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Abstract—Machine-learning models are known to be vulner-
able to evasion attacks, which perturb model inputs to induce
misclassifications. In this work, we identify real-world scenarios
where the threat cannot be assessed accurately by existing attacks.
Specifically, we find that conventional metrics measuring targeted
and untargeted robustness do not appropriately reflect a model’s
ability to withstand attacks from one set of source classes to
another set of target classes. To address the shortcomings of
existing methods, we formally define a new metric, termed group-
based robustness, that complements existing metrics and is better-
suited for evaluating model performance in certain attack sce-
narios. We show empirically that group-based robustness allows
us to distinguish between machine-learning models’ vulnerability
against specific threat models in situations where traditional
robustness metrics do not apply. Moreover, to measure group-
based robustness efficiently and accurately, we 1) propose two
loss functions and 2) identify three new attack strategies. We
show empirically that, with comparable success rates, finding
evasive samples using our new loss functions saves computation
by a factor as large as the number of targeted classes, and that
finding evasive samples, using our new attack strategies, saves
time by up to 99% compared to brute-force search methods.
Finally, we propose a defense method that increases group-based
robustness by up to 3.52 times.

I. INTRODUCTION

Machine-learning models are known to be vulnerable to
evasion attacks—attacks that, by slightly perturbing the mod-
els’ input, cause models to misclassify [1]. Research that eval-
uates the susceptibility of models to evasion attacks typically
measures these models’ classification accuracies with benign
and evasive inputs; these metrics are commonly referred to as
benign accuracy and untargeted robustness, respectively [2]–
[34]. Previous work also defines models’ targeted robustness
as their ability to resist making specific (mis)classifications
when faced with evasion attempts [35]–[37].

Fig. 1. Traffic signs from GTSRB [38]. The left three columns are speed-
limit and delimit signs (i.e., ones that restrict speed limit or mark the end
of restrictions). The rightmost column includes three signs that signify an
immediate stop: no vehicles, no entry, and stop (from top to bottom).

However, more complicated threats exist in the real world.
For example, suppose adversaries want to induce traffic con-
gestion or self-driving vehicle accidents. Such adversaries
could attempt to achieve their goal by suddenly reducing the
speed of certain vehicles, so that these vehicles might be hit
by the vehicles behind them. To do so, they might perturb a
specific group of traffic signs, such as speed limit and delimit
signs, which restrict allowed speeds or remove such restrictions
(shown in Fig. 1)). They might perturb these signs to signs
that command an immediate stop, such as stop signs, no entry
signs, and no vehicle signs; or they could also perturb these
signs into signs that display a limit much lower than the actual
limit (e.g., no more than half of the actual limit. Adversaries
achieve their goal if they perturb the speed limit and delimit
signs to be incorrectly classified as any sign that requires an
immediate stop or specifies a speed limit much lower than the
actual limit.

As another example, suppose a different adversary—a
group of burglars, for instance—wants to illegally open a vault
at a bank. The bank requires three distinct staff members to
give their permission before the vault can be opened; none of
the members can open the vault alone. The group of burglars
might therefore be able to succeed in opening the vault if
they are able to impersonate any three distinct individuals who
work for the bank. However, they might be restricted to only
a few attempts before triggering an alarm, and thus they need
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attempt-efficient strategies for choosing the staff members that
they would impersonate.

We observe that existing metrics—benign accuracy, untar-
geted robustness, and targeted robustness—do not accurately
measure models’ ability to resist making misclassifications
in these examples and other similar scenarios. Specifically,
in the traffic sign example, benign accuracy and untargeted
robustness measure models’ ability to resist predicting any
inputs as any incorrect classes. Targeted robustness measures
models’ ability to resist predicting any inputs as a specific
incorrect class. None of the three metrics assess models’ ability
to resist predicting inputs from one set of classes as another,
mutually exclusive set of classes. Additionally, in the burglary
example, targeted and untargeted robustness evaluate models
on a per-input-instance basis, while the models’ ability to resist
giving authorized access cannot be measured on a per-input-
instance basis: to open the vault, multiple (>1) burglars may
impersonate authorized bank staff simultaneously. Hence, there
is a need for a new metric to better evaluate the susceptibility of
models to such threats. To this end, we formally define this new
metric, group-based robustness, as a model’s ability to resist
attempts to cause specific misclassifications on data points
from certain classes. We then empirically demonstrate that this
metric gives us insight into models that previous metrics do
not: models that appear similar according to existing metrics
are actually very different by this new metric, and hence not
equally suitable in scenarios where robustness is essential (§II).

While existing attacks can be used to estimate group-
based robustness, they are inefficient at doing so. As another
contribution, we designed more computationally efficient at-
tacks, termed group-based attacks, to help compute group-
based robustness faster while attaining a comparable or higher
level of accuracy than the following naı̈ve methods:

• One possible naı̈ve method to perform group-based
attacks is to attempt each of the specified misclas-
sifications on each input instance. In the traffic sign
example, attackers might launch three individual tar-
geted attacks to perturb a 60 KPH speed limit sign.
Each attack would try to perturb the sign into one
of the three signs that require an immediate stop, a
20 KPH speed limit, or a 30 KPH speed limit. This
approach tends to find the most adversarial examples,
and we use it to measure group-based robustness.
However, compared with running one targeted attack,
this approach runs a set of targeted attacks and is more
time-consuming.

• Another possible naı̈ve approach is to randomly select
a single target class from a specified set and perform
standard targeted attacks. For example, attackers may
launch a single targeted attack in which the target class
is randomly selected from among the signs that require
an immediate stop or display a limit much lower than
the actual limit. While this approach costs less in time
than the previous one, it tends to be significantly less
successful.

To more quickly find perturbations that can cause mis-
classifications among a specified set of candidates, we define
two new loss functions, ℓMDMAX and ℓMDMUL. We empirically
verify that the loss functions boost the efficiency of attacks

in scenarios like the traffic sign example (§III-A4). Compared
with iterating over all target classes to perform targeted attacks,
attacks with our loss functions were computationally cheaper
by a factor as large as the number of targeted classes while
still finding similarly many successful perturbations. Compared
with randomly selecting a target class for each input instance to
perform targeted attacks, attacks with our loss functions were
equally fast but found successful perturbations up to 15× more
often (§III-A).

Next, we propose more efficient attack strategies for set-
tings in which an attacker has a small set of inputs at their
disposal and is attempting to target a specific subset of classes.
In particular, we define three new attack strategies that choose
which misclassification to attempt by first estimating the
individual chances of success of perturbing each input instance
into each target class. In the burglary scenario, this would allow
burglars to make fewer impersonation attempts (or to better
choose which subset of burglars attempts the break-in)—the
strategies estimate each burglar’s chance to impersonate each
staff member and then attempt to cause impersonations only
for the most promising pairs. We demonstrate that our new
attack strategies boost the efficiency of attacks; e.g., in the
burglary scenario, compared with randomly selecting burglars
and staff to launch attacks, burglars would need up to 99%
fewer attack attempts with these strategies (§III-B).

Finally, we show how formalizing the real threat allows
more effective defenses against it: we demonstrate how to
modify adversarial training to increase group-based robustness,
without losing benign accuracy or accuracy on classes that
might be impersonated (§IV). For example, in the burglary
scenario, a face-recognition system with our defense obtains
up to 3.52× better robustness, with similar benign accuracy
for all identities and similar benign accuracy for all staff mem-
bers, compared to existing defenses. We modified adversarial
training to optimize these three metrics instead of conventional
robustness metrics (§IV).

In summary, our contributions are the following:

• We define a new metric that better reflects many prac-
tical attack scenarios and more accurately evaluates
their corresponding threat (§II).

• We propose two loss functions that help attacks find
misclassifications within a given set of targeted classes
markedly faster than existing methods (§III-A).

• We develop three attack strategies that when used
individually or together, can produce diverse mis-
classifications for a given number of input instances
with better time efficiency than brute-force approaches
(§III-B).

• We implement a defense method that improves the
robustness of machine learning models against the
attacks mentioned above (§IV).

Next, in §II, we further motivate and formally define the
new group-based metric. We introduce new loss functions and
new attack strategies that take advantage of our metric in §III.
We also propose a defense that boosts the performance of
models in this metric in §IV. Finally, we position this work in
an overview of related work in §V and conclude in §VI.
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II. GROUP-BASED ROBUSTNESS: A NEW METRIC

In this section, we introduce group-based robustness, a new
metric to evaluate machine-learning models. We first intro-
duce existing evasion attacks and how robustness is typically
measured (§II-A). Then, we present real-world scenarios that
demonstrate the importance of this new metric (§II-B). Next,
we formally define the new metric, group-based robustness,
and corresponding attacks, group-based attacks (§II-C); and
we show that group-based attacks constitute a broader space
of evasion attacks than had previously been studied (§II-D).
Finally, we discuss our experiments (§II-E) and empirically
demonstrate that group-based robustness offers a meaningful
assessment of model susceptibility to attacks in the real world
that is orthogonal to conventional metrics (§II-F).

A. Background

Evasion attacks perturb the input of machine-learning mod-
els to induce misclassifications. There are many implementa-
tions of evasion attacks [37], [39]–[56], along with defenses
against these attacks [2]–[34]. The majority of established
attacks are untargeted, aiming to avoid the correct classifi-
cation [39]–[54], while some previous works explore targeted
adversarial attacks, aiming to cause an input to be misclassified
as a member of a single specific, incorrect class [37], [39],
[50], [51]. Robustness is defined as a model’s ability to resist
evasion attacks. One common method to assess untargeted
robustness is to measure the model’s accuracy on evasive
examples [2], [39]. Targeted robustness can be assessed by the
model’s resistance to predict target classes chosen uniformly
at random [37].

B. Motivation

We suggest that untargeted and targeted robustness, as
defined, are not sufficient to accurately assess risk for many
real-world attack scenarios: such attack scenarios could be
complicated and involve more than one misclassification, as
in the traffic sign scenario discussed in §I. In this scenario,
attackers might perturb speed limit and delimit signs (signs
that restrict the speed limit to specific values or mark the end
of previous such restrictions; see Fig. 1) into signs that require
an immediate stop, including stop signs, no-entry signs, and
no-vehicle signs, or display a limit much lower than the actual
limit, such as no more than half of the actual limit.

As another example, suppose students in a class are trying
to access materials (e.g., gradebooks) normally accessible
only to TAs and professors. The students might succeed by
impersonating any of the TAs or professors, even if they cannot
impersonate a specific TA or professor. However, the students
cannot succeed if they only impersonate other students. The
untargeted or targeted setting is not sufficient for this scenario.

The burglary example described in §I serves as a more
complicated example of an attack scenario. Access to the vault
is mediated by facial recognition and is granted only if several
of the staff are recognized as trying to open the vault together.
The burglars thus succeed only if they are able to impersonate
several distinctive members of the staff. Which burglars (from
a larger group) will attempt impersonation, and which staff the
impersonations will target (from among those who have access
to the vault), is at the burglars’ discretion.

Neither targeted nor untargeted robustness intuitively corre-
sponds well to either of these attack scenarios, as they measure
the likelihood of successfully inducing any misclassification or
a misclassification to a single, specific class. Neither of those
corresponds to the attackers’ goals in these scenarios, and,
thus, we need a different metric to better assess the risk.

C. Definition

We propose group-based robustness as a new metric that
can assess the risk in the scenarios described in §II-B. In
prior work, individual evasion attacks primarily sought to
optimize (mis)classification toward a specific class (targeted)
or optimize (mis)classification away from a specific class
(untargeted). The purpose of group-based robustness is to
formalize group-based goals that encompass the results of
multiple evasion attacks, where “groups” consist of sets of
classes. We define group-based robustness using an experi-
ment, inspired by experiments used to define cryptographic
security properties. The experiment is parameterized by the
following:

• A classifier is a possibly randomized algorithm that
takes as input an instance x in X and returns a class
in Y . That is, X denotes the set of possible inputs
to be classified and Y denotes the set of classes. The
experiment includes two classifiers:
◦ The ground truth classifier f is a deterministic

classifier, i.e., a function.
◦ The targeted classifier f̃ is a randomized or

deterministic classifier. Intuitively, the adver-
sary will seek to mislead this classifier, i.e.,
to induce classifications by f̃ that differ from
those by f .

• Let I = {Ii}mi=1 be a set of relations on Y , i.e., each
Ii ⊆ Y × Y . Informally, the adversary’s goal is to
implement a misclassification defined by any Ii ∈ I.
That is, in order to “win,” the adversary must, for some
Ii ∈ I, achieve every misclassification (s, t) ∈ Ii, in
the sense that the adversary successfully transforms a
given instance x of class s (according to f , f(x) = s)
into an instance x′ that is classified in t by f̃ , while
f(x′) = s. It is worth pointing out that f̃(x) might be
different from f(x), and with specific choices of I,
x′ might be the same as x.

• Π is a predicate indicating whether x′ is “close
enough” to x, e.g., according to some distance metric.
For the adversary to “win,” the instance x′ generated
by modifying x must also satisfy Π(x, x′) = 1.

• G is an algorithm generating instances X ⊆ X by
sampling them from some distribution. Convention-
ally, |X| = 1. In §II-D, we will explain that certain
choices of I are only achievable when |X| > 1 while
these choices correspond to realistic attack scenar-
ios. Informally, G is the environment that produces
instances for which the adversary can try to induce
misclassifications.

• The adversary A is an algorithm that takes as input
a set X ⊆ X and produces R ⊆ X × X . Informally,
if (x, x′) ∈ R, then the adversary changes x into x′
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to satisfy the properties above. The adversary also has
white-box access to Π, f , f̃ , G, and I, which are
public parameters of the experiment.

The formal definition of the experiment in which the
adversary A participates is as follows:

Experiment Exptimp-rel
Π,f,f̃ ,G,I(A)

X ← G()
R← A(X)

Ĩ ← {(f(x), f̃(x′)) : (x, x′) ∈ R}
if
(︂
Ĩ ∈ I ∧ ∀(x, x′) ∈ R : (x ∈ X ∧Π(x, x′) = 1)

)︂
return 1

else
return 0

The adversary A is run on the input instances X generated
by G. The relation achieved Ĩ is computed based on the
results of the adversary A, the ground truth classifier f , and
the targeted classifier f̃ . The experiment returns 1 (i.e., the
adversary succeeds) if Π indicates that the perturbation is small
enough according to some distance metric and Ĩ matches some
Ii in the desired set I. The experiment returns 0 otherwise.

We define the imp-rel advantage of A to be

AdvΠ,f,f̃ ,G,I(A) = P
(︂
Exptimp-rel

Π,f,f̃ ,G,I(A) = 1
)︂

where the probability is taken w.r.t random choices made by
G, f̃ , and A. Analogously, the group-based robustness is

RobΠ,f,f̃ ,G,I(A) = P
(︂
Exptimp-rel

Π,f,f̃ ,G,I(A) = 0
)︂

By requiring properties of each Ii ∈ I, we can express
cases of interest. For example, by requiring each Ii to be a
function, we require that input instances x in distinct classes
each be used to impersonate only one class.

D. A Broader Attack Space

The definition of group-based attacks sheds light on
a broader space of attacks than had previously been ex-
plored with attacks or defenses. As we introduced in §II-B,
established attacks are either untargeted, so that I =⋃︁

s∈Y
⋃︁

t∈Y\{s} {{(s, t)}}, avoiding correct classifications; or
targeted so that I =

⋃︁
s∈Y {{(s, ts)}} for a specific ts ∈ Y \

{s}, seeking a specific impersonation. For example, untargeted
attacks against GTSRB would be represented as the former:
the set of sign types would be represented by Y , and attackers
would attempt to perturb a sign x so that instead of being
correctly classified as belonging to class s it is misclassified
as any other class t ∈ Y \ {s}.

To our knowledge, no existing evasion attack uses choices
of I other than the two listed above. Consistently with that,
we were unable to find defenses that are designed specifically
for choices of I other than the two. However, as our example
scenarios start to illustrate, there are many more other choices
of I worthy of examination. In the example where students are
trying to access restricted materials, s could be any one of the
students and t could be any one of the TAs or professors.
We denote the set of all student classes as S and the set

of TAs and professors as T , where S ⊆ Y , T ⊆ Y , and
S is disjoint from T . An attack succeeds if any student can
impersonate any one of the TAs or professors, and thus we
have I =

⋃︁
s∈S

⋃︁
t∈T {{(s, t)}}, which is different from the

I in traditional targeted or untargeted attacks.

In the example where attackers are perturbing traffic signs
to slow down traffic, s could be any of the speed limit and
delimit signs. The set of speed limit and delimit signs is now
S ⊆ Y . However, for each s ∈ S, the set of classes the
adversary wishes to target might be different. For example,
a 20 KPH sign might be perturbed as a stop, no-entry, or
no-vehicle sign, whereas a 120 KPH sign might be perturbed
as a 20, 30, 50, 60 KPH, stop, no-entry, or no-vehicle sign.
Thus, attackers might have different sets of target classes Ts

for different choices of s. Attackers succeed in slowing traffic
down if they perturb any of the speed limit and delimit signs
into any of the corresponding target classes, and thus we have
I =

⋃︁
s∈S

⋃︁
t∈Ts
{{(s, t)}}.

These new choices of I are able to describe the goal
of attackers trying to slow traffic down and students aiming
to steal access-restricted materials, while traditional I of
untargeted or targeted attacks are not able to do so. Formalizing
the attackers’ goals in this way reveals that current evasion
attacks are not optimized for those goals.

Notice also that established attacks count success on a per-
input-instance basis, using |X| = 1 where X is the set of input
instances sampled at a time, although X might be resampled
and Exptimp-rel

Π,f,f̃ ,G,I(A) might be repeated many times. Here
we examine cases where |X| > 1, enabling consideration
of attacker goals for which, for example, each Ii ∈ I is a
surjective function mapping classes S to a target set T of
classes where S ∩ T = ∅. In the burglary example, in which
burglars impersonate several staff members of a bank to hack
into a vault, X is a set of images of the burglars at the time of
the attack. Different burglars might impersonate different staff
and hence |X| > 1. For each Ii, S is a set consisting of a subset
of burglars (since a subset may be enough to impersonate a
sufficient number of bank staff) and T is a set of several staff
who together are allowed access to the vault. To achieve an
Ii, burglars might need to use more than one x ∈ X . In this
attack scenario, compared with I of untargeted or targeted
attacks, the new choice of I also intuitively better depicts the
burglars’ goal: successfully impersonating multiple different
people. We propose three attack strategies A in §III-B that
boost AdvΠ,f,f̃ ,G,I(A) for this new I.

Our work serves as a step to search a wider space outside
the crowded paradigm of existing works. New choices of I
depict attack scenarios that often-used choices cannot.

E. Experiment Setup

Now we turn to the experiment setups we employed to
corroborate that group-based robustness complements our un-
derstanding of robustness from previously established metrics.

1) Threat Model: Adversaries can create more successful
perturbations by acquiring more information about the archi-
tectures and weights of models [57]. The most successful at-
tacks are white-box attacks, where the adversaries have access

4



to all weights of models [58], [59]. Accordingly, we use white-
box evasion attacks to evaluate models to better understand the
worst-case threat and to more accurately evaluate the existing
defenses in the presence of the strongest adversaries.

2) Datasets: We used three image datasets and one
text dataset to empirically measure AdvΠ,f,f̃ ,G,I(A) and
RobΠ,f,f̃ ,G,I(A) in the three scenarios described in §II-B:
We used a traffic-sign dataset (GTSRB) [38] for the scenario
where attackers are trying to perturb traffic signs. GTSRB
consists of images of 43 traffic signs, which include but are not
limited to the speed limit, speed delimit, and signs that require
an immediate stop (see Fig. 1). In scenarios where students
are trying to steal access-restricted materials and burglars
are trying to hack a bank, one group of attackers–students
or burglars, respectively–is trying to impersonate a group of
victims. In both scenarios, the attackers and victims are two
mutually exclusive groups of people. We used a human-face
dataset (PubFig) [60], previously used in adversarial machine
learning studies [50], [61], [62], for both scenarios. PubFig
consists of images of 60 identities and an average of 128
images per identity. Face-recognition DNNs may need to
classify more than 60 identities; some of these identities might
be neither attackers nor victims of impersonation. However,
the existing defense only used 10 identities [62]. With more
than 60 identities, we could neither find a benchmark that has
performance close to the existing defense [62] nor could we
train one. As an alternative, we used an object-recognition
dataset (ImageNet) [63] to mimic scenarios where there exist
many identities that are neither attackers nor victims. Ima-
geNet consists of images of 1000 objects, and we use these
1000 object classes to mimic 1000 identities. Besides image
datasets, we also used one text dataset, SST-5 [64]. SST-5
has five classes, namely “very positive”, “positive”, “neutral”,
“negative” and “very negative”.

3) Benchmarks: White-box evasion attacks have proved
successful nearly 100% of the time on models not specially
tuned to be robust, but these attacks are less effective against
models that have been tuned to be robust [40], [65]. Thus, to
fairly compare the effectiveness of attacks, and to precisely
compute AdvΠ,f,f̃ ,G,I(A) and RobΠ,f,f̃ ,G,I(A) in the sce-
narios described in §II-B, we ran attacks against defended
models. In particular, we used the following state-of-the-art
defenses against white-box evasion attacks as benchmarks.

GTSRB: For GTSRB, we trained defenses using the free
adversarial training algorithm [65]. We used two different
Lp-norms, L∞ = 8/255 and L2 = 0.5, as previous works
did for images with similar sizes [37], [39]. We used six
different architectures including five established architectures:
VGG [66], ResNet [67], SqueezeNet [68], ShuffleNet [69], and
MobileNet [70]. For each combination of architecture and Lp-
norm, we trained 100 instances for 100 iterations using the
same implementation and data. The order of samples was also
the same while training model instances. The only difference
between instances of the same architecture was the random
initialization of weights.

PubFig: For the PubFig dataset [60], in line with prior
work, we preprocessed the face images by taking central
crops and aligning faces to frontal poses via affine transfor-
mations [50], [61], [71], [72]. We split the data into 70%-
20%-10% for training, testing, and validation, respectively.

We adversarially trained DNNs via Wu et al.’s method [62],
using their implementation. Starting from a pre-trained feature
extractor based on the VGG architecture [66], Wu et al.
attached a two-layer classification head and conventionally
trained the DNN, minimizing cross entropy. Next, they fine-
tuned their model over several epochs of adversarial training.
In each iteration of adversarial training, their method located
the central region of an adversarial rectangular patch via a
gradient-based search. Subsequently, the rectangular patch was
perturbed to induce misclassification. The resulting misclassi-
fied image with the patch and a correct label was then used to
update the DNN’s weights. We trained the DNN conventionally
for 30 epochs, and adversarially for 5 epochs, using Wu et al.’s
default choice of the optimizer (Adam [73]), step size (4), and
batch size (64 for conventional training, and 32 for adversarial
training). One common attack used to evaluate the robustness
of facial recognition systems is the eyeglasses attack [50]
which limits the perturbation to be within an eyeglasses-frame-
shaped region (rather than any Lp distance), simulating that
attackers wear carefully painted eyeglasses to evade face recog-
nition. The adversarially trained DNN achieved 98.25% benign
test accuracy and 45.43% untargeted robustness against the
eyeglass attack. By contrast, the conventionally trained model
achieved 99.80% benign accuracy but only 9.14% untargeted
robustness. As we described in §II-D, untargeted robustness is
RobΠ,f,f̃ ,G,I(A) when I =

⋃︁
s∈Y

⋃︁
t∈Y\{s} {{(s, t)}} .

ImageNet: Face-recognition DNNs might need to classify
more than 60 identities; many of these identities are neither
attackers nor victims. However, we were not able to find a
pre-trained face-recognition defense that uses more than 60
identities. For example, Wu et al. used a subset of VGG-
Face [66] which includes ten identities [62]. We also tried to
train face-recognition defense using existing methods, but the
performance of our trained instances was much worse than the
performance (of defenses with less than 60 identities) reported
in previous works. As a mitigation, we used ImageNet instead.
ImageNet has 1000 classes and we found two pre-trained state-
of-the-art defenses on ImageNet by Salman et al. [74]. One of
them was trained with adversarial perturbations of L∞-norm of
8/255, and the other one was trained perturbations of L2-norm
of 3.0. We used these two defenses to mimic face-recognition
defenses that are capable of recognizing 1000 identities.

SST-5: We used a pre-trained model [75] on SST-5, which
achieves 55.8% accuracy (within top five performance at
the time we conducted experiments, according to a leader-
board [76]). This model has not been specifically tuned for
robustness.

4) Measurement Process: We implemented G for each test
I on different datasets. To measure RobΠ,f,f̃ ,G,I(A), we still
conventionally used |X| = 1 where G always outputs X =
{x}, where x is one input instance, uniformly sampled from
all instances associated with some s ∈ S.

On the GTSRB dataset, we tried to perturb speed limit and
delimits signs to signs that would mandate (1) an immediate
stop or (2) no more than half of the actual limit (shown in
Fig. 1). I =

⋃︁
s∈S

⋃︁
t∈Ts
{{(s, t)}}. Images from different

classes may not have the same set of target classes. As we
introduced in §II-D, for each s ∈ S, the set of targeted classes
Ts might be different. A 20 KPH sign might be perturbed as a
stop, no-entry, or no-vehicle sign, and a 120 KPH sign might
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be perturbed as a 20 KPH, 30 KPH, 50 KPH, 60 KPH, stop,
no-entry, or no-vehicle sign.

On the PubFig dataset, we have I =
⋃︁

s∈S

⋃︁
t∈T {{(s, t)}}

as in the scenario where students are trying to steal access-
restricted materials. We randomly selected two mutually ex-
clusive sets of classes S and T , and tried to perturb all images
associated with S as T . We used the following sizes of S and
T :

(|S|, |T |) ∈ {(10, 10), (10, 20), (10, 30), (10, 40), (10, 50),
(20, 10), (20, 20), (20, 30), (20, 40), (30, 10),

30, 20), (30, 30), (40, 10), (40, 20), (50, 10)} (1)

These choices include all possible choices of |S| or |T | that
are multiples of 10. For each (|S|, |T |), we randomly selected
5 different pairs of subsets S and T .

On the ImageNet dataset, we still have
I =

⋃︁
s∈S

⋃︁
t∈T {{(s, t)}}, because the attack scenario

is the same as on PubFig. We first randomly selected 60
classes, and then selected S and T sets of sizes in Eqn. 1
from these 60 classes, as we did for PubFig.

On the SST-5 dataset we used four different goals of the
adversary: 1) perturb positive instances as nonpositive (i.e.
perturb instances from the ”very positive” or ”positive” classes
as any of the rest three classes) 2) perturb negative instances as
nonnegative 3) perturb each instance as a more positive class
and 4) perturb each instance as a more negative class. For
each of these four goals, similar to the traffic sign scenario,
I =

⋃︁
s∈S

⋃︁
t∈Ts
{{(s, t)}} with respect to different choices

of S and Ts.

On all the benchmarks trained with Lp-norm (benchmarks
on GTSRB and ImageNet), we ran Auto-PGD [39] attacks
using the same Lp distance. That is, in Exptimp-rel

Π,f,f̃ ,G,I(A), if

attacking a model f̃ trained with L∞ = 8/255, for example,
then Π(x, x′) = 1 if and only if L∞(x, x′) ≤ 8/255. To the
best of our knowledge, Auto-PGD attacks are the strongest
currently available Lp-norm attacks that do not require model-
specific tuning. On the DOA defenses, we ran eyeglasses
attacks [50] implemented by the authors of DOA [62]. On
the SST-5 dataset, we ran T-PGD attacks [77], a state-of-
the-art text domain attack that empirically achieves human
imperceptibility. In our experiments, we exclusively modified
the loss function of any attacks we used. Using their default
settings, we ran Auto-PGD for attacks for 100 iterations,
eyeglasses attacks for 300 iterations, and T-PGD attacks for
100 iterations.

F. Results

§II-D showed how our new metric, group-based robustness,
conceptually accommodates real-world attack scenarios that
existing metrics cannot. To empirically show this, we
measured group-based robustness along with three metrics: ac-
curacy, untargeted robustness, and targeted robustness. As we
described in §II-D, untargeted robustness is RobΠ,f,f̃ ,G,I(A)
when I =

⋃︁
s∈Y

⋃︁
t∈Y\{s} {{(s, t)}}, and targeted robustness

is RobΠ,f,f̃ ,G,I(A) when I =
⋃︁

s∈Y {{(s, ts)}} for a specific
ts ∈ Y \ {s}. When measuring group-based robustness, we
used choices of I motivated by attack scenarios described in
§II-B.

Fig. 2. Performance of models on GTSRB measured by four metrics: accu-
racy, untargeted robustness, targeted robustness, and group-based robustness.
With each combination of Lp-norm and architecture, the distribution of group-
based robustness, depicted as the wider boxes, is different from those of the
other three metrics. With each combination, the performance of models varies
only due to different randomly initialized weights, using seeds 0 – 99.

Fig. 3. Pearson correlation coefficients between group-based robustness and
three existing metrics: accuracy, untargeted robustness, and targeted robustness
on GTSRB. Across most of the combinations of model architecture and
Lp-norm, the correlations are negligible or weak as the coefficients have a
magnitude smaller than 0.4 [78].

On the benchmarks we trained on GTSRB, as shown in
Fig. 2, group-based robustness has different distribution (mean
and range) from the other three metrics. For some combi-
nations of architecture and Lp-norms, the range of group-
based robustness, the distribution barely overlaps with those
of other metrics. Meanwhile, the variance for group-based
robustness is higher than the variance of other metrics at most
of the combinations of architecture and Lp-norm. Models with
close performance by other metrics can have very different
performance by group-based robustness.

We verified the difference statistically: as shown in Fig. 3,
at each combination of architecture and Lp-norm, the Pearson
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Fig. 4. Performance of models measured by accuracy, untargeted robustness
(UR), targeted robustness (TR), and group-based robustness (GBR). These
models were adversarially trained with PubFig and ImageNet. On each model,
GBR has a wide range due to different choices of T and S, whereas the other
metrics report only a single value that is sometimes out of the GBR range.

correlation coefficients between group-based robustness and
each of the three metrics are always between −0.4 to 0.4.
According to Schober et al., correlations are weak or negligible
of the Pearson coefficient is between−0.4 and 0.4 [78]. Group-
based robustness is always negligibly or weakly correlated with
each of the three metrics.

We also measured the performance of benchmarks we have
on the PubFig and ImageNet datasets with these four metrics.
As shown in Fig. 4, group-based robustness reports a wide
range on each of the three models, whereas each of the other
three metrics reports a single number, some laying outside
the range. Group-based robustness reports different numbers
due to different choices of S and T , which correspond to
different attack scenarios, such as adversaries slowing traffic
down or burglars hacking into a vault at a bank. We also
measured group-based robustness, along with targeted and
untargeted robustness as shown in Fig. 5. The benign accuracy
is a constant number, and similar to what we saw on other
datasets, group-based robustness reports a range, and targeted
or untargeted robustness is sometimes outside the range.

Takeaways (Metric)

Group-based robustness RobΠ,f,f̃ ,G,I(A) measures the
robustness of models using different choices of I in
accordance with the attack scenarios. Conventional met-
rics cannot measure the true threat in these sophisticated
scenarios as accurately as group-based robustness does.
Thus, we conclude that group-based robustness offers
a new meaningful assessment of model susceptibility
to attacks in the real world compared to conventional
metrics.

III. MORE EFFICIENT ATTACKS

In this section, we introduce several algorithms A that
either increase the advantage of attacks AdvΠ,f,f̃ ,G,I(A), or
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Fig. 5. Robustness as defined by different metrics on the SST-5 dataset. The
USE score, as used by T-PGD, denotes the imperceptibility of the perturbation:
the higher the USE score is, the more imperceptible the perturbation is
to humans. Group-based robustness has a wide range, whereas untargeted
robustness and targeted robustness are sometimes out of the range.

boost the speed to achieve a close advantage of attacks, helping
attacks become more computationally efficient than existing
naı̈ve attacks. We start by describing two loss functions to
help adversaries perturb one input instance so that the input
instance is misclassified as any of a specific set of target classes
(§III-A). Then, we introduce three attack strategies to help
adversaries perturb several input instances so that they are
misclassified as different target classes among a specific set
(§III-B).

Later, we also leverage these new attacks to build defenses
against group-based attacks (see §IV).

A. Attack Loss Functions

In certain scenarios, adversaries may have a limited amount
of time or attempts to attack systems. In the bank robbery
example, burglars might only have a brief time window to
access the face recognition system, and they might trigger
an alarm if they consecutively make many failed attempts to
impersonate bank staff. Meanwhile, it might be impractically
costly both for the attackers to try impersonating each of the
employees as a brute-force approach, and for the bank to assess
the group-based robustness in such a manner, as the bank
might have many staff (e.g., Dresdner Bank, a major European
bank, has 50,659 employees [79]). Thus, we need group-
based attacks that are more time-efficient than the brute-force
approach. We designed two new loss functions that formalize
the attackers’ goal in such scenarios.

We came up with these two loss functions by modifying a
state-of-the-art loss function for targeted attacks, the Minimal
Difference (MD) loss [37], which outperforms well-known loss
functions such as the Carlini-Wagner (CW) loss [51] and the
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Difference of Logits Ratio (DLR) loss [39]. It aims to assign
the highest logit to the target class:

ℓMD =
∑︂
i

ReLU(Zi + δ − Zt) (2)

where i iterates over all classes, t is the target class, Z is
the logit, δ is a minimal value set to 1e-15, and ReLU is the
rectified linear unit function. Said differently, attacks A with
the MD loss have higher AdvΠ,f,f̃ ,G,I(A) than attacks with
other previously proposed loss functions, for targeted attacks
with I =

⋃︁
s∈Y\{t} {{(s, t)}} for a specific target class t ∈ Y ,

perturbing more input instances x ∈ X to be misclassified as
the target class t. The attack succeeds if and only if the MD
loss is zero. When the MD loss is zero, Zt is larger than any
other Zi by at least δ, and thus the attack succeeds. On the
other hand, if the attack succeeds, Zt is the largest logit, larger
than any other Zi by at least the minimal value δ; thus the MD
loss is zero.

As we explained in §II, an adversary could be interested in
some set of target classes T , rather than a single target class t.
In this case, an attack is considered successful if the adversary
can cause an input from a class in S to be misclassified as any
class within T . More formally, as we described in §II-D, in
the example where students are trying to steal access-restricted
materials, I =

⋃︁
s∈S

⋃︁
t∈T {{(s, t)}}, where S is the set of

all students and T is the set of all TAs and professors. If a
student impersonates any of the TAs or professors, the attack
succeeds. In the example where attackers perturb signs to slow
traffic down, I =

⋃︁
s∈S

⋃︁
t∈Ts
{{(s, t)}}, s is one of the speed

limit and delimit signs, and Ts is the corresponding set of
signs that can mislead traffic to be slower than intended. The
attackers succeed if they can perturb a sign from the class s
to be classified as any sign type in Ts. Notice that Ts depends
on s, e.g., the attack succeeds if a 20 KPH sign is perturbed
into a stop, no-entry, or no-vehicle sign; or if a 120 KPH sign
is perturbed into a 20, 30, 50, 60 KPH, stop, no-entry, or no-
vehicle sign.

A naı̈ve exhaustive approach to carry out such misclassi-
fication would be to launch |T | targeted attacks, one for each
t ∈ T . That is, to maximize AdvΠ,f,f̃ ,G,I(A), A invokes
subroutines At to find an impersonation for each t ∈ T
independently. A succeeds when any of the |T | targeted attacks
succeed. When I =

⋃︁
s∈Y

⋃︁
t∈Y\{s} {{(s, t)}} and so T =

Y \ {s}, this naı̈ve approach finds more adversarial examples,
obtaining higher AdvΠ,f,f̃ ,G,I(A) than any other untargeted
attacks A that aim to directly maximize AdvΠ,f,f̃ ,G,I(A) [39].
However, this naı̈ve exhaustive approach requires running
targeted attacks |T | times and thus is |T | times more costly to
run than untargeted attacks. Another naı̈ve approach that does
not suffer from the same overhead is to randomly pick a class
t ∈ T and launch a targeted attack At targeting t. However,
we found this approach finds significantly fewer adversarial
examples, obtaining much smaller AdvΠ,f,f̃ ,G,I(A) (more
details can be found in §III-A4).

To address the shortcomings of the naı̈ve approaches,
we propose two new loss functions for when I =⋃︁

s∈S

⋃︁
t∈T {{(s, t)}} or I =

⋃︁
s∈S

⋃︁
t∈Ts
{{(s, t)}}. These

loss functions help attackers obtain larger AdvΠ,f,f̃ ,G,I(A)
than the non-exhaustive naı̈ve approach, and obtain a close

AdvΠ,f,f̃ ,G,I(A) while consuming much less computation
time than the exhaustive naı̈ve approach.

1) The MDMUL Loss: We propose a new loss function
following the intuition that attackers only need one class in
the targeted set T to have a higher logit than any classes not
in the set. In particular, we formalize the attackers’ goal—to
assign a higher logit to some t ∈ T than to any i /∈ T—as∑︁

i/∈T ReLU(Zi + δ−Zt). This term is always non-negative,
and it is zero if and only if the corresponding t has higher
logit than any i /∈ T . To capture that an adversary only
needs one t ∈ T to have higher logit than any i /∈ T , we
can write

∏︁
t∈T

∑︁
i/∈T ReLU(Zi + δ − Zt), which, again,

evaluates to zero if and only if the attack succeeds. Due to the
finite arithmetic of Python, in which we implement these loss
functions, this product can be∞ and yield undefined gradients.
As a remedy, we compute the natural logarithm of the product
instead and come up with the Minimal Difference Multiplied
(MDMUL) loss:

ℓMDMUL =
∑︂
t∈T

ln(
∑︂
i/∈T

ReLU(Zi + δ − Zt)) (3)

where t iterates over all classes in T and i iterates over all
classes not in T . We acknowledge that mathematically ln(0) is
undefined, while Python computes ln(0) as −∞. Each natural
logarithm result is −∞ if and only if a successful attack has
been found: Zt is larger than all Zi, and the whole equation is
−∞ if and only if at least one of the natural logarithm results
is −∞. Thus ℓMDMUL is −∞ if and only if a successful attack
has been found.

2) The MDMAX Loss: Attackers only need one class in the
targeted set T to have a higher logit than any classes not in the
set. One strategy to achieve this is to greedily keep trying to
increase the current maximum logit from among the targeted
classes, perturbing inputs toward the target class that is most
likely to succeed. We formalize this approach as the Minimal
Difference Maximum (MDMAX) loss:

ℓMDMAX =
∑︂
i/∈T

ReLU(Zi + δ −max
t∈T

Zt) (4)

where i iterates over all classes /∈ T and the largest Zt among
all classes t ∈ T is used. ℓMDMAX is also non-negative and zero
if and only if a successful attack has been found: if ℓMDMAX >
0, there is at least one class i /∈ T that has higher logits than
all classes t ∈ T ; otherwise, if ℓMDMAX = 0, there is at least
one class t ∈ T that has higher logits than all classes i /∈ T .

3) Experiment Setup: To illustrate the new loss functions’
improvements for adversaries A, either in terms of advantage
or speed, we used the same threat model, datasets, and
benchmarks as we did in §II-E. We also implemented G for
each test I on different datasets as we did in §II-E: we used
conventionally |X| = 1 where G always outputs X = {x},
and x is one input instance, and uniformly sampled from all
instances associated with some s ∈ S. In addition, we used
the baselines and measurement process below.

Baselines: We created three baseline attacks to compare
with attacks using loss functions proposed in §III-A. As
we elaborated in §II, adversaries could face scenarios where
they succeed by forcing any misclassifications within a set
T of target classes. More formally, they seek to maximize
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AdvΠ,f,f̃ ,G,I(A), when I =
⋃︁

s∈S

⋃︁
t∈T {{(s, t)}} or I =⋃︁

s∈S

⋃︁
t∈Ts
{{(s, t)}} (introduced in §II-D). They could ex-

haustively iterate over all classes in Ts or randomly pick a
t ∈ Ts, and launch targeted attacks. We depict these naı̈ve
methods as follows:

• The best guess: with every x ∈ X to be perturbed, A
could iterate over all t ∈ Ts, and launch |Ts| targeted
attacks. Each targeted attack At aims to produce pairs
(x, x′) such that f̃(x′) ∈ t. A succeeds on this x if
any of the |Ts| targeted attacks succeed. This approach
tends to be the strongest naı̈ve approach, obtaining
the highest AdvΠ,f,f̃ ,G,I(A). However, as it searches
exhaustively, A is |Ts| times as expensive to run as
each At.

• The average guess: on each x ∈ X , A randomly
picks a t from |Ts| and outputs pairs (x, x′) such
that f̃(x′) = t. AdvΠ,f,f̃ ,G,I(A) of the average guess
attacks is the mean of all AdvΠ,f,f̃ ,G,It

(A) whose
It =

⋃︁
s∈S {{(s, t)}} , t ∈ T . The average running

time of A is the average running time of all At.

We run the two naı̈ve methods with ℓMD, the state-of-the-
art loss function for targeted attacks (introduced in §III-A).

Measurement Process: We computed AdvΠ,f,f̃ ,G,I(A) of
four attacks, using two new loss functions, the MDMAX
loss and the MDMUL loss, and the two baseline naı̈ve at-
tacks, on the three image datasets. We also ran attacks with
the MDMAX loss along with the baselines on the SST-5
dataset. The performance of attacks is computed on a per-
image basis: in experiments related to the new loss functions,
Exptimp-rel

Π,f,f̃ ,G,I(A) always uses a G that samples X of size
|X| = 1 uniformly.

4) Results: On the GTSRB dataset, as illustrated in Fig. 1,
|T | ranges from 3 (for a 20 KPH sign) to 7 (for a 120 KPH
sign). Compared with the best guess attacks, attacks with
the MDMAX loss or the MDMUL loss take intuitively and
empirically one-third to one-seventh of the time on GTSRB
(more details later). As shown in Fig. 6, the AdvΠ,f,f̃ ,G,I(A)
of attacks with new loss functions is 0.62–1.04× that of the
best guess attacks. Attacks with the MDMAX loss or the
MDMUL loss take much less time than the best guess attacks,
but obtain close AdvΠ,f,f̃ ,G,I(A). The average guess attacks
take the same amount of time as attacks with the MDMAX
loss or the MDMUL loss on GTSRB. The advantages of
attacks with the new loss functions are 1.04–2.56× that of the
average guess attacks, i.e., always larger than the advantages of
average guess attacks. On the PubFig and ImageNet datasets,
|T | ranges from 10 to 50. On the PubFig dataset, when |T |
increases, the AdvΠ,f,f̃ ,G,I(A) of attacks with the MDMAX
loss, attacks with the MDMUL loss, and the best guess attacks
also increase, whereas the AdvΠ,f,f̃ ,G,I(A) of the average
guess attacks stay about the same. We observe the same
phenomenon in these two datasets (shown in Fig. 7–Fig. 9).
Since |T | ranges from 10 to 50 on PubFig and ImageNet, the
best guess attacks are 10 to 50 times slower than attacks with
the MDMAX loss or the MDMUL loss. The AdvΠ,f,f̃ ,G,I(A)
of new loss functions is 0.30–1.21× as large as that of the
best guess attacks on PubFig, and 0.62–1.15× on ImageNet.
The AdvΠ,f,f̃ ,G,I(A) of new loss functions is 1.19–6.22×
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Fig. 6. AdvΠ,f,f̃ ,G,I(A) of four attacks, two naı̈ve methods and two
with new loss functions, on the GTSRB dataset. Although the ranges of
advantages of different attacks overlap, attacks with the MDMAX loss
or the MDMUL loss, depicted as the wider boxes, usually have slightly
lower AdvΠ,f,f̃ ,G,I(A) than the best guess attack but always have higher
advantages than the average guess attack. With each combination of Lp-
norm and architecture, the performance of models varies only due to different
randomly initialized weights, using seeds 0 – 99.

|T|=10 |T|=20 |T|=30 |T|=40|T|=50
(|T|, |S|)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

th
e 

Ad
va

nt
ag

e 
of

 A
dv

er
sa

ry

Best guess attack
Average guess attack
Attack with the MDMAX loss
Attack with the MDMUL loss

Fig. 7. Advantages of four attacks, two naı̈ve methods and two with new
loss functions, on the PubFig dataset. Ranges are due to choices of S and
T . Although the ranges of advantages of different attacks overlap, for each
specific (S, T ), attacks with the MDMAX loss or the MDMUL loss always
have lower AdvΠ,f,f̃ ,G,I(A) than the best guess attack but have higher
advantages than the average guess attack.

as large as that of the average guess attacks on PubFig, and
7.37–41.53× on ImageNet. On the SST-5 dataset, attacks with
the MDMAX loss obtain AdvΠ,f,f̃ ,G,I(A) that is not only
larger than the average guess attacks but also unintuitively
larger than the best guess attacks, as shown in Fig. 5. T-PGD
uses a weighted sum of two parts as the loss function: the first
part aims to induce misclassification, which we replace with
the MDMAX loss, and the second part aims to increase the
USE score. Using the MDMAX loss, T-PGD finds successful
attacks earlier and thus spends more iterations to increase the
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Fig. 8. Advantages of four attacks, two naı̈ve methods and two with new loss
functions, on the ImageNet dataset with L2-norm. Ranges are due to choices
of S and T . Although the ranges of advantages of different attacks overlap,
for each specific (S, T ), attacks with the MDMAX loss or the MDMUL loss
usually have slightly lower AdvΠ,f,f̃ ,G,I(A) than the best guess attack but
always have higher advantages than the average guess attack.
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Fig. 9. Advantages of four attacks, two naı̈ve methods and two with new loss
functions, on the ImageNet dataset with L∞-norm. Ranges are due to choices
of S and T . Although the ranges of advantages of different attacks overlap,
for each specific (S, T ), attacks with the MDMAX loss or the MDMUL loss
usually have slightly lower AdvΠ,f,f̃ ,G,I(A) than the best guess attack but
always have higher advantages than the average guess attack.

USE score. In summary, attacks with the MDMAX loss or
the MDMUL loss always obtain larger advantages than the
average guess attacks do.

To empirically verify that the two new loss functions reduce
the computation time of attacks, we measured the average
running time to perturb one batch of images on an RTX 3090
GPU. We used 10 images from ImageNet, 64 images from
PubFig, or 512 images from GTSRB, as one batch of images.
We used the largest |T | for each dataset: 50 for ImageNet
and PubFig, and 7 for GTSRB. We compared four attacks:
the best guess attacks, the average guess attacks, attacks with
the MDMUL loss, and attacks with the MDMAX loss. The
detailed results are shown in Fig. 11. The results confirmed
our hypothesis: attacks with the MDMUL loss or the MDMAX
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Fig. 10. Running time of two baselines and attacks with the MDMAX loss
on SST-5. Attacks with the MDMAX loss take about the same time as the
average guess attacks. As the USE score increases, finding successful attacks
becomes harder, and best guess attacks take much more time than attacks with
the MDMAX loss.

Fig. 11. Average time (seconds) to perturb one batch of images. Intuitively
attacks with ℓMDMAX or ℓMDMUL are faster by a factor of |T | than the best
guess attacks. We measured the average running time on a RTX 3090 GPU,
with the largest |T | for each dataset: 50 for ImageNet and PubFig, and 7 for
GTSRB.

Dataset Lp architecture Best Average Attack Attack
guess guess with with

norm attack attack ℓMDMAX ℓMDMUL

ImageNet L2 – 279.44 5.59 5.07 5.67
L∞ – 280.89 5.61 5.06 5.51

PubFig – – 845.93 16.92 15.33 16.48
VGG 18.54 2.65 2.48 2.59

ResNet 18.01 2.57 2.39 2.51
L2 SqueezeNet 11.27 1.61 1.57 1.59

ShuffleNet 17.57 2.51 2.37 2.51
GTSRB MobileNet 19.88 2.84 2.44 2.53

VGG 17.18 2.45 2.28 2.32
ResNet 17.04 2.43 2.24 2.35

L∞ SqueezeNet 11.16 1.58 1.47 1.64
ShuffleNet 16.84 2.41 2.25 2.48
MobileNet 18.06 2.58 2.37 2.57

loss are faster than the best guess attacks by a factor of |T |.
We also noticed that if adversaries choose to perturb images
by instances, instead of conventional batches, they might save
time to run the best guess attacks by stopping perturbing an
image that they have already succeeded in perturbing. While
empirically such a variant of the best guess attacks save time
for the adversaries, the time needed by this variant is still much
larger than attacks with the MDMUL loss or the MDMAX
loss. The detailed results are shown in Fig. 11. We observe the
similar results as shown in Fig. 10: attacks with the MDMAX
loss take about the same amount of time as average guess
attacks, and they take much less time especially when the USE
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Fig. 12. Average time (seconds) to perturb one image. Intuitively attacks with
ℓMDMAX or ℓMDMUL are faster by a factor of |T | than the best guess attacks.
We measured the average running time on a RTX 3090 GPU, with the largest
|T | for each dataset: 50 for ImageNet and PubFig, and 7 for GTSRB.

Dataset Lp architecture Best guess Best guess Attack Attack
attack attack with with

norm (until success) ℓMDMAX ℓMDMUL

ImageNet L2 – 205.04 177.40 4.09 4.19
L∞ – 189.06 148.15 3.87 3.92

PubFig – – 135.96 58.21 2.58 7.77
VGG 8.73 8.19 1.27 1.49

ResNet 10.02 9.28 1.44 1.64
L2 SqueezeNet 10.06 7.47 1.49 1.54

ShuffleNet 16.54 13.70 2.30 2.45
GTSRB MobileNet 15.55 13.90 2.25 2.43

VGG 8.18 5.94 1.24 1.54
ResNet 9.92 7.35 1.41 1.61

L∞ SqueezeNet 10.61 8.29 1.45 1.61
ShuffleNet 15.78 13.52 2.16 2.31
MobileNet 14.97 13.75 2.27 2.40

score is high.

Takeaways (Loss Functions)

Attacks with the MDMAX loss or the MDMUL loss
achieve comparable or slightly lower AdvΠ,f,f̃ ,G,I(A)
than the best guess attacks, consume markedly less
time and are markedly more efficient, finding more
attacks per time unit. Attacks with the MDMAX loss
or the MDMUL loss consume the same amount of
time as the average guess attacks and have much
higher AdvΠ,f,f̃ ,G,I(A). The MDMUL loss and the
MDMAX loss boost the efficiency of attacks in the
attack scenarios we tried.

B. Attack Strategies

The previous section (§III-A) introduced loss functions
that increased the efficiency of evasion attacks that perturb
a single input toward a set containing multiple target classes.
In contrast, this section introduces strategies that can be used
to increase efficiency when there are also multiple inputs to
be perturbed.

Previous works evaluate attacks by either the success rate
AdvΠ,f,f̃ ,G,I(A) (e.g., [37], [39]–[50]) or Lp-norm distance
Π (e.g., [51]–[54]). These metrics measure the per-input-
sample performance of attacks. That is, |X| = 1 for G.
However, as described in §II, adversaries could face scenarios
where they need to cause each of several images that belong to
different classes to be incorrectly classified into several other
different classes. In scenarios such as the burglary example,
more than one burglar may impersonate the bank staff, and
more than one staff member needs to be impersonated since
no staff member can grant access individually. Attacks A need
to maximize AdvΠ,f,f̃ ,G,I(A) when |X| > 1 and each Ii ∈ I
is a surjective function mapping classes S to a target set T
of classes where S ∩ T = ∅. A major obstacle to computing
AdvΠ,f,f̃ ,G,I(A) when |X| > 1 is that whether an attack can
successfully perturb an input instance x ∈ X as a target class
t ∈ T remains unknown until an exhaustive attack is fully

performed. Suppose x is a specific instance in X generated by
G, t is a specific target class t ∈ T , s = f(x), Ĩ = {{(s, t)}}
and G̃ is an algorithm producing instance X̃ = {x} (|X| > 1
for G and |X̃| = 1 for G̃). If the adversary A can estimate the
pairwise success rate AdvΠ,f,f̃ ,G̃,Ĩ(Ã) to perturb x to t, it may
choose the x and t pairs accordingly to focus its attack, ob-
taining a higher probability to have Exptimp-rel

Π,f,f̃ ,G,I(A) return 1
and thus maximizing AdvΠ,f,f̃ ,G,I(A) by definition. We will
now introduce three strategies to estimate AdvΠ,f,f̃ ,G̃,Ĩ(Ã),
the pairwise success rate to perturb each x ∈ X as each t ∈ T .

1) Estimate by Computing a Prior from Validation Set: A
can launch targeted attacks using a validation set, perturbing
input instances associated with each s ∈ S as each t ∈ T . In
the bank burglary example, the burglars might collect images
of staff ahead of time to construct the validation set. A
can compute a prior probability of perturbing input instances
associated with each s ∈ S as each t ∈ T . More formally, Ã is
trying to transform a random instance of s to t, as specified by
Ĩ. A can compute AdvΠ,f,f̃ ,G,Ĩ(Ã), and use it as an estimate
of AdvΠ,f,f̃ ,G̃,Ĩ(Ã). This approach does not require x, the
actual instance to be perturbed, to estimate. In the burglary
example, using this approach, the burglars A do not need to
maintain the same poses before the facial recognition camera
when they try to impersonate different staff members. When
A executes, A always tries the (s, t) class pair with highest
prior AdvΠ,f,f̃ ,G,Ĩ(Ã) first. It iterates over input instances
associated with class s and performs targeted attacks towards
class t until a successful perturbation has been found or all
images have been tried. Then it repeats the above process by
picking the (s, t) class pair with the next highest prior, and
skipping such a pair if a successful perturbation targeting t
has already been found.

2) Estimate by MD Loss Without Perturbation: As dis-
cussed in §III-A, the smaller the MD loss, the closer the attack
is to succeeding. A can perform one forward propagation for
every input instance x ∈ X to be perturbed to get the logits.
Then A can compute the MD loss towards each target class
t ∈ T . The smaller the MD loss is, the larger the estimated
AdvΠ,f,f̃ ,G̃,Ĩ(Ã) is. When A is carried out, A repeatedly
selects (x, t) pairs with the next smallest MD loss, and it skips
pairs where a successful perturbation has been found targeting
class t.

3) Estimate by MD Loss After One Attack Iteration: For
every input instance x ∈ X and each target class t ∈ T ,
A perform one iteration of the attack Ã [41], [42] before
computing the MD loss. The smaller the MD loss is, the larger
the estimated AdvΠ,f,f̃ ,G̃,Ĩ(Ã) is. When A is carried out, A
repetitively selects (x, t) pairs with the next smallest MD loss,
and it skips pairs where a successful perturbation has been
found targeting class t.

A do not have to use the above three strategies indepen-
dently. Although the MD loss is not a probability estimate,
we expect it to be inversely correlated with the probability
estimate of pairwise attack success AdvΠ,f,f̃ ,G̃,Ĩ(Ã). Given
an input instance x ∈ X from class f(x) = s ∈ S, and t ∈ T ,
A can compute the prior, (s, t), AdvΠ,f,f̃ ,G,Ĩ(Ã), and MD
loss of (x, t), with or without adding perturbations, as above-
mentioned. One approach to combine these two values is to
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construct a product as (1−prior)∗ℓMD for each (x, t) pair. The
smaller the product, the larger the estimated AdvΠ,f,f̃ ,G̃,Ĩ(Ã)
is. When A is carried out, A repeatedly selects (x, t) pairs with
the next smallest product and skips pairs where a successful
perturbation has been found targeting class t. Other approaches
to combine strategies might also work.

4) Experiment Setup: To illustrate the new loss strategies’
improvements of AdvΠ,f,f̃ ,G,I(A), we used the same threat
model, datasets and benchmarks as we did in §II-E. In addition,
we used the baselines and measurement process below.

Baselines: We created a baseline strategy to compare with
attack strategies proposed in §III-B. As we introduced in §II,
when |X| > 1, A may consider goals for which, e.g., each Ii ∈
I is a surjective function mapping classes S to a target set T of
classes where S∩T = ∅. For all x ∈ X and t ∈ T , the baseline
strategy randomly selects (x, t) pairs without replacement and
skips (x, t) pairs where a successful misclassification targeting
a t has been made.

Measurement Process: We evaluated the attack strategies
on PubFig and ImageNet using the bank burglary scenario. We
implemented G for each test I on different datasets. However,
different from §II-E and §III-A3, we used |X| > 1 as we
introduced in §II-D, and Ii ∈ I is a surjective function.
The size of the codomain of the surjective function is K,
K > 1. We compared the baseline strategy with five strategies:
three strategies listed in §III-B, and two strategies that are
combinations of the previous three (also mentioned in §III-B).

The strategy that estimates pairwise success rates
of attacks, AdvΠ,f,f̃ ,G̃,Ĩ(Ã), by computing a prior,
AdvΠ,f,f̃ ,G,Ĩ(Ã) , requires a validation set besides the
data samples we used for evaluation. PubFig has its own
validation set. However, ImageNet only has a testing set, so
we randomly split it by a 2:1 ratio, as PubFig has.

We sampled images from the testing sets to evaluate the
attack strategies. For each of the (S, T ) pairs described above,
we first randomly selected one x ∈ X from each s ∈ S, for
a total of |S| images. Then we tried to perturb these images
as any K diverse classes. In the bank burglary scenario, K is
the least number of staff that need to agree to grant access to
the treasury.

According to the estimated pairwise success rates,
AdvΠ,f,f̃ ,G̃,Ĩ(Ã), we select the next most likely vulnerable
(x, t) pairs to launch targeted attacks. We launch Auto-PGD
with MD loss for each (x, t) pair and counted it as one attempt.
The less attempts needed to find K diverse misclassifications ∈
T , the more often Exptimp-rel

Π,f,f̃ ,G,I(A) returns 1, and the larger
AdvΠ,f,f̃ ,G,I(A) is. As defined in §II-C, AdvΠ,f,f̃ ,G,I(A) is
the probability that Exptimp-rel

Π,f,f̃ ,G,I(A) returns 1.

Assuming at least K diverse misclassifications could al-
ways be found, we compared attack strategies by the num-
ber of attempts needed to find K diverse misclassifications.
We ensured the assumption always holds when selecting
1000 sets of |S| images for each (S, T ) pair. We used
K ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45} on PubFig and K ∈
{2, 3, 4, 5, 6, 7, 8} on ImageNet. We eliminated choices of K
if K > |T | or the probability that the assumptions holds is
smaller than 1%. For choices of K that are larger than the
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(1-prior matrix) * MD loss after 1 iteration of attack

Fig. 13. The natural logarithm of the average number of attempts needed by
attack strategies to find K diverse misclassifications, using eyeglasses attacks
on the PubFig dataset. Average is taken over images and choices of (S, T ).
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(1-prior matrix) * MD loss after 1 iteration of attack

Fig. 14. The natural logarithm of the average number of attempts needed by
attack strategies to find K diverse misclassifications, using L2 attacks on the
ImageNet dataset. Average is taken over images and choices of (S, T ).

ones we listed above, the probability that the assumptions hold
was always smaller than 1%.

5) Results: Now we turn to empirically demonstrate that
the new attack strategies help to increase AdvΠ,f,f̃ ,G,I(A),
where |X| > 1 and Ii ∈ I is a surjective function. The
detailed results are shown in Figs. 13–15. On all datasets
and benchmarks, estimating the success rate only by the prior
matrix is more efficient than random guess but less efficient
than all other methods. This strategy needs only 13.48–60.25%
of the number of attempts needed by the baseline on Pub-
Fig, 23.84–92.63% on ImageNet with L2-norm, and 10.92–
89.00% on ImageNet with L∞-norm. This strategy has larger
AdvΠ,f,f̃ ,G,I(A) than random guess.

Estimating the pairwise success rate AdvΠ,f,f̃ ,G̃,Ĩ(Ã) with
MD loss after 1 iteration of the attack is less efficient than
without any perturbation only when using small values of
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Fig. 15. The natural logarithm of the average number of attempts needed
by attack strategies to find K diverse misclassifications, using L∞ attacks on
the ImageNet dataset. Average is taken over images and choices of (S, T ).

K and L∞ norm on the ImageNet dataset. Combining the
prior with other strategies on the PubFig dataset creates more
efficient strategies. We verified that these conclusions have
statistical significance, using the same Wilcoxon signed-rank
test as Lin et al. used to compare success rates of attacks [37].
Combining the prior with other strategies on the ImageNet
dataset has minimal effects on the efficiency. The most efficient
strategy needs only 12.41–49.19% of the number of attempts
needed by the baseline on PubFig, 0.79–4.53% on ImageNet
with L2-norm, and 1.26–9.40% on ImageNet with L∞-norm.

We additionally evaluated the strategies on ImageNet with
two variants of the current setup, each with an additional
constraint on A. In the first variant, we randomly selected
a five-class subset of S as managers, allowing the vault to
be opened only if 1) at least K staff members agree and
2) at least one of these K staff members is a manager. We
modified A so it would still try to impersonate any of the staff
members until K−1 success, and then only try to impersonate
any of the managers if no manager has been impersonated.
The relationship between attack strategies remains the same:
previously more efficient strategies are still more efficient in
this setting. The most efficient strategy needs only 0.89–3.41%
of the number of attempts needed by the baseline with L2-
norm, and 2.81–9.40% with L∞-norm.

In the second variant, we required that the face-recognition
system recognizes all K staff members simultaneously and
hence each burglar might impersonate once at most. This is
in contrast with the previous two settings, where the face-
recognition system takes one face at a time, and the same
burglar may impersonate more than one staff members. The
relationship between attack strategies still remains the same.
The most efficient strategy needs only 0.95–3.55% of the
number of attempts needed by the baseline with L2-norm, and
2.99–6.74% with L∞-norm.

Takeaways (Attack Strategies)

Overall, across multiple setups, we observed that by
applying the attack strategies we propose, adversaries
can find more attacks per time unit and obtain larger
AdvΠ,f,f̃ ,G,I(A).

IV. ENHANCING GROUP-BASED ROBUSTNESS

We previously showed that our new metric can reveal new
insights about models’ susceptibility to realistic threats (§II),
as well as that formalizing these threats makes it possible to
design faster or more successful attacks (§III). In this section
we introduce defenses that focus on defending against group-
based attacks and examine their performance relative to pre-
vious defenses. We summarize the desired properties of such
defenses in §IV-A. We propose an approach to systematically
build such defenses in §IV-B. We empirically verify that our
defense achieves the desired properties in §IV-D, with the setup
described in §IV-C.

A. Defense Objectives

We desire the new defenses to have high benign accuracy
on all inputs, and high RobΠ,f,f̃ ,G,I(A), preventing the at-
tacker to achieve any Ii ∈ I. We also noticed that naı̈vely
preventing the attacker from achieving their goal could also
render the ML model useless in benign cases, when no attacker
is present. For example, by never classifying any traffic sign
as a stop sign, a classifier might achieve better group-based
robustness because it might prevent unexpected vehicle stops
caused by attacks. Such a classifier might also maintain high
average accuracy because there are many traffic signs other
than stop signs that could still be classified correctly. However,
such a classifier might not be considered useful in practice.

Hence, we desire the new defenses to perform better than
existing defenses on the following three metrics simultane-
ously: 1) group-based robustness RobΠ,f,f̃ ,G,I(A), 2) average
accuracy, and 3) accuracy on unperturbed inputs associated
with classes that might be impersonated. When such classes
are underrepresented, (2) might not naturally imply (3): (2)
can still hold if there are many classes, of which only a few
might be impersonated, and the classifier never emits them.

B. Defense Approach

The state-of-the-art defense against evasion attacks is ad-
versarial training, which involves rapidly and adaptively gen-
erating adversarial examples. The more time-efficient group-
based attacks that we have developed (§III-A) make it possible
to generate adversarial examples fast enough for adversarial
training specifically against group-based attacks.

Existing adversarial training defenses train for better untar-
geted robustness, emphasizing that the model should always
predict the correct class [40], [65]. However, to have high
group-based robustness, a model does not have to be always
correct on perturbed (i.e., adversarial) inputs. Hence, we pro-
pose focusing on training models to maintain accuracy on all
inputs when no attacker is present, while also allowing them
to misclassify inputs supplied by the attacker, as long as those
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misclassifications do not further the attacker’s objectives. For
example, if an attacker, Eve, attempts to impersonate a member
of the bank staff, there is no harm to the bank if the classifier
is fooled into thinking that the attacker is another attacker,
Mallory; the only harm is in predicting that Eve is a member
of the bank staff.

We believe this approach will enable the achievement of
higher group-based robustness while maintaining high benign
accuracy. We modified established adversarial training algo-
rithms to build stronger defenses against group-based attacks.
Besides generating adversarial examples with group-based
attacks, we also designed a new data-fetching mechanism and
new loss function, detailed below.

1) Loss Function: Many existing adversarial training de-
fenses use the same loss function for training as when no
adversaries are present (e.g., [40], [65]). Intuitively, to have
high group-based robustness, we only need to train the model
to avoid predicting any t ∈ T on adversarial examples, and
thus we have

ℓMDTRAIN = κ ∗
∑︂
t∈T

ReLU(Zt + δ −max
i/∈T

(Zi)) (5)

where t is iterated over all classes in T and the largest Zi

among all classes i not in T is used. κ is a non-negative
weighting factor.

Instinctively, a larger κ implies higher group-based robust-
ness and lower benign accuracy, and vice versa. We realized
that the choice of κ could depend on the specific needs of
implementation scenarios. For example, if we expect the model
to maintain very high benign accuracy while gaining some
group-based robustness, a large κ might be preferred. In our
implementation, we ran linear search and chose a κ value for
each dataset such that our defense outperforms existing ones
on all three metrics listed in §IV-A on a validation set.

ℓMDTRAIN is non-negative, and equals zero if and only if an
attack has been prevented. If ℓMDTRAIN > 0, there is at least
one class t ∈ T that has higher logits than all classes i /∈ T ;
otherwise, if ℓMDTRAIN = 0, there is at least one class i /∈ T
that has higher logits than all classes t ∈ T .

2) Data Fetching: Existing adversarial training defenses
use adversarial examples generated from inputs associated
with all classes. To have high group-based robustness, we
only need to train the model against evasion attacks that use
input instances associated with some s in S. As described
in §IV-A, we also expect the model to maintain high benign
accuracy. Thus, we modify the data-fetching process so every
fetched batch consists of two data partitions: the first partition
consists of inputs associated with all classes and the second
partition consists of inputs associated with some s in S. In our
implementation, the ratio of sizes of partitions is close to the
ratio of the inputs of these two types in the training set. The
first partition is never perturbed, and we generate adversarial
examples on the second partition using ℓMDMUL (§III-A). We
train the model to correctly classify inputs in the first partition,
by minimizing the cross-entropy loss which is commonly used
for benign training. We train the model to prevent group-based
attacks on the second partition by minimizing ℓMDTRAIN.

C. Experiment Setup

To verify that our defense boosts RobΠ,f,f̃ ,G,I(A) at the
same level of benign accuracy, we used the same threat model,
datasets and benchmarks as we did in §II-E. In addition, we
used the baselines and measurement process below.

1) Baselines: To illustrate its improvements to
RobΠ,f,f̃ ,G,I(A) at the same level of benign accuracy, we
examined the defense on the GTSRB dataset at L∞ = 8/255
with ResNet architecture, and also on the PubFig dataset.
We reused the 100 adversarial training instances as baselines
on GTSRB, and the VGG model trained by Wu et al.’s
method [62] for five epochs as a baseline on PubFig (they
were used in §II-E).

2) Measurement Process: As we did in §II-E, §III-A3,
and §III-B4, we implemented G for each test I on different
datasets. On the GTSRB dataset, we used the same setup as
we did for attack loss functions, perturbing speed limit and
delimits signs to (1) one of the signs that would lead to an
immediate stop or (2) no more than half of the actual limit.
I =

⋃︁
s∈S

⋃︁
t∈Ts
{{(s, t)}}. We trained an instance with free

adversarial training for 50 epochs, and then trained it with
the method we described in §IV-B for another 50 iterations.
Other choices of numbers of iterations might also work. We
compared the robustness of this instance with the robustness
of the 100 baselines, on adversarial examples generated by the
best guess method.

Again we used the PubFig dataset to simulate the burglary
scenario where burglars are trying to attack a bank. Due to
limited computation resources, we slightly modified the setup
such that we still randomly selected two mutually exclusive
sets of classes S and T , but each of S and T consists of
five classes. We randomly selected four different S and T
pairs. T is the set of staff members who have legal access,
and S is the set of burglars. As described in §I, the bank
requires three distinct staff members to agree before a vault
can be opened. The burglars need to impersonate three distinct
staff members and each Ii ∈ I is a surjective function. We
started with an instance that has been adversarially trained for
five epochs using Wu et al.’s method [62], and we trained
with our method (described in §IV-B) for one epoch. We also
trained the VGG model using Wu et al.’s method for one
more epoch (six epochs in total) to fairly compare with our
defense. As described in §IV, our defenses are specific to I,
corresponding to choices of S and T . We trained four instances
according to the four choices. To measure RobΠ,f,f̃ ,G,I(A),
we exhaustively searched through all possible choices of X:
we fixed |X| = 5, and G sampled one x from each s ∈ S
uniformly. With respect to the X and T , we exhaustively
search through all possible choices of Ii and verify if there
is such an Ii that the burglars can achieve, as we described
in §II-C. It is worth noticing that our defense aims to prevent
attacks from happening rather than make attacks slower (but
only against the attack strategies mentioned in §III-B).

As we explained in §IV-A, we expect the model to also
maintain high accuracy on classes that might be impersonated.
We measured the benign accuracy on inputs associated with
all possible t in Ts. On the GTSRB dataset, we measured the
accuracy on any inputs x that are stop signs, no entry signs, no
vehicle signs, or speed limits no higher than 60 KPH. On the
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Fig. 16. Average accuracy, accuracy on targeted classes Ts, and
RobΠ,f,f̃ ,G,I(A) of our defense and free adversarial training. As soon as
we switched to our defense, average accuracy and RobΠ,f,f̃ ,G,I(A) boosted
while accuracy on Ts remained about the same. As we trained for more
iterations, the accuracy on Ts and average accuracy kept increasing, while
RobΠ,f,f̃ ,G,I(A) remained at the same level.

Fig. 17. Peformance of our defense compared with its two baselines on the
PubFig dataset. Each instance of our defense corresponds to a specific choice
of S and T . Our defenses achieve similar average accuracy and accuracy on
T to the baselines. Specifically, with #1 choice of T , although our defense
is up to 5% less accurate on inputs associated with T , we are only two data
points worse because there are only 38 input instances associated with T in
the test set. Meanwhile, the RobΠ,f,f̃ ,G,I(A) of our defense is much higher
than the baselines. We measured RobΠ,f,f̃ ,G,I(A) with two choices of I
as we did in §III-B5. One choice of I allows the reuse of attackers, a.k.a.
the same burglar may impersonate more than one staff members, whereas the
other choice of I does not.

Choice Wu etWu et Our Our Our Our
Metric of al.’s al.’s DefenseDefenseDefenseDefense

T +1 #1 #2 #3 #4
epoch

Average
Accuracy - 0.98 0.98 0.98 0.99 0.99 0.99
Accuracy #1 0.95 0.97 0.92 - - -

on #2 0.99 0.99 - 0.99 - -
T #3 1.00 0.98 - - 1.00 -

#4 0.95 1.00 - - - 0.97
Robustness #1 0.25 0.31 0.89 - - -

With #2 0.27 0.38 - 0.65 - -
Reuse of #3 0.84 0.55 - - 0.97 -
Attackers #4 0.73 0.68 - - - 0.84

Robustness #1 0.38 0.37 0.99 - - -
Without #2 0.72 0.73 - 0.91 - -
Reuse of #3 0.91 0.88 - - 0.99 -
Attackers #4 0.95 0.98 - - - 1.00

PubFig dataset, we measured the accuracy on inputs associated
with any t in T with respect to the specific choices of T .

D. Results

Fig. 16 demonstrates the results on the GTSRB dataset.
With one iteration of training, our defense achieved higher
average accuracy, higher RobΠ,f,f̃ ,G,I(A) and about the same
accuracy on Ts compared to the baselines. As the training

process progressed, average accuracy and accuracy on Ts

increased, while RobΠ,f,f̃ ,G,I(A) were always higher than
that of the baselines. On the PubFig dataset, as shown in
Fig. 17, with one iteration of training, our defenses achieve
similar average accuracy and accuracy on T to the baselines.
Meanwhile, our defenses boost RobΠ,f,f̃ ,G,I(A) by up to
3.52 times, relatively. On both datasets, our defense has no
worse average accuracy and accuracy on T than the baselines
while obtaining higher RobΠ,f,f̃ ,G,I(A). We acknowledge
that our tuning of parameters might not be the best: other
tunings might achieve higher performance by some or all of
the three metrics mentioned above. However, our experiments
successfully demonstrated that we can systematically generate
defenses to meet the goals described in §IV-A.

Takeaways (Defense)

By modifying existing adversarial training algorithms,
we were able to generate defenses that outperform
existing ones on all three metrics mentioned in §IV-A:
1) group-based robustness RobΠ,f,f̃ ,G,I(A), 2) aver-
age accuracy, and 3) accuracy on unperturbed inputs
associated with classes that might be impersonated.

V. RELATED WORK

Several instances of prior work were discussed in §II and
§III, which motivated the group-based metric and attacks.
Additionally, §II-E leverages prior work as benchmarks and
baselines. This section complements the prior work already
addressed by positioning group-based attacks within multiple
domains, including role-based access control, natural perturba-
tions, privacy, and fairness. We discuss each of these in turn.

Role-based Access Controls: Ferraiolo and Kuhn defined
Role-based Access Controls as a mechanism to group users
by roles and grant access accordingly [80]. In a hospital
setting, for example, doctors have read and write access to
prescriptions but pharmacists only have read access. Doctors
and pharmacists are two groups of users, and doctors have
more access. Schaad et al. described a real-world implemen-
tation of Role-based Access Controls in Dresdner Bank, a
major European bank where 50,659 employees are grouped
into about 1,300 roles [79]. In the setup of our experiments, we
also have two groups of users: potential attackers and potential
targets, e.g., students and instructors in the class materials theft
scenario, and burglars and bank staff in the burglary scenario.
In both scenarios, users from groups with less access attempt
to impersonate members from the other groups to gain more
access. The new metric we propose, group-based robustness,
measures the true threat of such disguise more accurately than
existing metrics. The new loss functions (§III-A) and strategies
(§III-B) we propose help estimate this threat more efficiently
than than naı̈ve methods.

Natural Perturbations: Machine-learning models have
been found to perform similarly [81] or better [82] than
humans on image-classification tasks. However, when there is
noise in the images, these models tend to perform much worse
than humans [81]. For example, Mu et al. and Hendrycks et al.
found that natural, non-adversarial, perturbations, such as blur-
ring, can significantly harm the functionality of models [83],
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[84]. Similarly, machine learning models’ vulnerability to
group-based misclassifications demonstrated in this work could
still exist even without the presence of an adversary.

Evasion Attacks as a Defense for Privacy: The prevalence
of machine learning raises privacy concerns, spurring efforts
to protect private information and resist surveillance. Wenger
et al. identified various cases where facial recognition is
deployed [85] along with many anti-facial recognition tools,
including evasion attacks (e.g., [50], [86]–[92]). Abdullah
et al. summarized real-world use cases of voice recognition
systems [93], as well as corresponding evasion attacks against
these systems (e.g., [94]–[102]). As an introduction to a more
general form of evasion based on groups (§II), our paper
also provides a framework for evasion attacks that could
similarly be used by individuals as countermeasures against
unwanted surveillance or data collection (i.e., an individual
from an oppressed or vulnerable minority group may want
to prevent themselves from being automatically identified via
facial recognition).

Fairness in Machine Learning: In our experiments, the
group-based robustness of various models was significantly
affected by different choices of T and S even when we used
the same |T | and |S|. We also observed that the success
rate of perturbing images from s ∈ S as t ∈ T differed
significantly based on choices of s and t, which led us to
suggest computing a prior probability of success for each
(s, t) to identify vulnerable (x, t) pairs, with x ∈ X (§III-B).
Researchers have noticed a similar problem with accuracy and
untargeted robustness: the performance of models varies with
different class distribution [103], [104]. Previous work argues
for fairness in machine learning, advocating that accuracy
and untargeted robustness should be independent of classes.
However, whether a counterpart of fair machine learning is
feasible for targeted robustness or group-based robustness
remains unknown.

VI. CONCLUSION

In this paper, we identified a limitation in the previous
evaluation process of defenses against evasion attacks: in
some real-world attack scenarios, the performance of these
models cannot be accurately measured by existing metrics.
We formally defined a new metric, group-based robustness,
to measure the true threat in these attack scenarios, and sta-
tistically verified that group-based robustness is negligibly or
weakly correlated with every existing metric. We also proposed
approaches that, while maintaining a close AdvΠ,f,f̃ ,G,I(A),
boost the speed of attacks in these attack scenarios: two
new loss functions, the MDMAX loss and the MDMUL loss,
and three new attack strategies. We additionally innovated a
defense that elevates group-based robustness RobΠ,f,f̃ ,G,I(A)
while maintaining high benign accuracy. We validated the im-
provement with experiments across datasets, defenses, distance
metrics, and attack scenarios. Overall, we explored a new
attack space where some real-world attacks reside but existing
research works have not addressed.
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VII. ARTIFACT APPENDIX

On behalf of the authors, we are happy to publish the
source code of our paper as an artifact. However, our exper-
iments took several months on the GPUs, while we are told
by the artifact chairs that artifact reviewers are not assumed to
have GPUs and artifacts to be reviewed are expected to take
no longer than 24 hours. Thus we 1) decide to apply for the
“Functional” and “Available” badges but not the “Reproduced”
badge and 2) provide a “hello-world” style mini-experiment
that takes less than two hours on laptop CPUs but still verifies
our claims.

A. Description & Requirements

This section lists all the information necessary to recreate
the experimental setup.

1) How to access: Our implementation is stored in this
public GitHub repository: https://github.com/linweiran/GBR.
The experiments we specifically designed for artifact eval-
uation can be found in the GTSRB repository, a.k.a. https:
//github.com/linweiran/GBR/tree/main/GTSRB. We have cre-
ated a Zenodo version at https://zenodo.org/records/10104298,
with the DOI: 10.5281/zenodo.10104297.

2) Hardware dependencies: The experiments we propose
in the artifact would take less than two hours on laptop CPUs,
so there is no other hardware dependency.

3) Software dependencies: We recommend using python3
of version 3.10.9 to run our scripts. Additionally, we require a
list of python packages to run our code. The specified list of
python packages can be found at https://github.com/linweiran/
GBR/blob/main/GTSRB/requirements-cpu.txt. To install all
packages, you may easily run “pip3 install -r requirements-
cpu.txt” within the GTSRB folder.

4) Benchmarks: The dataset we used in the
artifact is the GTSRB dataset. Please download
the dataset from the downloads section of https:
//benchmark.ini.rub.de/gtsrb dataset.html#Downloads where
a link can be found. Specifically, please download
files named “GTSRB Final Training Images.zip”,
“GTSRB Final Test Images.zip”, and “GT-
SRB Final Test GT.zip”. After extracting these zip files,
please move the directories named “Final Test” and
“Final Training”, along with the file “GT-final test.csv” to
the same directory. The path of this directory will be used as
the only parameter (for both scripts mentioned below (§VII-B
and §VII-C)

B. Artifact Installation & Configuration

We preprocessed GTSRB images as the first step. You
may switch to the GTSRB directory in our repo and
run “python3 preprocess.py –data path DATA PATH” where
“DATA PATH” is the path to the directory where the extracted
files are stored (described in §VII-A4). An example could
be “python3 preprocess.py –data path \data\GTSRB”. The
results will be printed out to the console.

C. Experiment Workflow

We wrapped up all the mini-experiments as a single
script named “hello world.py” under the GTSRB directory.
To reproduce experiments, run “python3 hello world.py –
data path DATA PATH” where “DATA PATH” is the path to
the directory where the extracted files are stored (described
in §VII-A4 and §VII-B). An example could be “python3
hello world.py –data path \data\GTSRB”.

D. Major Claims

The major claims we made in the paper include:

• (C1): Group-based robustness RobΠ,f,f̃ ,G,I(A) mea-
sures the robustness of models using different choices
of I in accordance with the attack scenarios. Conven-
tional metrics cannot measure the true threat in these
sophisticated scenarios as accurately as group-based
robustness does. Thus, we conclude that group-based
robustness offers another meaningful assessment of
model susceptibility to attacks in the real world com-
pared to conventional metrics (§2).

• (C2): Attacks with the MDMAX loss or the
MDMUL loss achieve comparable or slightly lower
AdvΠ,f,f̃ ,G,I(A) than the best-guess attacks, con-
sume markedly less time and are markedly more effi-
cient, finding more attacks per time unit. Attacks with
the MDMAX loss or the MDMUL loss consume the
same amount of time as the average-guess attacks and
have much higher AdvΠ,f,f̃ ,G,I(A). The MDMUL
loss and the MDMAX loss boost the efficiency of
attacks in the attack scenarios we tried (§3.A).

• (C3): By applying the attack strategies we propose,
adversaries can find more attacks per time unit and
obtain larger AdvΠ,f,f̃ ,G,I(A) (§3.B).

• (C4): By modifying existing adversarial training algo-
rithms, we were able to generate defenses that outper-
form existing ones on all three metrics: 1) group-based
robustness RobΠ,f,f̃ ,G,I(A), 2) average accuracy, and
3) accuracy on unperturbed inputs associated with
classes that might be impersonated (§4).

E. Evaluation

This section documents the details of our experiments.
As we documented at the beginning of this appendix, we
understand that artifact reviewers have much more limited
computation resources than we have. Thus we are not applying
for the “Reproduced” badge and designed this scale-down set
of mini-experiments. Specifically, we performed the following
modifications to reduce experiments:

• We ran mini-experiments only on a specific combi-
nation of settings. The full-scale experiments used
multiple datasets, distance limits, model architectures,
and random seeds. The min-experiments used only the
GTSRB dataset, L∞ distance at 8/255, SqueezeNet
architecture, and 0 as the random seed. We used such
a combination as it is one of the least time-costly
combinations.
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• Mini-experiments ran all attacks by only one itera-
tion. The full-scale experiments ran attacks with their
default settings, ranging from 100 to 300 iterations.

• Mini-experiments trained models by as few iterations
as possible (such that the models still converge).
Full-scale experiments trained models by 100 to 300
iterations. while the mini-experiments only trained up
to eight iterations.

We acknowledge that compared to full-scale experiments, the
mini-experiments used weaker attacks and worse-performing
models (e.g. less robust defenses). However, the major conclu-
sions we made (§VII-D) still hold on the mini-experiments. It
is worth noticing that the mini-experiments and full-scale ex-
periments call exactly the same functions: only the parameters
(specified above) sent to these functions differ. The overall time
of our experiments shall take less than two hours on laptop
CPUs.

1) Experiment (E1): [Setup] As described in the main
paper, attackers are perturbing speed limit and delimit signs
into signs that:

• require an immediate stop, including stop signs, no-
entry signs, and no-vehicle signs; or

• display a limit much lower than the actual limit, such
as no more than half of the actual limit.

[How to] We will document the steps required to prepare
and configure the environment for this experiment, the steps
to run this experiment, and the steps required to collect and
interpret the results for this experiment in the following three
blocks correspondingly.

[Preparation] First, install Python packages as we de-
scribed in §VII-A3. We highly recommend the use of a virtual
environment. Then download the dataset as we described in
§VII-A4. Ultimately, preprocess the downloaded data as we
described in §VII-B

[Execution] As we described in §VII-C, we wrapped
up all the mini-experiments as a single script named
“hello world.py”. You may run “python3 hello world.py –
data path DATA PATH”.

[Results] Four numbers will be reported: benign accuracy,
untargeted robustness, targeted robustness, and group-based
robustness. Group-based robustness is different from all the
other three. This supports C1.

2) Experiment (E2): [Setup] Same as the setup of E1.

[How to] Same as the [How to] of E1.

[Preparation] Same as the [Preparation] of E1.

[Execution] Same as the[Execution] of E1.

[Results] Five numbers will be reported, which correspond
to the success rates of five attacks: attacks with the MDMAX
loss, attacks with the MDMUL loss, the best guess attacks,
the worst guess attacks, and the average guess attacks. The
success rate of attacks with the MDMAX loss or attacks with
the MDMUL loss is higher than that of the worst guess attacks
or the average guess attacks. This supports C2.

3) Experiment (E3): [Setup] We did not evaluate strategies
on the GTSRB dataset in the main paper. Here the setup
is that attackers are perturbing speed limits no less than 70
(five classes) as speed limits no higher than 60 (four classes).
Attackers sample one image from each of the five higher-
speed classes, in total five images as a set. For each set of five
images, attackers can only claim success if they can manipulate
these images as all of the lower-speed four classes. They
may manipulate the same image as different signs. We use
the worst-performing strategy that we proposed (Estimate by
Computing a Prior from a Validation Set).

[How to] Same as the [How to] of E1.

[Preparation] Same as the [Preparation] of E1.

[Execution] Same as the[Execution] of E1.

[Results] Two numbers will be reported, which are the
number of attempts needed by attackers to find the same
number of successful attacks, with or without using our
strategies. Attackers using our strategies need fewer attempts.
This supports C3.

4) Experiment (E4): [Setup] Same as the setup of E1 and
E2.

[How to] Same as the [How to] of E1.

[Preparation] Same as the [Preparation] of E1.

[Execution] Same as the[Execution] of E1.

[Results] Three sets of numbers are reported. Each set
consists of three numbers: benign accuracy, benign accuracy
on the targeted set, and group-based robustness. The three
sets correspond to an existing defense, adversarial training (7
training iterations), adversarial training with one more iteration
of our defense training (8 iterations in total), and adversarial
training with one more iteration (8 iterations of adversarial
training). The model with our defense outperforms the other
two models in all three metrics. This supports C4.
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