

Experiment settings: We divide the dataset into two parts: one

month’s usage data is used for the training set, and another month’s

data is used for the test set. We divide the remaining energy and

energy consumption into 10 levels, ranging from 0 to 100. In terms

of region division, each region has a size of 800𝑚𝑒𝑡𝑒𝑟𝑠 × 800𝑚𝑒𝑡𝑒𝑟𝑠
in the experiments. We divide a day into 24 equally-length time

intervals, and the interval of rebalancing and charging schedules is

12 hours. For truck route optimization, we set the max truck load

to be 30 e-scooters, the max truck number to be 20. The maximum

reachable distance per unit time interval is 5km. We divide one

hour into 20 equally-length time intervals for truck routes. The trip

revenue is $0.5 per minute. The truck traveling cost per kilometer

is set at $2.422. The charging cost is valued at $0.69 per e-scooter.

Implementation: We implement our method and baselines with

PyTorch 1.9.1, Python-mip 1.14.2, gym 0.21.0 in Python 3.7 environ-

ment and train it with 32 GB memory and GeForce RTX 3080 Ti

GPU. Stochastic gradient descent optimizer is applied to minimize

the loss, and the learning rate is 1e-4. The max training episode

number is 1900, and discounted rate 𝛾 = 0.99. Abandonment rate

in the action supervision module is 0.5.

Baselines: We evaluate the performance of our model with the

following four baselines:

• No Rebalance & Charging (NRC): It simulates the e-scooter

sharing system operation without rebalancing and charging ac-

tions.

• State-of-The-Practice (SoTP): It represents the practice sched-

uling used by our platform collaboration, which is based on a

static charging threshold.

• MADDPG [21]: It is a multi-agent reinforcement learning frame-

work to achieve the cooperative or competitive relationship of

agents in the environment.

• Record [30]: It is a state-of-the-art electric carsharing rebal-

ancing and charging algorithm based on the definition of the

dynamic deadline for scheduling.

Variants of our model: We also consider the significance of dif-

ferent variants of our models:

• Ourmodelwithout energy-informeddemand (w/o EID):

In order to verify the importance of energy-informed de-

mand, we remove it and use trip-informed demand instead.

However, we still use demand with energy consumption

during real-world simulation in the environment to get the

trip revenue. Besides this, we replace the dynamic charging

threshold with the static charging threshold.

• Our model without action supervision module (w/o

AS): To demonstrate the effect of action supervision, we

remove this module. Therefore, any rebalancing or charging

action is directly sent to truck route optimization module.

5.2 Overall Performance (RQ1)

Figure 5: Total net revenue of different approaches

To evaluate the model performance, we focus on the cumulative

net revenue in one month. Fig 5 shows that the final cumulative

net revenue of RECOMMEND is higher than that of other baselines

obviously. The daily revenue is also higher than others in most of

the time. Compared with state-of-the-art works, RECOMMEND

achieves a significant improvement in net revenue, with an increase

of 26.89%. One possible reason is that other baselines assume that

other baselines assume homogeneity among trips within the same

region pair and simply attempt to match the number of available

e-scooters with the incoming demand. As a result, the scheduled ve-

hicles may not be qualified to be picked up by users due to the limit

of remaining energy. Even though these vehicles may temporarily

satisfy immediate energy consumption requests, their low-battery

status prevents them from being used multiple times before the

next scheduling. In addition, other baselines may cause too much

unnecessary charging because of their static charging threshold.

For example, if certain vehicles can fulfill user demands with low-

energy consumption for several days in regions where demand is

scarce, they may not need to be charged even if their remaining en-

ergy falls below the charging threshold. Conversely, some vehicles

may require premature charging when there are future requests

with high energy consumption, even if their remaining energy is

higher than the static charging threshold. Table 2 demonstrates

that not only does RECOMMEND outperform other baselines in

terms of trip revenue and average satisfaction rate, but it also ex-

hibits lower total costs, particularly in regard to charging costs.

This provides further support for our assertion.

Though the demand prediction and energy consumption esti-

mation are challenging problems, they are not the focus of our

work. The key contribution is to consider energy-informed demand

in the rebalancing and charging of shared electric micromobil-

ity systems, leading to our key technical design of incorporating

energy-informed demand in a MARL-based framework. We use

metrics of mean absolute error (MAE) and mean square error (MSE)

to evaluate the performance of trip-informed demand prediction

and energy consumption estimation. The evaluation results are

shown in Table 3. How to improve the prediction performance will

be our future work.
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Table 2: Performance comparison of different approaches on the real-world data

Method Trip Revenue ($) Total Cost ($) Net Revenue ($) Charging Cost ($) Daily Average Revenue ($) Average Satisfaction Rate (%)

Record [30] 24236.90 (±196.19) 3655.52 (±86.21) 20581.38 (±140.38) 992.22 (±23.39) 807.90 (±6.54) 81.6

MADDPG [21] 23766.0 (±189.14) 5505.89 (±79.50) 18260.11 (±121.97) 1696.71 (±24.49) 792.20 (±6.30) 79

SoTP 23842.28 6104.80 17737.47 2066.55 794.74 81.25

NRC 2340 - 2340 - 78 7.9

RECOMMEND 28062.5 (±185.78) 1946.38 (±67.62) 26116.12 (±114.46) 511.29 (±17.76) 935.41 (±6.19) 94.5

Table 3: Performance of energy-informed demand prediction

Category MAE (%) MSE (%)

Trip-informed demand prediction 3.24 2.96

Energy consumption estimation 3.09 1.23

Table 4: Performance comparison of different variants in EID

Method Trip Revenue ($) Total Cost ($) Net Revenue ($)

w/o EID in state 22607.50 (±183.84) 3286.49 (±62.14) 20321.01 (±114.64)

w/o EID in action 24779.99 (±180.23) 5422.15 (±74.64) 19357.84 (±120.09)

RECOMMEND 28062.5 (±185.78) 1946.38 (±67.62) 26116.12 (±114.46)

Figure 6: The effect of

energy-informed demand

Figure 7: The significance of

action supervision

5.3 Ablation Study (RQ2 & RQ3)

The effect of energy-informed demand: Fig. 6 shows the cumu-

lative net revenue of our model and its variant EID. When we do

not consider the energy-informed demand, and charge e-scooters

according to the static charging threshold instead, even if the sys-

tem sometimes is able to satisfy all the real-world demands, it first

cannot make vehicles charged ahead of time to meet the users’

energy consumption requests which are higher than the charging

threshold, and unnecessarily charge the vehicles in the regions

with few low-energy consumption demands. As a result its total

cumulative net revenue must be lower than our model (less trip

revenue and more charging cost). We also develop two variants

by removing the EID module from the state part and the action

supervision part, respectively. The evaluation results in Table 4 can

demonstrate the importance of EID structure.

The significance of action supervision: After each episode, we

save the total net revenue to see the changes of total net revenue of

our model in the training process. Fig. 7 shows the progression of

the net revenue as we train models. And we can see that compared

with the variant AS, our model is faster to converge by 16.8%. The

possible reason is that the action supervision possibly filters the

inefficient scheduling strategies and narrows the search space for

policy optimization. Without it, the model may usually choose the

"bad" behaviors and need more time to improve its policy.

Table 5: Performance comparison under different scheduling

intervals

Method Trip Revenue ($) Total Cost ($) Net Revenue ($)

3-hour interval 27830.93 (±186.79) 7523.86 (±69.17) 20307.07 (±124.04)

24-hour interval 26017.07 (±182.71) 1428.12 (±65.83) 24588.95 (±109.85)

12-hour interval 28062.5 (±185.78) 1946.38 (±67.62) 26116.12 (±114.46)

Figure 8: The effect of sched-

ule interval

Figure 9: The effect of region

size

Table 6: Net revenue under different prediction errors

Prediction error (%) 2.32 2.62 3.38 3.39

Net revenue ($/trip) 2.37 2.28 2.09 2.08

5.4 Impact of Factors (RQ4)

Rebalancing & charging interval: Fig. 8 shows the performance

comparison𝑤.𝑟 .𝑡 . interval of scheduling of rebalancing and charg-

ing for shared electric micromobility system. The best interval of

scheduling is 12 hours. It indicates that even though short-interval

scheduling may satisfy more user’s energy-informed demand, it

increases much more scheduling costs, which decreases the final

net revenue. In addition, although long-interval scheduling reduces

the scheduling cost, it makes more energy-informed demand un-

satisfied, under the quantity limit of shared electric micromobility

vehicles in a region, which also decreases the final net revenue. The

results in Table 5 support our opinion.

Region size: Fig. 9 displays the average cumulative net revenue

and prediction error of energy-informed demand under different

region sizes. The optimal region size is 800m × 800m. It indicates

that the smaller region size leads to more individual regions in a

city, which complicates the truck routes and causes more truck

traveling costs. In addition, the smaller region size leads to the

bigger size of the flow matrix of the system vehicle usage, which

complicates the prediction task, causing higher prediction error.

However, too big size of region will lose the mobility of vehicles of

the city, and the inter-region scheduling problem may transform

into an intra-region scheduling problem.

Prediction error: We conduct experiments to reveal how the pre-

diction error affects the model performance, as shown in Table 6.

It shows that the prediction error has a significant impact on the
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Table 7: Performance comparison under differernt prediction errors

Method Trip Revenue ($) Total Cost ($) Net Revenue ($) Charging Cost ($) Average Satisfaction Rate (%)

Oracle 29083.93 (±184.61) 1953.77 (±63.57) 27130.16 (±110.43) 687.44 (±15.84) 97.9

w/o prediction 24039.9 (±201.11) 3834.29 (±89.72) 20205.61 (±154.17) 1014.36 (±24.19) 79.2

RECOMMEND 28062.5 (±185.78) 1946.38 (±67.62) 26116.12 (±114.46) 511.29 (±17.76) 94.5

model performance, and the worse prediction generally leads to

worse performance. In addition, we introduce an oracle method

(i.e., the prediction is 100% correct) as an upper bound of the perfor-

mance and a variant without future prediction. The results in Table 7

show that our performance is very close to the oracle method with

an overall low prediction error.

6 DISCUSSION

Lessons: Based on the results from our work, we summarize the

following learned lessons:

• Rebalancing and charging shared electric micromobility vehicles

should take the energy-informed demand into consideration, which

makes it significantly different from the traditional rebalancing

and charging approaches based on trip-informed demands.As

shown in Table. 2, both the trip revenue and the scheduling cost

are directly impacted when ignoring the energy consumption of

users’ demands.

• Multi-agent reinforcement learning should consider filtering im-

possible actions considering the large optimization space, which

improves its efficiency to converge, shown in Fig. 7.

Limitations: (i) We evaluate our model RECOMMEND on a real-

world dataset. However, due to its privacy, the period of the evalu-

ation dataset is only one month and only in New Brunswick. We

expect to analyze our model in multiple scales of cities as well as

long terms. (ii) we only consider directly utilizing predicted energy-

informed demand to help generate and supervise the rebalancing

and charging actions. The further use of energy-informed demand

will be considered as our future work.

Ethics and privacy: The vehicle and trip information utilized in

our work is offered by a shared electric micromobility provider. For

trip information, all the user ID, trip ID, and vehicle ID have been

anonymized by the provider. We utilize the vehicle information

(locations, time, remaining energy) when the vehicle state changes

and generate the vehicle mobility in the system.

Different chargingmethods: Our work uses battery-swapping as

the charging method, given the practice from our platform collabo-

ration. However, we envision our methods can be easily extended

to other charging methods, such as centralized charging by mov-

ing vehicles to a charging station. Note that the output from our

reinforcement learning is which vehicle to relocate and which to

charge. This is independent of the concrete charging methods. The

only adaption needed is to change the truck routing, which can be

achieved by modifying Equation 14 with additional travel distances

between regions and the charging station.

7 RELATED WORK

Non-electric vehicle rebalancing: Some researchers have fo-

cused on the rebalancing non-electrically-driven shared vehicles,

such as shared bicycles [7, 10, 15, 17, 18, 23, 24, 33]. A budgeting

system was constructed to motivate users to help the bike-sharing

system relocate bicycles after travel, and a deep reinforcement

learning framework was designed, which has widely used in real-

world resource allocation system [7, 15, 24, 33], to simulate this

user-motivated bicycle rebalancing problem. [18, 23] considered

rebalancing bikes on use of bike-trailers. [10, 17] considered the

shared bike rebalancing problem as a truck-based rebalancing prob-

lem, and clustered the regions based on station community discov-

ery and generate the rebalancing problem as a spatial-temporal

mixed integer programming problem.

Electric vehicle rebalancing & charging: Another part of re-

search focuses on the electricity-driven vehicles, such as shared

electric cars [9, 22, 30, 31, 38, 41]. [41] cared about the investment

cost of purchasing electric cars and hiring staff for rebalancing.

They formulate this problem as a mixed integer linear program-

ming optimization problem to find the best scheduling strategy.

[38] designed a novel charging strategy of proactive partial charg-

ing, which allows e-taxis to get partially charged before they are

in battery-low status. They considered the idle time to travel to

charging stations and waiting time at charging stations as costs

and proposed a charging and SPMIP-based relocating framework to

optimize the scheduling strategy. [22] cared about the increase of

stations that store shared electric cars and achieved rebalancing and

charging by giving users monetary reward to encourage them to

rebalance electric cars after use. They try to maximize the revenue

of the electric car sharing system with minimum cost on user in-

centives. [30, 38] tried to find the dynamic deadline for rebalancing

and charging shared electric cars. Besides caring about the overall

profit efficiency, [9, 31] focused on the profit fairness of electric taxi

fleets by considering both the passenger travel demand and taxi

charging demand, designing a centralized multi-agent actor-critic

approach to tackle this problem. Different from their works, we

focus on energy-informed demand and design a rebalancing and

charging framework with energy-informed demand.

8 CONCLUSION

In this work, we focus on the problem of rebalancing and charging

shared electric micromobility vehicles. We design a multi-agent

reinforcement learning framework called RECOMMEND, which

incorporates energy-informed demand and an action supervision

module, to make vehicles meet as many users’ energy consumption

requests as possible while reducing the unnecessary charging cost.

The evaluation results show that RECOMMEND achieves an im-

provement of at least 26.89% in net revenue compared with other

state-of-the-art works.
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