
Threshold Signatures from Inner Product Argument: Succinct,
Weighted, and Multi-threshold

Sourav Das
University of Illinois at

Urbana-Champaign

souravd2@illinois.edu

Philippe Camacho
Espresso Systems

philippe@espressosys.com

Zhuolun Xiang
Aptos Labs

xiangzhuolun@gmail.com

Javier Nieto
University of Illinois at

Urbana-Champaign

jmnieto2@illinois.edu

Benedikt Bünz
Espresso Systems

benedikt@espressosys.com

Ling Ren
University of Illinois at

Urbana-Champaign

renling@illinois.edu

ABSTRACT

Threshold signatures protect the signing key by sharing it among

a group of signers so that an adversary must corrupt a threshold

number of signers to be able to forge signatures. Existing thresh-

old signatures with succinct signatures and constant veri�cation

times do not work if signers have di�erent weights. Such weighted

settings are seeing increasing importance in decentralized systems,

especially in the Proof-of-Stake blockchains. This paper presents

a new paradigm for threshold signatures for pairing and discrete

logarithm-based cryptosystems. Our scheme has a compact veri-

�cation key consisting of only 7 group elements, and a signature

consisting of 8 group elements. Verifying the signature requires

8 exponentiations and 8 bilinear pairings. Our scheme supports

arbitrary weight distributions among signers and arbitrary thresh-

olds. It requires non-interactive preprocessing after a universal

powers-of-tau setup. We prove the security of our scheme in the

Algebraic Group Model and implement it using golang. Our evalu-

ation shows that our scheme achieves a comparable signature size

and veri�cation time to a standard (unweighted) threshold signa-

ture. Compared to existing multisignature schemes, our scheme

has a much smaller public veri�cation key.

CCS CONCEPTS

• Security and privacy → Digital signatures; Distributed sys-

tems security.

KEYWORDS

Threshold Signatures; Inner Product Arguments; Weighted, Suc-

cinct, Multi-threshold

ACM Reference Format:

Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bünz,

and Ling Ren. 2023. Threshold Signatures from Inner Product Argument:

Succinct, Weighted, and Multi-threshold. In Proceedings of the 2023 ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623096

SIGSAC Conference on Computer and Communications Security (CCS ’23),

November 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3576915.3623096

1 INTRODUCTION

The increasing demand for decentralized Byzantine Fault Toler-

ant (BFT) applications has resulted in a large scale adoption of

threshold signature schemes. Many state-of-the-art BFT proto-

cols utilize threshold signatures to lower communication costs [2,

40, 43, 50, 54, 64]. Furthermore, e�orts to standardize threshold

cryptosystems are already underway [56]. A threshold signature

scheme [11, 42] enables distributing a secret signing key among

multiple signers such that each can generate a partial signature

over any message using its key share. Given su�ciently many par-

tial signatures, any untrusted aggregator can aggregate the partial

signatures into a threshold signature.

Traditionally, threshold signatures have been studied in the un-

weighted settingwhere each signer has equal weight; in other words,

the threshold is measured by the number of signers who signed.

However, this is not suitable for many applications. For instance,

in Proof-of-Stake (PoS) [36, 43] blockchains and Decentralized Au-

tonomous Organizations (DAO) [33] the weight of each signer is

determined by the amount of stake they own in the system, and

the threshold is measured by the combined stake among those who

signed. Another application that calls for the weighted setting is

o�-chain voting where weighted votes are aggregated o�ine and

only the �nal aggregated vote is posted to the blockchain.

Another limitation of existing threshold signature schemes is

that they only support a single threshold, and this threshold needs

to be �xed a priori. This makes them unsuitable for applications

that require �ne-grained thresholds [32]. For example, Ethereum’s

Proof-of-Stake consensus protocol Gasper [20] requires a threshold

of two-third of the total stake but it is accumulated over multiple

blocks [20]. Using a threshold signaturewith a single �xed threshold

will make the protocol lose a lot of �exibility. If the threshold is too

small, it may under-utilize some signers and require a larger number

of blocks to accumulate to the desired stake threshold. On the other

hand, a very high threshold may lead to insu�cient signers to

cross the threshold. In addition, Byzantine quorum systems [22, 52],

or variants of BFT [51, 63] use quorums of di�erent thresholds,

and may bene�t from multi-threshold signature scheme. Another

application that bene�ts from multi-threshold signatures is oracle

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sourav Das et al.

Table 1: Comparison of threshold signature schemes. We measure the computation cost in units of group exponentiations.

Scheme or

Approaches

Signing key

size

Signing cost

per signer

Signature

size

Veri�cation

key size

Veri�cation

cost

Aggregation

key size

Aggregation

cost

Multiple

threshold
Setup

Virtualization ĭğ F ċ(ĭğ) 1 G 1 G ċ(1) ċ(∥ĭ ∥1) ċ(∥ĭ ∥1)
: DKG

Multisignature 1 F ċ(1) Ĥ bits + 1 G Ĥ G ċ(Ĥ) ċ(Ĥ) ċ(Ĥ) 6 PKI

SNARK [44] 1 F ċ(1) 3 G 7 G ċ(1) Large High 6 MPC

CCoK [53] 2ċ ċ(1) ċ(ċČĩ logĤ)
∗ 2ċ ċ(Čĩ logĤ) ċ(Ĥ) ċ(Ĥ + Čĩ logĤ)

 6 PKI

This work 1 F ċ(1) 8 G + 1 Z 7 G ċ(1) ċ(Ĥ) ċ(Ĥ)# 6 PKI, ħ-SDH

 The comptuation cost are hashing.
∗ The Čĩ is an soundness parameter.

The aggregator in the virtualization approach and our scheme additionally performs

ċ(∥ĭ ∥1log
2 ∥ĭ ∥1) andċ(Ĥ logĤ) �eld operations, respectively.

networks [32]. In particular, smart contracts that accept data from

oracle networks can choose their own set of oracle nodes (with

reputation scores) and signing thresholds [39].

Existing approaches and their limitations. Existing (unweighted)

threshold signature schemes [11, 47] with Ĥ signers and threshold

Ī use a (Ĥ, Ī) Shamir secret sharing [59] so that each signer has one

share of the signing key. These schemes have constant signature

size, veri�cation key size, and veri�cation time.

Here is a straightforward folklore approach to extend these

schemes to support arbitrary weight distributions. The signing

key is secret shared using a (∥ĭ ∥1, Ī) Shamir secret sharing scheme,

where ∥ĭ ∥1 is the total weight of all signers. A signer with weight

ĭ then receives ĭ signing keys and plays the roles of ĭ virtual

signers. (Hence, this approach is also called virtualization.) With

this approach, a signer’s signing cost and partial signature size are

proportional to its weight, and the aggregator’s cost is proportional

to the total number of virtual signers or total weight ∥ĭ ∥1. These

costs can be very expensive in many target applications. For exam-

ple, in Ethereum PoS, there are more than 500,000 validators (akin

to virtual signers in our context) and the count is still increasing.

Alternatively, multisignatures schemes [12] naturally supports

arbitrary weight distributions and only requires one signing key

per signer, regardless of its weight. However, its main downside is

that the veri�cation key size and veri�cation time increase linearly

in the number of signers.

Yet another approach to weighted threshold signature is to use

generic succinct non-interactive argument of knowledge (SNARK).

Here, each signer uses its signing key to compute a partial signature

and sends it to an aggregator. The aggregator then generates a

SNARK proof that it has seen valid partial signatures from signers

with a combined weight of at least Ī . However, in spite of recent

progress, the SNARK proof generation at the aggregator is still

prohibitively expensive (§6).

Micali et al. [53] proposed a weighted threshold signature with

sublinear signature size and veri�cation time. However, the con-

crete signature size of their scheme is large. Another drawback of

their scheme is that the aggregator needs to collect signatures with

combined weights signi�cantly higher than the required threshold.

Our Results. In this paper, we present a new succinct threshold sig-

nature paradigm that supports arbitrary weight distribution among

signers and supports all possible thresholds simultaneously. We

summarize these properties and compare them with existing ap-

proaches in Table 1. Crucially, the signature size and the veri�cation

time of our scheme are independent of the number of signers Ĥ,

their weight distributions, and the threshold Ī . More precisely, our

scheme has a small signature size of only 8 elliptic curve group

elements, and e�cient signature veri�cation involving only 8 group

exponentiations and 8 bilinear pairings. Each signer’s signing key

is a single �eld element, and the signing cost for each signer is

constant (independent of its weight).

Another nice property of our scheme is that, assuming a Public

Key Infrastructure (PKI), the setup phase of our scheme (after a

universal powers-of-tau setup [27, 55]) is non-interactive, whereas

standard threshold schemes need an interactive distributed key

generation (DKG) protocol [28, 42].

A key component of our construction is a new e�cient inner-

product argument (IPA) that proves the inner product between the

vector of public keys and a vector indicating the signers who have

signed the message. Our IPA uses bilinear pairing, is non-interactive

in the algebraic group model, and has a constant proof size and

veri�cation time. Looking ahead, our construction can be viewed

as a specialized SNARK that utilizes multisignature schemes in a

non-black-box manner. However, as we describe in §2, we need to

address several challenges to achieve the desirable e�ciency.

In the full version [26], we also discuss several extensions of

our scheme. First, similar to multisignature, our signature scheme

can be made accountable with minimal overhead. Second, an ag-

gregator can generate an e�cient proof that a certain signer is

included in aggregated signature. Third, our scheme enables a new

multiverse threshold signature [5] with comparable e�ciency and

weaker setup assumptions. We believe these results might be of

independent interest.

Evaluation.We have implemented (code avaiable at https://github.

com/sourav1547/wts) our threshold signature scheme in golang

using BLS signatures as the underlying signature scheme. We mea-

sure the time costs for signing, aggregation and veri�cation, and

compares them BLS threshold signature, multisignature, generic

SNARK, and the scheme of [53]. Our evaluation con�rms the con-

crete e�ciency of our scheme. Using BLS12381 as the underlying

elliptic curve, our signature sizes are only 536 bytes, independent

of the number of signers. The veri�cation time is also only 8.21

milliseconds. Also, with 4096 signers, the aggregator requires only

71 milliseconds to compute the aggregate signature.

As we envision our signature scheme to be used in blockchain

applications, we have implemented an Ethereum smart contract

that veri�es signatures generated by our scheme. Our evaluation

shows that our signature veri�cation takes only 772k gas, while the

multisignature scheme with 4096 signers takes more than 23M gas.

Paper organization. The rest of the paper is organized as follows.

We present an overview of our signature scheme in §2. We de�ne

Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold CCS ’23, November 26–30, 2023, Copenhagen, Denmark

threshold signature schemes and give the required preliminaries

in §3.We describe our scheme in detail in §4, and analyze its security

and performance in §5. We present details of our implementation

and evaluation results in §6. We discuss related work in §7 and

conclude with a discussion in §8.

2 TECHNICAL OVERVIEW

Let G be an elliptic curve group with F as its scalar �eld. Let ĝ ∈ G

be a generator and ě : G×G→ GĐ be the standard bilinear pairing

operation. Our starting point will be the aforementioned weighted

multisignature scheme. To be concrete, throughout this paper, we

will use the pairing-based BLS multisignature [12], which roughly

works as follows.

Each signer samples its signing key independently at random.

Let ĩ = [ĩ1, ĩ2, . . . , ĩĤ] ∈ FĤ be the vector of signing keys. Also,

let Ħġ = [ĝĩ1 , ĝĩ2 , . . . , ĝĩĤ] ∈ GĤ and ĭ = [ĭ1,ĭ2, . . . ,ĭĤ] ∈ F
Ĥ be

the vectors of public keys and weights, respectively. To compute a

multisignature on a messageģ, each signer ğ uses its signing key

to compute the partial signature Ăğ = H(ģ)ĩğ ∈ G, and sends it to

the aggregator P. Here, H(·) is a random oracle.

P validates the partial signatures it receives. Let ą ¦ [Ĥ] be the

subset of signers from whom the aggregator receives valid partial

signatures. Let Ę = [Ę1, Ę2, . . . , ĘĤ] ∈ {0, 1}Ĥ be a bit vector where

Ęğ = 1 for each ğ ∈ ą and 0 otherwise. The multisignature on ģ

is then the tuple (Ę, Ă), where Ă =
∏

ğ∈ą Ăğ . The threshold of the

multisignature is Ī =
∑
ğ∈ą ĭğ .

Upon receiving the signature (Ę, Ă) on a message ģ, the ver-

i�er V computes the aggregated public key ĝč =
∏

ğ∈ą ĝ
ĩğ . V

then checks that Ă is a valid signature with respect to the ĝč , i.e.,

ě(ĝč ,H(ģ)) = ě(ĝ, Ă). If the check is successful,V accepts the signa-

ture as a weighted threshold signature with threshold Ī =
∑
ğ∈ą ĭğ .

2.1 Multisignature to Inner Product Argument

As a stepping stone to our scheme, we formulate the aggregation

and veri�cation of the above multisignature scheme as the relation

RTS as follows. Let ęĦġ and ęĭ be the succinct commitments to

the vector Ħġ and ĭ , respectively. For now, we assume that the

commitments to the ęĦġ and ęĭ are computed honestly and are

known to the veri�er. Moreover, we assume that the total weight

∥ĭ ∥1=
∑
ğ∈[Ĥ]ĭğ < |F|.

For any messageģ, P computes the commitment ęĘ to the bit

vector Ę , the aggregated public key ĝč , the threshold Ī , and the

aggregated signature Ă . P then sends the tuple (ģ,ęĘ , ĝč , Ī, Ă) toV

along with a proof ÿ that these values are computed correctly.V

upon receiving the tuple and the proof validates their correctness

with respect toģ,ęĦġ , ęĭ . We formalize these ideas in the relation

RTS below. Here we use com to denote a function that takes a vector

as input and outputs its succinct commitment.

RTS :





{ęĘ , ĝč , Ă} ∈ G
3

'

ě(ĝč ,H(ģ)) = ě(ĝ, Ă)

Ħġ ∈ GĤ ; ęĦġ = com(Ħġ)

ĭ ∈ FĤ, ∥ĭ ∥1< |F|; ęĭ = com(ĭ)

Ę ∈ {0, 1}Ĥ ; ęĘ = com(Ę)

ÿ ∈ GĤ ; ïÿ , Ęð = Ă

ïĭ, Ęð g Ī ; ïĦġ, Ęð = ĝč





Here, ÿ = [Ă1, Ă2, . . . , ĂĤ] is the vector of partial signatures where

we use Ăğ = 1G as default for each ğ with Ęğ = 0.

Note that a secure protocol for RTS implies a secure weighted

threshold signature scheme. Also, the signature scheme will inherit

the e�ciency properties of the protocol for RTS. Hence, we can

now focus on designing an e�cient protocol for RTS.

RTS as an inner product argument. Our next key idea is to

formulate RTS as an inner product argument (IPA) between P and

V . The constraints Ī = ïĭ, Ęð and ĝč = ïĦġ, Ęð are naturally inner

product constraints. There have also been recent works that use

IPA to prove that a committed vector is binary [17, 19]. However,

to achieve e�ciency comparable to existing threshold signatures,

we need to address many challenges, both for ïĦġ, Ęð and proving

that Ę is a bit vector. We next discuss these challenges in §2.2 and

describe our solutions in §2.3.

2.2 Challenges with using existing IPA protocol

To get an e�cient threshold signature scheme, the protocol for RTS

must be succinct, i.e., with sublinear proof size and sublinear veri-

�cation time. For the inner product ïĭ, Ęð, both vectors consist of

�eld elements. We can then use the existing IPA protocol from [24],

which has an ċ(1) proof size and veri�cation time.

The main challenge is the inner product ïĦġ, Ęð. This is an inner

product between a vector of group elements Ħġ and a vector of

�eld elements Ę . The only known IPA schemes for group elements

are the structured key generalized inner product argument (GIPA)

from [19] and its transparent setup variant [48]. In GIPA,P commits

to the group element using the commitment schemes from [1]. Then,

P andV run a interactive protocol similar to the Bulletproofs [17]

over the target group. This approach has logarithmic proof size and

logarithmic veri�cation time, a moderate cost asymptotically. Its

concrete e�ciency is much worse. In particular, the proof consists

of elements in the target group, which are much larger than the

source group elements; similarly, signature veri�cation involves

operations in the target group, which are more expensive. Moreover,

the prover time is also concretely ine�cient as the prover needs to

perform 2Ĥ pairing operations.

The second challenge is that existing IPA schemes for proving

a vector binary require V to compute commitment to a random

vector [17, 19]. Computing this commitment requiresV to perform

ċ(logĤ) group operations. In §4.2, we will describe an approach

that obviates the need for additional random vectors and achieves

a ċ(1) veri�cation cost.

For now, we focus on the main challenge of proving ĝč = ïĦġ, Ęð.

2.3 Our Approach

Note that the inner product ïĦġ, Ęð is nothing but ĝïĩ,Ę ð . So we

want P to give IPA for ïĩ, Ęð in the exponent. The challenge is

that P does not know the secret key vector ĩ. Fortunately, signers

collectively know ĩ, and will assist P in producing the IPA.

In the rest of this overview, we will �rst describe the high-level

idea of the IPA protocol for ïĩ, Ęð assuming P knows ĩ. Concretely,

we will use the IPA protocol of [24]. We then describe how P, with

assistance from the signers and without knowing ĩ, can e�ciently

compute the IPA for the inner product ïĩ, Ęð in the exponent. We

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sourav Das et al.

note that we only describe part of the IPA protocol below to demon-

strate our main idea. We refer readers to Appendix A and [24, §5.2]

for the complete protocol.

The IPA for �eld elements. The IPA protocol uses a powers-of-

tau of degree Ĥ, i.e., [ĝ,ĝă , ĝă
2
, . . . , ĝă

Ĥ
], as the common reference

string (CRS). Let č be the claimed inner product, i.e., P wants to

convince V that č = ïĩ, Ęð. Let ĩ(·) and Ę(·) be the two polynomials

of degree Ĥ−1with ĩ(Ĉğ) = ĩ[ğ], and Ę(Ĉğ) = Ę[ğ], respectively. Here,

Ĉ ∈ F is a Ĥ-th root of unity. Then, let ęĩ = ĝĩ(ă) and ęĘ = ĝĘ(ă) be

the commitments of the vectors ĩ and Ę , respectively. We assume

that V has access to the commitments ęĩ and ęĘ . The IPA uses

the following polynomial identity from [8] which has been used

extensively to design e�cient SNARKs.

ĩ(Į)Ę(Į) = ħ(Į) · İĄ (Į) + Į · Ĩ (Į) + ïĩ, Ęð · Ĥ−1 .

Here, İĄ (Į) is the degree Ĥ polynomial that evaluates to zero at all

points Ĉğ for all ğ ∈ [Ĥ]. Also, ħ(Į) and Ĩ (Į) are the unique quotient

and remainder polynomials each of degree Ĥ − 2 (cf. §3.4).

The IPA for ïĩ, Ęð is the tuple (ĝħ, ĝĨ) = (ĝħ(ă), ĝĨ (ă)). V upon

receiving (ĝħ, ĝĨ) accepts č as the inner product if the following

check pass,

ě(ęĩ , ęĘ) = ě
(
ĝħ, ĝ

İĄ (ă)
)
· ě

(
ĝĨ , ĝ

ă) · ě
(
ĝč , ĝ1/Ĥ

)
(1)

The IPA protocol is non-interactive and has a constant proof

size and veri�cation time. Also, P incurs a computation cost of

ċ(Ĥ logĤ) �eld operations and ċ(Ĥ) group exponentiations.

With this approach,P needs to compute the tuple (ęĩ , ęĘ , ĝ
ħ(ă), ĝĨ (ă)).

Computing ęĘ is easy as P knows Ę . Computing the other three

would also have been easy had P known ĩ. But in reality, P needs to

compute them only with access to the public keys and the powers-

of-tau CRS. We next describe how P can do so with one-time

assistance from all the signers.

Computing the commitment to ĩ. In our scheme, each signer

ğ , besides publishing ĝĩğ , also publishes ĝĩğLğ (ă). Here, Lğ (Į) is the

ğ-th Lagrange polynomial de�ned over the set Ą (cf. §3.4). Using

these additional helper values, P computes ęĩ as:

ęĩ = ĝĩ(ă) =
∏

ğ∈[Ĥ]

ĝĩğLğ (ă)

Here, we are assuming a canonical ordering between the signers.

Note that Lğ (Į) for each ğ ∈ [Ĥ] are polynomials of degree Ĥ − 1,

and hence can be computed from powers-of-tau CRS using only

public operations. Also, given ĝĩğ , the term ĝĩğLğ (ă) is publicly veri-

�able using a non-interactive zero-knowledge (NIZK) protocol for

equality of discrete logarithm.

Computing the IPA proofs e�ciently. Even with assistance

from signers, computing the IPA proof (ĝħ(ă), ĝĨ (ă)) seems to require

P to perform ċ(Ĥ2) group exponentiations and store ċ(Ĥ2)-sized

aggregation keys. Both of these quickly become prohibitive for a

moderate number of signers. We give a method where P performs

a one-time preprocessing that requires ċ(Ĥ2) group exponentia-

tions. After that, P stores a linear-sized aggregation key, and each

signature aggregation involves only ċ(Ĥ) group exponentiations.

Non-interactive and transferable preprocessing. Assuming a

PKI, our preprocessing step is non-interactive. Each signer samples

its signing key independently and publishes the corresponding

Table 2: Notations used in the paper

Notation Description

ċ Security parameter

Ĥ, Ī Total number of signers and signature threshold

[Ĥ] The set {1, 2, 3, . . . , Ĥ}

G, F Elliptic curve group with scalar �eld F.

ĝ,ℎ, Ĭ Random and independent generators of G

ĭğ , ĩğ , ĝ
ĩğ Weight, signing key and public key of signer ğ

ĩ Vector [ĩ1, ĩ2, . . . , ĩĤ] of signing keys.

ĭ, ∥ĭ ∥1 Vector of weights of all signers and total weight

ėġ, Ĭġ Public aggregation key and public veri�cation key

ģ Message to be signed

Ăğ , Ă Partial signature of signer ğ and the aggregate signature

Ę Bit vector indicating the set of valid partial signatures

Ą Multiplicative subgroup {Ĉ,Ĉ2, . . . , ĈĤ } ¦ F of order Ĥ.

Ĉ Subgroup of order g Ĥ − 1 with Ą ∩ Ĉ = č

Lğ,Ą (Į) The Lagrange polynomial LĈğ ,Ą (Į)

H,HFS,Hpop Random oracles

ă The ħ-SDH trapdoor

ĝğ , ℎğ ĝğ = ĝLğ,Ą (ă) and ℎğ = ℎLğ,Ą (ă)

public key along with necessary helper values, referred to as the

partial aggregation keys using the PKI. Any aggregator then uses

the partial aggregation keys from the signers to compute the linear-

sized aggregation key and the constant-sized veri�cation key in the

preprocessing step.We also remark that although our preprocessing

step costs ċ(Ĥ2) group exponentiation, its output (aggregation key)

is publicly veri�able using only Ĥ group exponentiations and 3

pairings. This makes the aggregation key transferable, i.e., it is

su�cient if one aggregator performs the preprocessing and sends

the provable results to other potential aggregators in the system.

We will present more details in §4.5.

We want to note that for any given Ĥ, the partial aggregation

key of each signer is linear in Ĥ. If the linear size per signer partial

aggregation key is too large to put on a PKI, each signer can directly

send them to the aggregator. Note this approach will require special

care to handle malicious behavior. For example, if any signer does

not send its partial aggregation key to the aggregator, the aggregator

will use a 0 ∈ F as its signing key.

3 SYSTEM MODEL AND PRELIMINARIES

Notations. We use ċ to denote the security parameter. We also

use ċ to denote the size of a group element and the output size of

cryptographic objects, for example, the length of the random oracle

output. These objects may slightly di�er in size in practice, but they

are roughly on the same order. Alternatively, one can interpret ċ as

the largest among them. For any integer ė, we use [ė] to denote the

ordered set {1, 2, . . . , ė}. For two integers ė and Ę where ė < Ę, we

use [ė, Ę] to denote the ordered set {ė, ė + 1, . . . , Ę}. A machine is

probabilistic polynomial time (PPT) if it is a probabilistic algorithm

that runs in poly(ċ) time. We summarize the notations in Table 2.

3.1 Threshold Signature

Let there be Ĥ signers, denoted with 1, 2, . . . , Ĥ where the ğ-th signer

has weight ĭğ . Let ĭ = [ĭ1,ĭ2, . . . ,ĭĤ] be the vector consisting

of weights of all the signers, with total weight ∥ĭ ∥1< |F|. The

constraint ∥ĭ ∥1< |F| guarantees that there is no wrap-around

Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold CCS ’23, November 26–30, 2023, Copenhagen, Denmark

while computing the signature threshold. The signers wish to sign

a message ģ and produce a aggregate signature Ă , such that Ă

convinces a client that signers with a combined weight of at least

Ī have signed the messageģ. We also assume that the client has

access to the public veri�cation key of the signature scheme.

A (weighted) threshold signature scheme roughly works as fol-

lows. A key generation algorithm takes as input the number of

signers Ĥ, and a vector of weights ĭ . The key generation algo-

rithm generates the public veri�cation key Ĭġ and Ĥ signing keys

ĩ = [ĩ1, ĩ2, . . . , ĩĤ], one for each signer. The key generation algo-

rithm additionally outputs a public aggregation key ėġ . For any

given messageģ, the signers use their signing keys to create par-

tial signatures and send them to an aggregator denoted as P. P,

using the aggregation key ėġ , aggregates valid partial signatures

corresponding to a total weight of Ī , and computes the aggregate

signature Ă . Any veri�er V with access to Ĭġ uses the signature

veri�cation algorithm to verify that Ă is a valid aggregate signature

on messageģ with respect to the public veri�cation key Ĭġ , and is

signed by signers of a total weight of at least Ī .

De�nition 3.1 (Weighted Threshold Signature). Let {1, 2, 3, . . . , Ĥ}

be a set of Ĥ signers. Letĭ = [ĭ1,ĭ2, . . . ,ĭĤ] be the set of weights

where ĭğ represents the weight of signer ğ . Let ∥ĭ ∥1=
∑
ğ∈[Ĥ]ĭğ .

Each signer ğ has a signing and public key ĩğ and Ħġğ , respectively.

Let ėġ and Ĭġ be the public aggregation key and veri�cation key, re-

spectively. With this setup, a weighted threshold signature scheme

has the following interfaces.

• Setup(1ċ) → ĦĦ . The setup algorithm Setup takes the security

parameter as input and outputs the public parameters ĦĦ of the

signature scheme.

• KeyGen(ĦĦ, Ĥ,ĭ) → Ĭġ, ėġ, [ĩ1, . . . , ĩĤ], [Ħġ1, . . . , ĦġĤ]. The key

generation algorithm KeyGen takes as input the public parame-

ters ĦĦ , the total number of nodes Ĥ and a vector of weights ĭ .

The algorithm outputs the global veri�cation key Ĭġ , aggregation

key ėġ , and per signer signing and public key (ĩğ , Ħġğ).

• PSign(ĩğ ,ģ) → Ăğ : Signer ğ uses the PSign algorithm with its

signing key ĩğ to generate a partial signature Ăğ .

• PVerify(ģ,Ăğ , Ħġğ) → 0/1: The verify algorithm takes a message

ģ, public key Ħġğ , and a potential signature Ăğ checks whether

Ăğ is generated using the signing key ĩğ .

• Combine({Ăğ }, Ī, ėġ) → Ă : On input a set of valid partial signa-

tures of sum total weight of at least Ī f ∥ĭ ∥1, and the public

aggregation key ėġ , the Combine algorithm generates a aggre-

gate signature Ă .

• Verify(ģ,Ă, Ĭġ, Ī) → 0/1: Outputs 1 only if the message ģ is

signed by signers with total weight of at least Ī .

The scheme should satisfy the following correctness, security

and e�ciency properties.

Correctness. For any Ĥ, weights ĭ with ∥ĭ ∥1< ħ, and threshold

Ī f ∥ĭ ∥1, an honestly generated partial signature should always

pass the partial veri�cation, and an honestly generated aggregate

signature should always pass the �nal veri�cation. Formally,

Pr[PVerify(ģ, PSign(ģ, ĩğ), Ħġğ) = 1] = 1,

Pr[Verify(ģ,Combine({Ăğ }, Ī, ėġ), Ĭġ, Ī
′) = 1] = 1

ĦĦ ← Setup(1ċ)

(Ĥ,ĭ, Ă0) ← A0(ĦĦ) // Ă0 is the initial set of corrupt nodes

(Ĭġ, {Ħġğ }, {ĩğ }, ėġ) ← KeyGen(ĦĦ, Ĥ,ĭ)

(ģ∗, Ă, Ī) ← AOsign(·,·),Ocur(·)(Ĭġ, {Ħġğ }ğ∈[Ĥ], ėġ)

Osign(ď
′,ģ′) returns partial signature on message ģ′ from

each signer in ď ′ and Ocur(·) letsA corrupt additional signers.

Winning condition: Output 1 if Verify(ĦĦ,ģ∗, Ă, Ĭġ, Ī) = 1

and A has queried Osign(ď,ģ
∗) andĭď < Ī −ĭĂ . Here, Ă is

the set of signers A eventually corrupts. Also,ĭď andĭĂ is

the sum total of weights of signers in ď and Ă , respectively.

Figure 1: Unforgeability game of our threshold signature

where Ī ′ < Ī , and ĩğ , Ħġğ for all ğ ∈ [Ĥ], Ĭġ and ėġ are generated

from the Setup and KeyGen algorithms.

Unforgeability. We de�ne the unforgeability game in the pres-

ence of an adaptive and rushing adversary. Note that an adaptive

adversary can corrupt signers at arbitrary time during the protocol.

Also, a rushing adversary can choose its messages depending upon

the messages of honest signers.

Let A be an adaptive adversary which initially corrupts a subset

Ă0 ¢ [Ĥ] of signers. A interacts with the challenger C during the

KeyGen protocol. Next, A interacts with C to receive arbitrarily

many partial signatures on messages of its choice. During its inter-

action with C, A can corrupt additional signers. Let Ă ¦ [Ĥ] be the

subset of signers A eventually corrupts. Also, letĭĂ =
∑
ğ∈Ă ĭğ be

the total weight of the corrupt signers. Then, A outputs a message

signature pair (Ă,ģ∗, Ī).

The forgery is considered non-trivial if Verify(Ă,ģ∗, Ī, Ĭġ) = 1,

and A has queried partial signatures of weight less than Ī −ĭĂ on

the messageģ∗. We describe the unforgeability game in Figure 1.

3.2 Pairing based Multisignature

Let Ħġ = [ĝĩ1 , ĝĩ2 , . . . , ĝĩĤ] be the vector of public keys of signers

and let ĭ be the corresponding weight vector. The pairing based

multisignature on a messageģ with claimed weight Ī , is the tuple

(Ă, Ę) ∈ G × {0, 1}Ĥ that satisfy the following:

ïĭ, Ęð g Ī and ě(ĝč ,H(ģ)) = ě(ĝ, Ă); where ĝč =
∏

ğ∈[Ĥ]

(
ĝĩğ

)Ę[ğ]

Here H(·) is the random oracle and Ă is the aggregated signature

de�ned as:

Ă =
∏

ğ∈[Ĥ];Ęğ=1

Ăğ ; where Ăğ = H(ģ)ĩğ (2)

The signing algorithm in the multisignature works as follows.

For any given messageģ, each signer ğ computes its partial signa-

ture Ăğ = H(ģ)ĩğ and sends it to the aggregator P. P upon receiving

validates them by checking that ě(ĝĩğ ,H(ģ)) = ě(ĝ, Ăğ). Upon receiv-

ing valid signatures from signers for total weight Ī , P computes

the bit vector Ę ∈ {0, 1}Ĥ , where Ę[ğ] = 1 whenever Ăğ is valid,

otherwise Ę[ğ] = 0. P then computes the aggregate signature Ă as

in equation (2).

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sourav Das et al.

3.3 Inner Product Argument

An inner product argument (IPA) is a protocol between a PPT prover

P and an e�cient veri�er V . Given two vectors ė and Ę , an IPA

enables the P to convinceV that ïė, Ęð = č, where the veri�er only

have access to the commitment ęė and ęĘ of ė and Ę , respectively.

IPA has been studied extensively in the recent years [8, 15, 17–

19, 24, 48, 49] and has been used repeatedly to design more e�cient

argument systems, especially SNARKs. Most of these IPA schemes

focus on the case where both ė and Ę consists of �eld elements, i.e.,

ė, Ę ∈ FĤ . The most e�cient IPAwhen both ė, Ę ∈ FĤ has a constant

proof size and constant veri�cation time assuming the powers-of-

tau as the underlying common reference string (CRS) [24, 49].

As we describe in §2, we require an IPA scheme with succinct

proof size and veri�cation time that supports inner product be-

tween a vector group and �eld elements. Known constructions of

IPA schemes for inner-product between vector of group and �eld el-

ements, also known as generalized inner-product arguments (GIPA),

are concretely ine�cient [19, 48]. In particular, the proof consists of

2 logĤ GĐ elements, and verifying the signature requires 2 logĤ GĐ
and 7 pairing operations. Moreover, prover time is also concretely

ine�cient as the prover needs to perform 2Ĥ pairing operations.

3.4 Polynomial Identities

For any given setĉ ¦ F, we de�ne the Lagrange polynomial with

respect toĉ as:

Lė,ĉ (Į) =

∏
Ę∈ĉ ;Ę ̸=ė(Į − Ę)

∏
Ę∈ĉ ;Ę ̸=ė(ė − Ę)

(3)

When |ĉ |= Ě , each Lė,ĉ (·) is a degree Ě − 1 polynomial. Also,

we can write any polynomial Ħ(Į) of degree at most Ě − 1 as

Ħ(Į) =
∑

ė∈ĉ

Lė,ĉ (Į)Ħ(ė) (4)

Our threshold signature scheme uses the following two identities

about univariate polynomials.

Lemma 3.2 (Polynomial Remainder Lemma). For any given

polynomial Ħ(·) ∈ F[Į] of degree Ě , there exists an unique quotient

polynomial ħ(Į) ∈ F[Į] of degree Ě − 1 such that for any ė ∈ F

Ħ(Į) = ħ(Į)(Į − ė) + Ħ(ė) (5)

Lemma 3.3 (Univariate Sumcheck [8]). LetĄ = {Ĉ,Ĉ2, . . . , ĈĚ }

be a multiplicative subgroup of F of order Ě . Given two polynomi-

als ė(·), Ę(·) ∈ F[Į] of degree Ě − 1 each, then there exists unique

polynomials ħ(·) and Ĩ (·) such that

ė(Į)Ę(Į) = ħ(Į)İĄ (Į) + Ĩ (Į)Į + Ĥ−1 ·
∑

ğ∈[Ě]

ė(Ĉğ)Ę(Ĉğ) (6)

here İĄ (Į) is the vanishing polynomial over the setĄ , i.e., İĄ (Ĉğ) = 0

for each ğ ∈ [Ě]. Also, we can write İĄ (Į) as

İĄ (Į) =
∏

ğ∈[Ě]

(Į − Ĉğ) (7)

4 THRESHOLD SIGNATURE USING IPA

Aswe describe in the overview (§2), our approach is to formulate the

threshold signature scheme as the relation RTS and then present

an e�cient protocol for RTS using an inner product argument.

Formally, the RTS relation is given as below and we refer the reader

to §2 for the intuitive explanation.

RTS :





{ęĘ , ĝč , Ă} ∈ G
3

'

ě(ĝč ,H(ģ)) = ě(ĝ, Ă)

Ħġ ∈ GĤ ; ęĦġ = com(Ħġ)

ĭ ∈ FĤ, ∥ĭ ∥1< |F|; ęĭ = com(ĭ)

Ę ∈ {0, 1}Ĥ ; ęĘ = com(Ę)

ÿ ∈ GĤ ; ïÿ , Ęð = Ă

ïĭ, Ęð g Ī ; ïĦġ, Ęð = ĝč





Handling rogue-key attacks. Although, our signature scheme is

agnostic to the speci�cs of a rogue key attack handling mechanism,

for concreteness, we consider the approach used in Boneh et al. [12,

§6]. Brie�y for any claimed public key ĝĩ , the signer computes the

Proof-of-Possession (PoP) as ÿ = Hpop(ĝ
ĩ)ĩ . Here Hpop : {0, 1}∗ →

G is a hash function modeled as a random oracle, that could be

constructed fromH(·) using domain separation. The PoP veri�cation

procedure accepts if ě(ĝĩ ,Hpop(ĝ
ĩ)) = ě(ĝ, ÿ).

We organize the rest of the section as follows. We begin by de-

scribing di�erent parts of the protocol for the relation RTS. Finally,

in §4.8, we combine all these building blocks and present our full

threshold signature scheme.

4.1 Setup and Public Parameters

CRS. Let G be a elliptic curve group with F as its scalar �eld. For

any given number of signers Ĥ, the CRS consists of
{[
ĝ,ĝă , ĝă

2
, . . . , ĝă

Ĥ
]
;
[
ℎ,ℎă , ℎă

2
, . . . , ℎă

Ĥ−1
]
; Ĭ

}
(8)

for uniformly random generators ĝ, ℎ, Ĭ ∈ G, and for uniformly

random �eld element ă ∈ F.

The CRS also consists of descriptions of two subgroups Ą, Ĉ ¦ F.

Here Ą is a multiplicative subgroup of order Ĥ, and Ĉ is a subgroup

of order Ĥ − 1 such that Ą ∩ Ĉ = č , i.e., their intersection is empty.

Throughout this paper we will work with Ą = {Ĉ,Ĉ2, . . . , ĈĤ},

where Ĉ ∈ F is a Ĥ-th root of unity. Also, for Ĉ, we use a coset of Ą .

CRS preprocessing. Our scheme uses a CRS that can be computed

from the CRS in equation (8) using public operations.More precisely,

the preprocessed CRS is:
{[
ĝL1(ă), . . . , ĝLĤ (ă)

]
;
[
ℎL1(ă), . . . , ℎLĤ (ă)

]
; Ĭ ;ĝĈ

}
(9)

here we use Lğ (Į) to denote the Lagrange polynomial LĈğ ,Ą as per

equation (3). Also, let Ĉ =
∑
ğ∈[Ĥ] Lğ (ă)/Ĉ

ğ .

Note that the CRS in equation (9) is publicly computable from

the CRS in equation (8). The computation requiresċ(Ĥ logĤ) group

exponentiations using number theoretic transform in the exponent.

The CRS also consists of

ī = [īℓ]ℓ∈Ĉ ; where īℓ = ĝLℓ,Ĉ (ă), ∀ℓ ∈ Ĉ (10)

Here on we will use the following notations.

∀ğ ∈ [Ĥ] ĝğ = ĝLğ (ă) and ℎğ = ℎLğ (ă)

Veri�cation and aggregation keys. Each signers ğ samples its

signing key ĩğ ∈ F, uniformly at random. Let ĩ = [ĩ1, ĩ2, . . . , ĩĤ]

andĭ = [ĭ1,ĭ2, . . . ,ĭĤ] be the vector of signing keys and weights,

respectively. Let ĩ(·) and ĭ (·) be the two polynomials of degree

Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Ĥ − 1 each where ĩ(Ĉğ) = ĩğ , andĭ (Ĉğ) = ĭğ , respectively. Then the

public veri�cation key Ĭġ is the tuple:

Ĭġ =
{
ĝ, ℎ, Ĭ, ĝĩ(ă), ĝĭ(ă), ĝă , ĝİĄ (ă)

}

The aggregation key ėġ is:

ėġ =

{[
ĝ
ĩğ
ğ

]
ğ∈[Ĥ]

;
[
ℎ
ĩğ
ğ

]
ğ∈[Ĥ]

;
[
ĝħğ (ă)

]

ğ∈[Ĥ]
;
[
ĝĈĩğ

]
ğ∈[Ĥ]

}

where ħğ (Į) is the polynomial of degree Ĥ − 1 de�ned as:

ĩ(Į)Ĉğ (Į) = ħğ (Į)İĄ (Į) + ĩğLğ (Į)

here İĄ (Į) is the degree Ĥ polynomial that evaluates to zero at all

points in Ą . In particular,

İĄ (Į) =
∏

ğ∈[Ĥ]

(Į − Ĉğ) = ĮĤ − 1

To assist P in computing ėġ , each signer ğ sends ėġğ to P, where

ėġğ =

{
ĝĩğ , ĝ

ĩğ
ğ , ℎ

ĩğ
ğ , Ĭ

ĩğ , ĝĈĩğ ,
[
ī
ĩğ
ġ

]

ġ∈[Ĥ]

}
(11)

Note that only P needs to read the linear size ėġğ from each

signer ğ . Also, ėġğ for each signer ğ is publicly veri�able using the

CRS and ĝĩğ . Finally, to compute Ĭġ , only the element ĝ
ĩğ
ğ for each

signer ğ is su�cient.

ĝĩ(ă) =
∏

ğ∈[Ĥ]

ĝ
ĩğ
ğ

Similarly, P computes ĝĭ(ă) =
∏

ğ∈[Ĥ] ĝ
ĭğ

ğ . We will describe in §4.5

on how P computes the terms [ĝħğ (ă)]ğ∈[Ĥ].

Remark. As we discuss in §2, assuming a PKI where each signer

publishes its partial aggregation key, the setup phase of our signa-

ture scheme is non-interactive.

4.2 Proving that the committed vector is binary

Let Ę(Į) be the polynomial of degree Ĥ − 1 such that Ę(Ĉğ) = Ę[ğ].

Then, if indeed Ę is binary then the polynomial Ę(Į)(1 − Ę(Į)) eval-

uates to 0 for every Į ∈ Ą . Thus, using the polynomial remainder

lemma, we get that Ę(Į)(1 − Ę(Į)) = ħĘ (Į) · İĄ (Į).

Given ĝĘ(ă), the commitment to Ę , P proves that Ę ∈ {0, 1}Ĥ , by

sending ÿĘ = ĝħĘ (ă) toV .V upon receiving the proof ÿĘ , accepts

the proof if the following checks pass.

ě
(
ĝĘ(ă), ĝ1−Ę(ă)

)
= ě

(
ÿĘ , ĝ

İĄ (ă)
)

Remark. Note that our approach to proving Ę a bit vector is not

an IPA. Nevertheless, since it shares similarities with the IPA we

use, we sometimes refer to it as an IPA for ease of exposition.

Analysis. Completeness is clear. We will prove its soundness in §5.

The proof is a single group element and veri�cation requires one

group operation and two pairings. P performsċ(Ĥ logĤ) �eld oper-

ations to compute ħ(Į) using Number Theoretic Transform (NTT).

P then computes ĝħĘ (ă) using ċ(Ĥ) group exponentiations.

4.3 IPA between public keys and bit vector

Let č = ïĩ, Ęð and let Ħġ = [ĝĩ1 , ĝĩ2 , . . . , ĝĩĤ]. We use the following

polynomial identity for the inner product ĝč = ïĦġ, Ęð.

ĩ(Į)Ę(Į) = ħ(Į)İĄ (Į) + Ĩ (Į)Į + č · Ĥ−1 . (12)

Let Ħ(Į) = Ĩ (Į)Į + č ·Ĥ−1. Then for each ğ ∈ [Ĥ], Ħ(Ĉğ) = ĩğĘğ . Let

ęĘ = ĝĘ(ă) be the commitment to the vector Ę . Then, the proof ÿ for

ĝč = ïĦġ, Ęð is the tuple:

ÿ =
(
ĝħ(ă), ĝĨ (ă), ℎĦ(ă), Ĭč

)
(13)

V accepts the proof ÿ = (ĝħ, ĝĨ , ℎĦ , Ĭč) and the corresponding

inner product ĝč , if the following checks pass

ě
(
ĝĩ(ă), ęĘ

)
= ě

(
ĝħ, ĝ

İĄ (ă)
)
· ě

(
ĝĨ , ĝ

ă) · ě
(
ĝč , ĝ1/Ĥ

)
(14)

ě(ℎĦ , ĝ) = ě(ĝĨ , ℎ
ă) · ě

(
ĝč , ℎ1/Ĥ

)
(15)

ě
(
Ĭč , ĝ

)
= ě

(
ĝč , Ĭ

)
(16)

Intuitively, equation (14) checks that the polynomial identity

speci�ed in (12) holds with respect to the proof ÿ at ă . The equa-

tion (15) and equation (16), checks that ĝĨ and ĝ
č are commitment

to a polynomial of degree Ĥ − 2 and a constant, respectively. We

elaborate on these checks in Lemma 5.4 and 5.3, respectively.

4.4 Computing the IPA proof

In this section we will describe how P computes the IPA proof ÿ

(in equation (13)) usingċ(Ĥ) group exponentiations. Recall from §2,

the di�culty arises because P needs to compute ÿ having only

access to the aggregation public key. We note that to compute ÿ , P

does one-time preprocessing that requiresċ(Ĥ2) computation costs.

We elaborate on the preprocessing cost in §4.5.

Computing ĝħ(ă).Weuse the following polynomial identity from [31].

For completeness, we derive it in the full version of the paper [26].

ħ(Į) =
∑

ğ∈[Ĥ]

Ęğ · ħğ (Į) ⇒ ħ(ă) =
∑

ğ∈[Ĥ]

Ęğ · ħğ (ă) (17)

where the polynomials ħğ (Į) are de�ned as:

Lğ,Ą (Į)ĩ(Į) = ĩğ · Lğ,Ą (Į) + İĄ (Į)ħğ (Į) (18)

The important observation in equation (18) is that the polynomial

ħğ (Į) depends on Ą and the set of all signers and not on the set of

signers who signed a message. This is unlike Ęğ , whose values gets

decided only during the signature aggregation. Thus, P can pre-

compute ĝħğ (ă) for each ğ ∈ [Ĥ]. Then, during signature aggregation,

P computes ĝħ(ă) using ċ(Ĥ) group operations as:

ĝħ(ă) =
∏

ğ∈[Ĥ]

(
ĝħğ (ă)

)Ęğ
(19)

Computing ℎĦ(ă). Similarly, we use the following identity from [31]:

Ħ(Į) = Į · Ĩ (Į) + Ħ(0) =
∑

ğ∈[Ĥ]

ĘğĩğLğ (Į) (20)

Equation (20) immediately implies ℎĦ(ă) =
∏

ğ∈[Ĥ]

(
ℎ
ĩğ
ğ

)Ęğ
.

Computing ĝĨ (ă). Using equation (4), we can write Ĩ (Į) as:

Ĩ (Į) =
∑

ğ∈[Ĥ]

Ĩ (Ĉğ)Lğ (Į)

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sourav Das et al.

Since Ħ(Ĉğ) = Ęğĩğ ∀ğ ∈ [Ĥ], we can write Ĩ (Ĉğ) as:

Ĩ (Ĉğ) =
Ħ(Ĉğ) − Ħ(0)

Ĉğ
=
Ęğĩğ − Ħ(0)

Ĉğ

⇒
∑

ğ∈[Ĥ]

Ĩ (Ĉğ)Lğ (ă) =
∑

ğ∈[Ĥ]

ĘğĩğLğ (ă)

Ĉğ
−

∑

ğ∈[Ĥ]

Ħ(0)Lğ (ă)

Ĉğ
(21)

Let Ĩ1 be the �rst term in the RHS of equation (21). Then,

Ĩ1 =
∑

ğ∈[Ĥ]

ĩğLğ (ă) ·
Ęğ

Ĉğ
⇒ ĝĨ1 =

∏

ğ∈[Ĥ]

(
ĝ
ĩğ
ğ

)Ęğ/Ĉğ

Let Ĩ2 be the second term in (21), and let Ĉ =
∑
ğ∈[Ĥ]

Lğ (ă)
Ĉğ . Then,

Ĩ2 = Ħ(0) · Ĉ = Ĉ ·
∑

ġ∈[Ĥ]

Ħ(Ĉġ)Lġ (0) = Ĉ ·
∑

ġ∈[Ĥ]

ĩġĘġLġ (0)

⇒ ĝĨ2 =
∏

ġ∈[Ĥ]

(
ĝĈĩġ

)ĘġLġ (0)

Finally, combining the above, we get that ĝĨ (ă) = ĝĨ1/ĝĨ2 .

4.5 Computing the preprocessed elements

In this section, we will describe how the P precomputes ĝħğ (ă) for

each ğ ∈ [Ĥ] where ħğ (·) is de�ned as:

Lğ,Ą (Į)ĩ(Į) = ĩğ · Lğ,Ą (Į) + İĄ (Į)ħğ (Į) (22)

Recall Ĉ ¦ F with |Ĉ |= Ĥ − 1 and Ĉ ∩Ą = č . This implies that for

each ℓ ∈ Ĉ, İĄ (ℓ) ̸= 0. Then, we can write ħğ (Į) as:

ħğ (Į) =
∑

ℓ∈Ĉ

ħğ (ℓ)Lℓ,Ĉ(Į) =
∑

ℓ∈Ĉ

(
Lğ,Ą (ℓ)ĩ(ℓ) − ĩğLğ,Ą (ℓ)

İĄ (ℓ)

)
Lℓ,Ĉ(Į)

⇒ ħğ (ă) =
∑

ℓ∈Ĉ

(
Lğ,Ą (ℓ)ĩ(ℓ) − ĩğLğ,Ą (ℓ)

İĄ (ℓ)

)
Lℓ,Ĉ(ă) (23)

Recall from §4.1, the CRS also includes īℓ = ĝLℓ,Ĉ (ă) for each

ℓ ∈ Ĉ. Each signer ğ also publishes [ī
ĩğ
ℓ] for each ℓ ∈ Ĉ. P uses them

to compute ĝħğ (ă) for each ğ ∈ [Ĥ] as follows. Rewrite ħğ (ă) as

ħğ (ă) =
∑

ℓ∈Ĉ

(
Lğ,Ą (ℓ)ĩ(ℓ)Lℓ,Ĉ(ă)

İĄ (ℓ)

)
−
∑

ℓ∈Ĉ

(
ĩğLğ,Ą (ℓ)Lℓ,Ĉ(ă)

İĄ (ℓ)

)
(24)

Let ħğ,2 be the second term of equation (24). Then, P computes

ĝħğ,2 using Ĥ group exponentiations as:

ĝħğ,2 =
∏

ℓ∈Ĉ

(
ī
ĩğ
ℓ

)Lğ,Ą (ℓ)/İĄ (ℓ)

Let ħğ,1 be the �rst term of equation (24). Let ąℓ be such that

ąℓ =
ĩ(ℓ)Lℓ,Ĉ(ă)

İĄ (ℓ)
⇒ ĝħğ,1 =

∏

ℓ∈Ĉ

(
ĝąℓ

)Lğ,Ą (ℓ)

Note that given ĝąℓ , computing ĝħğ,2 requires ċ(Ĥ) group expo-

nentiations. Next, P computes ĝąℓ using the following equations.

ąℓ =
Lℓ,Ĉ(ă)

İĄ (ℓ)
·
∑

ġ∈[Ĥ]

ĩġLġ,Ą (ℓ)

⇒ ĝąℓ =
∏

ġ∈[Ĥ]

(
ī
ĩġ
ℓ

)Lġ,Ą (ℓ)/İĄ (ℓ)

Finally, ĝħğ (ă) = ĝħğ,1/ĝħğ,2 .

Verifying ĝħğ (ă). We now describe how any external entity can

e�ciently verify the correctness of ĝħğ (ă) for each ğ . Our idea is

to use the standard approach of random linear combination. Let

[ĝħ,ğ]ğ∈[Ĥ] be the claimed values. For an uniformly random Ą ∈ F,

let ā = [1, Ą, Ą2, . . . , ĄĤ−1]. Then, the entity computes

ĝĄ = ï[ĝğ]ğ∈[Ĥ],āð; ĝħ,Ą = ï[ĝħ,ğ]ğ∈[Ĥ],āð; ĝĩ,Ą = ï[ĝĩğğ]ğ∈[Ĥ],āð

and checks that the following check holds.

ě
(
ĝĩ(ă), ĝĄ

)
= ě

(
ĝİĄ (ă), ĝħ,Ą

)
· ě

(
ĝĩ,Ą , ĝ

)
(25)

Intuitively, equation (25) batch checks the polynomial identity in

equation (18) at ă using the standard random linear combinations.

Hence, its soundness follows from the Schwartz-Zippel lemma.

4.6 Proving correctness of the threshold

P uses an IPA to convince V that Ī = ïĭ, Ęð, precisely the IPA

scheme from Appendix A. For completeness, we summarize it next.

Recall ęĘ is the commitment to the bit vector Ę .

Proof generation. Let ħĭ (Į) and Ĩĭ (Į) the polynomials such that:

ĭ (Į)Ę(Į) = ħĭ (Į)İĄ (Į) + ĮĨĭ (Į) + Ī · Ĥ
−1 (26)

Also, let Ħĭ (Į) = ĮĨĭ (Į) + Ī · Ĥ
−1. Then, the IPA is the tuple

ÿ =
{
ĝħĭ (ă), ĝĨĭ (ă), ℎĦĭ (ă)

}
(27)

Proof veri�cation.V upon receiving the proof ÿ = (ĝħĭ , ĝĨĭ , ℎĦĭ)

accepts Ī as the correct threshold if the following checks pass.

ě
(
ĝĭ(ă), ęĘ

)
= ě

(
ĝħĭ , ĝ

İĄ (ă)
)
· ě

(
ĝĨĭ , ĝ

ă) · ě
(
ĝĪ , ĝ1/Ĥ

)
; and

ě
(
ℎĦĭ , ĝ

)
= ě

(
ĝĨĭ , ℎ

ă) · ě
(
ĝĪ , ℎ1/Ĥ

)

Note that these veri�cation checks are analogous to the veri�-

cation checks in equation (14) and (15) for the IPA for ïĦġ, Ęð. We

omit the check in equation (16), as Lemma 5.3 holds trivially for Ī .

4.7 Merging IPA proofs

In our scheme so far, P produces two separate IPA proofs, one for

each inner product ïĦġ, Ęð and ïĭ, Ęð. Since, both of these proofs

have the same structure, we merge them by taking their random

linear combination using the Fiat-Shamir heuristic [35].

P computes ď = HFS(ĝ
ĩ(ă), ĝĭ(ă), ĝĘ(ă), ĝč , Ī), where HFS is a ran-

dom oracle derived from H(·) using domain separation. Let ĥ(Į) be

the polynomial de�ned as ĥ(Į) = ĩ(Į) + ďĭ (Į). This implies,

ĥ(Į)Ę(Į) = (ħĩ (Į) + ďħĭ (Į))İĄ (Į) + (Ĩĩ (Į) + ďĨĭ (Į))Į + (č + ďĪ)Ĥ−1

here the polynomials ħĭ (Į), Ĩĭ (Į) are as de�ned in §4.6, and ħĩ (Į)

and Ĩĩ (Į) de�ned as below.

ĩ(Į)Ę(Į) = ħĩ (Į)İĄ (Į) + Ĩĩ (Į) + Į + č · Ĥ−1 (28)

Let ħĥ (Į), Ĩĥ (Į) and Ħĥ (Į) be the polynomials de�ned as:

ħĥ (Į) = ħĩ (Į) + ďħĭ (Į)

Ĩĥ (Į) = Ĩĩ (Į) + ďĨĭ (Į)

Ħĥ (Į) = Ĩĥ (Į)Į + (č + ďĪ) · Ĥ−1

P then sends the tuple (ĝĘ(ă), ĝč , Ī) along with the IPA proof

ÿ =
{
ĝħĥ (ă), ĝĨĥ (ă), ℎĦĥ (ă), Ĭč

}
(29)

Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold CCS ’23, November 26–30, 2023, Copenhagen, Denmark

V upon receiving (ĝĘ , ĝč , Ī) and the proof (ĝħ, ĝĨ , ℎĦ , Ĭč), �rst

computes ď = HFS(ĝĩ , ĝĭ , ĝĘ , ĝč , Ī) and then checks that the follow-

ing equation holds:

ě
(
ĝĩ · ĝ

ď
ĭ , ĝĘ

)
= ě

(
ĝħ, ĝ

İĄ (ă)
)
· ě

(
ĝĨ , ĝ

ă) · ě
(
ĝč · ĝďĪ , ĝ1/Ĥ

)
(30)

Finally,V accepts it as a valid signature with threshold Ī if the

following additional checks pass.

ě
(
ℎĦ , ĝ

)
= ě

(
ĝĨ , ℎ

ă) ·ě
(
ĝč · ĝďĪ , ℎ1/Ĥ

)
and ě

(
Ĭč , ĝ

)
= ě

(
ĝč , Ĭ

)

Analysis. The completeness is clear and we prove its soundness

in §5. This brings down the combined proof size of both the IPA to

four group elements from seven group elements.

4.8 Threshold signature design

Combining all the above, we get the following threshold signature

scheme. We summarize the construction in Figure 2.

Setup. The algorithm Setup produces the parameters for the BLS

signature scheme ĦĦBLS = {F,G,GĐ , ĝ, ě(·, ·),H(·)} and a CRS of size

linear in Ĥ, the number of signers. More precisely, the algorithm

Setup samples a uniformly random generators ℎ, Ĭ ∈ G and ă ∈ F

and computes ĝ := [ĝ,ĝă , . . . , ĝă
Ĥ
] and Ğ := [ℎ,ℎă , · · · , ℎă

Ĥ−1
].

Then, as described in §4.1, using the Lagrange polynomials de-

�ned over the multiplicative subgroups Ą, Ĉ, and the vectors ĝ,Ğ,

the Setup algorithm computes the following:

• ®ĝL := [ĝ1, ĝ2, · · · , ĝĤ] = [ĝL1,Ą (ă), ĝL2,Ą (ă), · · · , ĝLĤ,Ą (ă)]

• ®ℎL := [ℎ1, ℎ2, · · · , ℎĤ] = [ℎL1,Ą (ă), ℎL2,Ą (ă), · · · , ℎLĤ,Ą (ă)]

• ®ī := [ī1, ī2, · · · , īĤ] = [ĝL1,Ĉ (ă), ĝL2,Ĉ (ă), · · · , ĝLĤ,Ĉ (ă)]

Finally it computes ĝĈ for Ĉ =
∑
ğ∈[Ĥ] Lğ (ă)/Ĉ

ğ using ®ĝL , and

outputs ĦĦ := (ĦĦBLS, ®ĝL , ®ℎL , ®ī,ℎ, Ĭ, ĝ
Ĉ) as the CRS.

Key generation. Each signer ğ samples its signing key ĩğ , and pub-

lishes the corresponding public key Ħġğ = ĝĩğ the and the proofs-

of-possession. Concretely, for proof-of-possession, we use the ap-

proach from [12, §6].

As we describe in §4.1, in order to assist the aggregator P, each

signer ğ additionally computes its partial aggregation key ėġğ and

sends it to P where

ėġğ :=

{
ĝĩğ , ĝ

ĩğ
ğ , ℎ

ĩğ
ğ , Ĭ

ĩğ , ĝĈĩğ ,
[
ī
ĩğ
ġ

]

ġ∈[Ĥ]

}
(36)

Note that given Ħġğ , P can check validity of ėġğ using pairings or

NIZK proofs for discrete logarithm equality.

As we describe in §4.5, P uses ėġğ to compute the aggregation

key ėġ de�ned as

ėġ :=

{[
ĝ
ĩğ
ğ

]
ğ∈[Ĥ]

;
[
ℎ
ĩğ
ğ

]
ğ∈[Ĥ]

;
[
ĝħğ (ă)

]

ğ∈[Ĥ]
;
[
ĝĈĩğ

]
ğ∈[Ĥ]

}
(37)

Note that similar to ėġğ , the aggregation key ėġ is also publicly

veri�able given Ħġğ and the CRS (cf. §4.5). Next, P computes the

(ĝĩ , ĝĭ) = (ĝĩ(ă), ĝĭ(ă)), the commitment to the public keys the

weights using the weight vectorĭ = [ĭ1,ĭ2, . . . ,ĭĤ], ĝ
ĩğ
ğ for each

ğ , and the CRS. The public veri�cation key Ĭġ of our scheme is

Ĭġ =
{
ĝ, ℎ, Ĭ, ĝĩ , ĝĭ , ĝ

ă , ℎă , ĝİĄ (ă)
}

Computing partial signature. As in standard BLS signature, for

any messageģ, signer ğ computes its partial Ăğ as H(ģ)ĩğ .

Setup(1ċ , Ĥ):

On input 1ċ for the security parameter ċ produces �rst the public pa-

rameters for the BLS scheme ĦĦBLS = {F,G,GĐ , (ĝ,ĝĐ), ě(·, ·),H(·)}.

Here ě : G × G → GĐ is the bilinear pairing operation, and

H : {0, 1}∗ → G is the random oracle. The setup algorithm ad-

ditionally outputs the following CRS

- Let ℎ, Ĭ ∈ G be additional uniform random generators of G

- Sample ă ∈ F;

- Compute ĝ := [ĝ,ĝă , · · · , ĝă
Ĥ
] and Ğ := [ℎ,ℎă , · · · , ℎă

Ĥ−1
]

- From ĝ and Ğ compute

– ®ĝL := [ĝL1,Ą (ă), ĝL2,Ą (ă), · · · , ĝLĤ,Ą (ă)]

– ®ℎL := [ℎL1,Ą (ă), ℎL2,Ą (ă), · · · , ℎLĤ,Ą (ă)]

– ®ī := [ĝL1,Ĉ (ă), ĝL2,Ĉ (ă), · · · , ĝLĤ,Ĉ (ă)]

- Compute ĝĈ where Ĉ =
∑

ğ∈[Ĥ] Lğ (ă)/Ĉ
ğ using ®ĝL .

Output ĦĦ := (ĦĦBLS, ®ĝL , ®ℎL , ®ī,ℎ, Ĭ, ĝ
Ĉ)

KeyGen(ĦĦ,Ĥ,ĭ):

- Each signer ğ samples its signing key ĩğ ← F uniformly at random.

- Let Ħġ := [ĝĩ1 , . . . , ĝĩĤ] be the vector of public keys.

- Compute Ĭġ :=
{
ĝ,ℎ, Ĭ, ĝĩ(ă), ĝĭ(ă), ĝă , ℎă , ĝİĄ (ă)

}

- Computeėġ :=
{[
ĝ
ĩğ
ğ

]
ğ∈[Ĥ]

;
[
ℎ
ĩğ
ğ

]
ğ∈[Ĥ]

;
[
ĝħğ (ă)

]
ğ∈[Ĥ]

; [ĝĈĩğ]ğ∈[Ĥ]

}

with help from the signers (see §4.1 and §4.5)

Output (Ĭġ, ėġ)

PSign(ģ,ĩğ): Output Ăğ = H(ģ)ĩğ

PVerify(ģ,Ăğ , ĝ
ĩğ): Output 1 if ě(ĝĩğ ,H(ģ)) = ě(ĝ, Ăğ), otherwise 0.

Combine({Ăğ }, Ī
′, ėġ):

- Let ą be the indices corresponding to valid partial signatures.

- Compute the bit vector Ę where Ę[ğ] = 1, ∀ğ ∈ ą and 0 otherwise.

- Compute commitment to Ę , ĝĘ := ĝĘ(ă) and the proof ĝħĘ := ĝħĘ (ă).

- Compute the aggregated public key ĝč = ĝč = ïĦġ,Ę ð.

- Compute ĂBLS =
∏

ğ∈ą Ăğ .

- Compute the IPA proof ÿ =
{
ĝħĥ (ă), ĝĨĥ (ă), ℎĦĥ (ă), Ĭč

}
(cf. §4.7)

Output Ă := (ĝč , ĝĘ , ĝħĘ , ĂBLS, ÿ, Ī
′)

Verify(ģ,Ă, Ĭġ, Ī):

- Parse Ă as (ĝč , ĝĘ , ĝħĘ , ĂBLS, ÿ, Ī
′).

- Check correctness of bit vector as

ě(ĝĘ , ĝ/ĝĘ) = ě(ĝħĘ , ĝ
İĄ (ă)) (31)

- Verify the IPA proof ÿ

– Compute ď = HFS(ĝĩ , ĝĭ , ĝĘ , ĝč , Ī
′) where ĝĩ , ĝĭ are part of Ĭġ .

– Check the three equations below hold:

ě
(
ĝĩ · ĝ

ď
ĭ , ĝĘ

)
= ě

(
ĝħ, ĝ

İĄ (ă)
)
· ě (ĝĨ , ĝ

ă) · ě
(
ĝč · ĝďĪ

′
, ĝ1/Ĥ

)
(32)

ě
(
ℎĦ , ĝ

)
= ě (ĝĨ , ℎ

ă) · ě
(
ĝč · ĝďĪ

′
, ℎ1/Ĥ

)
(33)

ě(Ĭč , ĝ) = ě(ĝč , Ĭ) (34)

- Check the BLS signature

ě(ĝč ,H(ģ)) = ě(ĝ, ĂBLS) (35)

- Finally check that Ī ′ g Ī .

Figure 2: Our signature scheme.

Verifying partial signature. As in standard BLS signature, a par-

tial signature Ăğ from signer ğ is valid if ě(ĝĩğ ,H(ģ)) = ě(ĝ, Ăğ).

Combining partial signatures. Upon receiving valid partial sig-

natures Ăğ , P �rst checks that the total weight of these partial

signatures is greater than the required threshold Ī .

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sourav Das et al.

(1) Let Ę ∈ {0, 1}Ĥ be the vector that indicates the set of valid

signers. As in §4.2, P computes the polynomial commitment

ĝĘ(ă), along with the proof ĝħĘ = ĝħĘ (ă) for Ę being a bit vector.

Also, Ī ′ = ïĭ, Ęð is the signature threshold.

(2) P computes the aggregated public key ĝč = ïĦġ, Ęð and the

BLS aggregated signature ĂBLS :=
∏

ğ:Ę[ğ]=1 Ăğ .

(3) Finally, P computes the IPA proof ÿ as per §4.7 to convince V

that ĝč = ïĦġ, Ęð and Ī ′ = ïĭ, Ęð.

Verifying the aggregate signature. The veri�erV upon receiving

the aggregate signature Ă = (ĝč , ĝĘ , ĝħĘ , ĂBLS, ÿ, Ī
′) validates it by

checking that: (i) ĝħĘ is a correct proof of ĝĘ being a commitment

to a bit vector; (ii) ÿ is a valid IPA for the aggregated public key ĝč
and the threshold Ī ′; and, (iii) ĂBLS is a valid BLS signature on the

messageģ with respect to public key ĝč .

Optimized veri�cation. As in Figure 2, verifying the aggregate

signature requires 1 exponentiation and 13 pairings. We further

reduce the veri�cation cost to 8 exponentiations and 8 pairings

using the standard random linear combination approach. More

precisely, V samples a uniformly random Ą ∈ F and checks the

following:

ě
(
ĝč , Ĭ · H(ģ)Ą

)
= ě(Ĭč , ĝ) · ě

(
ĝ, Ă

Ą
BLS

)
(38)

ě
(
ĝĩ · ĝ

ď
ĭ · (ĝ/ĝĘ)

Ą , ĝĘ

)
· ě

(
ℎĦ , ĝ

Ą2
)
= ě

(
ĝħ · ĝ

Ą
ħĘ , ĝ

İĄ (ă)
)
·

ě
(
ĝĨ , ĝ

ă · ℎăĄ
2
)
· ě

(
ĝč · ĝďĪ

′
, ĝ1/Ĥ · ℎĄ

2/Ĥ
) (39)

Intuitively, the check in equation (38) merges the checks in equa-

tions (35) and (34), by taking their random linear combination.

Similarly, the check in equation (39), merges the checks in equa-

tions (32), (31), and (33). Similar to Lemma 5.5, the soundness of

these optimized checks follows from the Schwartz-Zippel lemma.

5 ANALYSIS

We prove security of our threshold signature scheme in the Al-

gebraic Group Model (AGM). We will prove the security in two

parts. First, we will prove that assuming hardness of ħ-SDH in the

AGM, our protocol for RTS is knowledge sound. More precisely,

for any PPT adversary A that successfully convinces a veri�er V

with respect to a committed key ĝĩ(ă) and committed weights ĝĭ(ă),

then there exists an e�cient extractor E, who interacts withA and

outputs a bit vector Ę such that ïĦġ, Ęð = ĝč and ïĭ, Ęð g Ī .

We then use the knowledge soundness of the protocol for RTS

and hardness of co-CDH assumption to prove that our threshold

signature scheme is existentially unforgeable as per the security

game in Figure 1. Our unforgeability proof follows the security

proof of Boneh et al., [12, Theorem 5]. We also follow the proof-of-

possession approach adopted in that paper.

5.1 Knowledge soundness of the IPA protocol.

Throughout our analysis, we use the following theorem which we

prove in the full version [26].

Theorem 5.1. Let ĝģ = [ĝ,ĝă , ĝă
2
, . . . , ĝă

ģ
] be the ħ-SDH param-

eters for any givenģ. Assuming hardness of ħ-SDH, no PPT adversary

A on input ĝģ can output a non-zero polynomial ė(·) of degree f ģ

such that ė(ă) = 0.

We prove the knowledge soundness of our protocol for RTS in

parts. Lemma 5.2, which we prove in the full version, �rst shows

knowledge soundness of the bit vector relation. We will then prove

security of the remaining IPA protocol in Lemma 5.6 and 5.5.

Lemma 5.2 (Bit vector). Assuming hardness of ħ-SDH in the

AGM, the protocol for proving that the committed vector Ę is binary

is knowledge sound with probability 1 − negl(ċ).

Recall that the IPA proof consists of tuple (ĝč , Ĭč) such that

ě
(
ĝč , Ĭ

)
= ě

(
Ĭč , ĝ

)
. For ĝč , Ĭč ∈ G, let ą, ą̂ be the vectors such that

ĝč = ïą,ĝĤð and Ĭč = ïą̂,ĝĤð, respectively. Let č(Į) and č̂(Į) be the

polynomials de�ned using the elements of ą and ą̂ as coe�cients,

respectively. Then, in the full version, we prove the following.

Lemma 5.3. Assuming hardness of ħ-SDH in the AGM, č(Į) is a

constant polynomial with probability 1 − negl(ċ).

The next part in our proof is to bound the degree of the polyno-

mial Ĩĥ (Į) given the ĝĨ and ℎĦ that satisfy the following constraint:

ě
(
ℎĦ , ĝ

)
= ě

(
ĝĨ , ℎ

ă) · ě
(
ĝč · ĝďĪ , ℎ1/Ĥ

)
(40)

Again, since AIPA is algebraic, let Ħ, Ĩ be the vectors such that

ℎĦ = ïĦ,ĝĤð and ĝĨ = ïĨ,ĝĤð, respectively. Also, let Ħ(Į) and Ĩ (Į)

be the polynomials de�ned using the elements of Ħ and Ĩ as coe�-

cients, respectively. Then, in the full version, we prove the follow-

ing.

Lemma 5.4. Assuming hardness of ħ-SDH in the AGM, Ĩ (Į) is a

polynomial of degree at most Ĥ − 2 with probability 1 − negl(ċ).

Given the claimed aggregated public key ĝč and claimed thresh-

old Ī , let ĝĎ = ĝčĝ
ďĪ . Recall from §4.7, ĥ(Į) is the polynomial de�ned

as ĥ(Į) = ĩ(Į) + ďĭ (Į). Let ĥ = [ĥ(Ĉ), ĥ(Ĉğ), . . . , ĥ(ĈĤ)]. Then, in RTS,

P convincesV that ĝĎ = ĝïĘ,ĥð . Then, in the next lemma, we prove

that, except with negligible probability, correctness of ĝĎ implies

correctness of ĝč and Ī .

Lemma 5.5. Let ĥ be the vector de�ned as above. If ĝĎ = ĝïĘ,ĥð ,

then except with probability negl(ċ), ĝč = ĝïĘ,ĩð and Ī = ïĘ,ĭð.

We now use Lemma 5.3, Lemma 5.4 and theorem 5.1 to prove

that the claimed ĝĎ is indeed ĝïĘ,ĥð .

Lemma 5.6 (Sumcheck). Let ĥ be the vector as de�ned above and

Ę be the bit vector as per Lemma 5.2. Let ĝč and Ī be the claimed

aggregated public key and threshold, respectively. Let ĝĎ = ĝčĝ
ďĪ .

Then, assuming hardness of q−ďĀĄ in the AGM, ĝĎ = ĝïĘ,ĥð .

Finally, combing Lemma 5.2, Lemma 5.6, and Lemma 5.5, we get

the following main theorem.

Theorem 5.7 (RTS Knowledge-Soundness). Assuming hard-

ness of ħ-SDH in the AGM, the protocol for the relation RTS is knowl-

edge sound with 1 − negl(ċ) probability.

5.2 Security of threshold signature scheme

We prove the security of our signature scheme in the presence of an

adaptive adversary. In particular, we prove that if an adversaryATS

produces a non-trivial forgery of our threshold signature scheme,

then we use ATS in a black-box manner to design an adversary

Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold CCS ’23, November 26–30, 2023, Copenhagen, Denmark

AcoCDH that breaks the co-CDH assumption. Recall from §3.1, a

forgery is non-trivial when ATS produces a signature with thresh-

old Ī , while querying partial signatures from honest signers of

weight less than Ī −ĭĂ . HereĭĂ is the weight of the corrupt sign-

ers. Due to space restrictions, we describe our reduction in the full

version and only state the main theorem next.

Theorem 5.8. For any PPT adversary ATS, if ATS successfully

creates a non-trivial forgery with probability Ċ , then AcoCDH breaks

the ħ-SDH assumption with probability Ċ · ąRTS
/poly(Ĥ, ħĄ).

Here ąRTS
is the knowledge soundness error in Theorem 5.7, and

ħĄ is the number of random oracle queries A makes.

5.3 Performance

The CRS and aggregation key each consist of ċ(Ĥ) group elements.

The veri�cation key consists of 7 group elements. The one-time pre-

processing requires ċ(Ĥ2) computation costs to compute Ĥ group

elements, each requiring Ĥ group exponentiations. The per signer

signing key is a single �eld element and signing requires one group

exponentiation. During signature aggregation, P performs ċ(Ĥ)

group exponentiations, ċ(Ĥ logĤ) �eld operations. The signature

consists of 8 group elements and 1 integer for specifying the thresh-

old. Veri�cation requires 8 exponentiations and 8 pairings.

6 IMPLEMENTATION AND EVALUATION

We implement and evaluate our threshold signature scheme in

golang. Our implementation is publicly available at https://github.

com/sourav1547/wts. For our experiments, we only implement

the computation component without any networking. We use the

BLS12-381 pairing based curve implementation from gnark-crypto [16].

We also use (for both in our implementation and the existing works)

the multi-exponentiation of group elements using Pippenger’s

method [10, §4] to increase the e�ciency of the aggregator. All

experiments are run on a t3.2xlarge Amazon Web Service (AWS)

instance with 32 GB RAM and 8 virtual cores.

We measure the computation cost in terms of latency for prepro-

cessing, signing, veri�cation, and aggregation algorithm. Through-

out our evaluation, we use the pairing based BLS signature [14] as

our underlying signature scheme. We compare our scheme with

the following schemes, as described below. (1) generic SNARK ap-

proach, (2) compact certi�cate in Micali et. al. [53], (3) (vanila) BLS

threshold signature [11], and (4) BLS multisignature [12, §6].

Threshold signature using generic SNARK. We consider the

following generic SNARK construction. Each signer has one signing

key and a weight. The signer signs only once using its signing key.

The aggregator functions as a SNARK prover P who convinces the

veri�erV that it knows a set of valid signatures, each with distinct

public key, with a total weight greater than or equal to the desired

threshold. We build the SNARK prover atop the open source SNARK

prover implementation of [5].We use the gnark library [16] to create

the SNARK proof. We choose the most SNARK-friendly signature

scheme available in the gnark library, which is the EdDSA signature

— with gnark frontend. A single EdDSA veri�cation produces 6.5k

constraints in the Groth16 proof system [44], and 13.6k constraints

in the PLONK system [37]. For this experiment, we also assume

that the veri�er has the list of all public-keys and all weights are

equal. Note that, it is also possible to construct the proof with

respect to a commitment of the public keys and distinct weights.

This will further increase the running time of the aggregator. We

want to note that, the EdDSA signature implementation of gnark

uses MiMc [3] hash function as the underlying random oracle.

Compact certi�cates of knowledge (CCoK) [53]. We bench-

mark CCoK based on their open source implementation of Algo-

rand [4].We use EdDSA signature over the curve25519 elliptic curve

as the underlying signature scheme, and SHA256 implementation

from libsodium as the underlying hash function. We adapted exist-

ing benchmarks for their implementation in the unweighted setting

for our desired threshold values. Also, for any given threshold Ī ,

we consider the collected weight to be 1.25Ī . Note that the CCoK

scheme requires an additional soundness security parameter, which

is then used to compute the number of Merkle paths to be revealed

in the certi�cate. For all benchmarks, we use pick the parameter to

achieve 128 bit of security.

BLS threshold andmultisignature.We implement the virtualiza-

tion approach with BLS threshold signature and the BLS multisig-

nature scheme [12, §6] as described in §1, §3.2, and §7. We do not

include the cost of the DKG for the virtualization approach. For BLS

threshold signature, we use ċ(Ī log2 Ī) time algorithm from [62] to

compute the Lagrange coe�cients.

With our evaluation we seek to demonstrate that our scheme sup-

ports arbitrary weight distribution and multiple thresholds while

maintaining a signature size and veri�cation time comparable to

that of standard threshold signature and multisignature schemes.

Recall, that existing threshold signature schemes are very ine�cient

with arbitrary weight distribution. Alternatively, multisignature

schemes require a linear-size public veri�cation key. Our evalua-

tion also illustrates that existing o�-the-self SNARKs (as described

below) are ine�cient when used as a threshold signature scheme.

6.1 Evaluation Setup

With the exception of BLS threshold signature and CCoK, the aggre-

gation time and signature size of the other schemes depend solely

on the number of signers used to compute the �nal signature. To

evaluate these schemes, we begin by evaluating all signatures in the

unweighted setting with varying numbers of signers to aggregate,

speci�cally with Ī = 64, 256, 1024, and 4096.

For BLS threshold signature, the aggregation time only depends

on the required threshold Ī . However, in the weighted setting, Ī may

be much larger than the total number of signers. Thus, to examine

the e�ect of weights, we also evaluate the BLS threshold signature

scheme with Ĥ = Ī = 215 and 216.

Finally, since in CCoK, the aggregator needs to collect a larger

fraction of signatures than Ī , we use Ĥ = 2Ī while evaluating CCoK.

Note that, CCoK’s performance, depends on the actual weight dis-

tribution. Nevertheless, our unweighted evaluation shows that the

signature size of CCoK is more than 80 KBytes even with Ī = 256.

Thus, we do not evaluate CCoK in the weighted setting.

6.2 Evaluation Results

Preprocessing and key generation time. In Table 3 we report the

per-signer key generation time and the preprocessing time i.e., the

time an aggregator takes to compute the the aggregation key, of our

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sourav Das et al.

Table 3: Key generation and preprocessing time of our approach.

Number of signers 64 256 1024 4096

Key generation time (milliseconds) 2.25 7.11 28.34 112.23

Preprocessing time (seconds) 0.10 0.90 10.65 149.11

Table 4: Unweighted aggregation time (in milliseconds).

Ī 64 256 1024 4096

BLS Threshold 3.29 10.93 38.86 150.79

Multisignature 0.15 0.54 2.69 11.23

CCoK 20.53 79.36 313.12 1246.76

Groth16 6535.86 25695.95 — —

Plonk 46081.93 — — —

Our approach 3.49 7.77 21.56 71.02

scheme. Observe that generating keys in our scheme is very e�cient,

i.e., it only takes 112 milliseconds to generate the keys with 4096

signers. Also, the key generation time grows only linearly with the

number of signers. In comparison, the preprocessing time is much

higher, i.e., 149 seconds for 4096 signers, and grows quadratically

with number of signers. As we mention before, this is because,

an aggregator needs to perform ċ(Ĥ2) group exponentiations to

compute the aggregation key. Fortunately, as we discuss in §4.5 the

aggregation key is e�ciently veri�able, hence, can be delegated to

external entities.

Signature aggregation time.We report the unweighted signature

aggregation time in Table 4. The reported aggregation time does

not include the time the aggregator spends verifying the signatures,

which is identical in BLS threshold, multisignature, and our scheme.

Note that multisignature scheme have the shortest aggregation

time, as aggregation in a multisignature scheme only requires ċ(Ĥ)

group operations. Contrary to that, our approach and BLS threshold

signature scheme need ċ(Ĥ) group exponentiations and ċ(Ĥ logĤ)

�eld operations. The longer aggregation time in CCoK is because

the aggregator needs to compute a large number of hashes.

Observe that generic SNARK based approaches require orders

of magnitude higher aggregation time and are impractical to be

used to build threshold signatures for a large number of signers.

The dashed entries in the table indicate that we could not run

the SNARK prover with the chosen parameters. The Groth16 setup

ceremony ran out of memory with 4096 signers. Similarly, the plonk

aggregator ran out of memory while aggregating signatures with

1024 signers or higher.

Finally, we measure the aggregation cost of the BLS threshold

signature scheme in the weighted setting. Recall that the aggrega-

tion cost in the BLS threshold signature depends only on Ī and not

the actual weight distribution. In our evaluation with Ī = 215 and

Ī = 216, computing the aggregated signature requires 1.15 and 2.27

seconds, respectively. This matches our expectation as the aggre-

gator performs ċ(Ī log2 Ī) �eld operations during aggregation [62].

Also, with 215 and 216 signers, for each signature, the signers will

need to send a total of 3 and 6 Megabytes of data, respectively.

Veri�cation time, veri�cation key size, and signature size.We

report the unweighted signature veri�cation time and signature

size in Table 5. As expected, the BLS threshold signature scheme

has the smallest signature size (only one G2 element) and shortest

Table 5: Unweighted veri�cation time, signature size, and veri�cation

key size

Scheme
Veri�cation

time (ms)

Signature

size (bytes)

Veri�cation

key size (bytes)

BLS Threshold 1.05 96 48

Multisig. (Ī = 4096) 5.63 608 196608

Groth16 4.6 192 1440

Plonk 5.5 624 1306

CCoK (Ī = 64) 57.73 27033 64

CCoK (Ī = 4096) 89.24 206085 64

Our approach 8.21 536 672

Table 6: EVM gas cost using BN254 elliptic curve. ġP refers to the

pairing product check with ġ pairs; G1, G2 are the number of group

operations in these groups; Exp refers to group exponentiations.

Scheme # group ops. Gas cost

Ours implementation 15P + 3G1 + 15G1 Exp 772k

Multisig est.(Ĥ = 4096) 2P + (Ĥ − 1)G1 + ĤG1 storage reads >23M

veri�cation time (only two pairings). Also, as expected, the signa-

ture size of the CCoK approach is very large. Note that although

CCoK requires the longest veri�cation, the veri�cation is still less

than 100 milliseconds. This might be reasonable for many applica-

tions. We want to note that despite having an asymptotically linear

veri�cation time, the concrete veri�cation time multisignature is

very fast. This is because the multisignature only requires a linear

number of group multiplications and not group exponentiations.

The only practical downside of a multisignature scheme is the

veri�cation key size, i.e., the veri�er must store all signers’ public

keys. The linear veri�cation key size can be prohibitive for appli-

cations where a blockchain acts as a veri�er, as storing large data

on-chain is very expensive (since each node in the blockchain needs

to replicate the veri�cation key).

Memory usage.Our protocol has lowmemory usage except for the

preprocessing step (cf. §4.5). Note that only the aggregator (a single

machine) performs the preprocessing step. During preprocessing,

our scheme with 256, 1024, and 4096 signers uses 0.03GB, 0.25GB,

and 3.44GB of memory, respectively. The higher memory usage

during preprocessing is an implementation choice, as we store

vectors of size ċ(Ĥ2) in the memory. We adopt this approach for

the faster preprocessing time. Alternatively, one could implement

the preprocessing step with lower memory usage at the cost of a

longer running time.

6.3 Veri�cation using Ethereum smart contract

We implemented our threshold signature veri�er in Solidity us-

ing the BN254 asymmetric pairing curve. We chose BN254 curve

as it is natively supported in Ethereum and is the most e�cient

curve [21, 57].Wewant to note that, wemake the following changes

to the signature scheme to be able to run it e�ciently on Ethereum:

First, since BN254 is an asymmetric curve, the signature includes

commitments to the bit vector in both G1 and G2, and we use two

additional pairings to check their consistency. Second, we do not im-

plement the veri�cation optimizations in §4.8 since G2 operations

are not e�ciently supported in Ethereum. Finally, since a pairing

Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold CCS ’23, November 26–30, 2023, Copenhagen, Denmark

check involving ġ pairings is more e�cient than ġ independent pair-

ings, we merge all the veri�cation checks into a single pairing by

taking an appropriate random linear combination. More precisely,

the cost a pairing check with ġ pairs is 34000ġ + 45000 [58].

We report our evaluation results in Table 6. Observe that verify-

ing a signature using our scheme requires 772 thousand gas, while

the cost of verifying a multisignature with 4096 signers is over

23 million gas due to reading public keys. Note that the 23M gas

does not include the cost of storing public keys on the blockchain,

which would require additional 44.8k gas per signer, hence over

183 million gas for all 4096 signers.

7 RELATEDWORK

The closest signature scheme to our approach is the standard mul-

tisignature scheme. Since we already discuss its properties in detail

throughout the paper, we focus on other schemes below.

Threshold Signatures. Threshold signature schemes were �rst

proposed for ElGamal and RSA signatures [29, 30, 41, 45, 60] and

later for BLS signatures [11, 12], often utilizing Shamir secret shar-

ing [59]. This approach has many advantages: the signature size,

veri�cation key size, and veri�cation time are all constant. Also,

many of these schemes produce unique threshold signatures, a

property that is crucial for threshold signature-based randomness

beacons [23]. These standard threshold signatures do not e�ciently

support arbitrary weight distributions or multiple thresholds.

As mentioned, one approach to support arbitrary weights is

virtualization of threshold signatures. Here, the signing key is secret-

shared using a (∥ĭ ∥1, Ī) Shamir secret sharing. Each signer with

weightĭ receivesĭ shares of the secret and signs using allĭ shares.

This approach is ine�cient for both the signer and the aggregator.

More precisely, an aggregator incurs a computation cost of one

ċ(∥ĭ ∥1) wide multi-exponentiations and ċ(∥ĭ ∥1log
2∥ĭ ∥1) �eld

operations. In contrast, our aggregator performs one ċ(Ĥ) wide

multi-exponentiations and ċ(Ĥ logĤ) �eld operations.

Compact Certi�cate of Knowledge (CCoK). Micali et al. [53]

presents an elegant protocol CCoK to address these issues. CCoK

uses a specialized SNARK analogous to Kilian’s protocol [46]. CCoK

has several nice properties. A signer only needs to sign once, inde-

pendent of its weight. Their protocol also supports multiple thresh-

olds. The underlying signature scheme is used in a black box man-

ner and hence is compatible with any signature scheme. However,

CCoK has several downsides. First, it cannot prove the exact weight

of the signers who signed the message. In particular, to prove that a

signature is signed by signers with a total weight Ī , the aggregator

needs to collect partial signatures of weight (1 + Ċ)Ī for some Ċ > 0.

The signature size depends on Ċ . The smaller the Ċ , the larger the

signature. As we illustrate in §6, the signature becomes very large

even with Ċ = 0.25.

Sampling-based approach. Chaidos and Kiayias present a sam-

pling based weighted threshold signature scheme [25]. The idea

is to sample a subset of signers in a veri�able manner based on

the weight distribution and then let the sampled signers sign the

message. This approach has a few drawbacks. First, it requires a

mechanism to securely sample signers proportional to their weights.

Second, it increases the costs for signers with large weights. Finally,

this approach is typically vulnerable to adaptive corruption.

Generic weighted secret sharing. A generic approach to design-

ing a threshold signature that supports arbitrary weight distribution

is to use a weighted secret sharing scheme (WSS), i.e., a secret shar-

ing scheme that inherently considers the weight of each signer.

Beimel [6, 7] presented the �rst characterization of WSS where the

share size is sublinear than the weight of the signer. Prior works

on WSS has explored other approaches such as Chinese remainder

theorem [38, 65], allowing only restricted classes of hierarchical

weights [34, 61], and wiretap channels [9]. All these works are

theoretical and have very high concrete costs.

Concurrent work. The concurrent and independent work [39]

proposed a similar approach and achieved a signature size of 9G+5F

and veri�cation cost of 1 exponentiation and 10 pairings. Similar

to our work, they prove the security of their scheme in the AGM.

They also discuss mechanisms to extend the signature scheme to

support arbitrary access structure and proactive security.

8 CONCLUSION AND OPEN PROBLEMS

We have presented a new threshold signature scheme that sup-

ports arbitrary weight distribution and arbitrary thresholds. The

signature consists of only 8 group elements. Verifying the signa-

ture requires 8 group exponentiations and 8 bilinear pairings. A

core component of our scheme is an inner-product argument (IPA)

between a vector of group elements and a vector of �eld elements

This part may be of independent interest. For our IPA to work,

the discrete logarithms of the group elements must be known in a

distributed manner. A potential application could be accountable

private threshold signatures [13]. Our threshold signature scheme

uses the IPA scheme in a modular way. Thus, any improvement

to the IPA scheme immediately results in an improvement in our

signature scheme.

Security without AGM.We prove the unforgeability of our thresh-

old signature scheme in the AGM. The reliance on AGM can be

removed with some tradeo�s. More precisely, if we use GIPA [19]

as our IPA, we can prove our scheme secure in the random oracle

model. However, as we discuss in §3.3 it has a considerable perfor-

mance overhead. Alternatively, we can prove our scheme secure in

the standard model but with knowledge assumption for the IPA.

Limitations and Open problems. One drawback of our thresh-

old signature scheme is that the signatures are not unique. This

prevents us from using our signature to implement a randomness

beacon. Designing a weighted unique threshold signature scheme

is a fascinating open problem. Another limitation of our scheme is

that the pre-processing cost of the aggregator is quadratic in the

number of signers. Other interesting future directions to improve

our scheme include reducing the public keys each signer needs to

publish and improving the underlying cryptographic assumptions

(e.g., removing the need for pairing).

ACKNOWLEDGMENTS

The authors would like to thankAndrewMiller and Lefteris Kokoris-

Kogias for their feedback on the paper. This work is funded in part

by a VMware early career faculty grant, a Chainlink Labs Ph.D.

fellowship, and the National Science Foundation award #2240976.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Sourav Das et al.

REFERENCES
[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, KristiyanHaralambiev, andMiyako

Ohkubo. 2010. Structure-preserving signatures and commitments to group
elements. In Advances in Cryptology–CRYPTO 2010: 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30. Springer,
209–236.

[2] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically
optimal validated asynchronous byzantine agreement. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing. 337–346.

[3] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. 2016. MiMC: E�cient encryption and cryptographic hashing with
minimal multiplicative complexity. In Advances in Cryptology–ASIACRYPT 2016:
22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I.
Springer, 191–219.

[4] Algorand. 2023. Algorand’s o�cial implementation in Go. (2023). https://github.
com/algorand/go-algorand

[5] Leemon Baird, Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha,
MingyuanWang, and Yinuo Zhang. 2023. Threshold Signatures in the Multiverse.
In 2023 IEEE Symposium on Security and Privacy (SP). IEEE.

[6] Amos Beimel, Tamir Tassa, and Enav Weinreb. 2005. Characterizing ideal
weighted threshold secret sharing. In Theory of Cryptography: Second Theory of
Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005.
Proceedings 2. Springer, 600–619.

[7] Amos Beimel and EnavWeinreb. 2006. Monotone circuits for monotone weighted
threshold functions. Inform. Process. Lett. 97, 1 (2006), 12–18.

[8] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P Ward. 2019. Aurora: Transparent succinct arguments
for R1CS. In Annual international conference on the theory and applications of
cryptographic techniques. Springer, 103–128.

[9] Fabrice Benhamouda, Shai Halevi, and Lev Stambler. 2022. Weighted Secret
Sharing from Wiretap Channels. Cryptology ePrint Archive (2022).

[10] Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. 2012.
Faster batch forgery identi�cation. In Progress in Cryptology-INDOCRYPT 2012:
13th International Conference on Cryptology in India, Kolkata, India, December
9-12, 2012. Proceedings 13. Springer, 454–473.

[11] Alexandra Boldyreva. 2003. Threshold signatures, multisignatures and blind
signatures based on the gap-Di�e-Hellman-group signature scheme. In Public
Key Cryptography, Vol. 2567. Springer, 31–46.

[12] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact multi-signatures
for smaller blockchains. In Advances in Cryptology–ASIACRYPT 2018: 24th Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part II.
Springer, 435–464.

[13] Dan Boneh and Chelsea Komlo. 2022. Threshold signatures with private ac-
countability. In Advances in Cryptology–CRYPTO 2022: 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022,
Proceedings, Part IV. Springer, 551–581.

[14] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the Weil
pairing. In Advances in Cryptology—ASIACRYPT 2001: 7th International Conference
on the Theory and Application of Cryptology and Information Security Gold Coast,
Australia, December 9–13, 2001 Proceedings 7. Springer, 514–532.

[15] Jonathan Bootle, Andrea Cerulli, Essam Ghada�, Jens Groth, Mohammad Ha-
jiabadi, and Sune K Jakobsen. 2017. Linear-time zero-knowledge proofs for
arithmetic circuit satis�ability. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 336–365.

[16] Gautam Botrel, Thomas Piellard, Youssef El Housni, Arya Tabaie, Gus Gutoski,
and Ivo Kubjas. 2023. ConsenSys/gnark-crypto: v0.9.0. (Jan. 2023). https://doi.
org/10.5281/zenodo.5815453

[17] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for con�dential transactions and
more. In 2018 IEEE symposium on security and privacy (SP). IEEE, 315–334.

[18] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. 2020. Transparent SNARKs from
DARK compilers. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. Springer, 677–706.

[19] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. 2021.
Proofs for inner pairing products and applications. In Advances in Cryptology–
ASIACRYPT 2021: 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 6–10, 2021, Proceedings,
Part III 27. Springer, 65–97.

[20] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,
Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. 2020. Combining
GHOST and casper. arXiv preprint arXiv:2003.03052 (2020).

[21] Vitalik Buterin and Christian Reitwiessner. 2017. EIP-197: Precompiled contracts
for optimal ate pairing check on the elliptic curve alt_bn128. https://eips.ethereum.
org/EIPS/eip-197. (2017).

[22] Christian Cachin. 2021. Asymmetric distributed trust. In Proceedings of the 22nd
International Conference on Distributed Computing and Networking. 3–3.

[23] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-
cure and e�cient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[24] Matteo Campanelli, Anca Nitulescu, Carla Ràfols, Alexandros Zacharakis, and
Arantxa Zapico. 2022. Linear-Map Vector Commitments and Their Practical Ap-
plications. In International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 189–219.

[25] Pyrros Chaidos and Aggelos Kiayias. 2021. Mithril: Stake-based threshold mul-
tisignatures. Cryptology ePrint Archive (2021).

[26] Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bunz, and
Ling Ren. 2023. Threshold Signatures from Inner Product Argument: Succinct,
Weighted, and Multi-threshold. Cryptology ePrint Archive (2023).

[27] Sourav Das, Zhuolun Xiang, and Ling Ren. 2022. Powers of Tau in Asynchrony.
Cryptology ePrint Archive (2022).

[28] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-
Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2518–2534.

[29] Yvo Desmedt. 1988. Society and group oriented cryptography: A new concept.
In Advances in Cryptology—CRYPTO’87: Proceedings 7. Springer, 120–127.

[30] Yvo Desmedt. 1993. Threshold cryptosystems. In Advances in Cryptol-
ogy—AUSCRYPT’92: Workshop on the Theory and Application of Cryptographic
Techniques Gold Coast, Queensland, Australia, December 13–16, 1992 Proceedings 3.
Springer, 1–14.

[31] Liam Eagen, Dario Fiore, and Ariel Gabizon. 2022. cq: Cached quotients for fast
lookups. Cryptology ePrint Archive (2022).

[32] Steve Ellis, Ari Juels, and Sergey Nazarov. 2017. Chainlink: A decentralized oracle
network. Retrieved March 11, 2018 (2017), 1.

[33] Ethereum. 2023. Decentralized autonomous organizations (DAOs). https://
ethereum.org/en/dao/. (2023).

[34] Oriol Farras and Carles Padró. 2012. Ideal hierarchical secret sharing schemes.
IEEE transactions on information theory 58, 5 (2012), 3273–3286.

[35] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to
identi�cation and signature problems. In Conference on the theory and application
of cryptographic techniques. Springer, 186–194.

[36] Ethereum Foundation. 2020. PROOF-OF-STAKE (POS). https://ethereum.org/en/
developers/docs/consensus-mechanisms/pos/. (2020).

[37] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive (2019).

[38] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang,
and Yinuo Zhang. 2023. Cryptography with Weights: MPC, Encryption and
Signatures. In Annual International Cryptology Conference. Springer, 295–327.

[39] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang,
and Yinuo Zhang. 2024. hinTS: Threshold Signatures with Silent Setup. (2024).

[40] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegel-
man, and Zhuolun Xiang. 2022. Jolteon and Ditto: Network-Adaptive E�cient
Consensus with Asynchronous Fallback. In International conference on �nancial
cryptography and data security. Springer.

[41] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1996. Robust
threshold DSS signatures. In Advances in Cryptology—EUROCRYPT’96: Interna-
tional Conference on the Theory and Application of Cryptographic Techniques
Saragossa, Spain, May 12–16, 1996 Proceedings 15. Springer, 354–371.

[42] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology 20, 1 (2007), 51–83.

[43] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles. 51–68.

[44] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In
Annual international conference on the theory and applications of cryptographic
techniques. Springer, 305–326.

[45] Lein Harn. 1994. Group-oriented (t, n) threshold digital signature scheme and
digital multisignature. IEE Proceedings-Computers and Digital Techniques 141, 5
(1994), 307–313.

[46] Joe Kilian. 1992. A note on e�cient zero-knowledge proofs and arguments. In
Proceedings of the twenty-fourth annual ACM symposium on Theory of computing.
723–732.

[47] Chelsea Komlo and Ian Goldberg. 2021. FROST: �exible round-optimized Schnorr
threshold signatures. In Selected Areas in Cryptography: 27th International Con-
ference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected
Papers 27. Springer, 34–65.

[48] Jonathan Lee. 2021. Dory: E�cient, transparent arguments for generalised inner
products and polynomial commitments. In Theory of Cryptography: 19th Interna-
tional Conference, TCC 2021, Raleigh, NC, USA, November 8–11, 2021, Proceedings,
Part II. Springer, 1–34.

Threshold Signatures from Inner Product Argument: Succinct, Weighted, and Multi-threshold CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[49] Helger Lipmaa, Janno Siim, and Michał Zając. 2023. Counting vampires: from
univariate sumcheck to updatable ZK-SNARK. In Advances in Cryptology–
ASIACRYPT 2022: 28th International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceed-
ings, Part II. Springer, 249–278.

[50] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-mvba:
Optimal multi-valued validated asynchronous byzantine agreement, revisited.
In Proceedings of the 39th Symposium on Principles of Distributed Computing.
129–138.

[51] Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2019. Flexible byzantine fault toler-
ance. In Proceedings of the 2019 ACM SIGSAC conference on computer and commu-
nications security. 1041–1053.

[52] Dahlia Malkhi and Michael Reiter. 1998. Byzantine quorum systems. Distributed
computing 11, 4 (1998), 203–213.

[53] Silvio Micali, Leonid Reyzin, Georgios Vlachos, Riad S Wahby, and Nickolai
Zeldovich. 2021. Compact certi�cates of collective knowledge. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 626–641.

[54] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. 2016. The
honey badger of BFT protocols. In Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security. 31–42.

[55] Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh. 2022.
Powers-of-Tau to the People: Decentralizing Setup Ceremonies. Cryptology
ePrint Archive (2022).

[56] National Institute of Standard and Technology. 2023. Multi-Party Threshold
Cryptography. https://csrc.nist.gov/Projects/threshold-cryptography. (2023).

[57] Christian Reitwiessner. 2017. EIP-196: Precompiled contracts for addition and
scalar multiplication on the elliptic curve alt_bn128. https://eips.ethereum.org/
EIPS/eip-196. (2017).

[58] Antonio Salazar Cardozo and Zachary Williamson. 2018. EIP-1108: Reduce
alt_bn128 precompile gas costs. https://eips.ethereum.org/EIPS/eip-1108. (2018).

[59] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[60] Victor Shoup. 2000. Practical threshold signatures. In Advances in Cryptol-

ogy—EUROCRYPT 2000: International Conference on the Theory and Application
of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19.
Springer, 207–220.

[61] Tamir Tassa. 2007. Hierarchical threshold secret sharing. Journal of cryptology
20 (2007), 237–264.

[62] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,
Guy Golan Gueta, and Srinivas Devadas. 2020. Towards scalable threshold
cryptosystems. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 877–
893.

[63] Zhuolun Xiang, Dahlia Malkhi, Kartik Nayak, and Ling Ren. 2021. Strengthened
fault tolerance in Byzantine fault tolerant replication. In 2021 IEEE 41st Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE, 205–215.

[64] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. Hotstu�: Bft consensus with linearity and responsiveness. In Proceed-
ings of the 2019 ACM Symposium on Principles of Distributed Computing. ACM,
347–356.

[65] Xukai Zou, Fabio Maino, Elisa Bertino, Yan Sui, Kai Wang, and Feng Li. 2011.
A new approach to weighted multi-secret sharing. In 2011 Proceedings of 20th
International Conference on Computer Communications and Networks (ICCCN).
IEEE, 1–6.

A SUCCINCT NON-INTERACTIVE IPA [24]

In this section, we will describe the succinct non-interactive inner

product argument (IPA) protocol between a vector of two �eld

elements [24]. The IPA protocol does not rely on a random oracle

for non-interactivity and only requires a universal setup.

A.1 Design

Let ė, Ę ∈ FĤ be the two input vectors of length Ĥ. The prover P

wants to convince a veri�er V that ïė, Ęð = č, whereV possesses

č, and commitments to ė and Ę .

Setup. For any security parameter ċ , let (G,GĐ) be the description

of a bilinear pairing group with scalar �eld F. Also, let ě : G×G→

GĐ be an e�ciently computable bilinear pairingmap. Letĝ, ℎ ∈ G be

two uniformly random generators of G. The IPA protocol assumes

the following common reference string (CRS)
{[
ĝ,ĝă , ĝă

2
, . . . , ĝă

Ĥ
]
;
[
ℎ,ℎă , ℎă

2
, . . . , ℎă

Ĥ−1
]}

Here ă ∈ F is the ħ-SDH trapdoor.

Let Ą = {Ĉ,Ĉ2, . . . , ĈĤ} be a multiplicative subgroup of F of

order Ĥ. Here Ĉ is a Ĥ-th root of unity of F.

Proof generation. Let ė(·) and Ę(·) be polynomials of degree Ĥ − 1

such that ė(Ĉğ) = ė[ğ] and Ę(Ĉğ) = Ę[ğ] for all ğ ∈ [Ĥ]. Then,

ïė, Ęð =
∑

ğ∈[Ĥ]

ė(Ĉğ)Ę(Ĉğ)

Let İĄ (Į) be the vanishing polynomial over Ą , i.e.,

İĄ (Į) =
∏

ğ∈[Ĥ]

(Į − Ĉğ) = ĮĤ − 1

The IPA scheme uses the following sumcheck Lemma [8] of

univariate polynomials.

ė(Į)Ę(Į) = ħ(Į)İĄ (Į) + Ĩ (Į)Į + Ĥ−1ïė, Ęð

Here, both ħ(Į) and Ĩ (Į) are unique polynomials of degree Ĥ − 2.

Let Ħ(Į) = Ĩ (Į)Į + Ĥ−1ïė, Ęð.

The IPA ÿ for č = ïė, Ęð is the tuple is

ÿ =
{
ĝħ(ă), ĝĨ (ă), ℎĦ(ă)

}
(41)

Proof veri�cation. We use KZG commitments to polynomials

ė(Į) and Ę(Į), i.e., (ĝė, ĝĘ) = (ĝė(ă), ĝĘ(ă)) as the commitments to the

vectors ė and Ę , respectively.

V upon receiving the proof ÿ = (ĝħ, ĝĨ , ℎĦ), accepts č as the

inner product, if following checks pass

ě(ĝė, ĝĘ) = ě(ĝħ, ĝ
İĄ (ă)) · ě

(
ĝĨ , ĝ

ă) · ě
(
ĝč , ĝ1/Ĥ

)
; and (42)

ě(ℎĦ , ĝ) = ě
(
ĝĨ , ℎ

ă) · ě
(
ĝč , ℎ1/Ĥ

)
(43)

Analysis. The completeness of the protocol clear. The proof con-

sists of 3 G elements. Also, assuming ĝİĄ (ă), ĝ1/Ĥ, ℎ1/Ĥ are part of

the CRS, veri�cation requires one exponentiation and 7 pairings.

In terms of provers computation cost, P computes the polynomials

ħ(Į) and Ĩ (Į) in ċ(Ĥ logĤ) �eld operations using number theoretic

transform. Then, P computes (ĝħ(ă), ĝĨ (ă), ℎĦ(ă)) using ċ(Ĥ) group

exponentiations. The knowledge soundness follows from [24, The-

orem 5.2].

	Abstract
	1 Introduction
	2 Technical Overview
	2.1 Multisignature to Inner Product Argument
	2.2 Challenges with using existing IPA protocol
	2.3 Our Approach

	3 System Model and Preliminaries
	3.1 Threshold Signature
	3.2 Pairing based Multisignature
	3.3 Inner Product Argument
	3.4 Polynomial Identities

	4 Threshold Signature using IPA
	4.1 Setup and Public Parameters
	4.2 Proving that the committed vector is binary
	4.3 IPA between public keys and bit vector
	4.4 Computing the IPA proof
	4.5 Computing the preprocessed elements
	4.6 Proving correctness of the threshold
	4.7 Merging IPA proofs
	4.8 Threshold signature design

	5 Analysis
	5.1 Knowledge soundness of the IPA protocol.
	5.2 Security of threshold signature scheme
	5.3 Performance

	6 Implementation and Evaluation
	6.1 Evaluation Setup
	6.2 Evaluation Results
	6.3 Verification using Ethereum smart contract

	7 Related Work
	8 Conclusion and Open Problems
	References
	A Succinct Non-Interactive IPA campanelli2022linear
	A.1 Design

