
Storm-RTS: Stream Processing with Stable

Performance for Multi-cloud and Cloud-edge

Hai Duc Nguyen

University of Chicago

ndhai@cs.uchicago.edu

Andrew A. Chien

University of Chicago and

Argonne National Laboratory

achien@cs.uchicago.edu

Abstract—Stream Processing Engines (SPEs) traditionally de-
ploy applications on a set of shared workers (e.g., threads,
processes, or containers) requiring complex performance man-
agement by SPEs and application developers. We explore a new
approach that replaces workers with Rate-based Abstract Ma-
chines (RBAMs). This allows SPEs to translate stream operations
into FaaS invocations, and exploit guaranteed invocation rates to
manage performance. This approach enables SPE applications
to achieve transparent and predictable performance.

We realize the approach in the Storm-RTS system. Exploring
36 stream processing scenarios over 5 different hardware config-
urations, we demonstrate several key advantages. First, Storm-
RTS provides stable application performance and can enable
flexible reconfiguration across cloud resource configurations. Sec-
ond, SPEs built on RBAM can be resource-efficient and scalable.
Finally, Storm-RTS allows the stream-processing paradigm to
be extended from the cloud to the edge, using its performance
stability to hide edge heterogeneity and resource competition.
An experiment with 4 cloud and edge sites over 300 cores shows
how Storm-RTS can support flexible reconfiguration and simple
high-level declarative policies that optimize resource cost or other
criteria.

Index Terms—Stream Processing, Serverless, FaaS, Real-time,
Cloud Computing, Edge Computing

I. INTRODUCTION

Recent years have seen increasing use of distributed stream

processing engines (SPE). These vary from generic engines

(e.g., Storm [1], Flink [2]) to optimized systems designed for

specific deployments (e.g., Samza [3] and Turbine [4]). SPEs

employ a stream processing model treating data as a stream of

tuples and formulate analysis as a workflow – a directed acyclic

graph of operators. Eager, data-driven processing provides

low latency while parallel operation execution enables high-

throughput [5], [6]. The resulting capabilities make stream

processing an important paradigm for data analysis at scales

from smart homes [7] to large-scale industries [8].

Most modern SPEs [1]–[3], [9]–[15] use the worker model

for workflow deployment. In this model, the SPE maps oper-

ators onto workers (e.g., threads, processes, containers, etc.)

that serve as a common abstraction for underlying compute

resources. These workers are exposed as the basic performance

abstraction to workflow developers, who can configure each

operator to have one or more workers depending on its com-

putational intensity to meet the workflow demand. However,

changes in the execution environment or the underlying worker

scheduling can disturb worker performance. For instance,

collocated with an aggressive application could interfere with

worker processing, reducing its throughput. Consequently,

workflow performance tuning is a process of trial-and-error,

adjusting worker configuration until reaching desired perfor-

mance [5], [16]. Perhaps worse, the tuning produces a single

configuration with little insight into how to adapt it as the

load evolves. This lack of performance transparency and

predictability is a challenge for SPE application developers.

We propose a new approach that solves these problems:

hosting the SPE on a new abstraction called the rate-based

abstract machine (RBAM). The RBAM model augments FaaS

functions with guaranteed invocation rates. We show how

SPE systems can exploit this foundation to achieve stable

performance by mapping workflow operators into FaaS func-

tions, accruing the benefits of performance transparency and

portability. The RBAM approach exploits the FaaS abstraction

interface, similar to other innovative works [2], [17]–[21],

but differs in the critical aspect of providing guaranteed

performance.

The Storm-RTS stream-processing engine realizes SPE on

RBAM. Storm-RTS maps operator executions to FaaS invo-

cations allocated at a rate guaranteed by RBAM to deliver

efficient, scalable, and flexible stream processing. We describe

Storm-RTS’ design, implementation and compare it to several

modern SPEs. Storm-RTS matches the resource efficiency

of state-of-the-art worker-based SPEs while enabling easy

reconfiguration with clouds, or across the cloud and edge. We

illustrate how the performance transparency and predictability

of Storm-RTS enable myriad opportunities such as declarative

resource management to improve cost, reliability, and more.

Finally, Storm-RTS provides scalability, enabling a workflow

to easily exploit additional resources when pressed with an

increased load without any redesign or reconfiguration. Con-

tributions of the paper include:

• Describe how to translate stream processing applications

into FaaS invocations with rate guarantee (RBAM) and

achieve stable performance.

• Design and implementation of Storm-RTS, an SPE that

realizes these ideas, replacing the worker abstraction with

FaaS/RBAM to provide performance stability (and trans-

parency and predictability) that enable both configuration

flexibility and high-level declarative performance and

configuration management.

• Evaluation of Storm-RTS, compared to state-of-the-art

45

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

2159-6190/23/$31.00 ©2023 IEEE
DOI 10.1109/CLOUD60044.2023.00015

20
23

 IE
EE

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

79
-8

-3
50

3-
04

81
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D6

00
44

.2
02

3.
00

01
5

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

SPEs, demonstrating stable performance, as well as its

resource efficiency (comparable to worker-based SPEs),

and dynamic scalability.

• Demonstration of several simple declarative approaches

that exploit the flexible cloud-edge application configu-

ration enabled by Storm-RTS’ stable performance. The

performance modularity enabled by the SPE on RBAM

creates opportunities to optimize for other high-level

objectives (e.g., cost, carbon footprint, etc.) in a fashion

that is orthogonal to traditional SPE throughput.

The rest of the paper is organized as follows. Section II pro-

vides background in Stream Processing and FaaS computing.

In Section III, we describe the worker model’s drawbacks and

then propose a new approach using the RBAM abstraction to

address these issues in Section IV. Section V proposes Storm-

RTS, an implementation for SPE on RBAM. We evaluate

Storm-RTS in Section VI. Finally, we survey related work in

Section VII and summarize the paper in Section VIII.

II. BACKGROUND

1) Stream Processing.: The stream processing model en-

ables performing real-time analytical tasks efficiently and

scalably. The model treats input streams as flows of separate

tuples and organizes applications as Directed Acyclic Graphs

(DAGs) called workflow consisting of operators placed on a

set of distributed computing nodes. Immediately after creation,

tuples are taken through the workflow, and processed by their

operators in an on-the-fly fashion, delivering analytical results

with low latency. Also, each operator can have multiple copies

running concurrently to exploit the hardware parallelism ca-

pability, easing high-throughput computation.

As such, many Stream Processing Engines (SPEs) have been

proposed to automate workflow description, deployments, and

operation with efficiency. Many of them are pure, general

SPEs and act as a building block for larger data analysis

systems [16]. Meanwhile, others are customized for specific

infrastructures [22], applications [23], or workloads [3], [24].

2) Worker-based SPEs: Modern SPEs deploy stream pro-

cessing workflows by mapping operators onto workers – a

computation abstraction provided by the underlying resource

manager for efficient hardware exploitation. Popular choices

of worker abstraction are threads, processes, and contain-

ers. With all computation handled by operators, operator-to-

worker mapping is crucial to workflow performance. Figure

1 shows how SPEs typically have it done. To deal with

varied operator complexity, SPE assigns to each operator

a parallelism configuration which is essentially the number

of the operator’s copies that can execute concurrently. SPE

allocates a corresponding number of workers, each to run an

operator copy, and distributes them across its cloud resources.

For example, in Figure 1, O2 and O3 are compute-intensive

operators so have their parallelism set to 2, resulting in two

copies and getting two workers while O1 and O3 only have 1.

This configuration creates 6 operators which need an allocation

of 6 workers distributed over 2 machines. One hosts O1 and

O2, and another hosts O3 and O4.

SPE

Workflow

Description

Resource

Manager

Operators with

Parallelism

ConfigurationsOperator Scheduler

Fig. 1: Worker-based SPE Architecture. Operators are mapped

onto workers across multiple machines. The parallelism con-

figuration specifies high-cost operators mapped onto multiple

workers for efficiency.

3) FaaS Computing.: Serverless or Function-as-a-Service

(FaaS) is a resource abstraction that lets applications exploit

the underlying resources through invocations. An invocation

is a discrete execution unit limited in time and resource

use (e.g., timeout, CPU, and memory). Applications associate

invocations with their logic in the form of stateless functions.

Each function is a specific task (e.g., resizing an image)

with a unique identifier (usually an URL). A function is

called (or invoked) by sending a request (e.g., HTTP Post),

along with required arguments (e.g., a file content embedded

inside the request body), to this identifier. The request is

handled by a FaaS platform (e.g., AWS Lambda [25], Azure

Function [26], Google Cloud Function [27], etc.) that allocates

resources to launch an invocation that executes the function

logic on the given arguments to complete the task. FaaS

platforms can automatically scale up to thousands of invoca-

tions simultaneously in response to workload dynamics. This

ability enables dynamic scalability with minimum efforts and

costs opening great opportunities to implement cost-effective,

scalable solutions [28], [29]. However, FaaS allocation is best-

effort, executing a new invocation in response to a request

may get delayed or even fails if the FaaS platform cannot find

available resources resulting in performance instability.

III. PROBLEM: LIMITS OF WORKER-BASED SPES

A. Performance Challenges

a) Performance Transparency Challenge.: Worker-based

SPEs tie workflow performance to underlying worker resource

configuration. Because these details are not part of the ap-

plication abstraction, performance is not transparent. Figure

2a shows the maximum throughput of executing an ETL

workflow on a 4-core machine deployed by three different

worker-based SPEs: Storm [1], EdgeWise [30], and Dhalion

[31] (see Section VI). We try four machine configurations

(Section VI-A): one is bare metal while the others are VMs

provisioned by different hypervisors while sticking with only

one parallelism configuration (Figure 6a). The throughput is

46

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

(a) Throughput vs. Resource Configuration

(b) Throughput vs. Competitive Load

Fig. 2: Performance challenges in worker-based SPEs: (a) poor

transparency as throughput greatly varies across different re-

source configurations, and (b) poor predictability as throughput

is interfered with a competitive load.

extremely sensitive to resource configurations, with perfor-

mance varying as much as 3-fold. For example, Storm running

on KVM gets only 27% of bare metal throughput.

The results illustrate that workflow performance is not

transparent yet strongly depends on the hardware resource

configurations to which their workers have access. Hence,

there would be no one-size-fits-all workflow configuration that

can be used for every deployment. Instead, the SPE has to

understand the underlying resource configurations and recon-

figure workflow accordingly to maintain good performance.

b) Performance Predictability Challenge.: Most of the

current distributed systems such as the cloud and edge are

shared environments. Workers are typically collocated with

other applications. Actual resources allocated to workers

highly vary subject to these applications’ behaviors. Tied to the

transparency challenge, this further means that performance

for SPE applications is almost not predictable. In Figure 2b,

we plot the throughput of an ETL workflow normalized by its

input rate when collocated with an aggressive competitive load

on a single Azure VM. We slowly increase the computation

demand of the competitive load, from no load until its com-

putation demand is high enough to consume 100% CPU on

the machine. We notice a significant drop in ETL’s throughput

after the competitive load exceeds 70%.

The results illustrate workflow performance is tied to its

collocated applications. As a result, workflow performance is

hard to predict. One deployment that works well may become

ineffective when some surrounding applications change. Un-

fortunately, these changes are typically out of SPEs’ control

making performance predictability a challenge for them.

SPE

Serverless Operator and Rate Requirements

Workflow

Description

()
() ()

()

Operators with Rate

Configurations

Rate-based Abstract

Machines (RBAMs)

RBAM#1 RBAM#2 RBAM#3 RBAM#4

Fig. 3: The RBAM approach to stream-processing: Operators

are wrapped by FaaS functions, providing invocation-level

dynamic resource management. One RBAM for each FaaS

function ensures its required tuple processing rate.

B. Implications for Applications

Application developers compensate for poor performance

transparency and predictability by over-provisioning, wast-

ing resources. A better approach is to repeatedly reconfigure

workflow for any significant change to the environment or

application until performance meets the desired level [5], [16],

[31]. However, this only works if the SPE reacts properly

to the change. Failing to select an appropriate configuration

would result in multiple rounds of reconfiguration causing

performance instability or over-provisioning.

Another implication of poor performance transparency and

predictability is difficulty in changing workflow configuration

(e.g., migrating workers from one machine to another). Such

application reconfiguration can be desirable to manage cost,

adjust to load dynamically, or move to other resources in

response to outage, preemption, or perhaps power cost. For

these reasons, most SPEs do not even support multi-site

execution. For example, the design of a workflow deployment

that spans two data centers or datacenter and the edge is a

bespoke, manual activity [3], [24].

More directly, the above challenges make deploying a

workflow over multiple data centers tricky; many manual

efforts are required for each configuration. Worse, flexible

reconfiguration across cloud and edge – a signature challenge

for many applications – is difficult. In the edge’s dramatically

more complex environment of heterogeneous resources and

networks, manual configuration and tuning may be impossible.

IV. STREAM PROCESSING ON RATE-GUARANTEED FAAS

We resolve the performance challenges by replacing the

worker model with FaaS invocations as shown in Figure 3.

Operators are implemented as FaaS functions and the topology

is encoded as FaaS chains, with tuples passed as function

arguments. For example, operators O1, O2, O3, O4 becomes

47

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Worker Model RBAM

Service Model Continuous Discrete (invocation)

Allocation Static Dynamic

Guarantee None Rate (invocations/sec)

TABLE I: Worker-model and RBAM Comparison

separate FaaS functions f1, f2, f3, and f4, respectively. The

SPE handles each arriving tuple by first invoking f1. After

completion, f1 triggers f2 and f3 with the output embedded

inside their invocation requests. These invocations extract f1’s

output from the requests, process it, and then pass their results

downstream until reaching the sink operator.

Regular FaaS performance is best-effort. Invocation alloca-

tion may fail or get delayed, degrading workflow performance.

To workaround, we let application developers configure per-

operator rate requirements specifying the expected processing

rate of these operators after deployment. Once a workflow is

submitted, rate requirements are tied to their corresponding

FaaS functions, each provisioned in a Rate-based Abstraction

Machine (RBAM). As in Figure 3, f1’s rate requirement is λ,

equal to the input rate of its operator, O1. Rate configurations

are equivalent to worker-based parallelism configurations yet

are easier to determine by measuring input rate and can be

guaranteed through RBAM enabling a simpler, straightforward

way to specify, configure, and evaluate workflow performance.

A. Rate-based Abstract Machine

Each Rate-based Abstract Machine allocation has an invo-

cation rate guarantee λ. This is a form of service/resource

guarantee framed in the FaaS model. Once allocated, the

RBAM gives a FaaS function a guarantee to execute at least

λ invocations per second, where each invocation is access to

specific resources within a limited time (e.g., 1 CPU for 10

seconds). For example, if an operator is mapped to an RBAM

of 10 invocations/sec, then for every 1-second interval, the

workflow is guaranteed to execute the operator logic at least

10 times. The RBAM abstraction departs from workers in

many important ways (Table I):

• Invocation-level Resource Management: In contrast to

worker abstraction’s continuous resource access, RBAM

lets applications access resources through invocations,

a discrete notion in time and resources. This model

naturally matches the stream processing workload which

is also determined by discrete tuple arrivals.

• Dynamic Allocation: RBAM scales invocation allocation

dynamically to tuple arrival and automatically releases

them after finishing processing. This scheme supports

both dynamic scaling and low resource waste. In com-

parison, worker allocation is rather static as one worker

often represents a fixed set of resources.

• Guaranteed-Rate: while worker allocation offers no guar-

antee, RBAM allocation supports a guaranteed invocation

rate that enables robust, simple QoS reasoning.

Further, RBAM performance is independent of underlying

resource configurations due to FaaS invocation recycling and

the time limit. For example, to support λ = 1 invocation/sec

where one invocation gets 1 CPU for a maximum of 10 sec,

we only need 10 CPU for invocations in the first 10 seconds.

After that, allocated invocations terminate due to the time

limit and their CPUs can be used for the next 10 seconds,

and so on. Therefore, deploying this RBAM is as simple as

reserving 10 CPUs. With isolation support (e.g., container),

decoupling RBAM performance from underlying systems is

straightforward (more in Section V-C).

B. Resolving Performance Challenges

By setting each RBAM rate guarantee to match the oper-

ator processing rate, the SPE guarantees the availability of

resources to process tuples at the arrival rate, maintaining

desired performance. This rate configuration is independent of

any underlying resource configuration, so the SPE application

has full performance transparency.

RBAMs also support performance predictability: RBAM

allocations ensure their operators perform well against any

load whose input rate is smaller or equal to the rate guarantee.

Consequently, a workflow constructed from these operators

also has a performance guaranteed up to a specific input

rate. This performance predictability enables simple tuple

rate comparisons and negotiation with the underlying RBAM

systems to determine if a new configuration is feasible. This

framework enables distributed SPE configuration management

with stable performance possible (see Section V-D).

V. STORM-RTS: SPE FOR DISTRIBUTED STREAM

PROCESSING

A. Design Requirements

Storm-RTS – a new distributed SPE to translate workflow

description into RBAM allocations – achieves performance

transparency and predictability. This enables it to flexibly

spread stream-processing applications over multiple machines

across multi-datacenter from Cloud to Edge. We describe the

design of Storm-RTS to demonstrate this new capability.

Storm-RTS is derived from Storm and reuses its workflow

models to offer essential features of a modern SPE. However,

mapping Storm’s workflow model to RBAM abstraction is

not straightforward. First, many essential FaaS configurations,

such as time limit, cannot be inferred directly from Storm

workflow configurations. Second, FaaS functions are highly

modular and stateless while Storm, like other worker-based

SPEs, collocate workers for efficiency and maintain operators’

state for various functionalities, such as consistency and fault

recovery. Naively replacing Storm’s workflow executor with

FaaS invocations would reduce efficiency and leave some

features infeasible (e.g., stateful operators). We workaround

these issues by meeting the following requirements.

• Workflow performance stability: achieve desired through-

put and latency across distributed configurations, recon-

figuration (migration), and varied competitive loads.

• Predictable Resource Requirements: operators and work-

flows characterized for their resource requirements.

• Modular resource management: can partition workflow

across multiple sites/data centers. Individual site resource

48

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Workflow

Data sources

Operator Profiler

Workflow Executor

Tuple

Collector

(spout)

Tuple

Collector

(spout)

Tuple

Collector

(spout)
FaaS

Invoker
Rate-based Abstract

Machine (RTS)

Admission

Control
Gateway

Workflow Coordinator

Workflow

Compiler

FaaS

Configurator

FaaS invocations

Workflow

CRUD

Input

tuples

Container

Deployment
FaaS

Invocation

FaaS Deployment

Resource Manager (Kubernetes)

Storm-RTS

Execution

Configurations

Function Container

State Manager

Operator

State

Operator

Logic

FaaS Deployment

Configurations

Tuple

queue

Fig. 4: Storm-RTS Architecture: Operator Profiler, Workflow

Coordinator, Executor, and Rate-based Abstract Machine

managers can independently decide if a workflow can be

placed and meet its performance requirements.

• Compatibility: support Storm workflows and features with

similar efficiency and modest change.

B. Storm-RTS Architecture

The key elements of Storm-RTS are shown in Figure 4. At

the high level, Storm-RTS has four main components, each is

responsible for one of the design requirements listed above.

Workflow Coordinator: responsible for enforcing perfor-

mance stability. It translates workflow operators received from

developers into FaaS functions and associated them with

appropriate configurations allowing the workflow to sustain

the desired load. It is also responsible for protecting work-

flow performance from disruptions such as competitive loads,

workflow reconfiguration, migration, etc.

Operator Profiler: responsible for resource requirement

predictability. The component runs workflow operators offline

to profile their computing and memory requirements. This

information is used to configure FaaS functions’ resource

requirements, ensuring their invocations always have sufficient

resources to execute their associate operators.

Rate-based Abstract Machine (RBAM): responsible for

enabling modular resource management. FaaS functions cre-

ated by the workflow coordinator are deployed sep-

arately inside RBAM allocations. Once established, each

RBAM allocation ensures new invocations are executed at the

configured rate independent of each other, underlying resource

configuration, and other competitive loads.

Workflow Executor: responsible for executing workflows

and compatibility supports. It collects tuples from data sources

and then triggers corresponding FaaS invocations to start

workflow execution. The workflow executor also reuses

Storm’s monitor and orchestration modules to offer similar

data processing support as Storm.

C. Storm-RTS Implementation

1) Workflow Deployment: Workflow developers sub-

mit workflow descriptions directly to the workflow

compiler. The description includes workflow topology and

rate configuration. Rate configuration consists of a desired

rate λ that developers expect the workflow to handle and per-

operator rate scales µi representing the ratio of each operator’s

expected input rate and the desired rate. The workflow

compiler extracts operators’ logic from workflow topology

and then encapsulates them inside FaaS functions.

Each FaaS function fi has the Operator Profile de-

termine its (i) per-invocation resource requirement si (mainly

CPU and memory), (ii) time limit tmaxi (i.e., timeout),

and (iii) batch size bi (i.e., number of tuples processed per

invocation). This is done by running operators offline with

tuples sampled from historical input stream data. The running

environment is configured to be identical to the environment

targeted to execute workflow operators.

• Per-invocation resource (CPU and memory) requirement

(si) and time limit (tmaxi): the profiler executes opera-

tors starting with excess resource allocation and gradually

reduces the allocation until observing a 20% execution

time increase. This last allocation configuration and the

corresponding execution time are used to configure the

FaaS wrapping the operator.

• Batch size (bi): Since invocation overhead is typically

much higher than tuple processing latency (a couple of

milliseconds vs. <1ms), Storm-RTS batches multiple tu-

ples in one invocation to amortize the overhead. However,

this prolongs per-tuple processing latency. To mitigate

this effect, the profiler compares naive operator execution

versus FaaS varying the batch size and considers the batch

size leading to an efficiency of 70% is acceptable and

used to determine the batch size for this operator.

With the information, the workflow coordinator

configures per-function rate guarantee Ai to the number of

invocations expected to invoke per second if tuples are gener-

ated at the desired rate λ:

Ai =
λ · µi

bi
(1)

This Ai guarantees at least one invocation available for

the operator wrapped by the FaaS function to process all

incoming tuples sent at any rate less than or equal to λ,

thereby satisfying the performance stability requirement. After

determining the above information for all FaaS functions,

the FaaS Configurator sends these functions and their

configurations to RBAM to check whether the underlying

resource manager can support their guarantee and wrap FaaS

functions inside RBAMs with corresponding rate guarantees.

If the process completes successfully, the desired rate is

guaranteed so the workflow executor is triggered to

begin execution, no further reconfiguration/profiling is needed.

2) RBAM Implementation: Storm-RTS leverages Real-time

Serverless (RTS) [32] to deploy every FaaS functions deploy-

ment requested by the workflow coordinator. Each

FaaS function fi is initialized with si resources – just enough

to handle one invocation request, if any. After 1/Ai seconds,

we allocate si more resources for one more invocation. we

then wait for 1/Ai more seconds, then allocate another si

49

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Data sources

Input

Allocation/

Deallocation

Edge Resources Manager

Data stream

(tuples)

Edge Data Center

Function

container
…

Function

container

Resource Configuration

Information (e.g., AWS

Pricing, RiPiT, etc.)

Operator

placement

Resource availability

information

Allocation/

Deallocation

Cloud Resource Manager

Data stream

(tuples)

Cloud Data Center

Function

container
…

Function

container

Cloud-Edge

InterconnectionI

Tuples

Tuples

Resource availability Information

Declarative policy
Workflow

Workflow

Executor

Real-time

Serverless

Real-time

Serverless

Workflow

Executor

Workflow

Compiler

FaaS

Configurator

Operator Distributor

Application Coordinator

Operator

Profiler

CloudEdge

Operator placement

Storm-RTS

Fig. 5: Storm-RTS for Multi-site Deployment: the application

coordinator manages multi-site deployment. As before, each

site has admission control and performance monitoring that

implements the local RBAM guarantees.

resources, and so on. In this way, for any 1/Ai interval, fi
always has resources for a new invocation, meeting the rate

guarantee requirement. We repeat this process until tmaxi

seconds (i.e., the invocation execution time limit) have passed.

By this time, the first si resources allocated at the beginning

must be available in at most 1/Ai seconds and can be recycled

for a new invocation. Similarly, resources allocated at the

second 1/Ai interval can be used in the next 1/Ai interval,

and so on. In the end, only

Wi = Ai · tmaxi · si (2)

resources are needed to realize the rate guarantee. The

RTS system reserves Wi resources for function containers

via Kubernetes. If Kubernetes can successfully create these

containers then RTS returns the deployment information to

the workflow coordinator, and the workflow begins

processing. Otherwise, RTS considers the deployment failed

and cleans up. Note that if the request rate exceeds Ai, RTS

provides best-effort service.

3) Workflow Execution and State Management: For

each successful workflow deployment, the workflow

executor creates a set of tuple collectors realizing

the workflow source operators (“spout” in Storm terminolo-

gies) to continuously collect new tuples from data sources.

New tuples are put into tuple queues by destination until

their number is sufficient to form a batch, a FaaS invoker

retrieves a batch from the queue and requests a new FaaS

invocation for the appropriate workflow operator, passing

tuples as an argument. Each invocation processes one batch.

After completion, to pass on output tuples, the invocation

calls the wrapper functions for the operators downstream,

passing output tuples in batch as an argument. This allows

the downstream function, in response, to extract the tuples,

perform the operator computation, and call its downstream

operator wrappers as needed, and so on. This mechanism

forms tuple processing as FaaS function chains which are

self-synchronized and do not need any dedicated messaging

systems as in worker-based SPEs (e.g., Storm [1] relies on

Netty [33] for inter-node messaging).

Storm-RTS provides equivalent state management and func-

tionalities to Storm, including stateful supports, exactly-once

processing, out-of-order events, etc. Since serverless invoca-

tions are stateless, we have to modify RTS to embed an in-

memory store called operator state inside each FaaS

container to maintain operator state (e.g., join keys), consis-

tency, progress tracking, monitoring, and recovery. This infor-

mation is updated every time a tuple completes processing and

periodically synchronized with a centric state manager.

We reuse Storm modules to implement both operator

states and the state manager, ensuring the state in-

formation is handled properly and tuples are sent to FaaS

containers in correct order and meet users’ desired semantics.

D. Multi-site Deployment with Storm-RTS

Distributing workflow execution across multiple sites (e.g.,

cloud-cloud and cloud-edge) is challenging because distributed

resources are both heterogeneous and can vary in availability.

The Storm-RTS design brings new capabilities to address

both issues. First, Storm-RTS accesses underlying resources

through FaaS abstraction, so as long as FaaS are supported by

underlying systems, Storm-RTS can mask heterogeneity via

FaaS and assures performance via operator profiling and RTS

guarantee enforcement. Second, resources with varying avail-

ability may require workflow reconfiguration. By leveraging

the RBAM, Storm-RTS ensures that such reconfiguration will

not affect workflow performance, enabling applications to op-

timize their deployments for cost, carbon, or other criteria. To

illustrate this capability, we extend Storm-RTS architecture as

shown in Figure 5. Each cloud or edge data center runs Storm-

RTS as in Figure 4, but now the workflow coordinator

is promoted to application coordinator to orches-

trate FaaS deployments across the data centers. Apart from the

original components, the application coordinator

adds an operator distributor that places the FaaS-

encapsulated operators across data centers, implementing the

desired application policy.

Common policies include keeping operators close to data

sources (often at the edge). If multiple data centers can

host an operator, the coordinator implements the application’s

deployment policy, which picks application configu-

rations from among the candidates. For example, if edge

resources are zero-cost, when available, a policy that simply

minimizes total deployment cost would push operators to the

edge when it is idle, and pull them back to the cloud when it is

not. If sustainability is the objective, then the application

coordinator might push operators to the edge when solar

panels create plentiful green power, but back to the cloud

data center, when the solar panels stop generating sufficient

green power. Storm-RTS implements policies by collecting

and assessing two sources of information:

50

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Input
SenML

Parse

Decision

Tree

Average
x1

x1

x1

Linear

Regression

Error

Est.

MQTT

Publish

x2

x2

x1(b) PRED

Input
SenML

Parse

Range

Filter

Bloom

Filter

x1 x5 x5
Inter-

polation

Join
Anno-

tation
Azure

Cvsto-

SenML

MQTT

Publish
x5

x5

x1
x1 x1

x1(a) ETL

Input
SenML

Parse

x5

Kalman

Filter

LR

Predictor

SecondOrder

Moment

Disctinct

ApproxCount

x5

x1

MQTT

Publish

x5

x5 x5

x15

(c) STAT

Bloom

Filter

Fig. 6: RIoTBench workflows. Operators shown as green boxes with numbers representing parallelism configurations.

Data

sources

Input

Cloud-Edge

Interconnection

Edge-1

Edge-2

Data

sources

Input

Data

sources

Input

Edge-3

Cloud

Fig. 7: A Cloud-edge resource configuration

• Resource configuration (e.g., resource pricing, Carbon

intensity information [34], etc.) to give insights into

resource properties for efficient exploitation.

• Resource availability: collected from resource managers

in data centers. The application coordinator

also communicates with RTS systems to determine if an

operator placement is feasible at any particular site.

VI. EVALUATION

A. Methodology

1) Workloads: We use the RIoTBench benchmark suite

[35], designed specifically for evaluating SPE implementa-

tions. We select 3 workflows (Figure 6) capturing common

stream processing activities over a real-world smart cities

dataset [36]: PRED (make predictions on streamed data),

ETL (perform data extraction, transformation, and load), and

STATS (apply statistical summarization). Their parallelism

configurations are selected based on the number of tuples each

operator has to process per one input tuple.

2) Stream-processing Engines (SPEs): We compare five

SPEs which are representative implementations of workflow

deployment approaches discussed in Section III and IV.

• Storm [1]: Evaluation baseline. Workers are implemented

as threads in a Java Virtual Machine. Worker allocation

and mapping are static.

• EdgeWise [30]: a Storm variation that replaces static

worker mapping with a dynamic one prioritizing opera-

tors experiencing long input queues for higher efficiency.

• Dhalion [31] a worker-based SPE with heuristic dynamic

scaling. The SPE allocates more resources if workflow

throughput fails to match the input rate and frees unused

resources if the workflow is over-provisioned.

• Storm-Serverless implements the Storm API on FaaS.

Its implementation is identical to Storm-RTS, except the

RBAM is replaced with OpenFaaS [37], thereby operators

have no rate-guarantee.

• Storm-RTS implements the Storm API with rate-based

abstract machine as described in Section V.

In the following experiments, unless stated otherwise,

worker-based SPEs use parallelism configurations shown in

Figure 6. Storm-RTS also sets operator scale factors µi identi-

cal to these parallelism configurations and desired rate λ equal

to the workflow input rate.

3) Hardware/Resource Configurations: Experiments are

conducted over three configurations

• Cloud VM: workflows are hosted by virtual machines in

public clouds, including Amazon EC2 (m5zn instances),

Microsoft Azure (Dasv4 instances), and Google Cloud

(e2-standard instances) to evaluate SPE performance over

realistic settings where they typically run over a virtual,

oversubscribed environment inside data centers.

• Bare Metal: for raw performance measurement (no shar-

ing). The machine has 1 Intel Xeon Gold 6138 (80 cores),

512GB RAM and uses cgroup for resource control.

• Cloud-Edge We create four clusters (Figure 7) where

the cloud emulates the cloud side with an unlimited

number of machines, each has 92 cores and 192GB of

memory. edge1, edge2, and edge3 represent edge data

centers. Each has 4 VMs (12 cores and 48GB memory).

We configure the network based on Amazon Cloud In-

frastructure’s network performance [38]. All connections

have 100Gbps bandwidth. Intercloud connections have

5.5ms latency while Cloud-Edge latency is randomized

with Gaussian distribution with 5.5ms mean and 2ms

standard deviation.

4) Metrics: We evaluate SPEs based on throughput (mea-

sured at sink operators), end-to-end processing latency, CPU

utilization (100% per core), and cost, measured as CPU

utilization * cost-factor. The cost-factor is a dimensionless

relative measure of resource cost, reflecting resource location.

B. Resource Efficiency

1) Single Machine: We deploy RIoTBench workflows sep-

arately over a single machine with fixed CPUs (4, 8, and

16 cores). The workflows are fed tuples at a constant rate,

and we gradually increase the rate until saturation (i.e., the

tuple processing latency increases sharply and the throughput

fails to match the tuple input rate). We report the throughput

just before this point, calling it the maximum throughput.

We plot the geometric mean of the normalized maximum

throughputs of three RIoTbench workflows on 4 different ma-

chine configurations in Figure 8. The performance of Storm,

Edgewise, and Dhalion scale poorly, falling slightly behind

Storm-Serverless and Storm-RTS at 8 cores and badly behind

at 16 cores. Both Storm-RTS and Storm-Serverless scale well

51

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

(a) AWS Nitro (Amazon EC2) (b) Hyper-V (Azure) (c) KVM (Google Cloud) (d) Bare Metal

Fig. 8: Maximum throughput of RIoTBench workflows on a single machine (varying from 4 to 16 cores). Geometric mean of

workflows’ throughput, each is normalized by Storm throughput on a 4-core machine.

(a) Throughput (b) Average Latency

Fig. 9: Storm-RTS achieves comparable throughput and la-

tency versus worker-based SPEs.

(a) Dynamic Scaling (b) Performance Isolation

Fig. 10: Storm-RTS flexibly reconfigures for various work-

loads and protect workflow performance from collocated ap-

plications while other SPEs fail to do so. (Results from Azure

VMs only, other configurations are omitted due to similarity).

with the system capacity, with workflow maximum throughput

increasing almost linearly with the number of cores. These

results are consistent across all of the cloud VMs and also the

bare metal configuration confirming that FaaS-based SPEs can

achieve equal or superior resource efficiency.

2) Multiple machines: We deploy workflow separately over

multiple 4-core VMs and report the geometric mean normal-

ized throughput for each SPE on Azure in Figure 9a. The

other resource configurations are omitted because their results

are the same as we have presented for Azure. All SPEs have

comparable performance. Both Storm-Serverless and Storm-

RTS scale well, increasing throughput with more machines.

This result confirms their resource efficiency, compared to

worker-based SPEs, in a distributed computing setting.

3) Processing Latency: Figure 9b shows the average per-

tuple end-to-end latency of RIoTBench workflows at the

steady state when the load is at around 70% of available ca-

pacity for all SPEs in Azure (we also omit other configurations

due to similarity). Compared to Storm and EdgeWise, Storm-

RTS and Storm-Serverless experience higher latency due to

FaaS invocation overhead. However, by batching tuples into a

single invocation request, the overhead is amortized. Storm-

RTS keeps the latency below 20ms, just slightly above Storm

and EdgeWise while significantly better than Dhalion. The

results demonstrate that Storm-RTS is efficiently equivalent to

other worker-based SPEs in terms of processing speed.

C. Performance Stability

1) Scalable Workflow Performance: We run each RIoT-

Bench workflow separately in a system having ample re-

sources, at varying input rates but keep their parallelism

and rate configuration fixed. The results are presented in

Figure 10a. The x-axis represents the input rate normalized

by the saturation rate (maximum throughput) of Storm. The

y-axis represents the geometric mean of workflow throughputs

normalized by input rate. A perfect system would produce a

flat line across the top – full performance with no saturation.

Our results show that all five SPE systems scale well up

to Storm’s saturation rate (normalized to 1.0). Beyond this

point, among worker-based SPEs, only Dhalion with dynamic

scaling support can handle the load. Storm and EdgeWise

static worker allocations are both overwhelmed, causing their

throughput to drop. At a saturation ratio of 1.5, both of their

throughputs are below 20% of the input rate, and at 2.0, their

throughput drops further approaching 0%. In contrast, Storm-

Serverless and Storm-RTS perform dynamic allocation, using

the underlying FaaS dynamic allocation to acquire more re-

sources and support higher tuple processing rates. As a result,

their performance is not limited by workflow configuration and

continues to match the growing tuple for all workflows well

beyond 1.0x and even 2.0x the Storm saturation rate.

The results above reveal the configuration inflexibility of

the worker-based model. Any changes in workflow and input

tuple rate require configuration adjustment, either manual or

automatic, to achieve desired performance. On the other hand,

FaaS-based SPEs do not require any parameter tuning to meet

performance goals. This eases the deployment effort.

2) Performance Isolation: We consider the case of multiple

workflows competing for shared resources. This is a common

occurrence in production settings and can lead to performance

52

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Storm-RTS guarantees the performance of bursty

workloads while other SPEs fail to do so.

interference. To evaluate how well SPEs protect workflow

from interference, we run each of the RIoTBench workflows

with SCAN. This is a single-bolt workflow performing expen-

sive arithmetic operators on input tuples, so it competes for

CPU cycles with the foreground RIotBench workflows.

In Figure 10b, we report the geometric mean of the through-

puts for the RIoTBench workflows normalized by their satura-

tion input rate. The x-axis values are normalized background

load (SCAN), with 1.0 indicating the ability to consume 100%

of the CPU capacity. All worker-based SPEs fail to provide

performance isolation, showing a throughput decrease after the

background load exceeds 50%. Due to relying on best-effort

invocation allocation, Storm-Serverless sees its throughput

drop from the introduction of very small levels of resource

competition. The decrease is severed, and nearly 100% loss

of throughput with about 30% competitive load. In contrast,

the RBAM allocations enforce rate guarantees with strong

resource isolation allowing Storm-RTS to provide good perfor-

mance isolation all the way up to 100% competitive load. This

demonstrates the ability to deliver predictable performance of

RBAM SPEs as discussed in Section IV.

3) Supporting Bursty Workloads: We consider a common

load pattern in practice: bursty workflows whose input rate

varies over time. Workflow developers can configure Storm-

RTS to handle bursty loads by setting the desired input rate

equal to the peak input rate when the load bursts. We deploy a

PRED workflow that operates at around 35 thousand tuples/sec

on Azure VMs. However, after the 10-th second, the input rate

is doubled and lasts for around 30 seconds (see the first graph

of Figure 11). We execute this load with different SPEs. The

workflow’s throughput and latency are shown in the second

and third graphs of Figure 11, respectively.

Storm and EdgeWise have their resource allocated statically.

When the burst arrives, they are unable to process the excessive

tuples in time causing significant high processing latency with

a noticeable throughput drop. Dhalion and Storm-Serverless

support dynamic allocation so they can scale up during the

burst. However, it takes time for both to detect the burst,

and scale resource allocation accordingly. Thus, both see

(a) Storm-RTS (b) Storm-Serverless

Fig. 12: Storm-RTS shifting workflows across edge datacen-

ters, while maintaining stable performance. The flexibility

enabled by Storm-RTS enables simple optimization of cost.

significant performance degradation for 10-20s (35 to 65%

of the burst period). Storm-RTS, on the other hand, has the

desired rate set to the burst peak (70 thousand tuples/sec) and

it maintains the desired throughput and latency throughout the

burst period. This demonstrates the robustness of performance

stability provided by Storm-RTS.

D. Flexible Cloud-Edge Reconfiguration

Performance stability allows Storm-RTS to simplify appli-

cation management for other objectives. Consider a simple

declarative policy MinCost: minimize resource cost of stream

processing workflows at any point in time. Storm-RTS (Figure

5) reduces the policy to placing operators in the data center

with the lowest cost. If this data center is full, then operators

will be placed in the data center with the next lowest cost,

and so on. Consider a resource environment shown in Figure

7, where the cost of edge1, edge2, and edge3 are equal to 25%,

50%, and 75% respectively relative to the cloud’s 100%. On

this testbed, we conduct an experiment showing how Storm-

RTS operate workflows stably at optimal cost.

The first graph of Figure 12a shows events that happen

during the experiment and decisions made by Storm-RTS

in response. At t = 0, Storm-RTS deploys three RIoT-

Bench workflows in cloud. At t = 150, three edge data

centers become available. The MinCost policy dictates a

move to the cheapest data center, edge1, so the operator

distributor shifts the operators for all three workflows to

edge1. However, at t = 300, a SCAN workflow starts at edge1,

consuming CPU resources. edge1 becomes oversubscribed,

the local RTS reports this situation to the application

coordinator. The application coordinator has

the operator distributor move PRED, the smallest

53

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

workflow, to maintain adequate performance. To minimize

resource cost, edge2 is selected. At t = 450, the SCAN load

increases. edge1’s RTS system notifies the application

coordinator again, leading to a move of ETL to edge2.

And when SCAN expands to edge2 at t = 600, its resource

consumption there causes the RTS system on edge2 to notify

the application coordinator that it cannot maintain

its guarantees. In response, Storm-RTS moves PRED to edge3

ensuring resource sufficiency for all workflows. Through these

many workflow reconfigurations, Storm-RTS maintains their

performance, ensuring all three workflows stably achieve the

desired throughput (the second graph of Figure 12a). And,

as the application coordinator always moves work-

flows to the data centers with the lowest cost available, the

total cost is minimized (the last graph in Figure 12a).

To understand the importance of Storm-RTS in imple-

menting such declarative policy, consider the same scenario

with Storm-Serverless (Figure 12b). Since Storm-Serverless

allocates resources in best-effort manner, can neither detect

a shortfall nor choose a suitable destination for a migration

(has enough resources available). This results in poor workflow

performance in these changing resource environments.

VII. RELATED WORK

1) Solving Performance Challenges: Worker-based SPEs

try to provide transparent performance by carefully consid-

ering workflow topology and the underlying system details

for every scheduling decision. Many SPEs dynamically map

operators to workers with heuristic scheduling strategies based

on performance profiling [24], [39]–[42] and/or workflow

characterization, including operator dependencies [41], [43],

queue size [30], and query context [44], [45]. In distribution

settings, SPEs distribute workers in traffic-aware [46]–[48]

or topology-aware [46], [49], [50] fashion ensuring tuple

transmission is supported by the underlying network. On low-

end systems, e.g., Edge, resource heterogeneity and scarcity

are common, great efforts on workload partitioning [51]–[55]

and task placement [53], [56]–[62] are needed.

To resolve performance predictability challenges, worker-

based SPEs leverage control mechanisms, which are typically

full loops of two steps: performance degradation detection

and recovery. SPEs typically detect performance degradation

by monitoring stream traffic [40], [63] and throughput [64].

Some approaches try to predict potential degradation [64]–

[66] and then proactively prevent it beforehand. Performance is

recovered with heuristic algorithms, which either dynamically

adjust resource sharing among competitive workflows [31],

[64]–[67] or migrate them to other machines [40].

2) Stream Processing and FaaS: Many SPEs have lever-

aged FaaS for dynamic scalability [2], [17]–[21], [68]. How-

ever, these SPEs only outsource the processing logic to

FaaS. Other parts of operators, such as transmission and

synchronization, are implemented through the worker abstrac-

tion inheriting worker-based performance limitations. Storm-

RTS wraps entire operators inside FaaS deployments. This

completely removes the worker abstraction from SPE im-

plementation, eliminating its performance limitation legacies.

Additionally, SPEs relying solely on regular FaaS (e.g., [25]–

[27], [37], [69], [70]) experience performance degradation

when these systems fail to acquire needed resources (Section

VI-C). Recent years witnessed many attempts on minimizing

the chance of these failures, including optimizing invocation

resource consumption [71]–[75], proactive pre-allocation, and

invocation recycling [76]–[81]. There are also active studies

on intelligent resource sharing [73], [82]–[85], function place-

ment [84], [86], [87], and exploiting hardware heterogeneity

[88] to improve resource efficiency and avoid interference.
3) Stream Processing across Multiple Sites: Most of the

solutions for stream processing across multiple sites adopt the

worker abstraction or use worker-based SPEs as a building

block (e.g., [4], [89]–[91]). Worker abstraction limitations

combined with new challenges that arise from distribution

require additional efforts on reliability [92]–[96], communi-

cation latency and overhead [97], [98], and managing lim-

ited, heterogeneous resource pools [99], [100], balancing task

placement and parallelism [101]–[103].
4) Summary: Current solutions to performance issues in

stream processing and FaaS are heuristics. When facing uncov-

ered situations, they may misbehave causing performance in-

stability. In contrast, Storm-RTS provides robust performance

stability, deployment optimization for latency (i.e., prioritize

data centers with fast connections), reliability (i.e., automatic

migration at power shortage), and more.

VIII. SUMMARY AND FUTURE WORK

RBAM abstraction realizes stream processing workflows as

chains of rate-guarantee FaaS invocations to provide trans-

parent and predictable performance. Storm-RTS exploits this

capability to enable workflow deployment over heterogeneous

and distributed resources, unlocking myriad application flexi-

bilities and opportunities for optimized management, and sim-

plifying distributed stream processing. Experimental results

show the comparable performance of Storm-RTS versus state-

of-the-art worker-based SPEs while offering excellent perfor-

mance stability, great flexibility and robustness for multi-site

deployment, and automatic reconfiguration capability.

With new capabilities, Storm-RTS open many research

questions. For example, what new classes of distributed re-

source optimization for cost or reliability does this create?

Can it be used to increase capability or efficiency? Also, pre-

allocate resources to implement RBAMs can be insufficient

in many cases, (e.g., bursty load) yet the solution is still

remaining as questions waiting for the answer.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful

reviews, including those who reviewed the earlier versions

of this paper. This work is supported in part by NSF

Grants CMMI-1832230, OAC-2019506, CNS-1901466, and

the VMware University Research Fund. We also thank the

Large-scale Sustainable Systems Group members for their

support of this work!

54

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Apache Storm,” https://storm.apache.org, May 2017.

[2] “Apache Flink,” https://flink.apache.org, 2014.

[3] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: stateful scalable stream
processing at linkedin,” Proceedings of the VLDB Endowment, vol. 10,
no. 12, pp. 1634–1645, 2017.

[4] R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, and G. Antoniu,
“Jetstream: Enabling high throughput live event streaming on multi-site
clouds,” Future Generation Computer Systems, vol. 54, pp. 274–291,
2016.

[5] M. Dias de Assunção, A. da Silva Veith, and R. Buyya,
“Distributed data stream processing and edge computing: A survey
on resource elasticity and future directions,” Journal of Network and

Computer Applications, vol. 103, pp. 1–17, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804517303971

[6] W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter, “Real-time stream
processing for big data,” it-Information Technology, vol. 58, no. 4, pp.
186–194, 2016.

[7] A. AlHammadi, A. AlZaabi, B. AlMarzooqi, S. AlNeyadi, Z. Al-
Hashmi, and M. Shatnawi, “Survey of iot-based smart home ap-
proaches,” in 2019 Advances in Science and Engineering Technology

International Conferences (ASET), 2019, pp. 1–6.

[8] PTC, “Howden Creates Mixed Reality Solutions to Enhance
Customer Experience,” https://www.ptc.com/en/case-studies/howden-
mixed-reality, Feb 2019.

[9] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter
heron: Stream processing at scale,” in Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 239–250. [Online]. Available:
https://doi.org/10.1145/2723372.2742788

[10] “Kafka Streams,” https://apex.apache.org/docs.html, 2022.

[11] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,” in
Proceedings of the twenty-fourth ACM symposium on operating systems

principles, 2013, pp. 423–438.

[12] “Apache Apex,” https://kafka.apache.org/documentation/streams/,
2017.

[13] “Apache Gearpump,” http://gearpump.github.io/overview.html, 2022.

[14] “Apache Nifi,” https://nifi.apache.org/, 2018.

[15] “Mantis,” https://netflix.github.io/mantis/, Jun 2022.

[16] H. Röger and R. Mayer, “A comprehensive survey on parallelization
and elasticity in stream processing,” ACM Comput. Surv., vol. 52,
no. 2, Apr. 2019. [Online]. Available: https://doi.org/10.1145/3303849

[17] “Serverless Streaming Architectures and Best Practices,”
https://d1.awsstatic.com/whitepapers/Serverless\ Streaming\
Architecture\ Best\ Practices.pdf, Jun. 2018.

[18] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska,
M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, “A serverless
real-time data analytics platform for edge computing,” IEEE Internet

Computing, vol. 21, no. 4, pp. 64–71, 2017.

[19] P. A. Bernstein, T. Porter, R. Potharaju, A. Z. Tomsic, S. Venkataraman,
and W. Wu, “Serverless event-stream processing over virtual actors.”
in CIDR, 2019.

[20] “Amazon Kinesis Data Streams,” https://aws.amazon.com/kinesis/data-
streams/, 2019.

[21] S. Poojara, C. K. Dehury, P. Jakovits, and S. N. Srirama, Serverless

Data Pipelines for IoT Data Analytics: A Cloud Vendors Perspective

and Solutions. Cham: Springer International Publishing, 2023, pp.
107–132.

[22] Z. Chen, J. Xu, J. Tang, K. A. Kwiat, C. A. Kamhoua, and C. Wang,
“Gpu-accelerated high-throughput online stream data processing,”
IEEE Transactions on Big Data, vol. 4, no. 2, pp. 191–202, 2016.

[23] R. Tönjes, P. Barnaghi, M. Ali, A. Mileo, M. Hauswirth, F. Ganz,
S. Ganea, B. Kjærgaard, D. Kuemper, S. Nechifor, A. Sheth, V. Tsiatsis,
and L. Vestergaard, “Real time iot stream processing and large-scale
data analytics for smart city applications,” in poster session, European

Conference on Networks and Communications. sn, 2014, p. 10.

[24] Y. Mei, L. Cheng, V. Talwar, M. Y. Levin, G. Jacques-Silva, N. Simha,
A. Banerjee, B. Smith, T. Williamson, S. Yilmaz, W. Chen, and
C. Jerry, “Turbine: Facebook’s service management platform for stream

processing,” in 2020 IEEE 36th International Conference on Data

Engineering (ICDE). IEEE, 2020, pp. 1591–1602.

[25] “AWS Lambda,” https://aws.amazon.com/lambda/, 2017.

[26] “Microsoft Azure Function,” https://azure.microsoft.com/en-
us/services/functions/, 2017.

[27] “Google Cloud Function,” https://cloud.google.com/functions, 2017.

[28] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam,
W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein,
“Encoding, fast and slow: Low-latency video processing using
thousands of tiny threads,” in 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, Mar. 2017, pp. 363–
376. [Online]. Available: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/fouladi

[29] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: machine learning
inference serving on serverless platforms with adaptive batching,” in
SC20: International Conference for High Performance Computing,

Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.

[30] X. Fu, T. Ghaffar, J. C. Davis, and D. Lee, “Edgewise: A
better stream processing engine for the edge,” in 2019 USENIX

Annual Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, Jul. 2019, pp. 929–946. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/fu

[31] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: Self-regulating stream processing in heron,” Proc. VLDB

Endow., vol. 10, no. 12, p. 1825–1836, aug 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137786

[32] H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien, “Real-
time serverless: Enabling application performance guarantees,” in
Proceedings of the 5th International Workshop on Serverless

Computing, ser. WOSC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1–6. [Online]. Available:
https://doi.org/10.1145/3366623.3368133

[33] “netty,” https://netty.io/, 2022.

[34] “Right Place, Right Time (RiPiT) Carbon Emissions Service,” https:
//http://ripit.uchicago.edu//, May 2022.

[35] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An real-time
iot benchmark for distributed stream processing systems,” Concurrency

and Computation: Practice and Experience, vol. 29, no. 21, p. e4257,
2017.

[36] D. Canvas, “Sense your city: Data art challenge.” http://datacanvas.org/
sense-your-city/, Jun 2022.

[37] “Oppenfaas,” https://www.openfaas.com/, 2017.

[38] Amazon, “Amazon Cloud Infrastructure,” https://aws.amazon.com/
about-aws/global-infrastructure/, Feb 2021.

[39] X. Liu and R. Buyya, “D-storm: Dynamic resource-efficient scheduling
of stream processing applications,” in 2017 IEEE 23rd International

Conference on Parallel and Distributed Systems (ICPADS). IEEE,
2017, pp. 485–492.

[40] T. Buddhika, R. Stern, K. Lindburg, K. Ericson, and S. Pallickara,
“Online scheduling and interference alleviation for low-latency, high-
throughput processing of data streams,” IEEE Transactions on Parallel

and Distributed Systems, vol. 28, no. 12, pp. 3553–3569, 2017.

[41] D. Cheng, Y. Chen, X. Zhou, D. Gmach, and D. Milojicic, “Adaptive
scheduling of parallel jobs in spark streaming,” in IEEE INFOCOM

2017-IEEE Conference on Computer Communications. IEEE, 2017,
pp. 1–9.

[42] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “On qos-aware
scheduling of data stream applications over fog computing infrastruc-
tures,” in 2015 IEEE Symposium on Computers and Communication

(ISCC). IEEE, 2015, pp. 271–276.

[43] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X.
Lin, “Streambox: Modern stream processing on a multicore machine,”
in 2017 USENIX Annual Technical Conference (USENIX ATC 17),
2017, pp. 617–629.

[44] L. Xu, S. Venkataraman, I. Gupta, L. Mai, and R. Potharaju, “Move
fast and meet deadlines: Fine-grained real-time stream processing with
cameo,” in 18th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 21), 2021, pp. 389–405.

[45] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and adaptable
stream processing at scale,” in Proceedings of the 26th Symposium on

Operating Systems Principles, 2017, pp. 374–389.

55

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

[46] A. Muhammad, M. Aleem, and M. A. Islam, “Top-storm: A topology-
based resource-aware scheduler for stream processing engine,” Cluster

Computing, vol. 24, no. 1, pp. 417–431, 2021.

[47] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online
scheduling in storm,” in 2014 IEEE 34th International Conference on

Distributed Computing Systems. IEEE, 2014, pp. 535–544.

[48] L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “T3-scheduler: A
topology and traffic aware two-level scheduler for stream processing
systems in a heterogeneous cluster,” Future Generation Computer

Systems, vol. 89, pp. 617–632, 2018.

[49] X. Wei, X. Wei, and H. Li, “Topology-aware task allocation for online
distributed stream processing applications with latency constraints,”
Physica A: Statistical Mechanics and its Applications, vol. 534, p.
122024, 2019.

[50] H. Moussa, I.-L. Yen, and F. Bastani, “Service management in the
edge cloud for stream processing of iot data,” in 2020 IEEE 13th

International Conference on Cloud Computing (CLOUD). IEEE, 2020,
pp. 91–98.

[51] P. Liu, D. Da Silva, and L. Hu, “Dart: A scalable and adaptive
edge stream processing engine,” in 2021 USENIX Annual Technical

Conference (USENIX ATC 21), 2021, pp. 239–252.

[52] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Serafini,
“When two choices are not enough: Balancing at scale in distributed
stream processing,” in 2016 IEEE 32nd International Conference on

Data Engineering (ICDE). IEEE, 2016, pp. 589–600.

[53] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis, “A holistic
view of stream partitioning costs,” Proceedings of the VLDB Endow-

ment, vol. 10, no. 11, pp. 1286–1297, 2017.

[54] X. Wang, Z. Zhou, P. Han, T. Meng, G. Sun, and J. Zhai, “Edge-
stream: a stream processing approach for distributed applications on a
hierarchical edge-computing system,” in 2020 IEEE/ACM Symposium

on Edge Computing (SEC). IEEE, 2020, pp. 14–27.

[55] J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and J. Zhu, “Parallel
stream processing against workload skewness and variance,” in Pro-

ceedings of the 26th International Symposium on High-Performance

Parallel and Distributed Computing, 2017, pp. 15–26.

[56] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,” in
Proceedings of the 10th ACM International Conference on Distributed

and Event-based Systems, 2016, pp. 69–80.

[57] J. Jiang, Z. Zhang, B. Cui, Y. Tong, and N. Xu, “Stromax: Partitioning-
based scheduler for real-time stream processing system,” in Interna-

tional Conference on Database Systems for Advanced Applications.
Springer, 2017, pp. 269–288.

[58] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Network and Computer Applications,
vol. 103, pp. 1–17, 2018.

[59] M. Nardelli, V. Cardellini, V. Grassi, and F. L. Presti, “Efficient operator
placement for distributed data stream processing applications,” IEEE

Transactions on Parallel and Distributed Systems, vol. 30, no. 8, pp.
1753–1767, 2019.

[60] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator replication and placement for distributed stream processing
systems,” ACM SIGMETRICS Performance Evaluation Review, vol. 44,
no. 4, pp. 11–22, 2017.

[61] A. da Silva Veith, M. D. de Assuncao, and L. Lefevre, “Latency-
aware placement of data stream analytics on edge computing,” in
International conference on service-oriented computing. Springer,
2018, pp. 215–229.

[62] G. Amarasinghe, M. D. De Assuncao, A. Harwood, and S. Karunasek-
era, “A data stream processing optimisation framework for edge com-
puting applications,” in 2018 IEEE 21st International Symposium on

Real-Time Distributed Computing (ISORC). IEEE, 2018, pp. 91–98.

[63] J. Li, C. Pu, Y. Chen, D. Gmach, and D. Milojicic, “Enabling elastic
stream processing in shared clusters,” in 2016 IEEE 9th International

Conference on Cloud Computing (CLOUD). IEEE, 2016, pp. 108–
115.

[64] M. R. H. Farahabady, A. Y. Zomaya, and Z. Tari, “Qos-and contention-
aware resource provisioning in a stream processing engine,” in 2017

IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2017, pp. 137–146.

[65] M. R. HoseinyFarahabady, A. Jannesari, J. Taheri, W. Bao, A. Y.
Zomaya, and Z. Tari, “Q-flink: A qos-aware controller for apache flink,”

in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud

and Internet Computing (CCGRID). IEEE, 2020, pp. 629–638.

[66] M. R. HoseinyFarahabady, J. Taheri, A. Y. Zomaya, and Z. Tari,
“Qspark: Distributed execution of batch & streaming analytics in spark
platform,” in 2021 IEEE 20th International Symposium on Network

Computing and Applications (NCA). IEEE, 2021, pp. 1–8.

[67] Y. Morisawa, M. Suzuki, and T. Kitahara, “Resource efficient stream
processing platform with {Latency-Aware} scheduling algorithms,” in
12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud

20), 2020.

[68] Y. Cheng and Z. Zhou, “Autonomous resource scheduling for real-
time and stream processing,” in 2018 IEEE SmartWorld, Ubiq-

uitous Intelligence & Computing, Advanced & Trusted Comput-

ing, Scalable Computing & Communications, Cloud & Big Data

Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018, pp.
1181–1184.

[69] “Openwhisk,” https://openwhisk.apache.org/, 2016.

[70] “Knative,” https://knative.dev/, 2021.

[71] S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev,
“Sizeless: Predicting the optimal size of serverless functions,” in
Proceedings of the 22nd International Middleware Conference, 2021,
pp. 248–259.

[72] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget,
J. Kouam, R. Lachaize, J. Hwang, T. Wood, D. Hagimont et al., “Ofc:
an opportunistic caching system for faas platforms,” in Proceedings of

the Sixteenth European Conference on Computer Systems, 2021, pp.
228–244.

[73] A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upad-
hyay, and A. Gandhi, “Ensure: Efficient scheduling and autonomous
resource management in serverless environments,” in 2020 IEEE In-

ternational Conference on Autonomic Computing and Self-Organizing

Systems (ACSOS). IEEE, 2020, pp. 1–10.

[74] A. Mampage, S. Karunasekera, and R. Buyya, “Deadline-aware dy-
namic resource management in serverless computing environments,”
in 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud

and Internet Computing (CCGrid). IEEE, 2021, pp. 483–492.

[75] V. M. Bhasi, J. R. Gunasekaran, A. Sharma, M. T. Kandemir, and
C. Das, “Cypress: Input size-sensitive container provisioning and
request scheduling for serverless platforms,” in Proceedings of the

13th Symposium on Cloud Computing, ser. SoCC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 257–272.
[Online]. Available: https://doi.org/10.1145/3542929.3563464

[76] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini,
“Serverless in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider,” in 2020 USENIX Annual

Technical Conference (USENIX ATC 20). USENIX Association,
Jul. 2020, pp. 205–218. [Online]. Available: https://www.usenix.org/
conference/atc20/presentation/shahrad

[77] A. Fuerst and P. Sharma, “Faascache: keeping serverless computing
alive with greedy-dual caching,” in Proceedings of the 26th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2021, pp. 386–400.

[78] A. U. Gias and G. Casale, “Cocoa: Cold start aware capacity plan-
ning for function-as-a-service platforms,” in 2020 28th International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS). IEEE, 2020, pp. 1–8.

[79] C. Denninnart and M. A. Salehi, “Harnessing the potential of function-
reuse in multimedia cloud systems,” IEEE Transactions on Parallel and

Distributed Systems, vol. 33, no. 3, pp. 617–629, 2021.

[80] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Hermod: Principled
and practical scheduling for serverless functions,” in Proceedings of

the 13th Symposium on Cloud Computing, ser. SoCC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 289–305.
[Online]. Available: https://doi.org/10.1145/3542929.3563468

[81] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and
S. Bagchi, “ORION and the three rights: Sizing, bundling, and
prewarming for serverless DAGs,” in 16th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 22). Carlsbad,
CA: USENIX Association, Jul. 2022, pp. 303–320. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/mahgoub

[82] Z. Li, L. Guo, Q. Chen, J. Cheng, C. Xu, D. Zeng, Z. Song, T. Ma,
Y. Yang, C. Li, and M. Guo, “Help rather than recycle: Alleviating

56

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

cold startup in serverless computing through Inter-Function container
sharing,” in 2022 USENIX Annual Technical Conference (USENIX

ATC 22). Carlsbad, CA: USENIX Association, Jul. 2022, pp.
69–84. [Online]. Available: https://www.usenix.org/conference/atc22/
presentation/li-zijun-help

[83] Y. Fu, L. Liu, H. Wang, Y. Cheng, and S. Chen, “Sfs: Smart os
scheduling for serverless functions,” in 2022 SC22: International

Conference for High Performance Computing, Networking, Storage

and Analysis (SC) (SC). Los Alamitos, CA, USA: IEEE Computer
Society, nov 2022, pp. 584–599. [Online]. Available: https://doi.
ieeecomputersociety.org/

[84] Y. Zhang, Í. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. De-
limitrou, and R. Bianchini, “Faster and cheaper serverless computing
on harvested resources,” in Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles, 2021, pp. 724–739.

[85] V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: Lambdas
on a diet,” in Proceedings of the 11th ACM Symposium on Cloud

Computing, 2020, pp. 45–59.

[86] R. B. Roy, T. Patel, and D. Tiwari, “Icebreaker: Warming serverless
functions better with heterogeneity,” in Proceedings of the 27th ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 753–767.
[Online]. Available: https://doi.org/10.1145/3503222.3507750

[87] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo,
“Faasflow: Enable efficient workflow execution for function-as-a-
service,” in Proceedings of the 27th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 782–796. [Online]. Available:
https://doi.org/10.1145/3503222.3507717

[88] D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Serverless
computing on heterogeneous computers,” in Proceedings of the

27th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 797–813. [Online]. Available: https://doi.org/10.1145/3503222.
3507732

[89] M. Branson, F. Douglis, B. Fawcett, Z. Liu, A. Riabov, and F. Ye,
“Clasp: Collaborating, autonomous stream processing systems,” in
ACM/IFIP/USENIX International Conference on Distributed Systems

Platforms and Open Distributed Processing. Springer, 2007, pp. 348–
367.

[90] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Distributed
qos-aware scheduling in storm,” in Proceedings of the 9th ACM

International Conference on Distributed Event-Based Systems, 2015,
pp. 344–347.

[91] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Mill-
wheel: Fault-tolerant stream processing at internet scale,” Proceedings

of the VLDB Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[92] Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu, “A
hybrid approach to high availability in stream processing systems,” in
2010 IEEE 30th International Conference on Distributed Computing

Systems. IEEE, 2010, pp. 138–148.

[93] M. Gorawski and P. Marks, “Towards reliability and fault-tolerance of
distributed stream processing system,” in 2nd International Conference

on Dependability of Computer Systems (DepCoS-RELCOMEX’07).
IEEE, 2007, pp. 246–253.

[94] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and reliable stream
processing over wide area networks,” in 2007 IEEE 23rd International

Conference on Data Engineering Workshop. IEEE, 2007, pp. 604–613.

[95] X. Wei, Y. Zhuang, H. Li, and Z. Liu, “Reliable stream data processing
for elastic distributed stream processing systems,” Cluster Computing,
vol. 23, no. 2, pp. 555–574, 2020.

[96] Y. Zhuang, X. Wei, H. Li, M. Hou, and Y. Wang, “Reducing fault-
tolerant overhead for distributed stream processing with approximate
backup,” in 2020 29th International Conference on Computer Commu-

nications and Networks (ICCCN). IEEE, 2020, pp. 1–9.

[97] A. Jonathan, A. Chandra, and J. Weissman, “Wasp: wide-area adaptive
stream processing,” in Proceedings of the 21st International Middle-

ware Conference, 2020, pp. 221–235.

[98] F. Yin, X. Li, X. Li, and Y. Li, “Task scheduling for streaming applica-
tions in a cloud-edge system,” in Security, Privacy, and Anonymity in

Computation, Communication, and Storage, G. Wang, J. Feng, M. Z. A.
Bhuiyan, and R. Lu, Eds. Cham: Springer International Publishing,
2019, pp. 105–114.

[99] F. R. de Souza, M. D. de Assunçao, E. Caron, and A. da Silva Veith,
“An optimal model for optimizing the placement and parallelism of
data stream processing applications on cloud-edge computing,” in 2020

IEEE 32nd International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD). IEEE, 2020, pp. 59–66.
[100] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch, “Themis:

Fairness in federated stream processing under overload,” in Proceedings

of the 2016 International Conference on Management of Data, 2016,
pp. 541–553.

[101] F. R. de Souza, A. D. S. Veith, M. D. de Assunçao, and E. Caron, “Scal-
able joint optimization of placement and parallelism of data stream
processing applications on cloud-edge infrastructure,” in International

Conference on Service-Oriented Computing. Springer, 2020, pp. 149–
164.

[102] A. Dasilvaveith, M. D. de Assuncao, and L. Lefevre, “Latency-aware
strategies for deploying data stream processing applications on large
cloud-edge infrastructure,” IEEE Transactions on Cloud Computing,
2021.

[103] S. K. Sharma and X. Wang, “Live data analytics with collaborative
edge and cloud processing in wireless iot networks,” IEEE Access,
vol. 5, pp. 4621–4635, 2017.

57

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on March 13,2024 at 04:10:26 UTC from IEEE Xplore. Restrictions apply.

