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On the Fisher Identifiability of Coupled Transport Processes in Animal
Hypoxia Experiments

Eman M. Abdelazim' and Hosam K. Fathy?

Abstract— This paper examines the Fisher identifiability of
two coupled transport processes with substantial disparities in
their transport coefficients. This work is motivated by the prob-
lem of estimating the efficacy of a novel life support technology
for respiratory failure patients. The idea is to circulate an
oxygen carrier through the patient’s abdomen, thereby utilizing
abdominal gas diffusion for life support. The paper presents
a third-order nonlinear model of the coupled dynamics of
gas transport in the lungs and abdomen during this medical
intervention. Linearizing this model and exploiting time scale
separation to reduce it to a first-order model makes it possible to
gain fundamental insights into its parameter identifiability. The
main insight is that the stronger transport process in the lungs
acts as a feedback mechanism that weakens the identifiability
of the parameter governing the weaker abdominal transport
process. Manipulating the stronger transport process through
active control and/or passive design can, therefore, potentially
improve identifiability. The paper concludes by illustrating
these insights using Monte Carlo simulation, showing a fourfold
improvement in abdominal transport coefficient estimation
accuracy through simple experimental redesign.

I. INTRODUCTION

This paper examines the problem of estimating the pa-
rameters associated with two coupled transport processes.
The paper addresses the following fundamental questions:
Suppose there is a significant disparity in the transport coeffi-
cients associated with these processes. How does this dispar-
ity affect the identifiability of the smaller/weaker coefficient?
Moreover, is it possible to employ feedback control and/or
experimental setup redesign to improve this identifiability?

The above questions are broadly applicable to different
domains including, for instance, parameter estimation for
coupled heat transfer processes. In the context of this par-
ticular paper, the motivating question is associated with the
development of a novel ventilation technology for respiratory
failure. Respiratory failure occurs when a patient’s lungs
can no longer perform their main functions - namely, blood
oxygenation and carbon dioxide clearance - without exter-
nal life support. Addressing respiratory failure is a critical
societal challenge, one example being the fact that more
than 100,000 patients are hospitalized annually with acute
respiratory distress syndrome (ARDS) in the U.S. alone [1].

Two treatment technologies currently exist for respiratory
failure: mechanical ventilation and extracorporeal membrane
oxygenation (ECMO). Both technologies suffer from signif-
icant complications and limitations. Mechanical ventilation
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Fig. 1: Illustration of coupled transport processes

increases the risk of lung damage through oxygen toxic-
ity, barotrauma, etc. [2]. This has the potential to cause
ventilator-induced lung injury (VILI), which increases the
need for mechanical ventilation, creating a potentially fatal
positive feedback loop. ECMO is a costly intervention that
requires constant monitoring by medical professionals [3],
and whose many associated complications include the risk of
blood clotting [4]. This paper is motivated by a novel third
potential life support technology for patients with respiratory
failure - namely, peritoneal oxygenation. The idea, sketched
in Fig. 1, is to perfuse (i.e., circulate) an oxygenated carrier
through the patient’s peritoneal (i.e., abdominal) cavity. This
has the potential to enable the diffusion-based transport of
oxygen from the into the patient’s bloodstream. This provides
additional oxygen to the patient, and also helps rest the lungs,
thereby potentially helping them heal.

The literature presents a number of studies on peritoneal
oxygenation, for different laboratory animals, using different
oxygen carriers [5], [6], [7], [8], [9], [10]. This paper is
motivated by the authors’ ongoing experimental research on
the peritoneal perfusion of a particular gas carrier - namely,
an oxygenated perfluorocarbon (PFC) - in laboratory swine.
Companion papers describe a novel mechatronic setup built
for this research [11], as well as state-space models of the
underlying dynamics of oxygen transport, carbon dioxide
transport, and perfusion-induced abdominal pressure buildup
[12], [13], [14]. A critical challenge in such state-space
modeling efforts is the difficulty of accurately parameterizing
the dynamics of peritoneal gas transport. The overarching
goal of this paper is to analyze this difficulty and explore
potential remedies for it. Specifically, the paper explores
three fundamental questions motivated by peritoneal oxy-
genation but broadly applicable to other coupled transport
estimation problems. First, how accurately can one estimate
the parameters governing peritoneal oxygenation or other
coupled transport processes? Second, how is this accuracy
affected by the relative strengths of the underlying transport
processes? Finally, how can one potentially manipulate these
transport processes to improve estimation accuracy?
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The above questions are analyzed using Fisher identifiabil-
ity analysis. This is an established tool in the estimation lit-
erature, with applications to various domains [15], [16], [17],
[18]. To the best of the authors’ knowledge, the application of
Fisher analysis to coupled transport models with significant
disparities in their underlying strengths is a novel addition
to the literature. The remainder of this paper addresses
this problem by making the following contributions. First,
the paper integrates existing sub-models from the literature
into a physics-based three-compartmental model of coupled
transport in a peritoneal perfusion experiment. The model
exhibits time scale separation, which makes it possible to
residualize its underlying dynamics (Section II). Second,
the paper applies Fisher information analysis analytically to
a local linearization of this model (Section III). This fur-
nishes fundamental insights regarding the model’s parameter
identifiability as well as the impact of perfusion experiment
design on identifiability. Third, the paper uses Monte Carlo
simulation to validate these insights numerically, for the
original nonlinear three-compartment model (Section IV).
Finally, Section V summarizes the paper’s conclusions.

II. COUPLED TRANSPORT MODEL

Consider the following three-compartment state-space
model of a hypoxic laboratory animal experiencing peri-
toneal oxygenation, as shown in Fig. 1:

@) < (s — 1)+ QHy(es — Falan)),

%(%bez) = QHy(fa(x1) — w2) + %(m — T3) —w,

d KA
%(Vpprii) = uz(ug — x3) + ?(1‘2 —x3).

(D

The three state variables in the above model are the partial
pressure of oxygen in the animal’s lung compartment, x1(t),
the fraction of dissolved oxygen in the animal’s vasculature
compartment, x5 (), and the fraction of dissolved oxygen in
the PFC, x3(t). The function f4 represents the hemoglobin
dissociation curve. The volumes of the lung, vasculature, and
peritoneum compartments are V;, V3, and V,,, respectively.
The symbol P represents the partial pressure of dry air, de-
fined as the difference between atmospheric pressure, Py,
and water vapor pressure, Py,o. The model’s four input
variables are the minute ventilation rate, w;(t), the fraction
of inspired oxygen us(t), the perfusion flowrate, us(t), and
the dissolved oxygen fraction in the PFC inflow, wu4(¢).
The animal’s metabolic oxygen consumption rate and total
cardiac output are denoted by w(t) and Q(t), respectively,
both of which are approximated as constant in this paper. The
maximum solubility of oxygen is represented by Hy and H,
in the animal’s blood and the PFC, respectively. Finally, «
represents diffusivity, A represents peritoneal surface area
exposed to diffusion, and 7' represents the mean peritoneal
diffusion distance/thickness.

Each state equation in the above model uses the law of
mass conservation to relate the rate of change of stored

oxygen in a given compartment to the corresponding oxygen
transport and/or consumption rates. In the first state equation,
for instance, the term Vjx;/P represents the volume of
oxygen stored in the lung compartment, and accounts for
the humidity of air inspired into the alveoli [19]. The term
uy(ug — x1/ P) represents the advective transport of oxygen
into and out of the lungs during inhalation and exhalation.
The model approximates the alveolar and pulmonary venous
partial pressures of oxygen as equal. This makes it possible
to represent the transport of oxygen between the lung
and vasculature compartments using the advective term
QHy(xzo — fa(x1)) [20]. The function fg(x1) in this term
represents the relationship between the concentration and
partial pressure of oxygen in the blood, also known as
the dissociation curve. The literature presents multiple
expressions approximating this dissociation curve, including
the Hill and Adair equations [21]. This paper approximates
the dissociation curve using the Hill equation [22], namely,
fa(x1) = (21")/ (2125 + z,"). This equation’s parameters
are the cooperativity coefficient (h) and the oxygen partial
pressure at 50% saturation (z150). In the second state
equation, the term Vj, Hyxo represents the equivalent volume
of oxygen (at standard temperature and pressure) stored in
the blood. The term kA/T (xs — x3) represents the rate of
oxygen transport in the abdomen, based on Fick’s law of
diffusion [23]. Finally, in the third state equation, the term
us(uyq — 3) represents the advective exchange of dissolved
oxygen between the abdominal cavity compartment and the
external perfusion setup. Table I lists the nominal values
of this model’s parameters for a 55 kg pig, as well as the
references used for estimating these values.

TABLE I: Nominal model parameter values

Parameter Value Parameter Value

P 713 mmHg [24] \! 1.36 L [25]

Hy 184.65 mLoo/Liiooa [26] Vi 3.685 L [27]

Vo 2 L [28] Hy 403 mLo/Lppc at 1 atm [29]
Q 5.86 L/min [30] h 2.7:3[31]

T150 35.7 +/- 0.6 mmHg [32] w 21.29 Loy/hr [33]
A 10171 cm? [34] T 316.9 + 146.7 pm [35]
K 7 x 1075 :2 x 1075 cm?/s for 120 kg pigs [36]

The above model can potentially be employed, together
with animal perfusion experiment data, for assessing the
efficacy of peritoneal oxygenation as a life support inter-
vention. One way to achieve this goal is to estimate the
model’s parameters from experimental data, with a particular
focus on estimating the effective peritoneal gas transport
coefficient, kA/T. This makes it important to evaluate
the identifiability of kA/T. The remainder of this paper
performs this identifiability analysis twice, from both a
theoretical perspective (in Section III) and a simulation
perspective (in Section IV). Reducing the model’s com-
plexity simplifies the first (theoretical) analysis, and also
helps contextualize it within the much broader framework
of identifiability analysis for coupled transport processes
beyond the specific application of peritoneal oxygenation.
The remainder of this section simplifies the above state-
space coupled diffusion model by (i) linearizing it around an
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equilibrium point then (ii) residualizing the resulting linear
model. The linearization process defines the model’s state
and input vectors as & = [z1, 2o, x3]" and @ = [ug,u4]
respectively. This corresponds to an experimental setting
where only the concentration of oxygen in both the inhaled
air and the pumped PFC change with time. Given this choice
of a smaller subset of input variables, one linearize the model
around a desired/reference equilibrium to obtain:

PQH,
(E.l = u‘;e(P’LLQ—J]])‘f' Q b(xg—C(El),
! l
. Q KA
== — C —_— S — P
To VE;( T $2) + ViH, T (333 332), 2)
. KA U3 e
T3 = m(fz —x3) + V,H, (ug — x3),

where C' is a constant that equals ((z1"~1)|./(218, +
1)) — (2127 Y)]e /(2125 + 21™)?|¢), and the subscript
e denotes equilibrium.

The above model can be simplified further by exploiting
the separation in time scales between its compartments.
Specifically, because the dynamics of x; and z3 are partially
governed by advection and manifold filling, we assume
that these dynamics are much faster than the dynamics of
x9(t) for sufficiently large incoming flowrates wu;(t) and
us(t). The values of wy(t) and us(t), in this work, vary
from 1-8 L/min and 1-6 L/min, respectively, leading to
corresponding time constants of 10.2-81.9 s and 8-44.9 s
for x1 and x3, respectively. The approximate time constant
for x5 is the inverse of kA/T which equals 106 s. This
makes it plausible to residualize the model by approximating
the dynamics of x1(t) and x3(t) as being instantaneous.
The state variables corresponding to the residualized state
equations are expressed as:

P
——— (QH,
Uie + PCQHb (Q b2 * UIEUZ)’ (3)
1
(kAzo + Tuz ug)

T =

= KA+ Tug,

Finally, the vasculature compartment is represented as:

1
Ty = VoI, (Ll (PC’LLQ — 33'2) + L2(“4 - 1'2)), 4)
\ ug, A
where, L1 = %, and Ly = U3i+£%‘

Now this model can be simplified further and expressed as:
&= k1(p — ) + ko(p2 — o), (5)

where, /,Ll(t) = PCUQ, To =1, ug(t) = U4, k‘l = Ll/‘/be,
and kg = Lg/Vbe.

Eq. 5 is a first-order linear state equation relating the
dynamics of an effective concentration, x(t), to two effective
input variables, u(t) and ps(t). Thanks to its simplicity,
analyzing this equation’s identifiability can potentially guide
a broad range of applications beyond peritoneal oxygenation.

III. SIMPLIFIED IDENTIFIABILITY ANALYSIS

This section applies Fisher identifiability analysis to the
simple first-order linear coupled transport model shown in
Eq. 5. Consider an experiment where the two transport
coefficients, k1 and ko, are both unknown, but the primary
goal is to estimate k. Moreover, suppose that this experiment
involves setting the first control input u;(t) to zero while
applying a step change to the second control input, ps(t) =
U,% (t). Here, % (t) is the unit step function and U, is
the magnitude of this second input. Assuming zero initial
conditions, the resulting trajectory for z(t) is given by:

() = UOTk?(l _ e, ©)
where, A\ = k; + ko. Suppose that the above trajectory of
z(t) is sampled uniformly in time, with some sampling time
dt. Moreover, suppose that the resulting measurements of
x(t) are corrupted by a zero-mean, independent, identically
distributed (i.i.d.) Gaussian noise process of variance 012,.
Then the output equation for the above experiment is:

ka2

(1= eT M) oy, ™

Yk = U,
where yj, and vy are the measured output and measurement
noise process value at time instant k, respectively. Consider
the problem of simultaneously estimating k2 and A using a
maximum likelihood approach. Fisher information analysis
can provide a local approximation of the best parameter
estimation accuracy that can be achieved by any unbiased
solution to this problem. To perform Fisher analysis, begin
by computing the sensitivities of the above output, without
noise, to the two unknown parameters, as follows:

O(yrx — vk) 1

sl = = = Uex(1—e™)
sa(t) = w =U, f%(l —e M)+ k;te)‘t] ,

®)

Given the above sensitivities, one can compute the corre-
sponding Fisher information matrix as follows:

po L l S ko) 25_1;1%&)32@&)]
02 | Yy s1(kdt)sa(kdt) Sy S3(kdt) ’
(&)
where N is the number of measurement instants during
the given experiment. In the limit as the sampling time ¢
approaches zero, the above Fisher information matrix can be

approximated using integrals instead of sums:

I sl(t)SQ(t)dt] (10,

I s3(tyat

T
o o s3(t)dt
otoy | [ s1(t)sa(t)dt

Finally, the Cramér-Rao theorem states that the best achiev-
able parameter estimation error covariance is given by the
inverse of the above Fisher information matrix, i.e., C =
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F~!. Computing this matrix analytically and focusing on
the term corresponding to the parameter ko gives:

4€>\T _ 362)\T
_ 215 . 2\T
85tUUA € <+2>\T62>\T _1

18k3e* M — 32k3e3 + 15k3e* > k3
12 —8ATk3eM + 36ATkZe2
0 —24X\Tk3e* — ANTk3e"
H12X2T2k2e2A T + 8\3T3k3e2AT
1D
Finally, consider an experiment whose duration is suffi-
ciently long compared to the above system’s characteristic
time constant, 1/(k1+k2), to the point where it is reasonable
to take the limit of the above Cramér-Rao bound as 7" — oo.
For such an experiment, normalizing the above bound with
respect to the square of the nominal value of ko gives:

0(2, 2) . 24(/6‘1 + k2)55t0'12}
B 15U2k3

C(2,2) =

lim

The diffusion coefficient k; only shows up in the numerator
of the above equation. Therefore, as k; increases relative
to ko, the best variance with which one can estimate ko
becomes progressively worse. This summarizes the paper’s
first main conceptual conclusion, namely, that as the dif-
fusion coefficient corresponding to the stronger diffusion
process increases, one’s ability to estimate the coefficient
corresponding to the weaker process diminishes. The above
result makes intuitive sense in light of the fact that the term
k1(p1 — ) in Eq. 5 can be construed as a negative feedback
term pulling x(¢) towards pu(t). The transport coefficient
k1 can, therefore, be construed as a feedback gain whose
large magnitude increases the sensitivity of z(t) to pq(t)
while decreasing the relative impact of both ko and p2(t) on
x(t). This sensitivity argument is quite visible in the Laplace
domain, where the coupled transport dynamics are:

k1 ko
ks p2(s)

X - - @ I
(5) Stk + kot s+ +

(s) + (13)
The above expression shows that if k1 — co compared to ko,
then X (s) is only influenced by p1(s) as its reference input
without accounting for po(s). This jeopardizes the degree
to which one can estimate the weaker diffusion coefficient
ko. This raises an important possibility of using either active
control or passive experimental redesign or both to recover
and/or improve the identifiability of ko. Specifically, consider
the following target coupled transport dynamics:
&= K, () — ) + ka2 — 2), (14)
where p) represents a new, fictitious input to the first trans-
port process and kf, is the corresponding effective diffusion
coefficient. If k] is deliberately chosen to be much closer in
value to ko compared to k1, then the identifiability of ko will
improve significantly. Matching this target model to the true
plant dynamics involves solving for p; as follows:
k4 k1 — ki
B =) = K (s =) = g = popl o
1 1

x (15)

The above equation represents an active control law,
incorporating positive feedback, where the control input,
11 (t), governing the first transport process is deliberately
manipulated to improve the identifiability of ko. Positive
feedback, in this case, helps improve parameter identifiability
by attenuating the impact of the stronger transport process on
the overall, coupled transport dynamics. In fact, in the limit
as k7 — 0, the impact of the stronger diffusion process on
overall system dynamics vanishes, and only the weaker trans-
port process governs these dynamics. This can be achieved
in practice by actively manipulating the control input, 1 (¢),
to make it equal to the measured state, z(¢). In a peritoneal
gas transport experiment, for instance, this can be achieved
by manipulating mechanical ventilator settings to provide
an inspired oxygen fraction that attenuates or eliminates
transport gradients in the given laboratory animal’s lungs.

Active control is not the only pathway for improving
the Fisher identifiability of the parameter k2. One can also
manipulate the design of the perfusion experiment itself to
improve identifiability. One way to do this is to adjust the
equilibrium input values, u;, and us., around which the
experiment is conducted. Three particular limit cases pro-
vide interesting insights regarding the impact of experiment
design on the identifiability of ko. For each of these cases,
we compute the ratio & /k2 and relate it to the physiological
parameters of the three-compartment gas transport model,
recalling that k; = L1 /V, Hyp, and ko = Lo /V, Hy,.

o In the case where both vy, and u3, are maximized (e.g.,
to provide maximum oxygenation to the animal), one
can take the limits as w;, & u;, — 00, obtaining the
following:

ki QH,

lim — =
U1, —+00,uz,—00 ko % ’

(16)

The above equation is undesirable in the sense that the
ratio ki /ko is dictated solely by physiological parameters
outside the experimental designer’s control. If the values
of these physiological parameters cause the ratio k; /ks to
be large, then the identifiability of ko will be poor.

o In the case where u;, is large but us, is small, one can
take the limits u;, — oo and us, — 0 to obtain:

ki QHy

1m
w1 —00,uz.—0 Ko U3e

= 00, 17)
This is an undesirable scenario where the ratio kq/ko
approaches infinity, and the identifiability of ks is lost.

o In case where u,,, is reduced to induce hypoxia while ug,
is increased to revive the animal, one can take the limits

as u1, — 0 and ug, — oo, obtaining:

. k1 Uy

lim — = 1 =0,
U1 —0,u3,—+00 kQ PC%

(18)

which shows improved identifiability for kA/T.
The above analysis shows that curtailing the equilibrium
air flowrate into the lungs, ., while maximizing the
equilibrium PFC flowrate, us,., is particularly effective at
increasing the identifiability of k5. The next section validates
this theoretical insight in simulation.
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IV. MONTE CARLO SIMULATIONS

This section constructs a Monte Carlo (MC) point cloud of
model parameter estimates to validate the insights from the
above analysis. This process starts with generating pseudo
measurements from the nonlinear three-compartmental math-
ematical model using the parameters in Table I, then adding
white noise to the model state x5 to imitate having a noisy
measured signal y. The pseudo measurements are produced
for two cases of hypoxia experiments:

1) A baseline case representing a typical peritoneal oxy-
genation experiment, with u; = 8 L/min, us = 0.12, and
uz = 1 L/min.

2) An illustrative “controlled” case demonstrating the in-
sights from this paper, where u; is curtailed to 1 L/min,
ug increased to 0.3, and u3 is set to 6 L/min.

For each of the above cases, the experimental protocol
proceeds in two different steps. The first step is a one-
minute interval where the animal goes to a hypoxic state
from normoxia and the PFC concentration is zero (u4 =0).
The second step is an eleven-minute interval where there
is a step change in the PFC concentration uy4 from O to
1 while the animal is hypoxic. After generating pseudo
measurements, optimal estimation of the model parameters
is performed using the maximum likelihood to estimate the
following parameters: V;, QHy, Vi, Hy, V,Hp, w, and kA/T.
Finally, this is repeated a thousand times to generate an
Monte Carlo point cloud estimate of the parameters as shown
in Fig. 2. The mean of these parameter estimates is used
to generate an optimized model response in both baseline
and controlled cases as shown in Fig. 3. The white residuals
between the response of the optimized model and the pseudo
measurements shown in Fig. 4 indicate a good fit, reflecting
the successful convergence of the estimator to unbiased
parameter estimates. Table II summarizes the results of this
optimization work by listing the nominal values and standard
deviations of the point cloud estimates of both k1 and k2
for both the baseline and illustrative cases. The table also
lists the ratios of the standard deviations obtained using the
baseline experiment versus the illustrative experiment.

The above results are encouraging for at least four
reasons. First, the results show that the accuracy with
which one can estimate both k1 and k2 improves very
substantially with a simple change in mechanical ventilator
settings. Second, the results show that the fundamental
insights gleaned earlier in this paper for a linearized model
of the dynamics of hypoxia continues to hold for the full
nonlinear model of these dynamics. Third, the fact that
these improvements in identifiability were obtained for an
illustrative experiment whose settings were guided by a
theoretical study - but not optimized - suggests that optimal
experimental design may potentially improve identifiability
further. Fourth, it is interesting and encouraging to note that
the time scale separation between the various compartment
dynamics is significantly stronger for the baseline case
compared to the illustrative one, but the insights regarding
the potential improvements in identifiability continue to hold.

TABLE II: Statistical inference of MC parameters’ estimates

Parameter | Nominal value +30 +30 +30 ratio
(baseline case) | (controlled case)
QHy 1.082 3.778 0.268 14
kA/T 0.385 0.239 0.0684 3.496
O Baseline MC point doud
+  Controlled MC point cloud
1 0.6

Fig. 2: The model parameter estimates for the uncontrolled
and controlled pseudo experiments.

Baseline pseudo measurement

0.9 Baseline optimized response
Controlled pseudo measurement

0.8 Controlled optimized response

=07
06
05
0 5 10 15

Time (min)

Fig. 3: The fitted model response of the pseudo measure-
ments for baseline and controlled cases.

y residuals (Baseline case)

Autocorrelation

Autocorrelation

Fig. 4: The autocorrelation of residuals between the fitted
model response and the pseudo measurements.

V. CONCLUSION

This paper constructs a nonlinear compartmental model
of different oxygen transport mechanisms in hypoxic an-
imals subjected to peritoneal oxygenation. This model is
reduced to a linear 15! order model representing two coupled
transport processes. Fisher information identifiability analy-
sis validated by Monte Carlo simulation proves improving
the identifiability of the coefficient of the weaker transport
process through positive feedback and manipulation of the
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experimental inputs affecting transport coefficients to elimi-
nate the huge difference between them. Future work includes
the verification of these insights using experimental data.
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