
5770 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

Blockchain-Empowered Federated Learning

Through Model and Feature Calibration
Qianlong Wang , Weixian Liao , Yifan Guo , Member, IEEE, Michael McGuire,

and Wei Yu , Senior Member, IEEE

Abstract—With the proliferation of computationally powerful
edge devices, edge computing has been widely adopted for
wide-ranging computational tasks. Among these, edge artifi-
cial intelligence (AI) has become a new trend, allowing local
devices to work cooperatively and build deep learning models.
Federated learning is one of the representative frameworks in
distributed machine learning paradigms. However, there are sev-
eral major concerns with existing federated learning paradigms.
Existing distributed frameworks rely on a central server to
coordinate the computing process, where such a central node
may raise security concerns. Federated learning also relies on
several assumptions/requirements, e.g., the independent and iden-
tically distributed (i.i.d.) data and model homogeneity. Since
more and more edge devices are able to train lightweight mod-
els with local data, such models are normally heterogeneous. To
tackle these challenges, in this article, we develop a blockchain-
empowered federated learning framework that enables learning
in a fully decentralized manner while taking the model het-
erogeneity and data heterogeneity into account. In particular,
a federated learning framework with a heterogeneous calibra-
tion process, i.e., Model and Feature Calibration (FL-MFC), is
developed to enable collaboration among heterogeneous models.
We further design a two-level mining process using blockchain to
enable the secure decentralized learning process. Experimental
results show that our proposed system achieves effective learning
performance under a fully heterogeneous environment.

Index Terms—Blockchain, distributed/decentralized system,
federated learning, heterogeneous features, heterogeneous
models.

I. INTRODUCTION

E
DGE artificial intelligence (AI) has attracted more and

more attention since edge devices are earning more and

more computational resources. Many research efforts have

been focusing on deploying AI over edge devices [1], [2].

Among this research, federated learning is one of the most

popular approaches [3], [4], [5], [6]. Typically, federated learn-

ing needs a central server to have an initialized model. The

central server will distribute this model to local workers

(e.g., smart edge devices). These workers will first train the

model based on their own local data sets and then send the

Manuscript received 10 May 2023; revised 19 July 2023; accepted
19 August 2023. Date of publication 4 September 2023; date of current ver-
sion 6 February 2024. This work was supported by the National Science
Foundation (NSF) under Grant 2245933. (Corresponding author: Qianlong

Wang.)

The authors are with the Department of Computer and Information
Sciences, Towson University, Towson, MD 21252 USA (e-mail: qwang@
towson.edu; wliao@towson.edu; yguo@towson.edu; mmcguire@towson.edu;
wyu@towson.edu).

Digital Object Identifier 10.1109/JIOT.2023.3311967

locally trained models back to the server. The central server

will aggregate collected models to obtain a well-trained global

model.

However, there are several major concerns about the tra-

ditional federated learning methods. First, it requires local

models to be homogeneous so that model aggregation can be

easily performed over the central server. Otherwise, the cen-

tral server cannot aggregate models to obtain a global model if

local models are in different types or structures. However, we

realize that as edge devices earn more computational power,

it is more prevalent that some edge devices may already train

a local model based on their own data sets. Such local models

may be heterogeneous and cannot be utilized in regular fed-

erated learning. Second, to obtain a global model, traditional

federated learning relies on a central party (server) to dis-

tribute, collect, and aggregate models. Such a paradigm would

easily lead the system to the risk of single-point failure, which

causes a critical security concern.

To address the above issues, some existing literature pro-

poses model collaboration methods that can effectively aggre-

gate heterogeneous models (model reuse, model rectification,

etc.) [7], [8], [9], [10], [11], [12], [13]. These methods aim to

aggregate the model outputs instead of model parameters. In

particular, they calibrate the output of the models by slightly

adjusting their parameters such that the aggregated output is

accurate. However, these methods still rely on a central server

to coordinate the process. To fully eliminate the center server,

decentralized learning methods have been studied.

Among these methods, blockchain has been treated as an

important platform to deploy the decentralized AI [14], [15],

[16], [17], [18], [19], [20]. For instance, a blockchain-based

multiparty learning method is proposed in [14], which enables

model collaboration among heterogeneous models in a decen-

tralized manner. However, these works only consider the issue

of model heterogeneity and do not consider that heterogeneous

models from different parties (devices) normally have differ-

ent input shapes (i.e., feature heterogeneity). For instance, to

detect specific diseases, different hospitals may have various

features collected from their patients such that one hospital

may record name, age, height, blood pressure, and heart rate,

while another hospital may record name, age, sex, height,

weight, and blood pressure. To effectively enable collabo-

ration among models trained from individual hospitals, the

algorithm should consider not only the model heterogene-

ity but also the feature heterogeneity. To the best of our

knowledge, the investigation of model collaboration under

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION 5771

Fig. 1. Federated learning under heterogeneous environments, i.e., feature
and model heterogeneity.

a fully heterogeneous environment (i.e., model and feature

heterogeneity) in a decentralized manner remains an open and

challenging problem.

In this article, we propose a blockchain-empowered feder-

ated learning framework, enabling model collaborations under

a fully heterogeneous environment, i.e., model and feature

heterogeneity. As shown in Fig. 1, our system collects dif-

ferent kinds of models (model heterogeneity) with different

input shapes (feature heterogeneity) and aggregates them by

our proposed algorithm so that effective and efficient learning

performance can be achieved. In particular, we first propose a

model calibration method to deal with the model heterogeneity

issues. Specifically, given a data sample, we aim to aggregate

the outputs of local models to obtain an accurate prediction

for the sample. Our model calibration can slightly adjust

the model parameters to make the system aggregated outputs

accurate. By doing this, we enable collaboration among hetero-

geneous models. Furthermore, our model calibration method

only requires a limited amount of data samples to generate

effective predictions. Thus, the learning process becomes more

efficient compared with traditional federated learning.

Second, to deal with feature heterogeneity, we propose

a feature calibration method that enables the transfer of

data samples from one model’s feature space to another.

Specifically, we try to learn a correlation coefficient between

heterogeneous feature spaces. Correlation coefficients take

advantage of the shared features between models to bridge the

feature spaces. By using the optimized correlation coefficients,

we are able to transfer a data sample to another feature space

by estimating the value for new features. In this way, a data

sample can be inputted into models with heterogeneous fea-

ture spaces. Hence, it enables model calibration among models

with feature heterogeneity. Finally, we deploy both model and

feature calibration processes on blockchain and design the

protocols of our system.

The main contributions of this article are summarized as

follows.

1) We propose a blockchain-empowered federated learning

method, which enables model collaboration in a fully

decentralized manner.

2) We design model and feature calibration processes to

enable model collaboration under a fully heterogeneous

environment, i.e., model and feature heterogeneity.

3) We deploy model and feature calibration processes

on the blockchain and design the protocols in our

system.

4) We evaluate the system with the real-world data set.

Our results demonstrate that the proposed system is able

to obtain effective performance under both model and

feature heterogeneity scenarios.

The remainder of this article is organized as follows. We

discuss relevant research in Section II. In Section III, we intro-

duce the system model with assumptions. In Section IV, we

present our proposed framework in detail. In Section V, we

provide the performance evaluation of our proposed system.

Finally, we conclude the article in Section VI.

II. RELATED WORK

In this section, we discuss the frameworks and algorithms

that are related to our study. Traditional federated learning nor-

mally relies on a central server and assumes the local models in

the system to be homogeneous [3], [13], [21], [22], [23], [24],

[25], [26], [27], [28], [29], [30], [31]. In the literature, there is

research focusing on removing the reliance on a central server

to enable the learning process, which is known as decentralized

learning, and on the other hand dealing with the heteroge-

nous data and models. In the following, we particularly review

the current blockchain-empowered decentralized learning first

and then discuss the data and model heterogeneity in current

federated learning.

A. Blockchain-Empowered Decentralized Learning

To deal with this issue, blockchain has been studied to

enable learning in a decentralized manner. To confirm the

feasibility, Rückel et al. [32] provided a proof-of-concept

that blockchain technology can be combined with feder-

ated learning systems and achieve fairness, integrity, and

privacy preservation. Lo et al. [33] introduced a blockchain-

based method to enhance the accountability and fairness of

federated learning systems. Additionally, Chen et al. [15]

designed a decentralized stochastic gradient descent (SGD)

algorithm over blockchain, called LearningChain, that enables

a gradient aggregation process without a central server.

Cui et al. [34] considered the issue of heavy communi-

cation overhead in blockchain-based federated learning and

developed a communication-efficient framework by compress-

ing communications. Shayan et al. [17] considered the security

in decentralized learning and proposed Biscotti, which is a

decentralized peer-to-peer (P2P) approach based on blockchain

to enable multiparty machine learning. Likewise, Ma et al. [35]

explored a blockchain-assisted decentralized federated learn-

ing framework, which eliminates lazy clients of the system by

using designed protocols. Even though blockchain has been

studied to enable the federated learning process in a decen-

tralized manner, most of them only consider homogeneous

model aggregation in federated learning. We realized that, in

practice, more and more edge devices or workers in federated

learning systems are able to train lightweight local models

based on their local data sets. These models normally are het-

erogeneous. These trained local models are often ignored in

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5772 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

the traditional federated learning process since they cannot be

utilized.

B. Data Heterogeneity in Federated Learning

There are some existing efforts to enable the fed-

erated/decentralized learning process in a heterogeneous

environment. For example, Wang et al. [36] consid-

ered the convergence of federated optimization under

heterogeneous/non-i.i.d data and proposed a normalized aver-

aging method. Mendieta et al. [37] found that standard

regularization methods are effective in reducing the data

heterogeneity’s influence and developed a method called

FedAlign. Sery et al. [38] developed a convergent over-the-

air federated learning (COTAF) algorithm, which precedes

the local gradient at the users and scales at the server.

Lin et al. [39] investigated decentralized learning limitation

over data heterogeneity and proposed a momentum-based

method to accelerate the training efficiency of decentralized

learning. Vogels et al. [9] designed an information propagation

mechanism, called RelaySum, which is to relay the origi-

nal message instead of gossip averaging in the decentralized

network. Horvath et al. [40] introduced a federated learning

algorithm over heterogeneous clients, called Fjord. The algo-

rithm included an ordered dropout in the model to mitigate

the workload of clients with limited computational resources.

Similarly, Hu et al. [41] designed an algorithm, called ADSP,

that allows edge devices with more computational resources

to train more epochs.

On the other hand, knowledge distillation is another promis-

ing solution for heterogeneous federated learning. For exam-

ple, Zhu et al. [42] introduced a data-free knowledge distil-

lation where the server learns generalized users’ information

in a data-free manner and regulates the local training pro-

cess. Some other works considered secure and robust federated

learning under heterogeneous data. Li et al. [43] proposed

robust stochastic subgradient methods, called RSA, to enable

distributed learning over heterogeneous and non-i.i.d data

sets, which are shown to be resilient to Byzantine attacks.

He et al. [44] proposed a gradient resampling scheme that can

ensure federated learning performance under non-i.i.d data and

meanwhile is resilient to Byzantine attacks. However, most of

the above works focus on heterogeneous data rather than a

heterogeneous model in decentralized learning. Furthermore,

in many of the studies, the algorithms still rely on a central

server which leads to the system not being a fully decentralized

framework.

C. Model Heterogeneity in Federated Learning

Regarding model collaboration among heterogeneous mod-

els, Wu et al. [7] proposed Heterogeneous Model Reuse, HMR,

to slightly adjust the pretrained heterogeneous local models in

the system such that the aggregated results from models are

accurate. Ye et al. [8] proposed a rectify via heterogeneous

predictor mapping (REFORM) framework enabling the cur-

rent model to learn from a related model with different sets of

features or labels. Diao et al. [45] proposed a federated learn-

ing framework, named HeteroFL, that allows local models

TABLE I
NOTATIONS IN THE SYSTEM

with different sizes in the system. Wang et al. [14] designed a

decentralized multiparty learning framework under a heteroge-

neous model, called BEMA, that enables models to collaborate

with each other by slightly adjusting their model parameters

over the blockchain platform. Yu et al. [46] considered feder-

ated learning among neural networks with different structures

and introduced a feature-oriented regulation method to identify

and train matchable structures from them. Huang et al. [47]

proposed Federated Cross-Correlation and Continual Learning,

which used an unlabeled public data set to build up a gen-

eralized representation for heterogeneous models. Likewise,

Li et al. [48] proposed efficient federated learning over het-

erogeneous mobile devices to enable flexible communication

compression by balancing the energy consumption of local

computing and wireless communication. However, in general,

we realize there are still some drawbacks in the existing works.

The heterogeneous models in some works mentioned above

refer to the models with different sizes, e.g., neural networks

with different number of layers, which is not a fully heteroge-

neous setup. Furthermore, most of the existing research did not

discuss model collaboration in a fully heterogeneous environ-

ment, i.e., both model and data (feature) heterogeneity. To the

best of our knowledge, studying learning frameworks in a fully

decentralized and fully heterogeneous environment remains an

open and challenging problem.

III. SYSTEM MODEL

In this section, we formally define the model and fea-

ture heterogeneity and introduce the system model. All key

notations used in the article are listed in Table I.

Definition 1 (Model Heterogeneity): We consider a set of

learning models that contain different model structures as the

heterogeneous model set. For example, a model set could

contain convolutional neural network (CNN), recurrent neural

networks (RNN), and a Logistic Regression classifier. In addi-

tion, a model set containing neural networks with a different

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION 5773

number of layers or nodes is considered a heterogeneous

model set.

Definition 2 (Feature Heterogeneity): We consider a set of

data items that contain different sizes or dimensions as a het-

erogeneous feature set. For example, a feature set contains

time-series data and images. A feature set containing images

with different sizes is considered as a heterogeneous feature

set.

In the system, we consider there are a total of N par-

ties (users). Each party i ∈ [1, N] has its own local data

set Di and local model (classifier) Fi. Di = {Xi,Yi} =

{(x1
i , y1

i), . . . , (x
ni

i , y
ni

i)}. xi and yi are the data sample and

label, respectively. ni denotes the number of data samples held

by party i. It should be noted that the data sample from two

parties might not have the exact same dimensions indicating

feature heterogeneity in the system. In other words, the dimen-

sion of xi may not be equal to xj, where i, j ∈ [1, N]. Here,

the elements of feature xi and xj may have different semantic

meanings. For instance, in the hospital example, xi includes

feature of {age, sex, height, blood pressure}, while xj includes

feature of {age, sex, height, weight, heart rate}. We denote

D = {X ,Y} as the global data set, where Y = {1, . . . , C}

is the set of total C classes. A certain party i trains a local

model Fi based on its local data set Di, where Di ⊂ D.

It should be noted that the classifiers from two parties might

not be the same model, which reflects the model heterogene-

ity of the system. For instance, the classification model can

be a support vector machine (SVM), artificial neural network

(ANN), CNN, or any other learning model. Since the classifier

Fi is trained on only a partial set of D, it makes it possible

that the model may misclassify an unseen data sample x into a

wrong class y′ ∈ Yi, while its real class is y /∈ Yi. The goal of

the system is to effectively adjust the weights of the local mod-

els and to enable each party to train a more robust local model

that can not only classify data from its learned space but also

make predictions if the data is from an unknown space. More

importantly, using the proposed method, the system will be

able to utilize models {F1, . . . , FN} to make a final prediction

for a specific data sample.

To generate the final system prediction for a certain data

sample, we first show the output of the local model. Given a

data sample x, the output of a local model fi is

Fi(x) = arg max
y∈Yi

fi(θi, x, y). (1)

Here, fi(θi, x, y) is the scoring function of the classifier, which

is to generate a confidence score that sample x belongs to

class y. θi is the parameter (weights) of the model, which is

pretrained based on its local data set. It should be noticed

that the size of unseen data x might not fit the input size

of the model Fi because of the system feature heterogeneity

assumption. The proposed scoring function fi will still be able

to generate an effective score given x of different sizes. The

details will be elaborated in Section IV-C.

With local models, the system will generate a final

prediction for the data sample x, which is listed as follows:

Fsys(x) = arg max
y∈Y

fsys(x, y). (2)

Here, fsys is our proposed algorithm that will aggregate

the scores given by all local models, i.e., {f1(θ1, x, y),

. . . , fN(θN, x, y)}. The details of the score-generating algorithm

will be elaborated in (5) in Section IV-B.

IV. BLOCKCHAIN-EMPOWERED FEDERATED LEARNING

WITH MODEL AND FEATURE CALIBRATION

In this section, we introduce our blockchain-empowered

federated learning system in detail. Particularly, we begin

with introducing the design rationale and then detail the key

processes, followed by the framework implementation.

A. Design Rationale

The general system processes are as follows. We consider

there are a series of pretrained local models in the system.

Each of them is well-trained on its own local data set. Given

a certain data sample x, we aim to utilize all the trained local

models to obtain an accurate class prediction. In particular, x

will be inputted into all the local models. Each model outputs a

confidence score for each class. The system will aggregate all

these output scores based on the proposed method, as shown

in (2). We will elaborate on the aggregation function in (2) in

the following sections.

Considering the model and label heterogeneity in the

system, suppose y is the true class of x, it is possible that cer-

tain local models have never been trained over class y. This

will directly make certain models output invalid confidence

scores and might mislead the system aggregated confidence

score for (x, y). To deal with this issue, we introduce the model

calibration process, which aims to increase the confidence

score of the local models over (x, y) and, in the meantime,

decrease the confidence score of the local model over certain

false classes. Hence, the accuracy of the aggregated confidence

score for the system for (x, y) can be increased. The details

will be elaborated in Section IV-B.

On the other hand, we consider the local models may have

different input shapes (feature heterogeneity). Thus, certain

data examples x cannot be directly inputted into the models. To

deal with this, we introduce a feature calibration process that

adopts a semantic mapping method that can effectively learn

the correlations between model-shared features and model

self-owned features. Based on the learned mapping correla-

tions, one model’s feature space can be projected to another

one’s. Hence, the data can be inputted into the model with

different input dimensions. The details will be elaborated in

Section IV-C. Finally, we introduce the implementation of

the system over the blockchain platform and elaborate on the

whole detailed system process in Section IV-D.

B. Model Calibration

To enable the model collaboration between heterogeneous

models, the traditional ways (e.g., averaging the weights of

models) will certainly not be effective. In the case of model

heterogeneity, we aim to avoid the case that certain local mod-

els misclassify unseen data with an extremely high confidence

score. Such prediction scores will largely affect the system

prediction. For instance, given a data sample (x, y), where y

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5774 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

is the true label of the sample x, we try to avoid the case as

follows:

fi(θi, x, y) < fj
(

θj, x, y−
)

y ∈ Yi, y− ∈ Yj, y /∈ Yj. (3)

Here, i and j are two local models in the system. Here, model

i is pretrained over label y, because y ∈ Yi. Model j is not

pretrained over label y, because y /∈ Yj. To model j, sample

(x, y) is unseen data from an unknown class.

In the above situation, the model j gives a high confidence

score on a wrong class y− that belongs to its own label space

Yj, which is even higher than the confidence score given by

local model that has been trained on this class (y). Since the

system is in a fully decentralized environment, there is no third

authorized party that could claim model j is misclassifying a

data sample. A high score on a wrong class will largely affect

the system prediction over the data sample, despite what kind

of score aggregation method is being used.

It should be noted that we assume all the local models are

well-pretrained, meaning that the models can make the right

predictions over data in their own label space. That is, given

a data example (x, y), where y is the true label of x

fi(θi, x, y) = max
y∈Yi

fi(θi, x, y)

∀i ∈ [1, N], if y ∈ Yi. (4)

This is a fair assumption that all the models learn their own

label space well since each of them has its own local data

set. On the other hand, to generate the system prediction for

a data sample x, (2) is used. In particular, we design the fsys

as follows:

fsys(x, y) =
1

m

∑

k
m

−→j∗

fk(θk, x, y) (5)

j∗ = arg min
j∈S(y)

∑

k
m

−→j

|fk(θk, x, y) − fj
(

θj, x, y
)

| (6)

fsys(x, y) represents system predicted confidence score for data

x belonging to class y. k
m

−→ j means the m closest value to

fj(·, ·, ·), where m is the number of neighbors to include for

calculating the confidence score, which is a predefined param-

eter. S(y) represents the set of parties that hold data in class y.

In general, (5) and (6) depict the system-predicted confidence

score for (x, y) incorporates the output m of the local models

instead of using only one single local model, which makes the

system-predicted confidence score more resilient to bogus and

abnormal values.

In the situation given by (3), it is possible that

fsys(x, y) < fsys

(

x, y−
)

(7)

where y and y− are the true and wrong labels of sample x,

respectively. Hence, the system misclassifies sample x into cer-

tain wrong class y−. To solve this issue, we adopt a metric,

i.e., secure multiparty multiclass (MPMC)-margin, to calibrate

the models in the system [14]. Specifically, given a data sample

(x, y), the secure MPMC-margin is defined as follows:

ω
(

x, y, y−
)

= min
y−∈Y\{y}

fsys(x, y) − fsys

(

x, y−
)

(8)

where ω(x, y, y−) represents the margin of confidence score

obtained by the system between true class y and a false class

y−. When ω(x, y, y−) is positive, it means that the system out-

puts a higher confidence score on true class y. In other words,

the system makes the correct prediction for sample x. On the

other hand, if it is negative, it means the system outputs a

higher confidence score on a false class y−, which indicates the

system makes a wrong prediction over x. The secure MPMC

margin is proven to be effective and resilient to critical attacks

in a decentralized system, e.g., Byzantine attacks [14]. In this

work, we similarly assume the majority of the users in the

system are honest, which is a reasonable assumption.

With the secure MPMC margin, we can measure the dis-

tance between the system’s predicted confidence score for the

true class and certain false classes. Given a data sample (x, y),

where y is the true class of x, when the secure MPMC margin

is a negative value, i.e.,

ω
(

x, y, y−
)

≤ 0 (9)

we will calibrate all S(y) and S(y−) models. In general,

the goal of model calibration, as mentioned previously, is to

slightly adjust the model parameters (weights) to increase the

system confidence score for x if it belongs to its true class y,

i.e., fsys(x, y), and to decrease the system confidence score for

x if it belongs to a false class y−, i.e., fsys(x, y−). Specific

parameter adjustment methods can be designed for particu-

lar models. For instance, given a neural network, the gradient

descent method is applied to update model parameters. In this

case, we can add a positive gradient to the model parame-

ters to increase the model’s confidence score on (x, y) and, on

the other hand, add a negative gradient to the model param-

eters to decrease the model’s confidence score on (x, y−).

In our system, we assume that all the local models support

an online updating process. That means each model can be

slightly updated to increase or decrease the confidence score

on a certain data sample.

C. Feature Calibration

So far, by using model calibration, we can adjust the model

output in order to increase the accuracy of system-generated

predictions. Our model calibration also works under conditions

where model heterogeneity exists. In the following, we con-

sider the input side of the system. The decentralized system

may contain models with different input sizes, i.e., feature het-

erogeneity, which is common in reality [8]. For such models,

the model calibration cannot be applied as the data sample

cannot be used as input for both models. For instance, as

previously mentioned, two hospitals may collect different fea-

tures from their patients and train models to detect certain

diseases, though most of these features are common. Even

if only a small portion of features are self-owned by a cer-

tain model (model-specific), the model calibration cannot be

applied. Hence, these models cannot collaborate to increase the

system performance, which is obviously a waste of resources.

To effectively utilize the model with feature heterogeneity,

we propose a feature calibration method, which aims to cal-

ibrate the space of the input features. We first assume that

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION 5775

Fig. 2. Features collected from two certain parties i and j.

there are shared features existing between models. Hence,

considering two models, each of their features can be decom-

posed into model-shared and model self-owned features. We

believe such an assumption is fair and common in practice.

For instance, as we mentioned, two hospitals may try to train

models to predict the presence of a certain disease using

slightly differing sets of features. Although most of the fea-

tures used in prediction might be the same, some of them

might be only collected from one hospital but not others.

Enlightened by semantic mapping introduced in work [8], we

aim to learn the correlations between the heterogeneous fea-

ture space. The general idea of the feature calibration is to

learn the correlations between model-shared and model self-

owned features. With the learned correlations, we can estimate

the model’s self-owned features based on the model-shared

features. Hence, we are able to rebuild a feature space that

contains model-shared features and model self-owned features

from both models.

Considering two local models, e.g., model i and j, with

the feature Xi and Xj. Suppose Xi and Xj have the dimen-

sion (the number of features) of di and dj, respectively. We

denote the dimension of the shared feature between Xi and Xj

as ds. We also denote dimension of model self-owned features

of Xi and Xj as di′ and dj′ , respectively. As shown in Fig. 2, Xi

and Xj can be denoted as [X
di′

i ∈ R
Ni×di′ , X

ds

i ∈ R
Ni×ds] and

[X
ds

j ∈ R
Nj×ds, X

dj′

j ∈ R
Nj×dj′]. Here, Ni and Nj are the number

of the data samples of party i and j, respectively. X
ds

i and X
ds

j

are the model-shared features with the same semantic meaning.

Next, we aim to learn correlations between shared features,

i.e., X
ds

i and X
ds

j , and model self-owned features, i.e., X
di′

i and

X
dj′

j . With such learned correlations, model-shared features can

be used to estimate feature value for model self-owned features

and hence transfer to another feature space.

To learn the correlations between shared and self-owned

features, we define a correlation coefficient, i.e., �, for each

model. Given two models, i and j as mentioned above, we

learn correlation coefficients �i and �j, respectively

arg min
�i

||X
di′

i − X
ds

i �i||
2
F + λ

di′
∑

m=1

||�i,m||0 (10)

arg min
�j

||X
dj′

j − X
ds

j �j||
2
F + λ

dj′
∑

m=1

||�j,m||0. (11)

Fig. 3. Architecture of blockchain-empowered federated learning with the
model and feature calibration.

Here, �i ∈ R
ds×di′ and �j ∈ R

ds×dj′ are learned coefficients

that map the shared features to the self-owned features. The

second term of (10) and (11) are regularization terms, which

are controlled by a predefined value λ. We aim to have the

coefficients as sparse as possible so that the learned corre-

lations focus more on the generalized patterns [49], [50]. We

use orthogonal matching pursuit (OMP) to solve (10) and (11)

efficiently.

With the learned correlations, the feature of model i, Xi, is

transferred to the model j’s space, which is denoted as Xj←i

Xj←i =
[

X
ds

i ∈ R
Ni×ds, X

ds

i �j ∈ R
Ni×dj′

]

. (12)

Similarly, the feature of model j, Xj, is transferred to the model

i’s space, which is denoted as Xi←j

Xi←j =
[

X
ds

j �i ∈ R
Nj×di′ , X

ds

j ∈ R
Nj×ds

]

. (13)

Hence, the data sample from one model can be transferred to

another model’s space as long as they have shared features.

In this way, the model calibration can be applied to models

under feature heterogeneity.

D. Framework Implementation

We now elaborate on how our system is implemented on

the blockchain, which enables a multiparty learning process

in a fully decentralized manner. The main framework imple-

mentation process is demonstrated in Fig. 3. As shown in the

figure, each user (party) in the system could be a smart edge

device, personal computer, or an institution holding certain

workstations, where each of them holds a local model. In par-

ticular, our system consists of users of two roles, i.e., regular

users and miners. The regular users are considered as par-

ties who hold pretrained local models and local data sets.

The regular users who join the system aim to increase the

performance of their local models and further use local models

in the system to make a more accurate prediction for unseen

data. Specifically, the regular user in the system will broad-

cast his local model, which will be registered/recorded on the

blockchain by a miner. Meanwhile, every regular user will

find out valid calibration data samples from his local data set

and broadcast them. On the other hand, the miner will use

such samples to perform the mining process, i.e., model and

feature calibration, to update the models on the blockchain.

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5776 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

The updated model parameters will be written in a new block

created by the miner. By doing this, the aggregation of local

models’ predictions can be effective. Next, we elaborate on

the protocols in our system for two roles.

Regular users are assumed to hold local models and local

data sets and aim to utilize the system for effective predictions.

Regular users are allowed to perform the following operations.

1) Broadcast Local Models: The regular users are encour-

aged to broadcast their local models in the system.

Hence, the miner can use them for the model calibration

process.

2) Broadcast Portion of Local Data Set: The regular users

are encouraged to broadcast a portion of their local data

set in the system. Based on the broadcasted data set, the

miner can implement the feature calibration process and

select certain valid data samples for the model calibra-

tion process. Such a process may cause concern about

data privacy leakage. However, it should be noted that

only a limited amount of data samples are needed in the

system for the feature and model calibration process,

which is confirmed via simulation results. Therefore,

the compromise of data privacy is considered to be

moderate.

3) Classify Unseen Data: The regular users are entitled to

use the local models in the system for classifying unseen

data samples, which is (2).

Miners are expected to implement the feature and model cal-

ibration processes so that regular users can effectively use the

system to classify unseen data. Any regular user is encouraged

to implement the miner’s role. Certain rewards/incentives will

be given to the miner. In particular, the activities the miners

are expected to do are as follows.

1) Feature Calibration: Given the broadcasted local models

and the corresponding data sets, for any two models

in the system that contain shared features, the miner

calculates (10) and (11) to obtain optimized correlation

coefficients. Once a new coefficient is obtained, it will

be recorded in a new block of the blockchain and the

corresponding miner will be rewarded. Since the feature

calibration method is public, every obtained correlation

coefficient can be verified by any user in the system.

Hence, it ensures the authenticity of feature calibration.

2) Model Calibration: Given the correlation coefficients

obtained from the feature calibration process, a data

sample (x, y) can be inputted into any local model so

long as the model input space has shared features with x.

In model calibration, the miner needs first to find a

valid data sample for model calibration and then use

that data sample to implement the process. The details

are as follows.

a) Find Valid Data Sample: The miner picks certain

data sample (x, y) from the broadcasted data sets

and tries to find out a class y− such that (9) is

satisfied. If found, a data sample (x, y, y−) will be

broadcasted in the system, which can be used for

model calibration. Similar to the feature calibration

process, once such a sample is found by the miner,

it will be recorded in the block, and certain rewards

Algorithm 1 Blockchain-Empowered Federated Learning

With the Model and Feature Calibration
1: Regular User:
2: Each regular user i broadcasts its model information, including a subset

of its local dataset and model parameters.
3: Implement Eq. (2) to classify unseen data.
4: Miner:
5: Feature Calibration:
6: Implement Eqs. (10) and (11) to obtain optimized correlation

coefficients.
7: Model Calibration:
8: Find data sample (x, y, y−) satisfy constraints Eq. (9).
9: Implement positive and negative online updates for S(y) and S(y−)

models to increase and decrease model confidence score on (x, y) and
x, y−, respectively.

will be given to the corresponding miner. Since

(x, y, y−) is from the public data set, the validity

of the sample can also be verified by any user in

the system.

b) Online Update Process: Given an obtained sam-

ple (x, y, y−), the miner performs a positive and

negative online update process for S(y) and S(y−)

models, respectively. The updated model parame-

ters will also be recorded in the new block. Similar

to other processes, the calibrated models can also

be verified by any user in the system, and rewards

will be given to the miner.

Since every aforementioned process can be verified by any

user, they are considered as the proof of work (PoW) for

the miner. We also demonstrate the framework implementa-

tion process in Algorithm 1. In the algorithm, we summarize

the main processes for both regular users and miners. In par-

ticular, the regular user is encouraged to broadcast its local

model and a subset of its local data set. In the meantime,

the regular user can utilize the models on the blockchain to

classify the unseen data. The miner then performs the fea-

ture and model calibration processes for model updating. So

far, we have introduced the implementation of the blockchain.

In conclusion, our system now enables collaborations among

heterogeneous models with heterogeneous input space.

V. PERFORMANCE EVALUATION

In this section, we investigate the learning performance

of the proposed federated learning with model and feature

calibration. In particular, we separately conduct simulations

considering the system contains heterogeneous models and

heterogeneous features. In the case of heterogeneous mod-

els, we include different deep learning models in the system

and test the proposed model calibration method on MNIST

data set [51]. In the case of heterogeneous features, we use

synthetic data and apply both feature and model calibration

methods to verify the system’s effectiveness. In both settings,

comparisons with results from existing methods have been

provided.

A. Classification with Heterogeneous Models

1) Data Preprocessing: To simulate the multiparty setting,

we separate the data set into different parties with different

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION 5777

(a) (b) (c)

(d) (e) (f)

Fig. 4. Data distributions in different simulation cases. Each color represents the local data on a party. There is no data overlap between different parties.
In (d), the red color denotes the shared public data that every party can access. In (e) and (f), the data are separated into 20 parties. In the former one, all
the ten classes’ data are evenly separated into 20 parties. In the latter one, the data distribution is skewed, where each party only has data from a total of five
classes. (a) Two parties, case I. (b) Two parties, case II. (c) Five parties. (d) Ten parties. (e) 20 parties, case I. (f) 20 parties, case II.

data distributions, according to Fig. 4. We extend a similar

setting in [14], where six cases are formulated. These cases

vary from 2 to 20 parties. Some of the cases are data unified

distributed; some are skewed distributed, in which some parties

may never see the data from some specific classes.

2) Implementation (Benchmark): We compare our method

with a number of existing methods. First, we evaluate our

method by using a single model on the whole data set. In other

words, a single model is trained on the whole MNIST data set.

We adopt LeNet-5 [51], which is a popular CNN model. Then,

we adopt a popular distributed multiparty learning method,

HMR, as a comparison model [7]. In HMR, a central trusted

server collects the local data and models from all parties. The

server checks models over the union of all the data to find the

calibration samples by using an MPMC margin and generates

the final system output by using a max-model predictor.

Model Deployment and Calibration: In test cases of 2-party

and 5-party, all the parties are deployed by the LeNet-5 model.

In test cases of 10-party and 20-party, heterogeneous models,

including both ANNs and CNNs, are deployed on differ-

ent parties. In particular, we adopt different popular CNN

models in the system, which include LeNet-5, ResNet, and

VGG [51], [52], [53]. Each of these models is deployed on a

certain party and trained on its own local data set. However,

since each party only has a partial data set, these models may

not perform well on the class that is missing in its local data

set. Next, the system implements a model calibration process

to calibrate the models’ output. Specifically, the miner in the

system will select a valid calibration sample (x, y, y−), which

makes the ω(x, y, y−) in (8) a negative value. Once such a

sample is verified, the miner performs positive and negative

online update processes for S(y) and S(y−), respectively. In

this way, the system prediction score fsys(x, y) and fsys(x, y−)

can be increased and decreased, respectively. Finally, once a

data sample (x, y) is given, the system generates the prediction

score based on (2).

3) Simulation Results and Discussion: The comparisons of

accuracy over designed data distribution cases are shown in

Fig. 5. It can be observed from the figure that the proposed

federated learning with model and feature calibration method

(FL-MFC) reaches a similar performance as HMR in all

cases, which demonstrates the effectiveness of the proposed

framework. It should be noted that the convergence speed of

FL-MFC is slower than HMR. This is because the proposed

framework is designed for the untrusted decentralized environ-

ment. The secure aggregation algorithm in the proposed frame-

work ensures that the model calibration method is resilient to

bogus and malicious models, which is proved in [14]. This

aggregation ensures the performance; in the meantime, slightly

degrades the performance convergence speed. We believe this

is fair and acceptable in decentralized systems, especially

when there is no authority party exists.

Additionally, when it comes to 20 parties in cases e and f,

since the data amounts on each party are decreased compared

with the previous cases, it takes a longer time to calibrate the

models in the system for both HMR and FL-MFC. Another

finding is that case f finally reaches a higher accuracy than

case e, even though they are both 20 parties. We believe this

is caused by data distribution. In case e, every party has data

samples from all classes from 0 to 9. In case f, each party

only has data samples from partial classes. For instance, party

1 only has data from classes 0 to 4, while party 11 has data

from classes 5 to 9. However, in this case, each party has fewer

classes to learn. In other words, party 1 in case f needs to train

the model over classes from 0 to 4, while party 1 in case e

needs to train all 10 classes. Furthermore, party 1 in case e

has fewer data samples for each class than party 1 in case f.

This causes that party 1 in case e may not be able to be well-

trained over the local data set. On the other hand, party 1 in

case f would outperform party 1 in case e over classes from 0

to 4. Based on this, case f outperforms case e after the model

calibration. In general, to generate high accuracy, we should

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5778 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison results of accuracy on different data distribution cases. (a) Two parties, case I. (b) Two parties, case II. (c) Five parties. (d) Ten parties.
(e) 20 parties, case I. (f) 20 parties, case II.

be inclined to have each party trained on each class it has as

well as possible rather than let each party have data samples

from more classes.

B. Classification With Heterogeneous Features

In this section, we investigate the performance of the

proposed framework considering there are heterogeneous fea-

tures that exist in different parties of the system. In particular,

we consider a scenario in which there are two parties, e.g., par-

ties 1 and 2, in the system. These two parties have local data

sets with heterogeneous features and models. We implement

the feature and model calibration process in this section to

investigate the effectiveness of the proposed system.

1) Data Preprocessing: We adopt five data sets from the

UCI machine learning repository in this section [54]. For each

data set, we partition the data samples, split the attributes

into two parties, and investigate the performance of feature +

model calibration. Specifically, we consider there are two par-

ties in the system. Given a data set, we partition the data

set into half and half. The first 50 percent of data samples

are assigned to party 1, and the rest is assigned to party 2.

Additionally, all attributes of the data set are randomly split

into three parts.

The portion of the data for party 1 self-owned attributes,

party 2 self-owned attributes, and shared attributes are 35%,

35%, and 30%, respectively. In this way, there are only 30%

of overlapping features between two parties. In addition, we

use 70 % of local data are used for training and 30 % for

testing. In summary, party 1 contains the first half of the data

set and 65% of attributes, while party 2 has the second half

and 65% of attributes. 30% of attributes are shared by both

parties.

2) Implementation: In this simulation, we deploy an SVM

model [55] on both parties 1 and 2. Each model is trained

using 70% of its local data set, as mentioned above. Since

the attributes owned by each party are public information.

Parties 1 and 2 can learn correlation coefficients �1 and

�2, respectively, based on the shared and self-owned features

through (10) and (11). Once done, each party will broadcast

their model parameters and correlation coefficients, i.e., �1

and �2 in the system.

Hence, party 1 can reconstruct a data sample, X2←1, by

using (12), that fits the input space of the model on party 2.

Similarly, party 2 can reconstruct its local data set to party 1’s

input space. So far, the feature calibration process has been

completed. Both parties can input their local data samples to

the other’s model and generate predictions without exposing

their local data set to the other party. Then, a similar pro-

cess in the previous simulations can be conducted to perform

model calibration. Specifically, each party finds a data sample

(x, y, y−) that makes ω(x, y, y−) in (8) a negative value and

broadcasts it in the system. Once the miner in the system

verifies that, they will perform positive and negative online

updates to increase and decrease the corresponding model’s

prediction score on the sample, respectively. It should be noted

that the results demonstrate that less than 1% of the amount

of the global data set is enough to make the performance

converge in the model calibration process. This indicates the

number of shared data samples is very limited, which leads

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION 5779

TABLE II
COMPARISON RESULTS OF ACCURACY ON DATA SETS. THE LAST ROW

REPRESENTS THE TIMES OF WIN OR LOSS ON THE PROPOSED

FRAMEWORK, I.E., FL-MFC VERSUS OTHERS

to moderate privacy leakage. Finally, each party obtains the

system prediction score for an unseen data sample through (2).

For the comparison models, we adopt two heterogeneous

transfer learning methods, called HFA [56] and OTL [57].

The HFA method transfers the local training spaces of each

model to an augmented space. In particular, it needs to incor-

porate data from the other party in the current party training

process, which causes data exposure to a certain extent. OTL

trains models in an online manner. It builds a co-regularized

regularizer to make predictions from two feature spaces. In

addition to HFA and OTL, we test a naive setup in which

there is still an SVM on each party, but no feature and model

calibration processes are implemented. In other words, consid-

ering party 1 and party 2, their SVM models are only trained

on their local data sets. Then, given an unseen data sample,

we directly apply the score aggregation function, (2), to obtain

the system prediction score.

3) Results and Discussion: The comparison results are

shown in Table II. The highest accuracy is in bold. Through

five real-world data sets, the proposed framework, FL-MFC,

outperforms the existing methods, HFA and OTL. Especially

compared with the BEMA algorithm, the FL-MFC can effec-

tively calibrate the heterogeneous feature spaces among differ-

ent parties and further enhance the system’s accuracy. Without

feature calibration, the BEMA only conducts the model col-

laboration among homogeneous input space. If most of the

models in the system have different input spaces, the BEMA

algorithm’s performance is largely degraded, as shown in

SPECTF and Waveform in Table II. Overall, results from

both Sections V-A and V-B indicate that the FL-MFC can,

first, reach similar performance with existing methods when

there are only heterogeneous models and, second, outperform

existing ones when there are both heterogeneous models and

features.

VI. CONCLUSION

In this article, we have proposed a blockchain-empowered

federated learning system that enables model collaboration

in a fully heterogeneous environment, including both hetero-

geneous models and feature spaces. In particular, we have

designed model and feature calibration processes to enable het-

erogeneous models with heterogeneous input spaces to collab-

orate with each other to effectively improve their performance.

With the proposed aggregation algorithm, the models in the

system are able to output high-accuracy results on unseen data

samples. Performance evaluation over machine learning and

real-world data sets has been conducted to validate the efficacy

of model and feature calibration, respectively. The comparison

results have demonstrated the effectiveness of the proposed

system under a heterogeneous environment.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms,
applications and emerging research trends,” IEEE Access, vol. 6,
pp. 24411–24432, 2018.

[2] F. Liang, W. G. Hatcher, W. Liao, W. Gao, and W. Yu, “Machine learning
for security and the Internet of Things: The good, the bad, and the
ugly,” IEEE Access, vol. 7, pp. 158126–158147, 2019.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[4] P. Tian, W. Liao, W. Yu, and E. Blasch, “WSCC: A weight-similarity-
based client clustering approach for non-IID federated learning,” IEEE

Internet Things J., vol. 9, no. 20, pp. 20243–20256, Oct. 2022.

[5] Z. Chen, W. Liao, P. Tian, Q. Wang, and W. Yu, “A fairness-
aware peer-to-peer Decentralized learning framework with heteroge-
neous devices,” Future Internet, vol. 14, no. 5, p. 138, 2022. [Online].
Available: https://www.mdpi.com/1999-5903/14/5/138

[6] Z. Chen, P. Tian, W. Liao, and W. Yu, “Zero knowledge clustering based
adversarial mitigation in heterogeneous federated learning,” IEEE Trans.

Netw. Sci. Eng., vol. 8, no. 2, pp. 1070–1083, Apr.–Jun. 2021.

[7] X.-Z. Wu, S. Liu, and Z.-H. Zhou, “Heterogeneous model reuse via opti-
mizing multiparty multiclass margin,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 6840–6849.

[8] H.-J. Ye, D.-C. Zhan, Y. Jiang, and Z.-H. Zhou, “Heterogeneous few-
shot model rectification with semantic mapping,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 43, no. 11, pp. 3878–3891, Nov. 2021.

[9] T. Vogels et al., “RelaySum for decentralized deep learning on hetero-
geneous data,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 28004–28015.

[10] D. Gao, Y. Liu, A. Huang, C. Ju, H. Yu, and Q. Yang, “Privacy-
preserving heterogeneous federated transfer learning,” in Proc. IEEE

Int. Conf. Big Data (Big Data), 2019, pp. 2552–2559.

[11] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning
on heterogeneous devices: A survey,” 2021, arXiv:2109.04269.

[12] K. Pillutla, Y. Laguel, J. Malick, and Z. Harchaoui, “Federated learning
with heterogeneous data: A superquantile optimization approach,” 2021,
arXiv:2112.09429.

[13] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.

Commun. (ICC), 2019, pp. 1–7.

[14] Q. Wang, Y. Guo, X. Wang, T. Ji, L. Yu, and P. Li, “AI at the
edge: Blockchain-empowered secure multiparty learning with heteroge-
neous models,” IEEE Internet Things J., vol. 7, no. 10, pp. 9600–9610,
Oct. 2020.

[15] X. Chen, J. Ji, C. Luo, W. Liao, and P. Li, “When machine learning meets
blockchain: A decentralized, privacy-preserving and secure design,” in
Proc. IEEE Int. Conf. Big Data (Big Data), 2018, pp. 1178–1187.

[16] Y. Tian, T. Li, J. Xiong, M. Z. A. Bhuiyan, J. Ma, and C. Peng,
“A blockchain-based machine learning framework for edge services
in IIoT,” IEEE Trans. Ind. Informat., vol. 18, no. 3, pp. 1918–1929,
Mar. 2022.

[17] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti:
A blockchain system for private and secure federated learning,” IEEE

Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1513–1525, Jul. 2021.

[18] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain
and federated learning for privacy-preserved data sharing in indus-
trial IoT,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4177–4186,
Jun. 2020.

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5780 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

[19] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 5,
pp. 2438–2455, Sep./Oct. 2021.

[20] L. Yin, J. Feng, S. Lin, Z. Cao, and Z. Sun, “A blockchain-based collabo-
rative training method for multi-party data sharing,” Comput. Commun.,
vol. 173, pp. 70–78, May 2021.

[21] P. Kairouz et al., “Advances and open problems in federated learn-
ing,” Found. Trends R© Mach. Learn., vol. 14, nos. 1–2, pp. 1–210,
2021.

[22] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, p. 12, 2019.

[23] K. Bonawitz et al., “Towards federated learning at scale: System
design,” 2019, arXiv:1902.01046.

[24] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” 2018, arXiv:1806.00582.

[25] X. Liu, H. Zhao, M. Pan, H. Yue, X. Li, and Y. Fang, “Traffic-aware
multiple mix zone placement for protecting location privacy,” in Proc.

IEEE INFOCOM, 2012, pp. 972–980.
[26] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated

multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4424–4434.

[27] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentral-
ized federated learning,” in Proc. 3rd Workshop Bayesian Deep Learn.

(NeurIPS), 2018, pp. 1–9.
[28] Y. Esfandiari et al., “Cross-gradient aggregation for decentralized learn-

ing from non-iid data,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 3036–3046.

[29] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-iid data
quagmire of decentralized machine learning,” in Proc. Int. Conf. Mach.

Learn., 2020, pp. 4387–4398.
[30] S. Li, T. Zhou, X. Tian, and D. Tao, “Learning to collaborate in decen-

tralized learning of personalized models,” in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit., 2022, pp. 9766–9775.
[31] X. Liang, A. M. Javid, M. Skoglund, and S. Chatterjee, “Asynchrounous

decentralized learning of a neural network,” in Proc. IEEE Int. Conf.

Acoust., Speech Signal Process. (ICASSP), 2020, pp. 3947–3951.
[32] T. Rückel, J. Sedlmeir, and P. Hofmann, “Fairness, integrity, and pri-

vacy in a scalable blockchain-based federated learning system,” Comput.

Netw., vol. 202, Jan. 2022, Art. no. 108621.
[33] S. K. Lo et al., “Toward trustworthy AI: Blockchain-based archi-

tecture design for accountability and fairness of federated learning
systems,” IEEE Internet Things J., vol. 10, no. 4, pp. 3276–3284,
Feb. 2023.

[34] L. Cui, X. Su, and Y. Zhou, “A fast blockchain-based federated learn-
ing framework with compressed communications,” IEEE J. Sel. Areas

Commun., vol. 40, no. 12, pp. 3358–3372, Dec. 2022.
[35] C. Ma et al., “When federated learning meets blockchain: A new dis-

tributed learning paradigm,” IEEE Comput. Intell. Mag., vol. 17, no. 3,
pp. 26–33, Aug. 2022.

[36] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “A novel
framework for the analysis and design of heterogeneous federated
learning,” IEEE Trans. Signal Process., vol. 69, pp. 5234–5249,
2021.

[37] M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen,
“Local learning matters: Rethinking data heterogeneity in federated
learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 8397–8406.

[38] T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, “Over-the-air fed-
erated learning from heterogeneous data,” IEEE Trans. Signal Process.,
vol. 69, pp. 3796–3811, 2021.

[39] T. Lin, S. P. Karimireddy, S. U. Stich, and M. Jaggi, “Quasi-global
momentum: Accelerating decentralized deep learning on heterogeneous
data,” 2021, arXiv:2102.04761.

[40] S. Horvath, S. Laskaridis, M. Almeida, I. Leontiadis, S. Venieris, and
N. Lane, “FjORD: Fair and accurate federated learning under heteroge-
neous targets with ordered dropout,” in Proc. Adv. Neural Inf. Process.

Syst., vol. 34, 2021, pp. 12876–12889.
[41] H. Hu, D. Wang, and C. Wu, “Distributed machine learning through

heterogeneous edge systems,” in Proc. AAAI Conf. Artif. Intell., vol. 34,
2020, pp. 7179–7186.

[42] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for
heterogeneous federated learning,” in Proc. Int. Conf. Mach. Learn.,
2021, pp. 12878–12889.

[43] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 1544–1551.

[44] L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via resampling,” 2020, arXiv:2006.09365.

[45] E. Diao, J. Ding, and V. Tarokh, “HeteroFL: Computation and com-
munication efficient federated learning for heterogeneous clients,” 2020,
arXiv:2010.01264.

[46] F. Yu et al., “Heterogeneous federated learning,” 2020,
arXiv:2008.06767.

[47] W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in
heterogeneous federated learning,” in Proc. IEEE/CVF Conf. Comput.

Vis. Pattern Recognit., 2022, pp. 10143–10153.
[48] L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to

work: Flexible communication compression for energy efficient feder-
ated learning over heterogeneous mobile edge devices,” in Proc. IEEE

Conf. Comput. Commun., 2021, pp. 1–10.
[49] H. Wang, F. Nie, and H. Huang, “Multi-view clustering and feature

learning via structured sparsity,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 352–360.

[50] H. Wang, F. Nie, W. Cai, and H. Huang, “Semi-supervised robust dic-
tionary learning via efficient l-norms minimization,” in Proc. IEEE Int.

Conf. Comput. Vis., 2013, pp. 1145–1152.
[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-

ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[53] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[54] D. Dua and C. Graff. “UCI machine learning repository.” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[55] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.

Res., vol. 9, pp. 1871–1874, Jun. 2008.
[56] W. Li, L. Duan, D. Xu, and I. W. Tsang, “Learning with augmented

features for supervised and semi-supervised heterogeneous domain
adaptation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 6,
pp. 1134–1148, Jun. 2014.

[57] P. Zhao, S. C. Hoi, J. Wang, and B. Li, “Online transfer learning,” Artif.

Intell., vol. 216, pp. 76–102, Nov. 2014.

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

