
OLYMPIA: A Simulation Framework for Evaluating

the Concrete Scalability of Secure Aggregation

Protocols

Ivoline C. Ngong

University of Vermont

kngongiv@uvm.edu

Nicholas Gibson

University of Vermont

Nicholas.Gibson@uvm.edu

Joseph P. Near

University of Vermont

jnear@uvm.edu

Abstract—Recent secure aggregation protocols enable privacy-
preserving federated learning for high-dimensional models among
thousands or even millions of participants. Due to the scale of
these use cases, however, end-to-end empirical evaluation of these
protocols is impossible. We present OLYMPIA, a framework for
empirical evaluation of secure protocols via simulation. OLYMPIA

provides an embedded domain-specific language for defining
protocols, and a simulation framework for evaluating their perfor-
mance. We implement several recent secure aggregation protocols
using OLYMPIA, and perform the first empirical comparison of
their end-to-end running times. We release OLYMPIA as open
source.

I. INTRODUCTION

Federated learning [20] allows for collaborative distributed
training of machine learning models without requiring train-
ing data to be collected centrally. By keeping training data
decentralized, federated learning can reduce privacy risks for
individuals who contribute training data. However, recent work
has shown that in some cases, the individual model updates
computed during federated learning can reveal a surprising
amount about the original training data.

To address this challenge, secure aggregation protocols can
be used to construct federated learning systems that reveal
only aggregated model updates, providing much stronger
protection against privacy attacks. Combined with differen-
tial privacy [13], secure aggregation protocols can enable
truly privacy-preserving federated learning. Recent work in
secure aggregation has produced protocols that scale to high-
dimensional model updates [5] and millions of clients [3];
in theory, these approaches scale well enough to meet the
requirements of industry-scale machine learning.

However, evaluating these protocols empirically remains
a major challenge, because of the sheer scale of the use
cases they are designed for. For example, evaluating a secure
aggregation protocol with 10,000 clients is impossible for most
researchers, because it requires provisioning 10,000 physical
machines to perform the experiment. As a result, previous work
has focused on evaluating individual components of a protocol
in isolation [5] or simply reporting properties of the protocol’s
expected performance by analyzing the protocol itself [3].
Such evaluations are effective for comparing the asymptotic
complexities of protocols, but may not capture the protocol’s
concrete performance.

We present OLYMPIA, a simulation framework for the em-
pirical evaluation of secure aggregation protocols. OLYMPIA

is designed to evaluate the concrete, end-to-end performance
of protocols at scale, by leveraging an accurate simulation of
hundreds or thousands of parties on a single machine. For
example, OLYMPIA can perform a simulation of the Bell et
al. [3] protocol for 10,000 clients on a single machine in just
a few hours.

The OLYMPIA framework provides a simulator that accu-
rately measures the end-to-end running time of protocols, in-
cluding both communication and computation time. To model
computation cost in many-party protocols, OLYMPIA records
the actual computation time for each party, and simulates these
computations running in parallel. To model communication
cost, OLYMPIA uses a model of network latency based on
actual internet latency data collected from internet speed tests.
OLYMPIA builds on the existing ABIDES framework [6] to
coordinate the simultaneous execution and communication of
the parties and measure the total running time of the protocol.

To ease the implementation of new protocols, OLYMPIA

provides a domain-specific language (DSL) embedded in
Python for defining synchronous secure aggregation protocols.
The OLYMPIA DSL makes it straightforward to translate
protocol descriptions into implementations, and also provides
utilities for common cryptographic constructs like public-key
encryption and secret sharing. We have used the OLYMPIA

DSL to implement existing several protocols from the literature
in fewer than 100 lines of code.

We use OLYMPIA to conduct an empirical comparison be-
tween several existing protocols implemented in our case stud-
ies. The results are mostly consistent with existing conclusions
about protocol performance, but also yield new insights about
the concrete performance of these protocols. For example, we
show that network latency has relatively little effect on the total
running time for these protocols, and that packed secret sharing
has a significant impact on performance for some protocols.
In addition, we empirically validate the simulator’s accuracy
by comparing it against “ground truth” performance results
obtained by executing the same protocols on real hardware.

We release the OLYMPIA framework and our case study
implementations as open source.1 In addition to comparing
the performance of existing protocols, we hope that OLYMPIA

1https://github.com/uvm-plaid/olympia



will be useful as a standardized benchmarking tool for new
protocols, and also as a tool for helping to refine existing
protocols for better performance, to develop new protocols,
and to evaluate protocol suitability for specific real-world
deployment scenarios.

Contributions. In summary, our contributions are:

• We present OLYMPIA, a simulation framework for secure
aggregation protocols that accurately models the concrete
performance of protocols with millions of participants

• We use OLYMPIA to evaluate several existing protocols at
scales that are not practical without a simulator

• We show that evaluation with OLYMPIA leads to impor-
tant insights about the concrete performance of protocols,
including some that can help improve protocol performance

• We validate OLYMPIA’s simulation accuracy by comparing
its results against actual execution times for a small number
of clients

II. OVERVIEW OF OLYMPIA

Traditional secure multiparty computation (MPC) [14] pro-
tocols are designed to work best for a handful of parties—2-
and 3-party computation are most common, and most protocols
are evaluated with a single-digit number of parties. Some more
recent protocols have been evaluated using as many as 128
parties [34]. At this scale, empirical evaluation is possible: a
separate physical machine can be used for each party, allowing
realistic measurement of total running time.

Secure aggregation protocols are designed to work for
much larger sets of parties—typically, hundreds to thousands
(or even millions). At this scale, experimental evaluation is
not practical; it’s simply not feasible to provision enough
machines. Instead, authors typically report computation and
communication complexity as a proxy for experimental re-
sults [3]; in some cases, authors additionally implement the
protocol and measure concrete computation time for a single
client [5] and for a server with fixed client inputs.

For secure aggregation protocols, authors typically do not
report end-to-end wall-clock time resulting from an exper-
imental evaluation, because it is not feasible to run such an
experiment [5], [3], [30], [19], [32], [35], [17], [24], [25]. As
we discuss later, the inability to measure concrete performance
of these protocols makes it difficult to understand their relative
performance properties.

OLYMPIA: Evaluation via Simulation. The goal of this work
is to enable experimental evaluation of secure aggregation
protocols at scale. Experimental evaluation with OLYMPIA

can highlight surprising mismatches between analytic bounds
and concrete performance and can suggest simple methods
for significantly improving protocol performance. In addition,
OLYMPIA can simplify deployment, by enabling developers to
predict performance in advance.

Challenge: realism & scale. The primary challenge lies
in building a framework that works at scale and produces
accurate results. OLYMPIA is built on ABIDES [6]—a simula-
tion framework originally designed for high-frequency trading
applications in financial markets. ABIDES is designed to
simulate a large number of agents running simultaneously

and communicating asynchronously. ABIDES simulates con-
current execution of these agents with high precision and
accuracy. ABIDES has previously been used to evaluate the
performance of specific secure aggregation protocols [7], [17],
[8]. To support the evaluation of secure aggregation protocols,
OLYMPIA adds cost models for network traffic (based on real-
world latency data and configurable bandwidth limitations) and
computation (based on actual execution time), and a DSL that
simplifies the specification of new protocols.

New Insights from OLYMPIA. By enabling empirical analysis
at scale, OLYMPIA can lead to important insights about con-
crete protocol performance. We implemented several state-of-
the-art secure aggregation protocols in OLYMPIA (Section IV);
our experimental evaluation of these protocols (Section V)
confirms their expected asymptotic behavior, but also surfaces
performance properties not obvious from the asymptotics
alone. For example, the results suggest that computation time
has a much larger effect on total running time than network
latency or round complexity; in addition, for one protocol, our
results demonstrate the practical importance of optimizations
like packed secret sharing that improve concrete performance
without changing computation or communication complexity.

III. THE OLYMPIA FRAMEWORK

OLYMPIA provides two main components: a domain-
specific language (DSL) for describing single-server secure
aggregation protocols, and a simulation framework for eval-
uating the practical concrete performance of these protocols.

The OLYMPIA DSL. As a DSL, this framework could po-
tentially be used for extracting a protocol’s implementation,
evaluating its performance based on round complexity, com-
putational complexity, bandwidth cost, and hyper parameter
impact, etc. We describe the OLYMPIA DSL in Section III-A.

The OLYMPIA Simulator. Its implementation is based on the
discrete event simulation framework ABIDES, but implements
the round-based synchronous communication commonly used
in secure aggregation protocols. In addition, the OLYMPIA

simulator is specifically designed to accurately record both
computation and communication cost, by using realistic mod-
els for both components. We describe the OLYMPIA simulator
in Section III-B.

A. The OLYMPIA DSL

Protocols in OLYMPIA are defined in three parts: a server
class implementing the aggregation server’s behavior, a client
class implementing the client’s behavior, and a config file
that determines protocol setup and parameters. Multiple ex-
periments can be quickly reconfigured and run with varying
simulation parameters using a single setup.

The server and client classes implement what each party
does in each round. Clients and servers are defined in
OLYMPIA by inheriting from the AggregationClient

and AggregationServer classes, which implement the
minimal set of properties and methods necessary for efficient
communication between agents and interaction with simulation
kernels. Client and server classes override methods to define
the behavior of the protocol. Table I describes the OLYMPIA

API in terms of the key methods used in defining a protocol.

2



Method Description

round(): round # ×

message(s) →

next message(s) (server

and client)

The server is given the round number

and incoming messages from the agents

and implements what takes place in each

round.

next_round():

round # ×

message(s) → bool

(server only)

Given the current round number and in-

coming messages from the clients, deter-

mines whether it is time to move to the

next round.

succeed() (server

only)

Called at the end of the protocol, to indi-

cate success and record results

fail() (server

only)

Called during the protocol to indicate fail-

ure

TABLE I: OLYMPIA API (server and clients).

1 class BaselineClient(AggregationClient):

2 def round(self, round_number, message):

3 if round_number == 1: # send secret input to server

4 return self.GF(self.secret_input)

5

6 class BaselineServer(DropoutAggregationServer):

7 def round(self, round_number, messages):

8 if round_number == 1: # start the protocol

9 self.threshold = int(len(self.clients) * .95)

10 return {client: None for client in self.clients}

11

12 elif round_number == 2: # sum up received vectors

13 self.succeed(GF(list(messages.values())).sum(axis=0))

Fig. 1: OLYMPIA implementation of the baseline protocol.

Example: Baseline Insecure Summation Protocol. Here, we
present a simple example that allows clients to submit their
inputs to a trusted server, which computes the sum of these
inputs. Though this protocol is insecure, it serves as a good
example for how protocols are defined in OLYMPIA, and a
useful baseline for performance comparisons in our evaluation.

After setting up all required parameters in the base-
line configuration file, the protocol is implemented as
shown in Figure 1. The server for this protocol (and for
the other protocols we implement later) inherit from the
DropoutAggregationServer, which simulates a frac-
tion of clients dropping out during each round of the protocol.

B. The OLYMPIA Simulator

The OLYMPIA simulator is based on ABIDES, a Python
application built around actors called agents, who communi-
cate via asynchronous messages. In the ABIDES framework,
agents are instances of subclasses that inherit from the base
Agent class. Subclasses implement what each agent does in
a protocol, with the same type of agents having only one
subclass. For instance, it is sufficient to create two subclasses
for a protocol with a single server and multiple clients,
although each client can have different attributes like timing.
The base Agent class in ABIDES implements the minimum
required methods for each agent to properly interact with the
simulation kernel.

ABIDES lacks important functionalities for our setting,
which OLYMPIA’s simulator implements: measuring com-
munication costs and computation time, modeling a WAN
network, simulating dropouts realistically, and evaluating how
other significant parameters (input vector size, finite field size,
etc.) affect the protocol.

Overview of simulation approach. The OLYMPIA simulator
runs the protocol by executing its components sequentially,
passing messages between the parties as the protocol specifies.
The simulator measures the execution time of each component
individually, and calculates total running time by simulat-
ing the parallelism of actual protocol execution. When two
component executions could run in parallel (because neither
depends on a message from the other—e.g. when two clients
compute their responses to a message from the server), then
the simulator calculates the total time of both components as
the maximum of their execution times (rather than the sum).
This approach allows simulating protocols with thousands
of parties on a single computer, while accurately modeling
the parallelism that would occur in actual execution of the
protocol.

Modeling computation time. OLYMPIA models computation
delays by measuring the actual time the protocol takes to
complete the computation, and accounting for that time as
computation time spent by the appropriate party in the pro-
tocol. In ABIDES, computation time is measured by asking
the programmer to specific explicit computation delays, and
tracking each party’s individual time using these delays as the
simulation progresses.

In OLYMPIA, on the other hand, the simulator measures
actual computation time for each party. The simulation runs
each party’s computation sequentially, and then aggregates
the computation delays to simulate the parallel execution of
client computations. While this enables us to capture realistic
computation times, it also means that accurate results depend
on the actual efficiency of the protocol’s implementation. In
our case study implementations, we use efficient libraries to
implement computationally challenging features (e.g. PyNaCl
for public-key encryption; Galois for finite field operations).

Modeling network latency. ABIDES supports the modeling
of communication latency between different parties in the
protocol, which is crucial to creating realistic simulations.
In this model, a two-dimensional latency matrix defines the
minimum nanosecond delay between each pair of parties. The
kernel uses this matrix and a noise model to simulate network
conditions.

OLYMPIA models network delays using a real-world in-
ternet speed test dataset [22] to simulate deployment on a
wide-area network. Based on zoom level 16 web mercator
tiles (approximately 610.8 meters by 610.8 meters at the
equator), the dataset provides global fixed broadband and
mobile (cellular) network latency measurements. The latency
matrix is computed by measuring the latency between each
endpoint and their respective internet providers, then adding
the speed-of-light latency between their geographic locations.

Modeling network bandwidth limitations. In addition to
modeling network latency, OLYMPIA also provides added sup-
port for modeling network bandwidth limitations. Bandwidth
limits can be configured for both the clients and the server, and
are incorporated into the total running time measured by the
simulator. The default setting in OLYMPIA is no bandwidth
limit; adjusting the limit can be especially useful to enable
modeling of situations where the server has limited bandwidth,
as described in our evaluation.

Modeling dropouts. Many secure aggregation protocols (in-

3



cluding the case studies described in Section IV) are ro-
bust to a fraction of the clients dropping out during the
execution of the protocol. In some cases, clients dropping
out can affect protocol performance, so OLYMPIA is ca-
pable of simulating dropouts in order to surface these ef-
fects. DropoutAggregationServer represents a server
intended to be robust against dropouts; implementations spec-
ify an upper bound δ on the expected fraction of dropouts, and
the server moves on to the next round after it has received at
least nδ messages from clients.

Checking correctness. OLYMPIA is not designed to verify the
correctness of protocol implementations, but it can be used as
a tool for end-to-end testing of protocols. Our case studies
are implemented to facilitate this kind of testing, by providing
consistent inputs on each run of the protocol and checking that
the protocol’s output is as expected. OLYMPIA’s simulator can
be used to test correctness under varying conditions that may
surface bugs—for example, we found and fixed several bugs
in our implementations by varying the number of clients and
the simulated dropout rate.

Threat model. Our case study protocols can be implemented
with either semi-honest or malicious security. OLYMPIA does
not actually simulate malicious parties, and is not designed to
evaluate security. However, OLYMPIA can be used to evaluate
the additional overhead of malicious-secure protocol variants.
For our case studies, we implemented both semi-honest and
malicious-secure variants, and our evaluation includes a com-
parison of the associated overhead.

Libraries and cryptographic primitives. OLYMPIA is pri-
marily Python-based, and integrates most easily with other
Python libraries. To produce high-performance, practically se-
cure protocol implementations, most protocol implementations
will leverage Python wrappers around efficient, well-tested
libraries (usually implemented in C). For example, our case
studies use PyNaCl (a wrapper around libsodium) and Galois
(a finite field library that uses BLAS/LAPACK for array opera-
tions). Usage of well-tested libraries for cryptographic building
blocks can also prevent subtle side-channel vulnerabilities.

Configuration and experiments. Experiments in OLYMPIA

are configured using a YAML file that specifies the parameters
to vary (e.g. the number of clients, the dimensionality of the
inputs, and other protocol parameters). Given a configuration
file, OLYMPIA runs the specified experiments on a single
machine and saves the results to a CSV file. OLYMPIA is
capable of running experiments involving tens of thousands
of clients and vectors with millions of elements on a single
machine (our experiments required only 64GB of memory).

C. Supported Protocol Designs

OLYMPIA is designed to support a variety of protocol types
and architectures—the only restriction is that the protocol must
be synchronous and proceed in rounds. Protocol implementa-
tions can contain arbitrary Python code, and messages between
parties can contain any Python value whose size in bytes can
be measured. Though our case studies focus on single-server
secure aggregation protocols, OLYMPIA’s flexibility makes it
suitable for evaluating many other protocols as well.

Single-server secure aggregation. Our case studies focus
on single-server secure aggregation protocols, because pro-

tocols in this category are often designed for hundreds or
thousands of parties and are therefore especially difficult to
evaluate by other means. OLYMPIA provides API support
for this setting, by defining AggregationServer and
AggregationClient classes to be extended by protocol
implementations.

Protocols involving multiple servers. OLYMPIA can also
support multi-server protocols like Prio [9] and its descendants.
Implementing multi-server protocols requires defining a subset
of the parties to be servers, and defining a class that specifies
the servers’ behavior, and then defining the clients to send
messages directly to the multiple servers. This setting requires
clients to send messages to multiple servers; to implement
it in OLYMPIA, the programmer would need to implement
new client and server classes with explicit send operations
to specify the communication pattern.

Peer-to-peer protocols. OLYMPIA also supports peer-to-peer
protocols, including general MPC protocols that evaluate cir-
cuits. These protocols are not typically designed to scale to
thousands of parties, and can often be evaluated empirically
without OLYMPIA, so our case studies do not focus on pro-
tocols of this type. Recent work designed to scale to larger
numbers of parties [16] may benefit from evaluation using
OLYMPIA. This setting requires clients to send messages to
each other; like the multi-server setting, the programmer would
need to specify each send operation manually to implement
it.

Input validation. Recent approaches for secure aggregation
with input validation [9], [26], [2] can also be evaluated
using OLYMPIA. These approaches typically add a layer on
top of an existing protocol, and do not change the protocol’s
communication patterns; as long as the additional layer can be
implemented using Python, it can be evaluated in OLYMPIA.

Threat models. OLYMPIA does not evaluate security, and it
is agnostic to the protocol’s intended threat model. Variants
of protocols that target different threat models (including all
possible combinations of corrupted and honest parties) can
be implemented and compared in OLYMPIA. Our evaluation
includes semi-honest and malicious-secure variants of several
protocols.

Limitations. OLYMPIA is designed mainly for single-server,
synchronous protocols and although it can support any syn-
chronous protocol, its use is limited in asynchronous settings.
Since it is based on Python, integrating code from other
programming languages can be challenging, limiting its flex-
ibility. Additionally, the fact that computations are executed
sequentially for each client also means that experiments can
be time-consuming, particularly for more complex protocols.
Moreover, implementing peer-to-peer protocols demands extra
coding effort, as OLYMPIA’s DSL is primarily oriented towards
single-server and client-server protocols.

IV. CASE STUDIES

This section describes our implementations of six secure
aggregation protocols in OLYMPIA. The simplest of these uses
secret sharing to add the input vectors (§ IV-B); it requires
O(nl) per-client communication for n clients and vectors of
length l, so it is not practical for large n or large l. The

4



protocols of Stevens et al. [32] (§ IV-C) and Bonawitz et al. [5]
(§ IV-D) improve per-client communication cost to O(n+ l);
these protocols work well for large vectors, but not for huge
sets of clients. Finally, the Bell et al. [3] (§ IV-E), Sharing
sharing [31], and ACORN [2] protocols improve per-client
communication cost even further—to O(log n + l)—making
them suitable for large sets of clients. Table II summarizes
our case studies.

A. Common Elements

This section describes some common elements used in all
of the protocols implemented in our case studies.

Principle: peer-to-peer communication via the server. The
OLYMPIA API is designed for building single-server aggre-
gation protocols, in which clients communicate only with the
server. This setup is designed to model real-world constraints
on federated learning systems, in which clients are often
mobile devices that may be protected by a firewall, and
clients may have limited connectivity. However, many secure
aggregation protocols require clients to send messages to each
other, and require hiding the contents of those messages from
the server. To accomplish this, single-server secure aggregation
protocols typically use public-key cryptography to allow the
clients to communicate through the server, and the server
simply routes messages to the correct clients. All of the
protocols described in this section make use of this approach.

Building block: public-key encryption. We make the same
assumptions about public-key cryptography as Bonawitz et
al. [5]. Specifically, the protocols described in this section rely
on Diffie-Hellman key agreement [12], which describes a key
generation procedure to generate public and private keys, and
a key agreement procedure that combines party a’s private
key with party b’s public key to form a shared symmetric
encryption key—and produces the same symmetric key when
performed in reverse (i.e. agree(ska, pkb) = agree(skb, pka)).
In our implementations, we implement public-key cryptogra-
phy using PyNaCl, a wrapper around the efficient libsodium
library.

Building block: threshold secret sharing. A (t, n) threshold
secret sharing scheme allows a party to split a secret input into
n shares, such that each individual share reveals nothing about
the secret input, but t shares enable reconstruction of the secret.
Such schemes also have an additive homomorphism—they
allow adding shares of different secrets together to compute
one share of the sum of the secrets. The most commonly-used
example is Shamir’s secret sharing scheme [29].

OLYMPIA provides an efficient implementation of Shamir
secret sharing, leveraging the Galois library for working with
finite fields. We also provide an implementation of packed
secret sharing, which encodes more than one secret in a single
share. This scheme adds a parameter k to the share function;
it encodes k field elements in a single share, but requires at
least t + k shares for reconstruction. Packed secret sharing
can improve concrete performance in some protocols, as our
evaluation shows.

B. Secret Sharing Protocol

Our first case study is a simple protocol that uses threshold
secret sharing to perform secure aggregation. This protocol

1 class SecretSharingClient(AggregationClient):

2 def round(self, round_number, message):

3 if round_number == 1: # generate keys

4 self.sk_u = PrivateKey.generate()

5 return self.sk_u.public_key

6 elif round_number == 2: # generate shares

7 self.pks, n = message, len(message)

8 shares = shamir.share_array(self.secret_input,

9 n, n//2)

10 return {c: shares[c].encrypt(self.sk_u, pk)

11 for c, pk in self.pks.items()}

12 elif round_number == 3: # sum up received shares

13 dec_shares = [s.decrypt(self.sk_u, self.pks[c])

14 for c, s in message.items()]

15 return shamir.sum_share_array(dec_shares, axis=0)

Fig. 2: OLYMPIA implementation of the secret sharing protocol
(client).

1 class SecretSharingServer(DropoutAggregationServer):

2 def round(self, round_number, messages):

3 if round_number == 1: # start the protocol

4 return {client: None for client in self.clients}

5 elif round_number == 2: # broadcast public keys

6 return {client: messages for client in self.clients}

7 elif round_number == 3: # route shares to clients

8 return route_messages(messages)

9 elif round_number == 4: # reconstruct sum

10 vs = messages.values()

11 self.succeed(shamir.reconstruct_array(vs))

Fig. 3: OLYMPIA implementation of the secret sharing protocol
(server).

was designed as a simple secure baseline, and only performs
well when both the number of clients (n) and the size of the
aggregated vectors (l) are small.

Protocol description. For n clients and one server, aggregating
vectors of field elements with length l, the high-level idea
of the protocol is as follows: first, each client sends one
share of its input to each other client; second, each client
sums the shares it receives to compute one share of the total
sum, and sends this share to the server; third, the server uses
the shares to reconstruct the sum. Since each client needs to
generate n shares for each of l vector elements, the per-client
communication cost is O(nl).

Protocol implementation. The complete OLYMPIA imple-
mentation of this protocol appears in Figure 2 (client) and
Figure 3 (server). The implementation proceeds as follows:

• Round 1: Each client broadcasts their public key (client
lines 4-5).

• Round 2: Each client Pi generates n shares with threshold t
of each element of their input vector xi. Pi sends one share
to each other client Pj (and keeps one for itself) (client lines
8-9).

• Round 3: Each client Pi receives 1 share of each other
client Pj’s input. Pi adds these shares together, to get one
share of the sum of all clients’ inputs. Pi sends the share
of the sum to the server (client lines 12-14).

• Round 4: The server receives n shares of the total sum of
the inputs, and reconstructs the total sum (server line 10).

C. Stevens et al. Protocol

Stevens et al. [32] design a protocol with similar structure
to the secret sharing protocol, but leverage the learning with

5



Protocol Setting Client Server §

Communication Computation Communication Computation

Secret sharing — O(ln) O(ln) O(ln) O(lnlog(n)) IV-B

Stevens et al. [32] Few clients O(l + k + n) O(lk + nlogn) O(ln + k) O(lk + ln + nlogn) IV-C

Bonawitz et al. [5] Few clients O(n + l) O(n2 + nl) O(n2 + nl) O(ln2) IV-D

Bell et al. [3] Many clients O(logn + l) O(log2n + llogn) O(nlogn + nl) O(nlog2n + nllogn) IV-E

Sharing sharing [31] Many clients O(l + logn) O(l + log2n) O(ln) O(ln) IV-F

ACORN [2] Many clients O(l + logn) O(l + logn) O(n(l + logn)) O(n(l + logn)) IV-G

TABLE II: Communication and computation complexities of case study protocols implemented in OLYMPIA, for n parties
aggregating vectors of size l and LWE security parameter k

1 class StevensClient(SecretSharingClient):

2 def round(self, round_number, message):

3 if round_number == 2:

4 S = self.GF.Random(self.s_len)

5 e = gen_noise()

6 A = GF.Random((self.dim, self.s_len), seed=seed)

7 masked_value = self.secret_input + A.dot(S) + e

8 self.secret_input = S # secret share S vector

9 return self.masked_value,

10 ShamirClientAgent.round(self, round_number,

11 message)

12 else:

13 return ShamirClientAgent.round(self, round_number,

14 message)

Fig. 4: OLYMPIA implementation of the Stevens et al. [32]
protocol (client).

errors (LWE) assumption [23] to reduce the dimensionality of
the vector being secret shared to (effectively) a constant that
depends on the security parameters.

The LWE assumption says that for a public matrix A ∈

F
l×s
q , secret vector S ∈ F

s
q , and secret error vector E ∈ χl,

it is computationally hard to distinguish the pair (A,B) from
a pair of uniformly random numbers, where B = A · S + E,
even when s ≪ l.

Protocol description. The insight behind the Stevens et al.
protocol is to use the vector B ∈ F

l
q as a random mask to

send the secret input vector to the server, but aggregate the
shorter S vector using secret sharing instead. This reduction
in dimensionality leads to a corresponding reduction in com-
munication cost.

Protocol implementation. The structure of the protocol
matches that of the secret sharing protocol (Section IV-B)
exactly. Because of the similarities, we can leverage the secret
sharing protocol in our implementation, by subclassing the
secret sharing protocol and modifying only round 2 (for the
client) and round 4 (for the server). The client implementation
appears in Figure 4. In round 2, the clients generate a random
Si (line 4) and secret share it (instead of their input vector xi;
line 7), and also send their masked vector xi+Bi to the server
(line 8). In round 4, the server subtracts the aggregated masks
after reconstructing

∑
i Si. No other changes are necessary.

D. Bonawitz et al. Protocol

Bonawitz et al. [5] design a protocol with per-client com-
munication cost of O(n+l). The key idea behind this approach
is to leverage pairwise masking: if client A adds a random

mask to their input vector, and client B subtracts the same
mask from their input vector, then summing up the two masked
vectors eliminates the mask and yields the sum of the original
vectors.

In the Bonawitz et al. protocol, each client adds such a
mask to their vector for each other client. Adding up all of the
masked vectors yields the sum of the original input vectors, and
the server is prevented (by the masks) from learning any of the
individual input vectors. To achieve reduced communication
cost, clients agree on their pairwise masks by computing
them from each other’s public keys, by using the result of
the agree function (Section IV-A) as the random seed for a
pseudorandom number generator (PRNG) and using the PRNG
to generate the mask vector.

We implemented the semi-honest and malicious variants of
the Bonawitz et al. protocol in OLYMPIA. Our implementation
uses the same Shamir secret sharing primitives and public-key
encryption as the secret sharing baseline (Section IV-B). Per-
client communication cost for the protocol includes the masked
vector itself (O(l)), plus the client’s public key (O(1)) and the
Shamir shares of bu and su,v (O(n)).

E. Bell et al. Protocol

The communication complexity of the Bonawitz et al.
protocol is nearly optimal for small sets of clients and large
vectors, but its per-client communication cost is much higher
than an insecure solution when n is large. The Bell et al.
protocol [3] modifies the Bonawitz et al. protocol by relaxing
the requirement that each client add a mask for each other
client. Instead, in the Bell et al. protocol, each client adds a
mask for a subset of the other clients.

The Bell et al. protocol generates a graph connecting clients
to a set of k neighbors with whom they will exchanged
pairwise masks. By setting k = log n, the protocol reduces
the number of masks in each masked vector from O(n) to
O(log n), and thus also reduces the per-client communication
cost. The original Bonawitz et al. protocol can be recovered
from the Bell et al. protocol by using a fully-connected graph.

We implemented the Bell et al. protocol in OLYMPIA by
re-using large portions of our implementation of the Bonawitz
et al. protocol. Our implementation also generates each client’s
set of neighbors, and uses the set of neighbors for each client
to determine the construction of the masks. The per-client
communication cost of our implementation is equivalent to
that of our Bonawitz et al. implementation, but it requires only

6



O(k) Shamir shares for the su,v values, achieving the desired
O(log n+ l) complexity.

F. Secret Sharing Sharing Protocol

The Sharing Sharing protocol [31] builds on the Stevens
et al. protocol by using a two-level secret sharing scheme.
First, each client creates two additive shares of their input
(the “high-level shares”); then, the clients split into two sets
of groups of size log(n) and aggregate their high-level shares
by running an aggregation protocol within the small groups.
The clients reveal their group-level sums to the server, which
cannot reconstruct any single input because of the higher level
of additive sharing. This idea is combined with the LWE-based
masking approach of the Stevens et al. protocol to reduce
dimensionality, so that the combined protocol scales well with
both the number of clients and the size of the input vectors.

We re-used large portions of our implementation of the
Stevens et al. protocol to implement the sharing sharing
protocol. The main differences are in the high-level sharing and
group assignment for clients. The original paper specifies that
clients themselves perform reconstruction of the group-level
results; we offload this computation to the server instead, under
the assumption that the clients will have limited computation
power. We reduce the number of server-side reconstructions
by adding shares together before reconstruction whenever
possible.

G. ACORN Protocol

The ACORN protocol [2] combines the sparser com-
munication graph of the Bell et al. protocol with a key-
homomorphic approach for encoding both personal and pair-
wise masks based on LWE. As in the Stevens et al. protocol,
this approach improves computation cost. Unlike Stevens et
al., the ACORN protocol generates (homomorphic) encryption
keys from public-key agreement, which reduces the dimen-
sionality of the secret-shared data in the protocol. The ACORN
protocol is part of a larger contribution that also includes input
validation via zero-knowledge proofs.

Our implementation of ACORN leverages the structure of
the Bell et al. protocol’s implementation, and also re-uses some
of the LWE-related implementation from the Stevens et al.
protocol. We do not implement the input validation approach
proposed in the paper. Rather than implement the paper’s
proposed packing scheme for plaintexts, we adjust the size
of the finite field so that packing for plaintexts is not needed
(since it lacks the input validation step, our implementation is
not tied to the large finite field required for Bulletproofs).

V. EVALUATION

In this section, we evaluate the concrete performance of the
different secure aggregation protocols in terms of computation
time, communication costs, scalability, and the effects of
various parameters, such as the number of clients, input vector
size, latency, etc. We designed our experiments specifically to
answer the following questions:

• RQ1 How well do the case study protocols scale with the
size of the input vectors?

Setting Protocols Clients Dimensions

Large

Vectors

All 64 1e[1,2,3,4,5]

Few Clients All 2[3,4,5,6,7] 100

Many

Clients

Bell, Sharing

sharing,

ACORN

[100, 1000,

3000, 5000,

10000]

100

TABLE III: Experiment Settings.

• RQ2 How well do the case study protocols scale with the
number of clients?

• RQ3 What is the effect of network latency on protocol
performance?

• RQ4 What is the effect of network bandwidth limits on
protocol performance?

• RQ5 What is the overhead of malicious security?

• RQ6 Does OLYMPIA’s simulator yield accurate results
when compared to actual “ground truth” execution?

A. Experiment Setup

Our experiments use OLYMPIA to evaluate the concrete
performance of the protocols described in Section IV. Our
open-source release contains the code for both the OLYMPIA

framework and the implementations of these protocols. We
ran each experiment on a single machine with 32GB of mem-
ory, utilizing a high-performance cluster to execute multiple
experiments simultaneously.

We split our experiments into two settings, following two
common use cases. In the “Large Vectors” setting, we fixed
the number of clients (to 64) and varied the size of the vectors
being aggregated. In the “Few Clients” setting, we fixed the
vector size to 100 and varied the number of clients from 8 to
128. In the “Many Clients” setting, we fixed the vector size to
100 and varied the number of clients from 100 to 10,000, in
order to test the support of the Bell, ACORN, and Sharing
Sharing protocols for a large number of clients. The input
vectors for each protocol do not affect performance, so we used
a constant input vector to allow for verifying the correctness
of the output. We used a finite field of size 231− 1. We report
the average results and standard error over five runs.

In all of our experiments, we used the most favorable
settings for each protocol that would ensure security in the
semi-honest setting. Following Bell et al. [3], we set both the
fraction of malicious clients and the fraction of dropouts to 5%
of the total. For the Stevens et al. protocol, following [32], we
set the size of the secret vector S to 710. For the Bell et al.
and ACORN protocols, following the most favorable settings
of [3], we set k = 50. For the sharing sharing protocol, we
optimize group according to expected dropouts per group.

The Sharing Sharing protocol is not designed for situations
with a few clients, and finding the optimal group size for best
performance in these smaller settings is challenging. Hence,
in our study, we have left out the results of this protocol for
scenarios involving a small number of clients, focusing on its
stronger performance in larger settings.

7



B. Accuracy of the simulation

Evaluating the accuracy of OLYMPIA’s simulator is difficult
by definition—OLYMPIA is designed to simulate evaluation
scenarios that are typically not feasible on a large scale by
other means. To address this and validate the reliability of
OLYMPIA, we performed a physical deployment with a smaller
number of clients, enabling us to obtain ground truth results.
The primary use we envision for OLYMPIA is comparing
different protocols or protocol configurations, either to demon-
strate an advance in efficiency or in preparation for deployment
of a protocol; for such comparisons, consistency and compa-
rability of results is more important than absolute accuracy
of running time. In addition, most of the key components
for evaluation (e.g. computation time and size of transmitted
messages) are measured directly by the simulator, so these
results will be exactly comparable to protocol deployments on
equivalent hardware.

In validating OLYMPIA, we constructed a real network
backend using the same client and server classes as those im-
plemented in the simulator. These experiments are conducted
within an advanced high-performance computing environment,
which includes a SLURM job scheduling system with each
node allocated 32 GB of memory. The experiments involve
launching a server process and multiple client processes
(varying in number and dimensions) across different nodes,
thus enabling us to replicate and test our network protocols
in a realistic environment. We run our experiments on the
Acorn, Baseline, Bell, Bonawitz, Shamir Sharing, and Stevens
protocols with 5, 10, and 20 clients, and dimensions ranging
from 10 to 100,000. This approach enables a direct comparison
of total running time, providing valuable insights into the
performance of the protocols under study in both simulated
and real-world network environments.

Figure 5 reveals that when comparing simulated results to
ground truth results, there is a strong correlation in the perfor-
mance trends of the various protocols. The simulator exhibits
a slight tendency to underestimate total running times, espe-
cially in scenarios with fewer clients and smaller dimensions.
However, it consistently captures the essential performance and
scalability trends of these protocols across different settings.
Importantly, this correlation becomes more pronounced as the
number of clients increases, with the simulation results for pro-
tocols aligning more closely with the ground truth. This trend
confirms the simulator’s ability to model complex network
behaviors accurately, showcasing OLYMPIA’s effectiveness in
simulating diverse protocol behaviors.

C. Results: Semi-Honest Security

This section describes our comparison between semi-
honest variants of the case study protocols.

Total time. Figure 6 summarizes the total running time of the
case study protocols in the three experimental settings. In the
Large Vector setting (Figure 6(a)), all protocols scale well with
the dimensionality of the aggregated vectors; the Bell et al. and
Bonawitz et al. protocols yield the lowest total running times.
The others require matrix operations (by both the client and the
server) that contribute to increasing computation time as vector
size increases. In the Few Clients setting (Figure 6(b)), the
Stevens et al. is slightly better than the Bell et al. and Bonawitz

et al. protocols, due to the smaller vectors. In the Many Clients
setting (Figure 6(c)), all three protocols scale well with the
number of clients; in contrast to the other settings, the Sharing
Sharing protocol yields the best concrete performance when
the number of clients exceeds 3000.

Computation time. Figure 7 summarizes the server and client
computation time for each protocol in each of the three
settings. Comparing these results to Figure 6, it is clear
that computation time is the most important factor in overall
running time. In the Large Vectors setting (Figure 7(a)), server
computation time is largest for the Stevens et al., ACORN, and
Sharing Sharing protocols (due to the combination of matrix
operations and reconstructions required on the server); client
computation time is largest for the LWE-based protocols due
to matrix operations. The same trend continues in the other
settings—in the Few Clients setting (Figure 7(b)), the Bell
et al. and Bonawitz et al. protocols perform best with server
computation times for clients under 40, but for larger client
counts, the Stevens et al. protocol becomes more efficient.
In the Many Clients setting (Figure 7(c)), the Bell et al. and
ACORN protocols have the lowest client computation time,
but the Sharing Sharing protocol has a much lower server
computation time, which results in the low total time seen
earlier.

Network latency. Our previous experiments use OLYMPIA’s
model of network latency derived from actual internet speed
test data. To answer RQ3, we varied the latency model to
evaluate the impact of latency on total running time. Figure 8
presents the results. All of our case study protocols have fairly
low round complexity, so even a huge increase in latency (from
0ms to 1000ms per message) does not cause a large increase
in total running time. These results suggest that the case study
protocols are likely to perform well even over high-latency
WAN connections.

Network bandwidth limitations. Our previous experiments
assume that bandwidth is unlimited, both for the server and for
the clients. To evaluate the importance of bandwidth limitations
for protocol performance, we evaluated each protocol with a
1mbps limit on client bandwidth and with a 1mbps limit on
server bandwidth. The results appear in Figure 9. Limiting
client bandwidth has little impact on total running time, but
limiting server bandwidth has a large effect on all protocols.

This effect is directly linked to the amount of traffic the
server receives. The total bytes received by the server appear
in Figure 10. The amount of traffic received by the server
increases more quickly with vector size for the Sharing Sharing
protocol than the others (Figure 10(a), (b), and (c)). Complete
results for communication cost, including the traffic sent and
received by clients (which mirrors the traffic received by the
server) appear in Appendix B.

D. Results: Malicious Security

To evaluate the cost of malicious security, we re-ran our
experiments with the malicious-secure variants of all our
case study protocols. The total running time results appear
in Figure 11. The graphs are similar to the corresponding
results in the semi-honest case, supporting the claim that the
malicious-secure variants of these protocols incur only modest
overhead. More precise results appear in Table IV, for the case

8









head (e.g. constructing and managing sockets and serializing
messages) is smaller as the number of clients increases.

VI. RELATED WORK

Secure aggregation. As described earlier, secure aggregation
protocols are lightweight multiparty computation protocols
specifically designed for summing up large vectors, and are
primarily designed to facilitate federated learning applications.

The first practical protocol for the large-vector setting was
due to Bonawitz et al. [5], while the first protocol for the many-
client setting was due to Bell et al. [3]. Since then, several other
protocols have been developed that make additional improve-
ments. Among these, only Turbo-Aggregate [30] attempts to
improve performance in the many-client setting; it reconstructs
masks among subsets of users (rather than pairwise), but has
a weaker threat model than the Bell et al. [3] protocol.

In the large-vector setting, several new protocols have been
recently proposed, including MicroFedML [17] (reduces round
complexity for sparse gradients), LightSecAgg [35] and the
protocol of Stevens et al. [32] (improve concrete performance
for dropouts), FastSecAgg [19] (improves performance us-
ing Fast Fourier Transform). All of these protocols can be
simulated in OLYMPIA, and are important targets for future
empirical evaluations.

Input validation. Recent work has made progress towards
ensuring input validity in secure aggregation. EIFFeL [26]
requires each client to produce a zero-knowledge proof that
their input is within a reasonable range; ACORN [2] improves
on the performance of EIFFeL by leveraging more efficient
aggregation of these proofs. Protocols that integrate input
validation have even more complicated concrete performance
properties and are an exciting future target for evaluation with
OLYMPIA.

Secure machine learning. Many approaches have been de-
veloped for machine learning without secure aggregation [33],
[15], [28], [11], [18]. These approaches often ask clients to
secret-share model updates between two servers, and run an
MPC protocol between the two servers. These approaches have
a much weaker threat model than secure-aggregation-based
approaches, since they require non-collusion between the two
servers. In addition, they do not present the same challenges
for empirical evaluation as secure aggregation protocols, since
only the two servers need to be simulated; while these ap-
proaches could be simulated using OLYMPIA, a simulation-
based approach is not required for empirical evaluation of these
approaches.

General-purpose MPC. General-purpose MPC protocols
evaluate arithmetic or boolean circuits, and therefore can (in
principle) implement any function [36], [4], [21], [1], [10].
Such protocols are generally designed for two parties (2PC),
three parties (3PC), or a small number of parties (MPC)—
none are designed for the many-client setting. General-purpose
MPC protocols can therefore be empirically evaluated without
the use of a simulation framework like OLYMPIA, though
for recent work on larger-scale protocols (e.g. up to 128
parties [34] or even tens or hundreds of thousands [16]),
OLYMPIA may make implementation and evaluation simpler.

Other applications of secure aggregation. Several systems
have been developed for differentially private analytics (i.e.
database queries) that leverage ideas from secure aggregation,
including Honeycrisp [24], Orchard [25], and Cryptϵ [27].
These systems are designed to scale to millions of participants,
using specialized protocols and a slightly weaker threat model.
Because they are designed for the many-client setting, these
systems are also challenging to evaluate empirically; OLYMPIA

may also be useful for evaluation of such systems.

Simulation of distributed protocols. For protocols designed
for a small number of clients (including most general-purpose
MPC protocols), experimental evaluation is feasible using
actual hardware. As described earlier, this kind of evaluation is
essentially impossible in the many-client setting. The Bonawitz
et al. protocol [5] included an experimental evaluation of a
Java implementation, which was possible due to the relatively
small number of clients. Due to its scale, the later Bell et
al. protocol [3] included concrete results only for the number
of neighbors each client must communicate with, and did not
include an experimental evaluation of computation or com-
munication cost. Similarly, Honeycrisp [24] and Orchard [25]
include concrete experimental results for parts of their pro-
tocol, but do not perform end-to-end experiments due to the
protocol’s intended scale.

The ABIDES framework [6] was originally designed to
simulate agents in a financial market at large scale. It has
been previously applied in an ad-hoc manner to experimentally
evaluate few-client secure protocols [7], [17], [8]. OLYMPIA

builds on ABIDES to provide a framework for designing,
building, evaluating, and refining secure protocols, with a
particular focus on the many-client setting.

VII. CONCLUSION

We have presented OLYMPIA, a framework for designing,
building, evaluating, and refining secure aggregation protocols.
OLYMPIA enables experimental evaluation with thousands of
clients—a setting in which evaluation on actual hardware is not
possible. The OLYMPIA framework provides a simulator that
accurately measures the end-to-end running time of protocols,
and includes a domain-specific language (DSL) embedded in
Python for defining synchronous secure aggregation protocols.
We have used OLYMPIA to conduct an empirical comparison
between several existing protocols implemented in our case
studies, yielding new insights about the concrete performance
of these protocols. We release the OLYMPIA framework and
our case study implementations as open source, and hope that
OLYMPIA will be useful as a standardized implementation and
evaluation tool for new protocols.

ACKNOWLEDGMENTS

We thank Timothy Stevens for his help implementing the
Stevens et al. protocol [32]. This material is based upon
work supported by the National Science Foundation under
Grant No. 2238442 and by DARPA under Contract No.
HR001120C0087. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National
Science Foundation or DARPA. Computations were performed
on the Vermont Advanced Computing Center supported in part
by NSF award No. OAC-1827314.

12



REFERENCES

[1] D. Beaver, S. Micali, and P. Rogaway. The round complexity of
secure protocols. In Proceedings of the Twenty-Second Annual ACM

Symposium on Theory of Computing, STOC ’90, pages 503–513, New
York, NY, USA, 1990. Association for Computing Machinery.

[2] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meikle-
john, Mariana Raykova, and Cathie Yun. Acorn: Input validation for
secure aggregation. Cryptology ePrint Archive, 2022.

[3] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède
Lepoint, and Mariana Raykova. Secure single-server aggregation with
(poly) logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, pages 1253–
1269, 2020.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the Twentieth Annual ACM Symposium on Theory

of Computing, STOC ’88, pages 1–10, New York, NY, USA, 1988.
Association for Computing Machinery.

[5] Kallista Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, pages 1175–1191, 2017.

[6] David Byrd, Maria Hybinette, and Tucker Hybinette Balch. Abides:
Towards high-fidelity market simulation for ai research. arXiv preprint

arXiv:1904.12066, 2019.

[7] David Byrd, Vaikkunth Mugunthan, Antigoni Polychroniadou, and
Tucker Hybinette Balch. Collusion resistant federated learning
with oblivious distributed differential privacy. arXiv preprint

arXiv:2202.09897, 2022.

[8] David Byrd and Antigoni Polychroniadou. Differentially private secure
multi-party computation for federated learning in financial applications.
In Proceedings of the First ACM International Conference on AI in

Finance, pages 1–9, 2020.

[9] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scal-
able computation of aggregate statistics. In 14th USENIX symposium on

networked systems design and implementation (NSDI 17), pages 259–
282, 2017.

[10] Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure mpc for dishonest
majority – or: Breaking the spdz limits. Cryptology ePrint Archive,
Report 2012/642, 2012. https://ia.cr/2012/642.

[11] Alex Davidson, Peter Snyder, E. B. Quirk, Joseph Genereux, and
Benjamin Livshits. Star: Distributed secret sharing for private threshold
aggregation reporting, 2021.

[12] Whitfield Diffie and Martin E Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6), 1976.

[13] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoretical Computer

Science, 9(3-4):211–407, 2014.

[14] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic
introduction to secure multi-party computation. Foundations and

Trends® in Privacy and Security, 2(2-3), 2017.

[15] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirho-
seini, Helen Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza
Sadeghi, Thomas Schneider, Hossein Yalame, et al. Safelearn: secure
aggregation for private federated learning. In 2021 IEEE Security and

Privacy Workshops (SPW), pages 56–62. IEEE, 2021.

[16] S Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The more
the merrier: Reducing the cost of large scale mpc. In Advances in

Cryptology–EUROCRYPT 2021: 40th Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Zagreb,

Croatia, October 17–21, 2021, Proceedings, Part II, pages 694–723.
Springer, 2021.

[17] Yue Guo, Antigoni Polychroniadou, Elaine Shi, David Byrd, and Tucker
Balch. Microfedml: Privacy preserving federated learning for small
weights. Cryptology ePrint Archive, 2022.

[18] Bargav Jayaraman, Lingxiao Wang, Katherine Knipmeyer, Quanquan
Gu, and David Evans. Revisiting membership inference under realistic

assumptions. Proceedings on Privacy Enhancing Technologies, 2021(2),
2021.

[19] Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and Kannan
Ramchandran. Fastsecagg: Scalable secure aggregation for privacy-
preserving federated learning. arXiv preprint arXiv:2009.11248, 2020.

[20] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, et al. Advances and
open problems in federated learning. Foundations and Trends® in

Machine Learning, 14(1–2):1–210, 2021.

[21] Silvio Micali, Oded Goldreich, and Avi Wigderson. How to play any
mental game. In Proceedings of the Nineteenth ACM Symp. on Theory

of Computing, STOC, pages 218–229. ACM, 1987.

[22] Ookla. Speedtest® by Ookla® Global Fixed and Mobile Network
Performance Maps. Based on analysis by Ookla of Speedtest Intelli-
gence® data for 2020. https://www.kaggle.com/datasets/dhruvildave/
ookla-internet-speed-dataset.

[23] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

[24] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen.
Honeycrisp: large-scale differentially private aggregation without a
trusted core. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles, pages 196–210, 2019.

[25] Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C Pierce.
Orchard: Differentially private analytics at scale. In 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
20), pages 1065–1081, 2020.

[26] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and Laurens van der
Maaten. Eiffel: Ensuring integrity for federated learning. In Proceedings

of the 2022 ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 2535–2549, 2022.

[27] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanava-
jjhala, and Somesh Jha. Cryptϵ: Crypto-assisted differential privacy
on untrusted servers. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, pages 603–619,
2020.

[28] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach.
Ariann: Low-interaction privacy-preserving deep learning via function
secret sharing, 2020.

[29] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[30] Jinhyun So, Başak Güler, and A Salman Avestimehr. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure federated learning.
IEEE Journal on Selected Areas in Information Theory, 2(1):479–489,
2021.

[31] Timothy Stevens, Joseph Near, and Christian Skalka. Secret shar-
ing sharing for highly scalable secure aggregation. arXiv preprint

arXiv:2201.00864, 2022.

[32] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring,
Samuel Clark, and Joseph Near. Efficient differentially private secure
aggregation for federated learning via hardness of learning with errors.
In 31st USENIX Security Symposium (USENIX Security 22), pages
1379–1395, 2022.

[33] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou. A hybrid approach to privacy-
preserving federated learning. In Proceedings of the 12th ACM

Workshop on Artificial Intelligence and Security, pages 1–11, 2019.

[34] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pages 39–56,
2017.

[35] Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li, Qian Yu,
and Salman Avestimehr. Lightsecagg: Rethinking secure aggregation in
federated learning. arXiv preprint arXiv:2109.14236, 2021.

[36] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th

Annual Symposium on Foundations of Computer Science (sfcs 1986),
pages 162–167. IEEE, 1986.

13



APPENDIX A
ADDITIONAL EVALUATION RESULTS: SHARING SHARING

PROTOCOL

Figure 12 contains the full results for all semi-honest pro-
tocols, including the Sharing Sharing protocol. This protocol
is excluded from the Large Vectors and Few Clients settings
in the main body of the paper because it is not competitive,
and including it makes the other protocols more difficult to
compare.

APPENDIX B
ADDITIONAL EVALUATION RESULTS: SEMI-HONEST

SECURITY

Figure 13 contains additional results for the semi-honest
variants of the case study protocols: the average bytes sent
and received by clients, and the bytes sent by the server. These
results mirror those presented in Section V—the server sends
roughly as much traffic as it receives, and each client sends
and receives roughly 1/n of the traffic sent and received by the
server—because all communication between clients is routed
through the server.

APPENDIX C
ADDITIONAL EVALUATION RESULTS: MALICIOUS

SECURITY

Figures 14 and 15 contain additional results for the
malicious-secure variants of the case study protocols. These
results mirror those for the semi-honest variants presented in
Section V, and are included here for completeness.

14










