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ABSTRACT

Threshold signatures protect the signing key by sharing it among
a group of signers so that an adversary must corrupt a threshold
number of signers to be able to forge signatures. Existing thresh-
old signatures with succinct signatures and constant verification
times do not work if signers have different weights. Such weighted
settings are seeing increasing importance in decentralized systems,
especially in the Proof-of-Stake blockchains. This paper presents
a new paradigm for threshold signatures for pairing and discrete
logarithm-based cryptosystems. Our scheme has a compact veri-
fication key consisting of only 7 group elements, and a signature
consisting of 8 group elements. Verifying the signature requires
8 exponentiations and 8 bilinear pairings. Our scheme supports
arbitrary weight distributions among signers and arbitrary thresh-
olds. It requires non-interactive preprocessing after a universal
powers-of-tau setup. We prove the security of our scheme in the
Algebraic Group Model and implement it using golang. Our evalu-
ation shows that our scheme achieves a comparable signature size
and verification time to a standard (unweighted) threshold signa-
ture. Compared to existing multisignature schemes, our scheme
has a much smaller public verification key.
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1 INTRODUCTION

The increasing demand for decentralized Byzantine Fault Toler-
ant (BFT) applications has resulted in a large scale adoption of
threshold signature schemes. Many state-of-the-art BFT proto-
cols utilize threshold signatures to lower communication costs [2,
40, 43, 50, 54, 64]. Furthermore, efforts to standardize threshold
cryptosystems are already underway [56]. A threshold signature
scheme [11, 42] enables distributing a secret signing key among
multiple signers such that each can generate a partial signature
over any message using its key share. Given sufficiently many par-
tial signatures, any untrusted aggregator can aggregate the partial
signatures into a threshold signature.

Traditionally, threshold signatures have been studied in the un-
weighted setting where each signer has equal weight; in other words,
the threshold is measured by the number of signers who signed.
However, this is not suitable for many applications. For instance,
in Proof-of-Stake (PoS) [36, 43] blockchains and Decentralized Au-
tonomous Organizations (DAO) [33] the weight of each signer is
determined by the amount of stake they own in the system, and
the threshold is measured by the combined stake among those who
signed. Another application that calls for the weighted setting is
off-chain voting where weighted votes are aggregated offline and
only the final aggregated vote is posted to the blockchain.

Another limitation of existing threshold signature schemes is
that they only support a single threshold, and this threshold needs
to be fixed a priori. This makes them unsuitable for applications
that require fine-grained thresholds [32]. For example, Ethereum’s
Proof-of-Stake consensus protocol Gasper [20] requires a threshold
of two-third of the total stake but it is accumulated over multiple
blocks [20]. Using a threshold signature with a single fixed threshold
will make the protocol lose a lot of flexibility. If the threshold is too
small, it may under-utilize some signers and require a larger number
of blocks to accumulate to the desired stake threshold. On the other
hand, a very high threshold may lead to insufficient signers to
cross the threshold. In addition, Byzantine quorum systems [22, 52],
or variants of BFT [51, 63] use quorums of different thresholds,
and may benefit from multi-threshold signature scheme. Another
application that benefits from multi-threshold signatures is oracle
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Table 1: Comparison of threshold signature schemes. We measure the computation cost in units of group exponentiations.

Scheme or Signing key  Signing cost  Signature  Verification Verification Aggregation  Aggregation Multiple

. . . . . Setup
Approaches size per signer size key size cost key size cost threshold
Virtualization w; F O(w;) 1G 1G o(1) O(ll wll1) O(llwil1)* X DKG
Multisignature 1F O(1) nbits+1G nG O(n) O(n) O(n) v PKI
SNARK [44] 1F o(1) 3G 7G o(1) Large High v MPC
CCoK [53] 2K O(1) O(kAs log n)* 2K O(As logn) O(n) O(n + As log n)t v PKI
This work 1F 0o(1) 8G+1Z 7G o(1) O(n) o(n)* v/ PKI, ¢g-SDH

 The comptuation cost are hashing.
* The A is an soundness parameter.

networks [32]. In particular, smart contracts that accept data from
oracle networks can choose their own set of oracle nodes (with
reputation scores) and signing thresholds [39].

Existing approaches and their limitations. Existing (unweighted)
threshold signature schemes [11, 47] with n signers and threshold
t use a (n, t) Shamir secret sharing [59] so that each signer has one
share of the signing key. These schemes have constant signature
size, verification key size, and verification time.

Here is a straightforward folklore approach to extend these
schemes to support arbitrary weight distributions. The signing
key is secret shared using a (||w||1, t) Shamir secret sharing scheme,
where ||w/||1 is the total weight of all signers. A signer with weight
w then receives w signing keys and plays the roles of w virtual
signers. (Hence, this approach is also called virtualization.) With
this approach, a signer’s signing cost and partial signature size are
proportional to its weight, and the aggregator’s cost is proportional
to the total number of virtual signers or total weight |[w/||;. These
costs can be very expensive in many target applications. For exam-
ple, in Ethereum PoS, there are more than 500,000 validators (akin
to virtual signers in our context) and the count is still increasing.

Alternatively, multisignatures schemes [12] naturally supports
arbitrary weight distributions and only requires one signing key
per signer, regardless of its weight. However, its main downside is
that the verification key size and verification time increase linearly
in the number of signers.

Yet another approach to weighted threshold signature is to use
generic succinct non-interactive argument of knowledge (SNARK).
Here, each signer uses its signing key to compute a partial signature
and sends it to an aggregator. The aggregator then generates a
SNARK proof that it has seen valid partial signatures from signers
with a combined weight of at least t. However, in spite of recent
progress, the SNARK proof generation at the aggregator is still
prohibitively expensive (§6).

Micali et al. [53] proposed a weighted threshold signature with
sublinear signature size and verification time. However, the con-
crete signature size of their scheme is large. Another drawback of
their scheme is that the aggregator needs to collect signatures with
combined weights significantly higher than the required threshold.
Our Results. In this paper, we present a new succinct threshold sig-
nature paradigm that supports arbitrary weight distribution among
signers and supports all possible thresholds simultaneously. We
summarize these properties and compare them with existing ap-
proaches in Table 1. Crucially, the signature size and the verification
time of our scheme are independent of the number of signers n,
their weight distributions, and the threshold t. More precisely, our

# The aggregator in the virtualization approach and our scheme additionally performs
O(|| w|l1log? || wl|;) and O(n log n) field operations, respectively.

scheme has a small signature size of only 8 elliptic curve group
elements, and efficient signature verification involving only 8 group
exponentiations and 8 bilinear pairings. Each signer’s signing key
is a single field element, and the signing cost for each signer is
constant (independent of its weight).

Another nice property of our scheme is that, assuming a Public
Key Infrastructure (PKI), the setup phase of our scheme (after a
universal powers-of-tau setup [27, 55]) is non-interactive, whereas
standard threshold schemes need an interactive distributed key
generation (DKG) protocol [28, 42].

A key component of our construction is a new efficient inner-
product argument (IPA) that proves the inner product between the
vector of public keys and a vector indicating the signers who have
signed the message. Our IPA uses bilinear pairing, is non-interactive
in the algebraic group model, and has a constant proof size and
verification time. Looking ahead, our construction can be viewed
as a specialized SNARK that utilizes multisignature schemes in a
non-black-box manner. However, as we describe in §2, we need to
address several challenges to achieve the desirable efficiency.

In the full version [26], we also discuss several extensions of
our scheme. First, similar to multisignature, our signature scheme
can be made accountable with minimal overhead. Second, an ag-
gregator can generate an efficient proof that a certain signer is
included in aggregated signature. Third, our scheme enables a new
multiverse threshold signature [5] with comparable efficiency and
weaker setup assumptions. We believe these results might be of
independent interest.

Evaluation. We have implemented (code avaiable at https://github.
com/sourav1547/wts) our threshold signature scheme in golang
using BLS signatures as the underlying signature scheme. We mea-
sure the time costs for signing, aggregation and verification, and
compares them BLS threshold signature, multisignature, generic
SNARK, and the scheme of [53]. Our evaluation confirms the con-
crete efficiency of our scheme. Using BLS12381 as the underlying
elliptic curve, our signature sizes are only 536 bytes, independent
of the number of signers. The verification time is also only 8.21
milliseconds. Also, with 4096 signers, the aggregator requires only
71 milliseconds to compute the aggregate signature.

As we envision our signature scheme to be used in blockchain
applications, we have implemented an Ethereum smart contract
that verifies signatures generated by our scheme. Our evaluation
shows that our signature verification takes only 772k gas, while the
multisignature scheme with 4096 signers takes more than 23M gas.

Paper organization. The rest of the paper is organized as follows.
We present an overview of our signature scheme in §2. We define
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threshold signature schemes and give the required preliminaries
in §3. We describe our scheme in detail in §4, and analyze its security
and performance in §5. We present details of our implementation
and evaluation results in §6. We discuss related work in §7 and
conclude with a discussion in §8.

2 TECHNICAL OVERVIEW

Let G be an elliptic curve group with F as its scalar field. Let g € G
be a generator and e : G X G — Gr be the standard bilinear pairing
operation. Our starting point will be the aforementioned weighted
multisignature scheme. To be concrete, throughout this paper, we
will use the pairing-based BLS multisignature [12], which roughly
works as follows.

Each signer samples its signing key independently at random.
Lets = [s1,52,...,5n] € F" be the vector of signing keys. Also,
let pk = [g°',g%,...,g°"] € G" and w = [w1, wa, ..., w,] € F" be
the vectors of public keys and weights, respectively. To compute a
multisignature on a message m, each signer i uses its signing key
to compute the partial signature o; = H(m)* € G, and sends it to
the aggregator . Here, H(-) is a random oracle.

P validates the partial signatures it receives. Let I C [n] be the
subset of signers from whom the aggregator receives valid partial
signatures. Let b = [by, by, ..., by] € {0, 1}" be a bit vector where
b; = 1 for each i € I and 0 otherwise. The multisignature on m
is then the tuple (b, o), where o = [1je; 0i. The threshold of the
multisignature is t = X;e; wi.

Upon receiving the signature (b, o) on a message m, the ver-
ifier V computes the aggregated public key g, = Ilierg*. V
then checks that o is a valid signature with respect to the g, i.e.,
e(gy, H(m)) = e(g, o). If the check is successful, V' accepts the signa-
ture as a weighted threshold signature with threshold t = 3;¢5 w;.

2.1 Multisignature to Inner Product Argument

As a stepping stone to our scheme, we formulate the aggregation
and verification of the above multisignature scheme as the relation
Rrs as follows. Let Cpk and c,, be the succinct commitments to
the vector pk and w, respectively. For now, we assume that the
commitments to the ¢, and ¢4 are computed honestly and are
known to the verifier. Moreover, we assume that the total weight
Iwlli= Siegay wi < .

For any message m, P computes the commitment cj, to the bit
vector b, the aggregated public key g, the threshold ¢, and the
aggregated signature o. P then sends the tuple (m, cp, g, t, 0) to V
along with a proof 7 that these values are computed correctly. V
upon receiving the tuple and the proof validates their correctness
with respect to m, Cpk> Cw- We formalize these ideas in the relation
R1s below. Here we use com to denote a function that takes a vector
as input and outputs its succinct commitment.

pk € G";cpg = com(pk)

{cp g o} € G| w € F* [wll1< |Fl; ¢ = com(w)

Rrs : A b € {0,1}"*; ¢, = com(b
e(gy, Hm)) = e(g, 0) o€G"{(o,b)=0

(w,b) > t;{pk,b) = g,
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Here, 0 = [01, 09, ..., 0n] is the vector of partial signatures where
we use 0; = 1g as default for each i with b; = 0.

Note that a secure protocol for Rtg implies a secure weighted
threshold signature scheme. Also, the signature scheme will inherit
the efficiency properties of the protocol for Rts. Hence, we can
now focus on designing an efficient protocol for Rrs.

RTs as an inner product argument. Our next key idea is to
formulate Rs as an inner product argument (IPA) between # and
V. The constraints t = (w,b) and g, = (pk, b) are naturally inner
product constraints. There have also been recent works that use
IPA to prove that a committed vector is binary [17, 19]. However,
to achieve efficiency comparable to existing threshold signatures,
we need to address many challenges, both for (pk, b) and proving
that b is a bit vector. We next discuss these challenges in §2.2 and
describe our solutions in §2.3.

2.2 Challenges with using existing IPA protocol

To get an efficient threshold signature scheme, the protocol for Rts
must be succinct, i.e., with sublinear proof size and sublinear veri-
fication time. For the inner product (w, b), both vectors consist of
field elements. We can then use the existing IPA protocol from [24],
which has an O(1) proof size and verification time.

The main challenge is the inner product {pk, b). This is an inner
product between a vector of group elements pk and a vector of
field elements b. The only known IPA schemes for group elements
are the structured key generalized inner product argument (GIPA)
from [19] and its transparent setup variant [48]. In GIPA, # commits
to the group element using the commitment schemes from [1]. Then,
% and V run a interactive protocol similar to the Bulletproofs [17]
over the target group. This approach has logarithmic proof size and
logarithmic verification time, a moderate cost asymptotically. Its
concrete efficiency is much worse. In particular, the proof consists
of elements in the target group, which are much larger than the
source group elements; similarly, signature verification involves
operations in the target group, which are more expensive. Moreover,
the prover time is also concretely inefficient as the prover needs to
perform 2n pairing operations.

The second challenge is that existing IPA schemes for proving
a vector binary require V to compute commitment to a random
vector [17, 19]. Computing this commitment requires V to perform
O(log n) group operations. In §4.2, we will describe an approach
that obviates the need for additional random vectors and achieves
a O(1) verification cost.

For now, we focus on the main challenge of proving g,, = (pk, b).

2.3 Our Approach

Note that the inner product (pk, b) is nothing but g<s’b>. So we
want P to give IPA for (s, b) in the exponent. The challenge is
that # does not know the secret key vector s. Fortunately, signers
collectively know s, and will assist # in producing the IPA.

In the rest of this overview, we will first describe the high-level
idea of the IPA protocol for (s, b) assuming # knows s. Concretely,
we will use the IPA protocol of [24]. We then describe how P, with
assistance from the signers and without knowing s, can efficiently
compute the IPA for the inner product (s, b) in the exponent. We



CCS ’23, November 26-30, 2023, Copenhagen, Denmark

note that we only describe part of the IPA protocol below to demon-
strate our main idea. We refer readers to Appendix A and [24, §5.2]
for the complete protocol.

The IPA for field elements. The IPA protocol uses a powers-of-
tau of degree n, i.e., [g, g%, gTz, .. ,gfn], as the common reference
string (CRS). Let p be the claimed inner product, i.e., # wants to
convince V that p = (s, b). Let s(-) and b(-) be the two polynomials
of degree n—1 with s(w?) = s[i], and b(w) = b[i], respectively. Here,
w € Fis a n-th root of unity. Then, let ¢ = ¢*7) and ¢}, = ¢ be
the commitments of the vectors s and b, respectively. We assume
that V has access to the commitments cs and cp. The IPA uses
the following polynomial identity from [8] which has been used
extensively to design efficient SNARKSs.

s(x)b(x) = q(x) - zgg(x) + x - r(x) + (s, b) - n L.

Here, zgy(x) is the degree n polynomial that evaluates to zero at all
points '’ for all i € [n]. Also, g(x) and r(x) are the unique quotient
and remainder polynomials each of degree n — 2 (cf. §3.4).

The IPA for (s, b) is the tuple (94, 9r) = (1), ™). V upon
receiving (gq, gr) accepts y as the inner product if the following
check pass,

e(cs,cp) =€ (gq,gZH(’)) ce(grg) e (gp’gl/n) )

The IPA protocol is non-interactive and has a constant proof
size and verification time. Also, # incurs a computation cost of
O(nlog n) field operations and O(n) group exponentiations.

With this approach, £ needs to compute the tuple (cs, ¢, 97, g"()).

Computing cp, is easy as P knows b. Computing the other three
would also have been easy had # known s. But in reality, # needs to
compute them only with access to the public keys and the powers-
of-tau CRS. We next describe how # can do so with one-time
assistance from all the signers.

Computing the commitment to s. In our scheme, each signer
i, besides publishing g%, also publishes g%Li(D Here, £i(x) is the
i-th Lagrange polynomial defined over the set H (cf. §3.4). Using
these additional helper values,  computes c; as:

s = gS(T) - I_I gSi-Ei(T)

i€[n]

Here, we are assuming a canonical ordering between the signers.

Note that L;(x) for each i € [n] are polynomials of degree n — 1,
and hence can be computed from powers-of-tau CRS using only
public operations. Also, given g%, the term ¢%<i() is publicly veri-
fiable using a non-interactive zero-knowledge (NIZK) protocol for
equality of discrete logarithm.
Computing the IPA proofs efficiently. Even with assistance
from signers, computing the IPA proof (g9, ¢"(?)) seems to require
P to perform O(n?) group exponentiations and store O(n?)-sized
aggregation keys. Both of these quickly become prohibitive for a
moderate number of signers. We give a method where # performs
a one-time preprocessing that requires O(n?) group exponentia-
tions. After that, P stores a linear-sized aggregation key, and each
signature aggregation involves only O(n) group exponentiations.
Non-interactive and transferable preprocessing. Assuming a
PKI, our preprocessing step is non-interactive. Each signer samples
its signing key independently and publishes the corresponding
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Table 2: Notations used in the paper

‘ Notation ‘ Description

K Security parameter

n, t Total number of signers and signature threshold

[n] The set {1,2,3,...,n}

G,F Elliptic curve group with scalar field F.

g, h,o Random and independent generators of G

wj, Si, g°1 Weight, signing key and public key of signer i

s Vector [s1, s, . . ., sp] of signing keys.

w, || wll1 Vector of weights of all signers and total weight

ak, vk Public aggregation key and public verification key

m Message to be signed

i, 0 Partial signature of signer i and the aggregate signature
b Bit vector indicating the set of valid partial signatures
H Multiplicative subgroup {w, @?, ..., 0"} C F of order n.
L Subgroup of order > n — 1 with HNL = ¢

Lim(x) The Lagrange polynomial £ ,i z(x)

H, HEs, Hpop | Random oracles

T The g-SDH trapdoor

gir hi gi = gﬁi,H(T) and h; = hLiH®

public key along with necessary helper values, referred to as the
partial aggregation keys using the PKI. Any aggregator then uses
the partial aggregation keys from the signers to compute the linear-
sized aggregation key and the constant-sized verification key in the
preprocessing step. We also remark that although our preprocessing
step costs O(n?) group exponentiation, its output (aggregation key)
is publicly verifiable using only n group exponentiations and 3
pairings. This makes the aggregation key transferable, i.e., it is
sufficient if one aggregator performs the preprocessing and sends
the provable results to other potential aggregators in the system.
We will present more details in §4.5.

We want to note that for any given n, the partial aggregation
key of each signer is linear in n. If the linear size per signer partial
aggregation key is too large to put on a PKI, each signer can directly
send them to the aggregator. Note this approach will require special
care to handle malicious behavior. For example, if any signer does
not send its partial aggregation key to the aggregator, the aggregator
will use a 0 € FF as its signing key.

3 SYSTEM MODEL AND PRELIMINARIES

Notations. We use k to denote the security parameter. We also
use k to denote the size of a group element and the output size of
cryptographic objects, for example, the length of the random oracle
output. These objects may slightly differ in size in practice, but they
are roughly on the same order. Alternatively, one can interpret k as
the largest among them. For any integer a, we use [a] to denote the
ordered set {1, 2, ..., a}. For two integers a and b where a < b, we
use [a, b] to denote the ordered set {a,a + 1,...,b}. A machine is
probabilistic polynomial time (PPT) if it is a probabilistic algorithm
that runs in poly(x) time. We summarize the notations in Table 2.

3.1 Threshold Signature

Let there be n signers, denoted with 1, 2, ..., n where the i-th signer
has weight w;. Let w = [wy1, wa, ..., wp] be the vector consisting
of weights of all the signers, with total weight ||w||;< |F|. The
constraint ||w|l;1< |F| guarantees that there is no wrap-around
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while computing the signature threshold. The signers wish to sign
a message m and produce a aggregate signature o, such that o
convinces a client that signers with a combined weight of at least
t have signed the message m. We also assume that the client has
access to the public verification key of the signature scheme.

A (weighted) threshold signature scheme roughly works as fol-
lows. A key generation algorithm takes as input the number of
signers n, and a vector of weights w. The key generation algo-
rithm generates the public verification key vk and n signing keys
s = [s1,52,...,5n], one for each signer. The key generation algo-
rithm additionally outputs a public aggregation key ak. For any
given message m, the signers use their signing keys to create par-
tial signatures and send them to an aggregator denoted as . P,
using the aggregation key ak, aggregates valid partial signatures
corresponding to a total weight of ¢, and computes the aggregate
signature o. Any verifier V with access to vk uses the signature
verification algorithm to verify that o is a valid aggregate signature
on message m with respect to the public verification key vk, and is
signed by signers of a total weight of at least .

Definition 3.1 (Weighted Threshold Signature). Let {1,2,3,...,n}
be a set of n signers. Let w = [wy1, wa, ..., wy] be the set of weights
where w; represents the weight of signer i. Let |lw|l1= Z;c[n] Wi-
Each signer i has a signing and public key s; and pk;, respectively.
Let ak and vk be the public aggregation key and verification key, re-
spectively. With this setup, a weighted threshold signature scheme
has the following interfaces.

e Setup(1¥) — pp. The setup algorithm Setup takes the security
parameter as input and outputs the public parameters pp of the
signature scheme.

o KeyGen(pp,n,w) — vk, ak, [s1,...,sn), [Pki, ..., pkn]. The key
generation algorithm KeyGen takes as input the public parame-
ters pp, the total number of nodes n and a vector of weights w.
The algorithm outputs the global verification key vk, aggregation
key ak, and per signer signing and public key (s;, pk;).

e PSign(s;,m) — o;: Signer i uses the PSign algorithm with its
signing key s; to generate a partial signature o;.

o PVerify(m, oi, pki) — 0/1: The verify algorithm takes a message
m, public key pk;, and a potential signature o; checks whether
o; is generated using the signing key s;.

e Combine({oi},t,ak) — o: On input a set of valid partial signa-
tures of sum total weight of at least t < |lw]|1, and the public
aggregation key ak, the Combine algorithm generates a aggre-
gate signature o.

o Verify(m, o,vk,t) — 0/1: Outputs 1 only if the message m is
signed by signers with total weight of at least ¢.

The scheme should satisfy the following correctness, security
and efficiency properties.
Correctness. For any n, weights w with ||w||1< ¢, and threshold
t < |lwl||1, an honestly generated partial signature should always
pass the partial verification, and an honestly generated aggregate
signature should always pass the final verification. Formally,

Pr[PVerify(m, PSign(m, s;), pki) = 1] = 1,
Pr[Verify(m, Combine({c;}, t, ak), vk, t') = 1] = 1
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pp « Setup(1¥)

(n,w, Fo) < Ao(pp) // Fy is the initial set of corrupt nodes
(vk, {pk:}, {si}, ak) < KeyGen(pp, n,w)

(m*, 0,1) — A% 00wk {phi}iepn, ak)

Osign(S’, m’) returns partial signature on message m’ from

each signer in §” and Ocy,(-) lets A corrupt additional signers.

Winning condition: Output 1 if Verify(pp, m*, o, vk, t) = 1
and A has queried Osign(S, m*) and ws < t — wr. Here, F is
the set of signers A eventually corrupts. Also, ws and wr is
the sum total of weights of signers in S and F, respectively.

Figure 1: Unforgeability game of our threshold signature

where t’ < t, and s;, pk; for all i € [n], vk and ak are generated
from the Setup and KeyGen algorithms.

Unforgeability. We define the unforgeability game in the pres-
ence of an adaptive and rushing adversary. Note that an adaptive
adversary can corrupt signers at arbitrary time during the protocol.
Also, a rushing adversary can choose its messages depending upon
the messages of honest signers.

Let A be an adaptive adversary which initially corrupts a subset
Fy c [n] of signers. A interacts with the challenger C during the
KeyGen protocol. Next, A interacts with C to receive arbitrarily
many partial signatures on messages of its choice. During its inter-
action with C, A can corrupt additional signers. Let F C [n] be the
subset of signers A eventually corrupts. Also, let wp = X;eF w; be
the total weight of the corrupt signers. Then, A outputs a message
signature pair (o, m*, ).

The forgery is considered non-trivial if Verify(o, m*, t,vk) = 1,
and A has queried partial signatures of weight less than t — wr on
the message m*. We describe the unforgeability game in Figure 1.

3.2 Pairing based Multisignature
Let pk = [¢%1, g%, ..., g°"] be the vector of public keys of signers
and let w be the corresponding weight vector. The pairing based
multisignature on a message m with claimed weight ¢, is the tuple
(0,b) € G x {0,1}" that satisfy the following:

(w,b) > t and e(gy, H(m)) = e(g, 0); where g, = rl (gs")b[i]
i€[n]

Here H(-) is the random oracle and o is the aggregated signature
defined as:

o= H oj; where 0; =
i€[n];b;=1

H(m)® @

The signing algorithm in the multisignature works as follows.
For any given message m, each signer i computes its partial signa-
ture o; = H(m)® and sends it to the aggregator . ¥ upon receiving
validates them by checking that e(g%, H(m)) = e(g, ;). Upon receiv-
ing valid signatures from signers for total weight t, £ computes
the bit vector b € {0,1}", where b[i] = 1 whenever o; is valid,
otherwise b[i] = 0. P then computes the aggregate signature o as
in equation (2).
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3.3 Inner Product Argument

An inner product argument (IPA) is a protocol between a PPT prover
P and an efficient verifier V. Given two vectors a and b, an IPA
enables the P to convince V that (a,b) = u, where the verifier only
have access to the commitment ¢, and cp of @ and b, respectively.

IPA has been studied extensively in the recent years [8, 15, 17—
19, 24, 48, 49] and has been used repeatedly to design more efficient
argument systems, especially SNARKs. Most of these IPA schemes
focus on the case where both a and b consists of field elements, i.e.,
a,b € F". The most efficient IPA when both a, b € F" has a constant
proof size and constant verification time assuming the powers-of-
tau as the underlying common reference string (CRS) [24, 49].

As we describe in §2, we require an IPA scheme with succinct
proof size and verification time that supports inner product be-
tween a vector group and field elements. Known constructions of
IPA schemes for inner-product between vector of group and field el-
ements, also known as generalized inner-product arguments (GIPA),
are concretely inefficient [19, 48]. In particular, the proof consists of
2log n G elements, and verifying the signature requires 2logn Gt
and 7 pairing operations. Moreover, prover time is also concretely
inefficient as the prover needs to perform 2n pairing operations.

3.4 Polynomial Identities

For any given set M C F, we define the Lagrange polynomial with
respect to M as:

_ pemptalx = b)
~ Mpemprala—b)
When |M|=d, each L, p(:) is a degree d — 1 polynomial. Also,

we can write any polynomial p(x) of degree at most d — 1 as

px) = > Lom()p(a)

aeM

Lam(x) ©)

©)

Our threshold signature scheme uses the following two identities
about univariate polynomials.

LEMMA 3.2 (POLYNOMIAL REMAINDER LEMMA). For any given
polynomial p(-) € F[x] of degree d, there exists an unique quotient
polynomial q(x) € F[x] of degree d — 1 such that for anya € F

®)

LEMMA 3.3 (UNIVARIATE SUMCHECK [8]). LetH = {w, 0%, ..., 0%}
be a multiplicative subgroup of F of order d. Given two polynomi-
als a(-),b(-) € F[x] of degree d — 1 each, then there exists unique
polynomials q(-) and r(-) such that

a(x)b(x) = q(x)zg(x) + r(x)x + nl. Z a(w')b(w")
ie[d)

p(x) = q(x)(x = a) + p(a)

(6)

here zp(x) is the vanishing polynomial over the set H, i.e., zgp(w') = 0
foreach i € [d]. Also, we can write zp(x) as

z(x) = [ | (-0

i€[d]

4 THRESHOLD SIGNATURE USING IPA

As we describe in the overview (§2), our approach is to formulate the
threshold signature scheme as the relation Rs and then present
an efficient protocol for Rts using an inner product argument.

™)
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Formally, the Rrg relation is given as below and we refer the reader
to §2 for the intuitive explanation.

pk € G";cpk = com(pk)

{cp.gu. 0} € G| w e F", |w|li< |Fl;cw = com(w)

RTs - A b € {0,1}"; cp, = com(b)
e(gy, H(m)) = e(g. 0) ce€G"(ob)=0

(w,b) > t;(pk,b) = g,

Handling rogue-key attacks. Although, our signature scheme is
agnostic to the specifics of a rogue key attack handling mechanism,
for concreteness, we consider the approach used in Boneh et al. [12,
§6]. Briefly for any claimed public key ¢°, the signer computes the
Proof-of-Possession (PoP) as 7 = Hpop(g°)®. Here Hpop : {0, 1} —
G is a hash function modeled as a random oracle, that could be
constructed from H(-) using domain separation. The PoP verification
procedure accepts if e(g*, Hpop(g*)) = e(g, 7).

We organize the rest of the section as follows. We begin by de-
scribing different parts of the protocol for the relation Rts. Finally,
in §4.8, we combine all these building blocks and present our full
threshold signature scheme.

4.1 Setup and Public Parameters

CRS. Let G be a elliptic curve group with F as its scalar field. For
any given number of signers n, the CRS consists of

o ) o

for uniformly random generators g, h,v € G, and for uniformly
random field element 7 € F.

The CRS also consists of descriptions of two subgroups H, L C F.
Here H is a multiplicative subgroup of order n, and L is a subgroup
of order n — 1 such that H N L = ¢, i.e., their intersection is empty.
Throughout this paper we will work with H = {o, w?, ... 0,
where w € F is a n-th root of unity. Also, for L, we use a coset of H.

®)

CRS preprocessing. Our scheme uses a CRS that can be computed
from the CRS in equation (8) using public operations. More precisely,
the preprocessed CRS is:

{[gzm, . “’gin(f)] : [hzlm, . “,h.cm] ;U;gn}

here we use £;(x) to denote the Lagrange polynomial £ ,: jy as per
equation (3). Also, let 77 = Zjc[n) Li(r)/ ot

Note that the CRS in equation (9) is publicly computable from
the CRS in equation (8). The computation requires O(n log n) group
exponentiations using number theoretic transform in the exponent.
The CRS also consists of

©)

u = [ur],er ; Where up = gLer@ vrel (10)

Here on we will use the following notations.
Vi€ [n]gi = gL"(T) and h; = hLi®

Verification and aggregation keys. Each signers i samples its
signing key s; € F, uniformly at random. Let s = [s1,s2,...,sn]
andw = [wy, wy, ..., wy] be the vector of signing keys and weights,
respectively. Let s(-) and w(-) be the two polynomials of degree



Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold

n — 1 each where s(') = s;, and w(w’) = w;, respectively. Then the
public verification key vk is the tuple:

ok = {g’ h, o, gs(r),gw(r),gr, ng(r)}
The aggregation key ak is:
¥ [g']Si]ie[n]}

where g;(x) is the polynomial of degree n — 1 defined as:

ak = {[9?]1‘6[,1] ; [hts'i]ie[n] ; [9qi(f)]

i€(n

s(x)Li(x) = qi(x)zg(x) + 5i. Li(x)

here zg7(x) is the degree n polynomial that evaluates to zero at all
points in H. In particular,

zH(x) = r[(x—a)i):x"—l

i€[n]

To assist # in computing ak, each signer i sends ak; to P, where

Si Si pSi ,Si NSi Si
{g gi Lo g ’[”k]ke[n]}

Note that only # needs to read the linear size ak; from each
signer i. Also, ak; for each signer i is publicly verifiable using the
— Si
CRS and g*. Finally, to compute ok, only the element g;* for each
signer i is sufficient.

ak; = (11)

gs(r) _ l—[ g?i

i€e[n]

Similarly, P computes g*(?) = [Tic[n] 9;"- We will describe in §4.5
on how P computes the terms [g? (T)]l-e[n].
Remark. As we discuss in §2, assuming a PKI where each signer

publishes its partial aggregation key, the setup phase of our signa-
ture scheme is non-interactive.

4.2 Proving that the committed vector is binary

Let b(x) be the polynomial of degree n — 1 such that b(w’) = b[i].
Then, if indeed b is binary then the polynomial b(x)(1 — b(x)) eval-
uates to 0 for every x € H. Thus, using the polynomial remainder
lemma, we get that b(x)(1 — b(x)) = qp(x) - zr(x).

Given gb(f), the commitment to b, P proves that b € {0, 1}", by
sending 7, = gqb(f) to V.V upon receiving the proof 7, accepts
the proof if the following checks pass.

e ( §, 91-b<f)) —e (”b’ ng<f))

Remark. Note that our approach to proving b a bit vector is not
an IPA. Nevertheless, since it shares similarities with the IPA we
use, we sometimes refer to it as an IPA for ease of exposition.
Analysis. Completeness is clear. We will prove its soundness in §5.
The proof is a single group element and verification requires one
group operation and two pairings. $ performs O(n log n) field oper-
ations to compute g(x) using Number Theoretic Transform (NTT).
% then computes gqb(f) using O(n) group exponentiations.
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4.3 IPA between public keys and bit vector
Let p = (s,b) and let pk = [¢°1, 4%, ..., g°*]. We use the following
polynomial identity for the inner product g# = (pk, b).
s(x)b(x) = q(x)zg(x) + r(x)x + - n~ L (12)
Let p(x) = r(x)x + - n~ 1. Then for each i € [n], p(w") = s;b;. Let
cp = gb(f) be the commitment to the vector b. Then, the proof z for

g = (pk,b) is the tuple:

= (gq(f)) g @ w0, Z,Il) (13)

V accepts the proof 7 = (gq, gr, hp,v,) and the corresponding
inner product g#, if the following checks pass

e (9. ch) = ¢ (9. 97) - e (gr.97) - ¢ (9. 9"") (1)
elhp.9) = e(gr, ) - e (" 111" (15)
e (04 9) = € (9".0) (16)

Intuitively, equation (14) checks that the polynomial identity
specified in (12) holds with respect to the proof  at 7. The equa-
tion (15) and equation (16), checks that g, and g# are commitment
to a polynomial of degree n — 2 and a constant, respectively. We
elaborate on these checks in Lemma 5.4 and 5.3, respectively.

4.4 Computing the IPA proof

In this section we will describe how P computes the IPA proof «
(in equation (13)) using O(n) group exponentiations. Recall from §2,
the difficulty arises because # needs to compute 7 having only
access to the aggregation public key. We note that to compute 7, P
does one-time preprocessing that requires O(n?) computation costs.
We elaborate on the preprocessing cost in §4.5.

Computing g?("). We use the following polynomial identity from [31].
For completeness, we derive it in the full version of the paper [26].

qx)= D) bi-qi(x) = q(r)= > bi-qi(r) (17)
i€[n] i€[n]
where the polynomials g;(x) are defined as:
Lig()s(x) = si - Lig(x) + 21 (x)qi(x) (18)

The important observation in equation (18) is that the polynomial
qi(x) depends on H and the set of all signers and not on the set of
signers who signed a message. This is unlike b;, whose values gets
decided only during the signature aggregation. Thus, # can pre-
compute g%(® for each i € [n]. Then, during signature aggregation,
P computes g2 using O(n) group operations as:

g1 =] (9“"'(’))bi (19)
i€[n]

Computing h? (), Similarly, we use the following identity from [31]:
px) =x-r(x)+ p(0) = >3 bisiLi(x)

i€[n]

(20)

b;
Equation (20) immediately implies h?(7) = [ien (h?i) .
Computing g" @, Using equation (4), we can write r(x) as:

r(x) = > r@)Li(x)

i€[n]
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Since p(w') = b;s; Vi € [n], we can write r(w’) as:

p(@) = p(0) _ bisi = p(0)

r(o') = ol ol
= Z r(@")Li(r) = Z bisiLi( Z 4 O)L ) (21)
ie[n] ie[n] ! ie[n]

Let r1 be the first term in the RHS of equation (21). Then,
b; bilw!
ri= sl — = gr=1] (91 )
ie[n] @ ie[n]

Let 2 be the second term in (21), and let 5y = 3;¢[p) L’—(IT) Then,

re=p0)-n=n- >, p@)Le0) =1 > spbpLr(0)
ke[n] ke[n]

:>gr2 _ n (gnsk)bkﬁk(o)
ke[n]

Finally, combining the above, we get that g"(?) = g1 /g"2.

4.5 Computing the preprocessed elements

In this section, we will describe how the # precomputes gqi(T) for
each i € [n] where g;(-) is defined as:

Lig()sx) = si - Lin(x) + za(x)qi(x) (22)

Recall L € Fwith |L|=n—1and LN H = ¢. This implies that for
each ¢ € L, zgy(¢) # 0. Then, we can write g;(x) as:

LiH(O)s(¢) = siLim(¢)
019 = S ai0.£220) = 33 | SHPD D) 1o
LiO5(0) 5 L0
= a0 - 3 (FOE ) 1, @)

Recall from §4.1, the CRS also includes up = gLﬂL(T) for each
¢ € L. Each signer i also publishes [u;i] for each ¢ € L. P uses them
to compute gq"(f) for each i € [n] as follows. Rewrite g;(r) as

Lia()s(0)Le,1(7) $iLia()Le1(7)
qi(r)zz(% - L HV)=L
zy(?) rel zp ()
Let g; 2 be the second term of equation (24). Then, £ computes
g4i2 using n group exponentiations as:
.)-Ci,H(f)/ZH(f)

gqi.z — I_I (u;l

tel

) (24)

tel

Let g;,1 be the first term of equation (24). Let d, be such that
s(O)Le (7 Liu(t)
;= M = g7t = 1—[ (ga") "
zp () rel
Note that given g%, computing ¢9i? requires O(n) group expo-
nentiations. Next, P computes g% using the following equations.

Ly1(7)
). 5wt

$g5l _ l—[ (u;k)Lk,H([)/ZH((’)
ke[n]

=

Finally, gqi(T) = g% [gTi2,

Sourav Das et al.

Verifying g9 (D), We now describe how any external entity can

efficiently verify the correctness of g%(?) for each i. Our idea is
to use the standard approach of random linear combination. Let
[9q.ilic[n] De the claimed values. For an uniformly random y € F,
lety = [1,y,¥%,...,y""1]. Then, the entity computes

gy = <[gz]ze V) 9q.y = ([ng]ze [n]s P sy = <[g ]le )
and checks that the following check holds.

e(6°7,9y) = ¢ (41, 5qy) - (951.9) (25)

Intuitively, equation (25) batch checks the polynomial identity in
equation (18) at 7 using the standard random linear combinations.
Hence, its soundness follows from the Schwartz-Zippel lemma.

4.6 Proving correctness of the threshold

P uses an IPA to convince V that t = (w,b), precisely the IPA
scheme from Appendix A. For completeness, we summarize it next.
Recall cp, is the commitment to the bit vector b.

Proof generation. Let ¢,,(x) and r,,(x) the polynomials such that:

w(x)b(x) = ga(0)zer(x) + x7(x) + £ - 71 (26)
Also, let pyy(x) = xryy(x) + t - n~1. Then, the IPA is the tuple
7= {gqm, g, hpwm} @7)

Proof verification. V upon receiving the proof = = (g4,,, r,,» fp.,)
accepts t as the correct threshold if the following checks pass.

e (97, ch) = € (94,5 - € (g1, 67) - ¢ (4.9 ; and

€ (hp,9) = € (g1, h) - € (", 11"

Note that these verification checks are analogous to the verifi-
cation checks in equation (14) and (15) for the IPA for (pk, b). We
omit the check in equation (16), as Lemma 5.3 holds trivially for .

4.7 Merging IPA proofs

In our scheme so far, P produces two separate IPA proofs, one for
each inner product (pk, b) and (w, b). Since, both of these proofs
have the same structure, we merge them by taking their random
linear combination using the Fiat-Shamir heuristic [35].

P computes ¢ = Hgg(g5(?), g™(?), g(D) gt 1), where Hgg is a ran-
dom oracle derived from H(-) using domain separation. Let o(x) be
the polynomial defined as o(x) = s(x) + £w(x). This implies,

0(x)b(x) = (qs(x) + Equu(x))zE(x) + (rs(x) + Ervp(0)x + (u + Etn~"
here the polynomials g.,(x), r,(x) are as defined in §4.6, and gs(x)
and rs(x) defined as below.
s(X)b(x) = qs(x)zpr(x) + rs(x) + x + p-n”} (28)
Let go(x), ro(x) and po(x) be the polynomials defined as:
go(x) = gs(x) + £gru(x)
To(x) = rg(x) + Ery(x)
Po(x) = ro(x)x + (u + &) - n~ !
P then sends the tuple (¢” @), g#, t) along with the IPA proof

= {gqc,(r), o, ppo(®), Uu} (29)
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V upon receiving (g, gy, t) and the proof (g4, gr, hp, vp), first
computes & = Hgs(gs, 9w gp, gp» t) and then checks that the follow-
ing equation holds:

(95 92 90) = € (92:77) - ¢ lgr.7) - € g 9*.9"")  G0)

Finally, V accepts it as a valid signature with threshold ¢ if the
following additional checks pass.

e(hp.g) =e(gr.h") e (9;1 -t nY ") ande (v, 9) = e (gu.0)

Analysis. The completeness is clear and we prove its soundness
in §5. This brings down the combined proof size of both the IPA to
four group elements from seven group elements.

4.8 Threshold signature design

Combining all the above, we get the following threshold signature
scheme. We summarize the construction in Figure 2.

Setup. The algorithm Setup produces the parameters for the BLS
signature scheme ppprs = {F, G, Gr, g, e(-, -), H(-)} and a CRS of size
linear in n, the number of signers. More precisely, the algorithm
Setup samples a uniformly random generators h,o € Gand r € F
and computes g := [g, 9", .. .,grn] and h := [h K7, - - -, th_l].

Then, as described in §4.1, using the Lagrange polynomials de-
fined over the multiplicative subgroups H, L, and the vectors g, h,
the Setup algorithm computes the following:

® gr:=1[91,92 " gn] = [gLI,H(T), g-Cz,H(T)’ ..
o hyi=[hyhg, - hy] = [h£ra® pLen(@ ... pLon(®)]
o 0= [ug, U, un] = [gLI,L(T)’gLZ,L(T)) . ’g£n,L(T)]

g-Ln,H(T)]

>

Finally it computes g7 for 7 = Xje[n) L;(1)/o" using g7, and
outputs pp = (PPBLS. 9 1> h__)C, i, h,v,g") as the CRS.
Key generation. Each signer i samples its signing key s;, and pub-
lishes the corresponding public key pk; = g% the and the proofs-
of-possession. Concretely, for proof-of-possession, we use the ap-
proach from [12, §6].

As we describe in §4.1, in order to assist the aggregator £, each
signer i additionally computes its partial aggregation key ak; and
sends it to  where

Note that given pk;, P can check validity of ak; using pairings or
NIZK proofs for discrete logarithm equality.

As we describe in §4.5, P uses ak; to compute the aggregation
key ak defined as

R (A L et P

i€[n]

(36)

[9"*] ie[n]} (37)

Note that similar to ak;, the aggregation key ak is also publicly
verifiable given pk; and the CRS (cf. §4.5). Next, £ computes the
(95 gw) = (¢°D, g™D), the commitment to the public keys the
weights using the weight vector w = [wy, wa, ..., wp], g? for each
i, and the CRS. The public verification key vk of our scheme is

vk = {g, h,v,gs, gw. g%, h", gZH(T)}

Computing partial signature. As in standard BLS signature, for
any message m, signer i computes its partial o; as H(m)%.
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Setup(1%, n):
On input 1% for the security parameter x produces first the public pa-
rameters for the BLS scheme ppprs = {F, G, Gr, (9, g7), e(-, -), H(:) }.
Here e : G X G — Gr is the bilinear pairing operation, and
H : {0,1}* — G is the random oracle. The setup algorithm ad-
ditionally outputs the following CRS
- Let h, v € G be additional uniform random generators of G
- Sample 7 € F;
- Compute g := [g,g7%, - - -,gT"] and h:= [h, K7, - - -,hfnil]
- From g and h compute
- §Gr = [gLI,H(T)’ng,H(T)’ . .,gLn,H(T)]
- hyp = [REH@ pLon@ . pLan(@)]
0= [g-Ll,L(T)’gLZ,L(T)’ .. .)gLn,L(T)]
- Compute g7 where 77 = X ;e[n) Li(r)/w’ using g.
Output pp := (ppsLs. g1, hr. i, h, v, g7)
KeyGen(pp, n, w):
- Each signer i samples its signing key s; < F uniformly at random.
- Let pk := [g°1,...,g°"] be the vector of public keys.
- Compute vk := {g, h,0,¢%0), g%, g7, hT,gZH(T)}
- Compute ak := {[g?i]ie[n] ; [h?i]ie[n] i [971@] ien] [g”si]ie[n]}
with help from the signers (see §4.1 and §4.5)
Output (vk, ak)
PSign(m, s;): Output o; = H(m)%i
PVerify(m, o3, g°): Output 1 if e(g*i, H(m)) = e(g, 0;), otherwise 0.
Combine({o;}, t’, ak):
- Let I be the indices corresponding to valid partial signatures.
- Compute the bit vector b where b[i] = 1, Vi € I and 0 otherwise.
- Compute commitment to b, gp := g?*) and the proof gg, = g?6(®),
- Compute the aggregated public key g, = g = (pk, b).

- Compute oprs = [lier 0i-
- Compute the IPA proof 7 = {gq"(f), gro(®, ppo(D), o} (cf. §4.7)

Output o := (g, g 9qy,» OBLS, 7T ')
Verify(m, o, vk, t):

- Parse o as (g, gb, 9q;,» OBLS, T, ).
- Check correctness of bit vector as

e(gp. 9/9) = e(gqy, g°H) (1)

- Verify the IPA proof
~ Compute & = Hrs(s, gw» gb> gu» t') Where gs, g,y are part of vk.
— Check the three equations below hold:

e (9s ~gi,gb) =e (9q,gZH(T)) “e(gr.g7) e (9,1 ~g§t',g”") (32)

e (hpg) = € (gr,h7) - e (g g W1/ (33)
e(v,u, 9) = e(g,,, v) (34)

- Check the BLS signature
e(gy, H(m)) = e(g, oBLs) (39)

- Finally check that ¢’ > ¢.

Figure 2: Our signature scheme.

Verifying partial signature. As in standard BLS signature, a par-
tial signature o; from signer i is valid if e(g%, H(m)) = e(g, 07).
Combining partial signatures. Upon receiving valid partial sig-
natures o;, P first checks that the total weight of these partial
signatures is greater than the required threshold .
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(1) Let b € {0,1}" be the vector that indicates the set of valid
signers. As in §4.2,  computes the polynomial commitment
g?@), along with the proof 9qp = g9¢( for b being a bit vector.
Also, t’ = (w, b) is the signature threshold.

(2) P computes the aggregated public key g, = (pk,b) and the
BLS aggregated signature oprs := [1;.p[i]=1 0i-

(3) Finally,  computes the IPA proof 7 as per §4.7 to convince V
that g, = (pk,b) and t’ = (w,b).

Verifying the aggregate signature. The verifier V upon receiving
the aggregate signature o = (g, gp. 9q; OBLS. 7, ) validates it by
checking that: (i) gg, is a correct proof of g;, being a commitment
to a bit vector; (ii)  is a valid IPA for the aggregated public key g,,
and the threshold t’; and, (iii) oprg is a valid BLS signature on the
message m with respect to public key u-

Optimized verification. As in Figure 2, verifying the aggregate
signature requires 1 exponentiation and 13 pairings. We further
reduce the verification cost to 8 exponentiations and 8 pairings
using the standard random linear combination approach. More
precisely, V samples a uniformly random y € F and checks the
following:

e (g/l, v Hm)Y) = e(vy, g) - e (g, JgLS) (38)

e (gs 'giz : (g/gb)y,gb) e (hp,gyz) —e (gq .ggb,gZH(T)) .
(997 1) - g g5 gMm nYIm)

Intuitively, the check in equation (38) merges the checks in equa-
tions (35) and (34), by taking their random linear combination.
Similarly, the check in equation (39), merges the checks in equa-
tions (32), (31), and (33). Similar to Lemma 5.5, the soundness of
these optimized checks follows from the Schwartz-Zippel lemma.

(39)

5 ANALYSIS

We prove security of our threshold signature scheme in the Al-
gebraic Group Model (AGM). We will prove the security in two
parts. First, we will prove that assuming hardness of g-SDH in the
AGM, our protocol for Rts is knowledge sound. More precisely,
for any PPT adversary (A that successfully convinces a verifier V
with respect to a committed key ¢*() and committed weights gW(T),
then there exists an efficient extractor &, who interacts with ‘A and
outputs a bit vector b such that (pk,b) = g# and (w,b) > ¢.

We then use the knowledge soundness of the protocol for Rrs
and hardness of co-CDH assumption to prove that our threshold
signature scheme is existentially unforgeable as per the security
game in Figure 1. Our unforgeability proof follows the security
proof of Boneh et al., [12, Theorem 5]. We also follow the proof-of-
possession approach adopted in that paper.

5.1 Knowledge soundness of the IPA protocol.

Throughout our analysis, we use the following theorem which we
prove in the full version [26].

THEOREM 5.1. Let gm = (g, 9%, gfz, ...,9""] be the g-SDH param-
eters for any given m. Assuming hardness of g-SDH, no PPT adversary
A on input g, can output a non-zero polynomial a(-) of degree < m
such that a(r) = 0.
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We prove the knowledge soundness of our protocol for Rrg in
parts. Lemma 5.2, which we prove in the full version, first shows
knowledge soundness of the bit vector relation. We will then prove
security of the remaining IPA protocol in Lemma 5.6 and 5.5.

LEMMA 5.2 (BIT VECTOR). Assuming hardness of q-SDH in the
AGM, the protocol for proving that the committed vector b is binary
is knowledge sound with probability 1 — negl(x).

Recall that the IPA proof consists of tuple (g,,v,) such that
e (gu:v) = € (v, g). For gy, v, € G, let p, fi be the vectors such that
gu = (i, gn) and vy, = (fi, gn), respectively. Let p(x) and ji(x) be the
polynomials defined using the elements of u and f as coefficients,
respectively. Then, in the full version, we prove the following.

LEMMA 5.3. Assuming hardness of qg-SDH in the AGM, u(x) is a
constant polynomial with probability 1 — negl(x).

The next part in our proof is to bound the degree of the polyno-
mial ro(x) given the g, and hy, that satisfy the following constraint:
e (hpg) = ¢ (gr.h7) - ¢ g, g% 11/")
Again, since Appy is algebraic, let p, r be the vectors such that
hp = {p. gn) and g, = (r, gn), respectively. Also, let p(x) and r(x)
be the polynomials defined using the elements of p and r as coeffi-
cients, respectively. Then, in the full version, we prove the follow-
ing.

LEMMA 5.4. Assuming hardness of q-SDH in the AGM, r(x) is a
polynomial of degree at most n — 2 with probability 1 — negl(x).

(40)

Given the claimed aggregated public key g, and claimed thresh-
oldt,letg, = g,,g-ft. Recall from §4.7, o(x) is the polynomial defined
as o(x) = s(x) + Ew(x). Let 0 = [0(w), 0(w'), . . ., 0(w™)]. Then, in R,
P convinces V that g, = g'*°/. Then, in the next lemma, we prove
that, except with negligible probability, correctness of g, implies
correctness of g, and ¢.

LEMMA 5.5. Let o be the vector defined as above. If g, = g<b’°>,

then except with probability negl(x), g, = g<b’s> andt = (b,w).

We now use Lemma 5.3, Lemma 5.4 and theorem 5.1 to prove
that the claimed g, is indeed g<b’°>.

LEMMA 5.6 (SUMCHECK). Let o be the vector as defined above and
b be the bit vector as per Lemma 5.2. Let g, and t be the claimed
aggregated public key and threshold, respectively. Let g, = gugft.
Then, assuming hardness of g—SDH in the AGM, g, = g<b’°>.

Finally, combing Lemma 5.2, Lemma 5.6, and Lemma 5.5, we get
the following main theorem.

THEOREM 5.7 (RTs KNOWLEDGE-SOUNDNESS). Assuming hard-
ness of g-SDH in the AGM, the protocol for the relation Rts is knowl-
edge sound with 1 — negl(x) probability.

5.2 Security of threshold signature scheme

We prove the security of our signature scheme in the presence of an
adaptive adversary. In particular, we prove that if an adversary Ars
produces a non-trivial forgery of our threshold signature scheme,
then we use ATg in a black-box manner to design an adversary
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AcocpH that breaks the co-CDH assumption. Recall from §3.1, a
forgery is non-trivial when Ats produces a signature with thresh-
old t, while querying partial signatures from honest signers of
weight less than t — wr. Here wr is the weight of the corrupt sign-
ers. Due to space restrictions, we describe our reduction in the full
version and only state the main theorem next.

THEOREM 5.8. For any PPT adversary Arts, if Ats successfully
creates a non-trivial forgery with probability €, then Acocpn breaks
the q-SDH assumption with probability € - dg. /poly(n, gr).

Here 57%5 is the knowledge soundness error in Theorem 5.7, and
qg is the number of random oracle queries A makes.

5.3 Performance

The CRS and aggregation key each consist of O(n) group elements.
The verification key consists of 7 group elements. The one-time pre-
processing requires O(n?) computation costs to compute n group
elements, each requiring n group exponentiations. The per signer
signing key is a single field element and signing requires one group
exponentiation. During signature aggregation, # performs O(n)
group exponentiations, O(nlog n) field operations. The signature
consists of 8 group elements and 1 integer for specifying the thresh-
old. Verification requires 8 exponentiations and 8 pairings.

6 IMPLEMENTATION AND EVALUATION

We implement and evaluate our threshold signature scheme in
golang. Our implementation is publicly available at https://github.
com/sourav1547/wts. For our experiments, we only implement
the computation component without any networking. We use the

BLS12-381 pairing based curve implementation from gnark-crypto [16].

We also use (for both in our implementation and the existing works)
the multi-exponentiation of group elements using Pippenger’s
method [10, §4] to increase the efficiency of the aggregator. All
experiments are run on a t3.2xlarge Amazon Web Service (AWS)
instance with 32 GB RAM and 8 virtual cores.

We measure the computation cost in terms of latency for prepro-
cessing, signing, verification, and aggregation algorithm. Through-
out our evaluation, we use the pairing based BLS signature [14] as
our underlying signature scheme. We compare our scheme with
the following schemes, as described below. (1) generic SNARK ap-
proach, (2) compact certificate in Micali et. al. [53], (3) (vanila) BLS
threshold signature [11], and (4) BLS multisignature [12, §6].

Threshold signature using generic SNARK. We consider the
following generic SNARK construction. Each signer has one signing
key and a weight. The signer signs only once using its signing key.
The aggregator functions as a SNARK prover # who convinces the
verifier V that it knows a set of valid signatures, each with distinct
public key, with a total weight greater than or equal to the desired
threshold. We build the SNARK prover atop the open source SNARK
prover implementation of [5]. We use the gnark library [16] to create
the SNARK proof. We choose the most SNARK-friendly signature
scheme available in the gnark library, which is the EADSA signature
— with gnark frontend. A single EADSA verification produces 6.5k
constraints in the Groth16 proof system [44], and 13.6k constraints
in the PLONK system [37]. For this experiment, we also assume
that the verifier has the list of all public-keys and all weights are
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equal. Note that, it is also possible to construct the proof with
respect to a commitment of the public keys and distinct weights.
This will further increase the running time of the aggregator. We
want to note that, the EDDSA signature implementation of gnark
uses MiMc [3] hash function as the underlying random oracle.

Compact certificates of knowledge (CCoK) [53]. We bench-
mark CCoK based on their open source implementation of Algo-
rand [4]. We use EdDSA signature over the curve25519 elliptic curve
as the underlying signature scheme, and SHA256 implementation
from libsodium as the underlying hash function. We adapted exist-
ing benchmarks for their implementation in the unweighted setting
for our desired threshold values. Also, for any given threshold ¢,
we consider the collected weight to be 1.25¢. Note that the CCoK
scheme requires an additional soundness security parameter, which
is then used to compute the number of Merkle paths to be revealed
in the certificate. For all benchmarks, we use pick the parameter to
achieve 128 bit of security.

BLS threshold and multisignature. We implement the virtualiza-
tion approach with BLS threshold signature and the BLS multisig-
nature scheme [12, §6] as described in §1, §3.2, and §7. We do not
include the cost of the DKG for the virtualization approach. For BLS
threshold signature, we use O(t log? t) time algorithm from [62] to
compute the Lagrange coefficients.

With our evaluation we seek to demonstrate that our scheme sup-
ports arbitrary weight distribution and multiple thresholds while
maintaining a signature size and verification time comparable to
that of standard threshold signature and multisignature schemes.
Recall, that existing threshold signature schemes are very inefficient
with arbitrary weight distribution. Alternatively, multisignature
schemes require a linear-size public verification key. Our evalua-
tion also illustrates that existing off-the-self SNARKSs (as described
below) are inefficient when used as a threshold signature scheme.

6.1 Evaluation Setup

With the exception of BLS threshold signature and CCoK, the aggre-
gation time and signature size of the other schemes depend solely
on the number of signers used to compute the final signature. To
evaluate these schemes, we begin by evaluating all signatures in the
unweighted setting with varying numbers of signers to aggregate,
specifically with ¢ = 64, 256, 1024, and 4096.

For BLS threshold signature, the aggregation time only depends
on the required threshold . However, in the weighted setting, t may
be much larger than the total number of signers. Thus, to examine
the effect of weights, we also evaluate the BLS threshold signature
scheme with n = ¢ = 215 and 216,

Finally, since in CCoK, the aggregator needs to collect a larger
fraction of signatures than ¢, we use n = 2t while evaluating CCoK.
Note that, CCoK’s performance, depends on the actual weight dis-
tribution. Nevertheless, our unweighted evaluation shows that the
signature size of CCoK is more than 80 KBytes even with t = 256.
Thus, we do not evaluate CCoK in the weighted setting.

6.2 Evaluation Results

Preprocessing and key generation time. In Table 3 we report the
per-signer key generation time and the preprocessing time i.e., the
time an aggregator takes to compute the the aggregation key, of our
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Table 3: Key generation and preprocessing time of our approach.

Number of signers 64 256 1024 4096
Key generation time (milliseconds) 2.25 7.11 2834 112.23
Preprocessing time (seconds) 0.10 0.90 10.65 149.11

Table 4: Unweighted aggregation time (in milliseconds).

t 64 256 1024 4096
BLS Threshold 3.29 10.93 38.86 150.79
Multisignature 0.15 0.54 2.69 11.23
CCoK 20.53 79.36 31312 1246.76
Groth16 6535.86  25695.95 - —
Plonk 46081.93 — - -
Our approach 3.49 7.77 21.56 71.02

scheme. Observe that generating keys in our scheme is very efficient,
i.e., it only takes 112 milliseconds to generate the keys with 4096
signers. Also, the key generation time grows only linearly with the
number of signers. In comparison, the preprocessing time is much
higher, i.e., 149 seconds for 4096 signers, and grows quadratically
with number of signers. As we mention before, this is because,
an aggregator needs to perform O(n?) group exponentiations to
compute the aggregation key. Fortunately, as we discuss in §4.5 the
aggregation key is efficiently verifiable, hence, can be delegated to
external entities.

Signature aggregation time. We report the unweighted signature
aggregation time in Table 4. The reported aggregation time does
not include the time the aggregator spends verifying the signatures,
which is identical in BLS threshold, multisignature, and our scheme.

Note that multisignature scheme have the shortest aggregation
time, as aggregation in a multisignature scheme only requires O(n)
group operations. Contrary to that, our approach and BLS threshold
signature scheme need O(n) group exponentiations and O(n log n)
field operations. The longer aggregation time in CCoK is because
the aggregator needs to compute a large number of hashes.

Observe that generic SNARK based approaches require orders
of magnitude higher aggregation time and are impractical to be
used to build threshold signatures for a large number of signers.
The dashed entries in the table indicate that we could not run
the SNARK prover with the chosen parameters. The Groth16 setup
ceremony ran out of memory with 4096 signers. Similarly, the plonk
aggregator ran out of memory while aggregating signatures with
1024 signers or higher.

Finally, we measure the aggregation cost of the BLS threshold
signature scheme in the weighted setting. Recall that the aggrega-
tion cost in the BLS threshold signature depends only on ¢ and not
the actual weight distribution. In our evaluation with ¢ = 2! and
t = 21°, computing the aggregated signature requires 1.15 and 2.27
seconds, respectively. This matches our expectation as the aggre-
gator performs O(t log? t) field operations during aggregation [62].
Also, with 2!° and 2'° signers, for each signature, the signers will
need to send a total of 3 and 6 Megabytes of data, respectively.
Verification time, verification key size, and signature size. We
report the unweighted signature verification time and signature
size in Table 5. As expected, the BLS threshold signature scheme
has the smallest signature size (only one G; element) and shortest
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Table 5: Unweighted verification time, signature size, and verification
key size

Verification  Signature Verification

Scheme . . .
time (ms)  size (bytes) key size (bytes)

BLS Threshold 1.05 96 48
Multisig. (¢ = 4096) 5.63 608 196608
Groth16 4.6 192 1440
Plonk 5.5 624 1306
CCoK (¢ = 64) 57.73 27033 64
CCoK (¢ = 4096) 89.24 206085 64
Our approach 8.21 536 672

Table 6: EVM gas cost using BN254 elliptic curve. kP refers to the
pairing product check with k pairs; G;, G, are the number of group
operations in these groups; Exp refers to group exponentiations.

Scheme # group ops. Gas cost
Ours implementation  15P + 3G; + 15G; Exp 772k
Multisig est.(n = 4096) 2P + (n — 1)G; + nG; storage reads  >23M

verification time (only two pairings). Also, as expected, the signa-
ture size of the CCoK approach is very large. Note that although
CCoK requires the longest verification, the verification is still less
than 100 milliseconds. This might be reasonable for many applica-
tions. We want to note that despite having an asymptotically linear
verification time, the concrete verification time multisignature is
very fast. This is because the multisignature only requires a linear
number of group multiplications and not group exponentiations.

The only practical downside of a multisignature scheme is the
verification key size, i.e., the verifier must store all signers’ public
keys. The linear verification key size can be prohibitive for appli-
cations where a blockchain acts as a verifier, as storing large data
on-chain is very expensive (since each node in the blockchain needs
to replicate the verification key).

Memory usage. Our protocol has low memory usage except for the
preprocessing step (cf. §4.5). Note that only the aggregator (a single
machine) performs the preprocessing step. During preprocessing,
our scheme with 256, 1024, and 4096 signers uses 0.03GB, 0.25GB,
and 3.44GB of memory, respectively. The higher memory usage
during preprocessing is an implementation choice, as we store
vectors of size O(n?) in the memory. We adopt this approach for
the faster preprocessing time. Alternatively, one could implement
the preprocessing step with lower memory usage at the cost of a
longer running time.

6.3 Verification using Ethereum smart contract

We implemented our threshold signature verifier in Solidity us-
ing the BN254 asymmetric pairing curve. We chose BN254 curve
as it is natively supported in Ethereum and is the most efficient
curve [21, 57]. We want to note that, we make the following changes
to the signature scheme to be able to run it efficiently on Ethereum:
First, since BN254 is an asymmetric curve, the signature includes
commitments to the bit vector in both G; and G5, and we use two
additional pairings to check their consistency. Second, we do not im-
plement the verification optimizations in §4.8 since G, operations
are not efficiently supported in Ethereum. Finally, since a pairing
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check involving k pairings is more efficient than k independent pair-
ings, we merge all the verification checks into a single pairing by
taking an appropriate random linear combination. More precisely,
the cost a pairing check with k pairs is 34000k + 45000 [58].

We report our evaluation results in Table 6. Observe that verify-
ing a signature using our scheme requires 772 thousand gas, while
the cost of verifying a multisignature with 4096 signers is over
23 million gas due to reading public keys. Note that the 23M gas
does not include the cost of storing public keys on the blockchain,
which would require additional 44.8k gas per signer, hence over
183 million gas for all 4096 signers.

7 RELATED WORK

The closest signature scheme to our approach is the standard mul-
tisignature scheme. Since we already discuss its properties in detail
throughout the paper, we focus on other schemes below.

Threshold Signatures. Threshold signature schemes were first
proposed for ElGamal and RSA signatures [29, 30, 41, 45, 60] and
later for BLS signatures [11, 12], often utilizing Shamir secret shar-
ing [59]. This approach has many advantages: the signature size,
verification key size, and verification time are all constant. Also,
many of these schemes produce unique threshold signatures, a
property that is crucial for threshold signature-based randomness
beacons [23]. These standard threshold signatures do not efficiently
support arbitrary weight distributions or multiple thresholds.

As mentioned, one approach to support arbitrary weights is
virtualization of threshold signatures. Here, the signing key is secret-
shared using a (||w||1, t) Shamir secret sharing. Each signer with
weight w receives w shares of the secret and signs using all w shares.
This approach is inefficient for both the signer and the aggregator.
More precisely, an aggregator incurs a computation cost of one
O(|lw|l1) wide multi-exponentiations and O(|lw/|1log?|lwl|1) field
operations. In contrast, our aggregator performs one O(n) wide
multi-exponentiations and O(n log n) field operations.

Compact Certificate of Knowledge (CCoK). Micali et al. [53]
presents an elegant protocol CCoK to address these issues. CCoK
uses a specialized SNARK analogous to Kilian’s protocol [46]. CCoK
has several nice properties. A signer only needs to sign once, inde-
pendent of its weight. Their protocol also supports multiple thresh-
olds. The underlying signature scheme is used in a black box man-
ner and hence is compatible with any signature scheme. However,
CCoK has several downsides. First, it cannot prove the exact weight
of the signers who signed the message. In particular, to prove that a
signature is signed by signers with a total weight t, the aggregator
needs to collect partial signatures of weight (1 + €)t for some € > 0.
The signature size depends on €. The smaller the ¢, the larger the
signature. As we illustrate in §6, the signature becomes very large
even with € = 0.25.

Sampling-based approach. Chaidos and Kiayias present a sam-
pling based weighted threshold signature scheme [25]. The idea
is to sample a subset of signers in a verifiable manner based on
the weight distribution and then let the sampled signers sign the
message. This approach has a few drawbacks. First, it requires a
mechanism to securely sample signers proportional to their weights.
Second, it increases the costs for signers with large weights. Finally,
this approach is typically vulnerable to adaptive corruption.
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Generic weighted secret sharing. A generic approach to design-
ing a threshold signature that supports arbitrary weight distribution
is to use a weighted secret sharing scheme (WSS), i.e., a secret shar-
ing scheme that inherently considers the weight of each signer.
Beimel [6, 7] presented the first characterization of WSS where the
share size is sublinear than the weight of the signer. Prior works
on WSS has explored other approaches such as Chinese remainder
theorem [38, 65], allowing only restricted classes of hierarchical
weights [34, 61], and wiretap channels [9]. All these works are
theoretical and have very high concrete costs.

Concurrent work. The concurrent and independent work [39]
proposed a similar approach and achieved a signature size of 9G+5F
and verification cost of 1 exponentiation and 10 pairings. Similar
to our work, they prove the security of their scheme in the AGM.
They also discuss mechanisms to extend the signature scheme to
support arbitrary access structure and proactive security.

8 CONCLUSION AND OPEN PROBLEMS

We have presented a new threshold signature scheme that sup-
ports arbitrary weight distribution and arbitrary thresholds. The
signature consists of only 8 group elements. Verifying the signa-
ture requires 8 group exponentiations and 8 bilinear pairings. A
core component of our scheme is an inner-product argument (IPA)
between a vector of group elements and a vector of field elements
This part may be of independent interest. For our IPA to work,
the discrete logarithms of the group elements must be known in a
distributed manner. A potential application could be accountable
private threshold signatures [13]. Our threshold signature scheme
uses the IPA scheme in a modular way. Thus, any improvement
to the IPA scheme immediately results in an improvement in our
signature scheme.

Security without AGM. We prove the unforgeability of our thresh-
old signature scheme in the AGM. The reliance on AGM can be
removed with some tradeoffs. More precisely, if we use GIPA [19]
as our IPA, we can prove our scheme secure in the random oracle
model. However, as we discuss in §3.3 it has a considerable perfor-
mance overhead. Alternatively, we can prove our scheme secure in
the standard model but with knowledge assumption for the IPA.
Limitations and Open problems. One drawback of our thresh-
old signature scheme is that the signatures are not unique. This
prevents us from using our signature to implement a randomness
beacon. Designing a weighted unique threshold signature scheme
is a fascinating open problem. Another limitation of our scheme is
that the pre-processing cost of the aggregator is quadratic in the
number of signers. Other interesting future directions to improve
our scheme include reducing the public keys each signer needs to
publish and improving the underlying cryptographic assumptions
(e.g., removing the need for pairing).
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A SUCCINCT NON-INTERACTIVE IPA [24]

In this section, we will describe the succinct non-interactive inner
product argument (IPA) protocol between a vector of two field
elements [24]. The IPA protocol does not rely on a random oracle
for non-interactivity and only requires a universal setup.
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A.1 Design

Let a,b € F" be the two input vectors of length n. The prover
wants to convince a verifier V that {(a, b) = p, where V possesses
4, and commitments to a and b.

Setup. For any security parameter , let (G, Gr) be the description
of a bilinear pairing group with scalar field F. Also,lete : GX G —
Gt be an efficiently computable bilinear pairing map. Let g, h € G be
two uniformly random generators of G. The IPA protocol assumes
the following common reference string (CRS)

{[g,gr,gfz,...,grn]; [h,hr,hrz,...,hrnil]}

Here 7 € F is the ¢g-SDH trapdoor.

Let H = {o, w?, .. .,©"} be a multiplicative subgroup of F of
order n. Here w is a n-th root of unity of F.
Proof generation. Let a(-) and b(-) be polynomials of degree n — 1
such that a(w') = a[i] and b(w") = b[i] for all i € [n]. Then,

(ab) = > a(w)b(w)
i€[n]
Let zpy(x) be the vanishing polynomial over H, i.e.,
zg(x) = n(x—wi):x"—l
i€[n]

The IPA scheme uses the following sumcheck Lemma [8] of

univariate polynomials.

a(x)b(x) = q(x)zp(x) + r(x)x + n_l(a, b)

Here, both g(x) and r(x) are unique polynomials of degree n — 2.
Let p(x) = r(x)x + n”1{a,b).
The IPA 7 for u = (a, b) is the tuple is

7 = {g1, g7, @) (41)

Proof verification. We use KZG commitments to polynomials
a(x) and b(x), i.e., (ga, gp) = (q“(f), gb(r)) as the commitments to the
vectors a and b, respectively.

V upon receiving the proof 7 = (g4, gr, hp), accepts p as the
inner product, if following checks pass

e(ga 9p) = (9q. 7)€ (gr.g7) - e (9”,91/") ; and
ellip.g) = ¢ (gr.h7) - e (g, 1"

Analysis. The completeness of the protocol clear. The proof con-
sists of 3 G elements. Also, assuming g?#(®, g1/ h1/" are part of
the CRS, verification requires one exponentiation and 7 pairings.
In terms of provers computation cost, $ computes the polynomials
q(x) and r(x) in O(n log n) field operations using number theoretic
transform. Then, ? computes (g9, (@), h?(D) using O(n) group
exponentiations. The knowledge soundness follows from [24, The-
orem 5.2].

(42)

(43)
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