Check for
Updates

On the Security of KZG Commitment for VSS

Atsuki Momose
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
atsuki.momose@gmail.com

ABSTRACT

The constant-sized polynomial commitment scheme by Kate, Za-
verucha, and Goldberg (Asiscrypt 2010), also known as the KZG
commitment, is an essential component in designing bandwidth-
efficient verifiable secret-sharing (VSS) protocols. We point out,
however, that the KZG commitment is missing two important prop-
erties that are crucial for VSS protocols.

First, the KZG commitment has not been proven to be degree
binding in the standard adversary model without idealized group
assumptions. In other words, the committed polynomial is not guar-
anteed to have the claimed degree, which is supposed to be the
reconstruction threshold of VSS. Without this property, sharehold-
ers in VSS may end up reconstructing different secrets depending
on which shares are used.

Second, the KZG commitment does not support polynomials
with different degrees at once with a single setup. If the reconstruc-
tion threshold of the underlying VSS protocol changes, the protocol
must redo the setup, which involves an expensive multi-party com-
putation known as the powers of tau setup.

In this work, we augment the KZG commitment to address both
of these limitations. Our scheme is degree-binding in the stan-
dard model under the strong Diffie-Hellman (SDH) assumption. It
supports any degree 0 < d < m under a powers-of-tau common
reference string with m+1 group elements generated by a one-time
setup.

CCS CONCEPTS

« Security and privacy — Distributed systems security.

KEYWORDS

Verifiable secret sharing; KZG polynomial commitment

ACM Reference Format:

Atsuki Momose, Sourav Das, and Ling Ren. 2023. On the Security of KZG
Commitment for VSS. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security (CCS °23), November 26-30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3576915.3623127

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623127

Sourav Das
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
souravd2@illinois.edu

2561

Ling Ren
University of Illinois at
Urbana-Champaign
Urbana, IL, USA
renling@illinois.edu

1 INTRODUCTION

Verifiable secret-sharing (VSS) [15] allows a designated dealer to
share a secret with a set of n nodes, of which at most f nodes are
malicious. Later, the set of nodes runs an interactive protocol to
recover the secret. VSS has been used as a crucial component to
design secure protocols of multi-party computation (MPC) [6, 31],
distributed key generation [19, 24], randomness beacon [8, 18], and
many more. MPC protocols, in particular, require the dealer to
simultaneously share multiple secrets, often proportional to the
circuit size. We refer to VSS where the dealer shares multiple secrets
simultaneously as a multi-secret VSS.

Existing efficient constructions of VSS, especially multi-secret
VSS [2, 41] crucially rely on polynomial commitment schemes with
constant commitment size and constant evaluation proof. Con-
cretely, they use the celebrated Kate-Zaverucha-Goldberg polyno-
mial commitment scheme [27], here on referred to as the KZG
commitment.

Polynomial commitment, when used for VSS, must be degree
binding, i.e., the degree of the polynomial used to share the secret
must match the threshold f (or lower). Intuitively, this ensures
that each honest node outputs the same secret during the recovery
protocol. Otherwise, interpolations using different sets of f + 1
shares would result in honest nodes outputting different secrets.

Despite its established use, this important degree-binding prop-
erty has not been proven for the KZG commitment. The original
KZG paper [27, 28] proves a similar property called strong cor-
rectness using a non-standard polynomial Diffie-Helman (PDH)
assumption. We observe that the strong correctness property is
insufficient for VSS (we will elaborate on this in §3). Very recently,
Abraham et al. [2] prove the degree binding property, which they
refer to as interpolation binding, assuming hardness of Strong Diffie
Helman (SDH) [9] in the Algebraic Group Model [23], which sig-
nificantly constrains the adversary’s capabilities. This strong as-
sumption has to do with the common reference string (CRS) of the
KZG commitment. Specifically, the KZG commitment to a degree-f
polynomial ¢(-) is represented as g?(?) for generator g € G and
a trapdoor 7 € Z;, which is computed from a powers-of-tau CRS

lg. g%, ... ,gff]. Obviously, the degree binding property of the KZG
commitment relies on the fact that the adversary does not know
ng+k for any k > 0. However, it is hard to argue that the adversary
cannot compute the higher powers gfﬂk in the standard model
where the adversary can access the group representation and per-
form arbitrary operations on them. This is what leads Abraham et
al. to resort to an idealized group model (such as AGM) to prove
the degree binding property of the KZG commitment.

Relying on the incapability of computing higher powers for
degree-binding introduces another issue. VSS protocols built on the

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

original KZG commitment are not reconfiguration friendly. Namely,
the protocols are unsuitable for systems in which the number of
participants and the fault threshold changes dynamically [2, 41].
In reconfigurable systems where the threshold f changes during
the execution, the protocol must use a separate CRS with a distinct
trapdoor for each threshold. This is undesirable as the size of the
CRS may become prohibitively large.

Our result. The main contribution of this work is to augment
the KZG commitment to make it degree-binding against the stan-
dard adversary, i.e., without idealized group assumptions. Our aug-
mented KZG commitment supports any degree 0 < d < m with a
single CRS [g,¢%,...,4"], and hence efficiently supports reconfig-
urable systems. Building on our augmented KZG commitment, we
design a multi-secret VSS with optimal communication. Formally,

THEOREM 1.1. Assuming the existence of a public-key infrastruc-
ture, random oracle, and a universal common reference string under
the SDH assumption, there exists a multi-secret VSS protocol with
O(kLn + xn?) communication tolerating f < n/3 corruption, where
L is the number of secrets and k is the security parameter.

The core technical ingredient is the proof of degree from an
aggregated linear-sized commitment, such as Feldman commit-
ment [21]. Our key idea is that, instead of making sure an adversary
is incapable of committing to a higher-degree polynomial, we make
it detectable. Specifically, we allow an adversary to compute a KZG
commitment to a higher-degree polynomial, but its degree is re-
vealed due to the standard degree-binding property of the Feldman
commitment. Since we do not rely on the adversary’s inability
to compute higher powers, we do not have to assume an ideal-
ized group model (like [2] does). The Feldman commitment is of
O(kn) size and hence cannot be used directly. We instead aggregate
L = O(n) commitments to amortize the cost.

Not relying on the inability to compute higher powers in CRS
makes our scheme reconfiguration-friendly. This has an immediate
impact on existing dynamic committee threshold cryptography. For
example, the state-of-the-art dynamic committee proactive secret-
sharing (DPSS) [26, 42] adopts the original KZG commitment to
batch-amortize the communication cost. These protocols require
a powers-of-tau setup every time the committee is resized. These
repeated setups can be avoided if our augmented KZG is used
instead. We also present a DPSS protocol using our VSS protocol in
Appendix C.

Remark on proof size. Here, we reiterate that our augmented
KZG commitment is always linear-sized, so it may not be suitable
for a single polynomial. However, we also note that in the context
of VSS, the KZG commitment is specifically useful when dealing
with a linear number of polynomials [3, 41]. For a single-secret VSS
involving a single polynomial, standard linear-sized commitments
such as Feldman or Pedersen commitments are sufficient since we
already incur quadratic communication in other aspects.

Remark on the network model. For ease of exposition, we
present our multi-secret VSS protocol assuming a synchronous
network. Our VSS protocol can be easily extended to tolerate asyn-
chronous networks using existing techniques (cf. §5.5). Our DPSS
protocol, however, works only in the synchrony model.

2562

Atsuki Momose, Sourav Das, and Ling Ren

Organization. The rest of the paper is organized as follows. After
providing the model, the problem definitions, and some prelimi-
naries in §2, we give an overview of the key technical highlights
in §3. We present our augmented KZG commitment in §4 and our
multi-secret VSS protocol in § 5. We review related works in §6 and
conclude with discussions in §7.

2 MODEL AND PRELIMINARIES

We consider a system of n nodes (numbered from 1 to n) of which
at most f < n/3 are corrupt. All corrupt nodes are controlled by a
probabilistic polynomial-time (PPT) adversary A. The adversary
chooses which nodes to corrupt upfront, i.e., we assume static cor-
ruption. Also, we assume that every pair of nodes can communicate
over an authenticated and private channel, which is commonly
implemented with a digital signature and symmetric/asymmetric
encryption under a public-key infrastructure.

When we assume the synchrony model, we consider a simple
lockstep round model. Any message sent by an honest node within
around is delivered to the recipient by the end of that round. Unless
explicitly stated otherwise, a value in this paper is an element of
a prime field Zg where g > 2* and a polynomial is an element
of Zg[x]. Let g be a generator of a group G of order g such that
a bilinear pairing e : G X G — Gr exists [10]. We use [a] to
denote an ordered set {1, ...,a} and use [a, b] to denote {a,...,b}.
We use the bold notation x to denote a vector. For a vector of
polynomials ¢ = [¢1(-),...,Pr(-)], we use ¢(i) to denote element-
wise evaluations at i, i.e., [¢1 (i), ..., ¢r(i)].

2.1 Multi-secret VSS

A multi-secret verifiable secret-sharing (VSS) protocol allows a
dealer D € [n] to share L secrets z = [z1,...,z1] with all nodes.
At the end of the protocol, each node i € [n] outputs the share
si = [Si1,...,s;1] along with a bit b € {0, 1}. The bit b indicates
whether the overall sharing was successful. In other words, b = 1
means that all honest nodes have successfully received their shares.
The protocol must satisfy the following properties:

o (Weak) guaranteed output. If an honest node outputs b = 1, then
every honest node i has a non-empty share s; # L.

Commitment. There exist L polynomials ¢1(+), ..., #r(-) all with
degree f s.t. for any honest node i, if i has a non-empty share
si # L, thenfor all k € [L], s; . = ¢ (i).

Validity. If the dealer is honest, then all honest nodes output b = 1,
and the L polynomials (defined by the commitment property)
satisfy ¢y (0) = z; for all k € [L].

Secrecy (informal). If the dealer is honest, the adversary learns
no information about z beyond public values.

Note that it is possible that a node outputs nothing, which we
capture with outputting s; = L. We formally define the secrecy
property in §5.3, when we define the ideal functionality Fyss for
multi-secret VSS. Although ¥yss also captures the correctness prop-
erties defined above, we provide these property-based definitions
for ease of exposition.

Remark on guaranteed output. The classical definition of VSS [6,
15] requires a stronger guaranteed output property, i.e., at the end

On the Security of KZG Commitment for VSS

of the protocol, either every honest node outputs the correct share,
or nobody outputs (i.e., outputs L). To achieve this property, all
existing VSS protocols use a broadcast [20]. However, the stronger
guaranteed output property is not always required. For example,
applications such as [8, 18] (including our DPSS protocol) do not
need this strong guarantee. In this paper, we use a weaker guaran-
tee on output, which lets us design a VSS protocol with O(1) round
complexity. We also note that a protocol satisfying our VSS defini-
tion can be easily extended to the classical definition by invoking a
binary Byzantine agreement [1, 30, 33] at the end.

2.2 KZG commitment

We now describe the part of the KZG polynomial commitment
required to understand our paper and refer readers to [27] for more
details. To commit to a polynomial of degree d, the commitment
scheme requires a powers-of-tau CRS [g,47, ..., gTd] for a secret
T € Zg, and provides the following interfaces.

e v «— Commit(4(-)). On input a polynomial ¢(-) of degree d, it
computes the commitment v = g¢(7).

o w; «— CreateWitness(¢(+),i). On input a polynomial ¢(-) and
an index i, it computes a witness w; for the evaluation ¢(i) as:

$(x) — (i)
x—1i
e b « VerifyEval(v, i, ¢ (i), w;). On input a polynomial commit-
ment v, an index i, an evaluation ¢(i), and the witness w;, it
checks whether ¢ (i) is equal to the committed polynomial eval-
uated at i.

Assuming the hardness of the Strong Diffie-Helman (SDH), the
KZG commitment is binding and hiding, where.

wi = g¥(? where y(x) =

o (Evaluation) binding. No adversary can compute two different
polynomial evaluations ¢(i) and ¢’ (i) # ¢(i) along with wit-
nesses w; and w] s.t. they are both verified by VerifyEval with
respect to the same commitment v.

e Hiding. Given evaluations of a polynomial ¢(-) on any set X of
less than d indices along with the witnesses and the commitment,
no adversary can compute ¢(j) for j ¢ X.

Definition 2.1 (SDH Assumption). Let t € Zg be a random field
element. For any ¢ € O(poly(x)) and any PPT adversary A, the
probability

Pr[A([g.g%-...g" 1) = (g7, 0)]

is negligible for any freely chosen ¢ € Zg.

2.3 Other primitives

We use a random oracle denoted H(-) instantiated by a crypto-
graphic hash function. We also use the random oracle to build a
pseudorandom function (PRF). For simplicity, we use PRF;(p) to de-
note H(s|u). Our protocol also uses the Feldman commitment [21]

and a Gradecast protocol, as defined below.
Feldman commitment. For a polynomial ¢(x) = ap+aix+, ..., agx?

of degree-d, the Feldman commitment v is the vector defined as

v=[9%,....9%]

2563

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Given the commitment v, a evaluation ¢ (i) can be verified by

checking that
: -k
g¢(l) _ l_[Ullc
0<k<d

Gradecast [29]. Gradecast allows a dealer D to broadcast a mes-

sage M with weak consensus. Specifically, at the end of the protocol,

each node outputs (M, b) where M € {0, 1Hisa message of any

length L = O(poly(x)) and b € {0, 1} is a grade bit satisfying the

following properties.

e Consistency. If two honest nodes output (M,) and (M’, %), re-
spectively, for M, M’ # 1 then M = M’.

o Graded agreement. If an honest node outputs (M, 1), all honest
nodes output (M, *).

o Validity. If the dealer is honest, all honest nodes output (M, 1).

Note that a gradecast allows a node to output nothing, which
is expressed as outputting M = L. Concretely, we use the grade-
cast protocol (henceforth denoted GC) in Appendix A. GC has a
communication cost O(Ln + kn?).

3 OVERVIEW

In this section, we present an overview of this work to elaborate
on the technical contributions.

3.1 Degree-binding KZG Commitment for
Multiple Polynomials

As we describe in §1, the degree binding property intuitively guar-
antees that the committed polynomial is of the claimed degree (or
lower), which is supposed to be the reconstruction threshold of
the VSS scheme. Formalizing the degree binding property turns
out to be non-trivial. Recall from §2.2, the KZG commitment of
a polynomial ¢(-) of degree d is v = g?(?). However, v is also a
commitment to a different polynomial ¢’(-) with degree d’ # d,
whenever ¢(7) = ¢’ (). A tempting but incorrect way of defining
degree binding is:

“No PPT adversary A can output a polynomial commitment v
along with d’ + 1 evaluations and valid proofs such that interpolating
the d’ + 1 evaluations results in a polynomial of degreed’ > d.”

The strong correctness property in the KZG paper [27, 28] is
indeed defined in this flavor. However, this is insufficient for the VSS
correctness due to its implicit constraint on d’. More concretely,
as defined above, the PPT algorithm A needs to output Q(d”)
values, which implicitly assumes d’ is polynomial in the security
parameter k. In VSS, however, the adversary A (or the corrupt
dealer) is required to compute only O(n) evaluations (shares for
nodes), even when it commits to a polynomial of super-polynomial
degree, ie., d’ = w(poly(x)). We address this subtlety by defining
the degree binding as follows.

Definition 3.1 (informal). No PPT adversary A can compute a
commitment v to a polynomial ¢(-) together with
(1) A set X of d + 1 indices and for each i € X, the evaluation ¢ (i)
and the corresponding witness; and
(2) An additional evaluation ¢ (j) for j ¢ X such that ¢(j) # ¢’ (}),
where ¢’ (-) is the degree-d polynomial defined by the evalua-
tions of ¢(-) at X.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Intuitively, our definition ensures that even if v is a commitment
to a polynomial of super-polynomial degree, all witness evaluations
of #(+) lie on a unique polynomial ¢’ (-) of degree d.

We note that the proof technique used for strong correctness in
the KZG paper [28] does not apply to Definition 3.1 (see Appendix B
for more detailed discussions). We also note that our degree binding
property is equivalent to the interpolation binding defined in [2],
but with a slightly different description for ease of extension to the
batch setting below.

Degree-binding for batch setting. As noted in §1, within the
context of VSS, KZG commitment is specifically useful in batch
settings where a linear number of polynomials need to be commit-
ted. Therefore, we will define the concept of degree binding for
multiple polynomials. To this end, we first extend the interface of
the KZG commitment to include a degree proof. Specifically, for a set
of polynomials ¢ = [¢1(-), ..., ¢r(-)], a degree proof 7 convinces a
verifier that all polynomials in ¢ are of degree at most d. We extend
the degree binding property for multiple polynomials as follows.

Definition 3.2 (informal). No adversary A can compute a vector
of commitments v to a vector of polynomials ¢ together with

(1) A set of X of d + 1 indices, and for each i € X, the evaluations
¢ (i) with the witnesses, and the degree proof 7; and

(2) An additional single evaluation ¢ (j) # ¢II< (j) with the wit-
ness for any k € [L] where ¢I’<() is a degree-d polynomial
interpolated from the d + 1 evaluations for ¢ () at X.

Intuitively, in VSS with d = f, the above property guarantees
that when f + 1 honest shareholders receive all L shares with a
valid degree proof, the shares of the remaining honest nodes lie on
the same degree-f polynomial. Looking ahead, this is sufficient to
achieve VSS correctness.

Degree proof from aggregated commitment. We obtain a de-
gree proof from an aggregation of linear-sized commitments. A
simple example is an aggregated Feldman commitment. Specifi-
cally, the degree proof 7 for polynomials ¢1(-),...,¢r(:) of the
same degree is a Feldman commitment to the following aggregated
polynomial

®()= > pi- i),

1<k<L

which is a random linear combination of the polynomials ¢ with
coefficients pi,..., pr; let us assume here these random values
are chosen after the polynomials are given (we apply Fiat-Shamir
later [22]). In VSS, a dealer, when sharing L secrets over polyno-
mials @1 (-), ..., ¢r(-), also sends the above Feldman commitment
along with the shares. Once a shareholder i receives the shares
$1(i), ..., P (i), it verifies the aggregation of the shares ®(i) with
the Feldman commitment, besides the verification of individual
share with the KZG commitment. The Feldman commitment has
Q(xn) size (as the degree isd = f), but it is amortized over L = O(n)
secrets. Due to the randomization, it is hard for a corrupt dealer to
choose dependent polynomials with higher degrees (trying to can-
cel out the higher degree terms) while preserving the aggregated
polynomial degree-f. While the construction is quite intuitive, the
proof is not as straightforward as one might expect. Our proof

2564

Atsuki Momose, Sourav Das, and Ling Ren

based on a reduction to the SDH problem (in Lemma 4.2) might be
of independent interest.

The key conceptual difference from the previous approach to
achieving the degree binding of KZG lies in not explicitly preventing
an adversary from computing a KZG commitment to a high-degree
polynomial. Instead, we separately detect the degree by making
use of a linear-sized commitment that is degree-revealing by de-
sign. This approach, not only helps us eliminate idealized group
assumptions but also enables us to reuse the same powers-of-tau
CRS for multiple degrees. Specifically, we can support polynomials
with any degree 0 < d < m using a single CRS [¢,¢%,...,4" 1,
eliminating the need for repeated setup.

Why not use aggregated Feldman directly in place of KZG?
One might wonder why we do not use the aggregated Feldman com-
mitment directly to verify the shares in place of KZG commitments.
This is because the verification using the aggregated commitment
requires having shares of all the committed polynomials. In other
words, it does not allow for the individual verification of each share.
This limitation is problematic because, in most applications, there is
a need to utilize each individual secret share separately. Therefore,
we opt to use the aggregated commitment only for degree checking
while using KZG commitments for verifying each share.

3.2 Multi-Secret VSS with Optimal
Communication

One of the major tasks in VSS is to disseminate the shares efficiently
but verifiably. Namely, we have to solve the following problem with
O(L) communication (i.e., constant cost per node): an honest node
i receives the correct share s; = [$1(i),...,¢r(i)] or all honest
nodes detect the corrupt dealer. Note that we will have n instances
of this task (i.e., for each node i) so the overall cost will be O(Ln).
Below, let us assume for simplicity that the KZG commitments to
the polynomials are known to all nodes. Also, we assume L = f +1
for simplicity.

The first natural technique we can use is a verifiable information
dispersal algorithm (IDA) [12, 36]. In IDA, there is a single sender
who holds a message M, and at the end of the protocol, the erasure-
coded symbols of the message are distributed among the nodes.
Specifically, the message M is encoded into n symbols [cy, ..., cn]
using (f, n)-erasure coding, and each node j will receive j-th sym-
bol ¢;. The dealer in VSS can use IDA to disseminate the node i’s
share M = s;. Upon receiving the assigned symbol c;, each node
Jj forwards it to the shareholder i and sends a vote to all nodes.
If 2f + 1 nodes send votes, at least f + 1 honest nodes must have
forwarded their code words, so the shareholder i can successfully
reconstruct the original message. Otherwise, all honest nodes know
the dealer is corrupt. Since each symbol is of constant size, the
communication cost is O(L) (the voting cost is amortized over n
instances of dissemination).

However, there is one remaining task to complete the problem.
Recall that the message M that node i receives must be the correct
batch of shares s; = [$1(i),...,¢r(i)]. This requirement is not
guaranteed in the IDA above. In other words, while node i is guar-
anteed to receive a message M that the dealer has sent, the message
M may not necessarily contain the correct shares — potentially, an
arbitrary blob when the dealer is corrupt. Therefore, if the dealer

On the Security of KZG Commitment for VSS

sends an invalid message M through the IDA, the corresponding
shareholder i must forward the message M to all other nodes to
help other honest nodes detect the corrupt dealer. However, this
dealer implication step incurs Q(xn?) communication in the worst
case (i.e., when all nodes implicate the dealer) as the message M is
of size L = Q(n) [41].

Efficient implication from systematic RS code. To achieve the
dealer implication step with O(xn?) communication, let us delve
more into the IDA implementation. The problem with the use of
black-box IDA is that it is hard to validate the message without
reconstructing the whole message. Each node can send only a
constant-sized message during the implication step. In the above
IDA using black-box erasure coding, each individual code symbol
does not carry sufficient information to detect an invalid message.
We solve this problem by utilizing a specific erasure coding scheme
in which each code symbol has a certain relation to the original
message. Concretely, we implement IDA using a systematic Reed-
Solomon code [37]. The message M = s; is encoded as evaluations
of a degree-f polynomial /(-) interpolated from the shares

si = [91(D), ... oL (D)].

Namely, (k) = ¢ (i) for all k € [L]. Then the code words are
defined as

c=[yQ),....¢(n)].

Note that the first L symbols correspond to the original message
(by the nature of systematic code).

c1 = $1(i), c2 = ¢2(i), ..., cp = PL().

Recall that the message M is considered invalid if any single
element s; . is not a valid share ¢ (i). Therefore, receiving the
corresponding symbol ¢ = s; is enough to detect an invalid
message M, and hence a corrupt dealer. This allows the shareholder
i to implicate the dealer with a constant-sized message and reduces
the overall communication cost to O(kn?).

Note that the protocol described above does not guarantee the
secrecy of the shares. Our protocol in §5 applies a simple one-time
pad based on PRF to hide the shares during IDA.

4 DEGREE BINDING KZG COMMITMENT

In this section, we augment the KZG commitment to make it degree-
binding. The augmented KZG commitment supports polynomials
of any degree 0 < d < m under a universal structured reference

string [g,97,...,¢" | for a trapdoor 7 € Zg.

Extended interface. To formally define degree binding and our

commitment scheme, we first extend the interface of the KZG com-

mitment. Specifically, in addition to all the interfaces of the original

KZG commitment, we define two auxiliary functions to prove/verify

the degree of the committed polynomials as follows:

o 7 «— ProveDeg(¢,v). It takes as input L polynomials ¢ of degree
at most d, and the corresponding commitments o,

¢ = [(]51()5 .. ’¢L()]
v =[g"() . ¢

and outputs a degree proof 7.

2565

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

o b « VerifyDeg(d,v, 7, i, ¢(i)). It takes as input the degree d, a
vector v of commitments, the degree proof , and the evaluations
of all committed polynomials on index i, and outputs b € {0,1}
indicating if all the polynomials are of degree at most d.

Degree binding. Our goal is to design an extended KZG commit-
ment with the above auxiliary functions that satisfies the following
degree binding property:

Definition 4.1 (Degree Binding). For any d > 0 and any PPT
adversary (A, the probability that A successfully computes all of
the following simultaneously is negligible.

(1) Commitments v = [v1,...,v;] and a degree proof x.
(2) A set H of d +1 distinct indices, evaluations ¢ (i) along with the

witnesses wj 1,...,w; foralli € H s.t.

VerifyEval(vg, i, ¢ (i), wi k) = 1 Vk € [L]
VerifyDeg(d, v, , i, ¢(i)) = 1

(3) For any k € [L] and j € Zg4, a polynomial evaluation ¢y ()
along with the witness w; s.t.

VerifyEval(vg, i, ¢ (j), wig) =1
AOEXAC)

where ¢]’<(-) is the degree-d polynomial uniquely defined by the
d + 1 evaluations of ¢ (-) on indices in H.

Intuition in the use of VSS. In our VSS protocol, a dealer shares L
secrets z1, ..., zf, over polynomials ¢1(+),..., ¢ () all with degree
at most d = f. A corrupt dealer may try to use polynomials with
a higher degree d > f. However, our protocol makes sure at least
f+1honest nodes verify their shares with VerifyEval and VerifyDeg.
These shares define H and ¢I’c(-) for all k € [L]. The degree binding
property guarantees, if another node j receives its share ¢ (-) of
any k-th secret, then it must be ¢ (j) = ¢]'< (j). Therefore, all valid
shares lie on a unique polynomial of degree at most f.

Our augmented KZG commitment. We now describe our aug-
mented KZG commitment with the two auxiliary functions in Fig-
ure 1. The proving function ProveDeg generates the Feldman com-
mitment to the aggregated polynomial. Specifically, it first gener-
ates deterministic pseudo-random values p1, . .., p, that bind to the
commitment v by querying the random oracle, i.e., pr = H(v|k).
Then, it computes a commitment 7 to the aggregated polynomial

o(-) = Z Pk () = a0+ a1x + .4.+adxd.
1<k<L
The verification function VerifyDeg performs the same aggregation
operation on the shares and the KZG commitments. Specifically,
it first performs the aggregation on the shares in the exponent to
check that

Z Pk - (D) = ao + ani+ ...+ agi®,

1<k<L
It then performs the aggregation on the commitments on the pairing
to verify

Z Pk - P (1) =ao+a11'+...+(xdrd.

1<k<L

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Degree-binding KZG commitment.

Besides all functionalities of KZG commitment, we have two
additional functionalities to prove and verify the degree d of
polynomials.

7« ProveDeg(¢,v).

e Generate random values p = [p1, ..., pr] by querying the
random oracle p; < H(v|k) for each k € [L].

Let ag. be the vector of coefficients of ¢ (-). Compute
ad] =p1a1+...+pray.
,g%].

«— VerifyDeg(d, v, , i, ¢ (i)).

If || # d, then output b = 0.

Generate random values p = [p1,..., pr] by querying the
random oracle py. « H(v|k) for each k € [L].

If both of the following conditions hold, then output b = 1,
otherwise, b = 0.

l_[gk o) = 1—[”ji_j

[ap, ...,

Output 7 = [¢g™, ...

1<k<L 0<j<d

J
[] eweg™ =[] eg7)
1<k<L 0<j<d

7 is the j-th element of 7, and e(-) is the pairing.

Figure 1: Our augmented KZG commitment.

We show that our augmented KZG commitment is degree-binding
under the SDH assumption.

LEmMMA 4.2. Under the SDH assumption, the augmented KZG com-
mitment in Figure 1 is degree binding.

ProOF. Suppose an adversary A computes (1) and (2) in Defi-
nition 4.1. Namely, A has commitments v = [v1,...,0L], a degree
proof 7, and evaluations ¢(i) with the witnesses w; 1, ..., w; , for
d + 1 distinct indices i € H. Let f(-) be the degree-d polynomial
defined by the proof = = [¢g*,...,g%]:

X)=ayg+...+«, x4
B(x) d

Let @’ (-) be the polynomial defined as follows:
V()= D p ().
1<k<L
where ¢]’<() is the degree-d polynomial interpolated from the d + 1

evaluations on ¢ (-) for H. Due to the first condition of VerifyDeg,
and since ¢y (i) = (;5]'((1) for each i € H by definition, we have

b (i i)
l_[gpk ¢k(1) - 1_[ga_] 1 .
1<k<L 0<j<d

Thus, we have @ (i) = (i) for all i € H. Since both ®’ () and f(+)
are of degree-d and share the same points on d + 1 indices, we have
®’(-) = B(-). Due to the second condition of VerifyDeg, we have

D bk d() = B(r) = (2).

1<k<L

2566

Atsuki Momose, Sourav Das, and Ling Ren

Put in another way, let § = [J1,...,0r] where 8; = ¢ (1) — ¢;C(T).
We have that the inner product of § and p is § - p = 0. Since the
choice of the vector § (uniquely determined by) is independent of
the random oracle’s outputs p, the probability A can choose § # 0
that satisfies & - p = 0 is negligible. Therefore, § = 0 and we have
i (1) = ¢;<(T) forall k € [L].

Now, suppose for contradiction that A can also compute (3),
namely, an evaluation with a witness

. ¢k(T)*¢_’k ()
(i), wik=9g9 T
for some k, j € [L] that satisfies ¢ (j) # <;5]’C (j). The adversary A
can also easily compute
)) AGRAN)
B W=
Since we have ¢ (7) = ¢,’<(T), the adversary A can compute

. 1
(Yik\ -2
w’)
J.k

This breaks the SDH assumption.

1
:gT*j,

5 MULTI-SECRET VSS WITH OPTIMAL
COMMUNICATION

This section presents a multi-secret VSS with O(kLn + xn?) com-
munication for sharing L secrets. For simplicity, we first present
a synchronous protocol, and then explain how to extend it to an
asynchronous protocol using existing techniques.

Share format. Our VSS protocol (in fact VSS protocols in general)
outputs not only the share s; = ¢ (i) but the witness w; and the com-
mitment o to the polynomial. Therefore, for ease of presentation,
we say (si, wi, v) is a valid share fori € [n] if

VerifyEval(v, i, s;, w;) = 1

When the shared polynomial ¢(-) is known, we say (s;, w;,v) is a
valid share for i over ¢ (-).

Encryption with PRF. We make use of PRF to generate a one-
time pad for encrypting each node’s share. We assume each node i
before starting the protocol exchanges a secret key sk; € Z; with
the dealer O and receives the dealer’s signature on the secret key.
For simplicity, we use the notation p;; = PRFy, (k) and p;{k =
PRFg, (n + k) to denote the one-time pads for k € [n]. ’

5.1 Our Protocol

We describe our multi-secret VSS protocol (denoted VSS) in Figure 2.
For ease of exposition, we present a protocol for sharing L = f + 1
secrets, and it can be easily extended to support any number of
secrets.

Intuitive overview. The protocol consists of three phases. The
dealer D sends to each node i the share ¢(i) through a verifiable
information dispersal algorithm (IDA) (Commit-Reconstruct). If
a node receives an invalid message from the IDA, the node impli-
cates the dealer (Accuse). Then, nodes vote in two rounds if they
have not detected any misbehavior of the dealer and output the
shares if there are enough votes (Ready—-Output). These steps basi-
cally follow hbACSS [41]. There are, however, two key differences

On the Security of KZG Commitment for VSS

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Let D be the dealer who has secrets z := [z1,. .., Zf+1] to share.

e We assume each node i and the dealer D share a random se-
cret key sk; signed by D.

e Let p; ;. = PRFgy, (k) and plfk = PRFgy, (n + k) denote the one-
time pads for each k € [n] .

// Round 1-3.
Commit. The dealer D computes the following:

(1) f + 1 random polynomials ¢1(-), ..., @ry1(-) with degree f
for sharing z1,...,zf41.

(2) Foreach j € [n],let ¢;(-) and lﬁj’() be two polynomials with
degree-f s.t.forallk € [f +1]

Yi(k) = dk() @ pjk Vj(K) = wix @ pl
where Wik is the witness for ¢ ().

(3) Leto, u,u’ be the vectors of commitments to ¢(-), ¢ (-), 9’ (-),
and 7y, 7y, 7], be the associated degree-proofs.

The dealer D sends to each node j € [n], for all k € [n],
codeyj = (Y (1), V(D Mjger 1) p)

where 11 ;. and /,1;. . are the witnesses for Y (j) and ¢ (j).
D also sends (v, u, u’, 7y, my, 7;,) to all nodes through GC.

// Round 4.
Forward. If node i has received codej; for all j € [n] that are
verified with the commitments u, u’ and degree proofs my,, 7;,
received from GC with grade b = 1, then node i forwards codej;
to node j.

// Round 5.
Reconstruct. Node i computes ¥;(-) and ¢;(-) by interpolation

VSS - Multi-secret VSS.

using f +1 points received through code; » verified with the com-
mitments u, u” and the proofs ,, 7], received from GC (with
any grade).

Accuse. Node i verifies that for all k € [L], (s;x, Wi, vk) is a
valid share for i, where
sik =Vi(k) ® pix - wix =¥ (k) @ pj
If the verification failed for any k, node i sens to all nodes
accuse; = (i (k). ¥ (k). by . 1),
for an arbitrary such k € [n] along with the signed sk;.
// Round 6.
Ready. Node i sends “ready” to all nodes if
(1) i forwarded codej ; to each j € [n] in round ¢ = 3; and
(2) Node i’s shares (s;,w;,v) are verified with 7,; and
(3) i has not received any valid accusation, namely
accuse; = (8 Wjk Hjko 1} 1)-
with the signed sk; s.t. both of the following hold.
(@) (8j k1) k> ug) and (Wj,k’/l;-,k’ u) are both valid shares
for index k.
(b) (sjk>Wjk»>vj) is not a valid share for j where

A A 4
Sjk =SjkOPjk Wik =Wik®p;y

// Round 7.
Complete. If node i has received “ready” from 2f + 1 nodes,
then send “complete” to all nodes.

// At the end of round 7.

Output. If node i has received “complete” from m > 2f nodes,
then i outputs b = 1, otherwise b = 0. If m > f, then i outputs
the share (s;, w;, v).

Figure 2: Our multi-secret VSS for sharing L = f + 1 secrets. For simplicity of presentation, we assume the representation of a
group element has the same length as that of a field element.

from hbACSS as we alluded to in §3. First, we use our augmented
KZG commitment (from §4), which helps achieve the commitment
property of VSS. Second, our IDA implementation is based on the
systematic RS code, which allows nodes to implicate a corrupt
dealer with a constant-sized accusation message. We elaborate on
each step below.

Commit. The dealer D first computes the sharing polynomial,
encoding polynomials (for erasure coding), and the associated com-
mitments and degree proofs. Specifically, it first samples the ran-
dom sharing polynomials of degree-f denoted ¢1(-),...,Pr41(-)
s.t. ¢ (0) = zi for all k € [f + 1]. Then, for each node i € [n],
the dealer computes two encoding polynomials 1;(-) and ¢ (-)
both with degree-f for disseminating the shares and the associated
witnesses. They are interpolated from the f + 1 shares/witnesses
encrypted with one-time pads. For each k € [f + 1],

Yi(k) = (i) @ pige Y7 (k) = wig ® pl

2567

where w; i is the witness for ¢ (i). Here we note that each witness is
a group element and its representation is larger than a field element
(e.g., a share), so we have to use multiple encoding polynomials
depending on the representation of a group element. For simplicity,
we assume a witness has the same length as a field element.

The dealer also computes the vectors v, u, u’ of commitments to
the three types of polynomials. Specifically, for each k € [f + 1], v%
is the commitment to ¢ (-), and for each k € [n], u; and ul’(are the
commitments to Y (-) and §; (), respectively. Also 7y, 7y, and 7,
are degree proofs for ¢(-), g (-), and g’ (-), respectively. Specifically,

7y = ProveDeg([¢1(), ..., ¢f+1(')]’ v).

7y, and 7, are computed similarly. Then, the dealer starts dissemi-
nating the share for node i by sending to each node j the code word
(for both share and witness)

code; j := (%i()), ¥{ (), wjis 'u;',i)

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

where p15,; and ,u} ; are the witnesses for /;(j) and ¢/ (). The dealer
also sends to all nodes the commitments and the degree proofs by
invoking a gradecast (defined in §2), denoted GC.

Forward and reconstruct. If the gradecast GC outputs the com-
mitments and proofs with grade b = 1, a node verifies the assigned
code words. Specifically, for the encoding polynomials g(-) =
[¢1(), ..., ¥n ()], node i checks that

VerifyEval(uj, i, ¥ (i), pji) =1 Vj € [n]
VerifyDeg(f, u, my, i, p(i)) = 1,

Node i also performs the same check on g’ (i). If all of the verifica-
tions pass, node i forwards to node each j the code word code; ;.
Node i then computes the encoding polynomials ¢;(-) and {(-)
by interpolation using the collected code words after verifying with
the commitments u; and u;. This completes the IDA for node i.

Accuse. The node i then checks if the reconstructed message is
valid. Specifically, for each k € [f + 1], node i performs decryption
on the encoded symbols

sik =Vi(k) ® pix - wix =¥{(k) @ pj
and then check if (s; k, W; k., 0) is a valid share. If any of them are

invalid, node i chooses an arbitrary such k, and implicates the dealer
by sending to all nodes

accuse; = (i (k). 7 (k). i 1)
and reveals the PRF key sk; signed by the dealer.

Ready/complete/output. The sharing is completed after two
rounds of voting. Each node first sends “ready” if it has not detected
any dealer’s misbehavior. The absence of misbehavior is checked
based on three criteria. First, the node must have forwarded all
code words supposed to be assigned. Second, the share (s;, w;,v)
must be verified with the degree-proof 7,, namely

VerifyDeg(f, v, o, i, 5i) = 1,

Finally, the node i must have neither sent nor received any valid
accusation. If all of these conditions hold, then the node considers
the dealer has behaved honestly. Each node then sends “complete”
if it receives “ready” from 2f + 1 nodes. Finally, node i outputs
the share (s;,w;,v) if it has received “complete” from more than
f nodes. Also, if 2f + 1 nodes sent “complete”, then outputs b = 1
indicating the overall sharing is successful.

5.2 Correctness Proof

We first show the correctness of our multi-secret VSS protocol for
sharing L = f + 1. Validity is straightforward.

LEmMMA 5.1 (COMMITMENT). There exist polynomials¢1(-), ..., ¢r(+)
all with degree f s.t. for any honest node i € [n], ifi has a non-empty
output (s;,w;,v) # L then, for allk € [L], (s;, Wik, 0x) is a valid
share for i over ¢p(-).

PRrOOF. Suppose an honest node i outputs (s;,w;,v) # L. Then,
for each k € [L], (sjk,W;k, vx) is a valid share for node i. The
node i must have received the commitments o from GC. Due to the
consistency property of GC, honest nodes do not have any other
commitments v’ # v. Therefore, if any honest node j has an output
(sj,wj,v') # L, then, v = v” and for each k € [L], (8> Wjk>O) is

2568

Atsuki Momose, Sourav Das, and Ling Ren

a valid share for node j. The honest node i computes the output
(si,wi,v) # L after receiving “complete” from at least f + 1 nodes.
Out of these f + 1 nodes, at least one node is honest, who has
received “ready” from at least 2f + 1 nodes. A subset H of f + 1
nodes must be honest. Each node j € H must have received a unique
valid share (sjx, wjk,vx) for each k € [L] (due to the evaluation
binding property). The shares for H define, for each k € [L], a
unique degree-f polynomial ¢ (-). Since all of the shares for H
are also verified by VerifyDeg, due to the degree-binding property,
node i’s output (s; k., W; k., 0) must be a share over ¢ (-) for each
ke [L]. o

LEMMA 5.2 (GUARANTEED OUTPUT). If an honest node outputs
b = 1, then all honest nodes have non-empty (# L) outputs.

Proor. If an honest node outputs b = 1, at least 2f + 1 nodes
must have sent “complete”, out of which at least f + 1 nodes (say H)
must be honest. Let i be any honest node. Each honest node j € H
must have forwarded to i

code; j == (Y1 (j), ‘M (s wjis H},i)’

and all of them must be verified with the commitments u, u’ and
the degree proofs my, 7}, received from GC with grade b = 1. Due
to the graded consistency property of GC, node i must receive the
commitments u, u” and the degree proofs m,, 7, from GC. Thus,
the node i can interpolate the degree-f polynomials 1/;(-) and ¢ (-)
from the f + 1 verified points on each polynomial.

Suppose any of the reconstructed share (s; g, w; k., vx) (Where
Sik = Yk (i) ® pi and wip = ¢ (i) & p;,k) is not a valid share for i,
then node i would have sent to all nodes

accuse; = (sjk, Wi,k)ﬂi,k)lll{,k)'

Then, nodes in H would not have sent “ready”, a contradiction.
Therefore, the node i must have received, for all k € [L], a valid
share (s; k., W; k» 0k), and outputs (s;,wj,0) # L. O

5.3 Secrecy Proof

Next, we show the secrecy of our protocol VSS based on the stan-
dard simulation-based argument [13, 14]. The ideal functionality is
defined in Figure 3. We first briefly mention that the functionality
satisfies the VSS correctness. If the dealer is honest, all honest nodes
receive the shares of the secrets z over randomly sampled degree- f
polynomials with success bit b = 1 (validity). Even if the dealer is
corrupt, the functionality computes honest nodes’ shares over a
unique degree-f polynomial ¢y (-) for each k € [L] (commitment).
Furthermore, if there is an honest node that outputs success bit
b = 1, then the functionality must receive b; # L for all i, so it
delivers shares to all honest nodes (guaranteed output). We now
show the secrecy of our protocol below.

LEMMA 5.3. The protocol VSS realizes the functionality Fyss.

ProoF. Let A be the adversary, and Z be the environment. We
construct a simulator S that simulates the real-world adversary’s
view in the execution of VSS while interacting with the function-
ality Fvss. Without loss of generality, we assume nodes [1,..., f]
are corrupt.

On the Security of KZG Commitment for VSS

Fvss — Ideal functionality of VSS.
LetL = f +1.

e Inround 1, receive from an honest dealer z = [z, ..

and compute the following

- Randomly sampled polynomials ¢ = [¢1(-),...,¢r(*)]
of degree f to share z.

- b* = [b],...,b,] where bl’z =1forall k € [n].

Then, send to the adversary, for each corrupt node i,

(si,wi,v) and degree-proof m, where for each k € [L],

(Si,k, Wi ks vy) is a share for i over ¢ ().

Ifit receives ¢ = [P1(-),..., ¢ (-)] andb* € {0,1, L}" from

a corrupt dealer in any round, check that

— ¢r(+) is a degree- f polynomial for all k € [L], and

— If there is an honest node i with b? = 1, then for all
honest node k € [n], by # L.

Otherwise, set ¢,b* = L.

In round 7, send (sj,w;,v) and b = b;‘ to each honest node

i € [n] if b; # L where for each k € [L], (s;x, wj . 0k) is a

share for node i over ¢y (-). For node i with b} = 1, send

b = 0 as the success bit.

. zr]s

Figure 3: Ideal functionality of our VSS protocol

Corrupt dealer case. S locally executes VSS with A. Let ¢ =
[¢1(-), ..., ¢r] be the degree-f polynomials used to share the se-
crets in the local execution. Due to the commitment property, a
unique polynomial ¢y (-) always exists for each k € [L]. The simu-
lator S computes the ¢y (-) by interpolating shares for f + 1 honest
nodes who sent “ready”. Let b* [bT, ..., b;] where b;‘, e b;j =0

and bj‘+1’ ..., b}, be the success bit b that VSS outputs in honest
nodes f + 1,...,n. S sends to Fyss both ¢ and b. S sends any
message to the environment Z that A sends in the local execution.

Now we show Z’s view in the ideal world is indistinguishable
from that of the real world. First, honest nodes’ outputs should
be identical to the outputs in the simulated execution due to the
guaranteed output of VSS. If b7 = 1 for any honest node i, then
for all k € [n], bz # L. Thus, Fyss computes the shares for honest
nodes over the polynomials ¢ sent by S, hence the same output in
the S’s local execution. Corrupt nodes’ outputs and the message
sent directly from S are both exactly the same as the local execution.

Honest dealer case. S locally executes VSS with A except that
honest nodes deviate from the protocol as follows:

(1) The honest dealer performs honest sharing for corrupt nodes,
but for honest nodes, perform sharing with fake secrets. Specif-
ically, let (8;,w;,) be the share for each corrupt node i and
7ty be the degree proof, which S receives from Fyss. For each
k € [L], the dealer computes the sharing polynomial ¢ (-) (for
each k € [L]) by interpolation using ¢ (i) = $; . for all i € [f]
and a randomly chosen ¢y (f + 1). The witness w; i is set to
w; i for each corrupt i. The commitment vector is v = 9. The
degree proof for the sharing polynomials is 7, = 7. Except for
these, the dealer behaves as specified.

2569

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

(2) Each honest node i will not send accuse;. Namely, the honest
nodes, despite receiving invalid shares, behave as if the sharing
was successful.

In both the ideal world and the real world, nodes’ outputs are
shares of z over randomly sampled polynomials ¢ and are identi-
cally distributed in both. The rest of the proof shows that (for each
sampled ¢) what Z receives from S in the ideal world is indistin-
guishable from what is received from A in the real world. It is easy
to see that what Z receives is identical in both worlds except for
variables dependent on the encoding polynomials ¥;(-) and ¢/ (-)
for each honest i. The encoding polynomial ¢;(+) is interpolated
from the independently randomized symbols ¢y (i) ® p; k. Since the
PRF key sk; is unknown to Z, each of these symbols and hence
the encoding polynomial ;(-) is indistinguishable in both worlds,
The same argument holds for 1/ (-). Therefore, what Z receives is
indistinguishable in both worlds. O

5.4 Reducing Computational Overhead

As mentioned, our protocol follows the construction of hbACSS [41].
The main distinction from hbACSS lies in the use of our augmented
KZG commitment with additional degree proof. An important point
to discuss is how much overhead is introduced by the degree proof.
One can easily observe that the communication cost is negligible, as
the degree proof is a single Feldman commitment of size O(d). The
dealer’s computational overhead for generating degree proof is also
trivial, requiring only O(d) elliptic curve group exponentiation.
In comparison, computing commitment and witnesses requires
O(dLn) group exponentiation. However, verifying a degree proof
requires L paring operations, which introduces an overhead com-
parable to the cost of verifying evaluation proofs. This issue can be
partially mitigated by using another commitment scheme in place
of the Feldman commitment.

Degree proof from masked polynomial. Essentially, we can
adopt any aggregatable commitment for degree proof. One such
example is the commitment scheme based on random polynomial
masking [17, 38]. Specifically, a dealer chooses a random mask
polynomial ¢ (-) besides the sharing polynomials ¢ (-), ..., ¢r(-),
and open a random linear combination

°()= D} e ()
0<k<L

as the proof of degree, where py is random values chosen indepen-
dently from the choice of polynomials. The random polynomial
¢o(-) is also shared among nodes (i.e., node i receives ¢y (i)) along
with the KZG commitment vy = g‘/’O(T) and associated evaluation
proofs.

Each shareholder i performs the verification similar to that of
Figure 1. Specifically, node i checks that

®() = > pi- (D)
0<k<L

ol
0<k<L

g<1>(f) -

The proof of degree binding for the Feldman variant (Lemma 4.2)
can be generalized to the above variant. In essence, the proof shows
that the committed polynomials on the Feldman commitments and

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

the KZG commitments are equal. Since the aggregated commitment
is degree binding by design, this implies that the polynomials bind-
ing to the KZG commitments also have the claimed degree. The
equality of polynomials follows from the fact that the adversary
cannot choose different polynomials whose random combinations
agree. These arguments directly apply to the above approach.
Finally, to briefly analyze the overhead for each shareholder, the
KZG verification takes 3 pairings per secret while the verification of
degree proof takes one group exponentiation per secret. Therefore,
we believe this is a worthwhile cost for achieving security under
the standard model and for providing reconfiguration friendliness.

5.5 Extension to Asynchronous VSS$

We have presented our VSS protocol in the synchrony model. The
protocol can be extended to support an asynchronous network
using existing techniques. In an asynchronous network, there is
no bound on the message delivery delay. Thus, asynchronous VSS
(AVSS) allows each node to output its share whenever it receives
enough messages. Also, nodes do not output the success bit any-
more because failure to receive a share at some point does not mean
a node will never receive its share. The guaranteed output property
is changed accordingly, which is also called completeness.

o If an honest node i outputs the share s;, then every honest node
Jj eventually outputs the share s;.

To achieve this property, we have to make two major modifica-
tions to our synchronous VSS.

Timed algorithm to event-triggered. The first standard modifi-
cation is to make the algorithm event-triggered and non-blocking.
Each event must be upon receiving enough valid messages as mes-
sages are not guaranteed to be timely delivered in an asynchronous
network. For example, forwarding code words (tagged Forward)
happens upon receiving all code words that are verified with the
commitments and degree proofs. Similarly, sending “ready” hap-
pens upon receiving all valid shares and forwarding all valid code
words, and sending “complete” happens upon receiving 2f + 1
“ready”. Gradecast should be replaced by reliable broadcast, which
allows nodes to receive the sender’s message at any time.

Share recovery for completeness. The key challenge in extend-
ing synchronous to asynchronous VSS is to achieve completeness
stated above. In synchronous VSS, once a valid accusation is re-
ceived, honest nodes can simply abort the sharing by outputting
the failure bit b = 0. Under asynchrony, however, an honest node’s
accusation can be delayed arbitrarily, which can be after other hon-
est nodes output their shares. Therefore, the honest node that failed
to receive its valid share needs a way to recover its share. This
problem is solved by the ShareRecovery algorithm (Algorithm 2) of
hbAVSS [41]). In a nutshell, the missing shares can be interpolated
from f + 1 honest nodes’ shares.

6 RELATED WORKS

Verifiable secret-sharing [15, 35] is an essential tool in threshold
cryptography. There has been a lot of research on single-secret
VSS for different network models and different security levels. For
a brief review, existing information-theoretic VSS protocols toler-
ate f < n/3 corruption and cost O(xn3) communication both in

2570

Atsuki Momose, Sourav Das, and Ling Ren

synchrony and asynchrony [16]. With computational security, a
synchronous VSS tolerates f < n/2 corruption and cost O(kn?)
communication [8], and an asynchronous AVSS tolerates f < n/3
corruption and cost O(xn?) communication [3]. Single-secret VSS
has applications including distributed key generation for threshold
signature/encryption [24] and randomness beacons [8, 18]. In some
applications, however, a dealer must share multiple secrets [6, 42].
Such a multi-secret VSS can be solved more efficiently by amor-
tizing some costs over multiple secrets. Here, we review several
existing approaches to achieve multi-secret VSS with linear cost.
Along the way, we also review the polynomial commitments used
in these schemes.

Player-elimination in MPC. The preprocessing phase of MPC
usually involves each node sharing a large number of secrets, typi-
cally proportional to the number of gates in the circuit. Thus, amor-
tizing the sharing cost over multiple secrets is a natural problem in
MPC [5, 17, 25]. The common approach is to detect corrupt nodes
and eliminate them from the execution. The cost of eliminating at
most f corrupt nodes is amortized over the remaining honest exe-
cution with linear communication. However, this approach takes
O(n) rounds and does not work in asynchrony. We also note that
it is unclear if this approach is applicable to standalone VSS.

Packed secret-sharing. Patra et al. [34] presents asynchronous
multi-secret VSS with O(xLn + n?) communication but tolerates
f < n/4 corruption. Their protocol takes the classic packed sharing
approach, namely a linear number of secrets are shared with a
single polynomial. However, this approach inherently sacrifices the
corruption threshold.

IDA-then-accuse. Another natural approach, which we follow
to some extent, is to rely on an information dispersal algorithm
(IDA). Yurek et al. [41] presented an asynchronous multi-secret VSS
with linear communication. The protocol uses a black-box IDA to
disseminate a batch of shares to each node. Nodes then validate
the shares and implicate the dealer upon receiving incorrect shares.
Since the implication is required to contain all the L = O(n) received
shares, the total communication cost is at least Q(n3). hbACSS has
several variants depending on the polynomial commitment scheme
used. hbACSS0 and hbACSS2 use a polynomial commitment based
on Bulletproofs [11] and does not need the powers of tau setup. But
the communication cost is Q(xLnlog n+xn®) and the commitment
is not homomorphic. hbACSS1 achieves O(xLn + kn?) using the
original KZG commitment.

Bingo. The closest work to this paper is Bingo [2], an asynchronous
multi-secret VSS with optimal O(xLn + kn?) communication. They
use a bivariate polynomial to share multiple secrets at once with
amortized linear cost per secret. They use the KZG commitment
extended for bivariate polynomials.

The main advantage of this work over Bingo is that we achieve
degree binding without idealized group assumptions. Bingo adopts
the original KZG commitment and proves it is degree-binding (they
call it interpolation binding) under the Algebraic adversary (i.e., in
the AGM). We have eliminated the idealized group assumption of
AGM by separately detecting the high-degree polynomials using
an aggregation of linear-sized commitments as degree proof.

On the Security of KZG Commitment for VSS

Bingo achieves adaptive security, while our scheme only achieves
static security. Achieving adaptive security with our augmentation
is interesting future work.

Optimistic approach. Optimizing the cost in an optimistic ex-
ecution is another common approach. Basu et al. [4] present a
single-secret VSS protocol with linear communication in failure-
free cases. However, the protocol incurs quadratic communication
in the worst case. The protocol uses the original KZG commitment.
Benhamouda et al. [7] present a synchronous multi-secret VSS pro-
tocol that costs amortized linear communication when the dealer
is honest. When the dealer is malicious, honest nodes’ shares are
opened to everybody, thus costing quadratic communication per
secret.

7 DISCUSSION AND CONCLUSION

In this work, we have revisited the security of the KZG commitment
in the use of VSS and pointed out two issues with the original KZG
commitment: 1) it is not proven degree-binding without idealized
group assumptions, and 2) it does not support multiple degrees
with a single setup. We have augmented the KZG commitment to
make it degree-binding and presented a multi-secret VSS protocol
building on our extended KZG commitment. Finally, we discuss
some limitations of our protocols to conclude the paper.

Fault-tolerance limit. Another important question is whether it is
possible to achieve linear communication with optimal corruption
threshold f < n/2 in synchrony. The bottleneck is in disseminating
shares. The classic technique of IDA using erasure coding [12]
(which we also adopt) has a fundamental limit on the threshold.
Specifically, nodes can expect to receive votes from n — f nodes,
of which n — 2f are honest and forward the assigned code words
that help shareholders recover the original message. We must have
n—2f = Q(n) to achieve linear communication with this approach.

Computational complexity. Another general problem with the
use of KZG commitment (both in the original and ours) is its com-
putation cost. Computing a witness for each share requires a linear
number of group exponentiation. Some previous works showed
how to compute the witnesses with logarithmic computation cost in
a batch setting [39, 41]. However, their experimental results showed
that it is still costly compared to linear-sized commitment schemes.
So the computation/communication trade-off still exists.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers at ACM CCS 2023
for their helpful feedback. We thank Dahlia Malkhi and Andrew
Miller for valuable discussions related to this paper. This work is
funded in part by the NSF award 2240976.

REFERENCES

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.
2019. Synchronous Byzantine Agreement with Expected O (1) Rounds, Expected
O(n?) Communication, and Optimal Resilience. In Financial Cryptography and
Data Security (FC). Springer, 320-334.

Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad
Stern. 2022. Bingo: Adaptively Secure Packed Asynchronous Verifiable Secret
Sharing and Asynchronous Distributed Key Generation. IACR Cryptology ePrint
Archive, Report 2022/1759 (2022).

2571

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

[3] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-threshold avss
with optimal communication complexity. In Financial Cryptography and Data
Security (FC). Springer, 479-498.

Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K Reiter,
and Emin Gin Sirer. 2019. Efficient verifiable secret sharing with share recovery
in BFT protocols. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2387-2402.

Zuzana Beerliova-Trubiniova and Martin Hirt. 2008. Perfectly-secure MPC with
linear communication complexity. In Theory of Cryptography Conference (TCC).
Springer, 213-230.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness the-
orems for noncryptographic fault-tolerant distributed computations. In Annual
ACM Symposium on Theory of Computing (STOC). 1-10.

Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin.
2022. Threshold Cryptography as a Service (in the Multiserver and YOSO Models).
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
323-336.

Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.
2021. Randpiper-reconfiguration-friendly random beacons with quadratic com-
munication. In ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS). 3502-3524.

Dan Boneh and Xavier Boyen. 2008. Short signatures without random oracles
and the SDH assumption in bilinear groups. Journal of Cryptology 21, 2 (2008),
149-177.

Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the
Weil pairing. In Annual International Conference on the Theory and Application of
Cryptology and Information Security (ASTACRYPT). Springer, 514-532.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for confidential transactions and
more. In IEEE Symposium on Security and Privacy (S&P). IEEE, 315-334.
Christian Cachin and Stefano Tessaro. 2005. Asynchronous verifiable information
dispersal. In IEEE Symposium on Reliable Distributed Systems (SRDS). IEEE, 191—
201.

Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-
tographic protocols. In Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 136-145.

Ran Canetti, Asaf Cohen, and Yehuda Lindell. 2015. A simpler variant of uni-
versally composable security for standard multiparty computation. In Annual
International Cryptology Conference (CRYPTO). Springer, 3-22.

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-
ifiable secret sharing and achieving simultaneity in the presence of faults. In
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 383-395.
Ashish Choudhury. 2020. Optimally-resilient unconditionally-secure asynchro-
nous multi-party computation revisited. IACR Cryptology ePrint Archive, Report
2020/906 (2020).

Ivan Damgard and Jesper Buus Nielsen. 2007. Scalable and unconditionally
secure multiparty computation. In Annual International Cryptology Conference
(CRYPTO). Springer, 572-590.

Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt: Scal-
able distributed randomness beacon with transparent setup. In IEEE Symposium
on Security and Privacy (S&P). IEEE, 2502-2517.

Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-
Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.
In IEEE Symposium on Security and Privacy (S&P). IEEE, 2518-2534.

Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for
Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656—666.

Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret
sharing. In Annual Symposium on Foundations of Computer Science (FOCS). IEEE,
427-438.

Amos Fiat and Adi Shamir. 1987. How to prove yourself: Practical solutions
to identification and signature problems. In Annual International Cryptology
Conference (CRYPTO). Springer, 186-194.

Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The algebraic group model
and its applications. In Annual International Cryptology Conference (CRYPTO).
Springer, 33-62.

Rosario Gennaro, Stanistaw Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure
distributed key generation for discrete-log based cryptosystems. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Springer, 295-310.

Martin Hirt and Jesper Buus Nielsen. 2006. Robust multiparty computation with
linear communication complexity. In Annual International Cryptology Conference
(CRYPTO). Springer, 463-482.

Bin Hu, Zongyang Zhang, Han Chen, You Zhou, Huazu Jiang, and Jianwei Liu.
2022. DyCAPS: Asynchronous Proactive Secret Sharing for Dynamic Committees.
IACR Cryptology ePrint Archive, Report 2022/1169 (2022).

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size
commitments to polynomials and their applications. In Annual International
Conference on the Theory and Application of Cryptology and Information Security

[4

[11

[12

(13

[14]

[16]

[17

(18]

[19

IS
=

[21]

[22]

[23

[24

™~
2

[26]

[27]

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

(ASIACRYPT). Springer, 177-194.

Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Polynomial Com-
mitments. (2010). https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols
for byzantine agreement. J. Comput. System Sci. 75, 2 (2009), 91-112.

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382-401.

Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket
Kate, and Andrew Miller. 2019. Honeybadgermpc and asynchromix: Practical
asynchronous mpc and its application to anonymous communication. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). 887-903.
Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,
Ari Juels, and Dawn Song. 2019. CHURP: dynamic-committee proactive secret
sharing. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2369-2386.

Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. 2014. Signature-free
asynchronous Byzantine consensus with ¢ < n/3 and O(n?) messages. In ACM
Symposium on Principles of Distributed Computing (PODC). 2-9.

Arpita Patra, Ashish Choudhury, and C Pandu Rangan. 2010. Communication
efficient perfectly secure VSS and MPC in asynchronous networks with optimal
resilience. In International Conference on Cryptology in Africa (AFRICACRYPT).
Springer, 184-202.

Torben Pryds Pedersen. 2001. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual International Cryptology Conference (CRYPTO).
Springer, 129-140.

Michael O Rabin. 1989. Efficient dispersal of information for security, load
balancing, and fault tolerance. Journal of the ACM (JACM) 36, 2 (1989), 335-348.
Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300-304.

Victor Shoup and Nigel P Smart. 2023. Lightweight Asynchronous Verifiable
Secret Sharing with Optimal Resilience. IACR Cryptology ePrint Archive, Report
2023/536 (2023).

Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,
Guy Golan Gueta, and Srinivas Devadas. 2020. Towards scalable threshold
cryptosystems. In IEEE Symposium on Security and Privacy (S&P). IEEE, 877-893.
Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. 2022.
Cobra: Dynamic proactive secret sharing for confidential bft services. In IEEE
Symposium on Security and Privacy (S&P). IEEE, 1335-1353.

Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.
2022. hbACSS: How to Robustly Share Many Secrets. In Network and Distributed
System Security Symposium (NDSS).

Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. 2022. Long live the
honey badger: Robust asynchronous dpss and its applications. IACR Cryptology
ePrint Archive, Report 2022/971.

[28]
[29]

[30

[31]

o
A

[33

[34

[35

[36]

[37

[38

[39]

[40]

[41]

[42

A GRADE-CAST FOR A LARGE MESSAGE.

This section presents a concrete protocol for gradecast, which takes
3 rounds and costs O(Ln + kn?) communication to send a message
M of size L. The protocol is described in Algorithm 4.

Error correcting code. Our protocol uses Reed-Solomon codes for
error-correcting codes. We review the interface and the property
here. The encoding algorithm takes the message M consisting of k
symbols and outputs m code words:

€1, . Cm < RS.Enc(M, m, k)

The decoding algorithm takes a set X of code words with at most r
errors and decodes the original M with k symbols:

M « RS.Dec(k,r, X)

It is well-known that the decoding algorithm can correct up to r
errors if |X| > k + 2r [37].

Correctness. We show the protocol GC satisfies graded agreement
and consistency below (validity is straightforward).

LEMMA A.1 (GRADED AGREEMENT). If an honest node outputs
(M, 1), then all honest nodes output (M,).

2572

Atsuki Momose, Sourav Das, and Ling Ren

GC - Grade-cast

A dealer D has a message M to send to all nodes.
o Round 1. The dealer D sends M to all nodes.
e Round 2. If node i receives a single message M from the
dealer, then generates
€1, Cn < RS.Enc(M,n, f +1)
and send {cj, H(M)} to each node j.
e Round 3. If node i receives {c, h} from m > f nodes, then i

forwards it to all nodes in R. If m > 2f, then i also sends
{"vote", h} to all nodes.

e At the end of round 3. If node i receives {"vote", h} from
m > 2f nodes, then node i sets b = 1. If f < m < 2f then
b=0.If m > f, reconstruct M by invoking

M «— RS.Dec(f +1,r,X)

where X is the set of more than 2f code words received
with the same hash, and r = |X| — (2f + 1). If H(M) = h,
then i outputs M with grade b.

Figure 4: Gradecast with linear communication.

PROOF. An honest node outputs a message M with grade b = 1
when the node receives {"vote", H(M)} from 2f + 1 nodes. At least
f + 1 of these must be received by all honest nodes, thus they all
have at least grade b > 0. So, the rest of the proof shows all honest
nodes can reconstruct the message M.

Among the 2f + 1 nodes who sent {"vote", H(M)}, there is a set
H of at f + 1 honest nodes. Each honest node i € H must have
received the same pair of a code word ¢; and the hash H(M) from
at least 2f + 1 nodes, out of which at least f + 1 are honest. The
f + 1 honest nodes who sent {c;, H(M)} must have received from
the dealer the same message M, whose hash matches h = H(M),
and sent every code word c; to the assigned node j, which is then
forwarded by the node j if honest. Therefore each honest node
receives a set X of at least 2f + 1 code words of M with at most
r =|X| - (2f + 1) possible error, thus reconstructing the message
M. m]

LEMMA A.2 (CONSISTENCY). If two honest nodes output (M,) and
(M, %), then M = M’.

ProoOF. Suppose for contradiction, two honest nodes output dif-
ferent messages M and M’. An honest node outputs a message M
when the node receives {"vote", H(M)} from at least f + 1 nodes,
out of which at least one node must be honest. The honest node
who sent {"vote", H(M)} must have received the same code word ¢
and the hash H(M) from a set T of at least 2f + 1 nodes. By the same
logic, there is a set T” of 2f + 1 nodes who sent the hash H(M")
along with the codes of M’. The two sets T and T’ have at least
f + 1 intersection, out of which at least one node must be honest.
However, an honest node sends a hash only if it receives a single
message. Therefore, an honest node could not have sent both H(M)
and H(M’); a contradiction. o

On the Security of KZG Commitment for VSS

B DEGREE BINDING AND PDH ASSUMPTION

In §3, we have explained the strong correctness property [28] proven
under the PDH assumption is insufficient and provided a degree
binding property as a sufficient alternative. We observe that with
our definition of degree binding, the proof based on the PDH as-
sumption does not apply. To clarify, let us review the definition of
the PDH assumption below (refer to Definition 2 in [27]).

Definition B.1 (t-PDH Assumption.). Let © € Z; be a randomly
chosen value. For any PPT adversary A, the probability

Pr[A([g.9", 9" 1) = ($(-),¢?)]

is negligible for any polynomial ¢(-) € Z4[x] s.t. the degree d
satisfies t < d < 2X.

The above definition says the PDH problem (i.e., computing
the polynomial ¢(-) and the commitment g¢’(f)) is hard to solve
for any degree d. To carefully look into the definition, when the
degree is of super polynomial, i.e., d = w(poly(x)), the statement
is trivially true since the representation of the solution ¢(-) is of
super polynomial-sized. However, it does not imply the hardness of
computing a moderate number (i.e., polynomial in x) of evaluations
on the polynomial ¢(-) of super-polynomial degree, which must
be also excluded with our degree binding. Therefore, the PDH
assumption does not apply to the proof of degree binding.

C DPSS WITH CONSTANT-ROUND EPOCH

In this section, we design a dynamic-committee proactive secret-
sharing (DPSS) building on our multi-secret VSS. Our protocol
always completes the secret handover in O(1) round and costs
O(xn®) communication. The reconfiguration-friendly nature of our
augmented KZG commitment allows our protocol to re-size the
committee over repeated handovers without redoing the powers of
tau setup.

Definition. DPSS [32] allows one committee to hand over a shared
secret to another committee. The repetition of the handover allows
the system to keep the shared secret available while changing the
responsible members. The classic definition of proactive secret-
sharing assumes each committee shares a secret over a unique
polynomial. Specifically, each node i in the old committee R holds
a share s; = ¢ (i) over a single polynomial ¢(-), and the handover
protocol allows each node j in the new committee R’ to receive
a share s; = ¢’(j) over a new polynomial ¢’ (-) sharing the same
secret ¢’ (0) = #(0). However, this definition implicitly assumes
consensus on the unique random polynomial ¢’(-). This makes
all existing DPSS protocols [26, 32, 40, 42] incur Q(n) or Q(x)
round to complete the handover in the worst case, during which
the committee must stay online. To avoid this, we let a committee
hold multiple polynomials (sharing the same secret). We give a
more formal definition below.

Let R and R’ be two (possibly joint) sets of n nodes, where at
most f < n/3 nodes are corrupt in each committee. Each node i € R
inputsavectors; = [$1(i), .., ¢ (i)] of n shares where @1 (-), .., pn (+)
are polynomials of degree f and share the same secret (i.e., there
is a unique secret z and ¢ (0) = z for all k € [n]). We also allow
some node i to include an empty share s; . = L for some entry
k € [n]. After running the handover protocol, each node j € R’

2573

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

outputs a vector s; = [gb{ (i), ., ¢, (i)] of n shares over new random
polynomials ¢/ (-), .., ¢y,(+) that shares the same secret z. To make
sure an available (i.e., recoverable by honest nodes) secret in R is
always available in committee R’, we also require the following
property.
o If there exists an entry k € [n] s.t. all honest node i € R holds
sik # L, thens;; # 1 for all honest j,I € R".
We also assume each node i when it inputs(outputs) a share
¢r (i) also inputs(outputs) the KZG witness and the commitment.

Resizable committee. As mentioned, our DPSS protocol can easily
support changing committee size and the corruption threshold
over repeated handovers. Specifically, our protocol can support
any number of nodes 0 < n < m in each committee (as long as
up to f < n/3 are corrupt) under the availability of a structured
reference string [g, g7, .., grm] for arandom 7 € Z,’;. Therefore, it
is also allowed that R and R’ have different numbers of nodes. For

simplicity of presentation, we assume they are both n nodes.

Empty share. In our DPSS, it is possible that an honest node’s
share s; includes an empty share s; . = L for some entry k € [n].
Looking ahead, this results in an honest node sharing an empty
value L. For technical reasons, we consider L as a share over an
empty polynomial for any index i € [n].

Lagrange coeflicient. We use the notation A to denote the La-
grange coeflicient for index k to interpolate a polynomial evaluation
on index 0. Specifically, for a set T of indices (used for interpolation),
the Lagrange coeflicient for index k € T is described as

=11 ﬁ

ieT\k

We omit to mention T when it is clear from the context.

C.1 Our Protocol

Our DPSS protocol is described in Figure 5. We elaborate on the
intuition below.

DPSS from leader-aided handover. For ease of understanding,
let us first consider a solution to the classic DPSS definition where
each committee holds a single polynomial. Assuming a consensus
protocol, we can design a simple handover protocol using the classic
re-sharing share technique [6]. Specifically, each member i € R of
the old committee re-shares its share s; = ¢ (i) by invoking VSS (let
us denote VSS;). Let T C R be an agreed-on set of f+1 nodes whose
VSS were successful. Each member j € R’ of the new committee
can compute its new share s; as follows

si=¢'() =D i i)
ieT

where ¢/;(j) is the share received from VSS;. The secret ¢’ (0) shared
over the new polynomial is an interpolation from ;(0) = ¢ (i)
for all i € T, thus matches the original secret ¢(0). All of the
coefficients of ¢’ (-) except for dimension zero are defined by the
coefficients of the f + 1 polynomials, which include at least one
random polynomial chosen by an honest node. Thus an adversary
cannot determine honest nodes’ shares. The communication cost is
O(kn®) as we have n single-secret VSSs each of them costs at least
0O(n?) communication.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Atsuki Momose, Sourav Das, and Ling Ren

Each node i € R inputs (s;,w;,).

// Round 1-7
Re-share. Each node i € R starts re-sharing its share s; with
the new committee R’ by invoking VSS;.

Share-proof. Let i; () be the polynomial used to share s; ;. in
VSS; and 7; i is the witness for i/; ; (0). Node i also sends to all
of the members of the new committee R’

share-proof; := (v, w;, pi, ;)

by invoking gradecast GC;, where p; [g%1, .., g%n] and

ni = [1i1, - Minl-
// Round 8-10.
Verify share-proof. Each node j € R’ verifies share-proof; re-
ceived from GC; by checking that for all k € [n], the committed
share s; ;. (i.e., yj = g°**) satisfies
VerifyEval(vg, i, s; g, wig) = 1
VerifyEval(u; k., 0, s; e, mix) = 1

where u; . is the commitment to 1; (+) received during VSS;.

Choose polynomials. Each node j € R’ chooses a set of f + 1
indices T; C [n] and an index [€ [n] that satisfies both of the
following.

(1) For all k € Tj, VSSy has outputted (§; x, W k., 9x) with suc-
cess bit b = 1 s.t. the (81, Wj i1, 0k1) # L (ie., the I-th
share is not a share over an empty polynomial).

(2) There is a commitment v, and for all i € Tj, GC; has out-
putted with grade b = 1 a verified share-proof; that includes
v =[.,v; =v,.] (i.e, the [-th commitment is v).

then, sends (T},1) to all members of the new committee R by

invoking a gradecast GC}.

// At the end of round 10.
New shares. Each node j € R’ verifies, for each i € [n], the
output (T, 1) from GC] by checking that
(1) For all k € T;, VSSy. has outputted a share (8, Wj .) s:t.
Gkt Wik > Ok1) # L.
(2) There is a commitment v, and for all k € Tj, share-proof}. is
verified and includes v = [.., 05 = v, ..].
Then, computes the new shares s; = [sj,1,..,5j,n], the commit-
ments v = [0y, .., 0] and the witnesses w; = [wj 1, .., wj]. For
i € [n] with verified {T;, I},
wji = l—[

Sji = Z Ak . sAj!k’l, vj
keT; keT;

_ Ak
= Ukl
keT;

A
Yikl

otherwise sj ;, v;, wj; < L.

Node j outputs the new share (s;,wj,v)

Figure 5: Our DPSS protocol with constant-round handover.

Back to our problem with the constant-round limit, we cannot
agree on any single bit. Since we have exponentially many possible
choices of T, nodes cannot compute shares over an agree-on poly-
nomial. To address this issue, we let each member i € R’ of the new
committee serve as a leader and choose its own set T;. This results
in a committee holding n polynomials defined by Ti, .., T,,. Now,
since each node k € R inputs n shares, the leader i also designates
the index I. Then, the i-th share of node j € R’ is computed as

Sji = Z A Ve (4)-

keT;

where ¥ ;(+) is the polynomial used for I-th sharing of VSSj (i.e.,
for sharing ¢;(i)). Here, since we have n parallel handovers in each
epoch, we have n? total secret-sharing. However, as each node has
L = n shares to re-share, we can use our multi-secret VSS protocol
with O(kn?) total communication, thus the overall communication
cost is still O(kn3).

Validate shares. When a node i € R re-shares its share s; =
$ (i), it must prove that the shared secret i/; x (0) (in VSS;) matches
the original share ¢ (i). To this end, the node i also sends (via a
gradecast) share-proof; that contains a committed share y; ;. = g*i¥,
the witness ; ;. for i; 1 (0), as well as the commitment vy to ¢y (-)
and the witness w; . for ¢ (i). Each of the new committee members
verifies the share-proof; by checking that

VerifyEval(vg, i, s; g, Wi k) = 1
VerifyEval(u; ., 0, s; k. i k) = 1

2574

where u; . is the commitment to /; ;. () received during VSS;. Here,
note that node j only knows the committed share g%i* (rather
than the share s; ;. itself). However, recall that the verification in
VerifyEval is in pairing [27]. Thus, it can be done without knowing
the s; .. Specifically, checking that VerifyEval(v, i, s, w) = 1 for y =
g° can be done by verifying the following equality

e(g.0) =e(w.g" ") - e(.g).

where e is the pairing.

C.2 Correctness Proof

We prove the correctness of our DPSS protocol. Let z be the secret
shared by the old committee R. Namely, ¢z (0) = z for all k € [n].
We first show that if an honest node j € R’ in the new committee
outputs a share st then it is a share d’l,c (j) over a unique degree-f
polynomial ¢, (-) of the same secret ¢ (0) = z.

LemMA C.1. There exists n polynomials ¢ (-), ... ¢, (-) all with
degree-f and §; (0) = z for all k € [n] s.t. if an honest node j € R’
outputs a share sj, then sj . = ¢l,< (j) or L.

ProOF. Due to the commitment property of VSS, if an honest
node j € R’ in the new committee outputs (§;;,wj,;, ;) from VSS;,
then for each k € [n], (8 W;x,9;x) is a share for node j over
a unique degree-f polynomial ¢; ;. (-). Each node j € R computes
the output (sj;, wj,;,v;) for each i € [n] based on the set T; of
indices and an index ! € [n] proposed by i € R via GC]. Due to
the consistency of GC, all honest nodes receive the same (T;,).

On the Security of KZG Commitment for VSS

An honest node j € R’ computes the output (sj;, wj;v;) # L
after verifying that for all k € T;, share-proof}. is verified and
includes the same commitment vy ; = . Since at least one of T;
must be honest, v is the commitment to ¢;(-). The verification

of share-proof; = (v, wg, pg, ni) makes sure that g ; = gP1 (k)
(by the first condition), and further (by the second condition) that
Ui 1(0) = ¢;(k). Therefore, there is a polynomial uniquely defined
by the set of indices T;

$1()= > A via() ($(0) =2)
keT;

and the new share (sj;, wj;,0;) will be

Sji = Z M+ Sjkt = 97 (J)

keT;
— Ak _ Pt
b = 1—[By = 9"
keT;
(1) =9} ()
_ "Ak _ %
Wji = Wikt=9
keT;

Therefore, if the node j computes a new share (s]-,i, wji,0i) # L,
then it must be the share on the polynomial ¢/ (-) uniquely defined
by the set T;. O

2575

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Finally, we show that an available secret among R is also always
available among R’.

LEMMA C.2. If there exists an entry k € [n] s.t. all honest node
i € Rinputss; # L, thens;j j; # L for all honest j, j’ € R'.

Proor. The honest node j € R computes s;, j» based on the set
Tj proposed by the honest node j* € R. When the node j’ chooses
its Tj» and [, it checks that (for all k € Tj) VSSy has outputted
with success bit b = 1 the share (8 x,W;: x,9) the [-th entry non-
empty (8 k.1, Wikl 0k1) # L. Due to guaranteed output of VSS,
the honest node j must receive a share (81, W1, 0x1) # L.
Moreover, the node j’ must have received a verified share-proof.
with grade b = 1 from GCy. Due to the graded consistency of GC,
the share-proof . is also received and verified by node j. Therefore,
if the node j” can compute T} and [, then node j can compute the
share (sj j, wj j,0j) # L.

The rest of the proof shows that the honest node j’ can always
compute Tj» and [. Let T C Rbe aset of f+1honest nodes. Each node
i € T honestly shares s; ;. # L via VSS;, which makes j’ receive
(87 ,iks Wjr i ks Oi) # L with success bit b = 1 (due to the validity
property of VSS). Node i also honestly sends a verified share-proof;
via GC;, making node j’ receive share-proof; with grade b = 1 (due
to the validity property of GC) and verify it. Therefore, node j” can
choose Tjy = T and [= k. O

	Abstract
	1 Introduction
	2 Model and Preliminaries
	2.1 Multi-secret VSS
	2.2 KZG commitment
	2.3 Other primitives

	3 Overview
	3.1 Degree-binding KZG Commitment for Multiple Polynomials
	3.2 Multi-Secret VSS with Optimal Communication

	4 Degree Binding KZG Commitment
	5 Multi-Secret VSS with Optimal Communication
	5.1 Our Protocol
	5.2 Correctness Proof
	5.3 Secrecy Proof
	5.4 Reducing Computational Overhead
	5.5 Extension to Asynchronous VSS

	6 Related Works
	7 Discussion and Conclusion
	Acknowledgments
	References
	A Grade-cast for a large message.
	B Degree binding and PDH Assumption
	C DPSS with Constant-Round Epoch
	C.1 Our Protocol
	C.2 Correctness Proof

