Check for
Updates

On the Amortized Communication Complexity of Byzantine

Broadcast
Jun Wan Zhuolun Xiang Atsuki Momose
junwan@mit.edu xiangzhuolun@gmail.com atsuki.momose@gmail.com
Massachusetts Institute of Technology Aptos University of Illinois at

Cambridge, Massachusetts, United
States

Ling Ren
renling@illinois.edu
University of Illinois at
Urbana-Champaign
Champaign, Illinois, United States

ABSTRACT

Designing an efficient solution for Byzantine broadcast is an impor-
tant problem for many distributed computing and cryptographic
tasks. There have been many attempts to achieve sub-quadratic
communication complexity in several directions, both in theory and
practice, all with pros and cons. This paper initiates the study of an-
other attempt: improving the amortized communication complexity
of multi-shot Byzantine broadcast. Namely, we try to improve the
average cost when we have sequential multiple broadcast instances.
We present a protocol that achieves optimal amortized linear com-
plexity under an honest majority. Our core technique is to efficiently
form a network for disseminating the sender’s message by keeping
track of dishonest behaviors over multiple instances. We also gener-
alize the technique for the dishonest majority to achieve amortized
quadratic communication complexity.

CCS CONCEPTS

» Theory of computation —» Communication complexity; Dis-
tributed algorithms; Expander graphs and randomness extractors;
« Security and privacy — Distributed systems security.

KEYWORDS

Distributed System, Consensus, Byzantine Broadcast, Communica-
tion Complexity

ACM Reference Format:

Jun Wan, Zhuolun Xiang, Atsuki Momose, Ling Ren, and Elaine Shi. 2023.
On the Amortized Communication Complexity of Byzantine Broadcast.
In ACM Symposium on Principles of Distributed Computing (PODC °23),
June 19-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3583668.3594596

This work is licensed under a Creative Commons Attribution International 4.0 License.

PODC °23, June 19-23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0121-4/23/06.
https://doi.org/10.1145/3583668.3594596

Palo Alto, California, United States

253

Urbana-Champaign
Champaign, lllinois, United States

Elaine Shi
runting@gmail.com
Carnegie Mellon University
Pittsburgh, Pennsylvania, United
States

1 INTRODUCTION

Byzantine broadcast (BB) is one of the fundamental problems in
distributed systems. In the problem of Byzantine broadcast, there
are n nodes, one of which is a designated sender. The sender is
given a message m and wants to share it with the rest of the nodes.
Despite up to f nodes being corrupt, all honest nodes agree on the
sender’s message.

An important metric of a Byzantine broadcast protocol is its
communication complexity, which measures the number of bits
sent by non-corrupt parties during the protocol execution. Dolev
and Reischuk [12] showed any deterministic Byzantine broadcast
protocol costs at least Q(f%) messages in the worst case, which
was matched by Berman et al. [5] for f < n/3 and then by Momose
and Ren [26] for f < n/2. However, for large-scale distributed
systems, ©(n?) communication complexity may still be expen-
sive. Many attempts have been made to circumvent the impos-
sibility results, mainly in three directions — (1) Randomized so-
lutions [1, 6, 9, 22], which improves the communication cost to
(worst-cast or expected) sub-quadratic. But this approach is inher-
ently vulnerable to strongly adaptive adversaries [1]. (2) Optimistic
solutions [16, 23, 25, 29, 31, 33] that have sub-quadratic commu-
nication under optimistic executions such as synchrony and no
failures. But they still incur quadratic costs in the worst case. (3)
Extension protocols [14, 15, 27] can achieve the optimal commu-
nication cost O(nL) for an input of sufficient size L. Thus they
can also reduce the cost of multiple parallel broadcasts (or atomic
broadcasts [10]) through batching. But they do not allow sequential
and causal broadcast invocations (i.e., a decision in an instance may
affect the input of the next instance), which is required in many
cryptographic protocols assuming broadcast channel [4, 17, 28]. We
refer the reader to Section 2 for more discussions and comparisons.

Despite all the efforts in the above three directions, another
natural attempt through amortization across multiple (sequential)
instances, is somehow overlooked in the literature. In this paper,
we initialize the formal study of the amortized communication com-
plexity of multi-shot Byzantine broadcast. Multi-shot BB consists of
sequential broadcasts with clear boundaries (i.e., one instance ends
before the next instance starts) performed by possibly different
senders. The amortized communication cost of a multi-shot Byzan-
tine broadcast protocol is measured as the average cost of each

PODC ’23, June 19-23, 2023, Orlando, FL, USA

broadcast instance if the protocol runs sufficiently long. Due to the
ever-growing nature of targeted applications such as blockchains,
reducing the amortized cost of the multi-shot Byzantine broadcast
can significantly improve the performance of a long-running sys-
tem. More formally, suppose the total communication complexity
in bits of the multi-shot protocol is C(L, n, f) after L sequential
instances of Byzantine broadcast, our goal is to design multi-shot
Byzantine broadcast protocols that can minimize

lim cdnf) .

Lo

Interestingly, we show that we can design amortized linear multi-
shot Byzantine broadcast protocols under synchrony with the hon-
est majority and strongly adaptive adversaries, circumventing the
Q(f?) lower bound. We also extend our technique to the dishonest
majority case to achieve quadratic amortized cost. Our results are
the following (summarized in Table 1).

o Assuming a threshold signature scheme, we show how to achieve
O(kn) (k is a security parameter) amortized communication
cost for synchronous multi-shot Byzantine broadcast under f <
(1/2 — &)n for any positive constant ¢ (Section 4).

e Assuming a digital signature scheme, we show how to achieve
O(xn?) amortized communication cost for synchronous multi-
shot Byzantine broadcast under f < n (Section 5).

Technical challenge. At a high level, Byzantine broadcast is com-
monly implemented with repeated invocations of consistent broad-
cast [8], which guarantees nodes’ outputs are consistent, i.e., no-
body outputs different values. There are known solutions to achieve
consistent broadcast with linear communication [26, 33], so achiev-
ing safety with a linear cost is not hard. However, note that con-
sistent broadcast does not provide totality. In other words, it is
allowed that some nodes output but others do not when the sender
is dishonest. Therefore, to achieve liveness, we have to dissem-
inate the sender’s message to everybody. The common step to
handle this issue is each node forwards the sender’s message once
received. But this always costs quadratic messages. The key tech-
nical contribution of this work is to adaptively form an efficient
data dissemination network between honest nodes that eventually
converges with bounded cost, which is amortized over multiple
instances.

2 RELATED WORK

Communication bound of Byzantine broadcast. Dolev and Reis-
chuk [12] showed any deterministic Byzantine broadcast protocol
requires at least Q(f?) messages in the worst case even against
static adversaries. This was later extended by Abraham et al. [1],
who showed that even the expected communication of random-
ized protocols is subject to the quadratic bound under strongly
adaptive adversaries who can corrupt a node and retract the mes-
sages sent by that node in the same round. The Dolev-Strong pro-
tocol [13] costs quadratic messages but its communication com-
plexity in bits (for a constant size input) is Q(xn? + n®) (assuming
multi-signatures). These lower bounds on communication were first
matched by Berman et al. [5] who showed a synchronous protocol
with O(n?) communication and f < n/3. Recently, Momose and
Ren [26] extended it to protocols with O(xn®) communication with

254

Jun Wan, Zhuolun Xiang, Atsuki Momose, Ling Ren, and Elaine Shi

1) f < n/2 assuming threshold signatures, or 2) f < (1/2 — ¢)n for
any positive constant ¢ assuming digital signatures.

Circumventing the quadratic bound. There have been significant
efforts to circumvent the quadratic lower bound in several direc-
tions, all with pros and cons. Below, we highlight three main direc-
tions to compare with our approach.

One common direction is to achieve (worst-case or expected)
sub-quadratic communication through randomization. There are
several solutions for both (partial) synchrony [1, 19, 22] and asyn-
chrony [6, 9]. A common solution is to sample a random committee
of a small size to perform consensus within the committee and then
inform the rest of the nodes. However, due to the aforementioned
impossibility result [1], this approach is inherently vulnerable to
strongly adaptive adversaries, who can perform after-the-fact mes-
sage removal, i.e., rushingly corrupt nodes (e.g., nodes selected in
the committee) and erase messages already sent by the nodes before
reaching the recipients.

Another approach is to have an optimistic execution path that
costs sub-quadratic communication under good conditions such as
synchrony and no faults [16, 23, 25, 29, 31]. But they always have
another expensive path that costs quadratic communication in the
worst case. We note here HotStuff [33] can also be categorized into
this type of solution. More specifically, HotStuff can also solve a
synchronous multi-shot BB with amortized linear communication
in failure-free cases. However, we have to prepare a fallback path for
dishonest senders (not fully specified in [33]) due to the aforemen-
tioned message dissemination problem (Section 1). In Appendix A,
we explain why/how HotStuff fails to achieve liveness without a
fallback path.

Finally, extension protocols achieve optimal O(Ln) communica-
tion if input size L is sufficiently large [14, 15, 27]. This is another
orthogonal approach to reduce the amortized communication cost
of multiple parallel instances of broadcast. Namely, we can batch
the inputs of multiple parallel instances together and solve them
once. However, in order to achieve optimal cost, the extension pro-
tocol needs to wait for inputs of sufficient size (e.g. L = Q(kn) for
honest majority) and then batch the inputs to start the protocol,
which can introduce additional latency. Moreover, such a solution
does not support sequential causal inputs of broadcasts, which is
important in certain applications [4].

Byzantine atomic broadcast. With synchrony, multi-shot Byzan-
tine broadcast can directly solve Byzantine atomic broadcast [10, 30]
that commits values at increasing slots (not vice versa, as an atomic
broadcast does not have clear boundaries). State-of-the-art syn-
chronous Byzantine atomic broadcast protocols [2] cost quadratic
communication per decision. Our protocol also solves Byzantine
atomic broadcast with linear communication complexity.

Trust graph in Byzantine broadcast/agreement. There have been
several works that use trust graphs. Liang and Vaidya [24] use a
trust graph to design an extension protocol for the Byzantine agree-
ment with f < n/3. The amortized cost of their protocol is Q(n?).
Recently, Wan et al. [32] improved the expected round complexity
of single-shot Byzantine broadcast using a trust graph. Their key
observation is that, if properly maintained, the diameter of the trust
graph at any honest node can be constant. Although orthogonal in

On the Amortized Communication Complexity of Byzantine Broadcast

PODC ’23, June 19-23, 2023, Orlando, FL, USA

Protocol Network Fault Total Cost Amortized Cryptographic

rotoco Model Tolerance (L decisions) Cost Primitives
Berman et al. [5] synchrony f<n/3 O(n’L) 0(n?) None

Momose-Ren [26] synchrony f<n/2 O(xn®L) O(xn?) threshold sig.
Momose-Ren [26] synchrony f < (1/2—-¢€)n O(xn?L) O(xn?) signature

This work synchrony f < (1/2-e)n O(knL +xn?) O(kn) threshold sig.
Dolev-Strong [13] synchrony f<n O((kn® +n3)L) O(xn® +n3) multi-sig *
This work synchrony f<n O(kn’L + kn*) O(xn?) signature

Table 1: Comparison with existing solutions for multi-shot BB with constant-sized inputs under strongly adaptive adversaries.
The original Dolev-Strong broadcast uses signature and has cost O(xn?).

goal, their protocol inspired us to use the trust graph for keeping
track of misbehaviors across different instances. Beside expected
round complexity, Ghinea et al. [18] showed that corruption detec-
tion mechanism can also reduce the worst-case round complexity
and the failure probability.

Amortized communication in MPC. As a separate track of re-
search, amortizing communication in multi-party communication
has been studied [3, 11, 21]. They achieve linear communication
(amortized over multiple gates) by detecting corrupt nodes and
eliminating them from the execution. The underlying BA costs
quadratic communication per instance.

3 PRELIMINARY

Model and assumptions. We consider a system of n nodes (num-
bered 1 to n) in the lock-step synchronous model; all nodes have
synchronous clocks that start at the same time from round r = 0
and increase at the same speed, and any message sent by an honest
node in round r will be delivered to the recipient by the beginning
of round r + 1. We assume f out of n nodes are corrupt (Byzantine)
and behave arbitrarily. We assume adaptive corruption, i.e., corrup-
tion happens anytime during the execution. We also assume the
adversary is strongly adaptive [1] who can perform after-the-fact
message removal, i.e., an adversary can decide the newly corrupted
nodes in round r after seeing the messages sent by nodes in round
r and erase the messages. Any node that remains non-faulty during
the entire execution is referred to as honest.

We assume a digital signature scheme with a public-key infras-
tructure (PKI). A message m signed by node i is denoted (m);. Our
protocol in Section 4 assumes a threshold signature scheme [7].
In a (t, n)-threshold signature scheme, each node i can generate a
signature share (m); on a message m. A set of ¢ distinct signature
shares {(m)},, .., (m)j,} on the same message m can be combined
into a full signature thsig(m), which has the same length as a sin-
gle signature share (m).. An adversary cannot generate the full
signature thsig(m) from less than t signature shares. The threshold
signature scheme can be set up either through a trusted dealer, or
distributed key generation [20]. Our protocol uses the threshold

t=n-f.

Problem definition. We are interested in the problem of multi-shot
Byzantine broadcast, which consists of a sequence of single-shot
Byzantine broadcasts [13]. We first review the definition of the
single-shot BB.

255

DEFINITION 1 (BYZANTINE BrOADCAST (BB)). A Byzantine broad-
cast protocol for a set of n nodes with a designated sender with input
value v invoking bc(v), must satisfy the following properties.

o Consistency. If two honest nodes commit valuesv andv’ respectively,
thenv =v’.

o Termination. All honest nodes commit and terminate.

o Validity. If the designated sender is honest and invokes bc(v), then
all honest nodes commit v and terminate.

We now define multi-shot Byzantine braodcast below, which
repeatedly invokes single-shot BB.

DEFINITION 2 (MULTI-SHOT BYZANTINE BROADCAST). A multi-
shot Byzantine broadcast protocol for a set of n nodes with a (possibly
different) designated sender S; for each slot i > 0 with input value v
invoking bc;(v), must satisfy the following properties.

o Consistency. If two honest nodes commit valuesv andv’ respectively
at the same slot, thenv = v’.

Termination. All honest nodes eventually commit a value at any
slot.

Validity. If the designated sender of slot i is honest and invokes
bc;(0v), then all honest nodes commit v at slot i.

Sequentiality. For any slot i, the sender S; is allowed to invoke bc;
after bcj is committed at all honest nodes for all slots j < i.

Note that the multi-shot BB has clear boundaries between each
slot due to the sequentiality. In contrast to atomic broadcast [10], it
supports causal inputs. Namely, the sender of each slot can decide
its input depending on the previous decisions. As mentioned, using
extension protocols with batching cannot solve the problem with
linear cost, since O(n) many slots’ senders must input in parallel.

Metrics. First of all, communication complexity is measured as
the bit amount sent by honest nodes. In this paper, we are interested
in the amortized communication complexity of multi-shot Byzantine
broadcast, defined as follows.

DEFINITION 3 (AMORTIZED COMMUNICATION COMPLEXITY). Let
C(L,n, f) be the communication complexity of a multi-shot Byzantine
broadcast protocol for n nodes with f faults to commit L slots. The

amortized communication complexity of the protocol is defined to be

limy 00 —C<L]’_n’f) .

For example, a multi-shot BB protocol that naively runs multiple
instances of single-shot BB of cost Cppg, will have an amortized
communication cost of Cgg. Since the current state-of-the-art BB

PODC ’23, June 19-23, 2023, Orlando, FL, USA

protocol for the honest majority is the Momose-Ren Byzantine
broadcast of cost O(xn?), such a naive approach only gives us
an amortized O(xn?) protocol, which has an O(n) gap from the
optimal.

Expander graph. Our protocol in Section 4 uses an expander
(inspired by [26]), which is a graph with sparse edges but overall
good connectivity. More formally, an (n, «, f)-expander (0 < a <
B < 1) is a graph of n vertices s.t. for any set S of an vertices, the
number of neighbors of S is more than fn. It is well-known that for
any n and any constants «, f such that 0 < a < f < 1, an expander
with constant degree exists [26].

4 AMORTIZED LINEAR COMMUNICATION
UNDER HONEST MAJORITY

This section shows how to achieve O(xn) amortized communication
complexity with f < (1/2 — ¢€)n for any positive constant ¢.

Our protocol is described in Algorithm 4. At a high level, our
multi-shot BB protocol consists of multiple slots, where each slot
implements a single-shot BB. Each slot progresses through many
epochs, with each epoch having a unique leader. A leader proposes
a value, other nodes vote for it, and nodes commit it after collecting
enough votes. Before explaining the detail, we first define some
notions and notations used in our protocol.

Definition and notations. For each slot k > 1, we have f + 2
epochs 0 < i < f + 1 each takes 11 rounds. So epoch i of slot k
starts in round ¢ = 11((k — 1) (f + 2) + i). The leader L of the first
epoch i = 0is the sender Sg, and the leader L; of epoch 1 < i < f+1
is node i.

To reduce message size, we use a threshold signature scheme
to combine a set of votes into a certificate. A certificate for a value
m in epoch i of slot k, denoted Ck,,»(m), is thsig(vote, k, i, m) of an
(n — f, n)-threshold signature scheme, i.e., aggregated votes from
a quorum of n — f nodes. For a technical reason, we also consider
1 as a certificate for any slot k and value m. We define freshness
of certificates of the same slot by epoch: the higher the epoch, the
fresher the certificate (e.g., Cg 1 (m) is fresher than Cy). Also, any
certificate is fresher than L.

We say aleader L; equivocates, if there are two different proposals
in the same epoch and slot, i.e., {prop, k, i, m, C)r, and {prop, k, i, m’,
Cy, form #m’.

Common path. We now explain the protocol in more detail. The
first 7 rounds of each epoch perform the propose-then-vote oper-
ation. The leader proposes a value m (round Propose), and other
nodes vote for it twice. They first vote for the value m (round Vote),
then vote for the certificate Cy ;(m) (round Propagate-2). Nodes
commit m after receiving a commit-proof thsig(Cy ;(m)). To make
the cost linear, we use two known techniques.

First, we use the leader as a "message hub" [33]. Namely, nodes
send signed votes (threshold signature shares) only to the leader,
and the leader, after collecting a quorum of n — f votes, aggregates
them into a k-size certificate (or a commit-proof) and sends it to
nodes. This allows nodes to make progress with linear costs under
an honest leader.

256

Jun Wan, Zhuolun Xiang, Atsuki Momose, Ling Ren, and Elaine Shi

Second, we use an expander graph to prevent the formation of
certificates on two different values (which would lead to disagree-
ment) [26]. More specifically, we use an (n, 2¢, 1 — 2¢)-expander
with each vertex representing each node. Each node, after receiving
a proposal from the leader, sends it to its neighbors in the expander
(round Propagate-1) before voting. If a certificate C; x (m) exists,
n— f > f + 2en nodes, out of which at least 2en honest nodes,
must have sent the proposal of m to their neighbors. The expansion
property implies more than (1 — 2¢)n > 2f nodes, out of which
at least f + 1 are honest, would receive the proposal. They would
never vote for m” # m, so C; ;. (m’) cannot exist.

Achieving liveness with dishonest leaders. So far, we have ex-
plained how to commit safely with linear communication when the
leader is honest. But if the leader is dishonest, a commit-proof may
not be formed. In that case, to ensure liveness, nodes accuse the
leader by sending accuse messages to all nodes (round Query-1). If
the leader is completely silent, at least n — f nodes accuse the leader
which forms a corrupt-proof of the leader. The corrupt proof will
be forwarded to everybody (after aggregation), and honest nodes
will simply ignore this leader ever after. But the situation will be
more complex if the dishonest leader sends messages selectively.
Some nodes may receive the commit-proof, but some may not. Since
not everybody accuses the leader, we do not have a corrupt-proof;
but not everybody receives a commit-proof, either. The last four
rounds (rounds 8-11) resolve this issue. Roughly, we try to dissemi-
nate the commit-proof in two steps. First, the node u missing the
commit-proof queries one node v selected deterministically (round
Query-1), who responds with the commit-proof (round Repond-1).
If v does not help, then node u accuses v and queries all nodes,
some of whom have a commit-proof (round Query-2, Respond-2).
The high-level idea is, though quadratic communication may be in-
curred in this latter query-all step, the number of such occurrences
is bounded. An honest node u selects its helper from nodes that it
has not accused (Query-1). So each honest node will eventually find
an honest helper, after which they can receive a commit-proof from
the helper alone. A dishonest node u may try to keep invoking the
query-all step. But honest nodes respond only when u accuses a
new node (Respond-2). Thus, the dishonest node u will eventually
run out of new nodes to accuse, after which honest nodes will no
longer respond to u.

4.1 Proof of Correctness

We first show that the protocol satisfies consistency using the fol-
lowing two lemmas. Lemma 1 implies that nodes cannot commit
different messages within the same epoch. Lemma 2 implies that
nodes cannot commit differently even across different epochs.

LEmMMA 1. If certificates Cy ;(m) and Cy ;(m’) both exist, then
m=m'.

ProoF. Suppose Cy ;(m) exists, then at least n — f > f + 2¢n
must have sent (vote, k, i, m)., out of which at least 2¢n honest
nodes must have forwarded the leader’s proposal to the neighbors
in the expander graph (in round Propagate-1). Due to the expansion
property, more than (1 — 2e)n > 2f nodes, out of which at least
f + 1 honest nodes would receive the proposal, who would never
vote for m” # m. Thus, Cy ;(m”) cannot exist. O

On the Amortized Communication Complexity of Byzantine Broadcast

PODC ’23, June 19-23, 2023, Orlando, FL, USA

thsig(accuse, L;).
/ Leader proposes a value
(1) Collect: Send the freshest slot-k certificate to L;.
(2) Propose: If u = L;, multicast {(prop, k, i, m, C)r, where:

/] Vote for a leader’s value

Propagate-1, send (vote, k, i, m), to L;

Vote for a certificate

it.

Disseminate a commit-proof

(accuse, v),, and (query,, k, i)y.

v, if this is the first time u receives (accuse, w),.

At any point of the protocol:

Algorithm 4: Linear communication multi-shot BB
Each epoch 0 < i < f +1 of slot k > 1 takes 11 rounds. Let L; be the leader of epoch i, and G, be an (n, 2¢, 1 — 2¢)-expander that is
known to all nodes. Each node u runs the following steps if it has neither 1) committed in slot k, nor 2) received the corrupt-proof

(a) If u has received a slot-k certificates (# L), then C is the freshest Cy ;(m) among those ever received.
(b) Otherwise, C = L, and m « bcy (if i = 0) or an arbitrary value (if i > 0).

(3) Propagate-1: If u receives a proposal (prop, k, i, m, C ;(m))r, s.t. Cy j(m) is a certificate as fresh as what u sent to L; during
Collect, then send the proposal to its neighbors in the expander G,.
(4) Vote: If u has detected equivocation of L;, u multicast (accuse, L;),, (if not yet sent). Else if u has sent L;’s proposal on m in

(5) Certificate: If u = L; and it receives n— f (vote, k, i, m)., aggregate them to generate Cy ;(m) « thsig(vote, k, i, m) and multicast

(6) Propagate-2: If u receives Cy ;(m), send it to its neighbors in G, and send (Cy ; (m))y to the leader L;.
(7) Commit: If u = L; and it receives n — f (C ;(m))«, aggregate them to generate a commit-proof thsig(Cy ;(m)) and multicast it.

(8) Query-1: If u has not received any commit-proof of epoch i, multicast (accuse, L;), (if not yet sent), and send (queryy, k, i), to
the smallest node v s.t. 1) u has not accused v and 2) v has not accused L;.

(9) Respond-1: If u has received (query, k, i), and it has a commit-proof thsig(Cy ;(m)), send thsig(Cy ;(m)) to v if 1) v has

accused L; and 2) u is the smallest node v has not accused.

(10) Query-2: If u sent a query; message to node v in Query-1 and has not received a commit-proof from v, then multicast

(11) Respond-2: If u has received (accuse, w), and (query,, k, i), and it has a commit-proof thsig(Cy ;(m)), send thsig(Cy ;(m)) to

(%) Upon receiving a commit-proof thsig(Cy ;j(m)), commit m at slot k.

(%) Upon receiving (accuse, v),y, forward it to the accused node .

(%) Upon receiving n — f (accuse, v) for any v, aggregate them into a corrupt-proof thsig(accuse, v) and multicast it.

(%) Upon receiving a commit-proof thsig(Cx, ;(m)) for any j, if u has received n — f (accuse, Lj)«, then multicast the commit-proof.

LEMMA 2. If there exists a commit-proof thsig(Cy ;(m)), then for
all epochs j > i, there cannot exist a certificate Ck,j(m’) onm’ # m.

Proor. The commit-proof requires a quorum of n — f nodes’
signatures on Cy ;(m). Therefore, at least n — 2f > 2en honest
nodes must have received Cy ;(m) in epoch i of slot k. After they
propagate it in round Propagate-2, more than (1 —2¢)n > 2f nodes
(out of which at least f + 1 are honest) must have received Cy ;(m).
The f + 1 honest nodes will send Cy ;(m) to the next leader L1
during Leader setup, so they will never vote for a proposal in the
epoch i + 1 unless it contains an epoch i certificate. As a certificate
Ck.i(m) cannot exist for m” # m (by Lemma 1), they will never vote
for m’ in epoch i+1 of slot k, which implies Cy ;.1 (m”) cannot exists.
Inductively, for any j > i, a certificate Cy j(m’) cannot exist. O

With the above lemmas, we can now show that our protocol
satisfies consistency.

THEOREM 1. The protocol satisfies consistency. If any two honest
nodes u and v commit my, and my respectively at the slot k, it must
be that my, = my

257

PROOF. An honest node outputs if it has observed a commit-
proof. Suppose u observes a commit-proof on my, of epoch i and v
observes a commit-proof on m, of epoch j. We can assume w.l.o.g.
that i < j.

e Ifi = j,by Lemma 1, there cannot exist commit-proof on different

messages in epoch i. Therefore, my, = m,,.

o If i < j, by Lemma 2, if a commit-proof on my, exists in epoch

i, then any future commit-proof must also be on m,,. Therefore,

My = My.

This completes our consistency proof. O

Finally, to prove the remaining properties, we prove the following
lemma that shows an honest leader’s epoch is always successful.

LEMMA 3. If the leader L; is honest, all honest nodes commit by
the end of epoch i in each slot.

Proor. Consider slot k = 1. In epochs before i, since L; is not
the leader, the only case where L; gets accused by an honest node u
is when u has sent query; to L; but it has not sent back a commit-
proof to u during round Respond-1. However, if L; does not have

PODC ’23, June 19-23, 2023, Orlando, FL, USA

a commit-proof to send back to u, then L; must have also accused
the epoch’s leader, and u would not have sent query; to L;. So,
honest nodes do not accuse L; before epoch i. Now, in epoch i, since
n — f accusations cannot exist for L;, all honest nodes (of at least
n — f) vote for the leader’s proposal (the leader’s proposal is always
accepted by honest nodes since it contains the freshest certificate
among those honest nodes sent during the round Collect, forming
a certificate and then a commit-proof. So honest nodes commit and
do not accuse L;. Therefore, in the next slot (and inductively in all
later slots), all honest nodes commit by the end of epoch i without
being accused by honest nodes. O

The lemma above trivially implies validity as the first leader Ly
is the sender. Also, since we have at most f dishonest leaders, we
will have an honest leader by epoch f + 1. So, by the end of each
slot, all honest nodes commit a value for the slot. This implies our
protocol satisfies termination and sequentiality.

4.2 Communication Complexity

Let us first consider the cost of expensive slots: a slot with more
than one epoch with non-zero communication. In an expensive slot,
the leaders of all epochs except the last one must be accused by all
honest nodes, forming the corrupt-proofs (i.e., n — f accusations)
for these leaders; Otherwise, at least an honest node who does not
accuse the leader must have received a commit-proof before round
Query-1 which is forwarded to all honest nodes (in either round
Respond-1 or 2) and all honest nodes would stop sending messages
in all later epochs. So, the number of epochs across all expensive
slots is O(n), and the total cost across all expensive slots is O(ixn>)
as each epoch costs at most O(xn®) communication.

Next, for non-expensive slots (i.e., with only one epoch), we con-
sider expensive epochs: an epoch with super-linear communication.
Obviously, the first 7 rounds cost O(kn) per epoch. The cost of
forwarding a commit-proof will be super-linear communication
only when a corrupt-proof is formed; such epochs exist at most
f times, hence totally costs O(xn®) across all expensive epochs.
Finally, the cost of round 8-11 is analyzed below:

(1) Query-1: Each honest node sends only one message; per-
epoch cost is linear.

(2) Respond-1: Each honest node can receive a response from
one node, which costs linear per epoch. Suppose in an epoch,
multiple honest nodes R respond to a malicious node v. In
this case, v has accused all nodes in R except the highest
one, which are forwarded to the accused nodes, who will
stop responding in all later epochs/slots. Therefore, for each
malicious node v, there are at most n epochs s.t. multiple
honest nodes respond to v; totally costs O(kn>) across all
expensive epochs.

(3) Query-2: Each honest node sends query, when it accuses
a new node (i.e., the helper), which can happen at most f
times; totally costs O(xn>) across all expensive epochs.

(4) Respond-2: An honest node u responds to a node v only if
v accuses a new node, which can happen at most n times;
totally costs O(kn?) across all expensive epochs.

To sum up, the total cost is O(xnL + kn?) for L slots.

258

Jun Wan, Zhuolun Xiang, Atsuki Momose, Ling Ren, and Elaine Shi

5 AMORTIZED QUADRATIC
COMMUNICATION UNDER DISHONEST
MAJORITY

In this section, we generalize the idea used in Section 4 to show
how to achieve amortized O(xn?) communication complexity for
the dishonest majority case, i.e.,, f < n.

Overview. The state-of-the-art for the dishonest majority case in
terms of communication complexity is the Dolev-Strong protocol,
which costs cubic communication (O(xn?+n3) with multi-signature
or O(xn?) with signature). Our first natural idea is, instead of di-
rectly agreeing on the sender’s value, we use the Dolev-Strong
protocol to agree on the sender’s dishonesty when the sender mis-
behaves. Every time we call the Dolev-Strong protocol, at least one
node will be proved corrupt and removed from the protocol. This
way, the Dolev-Strong protocol is called at most f + 1 times across
all instances.

Now, to agree on a dishonest sender, we have to provably detect
the sender’s misbehavior. For the honest majority case, more than f
accusations from honest nodes work as a corrupt-proof. But it does
not work directly for the dishonest majority case. We instead utilize
the TrustCast protocol introduced by Wan et al. [32]. Looking ahead,
our technique used in Section 4 can also be explained generally in
the same context. Before describing our protocol, we briefly review
the TrustCast protocol and what they provide below.

5.1 TrustCast

We describe a simplified TrustCast protocol [32] in Algorithm 5.1
(as our protocol does not require the constant-size diameter prop-
erty of the trust graph as in [32]). It allows a designated sender to
multicast a message while allowing other nodes to provably detect
the sender’s misbehavior when they do not receive the message
from the sender. Nodes detect a dishonest sender by carefully ob-
serving trust relationships between nodes. More specifically, each
node locally maintains a trust graph, a graph of n vertices with edges
representing the trust relationships between nodes. The edges are
updated based on nodes’ accusations, and a dishonest sender is
detected when it is removed from the graph, i.e., losing trust by
everybody.

Suppose Gy, is a complete graph (i.e., every pair of vertices has an
edge), and T > n. The protocol provides the following guarantees.

(1) Transferability. For any honest nodes u, v and any round ¢,
Gy in round t + 1 is a subgraph of G, in round t.

(2) Termination. By the beginning of round n, any honest node
u either receives a sender’s message or removes the sender
from Gy,.

(3) Integrity. For any honest nodes u, v, honest nodes never re-
move the edge between u and v from their trust graphs.

First of all, transferability is obvious since honest nodes forward
all accusations received. Second, if any honest node u has not re-
ceived any (prop, %, k)s at the beginning of round ¢, u accuses any
node with a distance of less than ¢ from S in round ¢. So u’s distance
from S at the beginning of round ¢ + 1 should be at least ¢ + 1. By
induction, we can show that honest nodes never accuse each other
(integrity). Finally, termination holds since the diameter of the trust

On the Amortized Communication Complexity of Byzantine Broadcast

PODC ’23, June 19-23, 2023, Orlando, FL, USA

Algorithm 5.1: TrustCast(Gy, T, k).
Inputs: G, is an undirected graph of numbered n vertices, T
and k are integers representing the length of the protocol and
the slot number, respectively.

In round 0, the sender S who has a message m multicasts
(prop, m, k)s. Each node u runs all of the following steps in
eachround1 <t <T.

o If u receives (prop, m, k)s for the first time, multicast it.

o If u receives (accuse, v),, for any two vertices v, w € Gy,
remove the edge (v, w) from G, and multicast (accuse, v)4,
(if not yet sent).

o If u has not received any (prop, *, k)g, then for any vertex
v € Gy, s.t. the distance between v and S is less than ¢, multi-
casts (accuse, v), (if not yet sent).

e Remove all vertices in G, unconnected with vertex u (i.e.,
nodes with no direct/indirect path from u).

e If u receives (prop, m,k)s and (prop,m’,k)s for m # m’,
then multicast them, and remove S from G,,.

graph is at most n — 1 *(by definition). If an honest node does not
receive the sender’s message by the beginning of round n, then
the node’s distance from S should be at least n, which means S is
unconnected.

Communication complexity: For L instances of TrustCast with
each node maintaining the trust graph across instances, the total
communication cost is O(anL + Kn4). In each instance, an honest
node multicasts the sender’s messages at most twice which costs
O(xn?). The cost of maintaining the trust graph is bounded by
O(kn*) across all instances, since for each edge in the trust graph,
honest nodes multicast the accuse message at most once.

Our technique in Section 4. Interestingly, the technique we used
for Algorithm 4 can be explained generally in the context of the
TrustCast operation above. Recall that in Algorithm 4, a node u
accuses its helper node v if v does not respond with a commit-proof.
The rationale was since v has not accused the leader, it must have
received a commit-proof from the leader. This is exactly what a node
does in round t = 2 in TrustCast. Since a node v who has a distance
1 < t from the sender must have received the message in round
1, if u has not received the sender’s message (which means v has
not forwarded the sender’s message), u knows v is malicious and
accuses v. Essentially the TrustCast does this operation repeatedly
and inductively.

5.2 Our Protocol

Our protocol is described in Algorithm 5.2. It consists of two phases:
1) the TrustCast protocol to receive the sender’s message or create
a corrupt-proof when the sender is silent, and 2) the Dolev-Strong
style protocol to agree on whether the sender is dishonest, which
helps decide whether the sender’s message (if received) is commit-
ted. Note that each node uses the same trust graph across all slots.
So communication to maintain the trust graph and detect malicious
senders is bounded and amortized over all slots. Likewise, each

“The diameter of the trust graph is actually more tightly bounded [32], but we
use a loose bound since it is sufficient for our result and makes the protocol simpler.

259

Algorithm 5.2: Quadratic communication multi-shot BB

Let G, be an undirected complete graph of numbered n ver-
tices. Each slot k > 1 takes T = n+ f + 3 rounds. Each node u
runs the following steps.

TrustCast. In round 0, start invoking TrustCast(Gy, n, k)
where S, works as the sender S in the TrustCast. Let m be a
value received from Sy (through (prop, m, k)s,) by the begin-
ning of round n.

Dolev-Strong. In eachroundn+1 <t < n+ f + 2 run the
following. Let r = t — (n + 1), i.e., rounds after starting this
phase.

e 7 = 0: if g is not in G, then multicast (corrupt, S.),, (if
not sent before).

e 1 <7 < f+1:Ifu has received (corrupt, S)« signed by at
least 7 distinct nodes and Sy is not in G, then multicast
them (those not sent before) and (corrupt, Sg),, (if not sent
before).

Finally, in round ¢ = n+ f + 2, if u has not sent {(corrupt, Sg)y,

then commit m for slot k. Otherwise, commit L. Note that

each (corrupt, v),, message is shared among all slots and
sent/forwarded only once.

(corrupt, v),, message in the Dolev-Strong phase is shared among
all slots and is sent/forwarded only once. So communication in the
Dolev-Strong phase is also amortized over all slots.

5.3 Proof of Correctness

We prove the correctness of Algorithm 5.2. Termination and sequen-
tiality are obvious. Below, we say a node u votes for the corruption
of Sy if u send (corrupt, S).

LEMMA 4 (VALIDITY). If the sender Sy is honest, then all honest
nodes commit the sender’s message at slot k.

ProoF. Due to the integrity of TrustCast, an honest sender never
gets removed from any honest node’s trust graph. So honest nodes
never vote for the corruption of an honest sender. Thus, all honest
nodes always commit the honest sender’s message. O

LEmMMA 5 (CONSISTENCY). If two honest users u and v commit my,
and my respectively at slot k, then my, = my.

Proor. We first show that if an honest node u votes for the
corruption of Sg, then any honest node v also votes for it.

Suppose u sends {corrupt, S), before the last round (i.e., 7 <
f+1), then v receives it by the beginning of round 7+ 1. The node u
must have removed Sy, from Gy, in round 7. Due to the transferability
of TrustCast, v removes Sy from G, in round 7 + 1. Also, u must
have forwarded the corrupt messages from at least 7 nodes, so v
receives the corrupt messages from 7 + 1 distinct nodes by round
7+ 1. Thus, u also votes for the corruption of the Sg.

Suppose u sends (corrupt, S)y, at the last round (i.e., 7 = f + 1).
Then u must have received the corrupt messages from f + 1 distinct
nodes, at least one of them must be from an honest node, who must
have sent it before the last round. The analysis above implies v
votes for the corruption of S.

PODC ’23, June 19-23, 2023, Orlando, FL, USA

Therefore, if an honest node commits L, then all honest nodes
also commit L.

Suppose an honest node # commits m # L, then honest nodes do
not commit m’ # m; otherwise, these two different prop messages
are forwarded to all honest nodes by the beginning of round n +
1 (when the Dolev-Strong phase starts), which would lead to all
honest nodes voting for the sender’s corruption and u would not
commit m. Since none of the honest nodes could have voted for the
sender’s corruption, they must have received m by the termination
of TrustCast, hence they all commit m. Therefore, all honest nodes
commit the same value at the same slot. O

5.4 Communication Complexity.
We analyze the communication complexity of Algorithm 5.2.

o In the TrustCast protocol, as analyzed in Section 5.1, an honest
node multicasts the sender’s messages at most twice. This adds
up to O(xn?) communication complexity per instance. Since we
use the same trust graph for all slots, the cost of maintaining the
trust graph is O(xn?) across all instances.

o In the proof of Lemma 5, we showed that if any honest node sent
a corrupt message during Dolev-Strong, then all honest nodes
would remove the sender from their trust graphs. Therefore,
there can be at most f instances where any honest node sends
messages in the Dolev-Strong protocol. So the communication
complexity for the Dolev-Strong protocol is upper bounded by
O(xn® - f) across all instances.

To sum up, the total cost is O(xn’L + kn*) for L slots.

6 CONCLUSION AND OPEN QUESTIONS

This paper studied amortized communication complexity of multi-
shot Byzantine broadcasts and presented protocols with linear com-
plexity for the honest majority and quadratic complexity for the
dishonest majority using a novel data dissemination and node ac-
cusation technique. We finalize the paper with two open questions.
First, our protocol for the dishonest majority is not known to be
optimal. It is an interesting question whether quadratic communica-
tion is necessary or linear complexity is possible under a dishonest
majority. Another question is whether we can also achieve the same
complexity under partial synchrony or asynchrony. Since nodes
can accuse honest senders in an asynchronous network, we need a
mechanism to refresh the trust information (e.g., the history of ac-
cusations) maintained, which is an interesting technical challenge.

ACKNOWLEDGMENTS
This work is supported in part by NSF award 2143058.

A COMMUNICATION COMPLEXITY OF
HOTSTUEFF

HotStuff [33] is a partially synchronous atomic broadcast protocol
with f < n/3. To briefly review, it progresses through repeated
views (epochs), with each view having a unique leader. In each
view, a leader proposes a value along with a certificate for the
previous decision. Upon receiving a leader’s proposal, nodes send

260

Jun Wan, Zhuolun Xiang, Atsuki Momose, Ling Ren, and Elaine Shi

votes (threshold signature shares) for it to the leader, and the leader
collects n — f votes to generate a certificate and send it to all nodes.
After three rounds of voting, the leader sends a commit-proof (an
aggregated n— f round-3 votes) to all nodes, and everybody commits
the value. We can also think of HotStuff as a synchronous multi-
shot Byzantine broadcast in failure-free cases. More specifically, if
we consider the leader of each view v as a sender S, of slot v, all
honest nodes commit a single value at every slot v at the end of
view 0.

However, we point out HotStuff must have a fallback path (not
fully specified in [33]) to prepare for dishonest senders/leaders.
Otherwise, we can have a permanent liveness failure due to the
message dissemination problem mentioned in the technical chal-
lenge paragraph of Section 1. More specifically, a dishonest leader
may not send messages to at most f honest nodes. The leader can
still create a certificate and a commit-proof by talking to the rest of
the nodes. The f honest nodes left behind cannot commit values
at the slot. This work exactly addresses this liveness issue with
amortized linear communication.

REFERENCES

[1] Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling
Ren, and Elaine Shi. 2019. Communication complexity of byzantine agreement,
revisited. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. 317-326.

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.
Sync HotStuff: Simple and Practical Synchronous State Machine Replication. In
2020 IEEE Symposium on Security and Privacy (SP). 106-118.

Zuzana Beerliova-Trubiniova and Martin Hirt. 2008. Perfectly-secure MPC with
linear communication complexity. In Theory of Cryptography Conference. Springer,
213-230.

Michael Ben-Or, Shafi Goldwasser, and Avi Widgerson. 1988. Completeness
theorems for noncryptographic fault-tolerant distributed computations. In Pro-
ceedings of the 20th Annual Symposium on the Theory of Computing (STOC’88).
1-10.

Piotr Berman, Juan A Garay, and Kenneth J Perry. 1992. Bit optimal distributed
consensus. In Computer science. Springer, 313-321.

Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. 2020. Asyn-
chronous byzantine agreement with subquadratic communication. In Theory of
Cryptography Conference. Springer, 353-380.

Alexandra Boldyreva. 2003. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In International
Workshop on Public Key Cryptography. Springer, 31-46.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. 2011. Introduction to
reliable and secure distributed programming. Springer Science & Business Media.
Shir Cohen, Idit Keidar, and Alexander Spiegelman. 2020. Not a coinci-
dence: Sub-quadratic asynchronous byzantine agreement whp. arXiv preprint
arXiv:2002.06545 (2020).

Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. 1995. Atomic
broadcast: From simple message diffusion to Byzantine agreement. Information
and Computation 118, 1 (1995), 158-179.

Ivan Damgéard and Jesper Buus Nielsen. 2007. Scalable and unconditionally secure
multiparty computation. In Annual International Cryptology Conference. Springer,
572-590.

Danny Dolev and Riidiger Reischuk. 1985. Bounds on information exchange for
Byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985), 191-204.
Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for
Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656—-666.

Chaya Ganesh and Arpita Patra. 2016. Broadcast extensions with optimal com-
munication and round complexity. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing. ACM, 371-380.

Chaya Ganesh and Arpita Patra. 2020. Optimal extension protocols for byzantine
broadcast and agreement. Distributed Computing (2020), 1-19.

Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman,
and Zhuolun Xiang. 2021. Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback. arXiv preprint arXiv:2106.10362 (2021).

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure
distributed key generation for discrete-log based cryptosystems. Jjournal of
Cryptology 20, 1 (2007), 51-83.

[2

[3

[11

[12

[13

[14

[16

(17

On the Amortized Communication Complexity of Byzantine Broadcast

[18] Diana Ghinea, Vipul Goyal, and Chen-Da Liu-Zhang. 2022. Round-Optimal Byzan-
tine Agreement. In Advances in Cryptology — EUROCRYPT 2022, Orr Dunkelman
and Stefan Dziembowski (Eds.). Springer International Publishing, Cham, 96-119.
Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles. 51-68.

[20] Jens Groth. 2021. Non-interactive distributed key generation and key resharing.
Cryptology ePrint Archive (2021).

[21] Martin Hirt and Jesper Buus Nielsen. 2006. Robust multiparty computation with
linear communication complexity. In Annual International Cryptology Conference.
Springer, 463-482.

[22] Valerie King and Jared Saia. 2011. Breaking the O (n 2) bit barrier: scalable
byzantine agreement with an adaptive adversary. Journal of the ACM (JACM) 58,
4(2011), 1-24.

[23] Klaus Kursawe and Victor Shoup. 2005. Optimistic asynchronous atomic broad-

cast. In International Colloquium on Automata, Languages, and Programming.

Springer, 204-215.

Guanfeng Liang and Nitin Vaidya. 2011. Error-free multi-valued consensus

with Byzantine failures. In Proceedings of the 30th annual ACM SIGACT-SIGOPS

symposium on Principles of distributed computing. 11-20.

[25] Yuan Lu, Zhenliang Lu, and Qiang Tang. 2021. Bolt-dumbo transformer: Asyn-

chronous consensus as fast as pipelined bft. arXiv preprint arXiv:2103.09425

(2021).

Atsuki Momose and Ling Ren. 2021. Optimal Communication Complexity of Au-

thenticated Byzantine Agreement. In 35th International Symposium on Distributed

[19

[24

[26

PODC ’23, June 19-23, 2023, Orlando, FL, USA

Computing (DISC 2021). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. 2020.
Improved Extension Protocols for Byzantine Broadcast and Agreement. In 34th
International Symposium on Distributed Computing (DISC 2020). Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik.

Torben Pryds Pedersen. 1991. A threshold cryptosystem without a trusted
party. In Workshop on the Theory and Application of of Cryptographic Techniques.
Springer, 522-526.

HariGovind V Ramasamy and Christian Cachin. 2005. Parsimonious asynchro-
nous byzantine-fault-tolerant atomic broadcast. In International Conference On
Principles Of Distributed Systems. Springer, 88-102.

Fred B Schneider. 1990. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR) 22, 4 (1990),
299-319.

Alexander Spiegelman. 2021. In Search for an Optimal Authenticated Byzantine
Agreement. In 35th International Symposium on Distributed Computing.

[32] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. 2020. Expected

constant round byzantine broadcast under dishonest majority. In Theory of Cryp-
tography Conference. Springer, 381-411.

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing.
347-356.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Amortized Linear Communication under Honest Majority
	4.1 Proof of Correctness
	4.2 Communication Complexity

	5 Amortized Quadratic Communication under Dishonest Majority
	5.1 TrustCast
	5.2 Our Protocol
	5.3 Proof of Correctness
	5.4 Communication Complexity.

	6 Conclusion and Open Questions
	Acknowledgments
	A Communication complexity of HotStuff
	References

