2023 IEEE 16th International Conference on Cloud Computing (CLOUD) | 979-8-3503-0481-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/CLOUD60044.2023.00015

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

Storm-RTS: Stream Processing with Stable
Performance for Multi-cloud and Cloud-edge

Hai Duc Nguyen
University of Chicago
ndhai @cs.uchicago.edu

Abstract—Stream Processing Engines (SPEs) traditionally de-
ploy applications on a set of shared workers (e.g., threads,
processes, or containers) requiring complex performance man-
agement by SPEs and application developers. We explore a new
approach that replaces workers with Rate-based Abstract Ma-
chines (RBAMs). This allows SPEs to translate stream operations
into FaaS invocations, and exploit guaranteed invocation rates to
manage performance. This approach enables SPE applications
to achieve transparent and predictable performance.

We realize the approach in the Storm-RTS system. Exploring
36 stream processing scenarios over 5 different hardware config-
urations, we demonstrate several key advantages. First, Storm-
RTS provides stable application performance and can enable
flexible reconfiguration across cloud resource configurations. Sec-
ond, SPEs built on RBAM can be resource-efficient and scalable.
Finally, Storm-RTS allows the stream-processing paradigm to
be extended from the cloud to the edge, using its performance
stability to hide edge heterogeneity and resource competition.
An experiment with 4 cloud and edge sites over 300 cores shows
how Storm-RTS can support flexible reconfiguration and simple
high-level declarative policies that optimize resource cost or other
criteria.

Index Terms—Stream Processing, Serverless, FaaS, Real-time,
Cloud Computing, Edge Computing

[. INTRODUCTION

Recent years have seen increasing use of distributed stream
processing engines (SPE). These vary from generic engines
(e.g., Storm [1], Flink [2]) to optimized systems designed for
specific deployments (e.g., Samza [3] and Turbine [4]). SPEs
employ a stream processing model treating data as a stream of
tuples and formulate analysis as a workflow — a directed acyclic
graph of operators. Eager, data-driven processing provides
low latency while parallel operation execution enables high-
throughput [5], [6]. The resulting capabilities make stream
processing an important paradigm for data analysis at scales
from smart homes [7] to large-scale industries [8].

Most modern SPEs [1]-[3], [9]-[15] use the worker model
for workflow deployment. In this model, the SPE maps oper-
ators onto workers (e.g., threads, processes, containers, etc.)
that serve as a common abstraction for underlying compute
resources. These workers are exposed as the basic performance
abstraction to workflow developers, who can configure each
operator to have one or more workers depending on its com-
putational intensity to meet the workflow demand. However,
changes in the execution environment or the underlying worker
scheduling can disturb worker performance. For instance,

Andrew A. Chien
University of Chicago and
Argonne National Laboratory
achien@cs.uchicago.edu

collocated with an aggressive application could interfere with
worker processing, reducing its throughput. Consequently,
workflow performance tuning is a process of trial-and-error,
adjusting worker configuration until reaching desired perfor-
mance [5], [16]. Perhaps worse, the tuning produces a single
configuration with little insight into how to adapt it as the
load evolves. This lack of performance transparency and
predictability is a challenge for SPE application developers.

We propose a new approach that solves these problems:
hosting the SPE on a new abstraction called the rate-based
abstract machine (RBAM). The RBAM model augments FaaS
functions with guaranteed invocation rates. We show how
SPE systems can exploit this foundation to achieve stable
performance by mapping workflow operators into FaaS func-
tions, accruing the benefits of performance transparency and
portability. The RBAM approach exploits the FaaS abstraction
interface, similar to other innovative works [2], [17]-[21],
but differs in the critical aspect of providing guaranteed
performance.

The Storm-RTS stream-processing engine realizes SPE on
RBAM. Storm-RTS maps operator executions to FaaS invo-
cations allocated at a rate guaranteed by RBAM to deliver
efficient, scalable, and flexible stream processing. We describe
Storm-RTS’ design, implementation and compare it to several
modern SPEs. Storm-RTS matches the resource efficiency
of state-of-the-art worker-based SPEs while enabling easy
reconfiguration with clouds, or across the cloud and edge. We
illustrate how the performance transparency and predictability
of Storm-RTS enable myriad opportunities such as declarative
resource management to improve cost, reliability, and more.
Finally, Storm-RTS provides scalability, enabling a workflow
to easily exploit additional resources when pressed with an
increased load without any redesign or reconfiguration. Con-
tributions of the paper include:

o Describe how to translate stream processing applications
into FaaS invocations with rate guarantee (RBAM) and
achieve stable performance.

e Design and implementation of Storm-RTS, an SPE that
realizes these ideas, replacing the worker abstraction with
FaaS/RBAM to provide performance stability (and trans-
parency and predictability) that enable both configuration
flexibility and high-level declarative performance and
configuration management.

o Evaluation of Storm-RTS, compared to state-of-the-art

2159-6190/23/$31.00 ©2023 IEEE 45
DOI 10.1109/CLOUD60044.2023.00015
Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

SPEs, demonstrating stable performance, as well as its
resource efficiency (comparable to worker-based SPEs),
and dynamic scalability.

o Demonstration of several simple declarative approaches
that exploit the flexible cloud-edge application configu-
ration enabled by Storm-RTS’ stable performance. The
performance modularity enabled by the SPE on RBAM
creates opportunities to optimize for other high-level
objectives (e.g., cost, carbon footprint, etc.) in a fashion
that is orthogonal to traditional SPE throughput.

The rest of the paper is organized as follows. Section II pro-
vides background in Stream Processing and FaaS computing.
In Section III, we describe the worker model’s drawbacks and
then propose a new approach using the RBAM abstraction to
address these issues in Section I'V. Section V proposes Storm-
RTS, an implementation for SPE on RBAM. We evaluate
Storm-RTS in Section VI. Finally, we survey related work in
Section VII and summarize the paper in Section VIII.

II. BACKGROUND

1) Stream Processing.: The stream processing model en-
ables performing real-time analytical tasks efficiently and
scalably. The model treats input streams as flows of separate
tuples and organizes applications as Directed Acyclic Graphs
(DAGs) called workflow consisting of operators placed on a
set of distributed computing nodes. Immediately after creation,
tuples are taken through the workflow, and processed by their
operators in an on-the-fly fashion, delivering analytical results
with low latency. Also, each operator can have multiple copies
running concurrently to exploit the hardware parallelism ca-
pability, easing high-throughput computation.

As such, many Stream Processing Engines (SPEs) have been
proposed to automate workflow description, deployments, and
operation with efficiency. Many of them are pure, general
SPEs and act as a building block for larger data analysis
systems [16]. Meanwhile, others are customized for specific
infrastructures [22], applications [23], or workloads [3], [24].

2) Worker-based SPEs: Modern SPEs deploy stream pro-
cessing workflows by mapping operators onto workers — a
computation abstraction provided by the underlying resource
manager for efficient hardware exploitation. Popular choices
of worker abstraction are threads, processes, and contain-
ers. With all computation handled by operators, operator-to-
worker mapping is crucial to workflow performance. Figure
1 shows how SPEs typically have it done. To deal with
varied operator complexity, SPE assigns to each operator
a parallelism configuration which is essentially the number
of the operator’s copies that can execute concurrently. SPE
allocates a corresponding number of workers, each to run an
operator copy, and distributes them across its cloud resources.
For example, in Figure 1, Oz and Os are compute-intensive
operators so have their parallelism set to 2, resulting in two
copies and getting two workers while O; and O3 only have 1.
This configuration creates 6 operators which need an allocation
of 6 workers distributed over 2 machines. One hosts O; and
O, and another hosts O3 and Oj,.

46

Workflow
Description

| Operators with
| Parallelism
i Configurations

Resource
Manager

Fig. 1: Worker-based SPE Architecture. Operators are mapped
onto workers across multiple machines. The parallelism con-
figuration specifies high-cost operators mapped onto multiple
workers for efficiency.

3) FaaS Computing.: Serverless or Function-as-a-Service
(FaaS) is a resource abstraction that lets applications exploit
the underlying resources through invocations. An invocation
is a discrete execution unit limited in time and resource
use (e.g., timeout, CPU, and memory). Applications associate
invocations with their logic in the form of stateless functions.
Each function is a specific task (e.g., resizing an image)
with a unique identifier (usually an URL). A function is
called (or invoked) by sending a request (e.g., HTTP Post),
along with required arguments (e.g., a file content embedded
inside the request body), to this identifier. The request is
handled by a FaaS platform (e.g., AWS Lambda [25], Azure
Function [26], Google Cloud Function [27], etc.) that allocates
resources to launch an invocation that executes the function
logic on the given arguments to complete the task. FaaS
platforms can automatically scale up to thousands of invoca-
tions simultaneously in response to workload dynamics. This
ability enables dynamic scalability with minimum efforts and
costs opening great opportunities to implement cost-effective,
scalable solutions [28], [29]. However, FaaS allocation is best-
effort, executing a new invocation in response to a request
may get delayed or even fails if the FaaS platform cannot find
available resources resulting in performance instability.

III. PROBLEM: LIMITS OF WORKER-BASED SPES
A. Performance Challenges

a) Performance Transparency Challenge.: Worker-based
SPEs tie workflow performance to underlying worker resource
configuration. Because these details are not part of the ap-
plication abstraction, performance is not transparent. Figure
2a shows the maximum throughput of executing an ETL
workflow on a 4-core machine deployed by three different
worker-based SPEs: Storm [1], EdgeWise [30], and Dhalion
[31] (see Section VI). We try four machine configurations
(Section VI-A): one is bare metal while the others are VMs
provisioned by different hypervisors while sticking with only
one parallelism configuration (Figure 6a). The throughput is

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

@

Q2

%40 Storm

o [XJ EdgeWise

g 30 [Z Dhalion

X

=20

=

3

£

€10

=3

2

< 0 i ' . .

= AWS Nitro Hyper-V KVM Bare Metal
(Amazon EC2) (Azure) (Google Cloud)

(a) Throughput vs. Resource Configuration

5

_g-l.OO N A
) .
20.75

<

=

© 0.50

_g Storm

20.25 —-=- EdgeWise

5 == Dhalion

Z0.00

0.0 0.2 0.4 0.6

Competitive Load

0.8 1.0

(b) Throughput vs. Competitive Load

Fig. 2: Performance challenges in worker-based SPEs: (a) poor
transparency as throughput greatly varies across different re-
source configurations, and (b) poor predictability as throughput
is interfered with a competitive load.

extremely sensitive to resource configurations, with perfor-
mance varying as much as 3-fold. For example, Storm running
on KVM gets only 27% of bare metal throughput.

The results illustrate that workflow performance is not
transparent yet strongly depends on the hardware resource
configurations to which their workers have access. Hence,
there would be no one-size-fits-all workflow configuration that
can be used for every deployment. Instead, the SPE has to
understand the underlying resource configurations and recon-
figure workflow accordingly to maintain good performance.

b) Performance Predictability Challenge.: Most of the
current distributed systems such as the cloud and edge are
shared environments. Workers are typically collocated with
other applications. Actual resources allocated to workers
highly vary subject to these applications’ behaviors. Tied to the
transparency challenge, this further means that performance
for SPE applications is almost not predictable. In Figure 2b,
we plot the throughput of an ETL workflow normalized by its
input rate when collocated with an aggressive competitive load
on a single Azure VM. We slowly increase the computation
demand of the competitive load, from no load until its com-
putation demand is high enough to consume 100% CPU on
the machine. We notice a significant drop in ETL’s throughput
after the competitive load exceeds 70%.

The results illustrate workflow performance is tied to its
collocated applications. As a result, workflow performance is
hard to predict. One deployment that works well may become
ineffective when some surrounding applications change. Un-
fortunately, these changes are typically out of SPEs’ control
making performance predictability a challenge for them.

47

Workflow
{ Description

| Operators with Rate
i Configurations

Rate-based Abstract
{1 Machines (RBAMs)

Fig. 3: The RBAM approach to stream-processing: Operators
are wrapped by FaaS functions, providing invocation-level
dynamic resource management. One RBAM for each FaaS
function ensures its required tuple processing rate.

B. Implications for Applications

Application developers compensate for poor performance
transparency and predictability by over-provisioning, wast-
ing resources. A better approach is to repeatedly reconfigure
workflow for any significant change to the environment or
application until performance meets the desired level [5], [16],
[31]. However, this only works if the SPE reacts properly
to the change. Failing to select an appropriate configuration
would result in multiple rounds of reconfiguration causing
performance instability or over-provisioning.

Another implication of poor performance transparency and
predictability is difficulty in changing workflow configuration
(e.g., migrating workers from one machine to another). Such
application reconfiguration can be desirable to manage cost,
adjust to load dynamically, or move to other resources in
response to outage, preemption, or perhaps power cost. For
these reasons, most SPEs do not even support multi-site
execution. For example, the design of a workflow deployment
that spans two data centers or datacenter and the edge is a
bespoke, manual activity [3], [24].

More directly, the above challenges make deploying a
workflow over multiple data centers tricky; many manual
efforts are required for each configuration. Worse, flexible
reconfiguration across cloud and edge — a signature challenge
for many applications — is difficult. In the edge’s dramatically
more complex environment of heterogeneous resources and
networks, manual configuration and tuning may be impossible.

IV. STREAM PROCESSING ON RATE-GUARANTEED FAAS

We resolve the performance challenges by replacing the
worker model with FaaS invocations as shown in Figure 3.
Operators are implemented as FaaS functions and the topology
is encoded as FaaS chains, with tuples passed as function
arguments. For example, operators Oq, Oz, 03,04 becomes

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

\ [Worker Model [RBAM |
Service Model Continuous Discrete (invocation)
Allocation Static Dynamic
Guarantee None Rate (invocations/sec)

TABLE I: Worker-model and RBAM Comparison

separate FaaS functions f1, fo, f3, and fy4, respectively. The
SPE handles each arriving tuple by first invoking fi. After
completion, f; triggers fs and f3 with the output embedded
inside their invocation requests. These invocations extract f;’s
output from the requests, process it, and then pass their results
downstream until reaching the sink operator.

Regular FaaS performance is best-effort. Invocation alloca-
tion may fail or get delayed, degrading workflow performance.
To workaround, we let application developers configure per-
operator rate requirements specifying the expected processing
rate of these operators after deployment. Once a workflow is
submitted, rate requirements are tied to their corresponding
FaaS functions, each provisioned in a Rate-based Abstraction
Machine (RBAM). As in Figure 3, f1’s rate requirement is A,
equal to the input rate of its operator, O;. Rate configurations
are equivalent to worker-based parallelism configurations yet
are easier to determine by measuring input rate and can be
guaranteed through RBAM enabling a simpler, straightforward
way to specify, configure, and evaluate workflow performance.

A. Rate-based Abstract Machine

Each Rate-based Abstract Machine allocation has an invo-
cation rate guarantee A. This is a form of service/resource
guarantee framed in the FaaS model. Once allocated, the
RBAM gives a FaaS function a guarantee to execute at least
A invocations per second, where each invocation is access to
specific resources within a limited time (e.g., 1 CPU for 10
seconds). For example, if an operator is mapped to an RBAM
of 10 invocations/sec, then for every 1l-second interval, the
workflow is guaranteed to execute the operator logic at least
10 times. The RBAM abstraction departs from workers in
many important ways (Table I):

o Invocation-level Resource Management: In contrast to
worker abstraction’s continuous resource access, RBAM
lets applications access resources through invocations,
a discrete notion in time and resources. This model
naturally matches the stream processing workload which
is also determined by discrete tuple arrivals.

o Dynamic Allocation: RBAM scales invocation allocation
dynamically to tuple arrival and automatically releases
them after finishing processing. This scheme supports
both dynamic scaling and low resource waste. In com-
parison, worker allocation is rather static as one worker
often represents a fixed set of resources.

o Guaranteed-Rate: while worker allocation offers no guar-
antee, RBAM allocation supports a guaranteed invocation
rate that enables robust, simple QoS reasoning.

Further, RBAM performance is independent of underlying
resource configurations due to FaaS invocation recycling and
the time limit. For example, to support A = 1 invocation/sec

48

where one invocation gets 1 CPU for a maximum of 10 sec,
we only need 10 CPU for invocations in the first 10 seconds.
After that, allocated invocations terminate due to the time
limit and their CPUs can be used for the next 10 seconds,
and so on. Therefore, deploying this RBAM is as simple as
reserving 10 CPUs. With isolation support (e.g., container),
decoupling RBAM performance from underlying systems is
straightforward (more in Section V-C).

B. Resolving Performance Challenges

By setting each RBAM rate guarantee to match the oper-
ator processing rate, the SPE guarantees the availability of
resources to process tuples at the arrival rate, maintaining
desired performance. This rate configuration is independent of
any underlying resource configuration, so the SPE application
has full performance transparency.

RBAMs also support performance predictability: RBAM
allocations ensure their operators perform well against any
load whose input rate is smaller or equal to the rate guarantee.
Consequently, a workflow constructed from these operators
also has a performance guaranteed up to a specific input
rate. This performance predictability enables simple tuple
rate comparisons and negotiation with the underlying RBAM
systems to determine if a new configuration is feasible. This
framework enables distributed SPE configuration management
with stable performance possible (see Section V-D).

V. STORM-RTS: SPE FOR DISTRIBUTED STREAM
PROCESSING

A. Design Requirements

Storm-RTS — a new distributed SPE to translate workflow
description into RBAM allocations — achieves performance
transparency and predictability. This enables it to flexibly
spread stream-processing applications over multiple machines
across multi-datacenter from Cloud to Edge. We describe the
design of Storm-RTS to demonstrate this new capability.

Storm-RTS is derived from Storm and reuses its workflow
models to offer essential features of a modern SPE. However,
mapping Storm’s workflow model to RBAM abstraction is
not straightforward. First, many essential FaaS configurations,
such as time limit, cannot be inferred directly from Storm
workflow configurations. Second, FaaS functions are highly
modular and stateless while Storm, like other worker-based
SPEs, collocate workers for efficiency and maintain operators’
state for various functionalities, such as consistency and fault
recovery. Naively replacing Storm’s workflow executor with
FaaS invocations would reduce efficiency and leave some
features infeasible (e.g., stateful operators). We workaround
these issues by meeting the following requirements.

o Workflow performance stability: achieve desired through-
put and latency across distributed configurations, recon-
figuration (migration), and varied competitive loads.

o Predictable Resource Requirements: operators and work-
flows characterized for their resource requirements.

o Modular resource management: can partition workflow
across multiple sites/data centers. Individual site resource

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Workflow Executor Storm-RTS

——— 3
Tuple L FaaS Rate-based Abstract
queue HEE Invoker

1

1

1

1

1

1
1 1
i Machine (RTS) H
1 1
1 Execution 1
1 1
1 1
1 1
1 1
1

Input

o1
LUJCRER| | Tuple

&
’»i

Data sources

Collector
(spout)

Admission

Gty Control

FaaS Deployment,

Configurations

Container
Deployment

Workflow Coordinator
FaaS

Workflow
CRUD

Workflow
Compiler

[Nl

[N}

1
Faa$S Deployment : :
Configurations N
[Nl

[N}

i

[Nl

Configurator

Function Container
Operator | Operator
State Logic

Operator Profiler ‘

Fig. 4: Storm-RTS Architecture: Operator Profiler, Workflow
Coordinator, Executor, and Rate-based Abstract Machine

managers can independently decide if a workflow can be
placed and meet its performance requirements.

o Compatibility: support Storm workflows and features with
similar efficiency and modest change.

B. Storm-RTS Architecture

The key elements of Storm-RTS are shown in Figure 4. At
the high level, Storm-RTS has four main components, each is
responsible for one of the design requirements listed above.

Workflow Coordinator: responsible for enforcing perfor-
mance stability. It translates workflow operators received from
developers into FaaS functions and associated them with
appropriate configurations allowing the workflow to sustain
the desired load. It is also responsible for protecting work-
flow performance from disruptions such as competitive loads,
workflow reconfiguration, migration, etc.

Operator Profiler: responsible for resource requirement
predictability. The component runs workflow operators offline
to profile their computing and memory requirements. This
information is used to configure FaaS functions’ resource
requirements, ensuring their invocations always have sufficient
resources to execute their associate operators.

Rate-based Abstract Machine (RBAM): responsible for
enabling modular resource management. FaaS functions cre-
ated by the workflow coordinator are deployed sep-
arately inside RBAM allocations. Once established, each
RBAM allocation ensures new invocations are executed at the
configured rate independent of each other, underlying resource
configuration, and other competitive loads.

Workflow Executor: responsible for executing workflows
and compatibility supports. It collects tuples from data sources
and then triggers corresponding FaaS invocations to start
workflow execution. The workflow executor also reuses
Storm’s monitor and orchestration modules to offer similar
data processing support as Storm.

C. Storm-RTS Implementation

1) Workflow Deployment: Workflow developers sub-
mit workflow descriptions directly to the workflow
compiler. The description includes workflow topology and

49

rate configuration. Rate configuration consists of a desired
rate \ that developers expect the workflow to handle and per-
operator rate scales ji; representing the ratio of each operator’s
expected input rate and the desired rate. The workflow
compiler extracts operators’ logic from workflow topology
and then encapsulates them inside FaaS functions.

Each FaaS function f; has the Operator Profile de-
termine its (i) per-invocation resource requirement s; (mainly
CPU and memory), (ii) time limit ¢maz; (i.e., timeout),
and (iii) batch size b; (i.e., number of tuples processed per
invocation). This is done by running operators offline with
tuples sampled from historical input stream data. The running
environment is configured to be identical to the environment
targeted to execute workflow operators.

o Per-invocation resource (CPU and memory) requirement
(s;) and time limit (tmax;): the profiler executes opera-
tors starting with excess resource allocation and gradually
reduces the allocation until observing a 20% execution
time increase. This last allocation configuration and the
corresponding execution time are used to configure the
FaaS wrapping the operator.

e Batch size (b;): Since invocation overhead is typically
much higher than tuple processing latency (a couple of
milliseconds vs. <1ms), Storm-RTS batches multiple tu-
ples in one invocation to amortize the overhead. However,
this prolongs per-tuple processing latency. To mitigate
this effect, the profiler compares naive operator execution
versus FaaS varying the batch size and considers the batch
size leading to an efficiency of 70% is acceptable and
used to determine the batch size for this operator.

With the information, the workflow coordinator
configures per-function rate guarantee A; to the number of
invocations expected to invoke per second if tuples are gener-
ated at the desired rate A:

A y2%
b;
This A; guarantees at least one invocation available for
the operator wrapped by the FaaS function to process all
incoming tuples sent at any rate less than or equal to A,
thereby satisfying the performance stability requirement. After
determining the above information for all FaaS functions,
the FaaS Configurator sends these functions and their
configurations to RBAM to check whether the underlying
resource manager can support their guarantee and wrap FaaS
functions inside RBAMs with corresponding rate guarantees.
If the process completes successfully, the desired rate is
guaranteed so the workflow executor is triggered to
begin execution, no further reconfiguration/profiling is needed.

2) RBAM Implementation: Storm-RTS leverages Real-time
Serverless (RTS) [32] to deploy every FaaS functions deploy-
ment requested by the workflow coordinator. Each
FaaS function f; is initialized with s; resources — just enough
to handle one invocation request, if any. After 1/A; seconds,
we allocate s; more resources for one more invocation. we
then wait for 1/A; more seconds, then allocate another s;

A=

6]

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Resource Configuration
Information (e.g., AWS
Pricing, RiPiT, etc.)

[

Declarative policy

»)i

Data sources

Operator
Profiler

Input

Operator placement

Operator
placement

A
Resource availability 3
information 3

Fmmmmm—mem e mmmm——

H
Real-time
Serverless
Allocation/
Deallocation

Function
container

Data stream
(tup!

Allocation/
Deallocation

(tuples Tuples

Function
container _|**

Tuples
\ /

-

Fig. 5: Storm-RTS for Multi-site Deployment: the application
coordinator manages multi-site deployment. As before, each
site has admission control and performance monitoring that
implements the local RBAM guarantees.

\

Cloud Resource Manager

Edge Resources Manager

Cloud-Edge

Edge Data Center Cloud Data Center

Edge Cloud

resources, and so on. In this way, for any 1/A; interval, f;
always has resources for a new invocation, meeting the rate
guarantee requirement. We repeat this process until tmax;
seconds (i.e., the invocation execution time limit) have passed.
By this time, the first s; resources allocated at the beginning
must be available in at most 1/A; seconds and can be recycled
for a new invocation. Similarly, resources allocated at the
second 1/A; interval can be used in the next 1/A; interval,
and so on. In the end, only

W; = A; - tmaz; - s; 2)

resources are needed to realize the rate guarantee. The
RTS system reserves W; resources for function containers
via Kubernetes. If Kubernetes can successfully create these
containers then RTS returns the deployment information to
the workflow coordinator, and the workflow begins
processing. Otherwise, RTS considers the deployment failed
and cleans up. Note that if the request rate exceeds A;, RTS
provides best-effort service.

3) Workflow Execution and State Management: For
each successful workflow deployment, the workflow
executor creates a set of tuple collectors realizing
the workflow source operators (“spout” in Storm terminolo-
gies) to continuously collect new tuples from data sources.
New tuples are put into tuple queues by destination until
their number is sufficient to form a batch, a FaaS invoker
retrieves a batch from the queue and requests a new FaaS
invocation for the appropriate workflow operator, passing
tuples as an argument. Each invocation processes one batch.
After completion, to pass on output tuples, the invocation
calls the wrapper functions for the operators downstream,
passing output tuples in batch as an argument. This allows
the downstream function, in response, to extract the tuples,
perform the operator computation, and call its downstream

50

operator wrappers as needed, and so on. This mechanism
forms tuple processing as FaaS function chains which are
self-synchronized and do not need any dedicated messaging
systems as in worker-based SPEs (e.g., Storm [1] relies on
Netty [33] for inter-node messaging).

Storm-RTS provides equivalent state management and func-
tionalities to Storm, including stateful supports, exactly-once
processing, out-of-order events, etc. Since serverless invoca-
tions are stateless, we have to modify RTS to embed an in-
memory store called operator state inside each FaaS
container to maintain operator state (e.g., join keys), consis-
tency, progress tracking, monitoring, and recovery. This infor-
mation is updated every time a tuple completes processing and
periodically synchronized with a centric state manager.
We reuse Storm modules to implement both operator
states and the state manager, ensuring the state in-
formation is handled properly and tuples are sent to FaaS
containers in correct order and meet users’ desired semantics.

D. Multi-site Deployment with Storm-RTS

Distributing workflow execution across multiple sites (e.g.,
cloud-cloud and cloud-edge) is challenging because distributed
resources are both heterogeneous and can vary in availability.
The Storm-RTS design brings new capabilities to address
both issues. First, Storm-RTS accesses underlying resources
through FaaS abstraction, so as long as FaaS are supported by
underlying systems, Storm-RTS can mask heterogeneity via
FaaS and assures performance via operator profiling and RTS
guarantee enforcement. Second, resources with varying avail-
ability may require workflow reconfiguration. By leveraging
the RBAM, Storm-RTS ensures that such reconfiguration will
not affect workflow performance, enabling applications to op-
timize their deployments for cost, carbon, or other criteria. To
illustrate this capability, we extend Storm-RTS architecture as
shown in Figure 5. Each cloud or edge data center runs Storm-
RTS as in Figure 4, but now the workflow coordinator
is promoted to application coordinator to orches-
trate FaaS deployments across the data centers. Apart from the
original components, the application coordinator
adds an operator distributor that places the FaaS-
encapsulated operators across data centers, implementing the
desired application policy.

Common policies include keeping operators close to data
sources (often at the edge). If multiple data centers can
host an operator, the coordinator implements the application’s
deployment policy, which picks application configu-
rations from among the candidates. For example, if edge
resources are zero-cost, when available, a policy that simply
minimizes total deployment cost would push operators to the
edge when it is idle, and pull them back to the cloud when it is
not. If sustainability is the objective, then the application
coordinator might push operators to the edge when solar
panels create plentiful green power, but back to the cloud
data center, when the solar panels stop generating sufficient
green power. Storm-RTS implements policies by collecting
and assessing two sources of information:

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

AN Bloom IR Inter-

b senML B Range

Input

(a) ETL (b) PRED

Decision

Average
I Linear k

R Regression

bY] SecondOrder
Moment

MQTT
Publish

x15
MQTT
Publish

x1 x5

LR
Predictor

Kalman
Filter

Bloom
Filter

Input

Disctinct
P ApproxCount

Error
Est.

(c) STAT

Fig. 6: RIoTBench workflows. Operators shown as green boxes with numbers representing parallelism configurations.

i

=N
Input @ @(_\

Data

sources Edge-1 /

&

24 - @ 2

Data Input -ED Cloud-Edg.e
sources Edge2 \Imerconnecuon/ o
c —

L I

Data Input

sources Edge3

Fig. 7: A Cloud-edge resource configuration

e Resource configuration (e.g., resource pricing, Carbon
intensity information [34], etc.) to give insights into
resource properties for efficient exploitation.

e Resource availability: collected from resource managers
in data centers. The application coordinator
also communicates with RTS systems to determine if an
operator placement is feasible at any particular site.

VI. EVALUATION
A. Methodology

1) Workloads: We use the RloTBench benchmark suite
[35], designed specifically for evaluating SPE implementa-
tions. We select 3 workflows (Figure 6) capturing common
stream processing activities over a real-world smart cities
dataset [36]: PRED (make predictions on streamed data),
ETL (perform data extraction, transformation, and load), and
STATS (apply statistical summarization). Their parallelism
configurations are selected based on the number of tuples each
operator has to process per one input tuple.

2) Stream-processing Engines (SPEs): We compare five
SPEs which are representative implementations of workflow
deployment approaches discussed in Section III and IV.

o Storm [1]: Evaluation baseline. Workers are implemented
as threads in a Java Virtual Machine. Worker allocation
and mapping are static.

o EdgeWise [30]: a Storm variation that replaces static
worker mapping with a dynamic one prioritizing opera-
tors experiencing long input queues for higher efficiency.

o Dhalion [31] a worker-based SPE with heuristic dynamic
scaling. The SPE allocates more resources if workflow
throughput fails to match the input rate and frees unused
resources if the workflow is over-provisioned.

o Storm-Serverless implements the Storm API on FaaS.
Its implementation is identical to Storm-RTS, except the
RBAM is replaced with OpenFaaS [37], thereby operators
have no rate-guarantee.

51

e Storm-RTS implements the Storm API with rate-based
abstract machine as described in Section V.

In the following experiments, unless stated otherwise,
worker-based SPEs use parallelism configurations shown in
Figure 6. Storm-RTS also sets operator scale factors p; identi-
cal to these parallelism configurations and desired rate A equal
to the workflow input rate.

3) Hardware/Resource Configurations:
conducted over three configurations

Experiments are

o Cloud VM: workflows are hosted by virtual machines in
public clouds, including Amazon EC2 (m5zn instances),
Microsoft Azure (Dasv4 instances), and Google Cloud
(e2-standard instances) to evaluate SPE performance over
realistic settings where they typically run over a virtual,
oversubscribed environment inside data centers.

e Bare Metal: for raw performance measurement (no shar-
ing). The machine has 1 Intel Xeon Gold 6138 (80 cores),
512GB RAM and uses cgroup for resource control.

o Cloud-Edge We create four clusters (Figure 7) where
the cloud emulates the cloud side with an unlimited
number of machines, each has 92 cores and 192GB of
memory. edgel, edge2, and edge3 represent edge data
centers. Each has 4 VMs (12 cores and 48GB memory).
We configure the network based on Amazon Cloud In-
frastructure’s network performance [38]. All connections
have 100Gbps bandwidth. Intercloud connections have
5.5ms latency while Cloud-Edge latency is randomized
with Gaussian distribution with 5.5ms mean and 2ms
standard deviation.

4) Metrics: We evaluate SPEs based on throughput (mea-
sured at sink operators), end-to-end processing latency, CPU
utilization (100% per core), and cost, measured as CPU
utilization * cost-factor. The cost-factor is a dimensionless
relative measure of resource cost, reflecting resource location.

B. Resource Efficiency

1) Single Machine: We deploy RIoTBench workflows sep-
arately over a single machine with fixed CPUs (4, 8, and
16 cores). The workflows are fed tuples at a constant rate,
and we gradually increase the rate until saturation (i.e., the
tuple processing latency increases sharply and the throughput
fails to match the tuple input rate). We report the throughput
just before this point, calling it the maximum throughput.
We plot the geometric mean of the normalized maximum
throughputs of three RIoTbench workflows on 4 different ma-
chine configurations in Figure 8. The performance of Storm,
Edgewise, and Dhalion scale poorly, falling slightly behind
Storm-Serverless and Storm-RTS at 8 cores and badly behind
at 16 cores. Both Storm-RTS and Storm-Serverless scale well

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

5 10°
" Storm 1o Storm L 10° Storm " Storm
2102{ XA EdgeWise 2 = EdgeWise 2 X7 EdgeWise 2 =7 EdgeWise
‘§» [Dhalion §’102 [Dhalion '§1 .| = Dhalion H '§1102 [Dhalion
o [Storm-Serverless o 0 Storm-Serverless ° 10°1 =5 Storm-Serverless H= o 3 Storm-Serverless
£ 101{ TZ1 Storm-RTS £ 77 Storm-RTS £ 77 Storm-RTS H £ 77 Storm-RTS
o T 10l o fH © 10! v
@ @ 10 @10 @
N N N H N
© © © H ©
E E E H E
210° 2100 2100 is 2100

i
0 v + 0 0 + 0 04

08
Number of cores

04 08 16 04

Number of cores

(a) AWS Nitro (Amazon EC2) (b) Hyper-V (Azure)

08
Number of cores Number of cores

(c) KVM (Google Cloud) (d) Bare Metal

Fig. 8: Maximum throughput of RIoTBench workflows on a single machine (varying from 4 to 16 cores). Geometric mean of
workflows’ throughput, each is normalized by Storm throughput on a 4-core machine.

o
<

Storm 120 Storm
A EdgeWise 527 EdgeWise
102{ 3 Dhalion 100 [Dhalion
D Storm-Serverless
[T Storm-Serverless 80 1 stormRTS
71 Storm-RTS

,_.
A

Avg Latency (ms)

s o

S o

Normalized Throughput

,_.
2
~
S

b

08 PRED STAT
Topologies

=)

Tl

Number of nodes

o

(a) Throughput (b) Average Latency

Fig. 9: Storm-RTS achieves comparable throughput and la-
tency versus worker-based SPEs.

1.0 =

=
=)
-

o
@
o
o

o
o

N\, Storm
"\ - EdgeWise
== Dhalion

Storm
-« EdgeWise
= Dhalion
Storm-Serverless
—=— Storm-RTS o,

o

>
o
IS

== Storm-Serverless

\ —a— Storm-RTS

(Geometric mean)

o
N

Normalized Throughput
Normalized Throughput
o
o
-

o
N

ST N

0.4 0.6 0.8 1.0
Background Load

=4
o

0.0 0.2

of
5}

0.5 1.0

Load

15

(a) Dynamic Scaling (b) Performance Isolation

Fig. 10: Storm-RTS flexibly reconfigures for various work-
loads and protect workflow performance from collocated ap-
plications while other SPEs fail to do so. (Results from Azure
VMs only, other configurations are omitted due to similarity).

with the system capacity, with workflow maximum throughput
increasing almost linearly with the number of cores. These
results are consistent across all of the cloud VMs and also the
bare metal configuration confirming that FaaS-based SPEs can
achieve equal or superior resource efficiency.

2) Multiple machines: We deploy workflow separately over
multiple 4-core VMs and report the geometric mean normal-
ized throughput for each SPE on Azure in Figure 9a. The
other resource configurations are omitted because their results
are the same as we have presented for Azure. All SPEs have
comparable performance. Both Storm-Serverless and Storm-
RTS scale well, increasing throughput with more machines.
This result confirms their resource efficiency, compared to
worker-based SPEs, in a distributed computing setting.

3) Processing Latency: Figure 9b shows the average per-
tuple end-to-end latency of RloTBench workflows at the
steady state when the load is at around 70% of available ca-

52

pacity for all SPEs in Azure (we also omit other configurations
due to similarity). Compared to Storm and EdgeWise, Storm-
RTS and Storm-Serverless experience higher latency due to
FaaS invocation overhead. However, by batching tuples into a
single invocation request, the overhead is amortized. Storm-
RTS keeps the latency below 20ms, just slightly above Storm
and EdgeWise while significantly better than Dhalion. The
results demonstrate that Storm-RTS is efficiently equivalent to
other worker-based SPEs in terms of processing speed.

C. Performance Stability

1) Scalable Workflow Performance: We run each RIoT-
Bench workflow separately in a system having ample re-
sources, at varying input rates but keep their parallelism
and rate configuration fixed. The results are presented in
Figure 10a. The x-axis represents the input rate normalized
by the saturation rate (maximum throughput) of Storm. The
y-axis represents the geometric mean of workflow throughputs
normalized by input rate. A perfect system would produce a
flat line across the top — full performance with no saturation.

Our results show that all five SPE systems scale well up
to Storm’s saturation rate (normalized to 1.0). Beyond this
point, among worker-based SPEs, only Dhalion with dynamic
scaling support can handle the load. Storm and EdgeWise
static worker allocations are both overwhelmed, causing their
throughput to drop. At a saturation ratio of 1.5, both of their
throughputs are below 20% of the input rate, and at 2.0, their
throughput drops further approaching 0%. In contrast, Storm-
Serverless and Storm-RTS perform dynamic allocation, using
the underlying FaaS dynamic allocation to acquire more re-
sources and support higher tuple processing rates. As a result,
their performance is not limited by workflow configuration and
continues to match the growing tuple for all workflows well
beyond 1.0x and even 2.0x the Storm saturation rate.

The results above reveal the configuration inflexibility of
the worker-based model. Any changes in workflow and input
tuple rate require configuration adjustment, either manual or
automatic, to achieve desired performance. On the other hand,
FaaS-based SPEs do not require any parameter tuning to meet
performance goals. This eases the deployment effort.

2) Performance Isolation: We consider the case of multiple
workflows competing for shared resources. This is a common
occurrence in production settings and can lead to performance

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Input rate
(x1000 tuple/sec)
o
o

N o

Storm
—— EdgeWise
=t N - Dhalion
‘,’ ! == Storm-Serverless
—— Storm-RTS

Throughput
=
~~c
7
"I

Normalized

o

IS

Latency (s)
N

o

30
Time (s)

40 50
Fig. 11: Storm-RTS guarantees the performance of bursty
workloads while other SPEs fail to do so.

interference. To evaluate how well SPEs protect workflow
from interference, we run each of the RIoTBench workflows
with SCAN. This is a single-bolt workflow performing expen-
sive arithmetic operators on input tuples, so it competes for
CPU cycles with the foreground RlotBench workflows.

In Figure 10b, we report the geometric mean of the through-
puts for the RIoTBench workflows normalized by their satura-
tion input rate. The x-axis values are normalized background
load (SCAN), with 1.0 indicating the ability to consume 100%
of the CPU capacity. All worker-based SPEs fail to provide
performance isolation, showing a throughput decrease after the
background load exceeds 50%. Due to relying on best-effort
invocation allocation, Storm-Serverless sees its throughput
drop from the introduction of very small levels of resource
competition. The decrease is severed, and nearly 100% loss
of throughput with about 30% competitive load. In contrast,
the RBAM allocations enforce rate guarantees with strong
resource isolation allowing Storm-RTS to provide good perfor-
mance isolation all the way up to 100% competitive load. This
demonstrates the ability to deliver predictable performance of
RBAM SPEs as discussed in Section IV.

3) Supporting Bursty Workloads: We consider a common
load pattern in practice: bursty workflows whose input rate
varies over time. Workflow developers can configure Storm-
RTS to handle bursty loads by setting the desired input rate
equal to the peak input rate when the load bursts. We deploy a
PRED workflow that operates at around 35 thousand tuples/sec
on Azure VMs. However, after the 10-th second, the input rate
is doubled and lasts for around 30 seconds (see the first graph
of Figure 11). We execute this load with different SPEs. The
workflow’s throughput and latency are shown in the second
and third graphs of Figure 11, respectively.

Storm and EdgeWise have their resource allocated statically.
When the burst arrives, they are unable to process the excessive
tuples in time causing significant high processing latency with
a noticeable throughput drop. Dhalion and Storm-Serverless
support dynamic allocation so they can scale up during the
burst. However, it takes time for both to detect the burst,
and scale resource allocation accordingly. Thus, both see

53

1.00

ke ke
=3 =]
o o
< IS
c - -
2 o o o
E=] o B o
© kel © kel
N o N 9
b= = 0.50
= =
> 9 2 9
2 o 2 o
o el o el
] o O 51
0.25
m m
[L)
o (=]
kel hel
o o
0.00 0.00
304 30
o o
3s 3s
58 20 £8 20
39 59
[o
£x10 £ 109
= F
0 T 0
o ”
% @
3 1.0 PRED mmm STAT 310 PRED
ol ot
b - ETL vZ2 SCAN by - ETL
I3 Q . STAT
% 0.5 % 0.5 771 SCAN
E E /A
o (=}
Z0.04 : . , Z 0.0+ : , ,
0 200 400 600 0 200 400 600
Time (s) Time (s)

(a) Storm-RTS (b) Storm-Serverless

Fig. 12: Storm-RTS shifting workflows across edge datacen-
ters, while maintaining stable performance. The flexibility
enabled by Storm-RTS enables simple optimization of cost.

significant performance degradation for 10-20s (35 to 65%
of the burst period). Storm-RTS, on the other hand, has the
desired rate set to the burst peak (70 thousand tuples/sec) and
it maintains the desired throughput and latency throughout the
burst period. This demonstrates the robustness of performance
stability provided by Storm-RTS.

D. Flexible Cloud-Edge Reconfiguration

Performance stability allows Storm-RTS to simplify appli-
cation management for other objectives. Consider a simple
declarative policy MinCost: minimize resource cost of stream
processing workflows at any point in time. Storm-RTS (Figure
5) reduces the policy to placing operators in the data center
with the lowest cost. If this data center is full, then operators
will be placed in the data center with the next lowest cost,
and so on. Consider a resource environment shown in Figure
7, where the cost of edgel, edge2, and edge3 are equal to 25%,
50%, and 75% respectively relative to the cloud’s 100%. On
this testbed, we conduct an experiment showing how Storm-
RTS operate workflows stably at optimal cost.

The first graph of Figure 12a shows events that happen
during the experiment and decisions made by Storm-RTS
in response. At t 0, Storm-RTS deploys three RIoT-
Bench workflows in cloud. At t 150, three edge data
centers become available. The MinCost policy dictates a
move to the cheapest data center, edgel, so the operator
distributor shifts the operators for all three workflows to
edgel. However, at t = 300, a SCAN workflow starts at edgel,
consuming CPU resources. edgel becomes oversubscribed,
the local RTS reports this situation to the application
coordinator. The application coordinator has
the operator distributor move PRED, the smallest

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

workflow, to maintain adequate performance. To minimize
resource cost, edge?2 is selected. At t = 450, the SCAN load
increases. edgel’s RTS system notifies the application
coordinator again, leading to a move of ETL to edge2.
And when SCAN expands to edge2 at t = 600, its resource
consumption there causes the RTS system on edge2 to notify
the application coordinator that it cannot maintain
its guarantees. In response, Storm-RTS moves PRED to edge3
ensuring resource sufficiency for all workflows. Through these
many workflow reconfigurations, Storm-RTS maintains their
performance, ensuring all three workflows stably achieve the
desired throughput (the second graph of Figure 12a). And,
as the application coordinator always moves work-
flows to the data centers with the lowest cost available, the
total cost is minimized (the last graph in Figure 12a).

To understand the importance of Storm-RTS in imple-
menting such declarative policy, consider the same scenario
with Storm-Serverless (Figure 12b). Since Storm-Serverless
allocates resources in best-effort manner, can neither detect
a shortfall nor choose a suitable destination for a migration
(has enough resources available). This results in poor workflow
performance in these changing resource environments.

VII. RELATED WORK

1) Solving Performance Challenges: Worker-based SPEs
try to provide transparent performance by carefully consid-
ering workflow topology and the underlying system details
for every scheduling decision. Many SPEs dynamically map
operators to workers with heuristic scheduling strategies based
on performance profiling [24], [39]-[42] and/or workflow
characterization, including operator dependencies [41], [43],
queue size [30], and query context [44], [45]. In distribution
settings, SPEs distribute workers in traffic-aware [46]-[48]
or topology-aware [46], [49], [50] fashion ensuring tuple
transmission is supported by the underlying network. On low-
end systems, e.g., Edge, resource heterogeneity and scarcity
are common, great efforts on workload partitioning [51]-[55]
and task placement [53], [56]-[62] are needed.

To resolve performance predictability challenges, worker-
based SPEs leverage control mechanisms, which are typically
full loops of two steps: performance degradation detection
and recovery. SPEs typically detect performance degradation
by monitoring stream traffic [40], [63] and throughput [64].
Some approaches try to predict potential degradation [64]—
[66] and then proactively prevent it beforehand. Performance is
recovered with heuristic algorithms, which either dynamically
adjust resource sharing among competitive workflows [31],
[64]-[67] or migrate them to other machines [40].

2) Stream Processing and FaaS: Many SPEs have lever-
aged FaaS for dynamic scalability [2], [17]-[21], [68]. How-
ever, these SPEs only outsource the processing logic to
FaaS. Other parts of operators, such as transmission and
synchronization, are implemented through the worker abstrac-
tion inheriting worker-based performance limitations. Storm-
RTS wraps entire operators inside FaaS deployments. This

54

completely removes the worker abstraction from SPE im-
plementation, eliminating its performance limitation legacies.
Additionally, SPEs relying solely on regular FaaS (e.g., [25]-
[27], [37], [69], [70]) experience performance degradation
when these systems fail to acquire needed resources (Section
VI-C). Recent years witnessed many attempts on minimizing
the chance of these failures, including optimizing invocation
resource consumption [71]—[75], proactive pre-allocation, and
invocation recycling [76]-[81]. There are also active studies
on intelligent resource sharing [73], [82]—[85], function place-
ment [84], [86], [87], and exploiting hardware heterogeneity
[88] to improve resource efficiency and avoid interference.

3) Stream Processing across Multiple Sites: Most of the
solutions for stream processing across multiple sites adopt the
worker abstraction or use worker-based SPEs as a building
block (e.g., [4], [89]-[91]). Worker abstraction limitations
combined with new challenges that arise from distribution
require additional efforts on reliability [92]-[96], communi-
cation latency and overhead [97], [98], and managing lim-
ited, heterogeneous resource pools [99], [100], balancing task
placement and parallelism [101]-[103].

4) Summary: Current solutions to performance issues in
stream processing and FaaS are heuristics. When facing uncov-
ered situations, they may misbehave causing performance in-
stability. In contrast, Storm-RTS provides robust performance
stability, deployment optimization for latency (i.e., prioritize
data centers with fast connections), reliability (i.e., automatic
migration at power shortage), and more.

VIII. SUMMARY AND FUTURE WORK

RBAM abstraction realizes stream processing workflows as
chains of rate-guarantee FaaS invocations to provide trans-
parent and predictable performance. Storm-RTS exploits this
capability to enable workflow deployment over heterogeneous
and distributed resources, unlocking myriad application flexi-
bilities and opportunities for optimized management, and sim-
plifying distributed stream processing. Experimental results
show the comparable performance of Storm-RTS versus state-
of-the-art worker-based SPEs while offering excellent perfor-
mance stability, great flexibility and robustness for multi-site
deployment, and automatic reconfiguration capability.

With new capabilities, Storm-RTS open many research
questions. For example, what new classes of distributed re-
source optimization for cost or reliability does this create?
Can it be used to increase capability or efficiency? Also, pre-
allocate resources to implement RBAMs can be insufficient
in many cases, (e.g., bursty load) yet the solution is still
remaining as questions waiting for the answer.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
reviews, including those who reviewed the earlier versions
of this paper. This work is supported in part by NSF
Grants CMMI-1832230, OAC-2019506, CNS-1901466, and
the VMware University Research Fund. We also thank the
Large-scale Sustainable Systems Group members for their
support of this work!

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

—
—

[5]

REFERENCES

“Apache Storm,” https://storm.apache.org, May 2017.

“Apache Flink,” https:/flink.apache.org, 2014.

S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: stateful scalable stream
processing at linkedin,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1634-1645, 2017.

R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, and G. Antoniu,
“Jetstream: Enabling high throughput live event streaming on multi-site
clouds,” Future Generation Computer Systems, vol. 54, pp. 274-291,
2016.

M. Dias de Assuncdo, A. da Silva Veith, and R. Buyya,
“Distributed data stream processing and edge computing: A survey
on resource elasticity and future directions,” Journal of Network and
Computer Applications, vol. 103, pp. 1-17, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804517303971
W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter, “Real-time stream
processing for big data,” it-Information Technology, vol. 58, no. 4, pp.
186-194, 2016.

A. AlHammadi, A. AlZaabi, B. AlMarzooqi, S. AlNeyadi, Z. Al-
Hashmi, and M. Shatnawi, “Survey of iot-based smart home ap-
proaches,” in 2019 Advances in Science and Engineering Technology
International Conferences (ASET), 2019, pp. 1-6.

PTC, “Howden Creates Mixed Reality Solutions to Enhance
Customer Experience,” https://www.ptc.com/en/case-studies/howden-
mixed-reality, Feb 2019.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter
heron: Stream processing at scale,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 239-250. [Online]. Available:
https://doi.org/10.1145/2723372.2742788

] “Kafka Streams,” https://apex.apache.org/docs.html, 2022.
1 M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,

“Discretized streams: Fault-tolerant streaming computation at scale,” in
Proceedings of the twenty-fourth ACM symposium on operating systems
principles, 2013, pp. 423-438.

“Apache Apex,” https://katka.apache.org/documentation/streams/,
2017.

“Apache Gearpump,” http://gearpump.github.io/overview.html, 2022.
“Apache Nifi,” https://nifi.apache.org/, 2018.

“Mantis,” https://netflix.github.io/mantis/, Jun 2022.

H. Roger and R. Mayer, “A comprehensive survey on parallelization
and elasticity in stream processing,” ACM Comput. Surv., vol. 52,
no. 2, Apr. 2019. [Online]. Available: https://doi.org/10.1145/3303849
“Serverless Streaming Architectures and Best Practices,”
https://d1.awsstatic.com/whitepapers/Serverless_Streaming_
Architecture_Best_Practices.pdf, Jun. 2018.

S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A serverless
real-time data analytics platform for edge computing,” IEEE Internet
Computing, vol. 21, no. 4, pp. 64-71, 2017.

P. A. Bernstein, T. Porter, R. Potharaju, A. Z. Tomsic, S. Venkataraman,
and W. Wu, “Serverless event-stream processing over virtual actors.”
in CIDR, 2019.

“Amazon Kinesis Data Streams,” https://aws.amazon.com/kinesis/data-
streams/, 2019.

S. Poojara, C. K. Dehury, P. Jakovits, and S. N. Srirama, Serverless
Data Pipelines for IoT Data Analytics: A Cloud Vendors Perspective
and Solutions. ~ Cham: Springer International Publishing, 2023, pp.
107-132.

Z. Chen, J. Xu, J. Tang, K. A. Kwiat, C. A. Kamhoua, and C. Wang,
“Gpu-accelerated high-throughput online stream data processing,”
IEEE Transactions on Big Data, vol. 4, no. 2, pp. 191-202, 2016.

R. Tonjes, P. Barnaghi, M. Ali, A. Mileo, M. Hauswirth, F. Ganz,
S. Ganea, B. Kjergaard, D. Kuemper, S. Nechifor, A. Sheth, V. Tsiatsis,
and L. Vestergaard, “Real time iot stream processing and large-scale
data analytics for smart city applications,” in poster session, European
Conference on Networks and Communications. sn, 2014, p. 10.

Y. Mei, L. Cheng, V. Talwar, M. Y. Levin, G. Jacques-Silva, N. Simha,
A. Banerjee, B. Smith, T. Williamson, S. Yilmaz, W. Chen, and
C. Jerry, “Turbine: Facebook’s service management platform for stream

55

[25]
[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

processing,” in 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1EEE, 2020, pp. 1591-1602.

“AWS Lambda,” https://aws.amazon.com/lambda/, 2017.

“Microsoft ~ Azure Function,” https://azure.microsoft.com/en-
us/services/functions/, 2017.

“Google Cloud Function,” https://cloud.google.com/functions, 2017.
S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam,
W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein,
“Encoding, fast and slow: Low-latency video processing using

thousands of tiny threads,” in I4th USENIX Symposium on
Networked ~ Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, Mar. 2017, pp. 363-—

376. [Online]. Available: https://www.usenix.org/conference/nsdil7/
technical-sessions/presentation/fouladi

A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: machine learning
inference serving on serverless platforms with adaptive batching,” in
SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE, 2020, pp. 1-15.

X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “Edgewise: A
better stream processing engine for the edge,” in 20/9 USENIX
Annual Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, Jul. 2019, pp. 929-946. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/fu

A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: Self-regulating stream processing in heron,” Proc. VLDB
Endow., vol. 10, no. 12, p. 1825-1836, aug 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137786

H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien, “Real-
time serverless: Enabling application performance guarantees,” in
Proceedings of the 5th International Workshop on Serverless
Computing, ser. WOSC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1-6. [Online]. Available:
https://doi.org/10.1145/3366623.3368133

“netty,” https://netty.io/, 2022.

“Right Place, Right Time (RiPiT) Carbon Emissions Service,” https:
//ttp://ripit.uchicago.edu//, May 2022.

A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An real-time
iot benchmark for distributed stream processing systems,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 21, p. e4257,
2017.

D. Canvas, “Sense your city: Data art challenge.” http://datacanvas.org/
sense-your-city/, Jun 2022.

“Oppenfaas,” https://www.openfaas.com/, 2017.

Amazon, “Amazon Cloud Infrastructure,” https://aws.amazon.com/
about-aws/global-infrastructure/, Feb 2021.

X. Liu and R. Buyya, “D-storm: Dynamic resource-efficient scheduling
of stream processing applications,” in 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems (ICPADS). 1EEE,
2017, pp. 485-492.

T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara,
“Online scheduling and interference alleviation for low-latency, high-
throughput processing of data streams,” I[EEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 12, pp. 3553-3569, 2017.

D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic, “Adaptive
scheduling of parallel jobs in spark streaming,” in IEEE INFOCOM
2017-1EEE Conference on Computer Communications. 1EEE, 2017,
pp. 1-9.

V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “On qos-aware
scheduling of data stream applications over fog computing infrastruc-
tures,” in 2015 IEEE Symposium on Computers and Communication
(ISCC). 1IEEE, 2015, pp. 271-276.

H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X.
Lin, “Streambox: Modern stream processing on a multicore machine,”
in 2017 USENIX Annual Technical Conference (USENIX ATC 17),
2017, pp. 617-629.

L. Xu, S. Venkataraman, I. Gupta, L. Mai, and R. Potharaju, “Move
fast and meet deadlines: Fine-grained real-time stream processing with
cameo,” in 18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 21), 2021, pp. 389-405.

S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and adaptable
stream processing at scale,” in Proceedings of the 26th Symposium on
Operating Systems Principles, 2017, pp. 374-389.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

A. Muhammad, M. Aleem, and M. A. Islam, “Top-storm: A topology-
based resource-aware scheduler for stream processing engine,” Cluster
Computing, vol. 24, no. 1, pp. 417-431, 2021.

J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online
scheduling in storm,” in 2014 IEEE 34th International Conference on
Distributed Computing Systems. 1EEE, 2014, pp. 535-544.

L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “T3-scheduler: A
topology and traffic aware two-level scheduler for stream processing
systems in a heterogeneous cluster,” Future Generation Computer
Systems, vol. 89, pp. 617-632, 2018.

X. Wei, X. Wei, and H. Li, “Topology-aware task allocation for online
distributed stream processing applications with latency constraints,”
Physica A: Statistical Mechanics and its Applications, vol. 534, p.
122024, 2019.

H. Moussa, L-L. Yen, and F. Bastani, “Service management in the
edge cloud for stream processing of iot data,” in 2020 IEEE 13th
International Conference on Cloud Computing (CLOUD). 1EEE, 2020,
pp. 91-98.

P. Liu, D. Da Silva, and L. Hu, “Dart: A scalable and adaptive
edge stream processing engine,” in 202/ USENIX Annual Technical
Conference (USENIX ATC 21), 2021, pp. 239-252.

M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini,
“When two choices are not enough: Balancing at scale in distributed
stream processing,” in 2016 IEEE 32nd International Conference on
Data Engineering (ICDE). 1EEE, 2016, pp. 589-600.

N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis, “A holistic
view of stream partitioning costs,” Proceedings of the VLDB Endow-
ment, vol. 10, no. 11, pp. 1286-1297, 2017.

X. Wang, Z. Zhou, P. Han, T. Meng, G. Sun, and J. Zhai, “Edge-
stream: a stream processing approach for distributed applications on a
hierarchical edge-computing system,” in 2020 IEEE/ACM Symposium
on Edge Computing (SEC). 1EEE, 2020, pp. 14-27.

J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and J. Zhu, “Parallel
stream processing against workload skewness and variance,” in Pro-
ceedings of the 26th International Symposium on High-Performance
Parallel and Distributed Computing, 2017, pp. 15-26.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,” in
Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, 2016, pp. 69-80.

J. Jiang, Z. Zhang, B. Cui, Y. Tong, and N. Xu, “Stromax: Partitioning-
based scheduler for real-time stream processing system,” in Interna-
tional Conference on Database Systems for Advanced Applications.
Springer, 2017, pp. 269-288.

M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, pp. 1-17, 2018.

M. Nardelli, V. Cardellini, V. Grassi, and F. L. Presti, “Efficient operator
placement for distributed data stream processing applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 8, pp.
1753-1767, 2019.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator replication and placement for distributed stream processing
systems,” ACM SIGMETRICS Performance Evaluation Review, vol. 44,
no. 4, pp. 11-22, 2017.

A. da Silva Veith, M. D. de Assuncao, and L. Lefevre, “Latency-
aware placement of data stream analytics on edge computing,” in
International conference on service-oriented computing. — Springer,
2018, pp. 215-229.

G. Amarasinghe, M. D. De Assuncao, A. Harwood, and S. Karunasek-
era, “A data stream processing optimisation framework for edge com-
puting applications,” in 2018 IEEE 21st International Symposium on
Real-Time Distributed Computing (ISORC). 1EEE, 2018, pp. 91-98.
J. Li, C. Pu, Y. Chen, D. Gmach, and D. Milojicic, “Enabling elastic
stream processing in shared clusters,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). 1EEE, 2016, pp. 108-
115.

M. R. H. Farahabady, A. Y. Zomaya, and Z. Tari, “Qos-and contention-
aware resource provisioning in a stream processing engine,” in 2017
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2017, pp. 137-146.

M. R. HoseinyFarahabady, A. Jannesari, J. Taheri, W. Bao, A. Y.
Zomaya, and Z. Tari, “Q-flink: A qos-aware controller for apache flink,”

56

[66]

[67]

[68]

[69]

[70]
[71]

[72]

[73]

[74]

[75]

[76]

(77

(78]

[79]

[80]

[81]

[82]

in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGRID). 1EEE, 2020, pp. 629-638.

M. R. HoseinyFarahabady, J. Taheri, A. Y. Zomaya, and Z. Tari,
“Qspark: Distributed execution of batch & streaming analytics in spark
platform,” in 2021 IEEE 20th International Symposium on Network
Computing and Applications (NCA). 1EEE, 2021, pp. 1-8.

Y. Morisawa, M. Suzuki, and T. Kitahara, “Resource efficient stream
processing platform with {Latency-Aware} scheduling algorithms,” in
12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud
20), 2020.

Y. Cheng and Z. Zhou, “Autonomous resource scheduling for real-
time and stream processing,” in 2018 IEEE SmartWorld, Ubig-
uitous Intelligence & Computing, Advanced & Trusted Comput-
ing, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018, pp.
1181-1184.

“Openwhisk,” https://openwhisk.apache.org/, 2016.

“Knative,” https://knative.dev/, 2021.

S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev,
“Sizeless: Predicting the optimal size of serverless functions,” in
Proceedings of the 22nd International Middleware Conference, 2021,
pp. 248-259.

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget,
J. Kouam, R. Lachaize, J. Hwang, T. Wood, D. Hagimont et al., “Ofc:
an opportunistic caching system for faas platforms,” in Proceedings of
the Sixteenth European Conference on Computer Systems, 2021, pp.
228-244.

A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upad-
hyay, and A. Gandhi, “Ensure: Efficient scheduling and autonomous
resource management in serverless environments,” in 2020 IEEE In-
ternational Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS). 1EEE, 2020, pp. 1-10.

A. Mampage, S. Karunasekera, and R. Buyya, “Deadline-aware dy-
namic resource management in serverless computing environments,”
in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). 1EEE, 2021, pp. 483-492.

V. M. Bhasi, J. R. Gunasekaran, A. Sharma, M. T. Kandemir, and
C. Das, “Cypress: Input size-sensitive container provisioning and
request scheduling for serverless platforms,” in Proceedings of the
13th Symposium on Cloud Computing, ser. SoOCC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 257-272.
[Online]. Available: https://doi.org/10.1145/3542929.3563464

M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association,
Jul. 2020, pp. 205-218. [Online]. Available: https://www.usenix.org/
conference/atc20/presentation/shahrad

A. Fuerst and P. Sharma, “Faascache: keeping serverless computing
alive with greedy-dual caching,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 386—400.

A. U. Gias and G. Casale, “Cocoa: Cold start aware capacity plan-
ning for function-as-a-service platforms,” in 2020 28th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). 1EEE, 2020, pp. 1-8.

C. Denninnart and M. A. Salehi, “Harnessing the potential of function-
reuse in multimedia cloud systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 3, pp. 617-629, 2021.

K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Hermod: Principled
and practical scheduling for serverless functions,” in Proceedings of
the 13th Symposium on Cloud Computing, ser. SOCC *22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 289-305.
[Online]. Available: https://doi.org/10.1145/3542929.3563468

A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and
S. Bagchi, “ORION and the three rights: Sizing, bundling, and
prewarming for serverless DAGs,” in 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). Carlsbad,
CA: USENIX Association, Jul. 2022, pp. 303-320. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/mahgoub

Z. Li, L. Guo, Q. Chen, J. Cheng, C. Xu, D. Zeng, Z. Song, T. Ma,
Y. Yang, C. Li, and M. Guo, “Help rather than recycle: Alleviating

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

cold startup in serverless computing through Inter-Function container
sharing,” in 2022 USENIX Annual Technical Conference (USENIX
ATC 22). Carlsbad, CA: USENIX Association, Jul. 2022, pp.
69-84. [Online]. Available: https://www.usenix.org/conference/atc22/
presentation/li-zijun-help

Y. Fu, L. Liu, H. Wang, Y. Cheng, and S. Chen, “Sfs: Smart os
scheduling for serverless functions,” in 2022 SC22: International
Conference for High Performance Computing, Networking, Storage
and Analysis (SC) (SC). Los Alamitos, CA, USA: IEEE Computer
Society, nov 2022, pp. 584-599. [Online]. Available: https://doi.
ieeecomputersociety.org/

Y. Zhang, {. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. De-
limitrou, and R. Bianchini, “Faster and cheaper serverless computing
on harvested resources,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, 2021, pp. 724-739.

V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: Lambdas
on a diet,” in Proceedings of the 11th ACM Symposium on Cloud
Computing, 2020, pp. 45-59.

R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: Warming serverless
functions better with heterogeneity,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS °22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 753-767.
[Online]. Available: https://doi.org/10.1145/3503222.3507750

Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo,
“Faasflow: Enable efficient workflow execution for function-as-a-
service,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS °22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 782-796. [Online]. Available:
https://doi.org/10.1145/3503222.3507717

D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Serverless
computing on heterogeneous computers,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS °22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 797-813. [Online]. Available: https://doi.org/10.1145/3503222.
3507732

M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, and F. Ye,
“Clasp: Collaborating, autonomous stream processing systems,” in
ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer, 2007, pp. 348—
367.

V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Distributed
qos-aware scheduling in storm,” in Proceedings of the 9th ACM
International Conference on Distributed Event-Based Systems, 2015,
pp. 344-347.

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Mill-
wheel: Fault-tolerant stream processing at internet scale,” Proceedings
of the VLDB Endowment, vol. 6, no. 11, pp. 1033-1044, 2013.

Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu, “A
hybrid approach to high availability in stream processing systems,” in
2010 IEEE 30th International Conference on Distributed Computing
Systems. 1EEE, 2010, pp. 138-148.

M. Gorawski and P. Marks, “Towards reliability and fault-tolerance of
distributed stream processing system,” in 2nd International Conference
on Dependability of Computer Systems (DepCoS-RELCOMEX’07).
IEEE, 2007, pp. 246-253.

J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and reliable stream
processing over wide area networks,” in 2007 IEEE 23rd International
Conference on Data Engineering Workshop. 1EEE, 2007, pp. 604-613.
X. Wei, Y. Zhuang, H. Li, and Z. Liu, “Reliable stream data processing
for elastic distributed stream processing systems,” Cluster Computing,
vol. 23, no. 2, pp. 555-574, 2020.

Y. Zhuang, X. Wei, H. Li, M. Hou, and Y. Wang, “Reducing fault-
tolerant overhead for distributed stream processing with approximate
backup,” in 2020 29th International Conference on Computer Commu-
nications and Networks (ICCCN). 1EEE, 2020, pp. 1-9.

A. Jonathan, A. Chandra, and J. Weissman, “Wasp: wide-area adaptive
stream processing,” in Proceedings of the 21st International Middle-
ware Conference, 2020, pp. 221-235.

F. Yin, X. Li, X. Li, and Y. Li, “Task scheduling for streaming applica-
tions in a cloud-edge system,” in Security, Privacy, and Anonymity in

57

[99]

[100]

[101]

[102]

[103]

Computation, Communication, and Storage, G. Wang, J. Feng, M. Z. A.
Bhuiyan, and R. Lu, Eds. Cham: Springer International Publishing,
2019, pp. 105-114.

F. R. de Souza, M. D. de Assungao, E. Caron, and A. da Silva Veith,
“An optimal model for optimizing the placement and parallelism of
data stream processing applications on cloud-edge computing,” in 2020
IEEE 32nd International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). IEEE, 2020, pp. 59-66.
E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch, “Themis:
Fairness in federated stream processing under overload,” in Proceedings
of the 2016 International Conference on Management of Data, 2016,
pp. 541-553.

F. R. de Souza, A. D. S. Veith, M. D. de Assunc¢ao, and E. Caron, “Scal-
able joint optimization of placement and parallelism of data stream
processing applications on cloud-edge infrastructure,” in International
Conference on Service-Oriented Computing. Springer, 2020, pp. 149—
164.

A. Dasilvaveith, M. D. de Assuncao, and L. Lefevre, “Latency-aware
strategies for deploying data stream processing applications on large
cloud-edge infrastructure,” IEEE Transactions on Cloud Computing,
2021.

S. K. Sharma and X. Wang, “Live data analytics with collaborative
edge and cloud processing in wireless iot networks,” IEEE Access,
vol. 5, pp. 4621-4635, 2017.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

