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ABSTRACT

Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases
(HDACSs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-
histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC
inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not
been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC
enzymes and slows the development of the generalist grazer Spodoptera exigua, in a dose-
dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes in S.
exigua were reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed
by 2-5 days, with no additional mortality. Similar results were obtained when SFN was applied
topically to eggs. RNA-seq analyses confirm that SFN altered the expression of thousands of genes
in S. exigua. Genes associated with energy conversion pathways were significantly downregulated
while those encoding for ribosomal proteins were dramatically upregulated in response to the
consumption of SFN. In contrast, the co-evolved specialist feeder Trichoplusia ni was not negatively
impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically
to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In
fact, SFN exposure sometimes accelerated T. ni development. RNA-seq analyses revealed that the
consumption of SFN alters gene expression in T. ni in similar ways, but to a lesser degree,
compared to S. exigua. This apparent resistance of T. ni can be overwhelmed by unnaturally high
levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results
demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the

hypothesis that plant-derived HDAC inhibitors serve as “epigenetic weapons” against herbivores.
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INTRODUCTION

Plant chemical defenses act directly and indirectly against herbivores. Direct defenses include
structural defenses such as waxes, thorns, hairs, and trichomes, as well as chemicals which act as
toxins, deterrents, antifeedants, endocrine disrupters, photosensitizers, irritants and abrasives,
immobilizers, allergens, and digestion reducers, among others [1-6]. Such direct defenses arose
during the 350 million years plants have co-evolved with herbivores; they Kill, injure, manipulate, or
disrupt the development of herbivores [7]. Here we propose a new subcategory of plant defense,
one capable of altering gene expression patterns of herbivores on a broad scale by sabotaging their
epigenetic control systems. We focus on plant products that inhibit the activity of nuclear histone
deacetylase (HDAC) enzymes in herbivores, disrupting the balance of acetylation and deacetylation
of nuclear histone proteins in the animal’s tissues. These substances alter DNA-histone binding
properties, creating new regions of loosely packed euchromatin and tightly packed heterochromatin,
thereby altering the accessibility of large numbers of genes [8—11]. HDAC inhibitors are common in
plants [12—14] and their effects on humans and other mammals have been investigated in clinical
trials [13,15—-22]. However, little is known about the roles of these botanical HDAC inhibitors in
nature. We suggest that they act as epigenetic weapons, disrupting the development, phenotype,
behavior, dispersal, or reproduction of herbivorous insects via epigenetic mechanisms. To test this
idea, we examined the effects of sulforaphane (SFN), an HDAC inhibitor produced by cruciferous

plants, on two common lepidopteran grazers which are important agricultural pests.

1. The importance of epigenetic systems in insects

Epigenetic systems are ubiquitous in metazoans where they alter gene expression via DNA
methylation, regulatory action of non-coding RNA, or modification of histone proteins [23—25]. These
chromatin modifications open and close regions of the genome and alter the ability of transcription
factors to access genes. As a result, they can orchestrate large-scale changes in gene expression,
generating new metastable phenotypes in individuals [26—28]. For example, epigenetic systems can
direct normal development and aging, coordinate stress responses, and facilitate rapid adaptation to
changing environments. Altered phenotypes may persist long after a stimulus has passed [8,13,24—
27,29]. New phenotypes generated by these epigenetic systems are termed epigenotypes [30]. In
insects, where phenotypic changes can be especially dramatic, they are often referred to as
polyphenisms. Acquired epigenetic states can sometimes be inherited, altering the phenotype of
offspring in ways that may (or may not) improve their fitness [24,31,32]. In short, epigenetic
mechanisms are an important source of phenotypic plasticity for individuals. They may also confer
benefits at the level of populations by facilitating adaptation to changing conditions when genetic

variation is lacking, such as in small, bottlenecked, or asexual populations [24,33].
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Relatively little is known about the epigenetic machinery of insects [34—37]. However, recent studies
demonstrate that they can be important in development, sex determination, morphology, behavior,
life history cycles, longevity, pathogen resistance, and immune priming as well as eusocial caste
structure [34,35,38—40]. For instance, various epigenetic systems control development, physiology,
and behavior in Drosophila [41]; determine the sex of silk moths (Bombyx) [42]; control the size and
shape of insect armament in beetles [43]; alter juvenile hormone levels [39]; and may alter the
duration and direction of flight in the cotton bollworm, Helicoverpa armigera [36]. Epigenetic
mechanisms determine the caste of individuals in eusocial insects, including bees and ants [35,44—
46]. Clearly, epigenetic systems can initiate phenotypic plasticity in response to changing conditions
or, in some cases, exposure to specific chemicals. There are some examples of epigenetic effects
spanning generations in insects, though these reports are relatively rare. For example, Manduca
sexta epigenetic mechanisms facilitate trans-generational immune priming against pathogenic
bacteria [40].

Three epigenetic systems have been commonly examined in insects [24,34,35,37]: DNA

methylation, non-coding RNA, and histone modifications.

DNA methylation. In most animals methylation of DNA tends to repress transcription and the
majority of CpG dinucleotide sites are methylated at any given time [36]. However, DNA methylation
may not be as common, or as important, in insects. For example, DNA methylation was not
observed in Drosophila and is thought to be sparse or absent in many other insect taxa, leading
some to conclude that DNA methylation has at most a minor role in insects [35,36,38,47,48]. Some
insects possess the enzymes required for DNA methylation but others, including Drosophila and
some lepidopterans, do not [35,36]. There are a few reported examples of DNA methylation
impacting insect fitness [36,38] but the importance of DNA methylation in insects is a subject of
debate [34].

Non-coding RNA. Non-coding RNAs may bind to DNA and alter chromatin to yield epigenetic
effects and some have roles in insects [35,38]. For example, they may be protective against
mutations caused by transposable elements; they occasionally determine insect sex, as in Bombyzx;
they alter DNA binding to histones; and they may be maternally transmitted to offspring [35]. More

work is needed to understand the functions of non-coding RNAs in insects.

Histone modifications. Gene expression may be controlled by altering DNA binding to histone
proteins [9,11] . Histone acetyltransferases modify histone subunits by adding acetyl groups,
creating regions of loosely packed euchromatin that makes genes more accessible for transcription.

Conversely, HDACs remove acetyl groups, leading to tightly packed heterochromatin that is less
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accessible for transcription [8—11].

Here we focus on plant products that inhibit HDACs, for several reasons. First, plants produce an
assortment of natural products known to inhibit HDAC enzymes in mammals [13,15,49-53].
Examples include allicin from garlic; curcumin from turmeric; apigenin, genistein, and quercetin from
fruits; sinapinic acid from mustard seeds; resveratrol from grapes and wine; SFN from cruciferous
vegetables; caffeic acid and catechins from foliage and tea; protocatechuic aldehyde from wine
stopper cork; diallyl disulfide from garlic; zerumbone from ginger; ursolic acid from basil; and butein
and kaempferol from a variety of plants [12—14]. This evidence comes primarily from medical studies
focusing on mice and cultured cells as well as from clinical trials. Second, there is evidence that
HDAC inhibitors from other, non-plant sources can affect insects quite dramatically. For example,
phenyl butyrate in royal jelly is a natural HDAC inhibitor and determines caste and behavior in honey
bees and ants [35,38]. The related HDAC inhibitor, sodium butyrate, improves learning in honey
bees [54]. In cultured cells of Spodoptera frugiperda, sodium butyrate causes mitochondrial
dysfunction, oxidative stress, and cell death, [55] while also altering susceptibility to viruses [56].
Exposure to trichostatin A (TSA), a pharmaceutical HDAC inhibitor, alters the size and shape of
mandibles in the broad-horned flour beetle, Gnatocerus cornutus [43]. It also alters histone
acetylation in the brains of Camponotus floridanus ants, resulting in changes to their behavior [44].
RNAi silencing of HDAC genes alters histone acetylation in the brown planthopper, Nilaparvata
lugen, affecting the development of ovaries and ovipositors in females and preventing males from
making courtship songs [57].

There is an obvious disconnect between these two sets of studies. One set highlights the many
HDAC inhibitors produced by plants and examines their use in medicine. The other set shows that
HDAC enzymes can affect insects but focuses on HDAC inhibitors from non-plant sources. We are
not aware of any study connecting these two sets of observations, i.e., testing the potential impact of
botanical HDAC inhibitors on the development, physiology, or behavior of herbivores. As a result,
little is known about the roles of botanical HDAC inhibitors in nature. This gap in knowledge is
surprising since many herbivorous insects consume large amounts of HDAC inhibitors when feeding

upon their host plants.

2. HDAC inhibitors

There are 18 recognized HDAC enzymes, organized into four classes [9,12,35,58,59]. The “classic”
HDACs are zinc-dependent hydrolases. These include class | enzymes (HDACs 1-3, 8), which are
ubiquitous and essential for cell proliferation and survival; class lla enzymes (HDACs 4, 5, 7, 9) have

weak activity and move in and out of the nucleus; class llb enzymes (HDACs 6, 10) act upon non-
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histone proteins in the cytosol; class IV enzymes (HDAC 11) have poorly-defined functions. Other
HDAC enzymes include the sirtuins, class Il NAD* dependent enzymes (SIRT 1-7) that are involved
in aging, transcription, apoptosis, inflammation, axonal degeneration, stress resistance, metabolic

regulation, and energy production.

HDAC inhibitors impede the activity of one or more classes of HDAC enzymes [11]. Many are
common in nature; some are FDA-approved therapeutics used in oncology and neurology [59].
Pharmaceutical HDAC inhibitors include TSA, romidepsin (Istodax), and suberanilohydroxamic acid
(Vorinostat). Less powerful HDAC inhibitors include certain ketones, sodium- and phenyl-butyrates,
and the anti-seizure medication valproic acid [13]. Plants produce a variety of HDAC inhibitors, such
as SFN, an isothiocyanate from cruciferous vegetables, which inhibits class Il HDAC enzymes in
mammals [13,49,53]. SFN has health benefits in humans [51,60—63]. For example, it initiates anti-
oxidant and anti-inflammatory responses and restores proteasome function [64,65]. In cancer cells, it
can trigger cell cycle arrest and apoptotic cell death thereby inhibiting tumor growth [66,67]. SFN can
cross the blood-brain barrier and has neuroprotective effects [64,68,69]. In mammals SFN is easily
absorbed and distributed in the body: after consumption of broccoli, for example, the concentration
of SFN in human plasma increases quickly and plateaus within several hours [69—72]. The potential

roles of SFN in nature, however, have not received much attention.
3. Testing HDAC inhibitors as potential plant defenses in a model system

SFN is produced by plants in the order Brassicales (the cruciferous or mustard oil plants) including
cabbages, broccoli, Brussels sprouts, bok choy, cauliflower, rapeseed, watercress, and Arabidopsis
[6,62,73—76]. This group includes the most important cultivated leafy vegetables [67]. When these
plants are chewed or crushed, a “mustard oil bomb” reaction is generated in which glucosinolates
are hydrolyzed by plant myrosinases (3-thioglucoside glucohydrolases) to generate nitriles,
isothiocyanates, thiocyanates, oxazolidine-2-thiones, and epithionitriles [6,73,74,77,78]. These
products can serve as defenses against herbivores [67,79-88] and influence the taste and flavor of
cruciferous plants. SFN is the hydrolysis product of one particular glucosinolate, glucoraphanin (4-
(methylsulfinyl) butyl glucosinolate) [61,62,64]. Most insect herbivores feeding on cruciferous plants
would be exposed to SFN with every bite, though some possess adaptations to deactivate or
redirect the mustard oil bomb reactions [80,88—90]. These substances are known to have a variety
of deterrent effects against a range of grazers; however, as far as we are aware, the impacts of SFN

on the epigenetic systems of insect herbivores have not been investigated.

Here we investigated the impact of SFN on two lepidopteran species, one generalist (the beet army
worm, Spodoptera exigua) and one specialist (the cabbage looper, Trichoplusia ni), both of which

are agricultural pests and consume cruciferous plants in nature. S. exigua has a broad host range; in
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contrast, T. ni grazes most often on members of the Brassicales [91], including those that generate
SFN [6,79,87,92]. Our experiments tested the hypothesis that SFN interferes with the epigenetic

machinery of herbivorous insects.

METHODS

Experimental Approach. We conducted a series of experiments to determine if dietary SFN (a)
affects development, (b) inhibits the activity of nuclear HDAC enzymes, and/or (c) alters patterns of
gene expression in the beet armyworm (S. exigua) and the cabbage looper (T. ni). For each
experiment, larvae were allowed to feed ad /ib on an artificial diet (AD) containing natural
concentrations of SFN. Others consumed pharmaceutical HDAC inhibitors, such as TSA and
romidepsin (ROM), which served as response controls (Figure 1). We monitored the development of
larvae and in some cases adult moths. Differential development was analyzed using Student’s t-
tests or ANOVAs with Holm-Sidak posthoc tests. Non-parametric alternatives, including Mann-
Whitney U tests and ANOVAs on ranks with Dunn’s pairwise comparisons, were used when
datasets were not normally distributed. Tissues were also collected to quantify HDAC enzyme

activities and to identify gene expression patterns via RNA-seq.

Figure 1. Basic design of single generation experiments. For each species, first instar larvae in
individual wells consumed various concentrations of SFN in an AD. Larvae in negative control
groups consumed AD treated only with the carrier solvent (ethanol), which was evaporated prior to
feeding. Larvae in positive control groups consumed AD supplemented with a pharmaceutical HDAC
inhibitor, usually TSA. Larvae were raised at 25°C and 50% humidity, unless otherwise noted.
Biometric data, such as mass, length, and width, were recorded for individual larvae. Tissues were
isolated from a subset of larvae for HDAC enzyme activity assays and gene expression analyses by

RNA-seq. Remaining larvae were allowed to develop normally.

Insects and treatments. T. ni and S. exigua larvae were obtained from Benzon Research (Carlisle,
Pennsylvania, USA). First instar larvae were raised individually in 5 ml wells on an AD appropriate

for each species with antibiotics at 25°C and 50% humidity, unless otherwise indicated.

The HDAC inhibitors SFN, TSA, and ROM were obtained commercially from Millipore Sigma
(Burlington, Massachusetts, USA) and BioVision Incorporated (Waltham, Massachusetts, USA).
Each HDAC inhibitor was solubilized in ethanol and added to each well to cover the surface of the

AD. The ethanol was fully evaporated for 8h at 20°C. One first instar larva was transferred into each
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well on Day 0. Larvae fed ad lib and generally consumed half of the AD by Day 7. We employed a
variety of negative controls, including larvae feeding on AD alone and larvae feeding on AD treated
with the ethanol carrier solvent only. In a few cases we raised a second generation by allowing
larvae to pupate, emerge as moths, and mate within treatment groups. In these cases, second-

generation larvae were reared from the eggs on AD without HDAC inhibitors.

The amount of SFN utilized in these experiments is similar to what is ingested during natural
feeding. For example, we typically used SFN concentrations of 0-70 mM, applied as 30-40 pl
aliquots to each well containing AD. This range of concentrations is similar to that of cruciferous
plant foliage and lower than levels reported in buds, flowers, sprouts, or seeds. The doses are also
comparable to those used in medical studies [93]. We also conducted parallel experiments wherein

HDAC inhibitors were applied topically to eggs, using DMSO as a penetrating solvent.

Sample collection. Larvae developed in individual wells until pupation, approximately Day 14
depending on species, treatment, and temperature. Larval masses, larval widths, and survivorship
were recorded. Fat body tissues, and in some cases ovaries, were collected by microdissection from
a subset of larvae, approximately four days before control larvae would start pupation. Tissues used
to quantify HDAC enzyme activities were stored immediately at -80°C [94]. Tissues for RNA-seq
analyses were preserved in RNA/ater (Invitrogen, San Diego, California, USA; ThermoFisher

Scientific, Waltham, Massachusetts, USA) using 1 ml per 100 mg tissue, and stored at -80°C.

HDAC enzyme activity. Extracts of nuclear and cytoplasmic proteins were made from isolated
tissues (BioVision K266-25, Waltham, Massachusetts, USA). HDAC enzyme activity was determined
using an HDAC Activity Fluorometric Assay Kit (BioVision K330-100, Waltham, Massachusetts,

USA) and normalized to protein concentration in each extract.

RNA extraction, library construction, and sequencing. Larvae from each experiment group were
dissected to isolate fat body tissue. Fat bodies from three to five individual larvae were pooled per
replicate. Thawed samples were centrifuged at 10,000 x g for 20 seconds and RNA/ater was
removed from pelleted tissue. Total RNA was extracted from the tissue twice using Buffer A (50 mM
sodium acetate pH 5.2, 10 mM EDTA, 1 % SDS) saturated phenol heated to 65 °C, followed by
phenol/chloroform (1:1) extraction. Extracts were ethanol precipitated, resuspended in ddH>O and
ethanol precipitated again. Final pellets were resuspended in ddH20 to a concentration of 500-1500
ng/ml. RNA concentration was determined using a DS-11 spectrophotometer (DeNovix, Wilmington,
Delaware, USA). Total RNA quality was assessed using RNA Nano Chips and a 2100 BioAnalyzer
(Agilent, Santa Clara, California, USA) and Qubit RNA High Sensitivity Assay (ThermoFisher,
Waltham, Massachusetts, USA), followed by High Sensitivity RNA ScreenTape Analysis (Agilent,
Santa Clara, California, USA).
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Library construction and sequencing was performed by Admera Health Biopharma Services (South
Plainfield, New Jersey, USA). Poly(A) selection was performed using the NEBNext Poly(A) mRNA
Magnetic Isolation Module (New England Biolabs, Ipswich, Massachusetts, USA) following the
manufacturer’s protocols. RNA-seq libraries were generated using the NEBNext Ultra Il RNA Library
Prep Kit for lllumina (New England Biolabs, Ipswich, Massachusetts, USA) following manufacturer’s
protocols. Libraries were quality checked using the Qubit dsDNA High Sensitivity Assay
(ThermoFisher, Waltham, Massachusetts, USA), followed by High Sensitivity DNA ScreenTape
analysis (Agilent, Santa Clara, California, USA) and gPCR (KAPA SYBR FAST qPCR Master Mix
(2X) Kit; Roche, Basel, Switzerland). Libraries were standardized to equal molar ratios and then
pooled. Paired-end 150-bp reads were generated using the NovaSeq S4 platform (lllumina, San
Diego, California, USA). All raw sequence reads were deposited in the NIH GEO under project
number GSE234351.

RNA-seq processing and analysis. Reads for all RNA-seq experiments were quality checked with
FastQC (v0.11.9) [95] and were processed with Trimmomatic (v0.39) [96] using the following
parameters: LEADING:5, TRAILING:5, MAXINFO:36:0.2, MINLEN:50. T. ni reads were aligned to
the T. ni Cornell-1 isolate genome (obtained from the T. ni Genome Database on 2022-05-25) and
S. exigua reads were aligned to the S. exigua TB_SE_WUR_2020 isolate genome (WGS JACEFFOQ1
obtained from the NCBI Genome Database on 2022-06-06)[97,98]. Reads were aligned using
HISAT2 (v2.2.1) with the default parameters, and alignments were quality checked using QualiMap
(v2.2.1)[99]. featureCounts implemented in the Rsubread package (v2.12.2) was used to calculate
read counts for each gene using the appropriate species-specific annotations [100]. Low-count
genes (mean counts-per-million [CPM] across all samples > 10) were filtered and read counts were
normalized using the trimmed mean of M-value normalization method. Differential expression
analysis was performed with edgeR (v3.40.2) [101,102] using a general linearized model comparing
the mean expression for all pairwise combinations of treatments, pairing triplicate samples, and

taking the Benjamini and Hochberg false discovery rate (FDR) < 0.05 as significant [103].

One-to-one orthologs between T. ni and S. exigua were assigned using the reciprocal best hit
method with BLAST [104]. Hierarchical clustering was performed using Cluster 3.0 [105] and
visualized in JavaTreeView [106]. KEGG and GO annotation terms were assigned to each genome
using eggNOG (v2.1.7) [107]. Functional enrichment analysis of orthologous gene lists was
performed with clusterProfiler (v4.6.0) [108], using a hypergeometric test, taking as background the
set of genes in each species that were retained after filtering for low count genes, and taking the
Benjamini and Hochberg FDR < 0.05 as significant [103].

RESULTS
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The growth of the generalist feeder, S. exigua, but not the specialist feeder T. ni, was
negatively affected by HDAC inhibitors. SFN slowed the development of S. exigua larvae in a
dose-dependent manner. S. exigua larvae feeding upon the highest doses of SFN were, on average,
less than half the size of those in the control groups at Day 11 (Figure 2A). The treated larvae
seemed otherwise healthy: they readily fed on diets containing SFN and pupated normally and there
was no significant mortality. In contrast, the development of T. ni larvae was generally unaffected by
SFN. For example, SFN had no impact on T. ni larval mass at Day 7 (P=0.502) or Day 11 (P=0.780;

Figure 2A) and there were no obvious changes in feeding, behavior, or pupation.

Topical application of SFN elicited responses similar to feeding. \We observed similar results
when SFN was applied topically to egg masses (Figure 2B). Direct SFN treatment inhibited the
development of S. exigua (Student’s t-test; P<0.001). In contrast, we observed that T. ni larvae from

SFN-treated eggs grew faster, compared to controls (Student’s t-test; P<0.001).

Stronger HDAC inhibitors challenge the resistance of T. ni. T. ni appeared to be resistant to the
effects of SFN at natural concentrations, so we attempted to overwhelm this resistance by exposing
larvae to ROM, one of the strongest pharmaceutical HDAC inhibitors. We observed that the growth
of T. ni larvae was reduced dramatically by ROM in a dose-dependent manner (Figure 2C). ROM
treatments also delayed pupation up to 5 days and delayed the emergence of adult moths up to 10
days, on average. Only the highest treatment of 18.5 yM ROM caused significant mortality.

Nevertheless, consistent with the aforementioned results, T. ni was less impacted than S. exigua.

Long-term effects. We observed some impacts of HDAC inhibitors on later developmental
milestones. In the SFN treatment groups, the emergence of S. exigua moths was often delayed by a
few days. Stronger HDAC inhibitor drugs slowed the emergence of S. exigua moths more
dramatically (Figure 2D). Interestingly, the emergence of T. ni moths was not delayed. Instead, it
was accelerated by approximately two days in both TSA and the highest concentrations of SFN
(Figure 2D). Despite these effects on larval development, we never detected differences in pupal

mass or the size, appearance, and behavior of adult moths for any treatment group.

Figure 2. Effects of HDAC inhibitors on development of S. exigua and T. ni larvae. (A) The
mass of S. exigua larvae was reduced by consumption of SFN at Day 11 (One-way ANOVA,
P=0.006; red bars). No significant effect on larval mass was observed for T. ni (One-way ANOVA,
P=0.780; blue bars). (B) By Day 11, the width of S. exigua larvae was reduced when eggs were
directly exposed to SFN (Student’s t-test, P<0.001; red bars). In contrast, the width of T. ni larvae

was not reduced but instead increased by Day 11 (Student’s t-test, P<0.001; blue bars). Con.
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indicates use of the DMSO carrier solvent. (C) S. exigua larval mass was decreased at both Day 7
(One-way ANOVA, P<0.001) and Day 11 (One-way ANOVA, P<0.001) after exposure to the
powerful HDAC inhibitor ROM. T. ni larval mass was also decreased at Day 7 (One-way ANOVA,
P<0.001) and Day 11 (One-way ANOVA, P<0.001). (D) The emergence of S. exigua moths was not
delayed by the consumption of SFN, although TSA delayed moth emergence by about two days
(One-way ANOVA, P=0.003). The emergence of T. ni moths was not delayed by SFN or TSA.
Instead, both TSA and SFN accelerated moth emergence significantly (One-way ANOVA, P<0.003).
Control indicates the use of the EtOH carrier solvent. All data represent the mean +/- SE; letters
indicate the results of post hoc tests; bars with the same letters are not significantly different at

0a=0.05 according to pairwise multiple comparisons.

SFN inhibits HDAC enzymes in S. exigua but not T. ni. We expected the consumption of SFN
and TSA to inhibit the activity of HDAC enzymes in larval tissues, as they do in mammals, and
indeed this was the case for S. exigua. In this species, HDAC enzyme activity was reduced by ~50%
by SFN (Figure 3A). In contrast, HDAC enzyme activities in T. ni tissues were not inhibited by

exposure to SFN.

We wondered if the HDAC enzymes of T. ni were naturally resistant to SFN. To test this, we
extracted nuclear and cytoplasmic HDAC enzymes from both species and exposed them to SFN in
vitro. The enzymes extracted from both species were inhibited equally by SFN (Figure 3B)

suggesting that HDAC enzymes from T. ni were not inherently more resistant to SFN.

Figure 3. Effect of SFN on HDAC enzymes in S. exigua and T. ni. (A) The activity of HDAC
enzymes in nuclear extracts was reduced in S. exigua after consumption of SFN (Student’s t-test,
P=0.023; red bars). In contrast, enzyme activity was not reduced in T. ni (Student’s t-test, P=0.333;
blue bars). (B) Nuclear and cytoplasmic HDAC enzymes were extracted from S. exigua (red) and T.
ni (blue), and their activities were quantified in vitro in the presence of various concentrations of
SFN. Con. indicates use of the EtOH carrier solvent. Data represent the mean of 3-5 replicates +/-
SE.

The effects of SFN on S. exigua are most apparent at higher temperatures. Changes in
temperature impacted larvae development, as expected (Figure 4). For both species, larval growth
rates increased markedly as temperatures increased from 23 to 29°C. Consistent with previously
described experiments where larvae consumed SFN, development of S. exigua was reduced by
consumption of SFN; this effect was most apparent at higher temperatures. For example, at 23°C

the mass of S. exigua larvae was reduced 20% from 65 mg to 52 mg, on average, whereas at 29°C
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mass was reduced 30% from 226 mg to 157 mg, on average. In these experiments, consumption of

SFN failed to affect the development of T. ni at any temperature.

Figure 4. Effect of temperature on larvae consuming SFN. Exposure to SFN affected the mass of
S. exigua larvae at various temperatures. The impact of SFN on S. exigua was most apparent at
higher temperatures. For T. ni, larval mass was not reduced by SFN at any temperature. Con.

indicates use of the EtOH carrier solvent. P values are the results of Student’s t-tests.

SFN induces large-scale changes in gene expression. To investigate the consequences of
HDAC inhibition in larvae consuming SFN or TSA (S1 Figure), we profiled transcriptome changes in
S. exigua and T. ni fat body tissues, in biological triplicate. We applied a linear model to identify
genes differentially expressed in each species, in response to each HDAC inhibitor. In all, we
identified 1,792 and 2,454 genes whose expression was significantly altered in S. exigua and T. ni,
respectively, after consumption of either SFN or TSA (S2 Figure). To directly compare the response
between species, we identified one-to-one orthologs. In both species, the expression patterns were
similar: approximately 85% of significantly differentially expressed genes are repressed in response
to either SFN or TSA, while approximately 15% genes are induced (Figures 5B,C). The genes
repressed in response to SFN strongly overlap the genes repressed in response to TSA. However,
we also identified 181 and 409 genes in S. exigua and T. ni, respectively that showed species-
specific repression. The genes induced in response to SFN and TSA have less overlap between
species. Importantly, although the response patterns were similar for both species, the magnitude of

the response to these HDAC inhibitors was greater in S. exigua compared to T. ni (Figure 5A).

To explore the potential physiological effects of differential gene expression elicited by SFN and
TSA, we clustered the orthologous expression responses and identified enrichment of KEGG
pathways in specific gene clusters (Table 1). Both species exhibited reduced expression of genes
associated with energy conversion pathways, including pyruvate metabolism, carbon metabolism,
oxidative phosphorylation, the TCA cycle, glycolysis, and gluconeogenesis. Again, the degree to
which these genes were repressed was less in T. ni as compared to S. exigua. In addition, both
species showed increased expression of genes associated with ribosome biosynthesis and the
production of cuticular proteins. Finally, a small cluster of 146 genes that were induced in T. ni but

repressed in S. exigua showed a significant enrichment for genes involved in fatty acid degradation.

It is possible that HDAC inhibitors such as SFN and TSA not only inhibit HDAC enzyme activity
directly but also repress the expression of genes encoding for these enzymes, a type of “double

inhibition”. To investigate this, we specifically examined the expression of known HDAC genes in
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these species of insects. We identified six HDAC genes in each of our species: HDAC2 & 3 (Class
1), HDACG6 & 7 (Class 1), and HDAC11 (Class V). Only HDAC11 was significantly repressed in our
experiment, in both S. exigua and T. ni (S1 Table).

Figure 5. Consumption of SFN altered the expression of genes in fat body tissues of S.
exigua and, to a lesser degree, T. ni. (A) Hierarchical clustering based on Euclidean distance of
1,721 orthologous genes significantly differentially expressed after exposure to either SFN (S) or
TSA (T)in S. exigua (S.e) and T. ni (T.n). Values represent the log fold-change relative to an EtOH
control. Venn diagrams represent the overlap of orthologous genes significantly repressed in
response to SFN or TSA (n = 1,615; B) or significantly induced in response to SFN or TSA (n = 307;
C). For overlap categories representing less than 5% of the total number of genes, the number is not

denoted in the Venn diagram.

Table 1. Enrichment for KEGG pathways in clusters of genes with different expression

patterns.
Fold
Number of Number of Enrichment
Genes in Genes in over
Function P value ® Cluster Genome Background
Repressed in both species
Pyruvate metabolism 5.00e-09 19 51 5.94
Oxidative phosphorylation 1.14e-05 27 148 2.91
Carbon metabolism 3.90e-05 25 141 2.83
Citrate cycle (TCA cycle) 7.72e-05 12 40 4.79
Biosynthesis of amino acids 0.0012 16 86 297
Cysteine and methionine metabolism 0.0057 10 45 3.54
Glycolysis / Gluconeogenesis 0.0191 10 53 3.01
Glycerophospholipid metabolism 0.0450 11 70 2.51
Induced both species
Ribosome biogenesis in eukaryotes 6.41E-35 31 71 21.15
Repressed in S. exigua and induced in T. ni
Fatty acid degradation 0.0306 4 42 9.95

a P value from Bonferroni-corrected hypergeometric test.

Iflaviruses. Our RNA-seq analyses confirmed the presence of iflavirus 1, a positive-strand RNA
virus, in the fat body tissues of S. exigua. This result was not surprising. Iflaviruses are common in
lab-cultured populations [109] and field populations [110,111] of insects. In many insect species,

including S. exigua, iflaviruses produce “covert infections” that are not lethal and do not produce
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obvious signs of disease [109,112]. Carballo et al. noted that they are often detected serendipitously
during transcriptomic studies [113], as was the case in our experiments. However, a few recent
studies have suggested that there may be direct or indirect effects of iflavirus infection, for example
interactions with other viruses or predators known to affect insect fitness [113]. We wondered if the
consumption of HDACiI in our experiments affected the abundance of iflavirus RNA. It did not; our
analyses indicated that viral RNA levels were not impacted by the consumption of HDAC inhibitors

by its host.

DISCUSSION

1. Sulforaphane can act as an epigenetic weapon against S. exigua

SFN, a natural HDAC inhibitor produced by cruciferous plants, disrupted the development of the
beet armyworm, S. exigua, when consumed at natural concentrations. In general, SFN slowed larval
growth by ~50%. Interestingly, there was no significant mortality. Larvae fed normally, were
otherwise healthy, and pupated to produce adult moths. In this species, consumption of SFN
inhibited the activity of HDAC enzymes in the nucleus and the cytoplasm of fat body tissues by
~50% and resulted in large scale changes in patterns of gene expression. We detected 1,792
differentially expressed genes in S. exigua larvae consuming SFN. In general, genes associated with
central energy production pathways were downregulated while genes associated with ribosome
construction and cuticle formation were upregulated in fat body tissues. The method of SFN
treatment did not seem to matter: similar responses were observed when SFN was consumed in the
diet and when eggs were treated topically with SFN, supporting the hypothesis that SFN acts directly
as a HDAC inhibitor rather than affecting feeding rates. The effects of dietary TSA, a pharmaceutical
HDAC inhibitor, were similar. These observations support our hypothesis that SFN acts as a

chemical defense by disrupting the epigenetic control systems of herbivorous insects.

2. T. ni is more resistant to SFN

Interestingly, the specialist herbivore T. ni was at least partly resistant to the effects of SFN. The

development of T. ni larvae was rarely affected by SFN, whether the substance was consumed in
the diet or applied topically to eggs. Similarly, consumption of SFN did not inhibit HDAC enzyme

activity in this species. In fact, HDAC enzyme activities remained high in fat body tissues despite

consumption of SFN and/or the known HDAC inhibitor TSA.
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The difference in responsiveness between S. exigua and T. ni is not surprising. Herbivores often
possess different co-evolutionary adaptations allowing them to feed on toxic host plants with various
levels of success [80,83,89,90,114—-116]. We considered how some of these adaptations may
explain our results. First, some grazers possess mechanisms to deactivate or redirect the “mustard
oil bomb” reactions, preventing the accumulation of products such as SFN. These adaptations would
be irrelevant in our experiments because larvae consumed SFN directly. Second, we considered
that some specialized grazers possess mechanisms to deactivate isothiocyanates via conjugation in
the gut. These mechanisms could have protected larvae from SFN in our feeding experiments,
however this would not explain the similar results obtained when SFN was applied topically to eggs
(Figure 2B). Similarly, it would not explain why T. ni is generally resistant to TSA (Figure 3A). Third,
we considered the possibility that the resistance of T. ni in our experiments, compared to S. exigua,
was due to differences in the insects’ HDAC enzymes themselves; however, this seems not to be
the case. HDAC enzymes isolated from T. ni and S. exigua were inhibited equally by SFN in vitro
(Figure 3B). Finally, we considered that T. ni consuming foliage containing SFN may compensate by
overproducing HDAC enzymes; however, we did not find evidence for this either. The expression of
HDAC genes was not increased in larvae consuming SFN or TSA. The lone exception was a gene
for a poorly understood HDAC enzyme (HDAC11; S1 Table) which was indeed overexpressed in
response to SFN and/or TSA. This by itself seems unlikely to explain our results. It is possible that T.

ni could increase the level of HDAC enzymes via some post-transcriptional mechanism.

3. Sulforaphane induces large-scale changes in gene expression

The consumption of SFN affected the expression of thousands of genes. Overall, the patterns of
differentially expressed genes were similar in both species in response to SFN and TSA, suggesting
that SFN does indeed act primarily as an HDAC inhibitor when consumed in the diet at natural
concentrations. Although the patterns of gene expression were similar, the magnitude of changes
was generally greater in S. exigua as compared to T. ni. (Figure 5). In short, similar genes were
affected but to a lesser degree in T.ni, corresponding with the resistance of this species that we

observed in these experiments.

KEGG pathway analyses indicated that the consumption of SFN and TSA impacted core metabolic
processes. Both HDAC inhibitors downregulated many genes associated with energy conversion
pathways, including glycolysis, gluconeogenesis, pyruvate metabolism, and oxidative
phosphorylation, in both species. HDAC inhibitors are well-known to impact energy conversion
pathways in cancer cells [59,117] where they usually downregulate genes associated with glycolysis,

thereby counteracting the Warburg Effect [118]. However, our results differ in that genes from
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virtually all energy conversion pathways were downregulated. We also observed a dramatic
upregulation of genes associated with protein synthesis in both species, after consumption of both
HDAC inhibitors. A similar result was observed in mouse embryos treated with TSA [119,120].
Finally, we observed the upregulation of cuticular protein genes, in both species, which could have

implications for development.

In some previous studies HDAC inhibitors, including TSA, have been observed to lower the
expression of HDAC genes [121]. In this sense, these substances were doubly inhibitory: disrupting
the activity of HDAC enzymes and downregulating the expression of HDAC genes. However, we did

not observe this for most of the HDAC genes identified in S. exigua or T. ni.

4. Extending this work to test hypotheses in the field

These observations demonstrate that dietary SFN can inhibit the HDAC enzymes of herbivores,
disrupting gene expression and development. Specifically, we demonstrated that SFN slowed the
development of S. exigua, an important agricultural pest. In these laboratory experiments, we
examined the effects of SFN alone, rather than in combination with other defenses present in
cruciferous plants. The next step is to evaluate the effectiveness of SFN as an epigenetic weapon in

nature.

Based on these results, we envision three possible ways in which SFN could act as an effective
defense against susceptible herbivores in nature. First, SFN may cause larvae to be smaller, for a
longer time. According to the slow growth — high mortality hypothesis, this would extend the window
of vulnerability during which caterpillars are most exposed to predators [122,123]. Indeed, this effect
has been observed for caterpillars feeding on cruciferous plants in nature [123]. If this is the case
SFN would be most effective as a defense in a natural setting when predators are present. Second,
SFN could slow development sufficiently to reduce the number of herbivore generations over the
course of a growing season. For S. exigua we typically observe delays of 2-3 days from first instar
larvae to the emergence of moths. However, in longer experiments examining a complete life cycle,
we have observed delays of 5-7 days after consumption of SFN. For comparison, the life cycle of S.
exigua in the field is approximately 22-28 days, rapid enough to generate six generations during the
summer in Florida (USA) [124]. Based on our results, SFN could slow development to the point of

eliminating one generation of S. exigua caterpillars per growing season.

Finally, SFN could sabotage the phenotypic plasticity — the adaptability — of these herbivores, which

may be especially detrimental for insects since they rely upon their remarkable phenotypic flexibility
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for their ecological success [38,92,125-128]. For instance, herbivores commonly adjust their
phenotypes to circumvent the induced defense responses of plants in real-time [1-5,129]. If SFN
interferes with phenotypic plasticity, it may be most damaging in combination with other plant
defenses. In cruciferous plants, synergistic effects of multiple glucosinolates are well-known. It is
also interesting to note that such synergistic combinations of HDAC inhibitors and other chemical

agents have been documented in medical studies [130,131].

The effects of SFN on S. exigua were most apparent at higher temperatures, suggesting that SFN
may be most effective in warmer regions or late in the growing season. This result also indicates that
continued climate warming may increase the effectiveness of SFN as an epigenetic weapon against

herbivores.
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