
On the Security of KZG Commitment for VSS

Atsuki Momose
University of Illinois at
Urbana-Champaign
Urbana, IL, USA

atsuki.momose@gmail.com

Sourav Das
University of Illinois at
Urbana-Champaign
Urbana, IL, USA

souravd2@illinois.edu

Ling Ren
University of Illinois at
Urbana-Champaign
Urbana, IL, USA

renling@illinois.edu

ABSTRACT

The constant-sized polynomial commitment scheme by Kate, Za-

verucha, and Goldberg (Asiscrypt 2010), also known as the KZG

commitment, is an essential component in designing bandwidth-

e�cient veri�able secret-sharing (VSS) protocols. We point out,

however, that the KZG commitment is missing two important prop-

erties that are crucial for VSS protocols.

First, the KZG commitment has not been proven to be degree

binding in the standard adversary model without idealized group

assumptions. In other words, the committed polynomial is not guar-

anteed to have the claimed degree, which is supposed to be the

reconstruction threshold of VSS. Without this property, sharehold-

ers in VSS may end up reconstructing di�erent secrets depending

on which shares are used.

Second, the KZG commitment does not support polynomials

with di�erent degrees at once with a single setup. If the reconstruc-

tion threshold of the underlying VSS protocol changes, the protocol

must redo the setup, which involves an expensive multi-party com-

putation known as the powers of tau setup.

In this work, we augment the KZG commitment to address both

of these limitations. Our scheme is degree-binding in the stan-

dard model under the strong Di�e-Hellman (SDH) assumption. It

supports any degree 0 < Ě f ģ under a powers-of-tau common

reference string withģ+1 group elements generated by a one-time

setup.

CCS CONCEPTS

• Security and privacy→ Distributed systems security.

KEYWORDS

Veri�able secret sharing; KZG polynomial commitment

ACM Reference Format:

Atsuki Momose, Sourav Das, and Ling Ren. 2023. On the Security of KZG

Commitment for VSS. In Proceedings of the 2023 ACM SIGSAC Conference

on Computer and Communications Security (CCS ’23), November 26–30, 2023,

Copenhagen, Denmark. ACM, New York, NY, USA, 15 pages. https://doi.org/

10.1145/3576915.3623127

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623127

1 INTRODUCTION

Veri�able secret-sharing (VSS) [15] allows a designated dealer to

share a secret with a set of Ĥ nodes, of which at most Ĝ nodes are

malicious. Later, the set of nodes runs an interactive protocol to

recover the secret. VSS has been used as a crucial component to

design secure protocols of multi-party computation (MPC) [6, 31],

distributed key generation [19, 24], randomness beacon [8, 18], and

many more. MPC protocols, in particular, require the dealer to

simultaneously share multiple secrets, often proportional to the

circuit size. We refer to VSS where the dealer shares multiple secrets

simultaneously as a multi-secret VSS.

Existing e�cient constructions of VSS, especially multi-secret

VSS [2, 41] crucially rely on polynomial commitment schemes with

constant commitment size and constant evaluation proof. Con-

cretely, they use the celebrated Kate-Zaverucha-Goldberg polyno-

mial commitment scheme [27], here on referred to as the KZG

commitment.

Polynomial commitment, when used for VSS, must be degree

binding, i.e., the degree of the polynomial used to share the secret

must match the threshold Ĝ (or lower). Intuitively, this ensures

that each honest node outputs the same secret during the recovery

protocol. Otherwise, interpolations using di�erent sets of Ĝ + 1

shares would result in honest nodes outputting di�erent secrets.

Despite its established use, this important degree-binding prop-

erty has not been proven for the KZG commitment. The original

KZG paper [27, 28] proves a similar property called strong cor-

rectness using a non-standard polynomial Di�e-Helman (PDH)

assumption. We observe that the strong correctness property is

insu�cient for VSS (we will elaborate on this in §3). Very recently,

Abraham et al. [2] prove the degree binding property, which they

refer to as interpolation binding, assuming hardness of Strong Di�e

Helman (SDH) [9] in the Algebraic Group Model [23], which sig-

ni�cantly constrains the adversary’s capabilities. This strong as-

sumption has to do with the common reference string (CRS) of the

KZG commitment. Speci�cally, the KZG commitment to a degree-Ĝ

polynomial č (·) is represented as ĝč (ă) for generator ĝ ∈ G and

a trapdoor ă ∈ Z∗ħ , which is computed from a powers-of-tau CRS

[ĝ,ĝă , . . . , ĝă
Ĝ
]. Obviously, the degree binding property of the KZG

commitment relies on the fact that the adversary does not know

ĝă
Ĝ +ġ

for any ġ > 0. However, it is hard to argue that the adversary

cannot compute the higher powers ĝă
Ĝ +ġ

in the standard model

where the adversary can access the group representation and per-

form arbitrary operations on them. This is what leads Abraham et

al. to resort to an idealized group model (such as AGM) to prove

the degree binding property of the KZG commitment.

Relying on the incapability of computing higher powers for

degree-binding introduces another issue. VSS protocols built on the

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Atsuki Momose, Sourav Das, and Ling Ren

original KZG commitment are not recon�guration friendly. Namely,

the protocols are unsuitable for systems in which the number of

participants and the fault threshold changes dynamically [2, 41].

In recon�gurable systems where the threshold Ĝ changes during

the execution, the protocol must use a separate CRS with a distinct

trapdoor for each threshold. This is undesirable as the size of the

CRS may become prohibitively large.

Our result. The main contribution of this work is to augment

the KZG commitment to make it degree-binding against the stan-

dard adversary, i.e., without idealized group assumptions. Our aug-

mented KZG commitment supports any degree 0 < Ě f ģ with a

single CRS [ĝ,ĝă , . . . , ĝă
ģ
], and hence e�ciently supports recon�g-

urable systems. Building on our augmented KZG commitment, we

design a multi-secret VSS with optimal communication. Formally,

Theorem 1.1. Assuming the existence of a public-key infrastruc-

ture, random oracle, and a universal common reference string under

the SDH assumption, there exists a multi-secret VSS protocol with

ċ (ċĈĤ + ċĤ2) communication tolerating Ĝ < Ĥ/3 corruption, where

Ĉ is the number of secrets and ċ is the security parameter.

The core technical ingredient is the proof of degree from an

aggregated linear-sized commitment, such as Feldman commit-

ment [21]. Our key idea is that, instead of making sure an adversary

is incapable of committing to a higher-degree polynomial, we make

it detectable. Speci�cally, we allow an adversary to compute a KZG

commitment to a higher-degree polynomial, but its degree is re-

vealed due to the standard degree-binding property of the Feldman

commitment. Since we do not rely on the adversary’s inability

to compute higher powers, we do not have to assume an ideal-

ized group model (like [2] does). The Feldman commitment is of

ċ (ċĤ) size and hence cannot be used directly. We instead aggregate

Ĉ = ċ (Ĥ) commitments to amortize the cost.

Not relying on the inability to compute higher powers in CRS

makes our scheme recon�guration-friendly. This has an immediate

impact on existing dynamic committee threshold cryptography. For

example, the state-of-the-art dynamic committee proactive secret-

sharing (DPSS) [26, 42] adopts the original KZG commitment to

batch-amortize the communication cost. These protocols require

a powers-of-tau setup every time the committee is resized. These

repeated setups can be avoided if our augmented KZG is used

instead. We also present a DPSS protocol using our VSS protocol in

Appendix C.

Remark on proof size. Here, we reiterate that our augmented

KZG commitment is always linear-sized, so it may not be suitable

for a single polynomial. However, we also note that in the context

of VSS, the KZG commitment is speci�cally useful when dealing

with a linear number of polynomials [3, 41]. For a single-secret VSS

involving a single polynomial, standard linear-sized commitments

such as Feldman or Pedersen commitments are su�cient since we

already incur quadratic communication in other aspects.

Remark on the network model. For ease of exposition, we

present our multi-secret VSS protocol assuming a synchronous

network. Our VSS protocol can be easily extended to tolerate asyn-

chronous networks using existing techniques (cf. §5.5). Our DPSS

protocol, however, works only in the synchrony model.

Organization. The rest of the paper is organized as follows. After

providing the model, the problem de�nitions, and some prelimi-

naries in §2, we give an overview of the key technical highlights

in §3. We present our augmented KZG commitment in §4 and our

multi-secret VSS protocol in § 5. We review related works in §6 and

conclude with discussions in §7.

2 MODEL AND PRELIMINARIES

We consider a system of Ĥ nodes (numbered from 1 to Ĥ) of which

at most Ĝ < Ĥ/3 are corrupt. All corrupt nodes are controlled by a

probabilistic polynomial-time (PPT) adversary A. The adversary

chooses which nodes to corrupt upfront, i.e., we assume static cor-

ruption. Also, we assume that every pair of nodes can communicate

over an authenticated and private channel, which is commonly

implemented with a digital signature and symmetric/asymmetric

encryption under a public-key infrastructure.

When we assume the synchrony model, we consider a simple

lockstep round model. Any message sent by an honest node within

a round is delivered to the recipient by the end of that round. Unless

explicitly stated otherwise, a value in this paper is an element of

a prime �eld Zħ where ħ g 2ċ and a polynomial is an element

of Zħ [Į]. Let ĝ be a generator of a group G of order ħ such that

a bilinear pairing ě : G × G → GĐ exists [10]. We use [ė] to

denote an ordered set {1, . . . , ė} and use [ė, Ę] to denote {ė, . . . , Ę}.

We use the bold notation x to denote a vector. For a vector of

polynomials 5 = [č1 (·), . . . , čĈ (·)], we use 5 (ğ) to denote element-

wise evaluations at ğ , i.e., [č1 (ğ), . . . , čĈ (ğ)].

2.1 Multi-secret VSS

A multi-secret veri�able secret-sharing (VSS) protocol allows a

dealer D ∈ [Ĥ] to share Ĉ secrets z = [İ1, . . . , İĈ] with all nodes.

At the end of the protocol, each node ğ ∈ [Ĥ] outputs the share

sğ = [ĩğ,1, . . . , ĩğ,Ĉ] along with a bit Ę ∈ {0, 1}. The bit Ę indicates

whether the overall sharing was successful. In other words, Ę = 1

means that all honest nodes have successfully received their shares.

The protocol must satisfy the following properties:

• (Weak) guaranteed output. If an honest node outputs Ę = 1, then

every honest node ğ has a non-empty share sğ ≠ §.

• Commitment. There exist Ĉ polynomials č1 (·), . . . , čĈ (·) all with

degree Ĝ s.t. for any honest node ğ , if ğ has a non-empty share

sğ ≠ §, then for all ġ ∈ [Ĉ], ĩğ,ġ = čġ (ğ).

• Validity. If the dealer is honest, then all honest nodes outputĘ = 1,

and the Ĉ polynomials (de�ned by the commitment property)

satisfy čġ (0) = İġ for all ġ ∈ [Ĉ].

• Secrecy (informal). If the dealer is honest, the adversary learns

no information about z beyond public values.

Note that it is possible that a node outputs nothing, which we

capture with outputting sğ = §. We formally de�ne the secrecy

property in §5.3, when we de�ne the ideal functionality FVSS for

multi-secret VSS. Although FVSS also captures the correctness prop-

erties de�ned above, we provide these property-based de�nitions

for ease of exposition.

Remark on guaranteed output. The classical de�nition of VSS [6,

15] requires a stronger guaranteed output property, i.e., at the end

On the Security of KZG Commitment for VSS CCS ’23, November 26–30, 2023, Copenhagen, Denmark

of the protocol, either every honest node outputs the correct share,

or nobody outputs (i.e., outputs §). To achieve this property, all

existing VSS protocols use a broadcast [20]. However, the stronger

guaranteed output property is not always required. For example,

applications such as [8, 18] (including our DPSS protocol) do not

need this strong guarantee. In this paper, we use a weaker guaran-

tee on output, which lets us design a VSS protocol withċ (1) round

complexity. We also note that a protocol satisfying our VSS de�ni-

tion can be easily extended to the classical de�nition by invoking a

binary Byzantine agreement [1, 30, 33] at the end.

2.2 KZG commitment

We now describe the part of the KZG polynomial commitment

required to understand our paper and refer readers to [27] for more

details. To commit to a polynomial of degree Ě , the commitment

scheme requires a powers-of-tau CRS [ĝ,ĝă , . . . , ĝă
Ě
] for a secret

ă ∈ Z∗ħ , and provides the following interfaces.

• Ĭ ← Commit(č (·)). On input a polynomial č (·) of degree Ě , it

computes the commitment Ĭ = ĝč (ă) .

• ĭğ ← CreateWitness(č (·), ğ). On input a polynomial č (·) and

an index ğ , it computes a witness ĭğ for the evaluation č (ğ) as:

ĭğ = ĝć (ă) where ć (Į) =
č (Į) − č (ğ)

Į − ğ

• Ę ← VerifyEval(Ĭ, ğ, č (ğ),ĭğ). On input a polynomial commit-

ment Ĭ , an index ğ , an evaluation č (ğ), and the witness ĭğ , it

checks whether č (ğ) is equal to the committed polynomial eval-

uated at ğ .

Assuming the hardness of the Strong Di�e-Helman (SDH), the

KZG commitment is binding and hiding, where.

• (Evaluation) binding. No adversary can compute two di�erent

polynomial evaluations č (ğ) and č ′ (ğ) ≠ č (ğ) along with wit-

nesses ĭğ and ĭ
′
ğ s.t. they are both veri�ed by VerifyEval with

respect to the same commitment Ĭ .

• Hiding. Given evaluations of a polynomial č (·) on any set Ĕ of

less than Ě indices along with the witnesses and the commitment,

no adversary can compute č (Ġ) for Ġ ∉ Ĕ .

De�nition 2.1 (SDH Assumption). Let ă ∈ Z∗ħ be a random �eld

element. For any ℓ ∈ ċ (poly(ċ)) and any PPT adversary A, the

probability

Pr[A([ĝ,ĝă , . . . , ĝă
ℓ
]) → (ĝ

1
ă+ę , ę)]

is negligible for any freely chosen ę ∈ Zħ .

2.3 Other primitives

We use a random oracle denoted H(·) instantiated by a crypto-

graphic hash function. We also use the random oracle to build a

pseudorandom function (PRF). For simplicity, we use PRFĩ (č) to de-

note H(ĩ |č). Our protocol also uses the Feldman commitment [21]

and a Gradecast protocol, as de�ned below.

Feldman commitment. For a polynomialč (Į) = ė0+ė1Į+, . . . , ėĚĮ
Ě

of degree-Ě , the Feldman commitment v is the vector de�ned as

v = [ĝė0 , . . . , ĝėĚ]

Given the commitment v, a evaluation č (ğ) can be veri�ed by

checking that

ĝč (ğ) =
∏

0fġfĚ

Ĭğ
ġ

ġ

Gradecast [29]. Gradecast allows a dealer D to broadcast a mes-

sageĉ with weak consensus. Speci�cally, at the end of the protocol,

each node outputs (ĉ,Ę) where ĉ ∈ {0, 1}Ĉ is a message of any

length Ĉ = ċ (poly(ċ)) and Ę ∈ {0, 1} is a grade bit satisfying the

following properties.

• Consistency. If two honest nodes output (ĉ, ∗) and (ĉ′, ∗), re-

spectively, forĉ,ĉ′ ≠ § thenĉ = ĉ′.

• Graded agreement. If an honest node outputs (ĉ, 1), all honest

nodes output (ĉ, ∗).

• Validity. If the dealer is honest, all honest nodes output (ĉ, 1).

Note that a gradecast allows a node to output nothing, which

is expressed as outputting ĉ = §. Concretely, we use the grade-

cast protocol (henceforth denoted GC) in Appendix A. GC has a

communication cost ċ (ĈĤ + ċĤ2).

3 OVERVIEW

In this section, we present an overview of this work to elaborate

on the technical contributions.

3.1 Degree-binding KZG Commitment for

Multiple Polynomials

As we describe in §1, the degree binding property intuitively guar-

antees that the committed polynomial is of the claimed degree (or

lower), which is supposed to be the reconstruction threshold of

the VSS scheme. Formalizing the degree binding property turns

out to be non-trivial. Recall from §2.2, the KZG commitment of

a polynomial č (·) of degree Ě is Ĭ = ĝč (ă) . However, Ĭ is also a

commitment to a di�erent polynomial č ′ (·) with degree Ě′ ≠ Ě ,

whenever č (ă) = č ′ (ă). A tempting but incorrect way of de�ning

degree binding is:

“No PPT adversary A can output a polynomial commitment Ĭ

along with Ě′ + 1 evaluations and valid proofs such that interpolating

the Ě′ + 1 evaluations results in a polynomial of degree Ě′ > Ě .”

The strong correctness property in the KZG paper [27, 28] is

indeed de�ned in this �avor. However, this is insu�cient for the VSS

correctness due to its implicit constraint on Ě′. More concretely,

as de�ned above, the PPT algorithm A needs to output ¬(Ě′)

values, which implicitly assumes Ě′ is polynomial in the security

parameter ċ. In VSS, however, the adversary A (or the corrupt

dealer) is required to compute only ċ (Ĥ) evaluations (shares for

nodes), even when it commits to a polynomial of super-polynomial

degree, i.e., Ě′ = Ĉ (poly(ċ)). We address this subtlety by de�ning

the degree binding as follows.

De�nition 3.1 (informal). No PPT adversary A can compute a

commitment Ĭ to a polynomial č (·) together with

(1) A set Ĕ of Ě + 1 indices and for each ğ ∈ Ĕ , the evaluation č (ğ)

and the corresponding witness; and

(2) An additional evaluation č (Ġ) for Ġ ∉ Ĕ such that č (Ġ) ≠ č ′ (Ġ),

where č ′ (·) is the degree-Ě polynomial de�ned by the evalua-

tions of č (·) at Ĕ .

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Atsuki Momose, Sourav Das, and Ling Ren

Intuitively, our de�nition ensures that even if Ĭ is a commitment

to a polynomial of super-polynomial degree, all witness evaluations

of č (·) lie on a unique polynomial č ′ (·) of degree Ě .

We note that the proof technique used for strong correctness in

the KZG paper [28] does not apply to De�nition 3.1 (see Appendix B

for more detailed discussions). We also note that our degree binding

property is equivalent to the interpolation binding de�ned in [2],

but with a slightly di�erent description for ease of extension to the

batch setting below.

Degree-binding for batch setting. As noted in §1, within the

context of VSS, KZG commitment is speci�cally useful in batch

settings where a linear number of polynomials need to be commit-

ted. Therefore, we will de�ne the concept of degree binding for

multiple polynomials. To this end, we �rst extend the interface of

the KZG commitment to include a degree proof. Speci�cally, for a set

of polynomials 5 = [č1 (·), . . . , čĈ (·)], a degree proof ÿ convinces a

veri�er that all polynomials in 5 are of degree at most Ě . We extend

the degree binding property for multiple polynomials as follows.

De�nition 3.2 (informal). No adversary A can compute a vector

of commitments v to a vector of polynomials 5 together with

(1) A set of Ĕ of Ě + 1 indices, and for each ğ ∈ Ĕ , the evaluations

5 (ğ) with the witnesses, and the degree proof ÿ ; and

(2) An additional single evaluation čġ (Ġ) ≠ č ′
ġ
(Ġ) with the wit-

ness for any ġ ∈ [Ĉ] where č ′
ġ
(·) is a degree-Ě polynomial

interpolated from the Ě + 1 evaluations for čġ (·) at Ĕ .

Intuitively, in VSS with Ě = Ĝ , the above property guarantees

that when Ĝ + 1 honest shareholders receive all Ĉ shares with a

valid degree proof, the shares of the remaining honest nodes lie on

the same degree-Ĝ polynomial. Looking ahead, this is su�cient to

achieve VSS correctness.

Degree proof from aggregated commitment.We obtain a de-

gree proof from an aggregation of linear-sized commitments. A

simple example is an aggregated Feldman commitment. Speci�-

cally, the degree proof ÿ for polynomials č1 (·), . . . , čĈ (·) of the

same degree is a Feldman commitment to the following aggregated

polynomial

¨(·) =
∑

1fġfĈ

Āġ · čġ (·),

which is a random linear combination of the polynomials 5 with

coe�cients Ā1, . . . , ĀĈ ; let us assume here these random values

are chosen after the polynomials are given (we apply Fiat-Shamir

later [22]). In VSS, a dealer, when sharing Ĉ secrets over polyno-

mials č1 (·), . . . , čĈ (·), also sends the above Feldman commitment

along with the shares. Once a shareholder ğ receives the shares

č1 (ğ), . . . , čĈ (ğ), it veri�es the aggregation of the shares ¨(ğ) with

the Feldman commitment, besides the veri�cation of individual

share with the KZG commitment. The Feldman commitment has

¬(ċĤ) size (as the degree isĚ = Ĝ), but it is amortized over Ĉ = ċ (Ĥ)

secrets. Due to the randomization, it is hard for a corrupt dealer to

choose dependent polynomials with higher degrees (trying to can-

cel out the higher degree terms) while preserving the aggregated

polynomial degree-Ĝ . While the construction is quite intuitive, the

proof is not as straightforward as one might expect. Our proof

based on a reduction to the SDH problem (in Lemma 4.2) might be

of independent interest.

The key conceptual di�erence from the previous approach to

achieving the degree binding of KZG lies in not explicitly preventing

an adversary from computing a KZG commitment to a high-degree

polynomial. Instead, we separately detect the degree by making

use of a linear-sized commitment that is degree-revealing by de-

sign. This approach, not only helps us eliminate idealized group

assumptions but also enables us to reuse the same powers-of-tau

CRS for multiple degrees. Speci�cally, we can support polynomials

with any degree 0 < Ě f ģ using a single CRS [ĝ,ĝă , . . . , ĝă
ģ
],

eliminating the need for repeated setup.

Why not use aggregated Feldman directly in place of KZG?

One might wonder why we do not use the aggregated Feldman com-

mitment directly to verify the shares in place of KZG commitments.

This is because the veri�cation using the aggregated commitment

requires having shares of all the committed polynomials. In other

words, it does not allow for the individual veri�cation of each share.

This limitation is problematic because, in most applications, there is

a need to utilize each individual secret share separately. Therefore,

we opt to use the aggregated commitment only for degree checking

while using KZG commitments for verifying each share.

3.2 Multi-Secret VSS with Optimal

Communication

One of the major tasks in VSS is to disseminate the shares e�ciently

but veri�ably. Namely, we have to solve the following problem with

ċ (Ĉ) communication (i.e., constant cost per node): an honest node

ğ receives the correct share sğ = [č1 (ğ), . . . , čĈ (ğ)] or all honest

nodes detect the corrupt dealer. Note that we will have Ĥ instances

of this task (i.e., for each node ğ) so the overall cost will be ċ (ĈĤ).

Below, let us assume for simplicity that the KZG commitments to

the polynomials are known to all nodes. Also, we assume Ĉ = Ĝ + 1

for simplicity.

The �rst natural technique we can use is a veri�able information

dispersal algorithm (IDA) [12, 36]. In IDA, there is a single sender

who holds a messageĉ , and at the end of the protocol, the erasure-

coded symbols of the message are distributed among the nodes.

Speci�cally, the messageĉ is encoded into Ĥ symbols [ę1, . . . , ęĤ]

using (Ĝ , Ĥ)-erasure coding, and each node Ġ will receive Ġ-th sym-

bol ę Ġ . The dealer in VSS can use IDA to disseminate the node ğ’s

share ĉ = sğ . Upon receiving the assigned symbol ę Ġ , each node

Ġ forwards it to the shareholder ğ and sends a vote to all nodes.

If 2Ĝ + 1 nodes send votes, at least Ĝ + 1 honest nodes must have

forwarded their code words, so the shareholder ğ can successfully

reconstruct the original message. Otherwise, all honest nodes know

the dealer is corrupt. Since each symbol is of constant size, the

communication cost is ċ (Ĉ) (the voting cost is amortized over Ĥ

instances of dissemination).

However, there is one remaining task to complete the problem.

Recall that the messageĉ that node ğ receives must be the correct

batch of shares sğ = [č1 (ğ), . . . , čĈ (ğ)]. This requirement is not

guaranteed in the IDA above. In other words, while node ğ is guar-

anteed to receive a messageĉ that the dealer has sent, the message

ĉ may not necessarily contain the correct shares – potentially, an

arbitrary blob when the dealer is corrupt. Therefore, if the dealer

On the Security of KZG Commitment for VSS CCS ’23, November 26–30, 2023, Copenhagen, Denmark

sends an invalid message ĉ through the IDA, the corresponding

shareholder ğ must forward the message ĉ to all other nodes to

help other honest nodes detect the corrupt dealer. However, this

dealer implication step incurs ¬(ċĤ3) communication in the worst

case (i.e., when all nodes implicate the dealer) as the messageĉ is

of size Ĉ = ¬(Ĥ) [41].

E�cient implication from systematic RS code. To achieve the

dealer implication step with ċ (ċĤ2) communication, let us delve

more into the IDA implementation. The problem with the use of

black-box IDA is that it is hard to validate the message without

reconstructing the whole message. Each node can send only a

constant-sized message during the implication step. In the above

IDA using black-box erasure coding, each individual code symbol

does not carry su�cient information to detect an invalid message.

We solve this problem by utilizing a speci�c erasure coding scheme

in which each code symbol has a certain relation to the original

message. Concretely, we implement IDA using a systematic Reed-

Solomon code [37]. The messageĉ = sğ is encoded as evaluations

of a degree-Ĝ polynomialć (·) interpolated from the shares

sğ = [č1 (ğ), . . . , čĈ (ğ)] .

Namely, ć (ġ) = čġ (ğ) for all ġ ∈ [Ĉ]. Then the code words are

de�ned as

c = [ć (1), . . . ,ć (Ĥ)] .

Note that the �rst Ĉ symbols correspond to the original message

(by the nature of systematic code).

ę1 = č1 (ğ), ę2 = č2 (ğ), . . . , ęĈ = čĈ (ğ).

Recall that the message ĉ is considered invalid if any single

element ĩğ,ġ is not a valid share čġ (ğ). Therefore, receiving the

corresponding symbol ęġ = ĩğ,ġ is enough to detect an invalid

messageĉ , and hence a corrupt dealer. This allows the shareholder

ğ to implicate the dealer with a constant-sized message and reduces

the overall communication cost to ċ (ċĤ2).

Note that the protocol described above does not guarantee the

secrecy of the shares. Our protocol in §5 applies a simple one-time

pad based on PRF to hide the shares during IDA.

4 DEGREE BINDING KZG COMMITMENT

In this section, we augment the KZG commitment to make it degree-

binding. The augmented KZG commitment supports polynomials

of any degree 0 < Ě f ģ under a universal structured reference

string [ĝ,ĝă , . . . , ĝă
ģ
] for a trapdoor ă ∈ Z∗ħ .

Extended interface. To formally de�ne degree binding and our

commitment scheme, we �rst extend the interface of the KZG com-

mitment. Speci�cally, in addition to all the interfaces of the original

KZG commitment, we de�ne two auxiliary functions to prove/verify

the degree of the committed polynomials as follows:

• ÿ ← ProveDeg(5, v). It takes as input Ĉ polynomials 5 of degree

at most Ě , and the corresponding commitments v,

5 = [č1 (·), . . . , čĈ (·)]

v = [ĝč1 (ă) , . . . , ĝčĈ (ă)]

and outputs a degree proof ÿ .

• Ę ← VerifyDeg(Ě, v, ÿ, ğ, 5 (ğ)). It takes as input the degree Ě , a

vector v of commitments, the degree proof ÿ , and the evaluations

of all committed polynomials on index ğ , and outputs Ę ∈ {0, 1}

indicating if all the polynomials are of degree at most Ě .

Degree binding. Our goal is to design an extended KZG commit-

ment with the above auxiliary functions that satis�es the following

degree binding property:

De�nition 4.1 (Degree Binding). For any Ě > 0 and any PPT

adversary A, the probability that A successfully computes all of

the following simultaneously is negligible.

(1) Commitments v = [Ĭ1, . . . , ĬĈ] and a degree proof ÿ .

(2) A set Ą of Ě + 1 distinct indices, evaluations 5 (ğ) along with the

witnessesĭğ,1, . . . ,ĭğ,Ĉ for all ğ ∈ Ą s.t.

VerifyEval(Ĭġ , ğ, čġ (ğ),ĭğ,ġ) = 1 ∀ġ ∈ [Ĉ]

VerifyDeg(Ě, v, ÿ, ğ, 5 (ğ)) = 1

(3) For any ġ ∈ [Ĉ] and Ġ ∈ Zħ , a polynomial evaluation čġ (Ġ)

along with the witnessĭ Ġ,ġ s.t.

VerifyEval(Ĭġ , ğ, čġ (Ġ),ĭ Ġ,ġ) = 1

čġ (Ġ) ≠ č ′
ġ
(Ġ)

where č ′
ġ
(·) is the degree-Ě polynomial uniquely de�ned by the

Ě + 1 evaluations of čġ (·) on indices in Ą .

Intuition in the use of VSS. In our VSS protocol, a dealer shares Ĉ

secrets İ1, . . . , İĈ over polynomials č1 (·), . . . , čĈ (·) all with degree

at most Ě = Ĝ . A corrupt dealer may try to use polynomials with

a higher degree Ě > Ĝ . However, our protocol makes sure at least

Ĝ +1 honest nodes verify their shares withVerifyEval andVerifyDeg.

These shares de�ne Ą and č ′
ġ
(·) for all ġ ∈ [Ĉ]. The degree binding

property guarantees, if another node Ġ receives its share čġ (·) of

any ġ-th secret, then it must be čġ (Ġ) = č ′
ġ
(Ġ). Therefore, all valid

shares lie on a unique polynomial of degree at most Ĝ .

Our augmented KZG commitment.We now describe our aug-

mented KZG commitment with the two auxiliary functions in Fig-

ure 1. The proving function ProveDeg generates the Feldman com-

mitment to the aggregated polynomial. Speci�cally, it �rst gener-

ates deterministic pseudo-random values Ā1, . . . , ĀĈ that bind to the

commitment v by querying the random oracle, i.e., Āġ = H(v |ġ).

Then, it computes a commitment ÿ to the aggregated polynomial

¨(·) =
∑

1fġfĈ

Āġ · čġ (·) = Ă0 + Ă1Į + . . . + ĂĚĮ
Ě .

The veri�cation function VerifyDeg performs the same aggregation

operation on the shares and the KZG commitments. Speci�cally,

it �rst performs the aggregation on the shares in the exponent to

check that ∑

1fġfĈ

Āġ · čġ (ğ) = Ă0 + Ă1ğ + . . . + ĂĚğ
Ě ,

It then performs the aggregation on the commitments on the pairing

to verify
∑

1fġfĈ

Āġ · čġ (ă) = Ă0 + Ă1ă + . . . + ĂĚă
Ě .

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Atsuki Momose, Sourav Das, and Ling Ren

Degree-binding KZG commitment.

Besides all functionalities of KZG commitment, we have two

additional functionalities to prove and verify the degree Ě of

polynomials.

ÿ ← ProveDeg(5, v).

• Generate random values 1 = [Ā1, . . . , ĀĈ] by querying the

random oracle Āġ ← H(v |ġ) for each ġ ∈ [Ĉ].

• Let aġ be the vector of coe�cients of čġ (·). Compute

[Ă0, . . . , ĂĚ] = Ā1a1 + . . . + ĀĈaĈ .

• Output ÿ = [ĝĂ1 , . . . , ĝĂĚ].

Ę ← VerifyDeg(Ě, v, ÿ, ğ, 5 (ğ)).

• If |ÿ | ≠ Ě , then output Ę = 0.

• Generate random values 1 = [Ā1, . . . , ĀĈ] by querying the

random oracle Āġ ← H(v |ġ) for each ġ ∈ [Ĉ].

• If both of the following conditions hold, then output Ę = 1,

otherwise, Ę = 0.∏

1fġfĈ

ĝĀġ ·čġ (ğ) =

∏

0f ĠfĚ

ÿğ
Ġ

Ġ

∏

1fġfĈ

ě (Ĭġ , ĝ)
Āġ =

∏

0f ĠfĚ

ě (ÿ Ġ , ĝ
ă Ġ
)

ÿ Ġ is the Ġ-th element of ÿ , and ě (·) is the pairing.

Figure 1: Our augmented KZG commitment.

We show that our augmented KZG commitment is degree-binding

under the SDH assumption.

Lemma 4.2. Under the SDH assumption, the augmented KZG com-

mitment in Figure 1 is degree binding.

Proof. Suppose an adversary A computes (1) and (2) in De�-

nition 4.1. Namely, A has commitments v = [Ĭ1, . . . , ĬĈ], a degree

proof ÿ , and evaluations 5 (ğ) with the witnessesĭğ,1, . . . ,ĭğ,Ĉ for

Ě + 1 distinct indices ğ ∈ Ą . Let ă (·) be the degree-Ě polynomial

de�ned by the proof ÿ = [ĝĂ0 , . . . , ĝĂĚ]:

ă (Į) = Ă0 + . . . + ĂĚĮ
Ě

Let ¨′ (·) be the polynomial de�ned as follows:

¨
′ (·) =

∑

1fġfĈ

Āġ · č
′
ġ
(·) .

where č ′
ġ
(·) is the degree-Ě polynomial interpolated from the Ě + 1

evaluations on čġ (·) for Ą . Due to the �rst condition of VerifyDeg,

and since čġ (ğ) = č ′
ġ
(ğ) for each ğ ∈ Ą by de�nition, we have

∏

1fġfĈ

ĝĀġ ·č
′
ġ
(ğ)

=

∏

0f ĠfĚ

ĝĂ Ġ ·ğ
Ġ
.

Thus, we have ¨′ (ğ) = ă (ğ) for all ğ ∈ Ą . Since both ¨
′ (·) and ă (·)

are of degree-Ě and share the same points on Ě + 1 indices, we have

¨
′ (·) = ă (·). Due to the second condition of VerifyDeg, we have

∑

1fġfĈ

Āġ · čġ (ă) = ă (ă) = ¨
′ (ă).

Put in another way, let % = [ą1, . . . , ąĈ] where ąġ = čġ (ă) − č
′
ġ
(ă).

We have that the inner product of % and 1 is % · 1 = 0. Since the

choice of the vector % (uniquely determined by v) is independent of

the random oracle’s outputs 1, the probabilityA can choose % ≠ 0

that satis�es % · 1 = 0 is negligible. Therefore, % = 0 and we have

čġ (ă) = č ′
ġ
(ă) for all ġ ∈ [Ĉ].

Now, suppose for contradiction that A can also compute (3),

namely, an evaluation with a witness

čġ (Ġ), ĭ Ġ,ġ = ĝ
čġ (ă)−čġ (Ġ)

ă− Ġ

for some ġ, Ġ ∈ [Ĉ] that satis�es čġ (Ġ) ≠ č ′
ġ
(Ġ). The adversary A

can also easily compute

č ′
ġ
(Ġ), ĭ ′

Ġ,ġ
= ĝ

č′
ġ
(ă)−č′

ġ
(Ġ)

ă− Ġ

Since we have čġ (ă) = č ′
ġ
(ă), the adversary A can compute

(
ĭ Ġ,ġ

ĭ ′
Ġ,ġ

)
1

č′
ġ
(Ġ)−čġ (Ġ) = ĝ

1
ă− Ġ .

This breaks the SDH assumption. □

5 MULTI-SECRET VSS WITH OPTIMAL

COMMUNICATION

This section presents a multi-secret VSS with ċ (ċĈĤ + ċĤ2) com-

munication for sharing Ĉ secrets. For simplicity, we �rst present

a synchronous protocol, and then explain how to extend it to an

asynchronous protocol using existing techniques.

Share format. Our VSS protocol (in fact VSS protocols in general)

outputs not only the share ĩğ = č (ğ) but the witnessĭğ and the com-

mitment Ĭ to the polynomial. Therefore, for ease of presentation,

we say (ĩğ ,ĭğ , Ĭ) is a valid share for ğ ∈ [Ĥ] if

VerifyEval(Ĭ, ğ, ĩğ ,ĭğ) = 1

When the shared polynomial č (·) is known, we say (ĩğ ,ĭğ , Ĭ) is a

valid share for ğ over č (·).

Encryption with PRF. We make use of PRF to generate a one-

time pad for encrypting each node’s share. We assume each node ğ

before starting the protocol exchanges a secret key skğ ∈ Z
∗
ħ with

the dealer D and receives the dealer’s signature on the secret key.

For simplicity, we use the notation Āğ,ġ = PRFskğ (ġ) and Ā′
ğ,ġ

=

PRFskğ (Ĥ + ġ) to denote the one-time pads for ġ ∈ [Ĥ].

5.1 Our Protocol

We describe our multi-secret VSS protocol (denotedVSS) in Figure 2.

For ease of exposition, we present a protocol for sharing Ĉ = Ĝ + 1

secrets, and it can be easily extended to support any number of

secrets.

Intuitive overview. The protocol consists of three phases. The

dealer D sends to each node ğ the share 5 (ğ) through a veri�able

information dispersal algorithm (IDA) (Commit–Reconstruct). If

a node receives an invalid message from the IDA, the node impli-

cates the dealer (Accuse). Then, nodes vote in two rounds if they

have not detected any misbehavior of the dealer and output the

shares if there are enough votes (Ready–Output). These steps basi-

cally follow hbACSS [41]. There are, however, two key di�erences

On the Security of KZG Commitment for VSS CCS ’23, November 26–30, 2023, Copenhagen, Denmark

VSS – Multi-secret VSS.

Let D be the dealer who has secrets z := [İ1, . . . , İĜ +1] to share.

• We assume each node ğ and the dealer D share a random se-

cret key skğ signed by D.

• Let Āğ,ġ = PRFskğ (ġ) and Ā
′
ğ,ġ

= PRFskğ (Ĥ + ġ) denote the one-

time pads for each ġ ∈ [Ĥ].

// Round 1–3.

Commit. The dealer D computes the following:

(1) Ĝ + 1 random polynomials č1 (·), . . . , č Ĝ +1 (·) with degree Ĝ

for sharing İ1, . . . , İĜ +1.

(2) For each Ġ ∈ [Ĥ], letć Ġ (·) andć
′
Ġ (·) be two polynomials with

degree-Ĝ s.t. for all ġ ∈ [Ĝ + 1]

ć Ġ (ġ) = čġ (Ġ) · Ā Ġ,ġ ć ′Ġ (ġ) = ĭ Ġ,ġ · Ā′
Ġ,ġ

whereĭ Ġ,ġ is the witness for čġ (Ġ).

(3) Let v, u, u′ be the vectors of commitments to 5 (·), 7 (·), 7′ (·),

and ÿĬ, ÿī , ÿ
′
ī be the associated degree-proofs.

The dealer D sends to each node Ġ ∈ [Ĥ], for all ġ ∈ [Ĥ],

codeġ,Ġ := (ćġ (Ġ), ć
′
ġ
(Ġ), č Ġ,ġ , č

′
Ġ,ġ
)

where č Ġ,ġ and č′
Ġ,ġ

are the witnesses forćġ (Ġ) andć
′
ġ
(Ġ).

D also sends (v, u, u′, ÿĬ, ÿī , ÿ
′
ī) to all nodes through GC.

// Round 4.

Forward. If node ğ has received codeĠ,ğ for all Ġ ∈ [Ĥ] that are

veri�ed with the commitments u, u′ and degree proofs ÿī , ÿ
′
ī

received fromGCwith grade Ę = 1, then node ğ forwards codeĠ,ğ
to node Ġ .

// Round 5.

Reconstruct. Node ğ computesćğ (·) andćğ (·) by interpolation

using Ĝ +1 points received through codeğ,∗ veri�ed with the com-

mitments u, u′ and the proofs ÿī , ÿ
′
ī received from GC (with

any grade).

Accuse. Node ğ veri�es that for all ġ ∈ [Ĉ], (ĩğ,ġ ,ĭğ,ġ , Ĭġ) is a

valid share for ğ , where

ĩğ,ġ = ćğ (ġ) · Āğ,ġ ĭğ,ġ = ć ′ğ (ġ) · Ā′
ğ,ġ

If the veri�cation failed for any ġ , node ğ sens to all nodes

accuseğ := (ćğ (ġ),ć
′
ğ (ġ), čğ,ġ , č

′
ğ,ġ
),

for an arbitrary such ġ ∈ [Ĥ] along with the signed skğ .

// Round 6.

Ready. Node ğ sends “ready” to all nodes if

(1) ğ forwarded codeĠ,ğ to each Ġ ∈ [Ĥ] in round Ī = 3; and

(2) Node ğ’s shares (sğ ,wğ , v) are veri�ed with ÿĬ ; and

(3) ğ has not received any valid accusation, namely

accuseĠ := (ĩ̂ Ġ,ġ , ĭ̂ Ġ,ġ , č Ġ,ġ , č
′
Ġ,ġ
) .

with the signed skĠ s.t. both of the following hold.

(a) (ĩ̂ Ġ,ġ , č Ġ,ġ , īġ) and (ĭ̂ Ġ,ġ , č
′
Ġ,ġ
, ī′

ġ
) are both valid shares

for index ġ .

(b) (ĩ Ġ,ġ ,ĭ Ġ,ġ , Ĭ Ġ) is not a valid share for Ġ where

ĩ Ġ,ġ = ĩ̂ Ġ,ġ · Ā Ġ,ġ ĭ Ġ,ġ = ĭ̂ Ġ,ġ · Ā′
Ġ,ġ

// Round 7.

Complete. If node ğ has received “ready” from 2Ĝ + 1 nodes,

then send “complete” to all nodes.

// At the end of round 7.

Output. If node ğ has received “complete” fromģ > 2Ĝ nodes,

then ğ outputs Ę = 1, otherwise Ę = 0. Ifģ > Ĝ , then ğ outputs

the share (sğ ,wğ , v).

Figure 2: Our multi-secret VSS for sharing Ĉ = Ĝ + 1 secrets. For simplicity of presentation, we assume the representation of a

group element has the same length as that of a �eld element.

from hbACSS as we alluded to in §3. First, we use our augmented

KZG commitment (from §4), which helps achieve the commitment

property of VSS. Second, our IDA implementation is based on the

systematic RS code, which allows nodes to implicate a corrupt

dealer with a constant-sized accusation message. We elaborate on

each step below.

Commit. The dealer D �rst computes the sharing polynomial,

encoding polynomials (for erasure coding), and the associated com-

mitments and degree proofs. Speci�cally, it �rst samples the ran-

dom sharing polynomials of degree-Ĝ denoted č1 (·), . . . , č Ĝ +1 (·)

s.t. čġ (0) = İġ for all ġ ∈ [Ĝ + 1]. Then, for each node ğ ∈ [Ĥ],

the dealer computes two encoding polynomials ćğ (·) and ć ′ğ (·)

both with degree-Ĝ for disseminating the shares and the associated

witnesses. They are interpolated from the Ĝ + 1 shares/witnesses

encrypted with one-time pads. For each ġ ∈ [Ĝ + 1],

ćğ (ġ) = čġ (ğ) · Āğ,ġ ć ′ğ (ġ) = ĭğ,ġ · Ā′
ğ,ġ
,

whereĭğ,ġ is thewitness forčġ (ğ). Herewe note that eachwitness is

a group element and its representation is larger than a �eld element

(e.g., a share), so we have to use multiple encoding polynomials

depending on the representation of a group element. For simplicity,

we assume a witness has the same length as a �eld element.

The dealer also computes the vectors v, u, u′ of commitments to

the three types of polynomials. Speci�cally, for each ġ ∈ [Ĝ + 1], Ĭġ
is the commitment to čġ (·), and for each ġ ∈ [Ĥ], īġ and ī′

ġ
are the

commitments toćġ (·) andć
′
ġ
(·), respectively. Also ÿĬ , ÿī , and ÿ

′
ī

are degree proofs for 5 (·), 7 (·), and 7′ (·), respectively. Speci�cally,

ÿĬ = ProveDeg([č1 (·), . . . , č Ĝ +1 (·)], v) .

ÿī and ÿ ′ī are computed similarly. Then, the dealer starts dissemi-

nating the share for node ğ by sending to each node Ġ the code word

(for both share and witness)

codeğ, Ġ := (ćğ (Ġ), ć
′
ğ (Ġ), č Ġ,ğ , č

′
Ġ,ğ)

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Atsuki Momose, Sourav Das, and Ling Ren

where č Ġ,ğ and č
′
Ġ,ğ are the witnesses forćğ (Ġ) andć

′
ğ (Ġ). The dealer

also sends to all nodes the commitments and the degree proofs by

invoking a gradecast (de�ned in §2), denoted GC.

Forward and reconstruct. If the gradecast GC outputs the com-

mitments and proofs with grade Ę = 1, a node veri�es the assigned

code words. Speci�cally, for the encoding polynomials 7 (·) =

[ć1 (·), . . . ,ćĤ (·)], node ğ checks that

VerifyEval(ī Ġ , ğ,ć Ġ (ğ), č Ġ,ğ) = 1 ∀Ġ ∈ [Ĥ]

VerifyDeg(Ĝ , u, ÿī , ğ, 7 (ğ)) = 1,

Node ğ also performs the same check on 7′ (ğ). If all of the veri�ca-

tions pass, node ğ forwards to node each Ġ the code word codeĠ,ğ .

Node ğ then computes the encoding polynomialsćğ (·) andć
′
ğ (·)

by interpolation using the collected code words after verifying with

the commitments īğ and ī
′
ğ . This completes the IDA for node ğ .

Accuse. The node ğ then checks if the reconstructed message is

valid. Speci�cally, for each ġ ∈ [Ĝ + 1], node ğ performs decryption

on the encoded symbols

ĩğ,ġ = ćğ (ġ) · Āğ,ġ ĭğ,ġ = ć ′ğ (ġ) · Ā′
ğ,ġ

and then check if (ĩğ,ġ ,ĭğ,ġ , Ĭġ) is a valid share. If any of them are

invalid, node ğ chooses an arbitrary suchġ , and implicates the dealer

by sending to all nodes

accuseğ := (ćğ (ġ),ć
′
ğ (ġ), čğ,ġ , č

′
ğ,ġ
),

and reveals the PRF key skğ signed by the dealer.

Ready/complete/output. The sharing is completed after two

rounds of voting. Each node �rst sends “ready” if it has not detected

any dealer’s misbehavior. The absence of misbehavior is checked

based on three criteria. First, the node must have forwarded all

code words supposed to be assigned. Second, the share (sğ ,wğ , v)

must be veri�ed with the degree-proof ÿĬ , namely

VerifyDeg(Ĝ , v, ÿĬ, ğ, sğ) = 1,

Finally, the node ğ must have neither sent nor received any valid

accusation. If all of these conditions hold, then the node considers

the dealer has behaved honestly. Each node then sends “complete”

if it receives “ready” from 2Ĝ + 1 nodes. Finally, node ğ outputs

the share (sğ ,wğ , v) if it has received “complete” from more than

Ĝ nodes. Also, if 2Ĝ + 1 nodes sent “complete”, then outputs Ę = 1

indicating the overall sharing is successful.

5.2 Correctness Proof

We �rst show the correctness of our multi-secret VSS protocol for

sharing Ĉ = Ĝ + 1. Validity is straightforward.

Lemma 5.1 (Commitment). There exist polynomialsč1 (·), . . . , čĈ (·)

all with degree Ĝ s.t. for any honest node ğ ∈ [Ĥ], if ğ has a non-empty

output (sğ ,wğ , v) ≠ § then, for all ġ ∈ [Ĉ], (ĩğ,ġ ,ĭğ,ġ , Ĭġ) is a valid

share for ğ over čġ (·).

Proof. Suppose an honest node ğ outputs (sğ ,wğ , v) ≠ §. Then,

for each ġ ∈ [Ĉ], (ĩğ,ġ ,ĭğ,ġ , Ĭġ) is a valid share for node ğ . The

node ğ must have received the commitments v from GC. Due to the

consistency property of GC, honest nodes do not have any other

commitments v′ ≠ v. Therefore, if any honest node Ġ has an output

(s Ġ ,w Ġ , v
′) ≠ §, then, v = v′ and for each ġ ∈ [Ĉ], (ĩ Ġ,ġ ,ĭ Ġ,ġ , Ĭġ) is

a valid share for node Ġ . The honest node ğ computes the output

(sğ ,wğ , v) ≠ § after receiving “complete” from at least Ĝ + 1 nodes.

Out of these Ĝ + 1 nodes, at least one node is honest, who has

received “ready” from at least 2Ĝ + 1 nodes. A subset Ą of Ĝ + 1

nodesmust be honest. Each node Ġ ∈ Ą must have received a unique

valid share (ĩ Ġ,ġ ,ĭ Ġ,ġ , Ĭġ) for each ġ ∈ [Ĉ] (due to the evaluation

binding property). The shares for Ą de�ne, for each ġ ∈ [Ĉ], a

unique degree-Ĝ polynomial čġ (·). Since all of the shares for Ą

are also veri�ed by VerifyDeg, due to the degree-binding property,

node ğ’s output (ĩğ,ġ ,ĭğ,ġ , Ĭġ) must be a share over čġ (·) for each

ġ ∈ [Ĉ]. □

Lemma 5.2 (Guaranteed output). If an honest node outputs

Ę = 1, then all honest nodes have non-empty (≠ §) outputs.

Proof. If an honest node outputs Ę = 1, at least 2Ĝ + 1 nodes

must have sent “complete”, out of which at least Ĝ + 1 nodes (say Ą)

must be honest. Let ğ be any honest node. Each honest node Ġ ∈ Ą

must have forwarded to ğ

codeğ, Ġ := (ćğ (Ġ),ć
′
ğ (Ġ), č Ġ,ğ , č

′
Ġ,ğ),

and all of them must be veri�ed with the commitments u, u′ and

the degree proofs ÿī , ÿ
′
ī received from GC with grade Ę = 1. Due

to the graded consistency property of GC, node ğ must receive the

commitments u, u′ and the degree proofs ÿī , ÿ
′
ī from GC. Thus,

the node ğ can interpolate the degree-Ĝ polynomialsćğ (·) andć
′
ğ (·)

from the Ĝ + 1 veri�ed points on each polynomial.

Suppose any of the reconstructed share (ĩğ,ġ ,ĭğ,ġ , Ĭġ) (where

ĩğ,ġ = ćġ (ğ) · Āğ,ġ andĭğ,ġ = ć ′
ġ
(ğ) · Ā′

ğ,ġ
) is not a valid share for ğ ,

then node ğ would have sent to all nodes

accuseğ := (ĩğ,ġ ,ĭğ,ġ , čğ,ġ , č
′
ğ,ġ
) .

Then, nodes in Ą would not have sent “ready”, a contradiction.

Therefore, the node ğ must have received, for all ġ ∈ [Ĉ], a valid

share (ĩğ,ġ ,ĭğ,ġ , Ĭġ), and outputs (sğ ,wğ , v) ≠ §. □

5.3 Secrecy Proof

Next, we show the secrecy of our protocol VSS based on the stan-

dard simulation-based argument [13, 14]. The ideal functionality is

de�ned in Figure 3. We �rst brie�y mention that the functionality

satis�es the VSS correctness. If the dealer is honest, all honest nodes

receive the shares of the secrets z over randomly sampled degree-Ĝ

polynomials with success bit Ę = 1 (validity). Even if the dealer is

corrupt, the functionality computes honest nodes’ shares over a

unique degree-Ĝ polynomial čġ (·) for each ġ ∈ [Ĉ] (commitment).

Furthermore, if there is an honest node that outputs success bit

Ę = 1, then the functionality must receive Ę∗ğ ≠ § for all ğ , so it

delivers shares to all honest nodes (guaranteed output). We now

show the secrecy of our protocol below.

Lemma 5.3. The protocol VSS realizes the functionality FVSS.

Proof. Let A be the adversary, andZ be the environment. We

construct a simulator S that simulates the real-world adversary’s

view in the execution of VSS while interacting with the function-

ality FVSS. Without loss of generality, we assume nodes [1, . . . , Ĝ]

are corrupt.

On the Security of KZG Commitment for VSS CCS ’23, November 26–30, 2023, Copenhagen, Denmark

FVSS – Ideal functionality of VSS.

Let Ĉ = Ĝ + 1.

• In round 1, receive from an honest dealer z = [İ1, . . . , İĈ],

and compute the following

– Randomly sampled polynomials 5 = [č1 (·), . . . , čĈ (·)]

of degree Ĝ to share z.

– b∗ = [Ę∗1, . . . , Ę
∗
Ĥ] where Ę

∗
ġ
= 1 for all ġ ∈ [Ĥ].

Then, send to the adversary, for each corrupt node ğ ,

(sğ ,wğ , v) and degree-proof ÿĬ where for each ġ ∈ [Ĉ],

(ĩğ,ġ ,ĭğ,ġ , Ĭġ) is a share for ğ over čġ (·).

• If it receives 5 = [č1 (·), . . . , čĈ (·)] and b
∗ ∈ {0, 1,§}Ĥ from

a corrupt dealer in any round, check that

– čġ (·) is a degree-Ĝ polynomial for all ġ ∈ [Ĉ], and

– If there is an honest node ğ with Ę∗ğ = 1, then for all

honest node ġ ∈ [Ĥ], Ę∗
ġ
≠ §.

Otherwise, set 5, b∗ = §.

• In round 7, send (sğ ,wğ , v) and Ę = Ę∗ğ to each honest node

ğ ∈ [Ĥ] if Ęğ ≠ § where for each ġ ∈ [Ĉ], (ĩğ,ġ ,ĭğ,ġ , Ĭġ) is a

share for node ğ over čġ (·). For node ğ with Ę∗ğ = §, send

Ę = 0 as the success bit.

Figure 3: Ideal functionality of our VSS protocol

Corrupt dealer case. S locally executes VSS with A. Let 5 =

[č1 (·), . . . , čĈ] be the degree-Ĝ polynomials used to share the se-

crets in the local execution. Due to the commitment property, a

unique polynomial čġ (·) always exists for each ġ ∈ [Ĉ]. The simu-

lator S computes the čġ (·) by interpolating shares for Ĝ + 1 honest

nodes who sent “ready”. Let b∗ = [Ę∗1, . . . , Ę
∗
Ĥ] where Ę

∗
1, . . . , Ę

∗
Ĝ
= 0

and Ę∗
Ĝ +1

, . . . , Ę∗Ĥ be the success bit Ę that VSS outputs in honest

nodes Ĝ + 1, . . . , Ĥ. S sends to FVSS both 5 and b . S sends any

message to the environmentZ thatA sends in the local execution.

Now we showZ’s view in the ideal world is indistinguishable

from that of the real world. First, honest nodes’ outputs should

be identical to the outputs in the simulated execution due to the

guaranteed output of VSS. If Ę∗ğ = 1 for any honest node ğ , then

for all ġ ∈ [Ĥ], Ę∗
ġ
≠ §. Thus, FVSS computes the shares for honest

nodes over the polynomials 5 sent by S, hence the same output in

the S’s local execution. Corrupt nodes’ outputs and the message

sent directly fromS are both exactly the same as the local execution.

Honest dealer case. S locally executes VSS with A except that

honest nodes deviate from the protocol as follows:

(1) The honest dealer performs honest sharing for corrupt nodes,

but for honest nodes, perform sharing with fake secrets. Specif-

ically, let (ŝğ , ŵğ , v̂) be the share for each corrupt node ğ and

ÿ̂Ĭ be the degree proof, which S receives from FVSS. For each

ġ ∈ [Ĉ], the dealer computes the sharing polynomial čġ (·) (for

each ġ ∈ [Ĉ]) by interpolation using čġ (ğ) = ĩ̂ğ,ġ for all ğ ∈ [Ĝ]

and a randomly chosen čġ (Ĝ + 1). The witness ĭğ,ġ is set to

ĭ̂ğ,ġ for each corrupt ğ . The commitment vector is v = v̂. The

degree proof for the sharing polynomials is ÿĬ = ÿ̂Ĭ . Except for

these, the dealer behaves as speci�ed.

(2) Each honest node ğ will not send accuseğ . Namely, the honest

nodes, despite receiving invalid shares, behave as if the sharing

was successful.

In both the ideal world and the real world, nodes’ outputs are

shares of z over randomly sampled polynomials 5 and are identi-

cally distributed in both. The rest of the proof shows that (for each

sampled 5) whatZ receives from S in the ideal world is indistin-

guishable from what is received fromA in the real world. It is easy

to see that whatZ receives is identical in both worlds except for

variables dependent on the encoding polynomialsćğ (·) andć
′
ğ (·)

for each honest ğ . The encoding polynomial ćğ (·) is interpolated

from the independently randomized symbols čġ (ğ) · Āğ,ġ . Since the

PRF key skğ is unknown to Z, each of these symbols and hence

the encoding polynomialćğ (·) is indistinguishable in both worlds,

The same argument holds forć ′ğ (·). Therefore, whatZ receives is

indistinguishable in both worlds. □

5.4 Reducing Computational Overhead

Asmentioned, our protocol follows the construction of hbACSS [41].

The main distinction from hbACSS lies in the use of our augmented

KZG commitment with additional degree proof. An important point

to discuss is how much overhead is introduced by the degree proof.

One can easily observe that the communication cost is negligible, as

the degree proof is a single Feldman commitment of sizeċ (Ě). The

dealer’s computational overhead for generating degree proof is also

trivial, requiring only ċ (Ě) elliptic curve group exponentiation.

In comparison, computing commitment and witnesses requires

ċ (ĚĈĤ) group exponentiation. However, verifying a degree proof

requires Ĉ paring operations, which introduces an overhead com-

parable to the cost of verifying evaluation proofs. This issue can be

partially mitigated by using another commitment scheme in place

of the Feldman commitment.

Degree proof from masked polynomial. Essentially, we can

adopt any aggregatable commitment for degree proof. One such

example is the commitment scheme based on random polynomial

masking [17, 38]. Speci�cally, a dealer chooses a random mask

polynomial č0 (·) besides the sharing polynomials č1 (·), . . . , čĈ (·),

and open a random linear combination

¨(·) =
∑

0fġfĈ

Āġ · čġ (·)

as the proof of degree, where Āġ is random values chosen indepen-

dently from the choice of polynomials. The random polynomial

č0 (·) is also shared among nodes (i.e., node ğ receives č0 (ğ)) along

with the KZG commitment Ĭ0 = ĝč0 (ă) and associated evaluation

proofs.

Each shareholder ğ performs the veri�cation similar to that of

Figure 1. Speci�cally, node ğ checks that

¨(ğ) =
∑

0fġfĈ

Āġ · čġ (ğ)

ĝ¨(ă) =
∏

0fġfĈ

Ĭ
Āġ
ġ

The proof of degree binding for the Feldman variant (Lemma 4.2)

can be generalized to the above variant. In essence, the proof shows

that the committed polynomials on the Feldman commitments and

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Atsuki Momose, Sourav Das, and Ling Ren

the KZG commitments are equal. Since the aggregated commitment

is degree binding by design, this implies that the polynomials bind-

ing to the KZG commitments also have the claimed degree. The

equality of polynomials follows from the fact that the adversary

cannot choose di�erent polynomials whose random combinations

agree. These arguments directly apply to the above approach.

Finally, to brie�y analyze the overhead for each shareholder, the

KZG veri�cation takes 3 pairings per secret while the veri�cation of

degree proof takes one group exponentiation per secret. Therefore,

we believe this is a worthwhile cost for achieving security under

the standard model and for providing recon�guration friendliness.

5.5 Extension to Asynchronous VSS

We have presented our VSS protocol in the synchrony model. The

protocol can be extended to support an asynchronous network

using existing techniques. In an asynchronous network, there is

no bound on the message delivery delay. Thus, asynchronous VSS

(AVSS) allows each node to output its share whenever it receives

enough messages. Also, nodes do not output the success bit any-

more because failure to receive a share at some point does not mean

a node will never receive its share. The guaranteed output property

is changed accordingly, which is also called completeness.

• If an honest node ğ outputs the share sğ , then every honest node

Ġ eventually outputs the share s Ġ .

To achieve this property, we have to make two major modi�ca-

tions to our synchronous VSS.

Timed algorithm to event-triggered. The �rst standard modi�-

cation is to make the algorithm event-triggered and non-blocking.

Each event must be upon receiving enough valid messages as mes-

sages are not guaranteed to be timely delivered in an asynchronous

network. For example, forwarding code words (tagged Forward)

happens upon receiving all code words that are veri�ed with the

commitments and degree proofs. Similarly, sending “ready” hap-

pens upon receiving all valid shares and forwarding all valid code

words, and sending “complete” happens upon receiving 2Ĝ + 1

“ready”. Gradecast should be replaced by reliable broadcast, which

allows nodes to receive the sender’s message at any time.

Share recovery for completeness. The key challenge in extend-

ing synchronous to asynchronous VSS is to achieve completeness

stated above. In synchronous VSS, once a valid accusation is re-

ceived, honest nodes can simply abort the sharing by outputting

the failure bit Ę = 0. Under asynchrony, however, an honest node’s

accusation can be delayed arbitrarily, which can be after other hon-

est nodes output their shares. Therefore, the honest node that failed

to receive its valid share needs a way to recover its share. This

problem is solved by the ShareRecovery algorithm (Algorithm 2) of

hbAVSS [41]). In a nutshell, the missing shares can be interpolated

from Ĝ + 1 honest nodes’ shares.

6 RELATEDWORKS

Veri�able secret-sharing [15, 35] is an essential tool in threshold

cryptography. There has been a lot of research on single-secret

VSS for di�erent network models and di�erent security levels. For

a brief review, existing information-theoretic VSS protocols toler-

ate Ĝ < Ĥ/3 corruption and cost ċ (ċĤ3) communication both in

synchrony and asynchrony [16]. With computational security, a

synchronous VSS tolerates Ĝ < Ĥ/2 corruption and cost ċ (ċĤ2)

communication [8], and an asynchronous AVSS tolerates Ĝ < Ĥ/3

corruption and cost ċ (ċĤ2) communication [3]. Single-secret VSS

has applications including distributed key generation for threshold

signature/encryption [24] and randomness beacons [8, 18]. In some

applications, however, a dealer must share multiple secrets [6, 42].

Such a multi-secret VSS can be solved more e�ciently by amor-

tizing some costs over multiple secrets. Here, we review several

existing approaches to achieve multi-secret VSS with linear cost.

Along the way, we also review the polynomial commitments used

in these schemes.

Player-elimination in MPC. The preprocessing phase of MPC

usually involves each node sharing a large number of secrets, typi-

cally proportional to the number of gates in the circuit. Thus, amor-

tizing the sharing cost over multiple secrets is a natural problem in

MPC [5, 17, 25]. The common approach is to detect corrupt nodes

and eliminate them from the execution. The cost of eliminating at

most Ĝ corrupt nodes is amortized over the remaining honest exe-

cution with linear communication. However, this approach takes

ċ (Ĥ) rounds and does not work in asynchrony. We also note that

it is unclear if this approach is applicable to standalone VSS.

Packed secret-sharing. Patra et al. [34] presents asynchronous

multi-secret VSS with ċ (ċĈĤ + Ĥ2) communication but tolerates

Ĝ < Ĥ/4 corruption. Their protocol takes the classic packed sharing

approach, namely a linear number of secrets are shared with a

single polynomial. However, this approach inherently sacri�ces the

corruption threshold.

IDA-then-accuse. Another natural approach, which we follow

to some extent, is to rely on an information dispersal algorithm

(IDA). Yurek et al. [41] presented an asynchronous multi-secret VSS

with linear communication. The protocol uses a black-box IDA to

disseminate a batch of shares to each node. Nodes then validate

the shares and implicate the dealer upon receiving incorrect shares.

Since the implication is required to contain all the Ĉ = ċ (Ĥ) received

shares, the total communication cost is at least ¬(Ĥ3). hbACSS has

several variants depending on the polynomial commitment scheme

used. hbACSS0 and hbACSS2 use a polynomial commitment based

on Bulletproofs [11] and does not need the powers of tau setup. But

the communication cost is ¬(ċĈĤ logĤ +ċĤ3) and the commitment

is not homomorphic. hbACSS1 achieves ċ (ċĈĤ + ċĤ3) using the

original KZG commitment.

Bingo. The closest work to this paper is Bingo [2], an asynchronous

multi-secret VSS with optimal ċ (ċĈĤ + ċĤ2) communication. They

use a bivariate polynomial to share multiple secrets at once with

amortized linear cost per secret. They use the KZG commitment

extended for bivariate polynomials.

The main advantage of this work over Bingo is that we achieve

degree binding without idealized group assumptions. Bingo adopts

the original KZG commitment and proves it is degree-binding (they

call it interpolation binding) under the Algebraic adversary (i.e., in

the AGM). We have eliminated the idealized group assumption of

AGM by separately detecting the high-degree polynomials using

an aggregation of linear-sized commitments as degree proof.

On the Security of KZG Commitment for VSS CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Bingo achieves adaptive security, while our scheme only achieves

static security. Achieving adaptive security with our augmentation

is interesting future work.

Optimistic approach. Optimizing the cost in an optimistic ex-

ecution is another common approach. Basu et al. [4] present a

single-secret VSS protocol with linear communication in failure-

free cases. However, the protocol incurs quadratic communication

in the worst case. The protocol uses the original KZG commitment.

Benhamouda et al. [7] present a synchronous multi-secret VSS pro-

tocol that costs amortized linear communication when the dealer

is honest. When the dealer is malicious, honest nodes’ shares are

opened to everybody, thus costing quadratic communication per

secret.

7 DISCUSSION AND CONCLUSION

In this work, we have revisited the security of the KZG commitment

in the use of VSS and pointed out two issues with the original KZG

commitment: 1) it is not proven degree-binding without idealized

group assumptions, and 2) it does not support multiple degrees

with a single setup. We have augmented the KZG commitment to

make it degree-binding and presented a multi-secret VSS protocol

building on our extended KZG commitment. Finally, we discuss

some limitations of our protocols to conclude the paper.

Fault-tolerance limit.Another important question is whether it is

possible to achieve linear communication with optimal corruption

threshold Ĝ < Ĥ/2 in synchrony. The bottleneck is in disseminating

shares. The classic technique of IDA using erasure coding [12]

(which we also adopt) has a fundamental limit on the threshold.

Speci�cally, nodes can expect to receive votes from Ĥ − Ĝ nodes,

of which Ĥ − 2Ĝ are honest and forward the assigned code words

that help shareholders recover the original message. We must have

Ĥ − 2Ĝ = ¬(Ĥ) to achieve linear communication with this approach.

Computational complexity. Another general problem with the

use of KZG commitment (both in the original and ours) is its com-

putation cost. Computing a witness for each share requires a linear

number of group exponentiation. Some previous works showed

how to compute the witnesses with logarithmic computation cost in

a batch setting [39, 41]. However, their experimental results showed

that it is still costly compared to linear-sized commitment schemes.

So the computation/communication trade-o� still exists.

ACKNOWLEDGMENTS

Wewould like to thank the anonymous reviewers at ACM CCS 2023

for their helpful feedback. We thank Dahlia Malkhi and Andrew

Miller for valuable discussions related to this paper. This work is

funded in part by the NSF award 2240976.

REFERENCES
[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.

2019. Synchronous Byzantine Agreement with Expectedċ (1) Rounds, Expected

ċ (Ĥ2) Communication, and Optimal Resilience. In Financial Cryptography and
Data Security (FC). Springer, 320–334.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad
Stern. 2022. Bingo: Adaptively Secure Packed Asynchronous Veri�able Secret
Sharing and Asynchronous Distributed Key Generation. IACR Cryptology ePrint
Archive, Report 2022/1759 (2022).

[3] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-threshold avss
with optimal communication complexity. In Financial Cryptography and Data
Security (FC). Springer, 479–498.

[4] Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K Reiter,
and Emin Gün Sirer. 2019. E�cient veri�able secret sharing with share recovery
in BFT protocols. In ACM SIGSAC Conference on Computer and Communications
Security (CCS). 2387–2402.

[5] Zuzana Beerliová-Trubíniová and Martin Hirt. 2008. Perfectly-secure MPC with
linear communication complexity. In Theory of Cryptography Conference (TCC).
Springer, 213–230.

[6] Michael Ben-Or, Sha� Goldwasser, and Avi Wigderson. 1988. Completeness the-
orems for noncryptographic fault-tolerant distributed computations. In Annual
ACM Symposium on Theory of Computing (STOC). 1–10.

[7] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin.
2022. Threshold Cryptography as a Service (in the Multiserver and YOSOModels).
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
323–336.

[8] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.
2021. Randpiper–recon�guration-friendly random beacons with quadratic com-
munication. In ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS). 3502–3524.

[9] Dan Boneh and Xavier Boyen. 2008. Short signatures without random oracles
and the SDH assumption in bilinear groups. Journal of Cryptology 21, 2 (2008),
149–177.

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from the
Weil pairing. In Annual International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT). Springer, 514–532.

[11] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short proofs for con�dential transactions and
more. In IEEE Symposium on Security and Privacy (S&P). IEEE, 315–334.

[12] Christian Cachin and Stefano Tessaro. 2005. Asynchronous veri�able information
dispersal. In IEEE Symposium on Reliable Distributed Systems (SRDS). IEEE, 191–
201.

[13] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-
tographic protocols. In Annual Symposium on Foundations of Computer Science
(FOCS). IEEE, 136–145.

[14] Ran Canetti, Asaf Cohen, and Yehuda Lindell. 2015. A simpler variant of uni-
versally composable security for standard multiparty computation. In Annual
International Cryptology Conference (CRYPTO). Springer, 3–22.

[15] Benny Chor, Sha� Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-
i�able secret sharing and achieving simultaneity in the presence of faults. In
Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 383–395.

[16] Ashish Choudhury. 2020. Optimally-resilient unconditionally-secure asynchro-
nous multi-party computation revisited. IACR Cryptology ePrint Archive, Report
2020/906 (2020).

[17] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and unconditionally
secure multiparty computation. In Annual International Cryptology Conference
(CRYPTO). Springer, 572–590.

[18] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt: Scal-
able distributed randomness beacon with transparent setup. In IEEE Symposium
on Security and Privacy (S&P). IEEE, 2502–2517.

[19] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-
Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.
In IEEE Symposium on Security and Privacy (S&P). IEEE, 2518–2534.

[20] Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for
Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656–666.

[21] Paul Feldman. 1987. A practical scheme for non-interactive veri�able secret
sharing. In Annual Symposium on Foundations of Computer Science (FOCS). IEEE,
427–438.

[22] Amos Fiat and Adi Shamir. 1987. How to prove yourself: Practical solutions
to identi�cation and signature problems. In Annual International Cryptology
Conference (CRYPTO). Springer, 186–194.

[23] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The algebraic group model
and its applications. In Annual International Cryptology Conference (CRYPTO).
Springer, 33–62.

[24] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1999. Secure
distributed key generation for discrete-log based cryptosystems. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Springer, 295–310.

[25] Martin Hirt and Jesper Buus Nielsen. 2006. Robust multiparty computation with
linear communication complexity. In Annual International Cryptology Conference
(CRYPTO). Springer, 463–482.

[26] Bin Hu, Zongyang Zhang, Han Chen, You Zhou, Huazu Jiang, and Jianwei Liu.
2022. DyCAPS: Asynchronous Proactive Secret Sharing for Dynamic Committees.
IACR Cryptology ePrint Archive, Report 2022/1169 (2022).

[27] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size
commitments to polynomials and their applications. In Annual International
Conference on the Theory and Application of Cryptology and Information Security

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Atsuki Momose, Sourav Das, and Ling Ren

(ASIACRYPT). Springer, 177–194.
[28] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Polynomial Com-

mitments. (2010). https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
[29] Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols

for byzantine agreement. J. Comput. System Sci. 75, 2 (2009), 91–112.
[30] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-

erals Problem. ACM Transactions on Programming Languages and Systems 4, 3
(1982), 382–401.

[31] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket
Kate, and Andrew Miller. 2019. Honeybadgermpc and asynchromix: Practical
asynchronous mpc and its application to anonymous communication. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). 887–903.

[32] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang,
Ari Juels, and Dawn Song. 2019. CHURP: dynamic-committee proactive secret
sharing. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2369–2386.

[33] Achour Mostéfaoui, HamoumaMoumen, and Michel Raynal. 2014. Signature-free

asynchronous Byzantine consensus with Ī < Ĥ/3 andċ (Ĥ2) messages. In ACM
Symposium on Principles of Distributed Computing (PODC). 2–9.

[34] Arpita Patra, Ashish Choudhury, and C Pandu Rangan. 2010. Communication
e�cient perfectly secure VSS and MPC in asynchronous networks with optimal
resilience. In International Conference on Cryptology in Africa (AFRICACRYPT).
Springer, 184–202.

[35] Torben Pryds Pedersen. 2001. Non-interactive and information-theoretic secure
veri�able secret sharing. In Annual International Cryptology Conference (CRYPTO).
Springer, 129–140.

[36] Michael O Rabin. 1989. E�cient dispersal of information for security, load
balancing, and fault tolerance. Journal of the ACM (JACM) 36, 2 (1989), 335–348.

[37] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain �nite
�elds. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[38] Victor Shoup and Nigel P Smart. 2023. Lightweight Asynchronous Veri�able
Secret Sharing with Optimal Resilience. IACR Cryptology ePrint Archive, Report
2023/536 (2023).

[39] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,
Guy Golan Gueta, and Srinivas Devadas. 2020. Towards scalable threshold
cryptosystems. In IEEE Symposium on Security and Privacy (S&P). IEEE, 877–893.

[40] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. 2022.
Cobra: Dynamic proactive secret sharing for con�dential bft services. In IEEE
Symposium on Security and Privacy (S&P). IEEE, 1335–1353.

[41] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.
2022. hbACSS: How to Robustly Share Many Secrets. In Network and Distributed
System Security Symposium (NDSS).

[42] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. 2022. Long live the
honey badger: Robust asynchronous dpss and its applications. IACR Cryptology
ePrint Archive, Report 2022/971.

A GRADE-CAST FOR A LARGE MESSAGE.

This section presents a concrete protocol for gradecast, which takes

3 rounds and costs ċ (ĈĤ + ċĤ2) communication to send a message

ĉ of size Ĉ. The protocol is described in Algorithm 4.

Error correcting code. Our protocol uses Reed-Solomon codes for

error-correcting codes. We review the interface and the property

here. The encoding algorithm takes the messageĉ consisting of ġ

symbols and outputsģ code words:

ę1, .., ęģ ← RS.Enc(ĉ,ģ,ġ)

The decoding algorithm takes a set Ĕ of code words with at most Ĩ

errors and decodes the originalĉ with ġ symbols:

ĉ ← RS.Dec(ġ, Ĩ, Ĕ)

It is well-known that the decoding algorithm can correct up to Ĩ

errors if |Ĕ | g ġ + 2Ĩ [37].

Correctness. We show the protocol GC satis�es graded agreement

and consistency below (validity is straightforward).

Lemma A.1 (Graded agreement). If an honest node outputs

(ĉ, 1), then all honest nodes output (ĉ, ∗).

GC – Grade-cast

A dealer D has a messageĉ to send to all nodes.

• Round 1. The dealer D sendsĉ to all nodes.

• Round 2. If node ğ receives a single message ĉ from the

dealer, then generates

ę1, .., ęĤ ← RS.Enc(ĉ,Ĥ, Ĝ + 1)

and send {ę Ġ ,H(ĉ)} to each node Ġ .

• Round 3. If node ğ receives {ę, ℎ} fromģ > Ĝ nodes, then ğ

forwards it to all nodes in Ď. Ifģ > 2Ĝ , then ğ also sends

{"vote", ℎ} to all nodes.

• At the end of round 3. If node ğ receives {"vote", ℎ} from

ģ > 2Ĝ nodes, then node ğ sets Ę = 1. If Ĝ < ģ f 2Ĝ then

Ę = 0. Ifģ > Ĝ , reconstructĉ by invoking

ĉ ← RS.Dec(Ĝ + 1, Ĩ , Ĕ)

where Ĕ is the set of more than 2Ĝ code words received

with the same hash, and Ĩ = |Ĕ | − (2Ĝ + 1). If H(ĉ) = ℎ,

then ğ outputsĉ with grade Ę.

Figure 4: Gradecast with linear communication.

Proof. An honest node outputs a messageĉ with grade Ę = 1

when the node receives {"vote",H(ĉ)} from 2Ĝ + 1 nodes. At least

Ĝ + 1 of these must be received by all honest nodes, thus they all

have at least grade Ę g 0. So, the rest of the proof shows all honest

nodes can reconstruct the messageĉ .

Among the 2Ĝ + 1 nodes who sent {"vote",H(ĉ)}, there is a set

Ą of at Ĝ + 1 honest nodes. Each honest node ğ ∈ Ą must have

received the same pair of a code word ęğ and the hash H(ĉ) from

at least 2Ĝ + 1 nodes, out of which at least Ĝ + 1 are honest. The

Ĝ + 1 honest nodes who sent {ęğ ,H(ĉ)} must have received from

the dealer the same message ĉ , whose hash matches ℎ = H(ĉ),

and sent every code word ę Ġ to the assigned node Ġ , which is then

forwarded by the node Ġ if honest. Therefore each honest node

receives a set Ĕ of at least 2Ĝ + 1 code words of ĉ with at most

Ĩ = |Ĕ | − (2Ĝ + 1) possible error, thus reconstructing the message

ĉ . □

Lemma A.2 (Consistency). If two honest nodes output (ĉ, ∗) and

(ĉ′, ∗), thenĉ = ĉ′.

Proof. Suppose for contradiction, two honest nodes output dif-

ferent messagesĉ andĉ′. An honest node outputs a message ĉ

when the node receives {"vote",H(ĉ)} from at least Ĝ + 1 nodes,

out of which at least one node must be honest. The honest node

who sent {"vote",H(ĉ)} must have received the same code word ę

and the hashH(ĉ) from a setĐ of at least 2Ĝ +1 nodes. By the same

logic, there is a set Đ ′ of 2Ĝ + 1 nodes who sent the hash H(ĉ′)

along with the codes of ĉ′. The two sets Đ and Đ ′ have at least

Ĝ + 1 intersection, out of which at least one node must be honest.

However, an honest node sends a hash only if it receives a single

message. Therefore, an honest node could not have sent both H(ĉ)

and H(ĉ′); a contradiction. □

On the Security of KZG Commitment for VSS CCS ’23, November 26–30, 2023, Copenhagen, Denmark

B DEGREE BINDING AND PDH ASSUMPTION

In §3, we have explained the strong correctness property [28] proven

under the PDH assumption is insu�cient and provided a degree

binding property as a su�cient alternative. We observe that with

our de�nition of degree binding, the proof based on the PDH as-

sumption does not apply. To clarify, let us review the de�nition of

the PDH assumption below (refer to De�nition 2 in [27]).

De�nition B.1 (Ī-PDH Assumption.). Let ă ∈ Z∗ħ be a randomly

chosen value. For any PPT adversary A, the probability

Pr[A([ĝ,ĝă , .., ĝă
Ī
]) → (č (·), ĝč (ă))]

is negligible for any polynomial č (·) ∈ Zħ [Į] s.t. the degree Ě

satis�es Ī < Ě < 2ċ .

The above de�nition says the PDH problem (i.e., computing

the polynomial č (·) and the commitment ĝč (ă)) is hard to solve

for any degree Ě . To carefully look into the de�nition, when the

degree is of super polynomial, i.e., Ě = Ĉ (poly(ċ)), the statement

is trivially true since the representation of the solution č (·) is of

super polynomial-sized. However, it does not imply the hardness of

computing a moderate number (i.e., polynomial in ċ) of evaluations

on the polynomial č (·) of super-polynomial degree, which must

be also excluded with our degree binding. Therefore, the PDH

assumption does not apply to the proof of degree binding.

C DPSS WITH CONSTANT-ROUND EPOCH

In this section, we design a dynamic-committee proactive secret-

sharing (DPSS) building on our multi-secret VSS. Our protocol

always completes the secret handover in ċ (1) round and costs

ċ (ċĤ3) communication. The recon�guration-friendly nature of our

augmented KZG commitment allows our protocol to re-size the

committee over repeated handovers without redoing the powers of

tau setup.

De�nition. DPSS [32] allows one committee to hand over a shared

secret to another committee. The repetition of the handover allows

the system to keep the shared secret available while changing the

responsible members. The classic de�nition of proactive secret-

sharing assumes each committee shares a secret over a unique

polynomial. Speci�cally, each node ğ in the old committee Ď holds

a share ĩğ = č (ğ) over a single polynomial č (·), and the handover

protocol allows each node Ġ in the new committee Ď′ to receive

a share ĩ Ġ = č ′ (Ġ) over a new polynomial č ′ (·) sharing the same

secret č ′ (0) = č (0). However, this de�nition implicitly assumes

consensus on the unique random polynomial č ′ (·). This makes

all existing DPSS protocols [26, 32, 40, 42] incur ¬(Ĥ) or ¬(ċ)

round to complete the handover in the worst case, during which

the committee must stay online. To avoid this, we let a committee

hold multiple polynomials (sharing the same secret). We give a

more formal de�nition below.

Let Ď and Ď′ be two (possibly joint) sets of Ĥ nodes, where at

most Ĝ < Ĥ/3 nodes are corrupt in each committee. Each node ğ ∈ Ď

inputs a vector sğ = [č1 (ğ), .., čĤ (ğ)] ofĤ shareswhereč1 (·), .., čĤ (·)

are polynomials of degree Ĝ and share the same secret (i.e., there

is a unique secret İ and čġ (0) = İ for all ġ ∈ [Ĥ]). We also allow

some node ğ to include an empty share ĩğ,ġ = § for some entry

ġ ∈ [Ĥ]. After running the handover protocol, each node Ġ ∈ Ď′

outputs a vector s Ġ = [č
′
1 (ğ), .., č

′
Ĥ (ğ)] of Ĥ shares over new random

polynomials č ′1 (·), .., č
′
Ĥ (·) that shares the same secret İ. To make

sure an available (i.e., recoverable by honest nodes) secret in Ď is

always available in committee Ď′, we also require the following

property.

• If there exists an entry ġ ∈ [Ĥ] s.t. all honest node ğ ∈ Ď holds

ĩğ,ġ ≠ §, then ĩ Ġ,Ģ ≠ § for all honest Ġ, Ģ ∈ Ď′.

We also assume each node ğ when it inputs(outputs) a share

čġ (ğ) also inputs(outputs) the KZG witness and the commitment.

Resizable committee.Asmentioned, our DPSS protocol can easily

support changing committee size and the corruption threshold

over repeated handovers. Speci�cally, our protocol can support

any number of nodes 0 < Ĥ f ģ in each committee (as long as

up to Ĝ < Ĥ/3 are corrupt) under the availability of a structured

reference string [ĝ,ĝă , .., ĝă
ģ
] for a random ă ∈ Z∗ħ . Therefore, it

is also allowed that Ď and Ď′ have di�erent numbers of nodes. For

simplicity of presentation, we assume they are both Ĥ nodes.

Empty share. In our DPSS, it is possible that an honest node’s

share sğ includes an empty share ĩğ,ġ = § for some entry ġ ∈ [Ĥ].

Looking ahead, this results in an honest node sharing an empty

value §. For technical reasons, we consider § as a share over an

empty polynomial for any index ğ ∈ [Ĥ].

Lagrange coe�cient. We use the notation Čġ to denote the La-

grange coe�cient for indexġ to interpolate a polynomial evaluation

on index 0. Speci�cally, for a setĐ of indices (used for interpolation),

the Lagrange coe�cient for index ġ ∈ Đ is described as

Čġ =

∏

ğ∈Đ \ġ

ğ

ğ − ġ
.

We omit to mention Đ when it is clear from the context.

C.1 Our Protocol

Our DPSS protocol is described in Figure 5. We elaborate on the

intuition below.

DPSS from leader-aided handover. For ease of understanding,

let us �rst consider a solution to the classic DPSS de�nition where

each committee holds a single polynomial. Assuming a consensus

protocol, we can design a simple handover protocol using the classic

re-sharing share technique [6]. Speci�cally, each member ğ ∈ Ď of

the old committee re-shares its share ĩğ = č (ğ) by invoking VSS (let

us denote VSSğ). LetĐ ¢ Ď be an agreed-on set of Ĝ +1 nodes whose

VSS were successful. Each member Ġ ∈ Ď′ of the new committee

can compute its new share ĩ Ġ as follows

ĩ Ġ = č ′ (Ġ) =
∑

ğ∈Đ

Čğ ·ćğ (Ġ)

wherećğ (Ġ) is the share received fromVSSğ . The secretč
′ (0) shared

over the new polynomial is an interpolation from ćğ (0) = č (ğ)

for all ğ ∈ Đ , thus matches the original secret č (0). All of the

coe�cients of č ′ (·) except for dimension zero are de�ned by the

coe�cients of the Ĝ + 1 polynomials, which include at least one

random polynomial chosen by an honest node. Thus an adversary

cannot determine honest nodes’ shares. The communication cost is

ċ (ċĤ3) as we have Ĥ single-secret VSSs each of them costs at least

ċ (Ĥ2) communication.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Atsuki Momose, Sourav Das, and Ling Ren

Each node ğ ∈ Ď inputs (sğ ,wğ , v).

// Round 1–7

Re-share. Each node ğ ∈ Ď starts re-sharing its share sğ with

the new committee Ď′ by invoking VSSğ .

Share-proof. Letćğ,ġ (·) be the polynomial used to share ĩğ,ġ in

VSSğ and Ĉğ,ġ is the witness forćğ,ġ (0). Node ğ also sends to all

of the members of the new committee Ď′

share-proofğ := (v,wğ , -ğ ,(ğ)

by invoking gradecast GCğ , where -ğ = [ĝĩğ,1 , .., ĝĩğ,Ĥ] and

(ğ = [Ĉğ,1, .., Ĉğ,Ĥ].

// Round 8–10.

Verify share-proof. Each node Ġ ∈ Ď′ veri�es share-proofğ re-

ceived from GCğ by checking that for all ġ ∈ [Ĥ], the committed

share ĩğ,ġ (i.e., čğ,ġ = ĝĩğ,ġ) satis�es

VerifyEval(Ĭġ , ğ, ĩğ,ġ ,ĭğ,ġ) = 1

VerifyEval(īğ,ġ , 0, ĩğ,ġ , Ĉğ,ġ) = 1

where īğ,ġ is the commitment toćğ,ġ (·) received during VSSğ .

Choose polynomials. Each node Ġ ∈ Ď′ chooses a set of Ĝ + 1

indices ĐĠ ¢ [Ĥ] and an index Ģ ∈ [Ĥ] that satis�es both of the

following.

(1) For all ġ ∈ ĐĠ , VSSġ has outputted (ŝ Ġ,ġ , ŵ Ġ,ġ , v̂ġ) with suc-

cess bit Ę = 1 s.t. the (ĩ̂ Ġ,ġ,Ģ , ĭ̂ Ġ,ġ,Ģ , Ĭ̂ġ,Ģ) ≠ § (i.e., the Ģ-th

share is not a share over an empty polynomial).

(2) There is a commitment Ĭ , and for all ğ ∈ ĐĠ , GCğ has out-

putted with grade Ę = 1 a veri�ed share-proofğ that includes

v = [.., ĬĢ = Ĭ, ..] (i.e., the Ģ-th commitment is Ĭ).

then, sends (ĐĠ , Ģ) to all members of the new committee Ď′ by

invoking a gradecast GC′Ġ .

// At the end of round 10.

New shares. Each node Ġ ∈ Ď′ veri�es, for each ğ ∈ [Ĥ], the

output (Đğ , Ģ) from GC′ğ by checking that

(1) For all ġ ∈ Đğ , VSSġ has outputted a share (ŝ Ġ,ġ , ŵ Ġ,ġ , v̂ġ) s.t.

(ĩ̂ Ġ,ġ,Ģ , ĭ̂ Ġ,ġ,Ģ , Ĭ̂ġ,Ģ) ≠ §.

(2) There is a commitment Ĭ , and for all ġ ∈ Đğ , share-proofġ is

veri�ed and includes v = [.., Ĭġ,Ģ = Ĭ, ..].

Then, computes the new shares s Ġ = [ĩ Ġ,1, .., ĩ Ġ,Ĥ], the commit-

ments v = [Ĭ1, .., ĬĤ] and the witnessesw Ġ = [ĭ Ġ,1, ..,ĭ Ġ,Ĥ]. For

ğ ∈ [Ĥ] with veri�ed {Đğ , Ģ},

ĩ Ġ,ğ =
∑

ġ∈Đğ

Čġ · ĩ̂ Ġ,ġ,Ģ , Ĭğ =
∏

ġ∈Đğ

Ĭ̂
Čġ
ġ,Ģ
, ĭ Ġ,ğ =

∏

ġ∈Đğ

ĭ̂
Čġ
Ġ,ġ,Ģ

otherwise ĩ Ġ,ğ , Ĭğ ,ĭ Ġ,ğ ← §.

Node Ġ outputs the new share (s Ġ ,w Ġ , v)

Figure 5: Our DPSS protocol with constant-round handover.

Back to our problem with the constant-round limit, we cannot

agree on any single bit. Since we have exponentially many possible

choices of Đ , nodes cannot compute shares over an agree-on poly-

nomial. To address this issue, we let each member ğ ∈ Ď′ of the new

committee serve as a leader and choose its own set Đğ . This results

in a committee holding Ĥ polynomials de�ned by Đ1, ..,ĐĤ . Now,

since each node ġ ∈ Ď inputs Ĥ shares, the leader ğ also designates

the index Ģ . Then, the ğ-th share of node Ġ ∈ Ď′ is computed as

ĩ Ġ,ğ =
∑

ġ∈Đğ

Čġ ·ćġ,Ģ (Ġ) .

wherećġ,Ģ (·) is the polynomial used for Ģ-th sharing of VSSġ (i.e.,

for sharing čĢ (ğ)). Here, since we have Ĥ parallel handovers in each

epoch, we have Ĥ2 total secret-sharing. However, as each node has

Ĉ = Ĥ shares to re-share, we can use our multi-secret VSS protocol

with ċ (ċĤ2) total communication, thus the overall communication

cost is still ċ (ċĤ3).

Validate shares. When a node ğ ∈ Ď re-shares its share ĩğ,ġ =

čġ (ğ), it must prove that the shared secretćğ,ġ (0) (in VSSğ) matches

the original share čġ (ğ). To this end, the node ğ also sends (via a

gradecast) share-proofğ that contains a committed share čğ,ġ = ĝĩğ,ġ ,

the witness Ĉğ,ġ forćğ,ġ (0), as well as the commitment Ĭġ to čġ (·)

and the witnessĭğ,ġ for čġ (ğ). Each of the new committee members

veri�es the share-proofğ by checking that

VerifyEval(Ĭġ , ğ, ĩğ,ġ ,ĭğ,ġ) = 1

VerifyEval(īğ,ġ , 0, ĩğ,ġ , Ĉğ,ġ) = 1

where īğ,ġ is the commitment toćğ,ġ (·) received during VSSğ . Here,

note that node Ġ only knows the committed share ĝĩğ,ġ (rather

than the share ĩğ,ġ itself). However, recall that the veri�cation in

VerifyEval is in pairing [27]. Thus, it can be done without knowing

the ĩğ,ġ . Speci�cally, checking that VerifyEval(Ĭ, ğ, ĩ,ĭ) = 1 for č =

ĝĩ can be done by verifying the following equality

ě (ĝ, Ĭ) = ě (ĭ,ĝă−ğ) · ě (č, ĝ) .

where ě is the pairing.

C.2 Correctness Proof

We prove the correctness of our DPSS protocol. Let İ be the secret

shared by the old committee Ď. Namely, čġ (0) = İ for all ġ ∈ [Ĥ].

We �rst show that if an honest node Ġ ∈ Ď′ in the new committee

outputs a share ĩ Ġ,ġ , then it is a share č ′
ġ
(Ġ) over a unique degree-Ĝ

polynomial č ′
ġ
(·) of the same secret čġ (0) = İ.

Lemma C.1. There exists Ĥ polynomials č ′1 (·), .., č
′
Ĥ (·) all with

degree-Ĝ and č ′
ġ
(0) = İ for all ġ ∈ [Ĥ] s.t. if an honest node Ġ ∈ Ď′

outputs a share s Ġ , then ĩ Ġ,ġ = č ′
ġ
(Ġ) or §.

Proof. Due to the commitment property of VSS, if an honest

node Ġ ∈ Ď′ in the new committee outputs (ŝ Ġ,ğ , ŵ Ġ,ğ , v̂ğ) from VSSğ ,

then for each ġ ∈ [Ĥ], (ĩ̂ Ġ,ğ,ġ , ĭ̂ Ġ,ğ,ġ , Ĭ̂ğ,ġ) is a share for node Ġ over

a unique degree-Ĝ polynomialćğ,ġ (·). Each node Ġ ∈ Ď′ computes

the output (ĩ Ġ,ğ ,ĭ Ġ,ğ , Ĭğ) for each ğ ∈ [Ĥ] based on the set Đğ of

indices and an index Ģ ∈ [Ĥ] proposed by ğ ∈ Ď via GC′ğ . Due to

the consistency of GC, all honest nodes receive the same (Đğ , Ģ).

On the Security of KZG Commitment for VSS CCS ’23, November 26–30, 2023, Copenhagen, Denmark

An honest node Ġ ∈ Ď′ computes the output (ĩ Ġ,ğ ,ĭ Ġ,ğ , Ĭğ) ≠ §

after verifying that for all ġ ∈ Đğ , share-proofġ is veri�ed and

includes the same commitment Ĭġ,Ģ = Ĭ . Since at least one of Đğ
must be honest, Ĭ is the commitment to čĢ (·). The veri�cation

of share-proofġ = (v,wġ , -ġ ,(ġ) makes sure that čġ,Ģ = ĝčĢ (ġ)

(by the �rst condition), and further (by the second condition) that

ćġ,Ģ (0) = čĢ (ġ). Therefore, there is a polynomial uniquely de�ned

by the set of indices Đğ

č ′ğ (·) =
∑

ġ∈Đğ

Čġ ·ćġ,Ģ (·) (č ′ğ (0) = İ)

and the new share (ĩ Ġ,ğ ,ĭ Ġ,ğ , Ĭğ) will be

ĩ Ġ,ğ =
∑

ġ∈Đğ

Čġ · ĩ̂ Ġ,ġ,Ģ = č ′ğ (Ġ)

Ĭğ =
∏

ġ∈Đğ

Ĭ̂
Čġ
ġ,Ģ

= ĝč
′
ğ (ă)

ĭ Ġ,ğ =

∏

ġ∈Đğ

ĭ̂
Čġ
Ġ,ġ,Ģ

= ĝ
č′
ğ
(ă)−č′

ğ
(Ġ)

ă− Ġ

Therefore, if the node Ġ computes a new share (ĩ Ġ,ğ ,ĭ Ġ,ğ , Ĭğ) ≠ §,

then it must be the share on the polynomial č ′ğ (·) uniquely de�ned

by the set Đğ . □

Finally, we show that an available secret among Ď is also always

available among Ď′.

Lemma C.2. If there exists an entry ġ ∈ [Ĥ] s.t. all honest node

ğ ∈ Ď inputs ĩğ,ġ ≠ §, then ĩ Ġ, Ġ ′ ≠ § for all honest Ġ, Ġ ′ ∈ Ď′.

Proof. The honest node Ġ ∈ Ď computes ĩ Ġ, Ġ ′ based on the set

ĐĠ ′ proposed by the honest node Ġ ′ ∈ Ď. When the node Ġ ′ chooses

its ĐĠ ′ and Ģ , it checks that (for all ġ ∈ ĐĠ ′) VSSġ has outputted

with success bit Ę = 1 the share (ŝ Ġ ′,ġ , ŵ Ġ ′,ġ , v̂ġ) the Ģ-th entry non-

empty (ĩ̂ğ,ġ,Ģ , ĭ̂ğ,ġ,Ģ , Ĭ̂ġ,Ģ) ≠ §. Due to guaranteed output of VSSġ ,

the honest node Ġ must receive a share (ĩ̂ Ġ,ġ,Ģ , ĭ̂ Ġ,ġ,Ģ , Ĭ̂ġ,Ģ) ≠ §.

Moreover, the node Ġ ′ must have received a veri�ed share-proofġ
with grade Ę = 1 from GCġ . Due to the graded consistency of GC,

the share-proofġ is also received and veri�ed by node Ġ . Therefore,

if the node Ġ ′ can compute ĐĠ ′ and Ģ , then node Ġ can compute the

share (ĩ Ġ, Ġ ′ ,ĭ Ġ, Ġ ′ , Ĭ Ġ ′) ≠ §.

The rest of the proof shows that the honest node Ġ ′ can always

computeĐĠ ′ and Ģ . LetĐ ¢ Ď be a set of Ĝ +1 honest nodes. Each node

ğ ∈ Đ honestly shares ĩğ,ġ ≠ § via VSSğ , which makes Ġ ′ receive

(ĩ̂ Ġ ′,ğ,ġ , ĭ̂ Ġ ′,ğ,ġ , Ĭ̂ğ,ġ) ≠ § with success bit Ę = 1 (due to the validity

property of VSS). Node ğ also honestly sends a veri�ed share-proofğ
viaGCğ , making node Ġ ′ receive share-proofğ with grade Ę = 1 (due

to the validity property of GC) and verify it. Therefore, node Ġ ′ can

choose ĐĠ ′ = Đ and Ģ = ġ . □

	Abstract
	1 Introduction
	2 Model and Preliminaries
	2.1 Multi-secret VSS
	2.2 KZG commitment
	2.3 Other primitives

	3 Overview
	3.1 Degree-binding KZG Commitment for Multiple Polynomials
	3.2 Multi-Secret VSS with Optimal Communication

	4 Degree Binding KZG Commitment
	5 Multi-Secret VSS with Optimal Communication
	5.1 Our Protocol
	5.2 Correctness Proof
	5.3 Secrecy Proof
	5.4 Reducing Computational Overhead
	5.5 Extension to Asynchronous VSS

	6 Related Works
	7 Discussion and Conclusion
	Acknowledgments
	References
	A Grade-cast for a large message.
	B Degree binding and PDH Assumption
	C DPSS with Constant-Round Epoch
	C.1 Our Protocol
	C.2 Correctness Proof

