5770

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

Blockchain-Empowered Federated Learning
Through Model and Feature Calibration

Qianlong Wang™', Weixian Liao™, Yifan Guo
, Senior Member, IEEE

and Wei Yu

Abstract—With the proliferation of computationally powerful
edge devices, edge computing has been widely adopted for
wide-ranging computational tasks. Among these, edge artifi-
cial intelligence (AI) has become a new trend, allowing local
devices to work cooperatively and build deep learning models.
Federated learning is one of the representative frameworks in
distributed machine learning paradigms. However, there are sev-
eral major concerns with existing federated learning paradigms.
Existing distributed frameworks rely on a central server to
coordinate the computing process, where such a central node
may raise security concerns. Federated learning also relies on
several assumptions/requirements, e.g., the independent and iden-
tically distributed (i.i.d.) data and model homogeneity. Since
more and more edge devices are able to train lightweight mod-
els with local data, such models are normally heterogeneous. To
tackle these challenges, in this article, we develop a blockchain-
empowered federated learning framework that enables learning
in a fully decentralized manner while taking the model het-
erogeneity and data heterogeneity into account. In particular,
a federated learning framework with a heterogeneous calibra-
tion process, i.e., Model and Feature Calibration (FL-MFC), is
developed to enable collaboration among heterogeneous models.
We further design a two-level mining process using blockchain to
enable the secure decentralized learning process. Experimental
results show that our proposed system achieves effective learning
performance under a fully heterogeneous environment.

Index Terms—Blockchain, distributed/decentralized system,
federated learning, heterogeneous features, heterogeneous
models.

I. INTRODUCTION

DGE artificial intelligence (AI) has attracted more and

more attention since edge devices are earning more and
more computational resources. Many research efforts have
been focusing on deploying Al over edge devices [1], [2].
Among this research, federated learning is one of the most
popular approaches [3], [4], [5], [6]. Typically, federated learn-
ing needs a central server to have an initialized model. The
central server will distribute this model to local workers
(e.g., smart edge devices). These workers will first train the
model based on their own local data sets and then send the

Manuscript received 10 May 2023; revised 19 July 2023; accepted
19 August 2023. Date of publication 4 September 2023; date of current ver-
sion 6 February 2024. This work was supported by the National Science
Foundation (NSF) under Grant 2245933. (Corresponding author: Qianlong
Wang.)

The authors are with the Department of Computer and Information
Sciences, Towson University, Towson, MD 21252 USA (e-mail: qwang@
towson.edu; wliao@towson.edu; yguo@towson.edu; mmcguire @towson.edu;
wyu@towson.edu).

Digital Object Identifier 10.1109/JI0T.2023.3311967

, Member, IEEE, Michael McGuire,

locally trained models back to the server. The central server
will aggregate collected models to obtain a well-trained global
model.

However, there are several major concerns about the tra-
ditional federated learning methods. First, it requires local
models to be homogeneous so that model aggregation can be
easily performed over the central server. Otherwise, the cen-
tral server cannot aggregate models to obtain a global model if
local models are in different types or structures. However, we
realize that as edge devices earn more computational power,
it is more prevalent that some edge devices may already train
a local model based on their own data sets. Such local models
may be heterogeneous and cannot be utilized in regular fed-
erated learning. Second, to obtain a global model, traditional
federated learning relies on a central party (server) to dis-
tribute, collect, and aggregate models. Such a paradigm would
easily lead the system to the risk of single-point failure, which
causes a critical security concern.

To address the above issues, some existing literature pro-
poses model collaboration methods that can effectively aggre-
gate heterogeneous models (model reuse, model rectification,
etc.) [71, [8], [9], [10], [11], [12], [13]. These methods aim to
aggregate the model outputs instead of model parameters. In
particular, they calibrate the output of the models by slightly
adjusting their parameters such that the aggregated output is
accurate. However, these methods still rely on a central server
to coordinate the process. To fully eliminate the center server,
decentralized learning methods have been studied.

Among these methods, blockchain has been treated as an
important platform to deploy the decentralized Al [14], [15],
[16], [17], [18], [19], [20]. For instance, a blockchain-based
multiparty learning method is proposed in [14], which enables
model collaboration among heterogeneous models in a decen-
tralized manner. However, these works only consider the issue
of model heterogeneity and do not consider that heterogeneous
models from different parties (devices) normally have differ-
ent input shapes (i.e., feature heterogeneity). For instance, to
detect specific diseases, different hospitals may have various
features collected from their patients such that one hospital
may record name, age, height, blood pressure, and heart rate,
while another hospital may record name, age, sex, height,
weight, and blood pressure. To effectively enable collabo-
ration among models trained from individual hospitals, the
algorithm should consider not only the model heterogene-
ity but also the feature heterogeneity. To the best of our
knowledge, the investigation of model collaboration under

2327-4662 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION

Model Heterogeneity

i Feature (Input)
Heterogeneity

A

Aggreg-
ation F=| Output

==

A

Fig. 1. Federated learning under heterogeneous environments, i.e., feature
and model heterogeneity.

a fully heterogeneous environment (i.e., model and feature
heterogeneity) in a decentralized manner remains an open and
challenging problem.

In this article, we propose a blockchain-empowered feder-
ated learning framework, enabling model collaborations under
a fully heterogeneous environment, i.e., model and feature
heterogeneity. As shown in Fig. 1, our system collects dif-
ferent kinds of models (model heterogeneity) with different
input shapes (feature heterogeneity) and aggregates them by
our proposed algorithm so that effective and efficient learning
performance can be achieved. In particular, we first propose a
model calibration method to deal with the model heterogeneity
issues. Specifically, given a data sample, we aim to aggregate
the outputs of local models to obtain an accurate prediction
for the sample. Our model calibration can slightly adjust
the model parameters to make the system aggregated outputs
accurate. By doing this, we enable collaboration among hetero-
geneous models. Furthermore, our model calibration method
only requires a limited amount of data samples to generate
effective predictions. Thus, the learning process becomes more
efficient compared with traditional federated learning.

Second, to deal with feature heterogeneity, we propose
a feature calibration method that enables the transfer of
data samples from one model’s feature space to another.
Specifically, we try to learn a correlation coefficient between
heterogeneous feature spaces. Correlation coefficients take
advantage of the shared features between models to bridge the
feature spaces. By using the optimized correlation coefficients,
we are able to transfer a data sample to another feature space
by estimating the value for new features. In this way, a data
sample can be inputted into models with heterogeneous fea-
ture spaces. Hence, it enables model calibration among models
with feature heterogeneity. Finally, we deploy both model and
feature calibration processes on blockchain and design the
protocols of our system.

The main contributions of this article are summarized as
follows.

1) We propose a blockchain-empowered federated learning
method, which enables model collaboration in a fully
decentralized manner.

2) We design model and feature calibration processes to
enable model collaboration under a fully heterogeneous
environment, i.e., model and feature heterogeneity.

5771

3) We deploy model and feature calibration processes
on the blockchain and design the protocols in our
system.

4) We evaluate the system with the real-world data set.
Our results demonstrate that the proposed system is able
to obtain effective performance under both model and
feature heterogeneity scenarios.

The remainder of this article is organized as follows. We
discuss relevant research in Section II. In Section III, we intro-
duce the system model with assumptions. In Section IV, we
present our proposed framework in detail. In Section V, we
provide the performance evaluation of our proposed system.
Finally, we conclude the article in Section VI.

II. RELATED WORK

In this section, we discuss the frameworks and algorithms
that are related to our study. Traditional federated learning nor-
mally relies on a central server and assumes the local models in
the system to be homogeneous [3], [13], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31]. In the literature, there is
research focusing on removing the reliance on a central server
to enable the learning process, which is known as decentralized
learning, and on the other hand dealing with the heteroge-
nous data and models. In the following, we particularly review
the current blockchain-empowered decentralized learning first
and then discuss the data and model heterogeneity in current
federated learning.

A. Blockchain-Empowered Decentralized Learning

To deal with this issue, blockchain has been studied to
enable learning in a decentralized manner. To confirm the
feasibility, Riickel et al. [32] provided a proof-of-concept
that blockchain technology can be combined with feder-
ated learning systems and achieve fairness, integrity, and
privacy preservation. Lo et al. [33] introduced a blockchain-
based method to enhance the accountability and fairness of
federated learning systems. Additionally, Chen et al. [15]
designed a decentralized stochastic gradient descent (SGD)
algorithm over blockchain, called LearningChain, that enables
a gradient aggregation process without a central server.
Cui et al. [34] considered the issue of heavy communi-
cation overhead in blockchain-based federated learning and
developed a communication-efficient framework by compress-
ing communications. Shayan et al. [17] considered the security
in decentralized learning and proposed Biscotti, which is a
decentralized peer-to-peer (P2P) approach based on blockchain
to enable multiparty machine learning. Likewise, Ma et al. [35]
explored a blockchain-assisted decentralized federated learn-
ing framework, which eliminates lazy clients of the system by
using designed protocols. Even though blockchain has been
studied to enable the federated learning process in a decen-
tralized manner, most of them only consider homogeneous
model aggregation in federated learning. We realized that, in
practice, more and more edge devices or workers in federated
learning systems are able to train lightweight local models
based on their local data sets. These models normally are het-
erogeneous. These trained local models are often ignored in

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5772

the traditional federated learning process since they cannot be
utilized.

B. Data Heterogeneity in Federated Learning

There are some existing efforts to enable the fed-
erated/decentralized learning process in a heterogeneous
environment. For example, Wang et al. [36] consid-
ered the convergence of federated optimization under
heterogeneous/non-i.i.d data and proposed a normalized aver-
aging method. Mendieta et al. [37] found that standard
regularization methods are effective in reducing the data
heterogeneity’s influence and developed a method called
FedAlign. Sery et al. [38] developed a convergent over-the-
air federated learning (COTAF) algorithm, which precedes
the local gradient at the users and scales at the server.
Lin et al. [39] investigated decentralized learning limitation
over data heterogeneity and proposed a momentum-based
method to accelerate the training efficiency of decentralized
learning. Vogels et al. [9] designed an information propagation
mechanism, called RelaySum, which is to relay the origi-
nal message instead of gossip averaging in the decentralized
network. Horvath et al. [40] introduced a federated learning
algorithm over heterogeneous clients, called Fjord. The algo-
rithm included an ordered dropout in the model to mitigate
the workload of clients with limited computational resources.
Similarly, Hu et al. [41] designed an algorithm, called ADSP,
that allows edge devices with more computational resources
to train more epochs.

On the other hand, knowledge distillation is another promis-
ing solution for heterogeneous federated learning. For exam-
ple, Zhu et al. [42] introduced a data-free knowledge distil-
lation where the server learns generalized users’ information
in a data-free manner and regulates the local training pro-
cess. Some other works considered secure and robust federated
learning under heterogeneous data. Li et al. [43] proposed
robust stochastic subgradient methods, called RSA, to enable
distributed learning over heterogeneous and non-i.i.d data
sets, which are shown to be resilient to Byzantine attacks.
He et al. [44] proposed a gradient resampling scheme that can
ensure federated learning performance under non-i.i.d data and
meanwhile is resilient to Byzantine attacks. However, most of
the above works focus on heterogeneous data rather than a
heterogeneous model in decentralized learning. Furthermore,
in many of the studies, the algorithms still rely on a central
server which leads to the system not being a fully decentralized
framework.

C. Model Heterogeneity in Federated Learning

Regarding model collaboration among heterogeneous mod-
els, Wu et al. [7] proposed Heterogeneous Model Reuse, HMR,
to slightly adjust the pretrained heterogeneous local models in
the system such that the aggregated results from models are
accurate. Ye et al. [8] proposed a rectify via heterogeneous
predictor mapping (REFORM) framework enabling the cur-
rent model to learn from a related model with different sets of
features or labels. Diao et al. [45] proposed a federated learn-
ing framework, named HeteroFL, that allows local models

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

TABLE I
NOTATIONS IN THE SYSTEM

Indices

N Number of parties (users) in the system.

C Number of classes (label for models) in the system.
d; Number of features of the data sample held by party 3.
ds Number of shared features.

d;r Number of self-owned features of party 3.

N; Number of data samples of party <.

Parameters

D Global dataset.

D; Local dataset on party 3.

F; Local model (classifier) on party 3.

fi Score function of F;.

0; Parameters of Fj.

Fsys System aggregated classifier.

fsys System aggregated score function.

w The proposed secure multiparty multiclass margin.
S(y) Set of parties that hold data in class y.

A Gradient of neural network model on party 3.

n Learning rate of neural network model.

X Feature set of local dataset on party 3.

v Correlation coefficients that are used to map a data

sample from one feature space to another.

with different sizes in the system. Wang et al. [14] designed a
decentralized multiparty learning framework under a heteroge-
neous model, called BEMA, that enables models to collaborate
with each other by slightly adjusting their model parameters
over the blockchain platform. Yu et al. [46] considered feder-
ated learning among neural networks with different structures
and introduced a feature-oriented regulation method to identify
and train matchable structures from them. Huang et al. [47]
proposed Federated Cross-Correlation and Continual Learning,
which used an unlabeled public data set to build up a gen-
eralized representation for heterogeneous models. Likewise,
Li et al. [48] proposed efficient federated learning over het-
erogeneous mobile devices to enable flexible communication
compression by balancing the energy consumption of local
computing and wireless communication. However, in general,
we realize there are still some drawbacks in the existing works.
The heterogeneous models in some works mentioned above
refer to the models with different sizes, e.g., neural networks
with different number of layers, which is not a fully heteroge-
neous setup. Furthermore, most of the existing research did not
discuss model collaboration in a fully heterogeneous environ-
ment, i.e., both model and data (feature) heterogeneity. To the
best of our knowledge, studying learning frameworks in a fully
decentralized and fully heterogeneous environment remains an
open and challenging problem.

III. SYSTEM MODEL

In this section, we formally define the model and fea-
ture heterogeneity and introduce the system model. All key
notations used in the article are listed in Table I.

Definition 1 (Model Heterogeneity): We consider a set of
learning models that contain different model structures as the
heterogeneous model set. For example, a model set could
contain convolutional neural network (CNN), recurrent neural
networks (RNN), and a Logistic Regression classifier. In addi-
tion, a model set containing neural networks with a different

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION

number of layers or nodes is considered a heterogeneous
model set.

Definition 2 (Feature Heterogeneity): We consider a set of
data items that contain different sizes or dimensions as a het-
erogeneous feature set. For example, a feature set contains
time-series data and images. A feature set containing images
with different sizes is considered as a heterogeneous feature
set.

In the system, we consider there are a total of N par-
ties (users). Each party i € [1,N] has its own local data
set D; and local model (classifier) F;. D; = {X;, Vi} =
{hoyh, oo 6y, x; and y; are the data sample and
label, respectively. n; denotes the number of data samples held
by party i. It should be noted that the data sample from two
parties might not have the exact same dimensions indicating
feature heterogeneity in the system. In other words, the dimen-
sion of x; may not be equal to x;, where i,j € [1, N]. Here,
the elements of feature x; and x; may have different semantic
meanings. For instance, in the hospital example, x; includes
feature of {age, sex, height, blood pressure}, while x; includes
feature of {age, sex, height, weight, heart rate}. We denote
D = {X,)} as the global data set, where } = {1,...,C}
is the set of total C classes. A certain party i trains a local
model F; based on its local data set D;, where D; C D.

It should be noted that the classifiers from two parties might
not be the same model, which reflects the model heterogene-
ity of the system. For instance, the classification model can
be a support vector machine (SVM), artificial neural network
(ANN), CNN, or any other learning model. Since the classifier
F; is trained on only a partial set of D, it makes it possible
that the model may misclassify an unseen data sample x into a
wrong class y' €);, while its real class is y ¢ J;. The goal of
the system is to effectively adjust the weights of the local mod-
els and to enable each party to train a more robust local model
that can not only classify data from its learned space but also
make predictions if the data is from an unknown space. More
importantly, using the proposed method, the system will be
able to utilize models {F, ..., Fy} to make a final prediction
for a specific data sample.

To generate the final system prediction for a certain data
sample, we first show the output of the local model. Given a
data sample x, the output of a local model f; is

Fi(x) = argmax f;(6;, x, y). ey
veYi
Here, f;(0;, x, y) is the scoring function of the classifier, which
is to generate a confidence score that sample x belongs to
class y. 0; is the parameter (weights) of the model, which is
pretrained based on its local data set. It should be noticed
that the size of unseen data x might not fit the input size
of the model F; because of the system feature heterogeneity
assumption. The proposed scoring function f; will still be able
to generate an effective score given x of different sizes. The
details will be elaborated in Section IV-C.
With local models, the system will generate a final
prediction for the data sample x, which is listed as follows:

Fsys(x) = argmax fgys(x, y). 2

yey

5773

Here, fsys is our proposed algorithm that will aggregate
the scores given by all local models, i.e., {f1(01,x,y),
... /nN(On, x, y)}. The details of the score-generating algorithm
will be elaborated in (5) in Section IV-B.

IV. BLOCKCHAIN-EMPOWERED FEDERATED LEARNING
WITH MODEL AND FEATURE CALIBRATION

In this section, we introduce our blockchain-empowered
federated learning system in detail. Particularly, we begin
with introducing the design rationale and then detail the key
processes, followed by the framework implementation.

A. Design Rationale

The general system processes are as follows. We consider
there are a series of pretrained local models in the system.
Each of them is well-trained on its own local data set. Given
a certain data sample x, we aim to utilize all the trained local
models to obtain an accurate class prediction. In particular, x
will be inputted into all the local models. Each model outputs a
confidence score for each class. The system will aggregate all
these output scores based on the proposed method, as shown
in (2). We will elaborate on the aggregation function in (2) in
the following sections.

Considering the model and label heterogeneity in the
system, suppose y is the true class of x, it is possible that cer-
tain local models have never been trained over class y. This
will directly make certain models output invalid confidence
scores and might mislead the system aggregated confidence
score for (x, y). To deal with this issue, we introduce the model
calibration process, which aims to increase the confidence
score of the local models over (x,y) and, in the meantime,
decrease the confidence score of the local model over certain
false classes. Hence, the accuracy of the aggregated confidence
score for the system for (x,y) can be increased. The details
will be elaborated in Section IV-B.

On the other hand, we consider the local models may have
different input shapes (feature heterogeneity). Thus, certain
data examples x cannot be directly inputted into the models. To
deal with this, we introduce a feature calibration process that
adopts a semantic mapping method that can effectively learn
the correlations between model-shared features and model
self-owned features. Based on the learned mapping correla-
tions, one model’s feature space can be projected to another
one’s. Hence, the data can be inputted into the model with
different input dimensions. The details will be elaborated in
Section IV-C. Finally, we introduce the implementation of
the system over the blockchain platform and elaborate on the
whole detailed system process in Section IV-D.

B. Model Calibration

To enable the model collaboration between heterogeneous
models, the traditional ways (e.g., averaging the weights of
models) will certainly not be effective. In the case of model
heterogeneity, we aim to avoid the case that certain local mod-
els misclassify unseen data with an extremely high confidence
score. Such prediction scores will largely affect the system
prediction. For instance, given a data sample (x,y), where y

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5774

is the true label of the sample x, we try to avoid the case as
follows:

[0 x,y) < fi(,x,y7)
yeViy €ly¢) €)]

Here, i and j are two local models in the system. Here, model
i is pretrained over label y, because y € ;. Model j is not
pretrained over label y, because y ¢);. To model j, sample
(x,y) is unseen data from an unknown class.

In the above situation, the model j gives a high confidence
score on a wrong class y~ that belongs to its own label space
Y, which is even higher than the confidence score given by
local model that has been trained on this class (y). Since the
system is in a fully decentralized environment, there is no third
authorized party that could claim model j is misclassifying a
data sample. A high score on a wrong class will largely affect
the system prediction over the data sample, despite what kind
of score aggregation method is being used.

It should be noted that we assume all the local models are
well-pretrained, meaning that the models can make the right
predictions over data in their own label space. That is, given
a data example (x,y), where y is the true label of x

ﬁ(eiv X, Y) = maXﬁ(@i, X,)’)
veyi
Vi e [1,N],if y € ;. 4)
This is a fair assumption that all the models learn their own
label space well since each of them has its own local data
set. On the other hand, to generate the system prediction for

a data sample x, (2) is used. In particular, we design the fgys
as follows:

1
FosCoy) = — 37 filr %, 9) (5)
k25
* = i Or, x,¥) — fi(0;, x, 6
J arg.jgg)k;.vk(X, Y) — (6. x.9)1 (6)
—J

fsys(x,y) represents system predicted confidence score for data
x belonging to class y. k LN J means the m closest value to
fi(,-,-), where m is the number of neighbors to include for
calculating the confidence score, which is a predefined param-
eter. S(y) represents the set of parties that hold data in class y.
In general, (5) and (6) depict the system-predicted confidence
score for (x, y) incorporates the output m of the local models
instead of using only one single local model, which makes the
system-predicted confidence score more resilient to bogus and
abnormal values.
In the situation given by (3), it is possible that

fSyS(xﬂ }’) <fsys(x’ y_) (7)

where y and y~ are the true and wrong labels of sample x,
respectively. Hence, the system misclassifies sample x into cer-
tain wrong class y~. To solve this issue, we adopt a metric,
i.e., secure multiparty multiclass (MPMC)-margin, to calibrate
the models in the system [14]. Specifically, given a data sample
(x,y), the secure MPMC-margin is defined as follows:

C()(X, yv y_) = y_lénji}c{y}fsys(xv)’) _fsys(xv y_) (8)

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

where w(x, y, y~) represents the margin of confidence score
obtained by the system between true class y and a false class
y~. When w(x, y, y~) is positive, it means that the system out-
puts a higher confidence score on true class y. In other words,
the system makes the correct prediction for sample x. On the
other hand, if it is negative, it means the system outputs a
higher confidence score on a false class y~, which indicates the
system makes a wrong prediction over x. The secure MPMC
margin is proven to be effective and resilient to critical attacks
in a decentralized system, e.g., Byzantine attacks [14]. In this
work, we similarly assume the majority of the users in the
system are honest, which is a reasonable assumption.

With the secure MPMC margin, we can measure the dis-
tance between the system’s predicted confidence score for the
true class and certain false classes. Given a data sample (x, y),
where y is the true class of x, when the secure MPMC margin
is a negative value, i.e.,

w(x,y,y") <0)

we will calibrate all S(y) and S(y~) models. In general,
the goal of model calibration, as mentioned previously, is to
slightly adjust the model parameters (weights) to increase the
system confidence score for x if it belongs to its true class y,
i.e., fsys(x, y), and to decrease the system confidence score for
x if it belongs to a false class y~, i.e., foys(x,y). Specific
parameter adjustment methods can be designed for particu-
lar models. For instance, given a neural network, the gradient
descent method is applied to update model parameters. In this
case, we can add a positive gradient to the model parame-
ters to increase the model’s confidence score on (x, y) and, on
the other hand, add a negative gradient to the model param-
eters to decrease the model’s confidence score on (x,y™).
In our system, we assume that all the local models support
an online updating process. That means each model can be
slightly updated to increase or decrease the confidence score
on a certain data sample.

C. Feature Calibration

So far, by using model calibration, we can adjust the model
output in order to increase the accuracy of system-generated
predictions. Our model calibration also works under conditions
where model heterogeneity exists. In the following, we con-
sider the input side of the system. The decentralized system
may contain models with different input sizes, i.e., feature het-
erogeneity, which is common in reality [8]. For such models,
the model calibration cannot be applied as the data sample
cannot be used as input for both models. For instance, as
previously mentioned, two hospitals may collect different fea-
tures from their patients and train models to detect certain
diseases, though most of these features are common. Even
if only a small portion of features are self-owned by a cer-
tain model (model-specific), the model calibration cannot be
applied. Hence, these models cannot collaborate to increase the
system performance, which is obviously a waste of resources.

To effectively utilize the model with feature heterogeneity,
we propose a feature calibration method, which aims to cal-
ibrate the space of the input features. We first assume that

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION

3 >

Party i Shared Feature Party |
S S
Featuré Set From i
Feature Set From j
d ; d, dy
d;
d;

Fig. 2. Features collected from two certain parties i and j.

there are shared features existing between models. Hence,
considering two models, each of their features can be decom-
posed into model-shared and model self-owned features. We
believe such an assumption is fair and common in practice.
For instance, as we mentioned, two hospitals may try to train
models to predict the presence of a certain disease using
slightly differing sets of features. Although most of the fea-
tures used in prediction might be the same, some of them
might be only collected from one hospital but not others.
Enlightened by semantic mapping introduced in work [8], we
aim to learn the correlations between the heterogeneous fea-
ture space. The general idea of the feature calibration is to
learn the correlations between model-shared and model self-
owned features. With the learned correlations, we can estimate
the model’s self-owned features based on the model-shared
features. Hence, we are able to rebuild a feature space that
contains model-shared features and model self-owned features
from both models.

Considering two local models, e.g., model i and j, with
the feature X; and X;. Suppose X; and X; have the dimen-
sion (the number of features) of d; and d;, respectively. We
denote the dimension of the shared feature between X; and X;
as d;. We also denote dimension of model self-owned features
of X; and X; as dy and dy, respectively. As shown in Fig. 2, X;
and X; can be denoted as [X{! € RVi*dr x% & RNd:] and
[X;.L' € RNjxds X;ijl € RN/XdJ'/]. Here, N; and N; are the number
of the data samples of party i and j, respectively. X:-is and X]‘-is
are the model-shared features with the same semantic meaning.
Next, we aim to learn correlations between shared features,
i.e., Xids and X;i'f, and model self-owned features, i.e., X;i"' and

ij/. With such learned correlations, model-shared features can
be used to estimate feature value for model self-owned features
and hence transfer to another feature space.

To learn the correlations between shared and self-owned
features, we define a correlation coefficient, i.e., ¥, for each
model. Given two models, i and j as mentioned above, we
learn correlation coefficients W; and W;, respectively

dy
. dl-/ dy
argmin |1X;" — X Wi|[7 + 1Y |[Wimllo (10)
Wi m=1
d,./
. dy dy -
arg min [1X;" — XPWllE +2) 11l (D)
v m=1

5775

Block Header

Block t Block t-1 Block t-2

Blockt3
Correlation | Modets information
I { e
Updated Model
Model
Calibration

Mining Process

Previous Hash

Time Stamp

Nonce

Party 1

Feature
Calibration

Fig. 3. Architecture of blockchain-empowered federated learning with the
model and feature calibration.

Here, ¥; € R%>dr and v e R4 are learned coefficients
that map the shared features to the self-owned features. The
second term of (10) and (11) are regularization terms, which
are controlled by a predefined value A. We aim to have the
coefficients as sparse as possible so that the learned corre-
lations focus more on the generalized patterns [49], [50]. We
use orthogonal matching pursuit (OMP) to solve (10) and (11)
efficiently.

With the learned correlations, the feature of model i, X;, is
transferred to the model j’s space, which is denoted as Xj. ;

Xjei = [X{ e RV, Xbw; e RV], (12)
Similarly, the feature of model j, X, is transferred to the model
i’s space, which is denoted as X;.;

Xij = [xfswl- e RV X% ¢ RNJ'X‘ZS]. (13)
Hence, the data sample from one model can be transferred to
another model’s space as long as they have shared features.
In this way, the model calibration can be applied to models
under feature heterogeneity.

D. Framework Implementation

We now elaborate on how our system is implemented on
the blockchain, which enables a multiparty learning process
in a fully decentralized manner. The main framework imple-
mentation process is demonstrated in Fig. 3. As shown in the
figure, each user (party) in the system could be a smart edge
device, personal computer, or an institution holding certain
workstations, where each of them holds a local model. In par-
ticular, our system consists of users of two roles, i.e., regular
users and miners. The regular users are considered as par-
ties who hold pretrained local models and local data sets.
The regular users who join the system aim to increase the
performance of their local models and further use local models
in the system to make a more accurate prediction for unseen
data. Specifically, the regular user in the system will broad-
cast his local model, which will be registered/recorded on the
blockchain by a miner. Meanwhile, every regular user will
find out valid calibration data samples from his local data set
and broadcast them. On the other hand, the miner will use
such samples to perform the mining process, i.e., model and
feature calibration, to update the models on the blockchain.

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5776

The updated model parameters will be written in a new block
created by the miner. By doing this, the aggregation of local
models’ predictions can be effective. Next, we elaborate on
the protocols in our system for two roles.

Regular users are assumed to hold local models and local
data sets and aim to utilize the system for effective predictions.
Regular users are allowed to perform the following operations.

1) Broadcast Local Models: The regular users are encour-
aged to broadcast their local models in the system.
Hence, the miner can use them for the model calibration
process.

2) Broadcast Portion of Local Data Set: The regular users
are encouraged to broadcast a portion of their local data
set in the system. Based on the broadcasted data set, the
miner can implement the feature calibration process and
select certain valid data samples for the model calibra-
tion process. Such a process may cause concern about
data privacy leakage. However, it should be noted that
only a limited amount of data samples are needed in the
system for the feature and model calibration process,
which is confirmed via simulation results. Therefore,
the compromise of data privacy is considered to be
moderate.

3) Classify Unseen Data: The regular users are entitled to
use the local models in the system for classifying unseen
data samples, which is (2).

Miners are expected to implement the feature and model cal-
ibration processes so that regular users can effectively use the
system to classify unseen data. Any regular user is encouraged
to implement the miner’s role. Certain rewards/incentives will
be given to the miner. In particular, the activities the miners
are expected to do are as follows.

1) Feature Calibration: Given the broadcasted local models
and the corresponding data sets, for any two models
in the system that contain shared features, the miner
calculates (10) and (11) to obtain optimized correlation
coefficients. Once a new coefficient is obtained, it will
be recorded in a new block of the blockchain and the
corresponding miner will be rewarded. Since the feature
calibration method is public, every obtained correlation
coefficient can be verified by any user in the system.
Hence, it ensures the authenticity of feature calibration.

2) Model Calibration: Given the correlation coefficients
obtained from the feature calibration process, a data
sample (x,y) can be inputted into any local model so
long as the model input space has shared features with x.
In model calibration, the miner needs first to find a
valid data sample for model calibration and then use
that data sample to implement the process. The details
are as follows.

a) Find Valid Data Sample: The miner picks certain
data sample (x,y) from the broadcasted data sets
and tries to find out a class y~ such that (9) is
satisfied. If found, a data sample (x, y, y~) will be
broadcasted in the system, which can be used for
model calibration. Similar to the feature calibration
process, once such a sample is found by the miner,
it will be recorded in the block, and certain rewards

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

Algorithm 1 Blockchain-Empowered Federated Learning

With the Model and Feature Calibration
1: Regular User:
2: Each regular user i broadcasts its model information, including a subset
of its local dataset and model parameters.
: Implement Eq. (2) to classify unseen data.
Miner:
: Feature Calibration:
Implement Eqs. (10) and (11) to obtain optimized correlation
coefficients.
: Model Calibration:
Find data sample (x, y, y~) satisfy constraints Eq. (9).
9: Implement positive and negative online updates for S(y) and S(y™)
models to increase and decrease model confidence score on (x, y) and
X,y , respectively.

AR

0

will be given to the corresponding miner. Since
(x,y,y7) is from the public data set, the validity
of the sample can also be verified by any user in
the system.

b) Online Update Process: Given an obtained sam-
ple (x,y,y7), the miner performs a positive and
negative online update process for S(y) and S(y™)
models, respectively. The updated model parame-
ters will also be recorded in the new block. Similar
to other processes, the calibrated models can also
be verified by any user in the system, and rewards
will be given to the miner.

Since every aforementioned process can be verified by any
user, they are considered as the proof of work (PoW) for
the miner. We also demonstrate the framework implementa-
tion process in Algorithm 1. In the algorithm, we summarize
the main processes for both regular users and miners. In par-
ticular, the regular user is encouraged to broadcast its local
model and a subset of its local data set. In the meantime,
the regular user can utilize the models on the blockchain to
classify the unseen data. The miner then performs the fea-
ture and model calibration processes for model updating. So
far, we have introduced the implementation of the blockchain.
In conclusion, our system now enables collaborations among
heterogeneous models with heterogeneous input space.

V. PERFORMANCE EVALUATION

In this section, we investigate the learning performance
of the proposed federated learning with model and feature
calibration. In particular, we separately conduct simulations
considering the system contains heterogeneous models and
heterogeneous features. In the case of heterogeneous mod-
els, we include different deep learning models in the system
and test the proposed model calibration method on MNIST
data set [51]. In the case of heterogeneous features, we use
synthetic data and apply both feature and model calibration
methods to verify the system’s effectiveness. In both settings,
comparisons with results from existing methods have been
provided.

A. Classification with Heterogeneous Models

1) Data Preprocessing: To simulate the multiparty setting,
we separate the data set into different parties with different

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION

I ARHAEE

0

(a)

EEERE

o/ |1]]2/|3]||4|]|5 7
(d)

1 2 3 4 5 6 7 8 9

5777
151 L8] [7] [8] [2] of [1][2] [3] [5 |6 7] [8] [9]
(©

Party 1

I FEELEL] Party 11
Party 1 [HH-HEHH AT P

T i
I
CTTT Coiisns
I
e |
N B

Party 20 Party 10[0 (1] [2[8][4 |5[[E][7I{E1(¥] Party 20

Fig. 4. Data distributions in different simulation cases. Each color represents the local data on a party. There is no data overlap between different parties.
In (d), the red color denotes the shared public data that every party can access. In (e) and (f), the data are separated into 20 parties. In the former one, all
the ten classes’ data are evenly separated into 20 parties. In the latter one, the data distribution is skewed, where each party only has data from a total of five
classes. (a) Two parties, case L. (b) Two parties, case II. (c) Five parties. (d) Ten parties. (e) 20 parties, case I. (f) 20 parties, case II.

data distributions, according to Fig. 4. We extend a similar
setting in [14], where six cases are formulated. These cases
vary from 2 to 20 parties. Some of the cases are data unified
distributed; some are skewed distributed, in which some parties
may never see the data from some specific classes.

2) Implementation (Benchmark): We compare our method
with a number of existing methods. First, we evaluate our
method by using a single model on the whole data set. In other
words, a single model is trained on the whole MNIST data set.
We adopt LeNet-5 [51], which is a popular CNN model. Then,
we adopt a popular distributed multiparty learning method,
HMR, as a comparison model [7]. In HMR, a central trusted
server collects the local data and models from all parties. The
server checks models over the union of all the data to find the
calibration samples by using an MPMC margin and generates
the final system output by using a max-model predictor.

Model Deployment and Calibration: In test cases of 2-party
and S-party, all the parties are deployed by the LeNet-5 model.
In test cases of 10-party and 20-party, heterogeneous models,
including both ANNs and CNNs, are deployed on differ-
ent parties. In particular, we adopt different popular CNN
models in the system, which include LeNet-5, ResNet, and
VGG [51], [52], [53]. Each of these models is deployed on a
certain party and trained on its own local data set. However,
since each party only has a partial data set, these models may
not perform well on the class that is missing in its local data
set. Next, the system implements a model calibration process
to calibrate the models’ output. Specifically, the miner in the
system will select a valid calibration sample (x, y, y~), which
makes the w(x,y,y”) in (8) a negative value. Once such a
sample is verified, the miner performs positive and negative
online update processes for S(y) and S(y~), respectively. In
this way, the system prediction score fys(x, ¥) and fgys(x, y7)
can be increased and decreased, respectively. Finally, once a
data sample (x, y) is given, the system generates the prediction
score based on (2).

3) Simulation Results and Discussion: The comparisons of
accuracy over designed data distribution cases are shown in
Fig. 5. It can be observed from the figure that the proposed
federated learning with model and feature calibration method
(FL-MFC) reaches a similar performance as HMR in all
cases, which demonstrates the effectiveness of the proposed
framework. It should be noted that the convergence speed of
FL-MFC is slower than HMR. This is because the proposed
framework is designed for the untrusted decentralized environ-
ment. The secure aggregation algorithm in the proposed frame-
work ensures that the model calibration method is resilient to
bogus and malicious models, which is proved in [14]. This
aggregation ensures the performance; in the meantime, slightly
degrades the performance convergence speed. We believe this
is fair and acceptable in decentralized systems, especially
when there is no authority party exists.

Additionally, when it comes to 20 parties in cases e and f,
since the data amounts on each party are decreased compared
with the previous cases, it takes a longer time to calibrate the
models in the system for both HMR and FL-MFC. Another
finding is that case f finally reaches a higher accuracy than
case e, even though they are both 20 parties. We believe this
is caused by data distribution. In case e, every party has data
samples from all classes from O to 9. In case f, each party
only has data samples from partial classes. For instance, party
1 only has data from classes O to 4, while party 11 has data
from classes 5 to 9. However, in this case, each party has fewer
classes to learn. In other words, party 1 in case f needs to train
the model over classes from 0 to 4, while party 1 in case e
needs to train all 10 classes. Furthermore, party 1 in case e
has fewer data samples for each class than party 1 in case f.
This causes that party 1 in case e may not be able to be well-
trained over the local data set. On the other hand, party 1 in
case f would outperform party 1 in case e over classes from 0
to 4. Based on this, case f outperforms case e after the model
calibration. In general, to generate high accuracy, we should

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5778 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024
098 098 ir
0.97 0.96 09-
0.94
0.96 0.8}
> > Iy
g Zo.92 3
50.95 =] 307
8 8 2]
£ £ 09 £
0.94 0.6}
0.88
0.93 - 1 . 05+
—#—Centralized Baseline Model 0.86 —#—Centralized Baseline Model —#—Centralized Baseline Model
HMR-2party-Case-I (Baseline) HMR-2party-Case-l (Baseline) HMR-5party (Baseline)
—0—FL-MFC-2party-Case-| —0—FL-MFC-2party-Case-Il —9—FL-MFC-5party
0.92- : : - 0.84L- - - - 04! - :
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration
(a) (b) ()
1r 1r 1
09- 09+ 0.95
08+ 08+ 09
201 >oo0 ..085
gor go7 g
§ § 3 08
£06- £06- g
0.75
05 0.5
0.7
0.4 —#—Centralized Baseline Model 0.4 —#—Centralized Baseline Model 0.65 —#—Centralized Baseline Model
HMR-10party (Baseline) HMR-20party-Case-| (Baseline) HMR-20party-Case-Il (Baseline)
—9— FL-MFC-10party ——FL-MFC-20party-Case-| —0— FL-MFC-20party-Case-Il
03t . : 03k . ; 0.6L . . d
10 20 30 40 50 0 20 40 60 80 0 20 40 60 80
Iteration Iteration Iteration
(d) (e) ®
Fig. 5. Comparison results of accuracy on different data distribution cases. (a) Two parties, case I. (b) Two parties, case II. (c) Five parties. (d) Ten parties.

(e) 20 parties, case I. (f) 20 parties, case IIL.

be inclined to have each party trained on each class it has as
well as possible rather than let each party have data samples
from more classes.

B. Classification With Heterogeneous Features

In this section, we investigate the performance of the
proposed framework considering there are heterogeneous fea-
tures that exist in different parties of the system. In particular,
we consider a scenario in which there are two patrties, e.g., par-
ties 1 and 2, in the system. These two parties have local data
sets with heterogeneous features and models. We implement
the feature and model calibration process in this section to
investigate the effectiveness of the proposed system.

1) Data Preprocessing: We adopt five data sets from the
UCI machine learning repository in this section [54]. For each
data set, we partition the data samples, split the attributes
into two parties, and investigate the performance of feature +
model calibration. Specifically, we consider there are two par-
ties in the system. Given a data set, we partition the data
set into half and half. The first 50 percent of data samples
are assigned to party 1, and the rest is assigned to party 2.
Additionally, all attributes of the data set are randomly split
into three parts.

The portion of the data for party 1 self-owned attributes,
party 2 self-owned attributes, and shared attributes are 35%,
35%, and 30%, respectively. In this way, there are only 30%
of overlapping features between two parties. In addition, we
use 70 % of local data are used for training and 30 % for
testing. In summary, party 1 contains the first half of the data

set and 65% of attributes, while party 2 has the second half
and 65% of attributes. 30% of attributes are shared by both
parties.

2) Implementation: In this simulation, we deploy an SVM
model [55] on both parties 1 and 2. Each model is trained
using 70% of its local data set, as mentioned above. Since
the attributes owned by each party are public information.
Parties 1 and 2 can learn correlation coefficients W; and
Wy, respectively, based on the shared and self-owned features
through (10) and (11). Once done, each party will broadcast
their model parameters and correlation coefficients, i.e., W
and W, in the system.

Hence, party 1 can reconstruct a data sample, X1, by
using (12), that fits the input space of the model on party 2.
Similarly, party 2 can reconstruct its local data set to party 1’s
input space. So far, the feature calibration process has been
completed. Both parties can input their local data samples to
the other’s model and generate predictions without exposing
their local data set to the other party. Then, a similar pro-
cess in the previous simulations can be conducted to perform
model calibration. Specifically, each party finds a data sample
(x,y,y7) that makes w(x,y,y”) in (8) a negative value and
broadcasts it in the system. Once the miner in the system
verifies that, they will perform positive and negative online
updates to increase and decrease the corresponding model’s
prediction score on the sample, respectively. It should be noted
that the results demonstrate that less than 1% of the amount
of the global data set is enough to make the performance
converge in the model calibration process. This indicates the
number of shared data samples is very limited, which leads

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: BLOCKCHAIN-EMPOWERED FEDERATED LEARNING THROUGH MODEL AND FEATURE CALIBRATION

TABLE 11
COMPARISON RESULTS OF ACCURACY ON DATA SETS. THE LAST Row
REPRESENTS THE TIMES OF WIN OR LOSS ON THE PROPOSED
FRAMEWORK, I.E., FL-MFC VERSUS OTHERS

\ FL-MFC HFA OTL BEMA
Colic 0.722 0.652 0.707 0.686
German Credit Data 0.676 0.680 0.720 0.675
Spambase 0.818 0.722 0.803 0.770
SPECTF 0.776 0.801 0.934 0.329
Waveform 0.660 0.626 0.639 0.368
FL-MFC (W /L) \ N/A 3/2 3/2 5/0

to moderate privacy leakage. Finally, each party obtains the
system prediction score for an unseen data sample through (2).

For the comparison models, we adopt two heterogeneous
transfer learning methods, called HFA [56] and OTL [57].
The HFA method transfers the local training spaces of each
model to an augmented space. In particular, it needs to incor-
porate data from the other party in the current party training
process, which causes data exposure to a certain extent. OTL
trains models in an online manner. It builds a co-regularized
regularizer to make predictions from two feature spaces. In
addition to HFA and OTL, we test a naive setup in which
there is still an SVM on each party, but no feature and model
calibration processes are implemented. In other words, consid-
ering party 1 and party 2, their SVM models are only trained
on their local data sets. Then, given an unseen data sample,
we directly apply the score aggregation function, (2), to obtain
the system prediction score.

3) Results and Discussion: The comparison results are
shown in Table II. The highest accuracy is in bold. Through
five real-world data sets, the proposed framework, FL-MFC,
outperforms the existing methods, HFA and OTL. Especially
compared with the BEMA algorithm, the FL-MFC can effec-
tively calibrate the heterogeneous feature spaces among differ-
ent parties and further enhance the system’s accuracy. Without
feature calibration, the BEMA only conducts the model col-
laboration among homogeneous input space. If most of the
models in the system have different input spaces, the BEMA
algorithm’s performance is largely degraded, as shown in
SPECTF and Waveform in Table II. Overall, results from
both Sections V-A and V-B indicate that the FL-MFC can,
first, reach similar performance with existing methods when
there are only heterogeneous models and, second, outperform
existing ones when there are both heterogeneous models and
features.

VI. CONCLUSION

In this article, we have proposed a blockchain-empowered
federated learning system that enables model collaboration
in a fully heterogeneous environment, including both hetero-
geneous models and feature spaces. In particular, we have
designed model and feature calibration processes to enable het-
erogeneous models with heterogeneous input spaces to collab-
orate with each other to effectively improve their performance.
With the proposed aggregation algorithm, the models in the

5779

system are able to output high-accuracy results on unseen data
samples. Performance evaluation over machine learning and
real-world data sets has been conducted to validate the efficacy
of model and feature calibration, respectively. The comparison
results have demonstrated the effectiveness of the proposed
system under a heterogeneous environment.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms,
applications and emerging research trends,” IEEE Access, vol. 6,
pp. 24411-24432, 2018.

[2] F.Liang, W. G. Hatcher, W. Liao, W. Gao, and W. Yu, “Machine learning
for security and the Internet of Things: The good, the bad, and the
ugly,” IEEE Access, vol. 7, pp. 158126-158147, 2019.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50-60, May 2020.

[4] P. Tian, W. Liao, W. Yu, and E. Blasch, “WSCC: A weight-similarity-
based client clustering approach for non-IID federated learning,” IEEE
Internet Things J., vol. 9, no. 20, pp. 20243-20256, Oct. 2022.

[5] Z. Chen, W. Liao, P. Tian, Q. Wang, and W. Yu, “A fairness-
aware peer-to-peer Decentralized learning framework with heteroge-
neous devices,” Future Internet, vol. 14, no. 5, p. 138, 2022. [Online].
Available: https://www.mdpi.com/1999-5903/14/5/138

[6] Z. Chen, P. Tian, W. Liao, and W. Yu, “Zero knowledge clustering based
adversarial mitigation in heterogeneous federated learning,” IEEE Trans.
Netw. Sci. Eng., vol. 8, no. 2, pp. 1070-1083, Apr.—Jun. 2021.

[71 X.-Z. Wu, S. Liu, and Z.-H. Zhou, “Heterogeneous model reuse via opti-
mizing multiparty multiclass margin,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 6840-6849.

[8] H.-J. Ye, D.-C. Zhan, Y. Jiang, and Z.-H. Zhou, “Heterogeneous few-
shot model rectification with semantic mapping,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 11, pp. 3878-3891, Nov. 2021.

[9] T. Vogels et al., “RelaySum for decentralized deep learning on hetero-
geneous data,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 28004-28015.

[10] D. Gao, Y. Liu, A. Huang, C. Ju, H. Yu, and Q. Yang, “Privacy-
preserving heterogeneous federated transfer learning,” in Proc. IEEE
Int. Conf. Big Data (Big Data), 2019, pp. 2552-2559.

[11] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning
on heterogeneous devices: A survey,” 2021, arXiv:2109.04269.

[12] K. Pillutla, Y. Laguel, J. Malick, and Z. Harchaoui, “Federated learning
with heterogeneous data: A superquantile optimization approach,” 2021,
arXiv:2112.09429.

[13] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE Int. Conf.
Commun. (ICC), 2019, pp. 1-7.

[14] Q. Wang, Y. Guo, X. Wang, T. Ji, L. Yu, and P. Li, “Al at the
edge: Blockchain-empowered secure multiparty learning with heteroge-
neous models,” IEEE Internet Things J., vol. 7, no. 10, pp. 9600-9610,
Oct. 2020.

[15] X. Chen, J.Ji, C. Luo, W. Liao, and P. Li, “When machine learning meets
blockchain: A decentralized, privacy-preserving and secure design,” in
Proc. IEEE Int. Conf. Big Data (Big Data), 2018, pp. 1178-1187.

[16] Y. Tian, T. Li, J. Xiong, M. Z. A. Bhuiyan, J. Ma, and C. Peng,
“A blockchain-based machine learning framework for edge services
in IIoT,” IEEE Trans. Ind. Informat., vol. 18, no. 3, pp. 1918-1929,
Mar. 2022.

[17] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti:
A blockchain system for private and secure federated learning,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1513-1525, Jul. 2021.

[18] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain
and federated learning for privacy-preserved data sharing in indus-
trial 1oT,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4177-4186,
Jun. 2020.

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

5780

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “DeepChain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 5,
pp. 2438-2455, Sep./Oct. 2021.

L. Yin, J. Feng, S. Lin, Z. Cao, and Z. Sun, “A blockchain-based collabo-
rative training method for multi-party data sharing,” Comput. Commun.,
vol. 173, pp. 70-78, May 2021.

P. Kairouz et al., “Advances and open problems in federated learn-
ing,” Found. Trends® Mach. Learn., vol. 14, nos. 1-2, pp. 1-210,
2021.

Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, p. 12, 2019.

K. Bonawitz et al., “Towards federated learning at scale: System
design,” 2019, arXiv:1902.01046.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” 2018, arXiv:1806.00582.

X. Liu, H. Zhao, M. Pan, H. Yue, X. Li, and Y. Fang, “Traffic-aware
multiple mix zone placement for protecting location privacy,” in Proc.
IEEE INFOCOM, 2012, pp. 972-980.

V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4424-4434.

A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentral-
ized federated learning,” in Proc. 3rd Workshop Bayesian Deep Learn.
(NeurIPS), 2018, pp. 1-9.

Y. Esfandiari et al., “Cross-gradient aggregation for decentralized learn-
ing from non-iid data,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 3036-3046.

K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-iid data
quagmire of decentralized machine learning,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 4387-4398.

S. Li, T. Zhou, X. Tian, and D. Tao, “Learning to collaborate in decen-
tralized learning of personalized models,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2022, pp. 9766-9775.

X. Liang, A. M. Javid, M. Skoglund, and S. Chatterjee, “Asynchrounous
decentralized learning of a neural network,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), 2020, pp. 3947-3951.

T. Riickel, J. Sedlmeir, and P. Hofmann, “Fairness, integrity, and pri-
vacy in a scalable blockchain-based federated learning system,” Comput.
Netw., vol. 202, Jan. 2022, Art. no. 108621.

S. K. Lo et al, “Toward trustworthy AI: Blockchain-based archi-
tecture design for accountability and fairness of federated learning
systems,” [EEE Internet Things J., vol. 10, no. 4, pp. 3276-3284,
Feb. 2023.

L. Cui, X. Su, and Y. Zhou, “A fast blockchain-based federated learn-
ing framework with compressed communications,” IEEE J. Sel. Areas
Commun., vol. 40, no. 12, pp. 3358-3372, Dec. 2022.

C. Ma et al., “When federated learning meets blockchain: A new dis-
tributed learning paradigm,” IEEE Comput. Intell. Mag., vol. 17, no. 3,
pp. 26-33, Aug. 2022.

J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “A novel
framework for the analysis and design of heterogeneous federated
learning,” IEEE Trans. Signal Process., vol. 69, pp. 5234-5249,
2021.

M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen,
“Local learning matters: Rethinking data heterogeneity in federated
learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 8397-8406.

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

(571

T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, “Over-the-air fed-
erated learning from heterogeneous data,” IEEE Trans. Signal Process.,
vol. 69, pp. 37963811, 2021.

T. Lin, S. P. Karimireddy, S. U. Stich, and M. Jaggi, “Quasi-global
momentum: Accelerating decentralized deep learning on heterogeneous
data,” 2021, arXiv:2102.04761.

S. Horvath, S. Laskaridis, M. Almeida, 1. Leontiadis, S. Venieris, and
N. Lane, “FjORD: Fair and accurate federated learning under heteroge-
neous targets with ordered dropout,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 34, 2021, pp. 12876-12889.

H. Hu, D. Wang, and C. Wu, “Distributed machine learning through
heterogeneous edge systems,” in Proc. AAAI Conf. Artif. Intell., vol. 34,
2020, pp. 7179-7186.

Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for
heterogeneous federated learning,” in Proc. Int. Conf. Mach. Learn.,
2021, pp. 12878-12889.

L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from
heterogeneous datasets,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 1544-1551.

L. He, S. P. Karimireddy, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via resampling,” 2020, arXiv:2006.09365.

E. Diao, J. Ding, and V. Tarokh, “HeteroFL: Computation and com-
munication efficient federated learning for heterogeneous clients,” 2020,
arXiv:2010.01264.
F. Yu et al,
arXiv:2008.06767.
W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in
heterogeneous federated learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2022, pp. 10143-10153.

L. Li, D. Shi, R. Hou, H. Li, M. Pan, and Z. Han, “To talk or to
work: Flexible communication compression for energy efficient feder-
ated learning over heterogeneous mobile edge devices,” in Proc. [EEE
Conf. Comput. Commun., 2021, pp. 1-10.

H. Wang, F. Nie, and H. Huang, “Multi-view clustering and feature
learning via structured sparsity,” in Proc. Int. Conf. Mach. Learn., 2013,
pp- 352-360.

H. Wang, F. Nie, W. Cai, and H. Huang, “Semi-supervised robust dic-
tionary learning via efficient l-norms minimization,” in Proc. IEEE Int.
Conf. Comput. Vis., 2013, pp. 1145-1152.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

D. Dua and C. Graff. “UCI machine learning repository.” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871-1874, Jun. 2008.

W. Li, L. Duan, D. Xu, and I. W. Tsang, “Learning with augmented
features for supervised and semi-supervised heterogeneous domain
adaptation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 6,
pp. 1134-1148, Jun. 2014.

P. Zhao, S. C. Hoi, J. Wang, and B. Li, “Online transfer learning,” Artif.
Intell., vol. 216, pp. 76-102, Nov. 2014.

“Heterogeneous federated learning,” 2020,

Authorized licensed use limited to: Towson University. Downloaded on March 12,2024 at 19:47:02 UTC from IEEE Xplore. Restrictions apply.

