
Safety Monitoring for Pedestrian

Detection in Adverse Conditions

Swapnil Mallick, Shuvam Ghosal(B), Anand Balakrishnan,
and Jyotirmoy Deshmukh

University of Southern California, Los Angeles, CA 90007, USA
{smallick,sghosal,anandbal,jdeshmuk}@usc.edu

Abstract. Pedestrian detection is an important part of the perception
system of autonomous vehicles. Foggy and low-light conditions are quite
challenging for pedestrian detection, and several models have been pro-
posed to increase the robustness of detections under such challenging
conditions. Checking if such a model performs well is largely evaluated
by manually inspecting the results of object detection. We propose a
monitoring technique that uses Timed Quality Temporal Logic (TQTL)
to do differential testing: we first check when an object detector (such
as vanilla YOLO) fails to accurately detect pedestrians using a suitable
TQTL formula on a sequence of images. We then apply a model special-
ized to adverse weather conditions to perform object detection on the
same image sequence. We use Image-Adaptive YOLO (IA-YOLO) for
this purpose. We then check if the new model satisfies the previously
failing specifications. Our method shows the feasibility of using such a
differential testing approach to measure the improvement in quality of
detections when specialized models are used for object detection.

Keywords: Pedestrian Detection · Autonomous Driving · Temporal
Logic

1 Introduction

Convolutional Neural Network (CNN) based models [5,10,14,25,28] have
become widespread in the field of pedestrian detection and have been able to
achieve impressive results when tested on benchmark driving datasets. Some of
these models have also been deployed in autonomous vehicles [29].

According to the California DMV statistics, 627 autonomous vehicle colli-
sion have been reported as of July 25, 2023 despite numerous object detection
models faring well when tested on high-quality images captured in clear weather
conditions [1]. An important question is how these models fare under challenging
lighting conditions such as when it is foggy or dark. Beyond the obvious issues
presented by images being out-of-distribution with respect to the lighting condi-
tions, this problem becomes harder when pedestrians wear black or dark colored
clothes at night.
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In this case study paper, we have two main objectives. First, we wish to
demonstrate a logic-based metric that can show that pedestrian detection in
low-light conditions suffers in quality without the use of ground-truth annota-

tions. Towards this end, we use the YOLO object detection model [24] trained
on a standard driving dataset, and apply it to videos containing poor lighting
conditions. Our technical idea is to use the quality metric of Timed Quality
Temporal Logic TQTL [4,7]. We show that we can express object consistency
properties in TQTL, and use the PerceMon tool [3] to monitor violations of the
given TQTL specification by the sequence of detections output by YOLO.

We then use a modified object detection framework called IA-YOLO [17].
IA-YOLO has a component that predicts parameters to be used for a differen-
tiable image processing (DIP) module. The DIP module can be thought of as a
way to implement a number of image filters to improve performance of object
detection. We then monitor the detections by IA-YOLO against the same TQTL
specification.

The main conclusions of this study are as follows: (1) The quality of a TQTL
specification on detections using vanilla is poor when pre-trained YOLO is used
on videos with low-light conditions. (2) The quality of TQTL specifications is
significantly improved when IA-YOLO is used for detections.

Related Work. Significant research has been conducted for general pedestrian
detection. However, only a few efforts have been made to detect pedestrians
successfully in adverse lighting and weather conditions. Works like IA-YOLO [17]
and DENet [22] use filters implementing ideas similar to those used in image
processing to preprocess images for object detectors like YOLO, and thereby
improving process. Other works, like the CycleGAN framework presented in [27]
augment existing datasets with generative images that simulate adverse weather
conditions to improve the robustness of an object detector. In a similar light,
the authors of [18] present datasets synthetically generated images that simulate
adverse weather conditions.

Evaluation of multi-object detection models have predominantly used the
mean average precision (mAP) metric, popularized by the PASCAL-VOC
dataset [8]. This metric evaluates the accuracy of object detectors by estimat-
ing the area under the curve of the precision-recall relationship with respect
to a given dataset. Mean average precision(mAP) is the average of the Aver-
age precision(AP) values for each output object class. While other metrics have
been proposed in literature, these aren’t as popular as the mAP evaluation met-
ric [20,21].

The above approaches rely on either augmenting existing datasets to improve
robustness of object detectors, or comparing against ground truth to evaluate
the accuracy of a model. To this light, recent literature has proposed the use of
temporal logics to evaluate perception systems without access to groundtruth
data [4,6,12]. These use TQTL (and its extension Spatio-temporal Quality
Logic) to monitor for incorrect behavior of object detector models. Similarly,
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the works in [3] and [2] propose the use of online monitoring techniques to per-
form fault detection at runtime.

2 Preliminaries

Object detection is a computer vision task to check the presence of objects of
a certain class in an image and also obtain a bounding box (in image coordi-
nates) indicating the location of the object within the image. Object detection
algorithms can be broadly categorized into two groups based on how they oper-
ate. Some algorithms propose regions of interest (RoIs) in the image space [9]
and then classify the regions by training neural networks. These algorithms are
called the region proposal-based methods. The other class of algorithms com-
prises single-stage regression based methods [15,16], such as the YOLO series
[23] of algorithms. In algorithms like YOLO, the result of applying object detec-
tion to an image is a list of bounding boxes in image coordinates, and for each
bounding box in this list, we obtain a class label (for the purported object in
the box), and a number in [0, 1] that indicates the confidence of the detector
in the class label. In autonomous driving applications, class labels may include
bicycles, cars, pedestrians, traffic lights, etc.

Usually, images captured in adverse weather or during low-light conditions
do not have the same distribution of low-level features, which leads to poor
detection of some kinds of object classes. Some weather effects like rain or fog
can obscure key features or have the effect of adding noise to the image. In
traditional image processing literature, custom image filters can be designed to
denoise images [30], remove the effects of certain weather phenomena [19,26], or
enhance features required for detection. However, designing custom image filters
is a manual and tedious process. An approach to overcome this problem is to
use an adaptive detection model such as IA-YOLO. Such a model can filter out
weather-specific information and highlight latent information to make detection
easier. We discuss IA-YOLO next.

2.1 IA-YOLO

Fig. 1. The training pipeline of the IA-YOLO framework.
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The IA-YOLO pipeline consists of (1) a parameter predictor based on a con-
volutional neural network (CNN), (2) a differentiable image processing module
(DIP), and a (3) detection network. Before applying the IA-YOLO pipeline, we
resize a given image to have 256 × 256 resolution, and then feed to the CNN
parameter predictor. The CNN parameter predictor then tries to predict the
parameters of DIP. Following that, the image filtered by the DIP module is fed
as input to the YOLOv3 [24] detector for the pedestrian detection task.

CNN-Based Parameter Predictor. As shown in Fig. 1, the CNN parameter
predictor module consists of five convolutional blocks followed by two fully-
connected layers. Each convolutional block contains a 3× 3 convolutional layer
with stride 2 and a leaky ReLU activation layer. The module tries to understand
the global content of the image, such as brightness, color and tone and the
degree of fog in order to predict the parameters required by the DIP module. In
order to save computation cost, the input images are downsampled to a lower
resolution of 256× 256 using bilinear interpolation. The output channels of the
five convolutional layers are 16, 32, 32, 32 and 32, respectively. The output of
this module is fed into the DIP module.

DIP Module. The DIP module consists of six differentiable filters with
adjustable hyperparameters, namely Defog, White Balance (WB), Gamma, Con-
trast, Tone and Sharpen. According to Hu et al. [13], the standard color and
tone operators, such as White Balance, Gamma, Contrast and Tone, can be
expressed as pixel-wise filters. Therefore, the filters can be classified into three
categories namely, Pixel-wise, Defog and Sharpen Filters. The Defog filter has
been designed for foggy scenes only.

Pixel-Wise Filters. In pixel-wise filters, an input pixel value Pi = (ri, gi, bi)
is mapped into an output pixel value Po = (ro, go, bo) where (r, g, b) represent
the values of the red, green and blue color channels, respectively. The mapping
functions of the pixel-wise filters have been shown in Table 1.

Table 1. Mapping functions of pixel wise filters.

Filter Parameters Mapping Function

Gamma G: gamma value Po = P G
i

WB Wr, Wg, Wb: factors Po = (Wr.ri, Wg.gi, Wb.bi)

Tone ti: tone params Po = (Ltr (ri), Ltg (gi), Ltb
(bi))

Filter α: contrast value Po = α.En(Pi) + (1 − α).Pi
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Defog Filter. We used a defog filter designed using the dark channel prior

method by He et al. [11]. The formation of a hazy image can be formulated as
follows:

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where I(x) is the foggy image, J(x) represents the scene radiance (clean image),
A is the global atmospheric light, and t(x) is the medium transmission map.
The atmospheric light A and the transmission map t(x) need to be obtained to
recover the clean image J(x). At first, the dark channel map of the haze image
I(x) has been computed and the top 1000 brightest pixels have been picked.
Then, the average of those 1000 pixels of the corresponding position of the haze
image I(x) has been taken to estimate the value of A.

Sharpen Filter. We use the sharpen filter to enhance the image details. For
sharpening the images, the following equation describes the process:

F (x, λ) = I(x) + λ(I(x) − Gau(I(x))) (2)

where I(x) is the input image, Gau(I(x)) denotes Gaussian filter, and λ is a
positive scaling factor.

Detection Module. We use the single-stage YOLOv3 detection network, with
the same network architecture and loss function as the original YOLOv3 [24].
YOLOv3 contains darknet-53 which has successive 3×3 and 1×1 convolutional
layers based on the idea of ResNet.

2.2 Timed Quality Temporal Logic (TQTL)

Timed Quality Temporal Logic (TQTL) [6,12] is an extension of Timed Propo-
sitional Temporal Logic (TPTL) which incorporates syntax and semantics for
reasoning about data from perception systems specifically. The syntax defines
operators to reason about classes of detected objects and the confidence associ-
ated with the detection outputted by perception systems.

TQTL Syntax. A TQTL formula ϕ over a finite set of predicates P, a finite
set of frame number variables (νt), and a finite set of object ID variables (νid

)
can be defined according to the following grammar:

ϕ:: =� | μ | t.ϕ | ∃id@t, ϕ | ∀id@t, ϕ |

t ≤ u + n | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∪ ϕ2

(3)

The time constraint is t ≤ u + n, which implies the timespan starting from u

and spanning across n consecutive frames.
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TQTL Semantics. The semantics of TQTL maps a data stream D, which is
a sequence of video frames containing multiple candidate objects in each frame,
a frame number � and a valuation function ν to a real-valued entity. A valu-
ation function in this context is a function that assigns some values to frames
and objects present in the corresponding frames. TQTL mainly deals with the
task that if a particular object is tracked across multiple frames of a video, the
probability of detecting it does not fall below a certain threshold across a cer-
tain number of consecutive frames. The function [[·]] can be defined recursively
as follows:

[[�]](D, τ, ν) = +∞

[[μ]](D, τ, ν) = θ(ν(fμ(t1, ..., tn1
, id1, ..., idn2

)), c)

[[t.ϕ]](D, τ, ν) = [[ϕ]](D, τ, ν[t ← τ ])

[[∃id@t, ϕ]](D, τ, ν) = max
kεS(Dv(t))

[[ϕ]](D, τ, ν[id ← k])

[[t ≤ u + n]](D, τ, ν) =

{

+∞, if ν(t) ≤ ν(u) + n,

−∞, otherwise.

[[¬ϕ]](D, τ, ν) = −[[ϕ]](D, τ, ν)

[[ϕ1 ∧ ϕ2]](D, τ, ν) = min([[ϕ1]], [[ϕ2]](D, τ, ν))

[[ϕ1 ∪ ϕ2]](D, τ, ν) = max
τ ′≥τ

min

(

[[ϕ2]](D, τ ′, ν),
minτ ′′∈[τ,τ ′)[[ϕ1]](D, τ ′′, ν)

)

3 Our Approach

The pipeline consists of the IA-YOLO model for processing the input frame
and detecting pedestrians along with a TQTL monitor for verifying a given
specification under adverse weather conditions. The CNN parameter predictor
module of the IA-YOLO takes an input frame and outputs the parameters for
the different filters of the DIP module which then generates an enhanced image
containing the latent information. In the second step, a TQTL monitor for a
given specification ϕ monitors the output of the IA-YOLO model, reporting
whether the specification has been satisfied or violated (Fig. 2).

Fig. 2. TQTL Monitoring Pipeline for IA-YOLO
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4 Experimental Analysis

In our case, we focus on detecting pedestrians in foggy and night conditions.
We aim to validate the following specification: “If a person is detected with a
confidence score greater than or equal to 0.3 in a particular frame, then in the
next 4 frames, the probability of detecting the same person should never drop
below 0.25.” This specification is represented by the following TQTL expression:

ϕ = 
�(x.∀id1@x, (C(x, id1) = Pedestrian ∧ P (x, id1) ≥ 0.3)

→ 
�(y.((x ≤ y ∧ y ≤ x + 4)

→ C(y, id1) = Pedestrian ∧ P (y, id1) > 0.25))

We have chosen the confidence scores to be 0.3 and 0.25 respectively to account
for the comparatively poorer performance of detection models in adverse condi-
tions as compared to clear weather conditions and to aid the comparison task
between IA-YOLO and vanilla YOLO.

For the purpose of our experimentation, we have created a custom evaluation
dataset containing night and foggy driving videos from dash-cam driving videos
that are publically available on YouTube. In order to create our dataset, we have
taken small clips from these videos where a pedestrian is found be crossing the
road front of the car. Note that while these video clips do not contain any ground
truth annotations, our evaluation metric is based on the quantitative semantics
of TQTL, which do not rely on groundtruth.

To evaluate the models, we compute the robustness of both vanilla YOLO
and IA-YOLO on the videos contained the dataset, with respect to the above
specification ϕ. The results are shown in Table 2, and Fig. 3 and Fig. 4 show some
examples of sequences of images that satisfy or violate the specification ϕ. We

Table 2. Robustness values achieved on custom dataset using Vanilla YOLO and
IA-YOLO models against ϕ.

Weather Condition Robustness ϕ

Vanilla YOLO IA-YOLO

Foggy −0.25 0.31

−0.25 0.36

−0.25 0.29

−0.25 0.51

Night 0.28 0.54

0.10 0.22

−0.25 0.22

0.07 0.3

0.29 0.58

−0.25 0.18
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(a)

(b)

Fig. 3. Monitoring results in night conditions.

(b)

Fig. 4. Monitoring results in foggy conditions.

find that vanilla YOLO does not sufficiently satisfy the TQTL specification in
foggy conditions, but detects pedestrians reasonably well night-time conditions.
On the other hand, the IA-YOLO model is found to be able to detect pedestrians
succesfully in both foggy and night conditions.



Safety Monitoring for Pedestrian Detection in Adverse Conditions 397

5 Conclusion

The IA-YOLO model has been able to detect pedestrians satisfactorily in foggy
and night conditions. IA-YOLO performs better as compared to vanilla YOLO
in adverse conditions. However, we found some cases where it fails to detect
pedestrians in one of the consecutive frames with the desired level of confidence.
The robustness of this model has been estimated using TQTL which has been
able to correctly verify the required specification. This quality metric will help in
debugging or improving the existing model and lead to better detection results
in foggy and night conditions in a safety-critical context.

We plan to develop a more robust YOLO model for object detection in low-
light conditions by fine-tuning the current model. We also aim to reduce the
runtime of the entire monitoring process by only applying the DIP module on
the frames where the TQTL monitor fails instead of all the frames. Moreover,
we hope to create a training dataset which will be used to train the CNN-PP
module more efficiently with the images which are flagged as “violated” by the
TQTL monitor.
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