- 1 EPIGENETIC WEAPONS IN PLANT-HERBIVORE INTERACTIONS: SULFORAPHANE
- 2 DISRUPTS LEPIDOPTERAN HISTONE DEACETYLASES, GENE EXPRESSION, AND LARVAL
- 3 **DEVELOPMENT**

4

- 5 Dana J. Somers, David B. Kushner, Alexandria R. McKinnis, Dzejlana Mehmedovic, Rachel S.
- 6 Flame, and Thomas M. Arnold*

7

- 8 Department of Biology, Program in Biochemistry and Molecular Biology, Dickinson College, Carlisle,
- 9 PA USA 17013
- 10 *corresponding author: arnoldt@dickinson.edu

11

12

ABSTRACT

13 Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-14 15 histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC 16 inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not 17 been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC enzymes and slows the development of the generalist grazer Spodoptera exigua, in a dose-18 19 dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes in S. 20 exigua were reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed 21 by 2-5 days, with no additional mortality. Similar results were obtained when SFN was applied 22 topically to eggs. RNA-seg analyses confirm that SFN altered the expression of thousands of genes 23 in S. exigua. Genes associated with energy conversion pathways were significantly downregulated 24 while those encoding for ribosomal proteins were dramatically upregulated in response to the 25 consumption of SFN. In contrast, the co-evolved specialist feeder Trichoplusia ni was not negatively 26 impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically 27 to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In 28 fact, SFN exposure sometimes accelerated T. ni development. RNA-seq analyses revealed that the 29 consumption of SFN alters gene expression in T. ni in similar ways, but to a lesser degree, 30 compared to S. exigua. This apparent resistance of T. ni can be overwhelmed by unnaturally high 31 levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results 32 demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the

33 34 hypothesis that plant-derived HDAC inhibitors serve as "epigenetic weapons" against herbivores.

INTRODUCTION

Plant chemical defenses act directly and indirectly against herbivores. Direct defenses include structural defenses such as waxes, thorns, hairs, and trichomes, as well as chemicals which act as toxins, deterrents, antifeedants, endocrine disrupters, photosensitizers, irritants and abrasives, immobilizers, allergens, and digestion reducers, among others [1–6]. Such direct defenses arose during the 350 million years plants have co-evolved with herbivores; they kill, injure, manipulate, or disrupt the development of herbivores [7]. Here we propose a new subcategory of plant defense. one capable of altering gene expression patterns of herbivores on a broad scale by sabotaging their epigenetic control systems. We focus on plant products that inhibit the activity of nuclear histone deacetylase (HDAC) enzymes in herbivores, disrupting the balance of acetylation and deacetylation of nuclear histone proteins in the animal's tissues. These substances alter DNA-histone binding properties, creating new regions of loosely packed euchromatin and tightly packed heterochromatin, thereby altering the accessibility of large numbers of genes [8-11]. HDAC inhibitors are common in plants [12–14] and their effects on humans and other mammals have been investigated in clinical trials [13,15–22]. However, little is known about the roles of these botanical HDAC inhibitors in nature. We suggest that they act as epigenetic weapons, disrupting the development, phenotype, behavior, dispersal, or reproduction of herbivorous insects via epigenetic mechanisms. To test this idea, we examined the effects of sulforaphane (SFN), an HDAC inhibitor produced by cruciferous plants, on two common lepidopteran grazers which are important agricultural pests.

1. The importance of epigenetic systems in insects

Epigenetic systems are ubiquitous in metazoans where they alter gene expression *via* DNA methylation, regulatory action of non-coding RNA, or modification of histone proteins [23–25]. These chromatin modifications open and close regions of the genome and alter the ability of transcription factors to access genes. As a result, they can orchestrate large-scale changes in gene expression, generating new metastable phenotypes in individuals [26–28]. For example, epigenetic systems can direct normal development and aging, coordinate stress responses, and facilitate rapid adaptation to changing environments. Altered phenotypes may persist long after a stimulus has passed [8,13,24–27,29]. New phenotypes generated by these epigenetic systems are termed epigenotypes [30]. In insects, where phenotypic changes can be especially dramatic, they are often referred to as polyphenisms. Acquired epigenetic states can sometimes be inherited, altering the phenotype of offspring in ways that may (or may not) improve their fitness [24,31,32]. In short, epigenetic mechanisms are an important source of phenotypic plasticity for individuals. They may also confer benefits at the level of populations by facilitating adaptation to changing conditions when genetic variation is lacking, such as in small, bottlenecked, or asexual populations [24,33].

Relatively little is known about the epigenetic machinery of insects [34–37]. However, recent studies demonstrate that they can be important in development, sex determination, morphology, behavior, life history cycles, longevity, pathogen resistance, and immune priming as well as eusocial caste structure [34,35,38–40]. For instance, various epigenetic systems control development, physiology, and behavior in *Drosophila* [41]; determine the sex of silk moths (*Bombyx*) [42]; control the size and shape of insect armament in beetles [43]; alter juvenile hormone levels [39]; and may alter the duration and direction of flight in the cotton bollworm, Helicoverpa armigera [36]. Epigenetic mechanisms determine the caste of individuals in eusocial insects, including bees and ants [35,44– 46]. Clearly, epigenetic systems can initiate phenotypic plasticity in response to changing conditions or, in some cases, exposure to specific chemicals. There are some examples of epigenetic effects spanning generations in insects, though these reports are relatively rare. For example, Manduca sexta epigenetic mechanisms facilitate trans-generational immune priming against pathogenic bacteria [40].

Three epigenetic systems have been commonly examined in insects [24,34,35,37]: DNA methylation, non-coding RNA, and histone modifications.

DNA methylation. In most animals methylation of DNA tends to repress transcription and the majority of CpG dinucleotide sites are methylated at any given time [36]. However, DNA methylation may not be as common, or as important, in insects. For example, DNA methylation was not observed in *Drosophila* and is thought to be sparse or absent in many other insect taxa, leading some to conclude that DNA methylation has at most a minor role in insects [35,36,38,47,48]. Some insects possess the enzymes required for DNA methylation but others, including *Drosophila* and some lepidopterans, do not [35,36]. There are a few reported examples of DNA methylation impacting insect fitness [36,38] but the importance of DNA methylation in insects is a subject of debate [34].

Non-coding RNA. Non-coding RNAs may bind to DNA and alter chromatin to yield epigenetic effects and some have roles in insects [35,38]. For example, they may be protective against mutations caused by transposable elements; they occasionally determine insect sex, as in *Bombyx*; they alter DNA binding to histones; and they may be maternally transmitted to offspring [35]. More work is needed to understand the functions of non-coding RNAs in insects.

Histone modifications. Gene expression may be controlled by altering DNA binding to histone proteins [9,11]. Histone acetyltransferases modify histone subunits by adding acetyl groups, creating regions of loosely packed euchromatin that makes genes more accessible for transcription. Conversely, HDACs remove acetyl groups, leading to tightly packed heterochromatin that is less

accessible for transcription [8–11].

105106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

Here we focus on plant products that inhibit HDACs, for several reasons. First, plants produce an assortment of natural products known to inhibit HDAC enzymes in mammals [13,15,49-53]. Examples include allicin from garlic; curcumin from turmeric; apigenin, genistein, and quercetin from fruits; sinapinic acid from mustard seeds; resveratrol from grapes and wine; SFN from cruciferous vegetables; caffeic acid and catechins from foliage and tea; protocatechuic aldehyde from wine stopper cork; diallyl disulfide from garlic; zerumbone from ginger; ursolic acid from basil; and butein and kaempferol from a variety of plants [12–14]. This evidence comes primarily from medical studies focusing on mice and cultured cells as well as from clinical trials. Second, there is evidence that HDAC inhibitors from other, non-plant sources can affect insects quite dramatically. For example, phenyl butyrate in royal jelly is a natural HDAC inhibitor and determines caste and behavior in honey bees and ants [35,38]. The related HDAC inhibitor, sodium butyrate, improves learning in honey bees [54]. In cultured cells of Spodoptera frugiperda, sodium butyrate causes mitochondrial dysfunction, oxidative stress, and cell death, [55] while also altering susceptibility to viruses [56]. Exposure to trichostatin A (TSA), a pharmaceutical HDAC inhibitor, alters the size and shape of mandibles in the broad-horned flour beetle, Gnatocerus cornutus [43]. It also alters histone acetylation in the brains of Camponotus floridanus ants, resulting in changes to their behavior [44]. RNAi silencing of HDAC genes alters histone acetylation in the brown planthopper, Nilaparvata lugen, affecting the development of ovaries and ovipositors in females and preventing males from making courtship songs [57]. There is an obvious disconnect between these two sets of studies. One set highlights the many HDAC inhibitors produced by plants and examines their use in medicine. The other set shows that HDAC enzymes can affect insects but focuses on HDAC inhibitors from non-plant sources. We are

133134135

136137

138

139

2. HDAC inhibitors

upon their host plants.

There are 18 recognized HDAC enzymes, organized into four classes [9,12,35,58,59]. The "classic" HDACs are zinc-dependent hydrolases. These include class I enzymes (HDACs 1–3, 8), which are ubiquitous and essential for cell proliferation and survival; class IIa enzymes (HDACs 4, 5, 7, 9) have weak activity and move in and out of the nucleus; class IIb enzymes (HDACs 6, 10) act upon non-

not aware of any study connecting these two sets of observations, i.e., testing the potential impact of

surprising since many herbivorous insects consume large amounts of HDAC inhibitors when feeding

botanical HDAC inhibitors on the development, physiology, or behavior of herbivores. As a result,

little is known about the roles of botanical HDAC inhibitors in nature. This gap in knowledge is

HDAC enzymes include the sirtuins, class III NAD+ dependent enzymes (SIRT 1-7) that are involved in aging, transcription, apoptosis, inflammation, axonal degeneration, stress resistance, metabolic regulation, and energy production. HDAC inhibitors impede the activity of one or more classes of HDAC enzymes [11]. Many are common in nature; some are FDA-approved therapeutics used in oncology and neurology [59]. Pharmaceutical HDAC inhibitors include TSA, romidepsin (Istodax), and suberanilohydroxamic acid (Vorinostat). Less powerful HDAC inhibitors include certain ketones, sodium- and phenyl-butyrates, and the anti-seizure medication valproic acid [13]. Plants produce a variety of HDAC inhibitors, such as SFN, an isothiocyanate from cruciferous vegetables, which inhibits class II HDAC enzymes in mammals [13,49,53]. SFN has health benefits in humans [51,60-63]. For example, it initiates anti-oxidant and anti-inflammatory responses and restores proteasome function [64,65]. In cancer cells, it can trigger cell cycle arrest and apoptotic cell death thereby inhibiting tumor growth [66,67]. SFN can cross the blood-brain barrier and has neuroprotective effects [64,68,69]. In mammals SFN is easily absorbed and distributed in the body: after consumption of broccoli, for example, the concentration of SFN in human plasma increases quickly and plateaus within several hours [69–72]. The potential

histone proteins in the cytosol; class IV enzymes (HDAC 11) have poorly-defined functions. Other

3. Testing HDAC inhibitors as potential plant defenses in a model system

roles of SFN in nature, however, have not received much attention.

SFN is produced by plants in the order Brassicales (the cruciferous or mustard oil plants) including cabbages, broccoli, Brussels sprouts, bok choy, cauliflower, rapeseed, watercress, and *Arabidopsis* [6,62,73–76]. This group includes the most important cultivated leafy vegetables [67]. When these plants are chewed or crushed, a "mustard oil bomb" reaction is generated in which glucosinolates are hydrolyzed by plant myrosinases (ß-thioglucoside glucohydrolases) to generate nitriles, isothiocyanates, thiocyanates, oxazolidine-2-thiones, and epithionitriles [6,73,74,77,78]. These products can serve as defenses against herbivores [67,79–88] and influence the taste and flavor of cruciferous plants. SFN is the hydrolysis product of one particular glucosinolate, glucoraphanin (4-(methylsulfinyl) butyl glucosinolate) [61,62,64]. Most insect herbivores feeding on cruciferous plants would be exposed to SFN with every bite, though some possess adaptations to deactivate or redirect the mustard oil bomb reactions [80,88–90]. These substances are known to have a variety of deterrent effects against a range of grazers; however, as far as we are aware, the impacts of SFN on the epigenetic systems of insect herbivores have not been investigated.

Here we investigated the impact of SFN on two lepidopteran species, one generalist (the beet army worm, *Spodoptera exigua*) and one specialist (the cabbage looper, *Trichoplusia ni*), both of which are agricultural pests and consume cruciferous plants in nature. *S. exigua* has a broad host range; in

174 contrast, T. ni grazes most often on members of the Brassicales [91], including those that generate 175 SFN [6,79,87,92]. Our experiments tested the hypothesis that SFN interferes with the epigenetic 176 machinery of herbivorous insects. 177 178 **METHODS** 179 **Experimental Approach**. We conducted a series of experiments to determine if dietary SFN (a) 180 affects development, (b) inhibits the activity of nuclear HDAC enzymes, and/or (c) alters patterns of 181 gene expression in the beet armyworm (S. exiqua) and the cabbage looper (T. ni). For each 182 experiment, larvae were allowed to feed ad lib on an artificial diet (AD) containing natural 183 concentrations of SFN. Others consumed pharmaceutical HDAC inhibitors, such as TSA and 184 romidepsin (ROM), which served as response controls (Figure 1). We monitored the development of 185 larvae and in some cases adult moths. Differential development was analyzed using Student's ttests or ANOVAs with Holm-Sidak posthoc tests. Non-parametric alternatives, including Mann-186 187 Whitney U tests and ANOVAs on ranks with Dunn's pairwise comparisons, were used when 188 datasets were not normally distributed. Tissues were also collected to quantify HDAC enzyme 189 activities and to identify gene expression patterns via RNA-seq. 190 Figure 1. Basic design of single generation experiments. For each species, first instar larvae in 191 192 individual wells consumed various concentrations of SFN in an AD. Larvae in negative control 193 groups consumed AD treated only with the carrier solvent (ethanol), which was evaporated prior to 194 feeding. Larvae in positive control groups consumed AD supplemented with a pharmaceutical HDAC 195 inhibitor, usually TSA. Larvae were raised at 25°C and 50% humidity, unless otherwise noted. 196 Biometric data, such as mass, length, and width, were recorded for individual larvae. Tissues were 197 isolated from a subset of larvae for HDAC enzyme activity assays and gene expression analyses by 198 RNA-seq. Remaining larvae were allowed to develop normally. 199 200 **Insects and treatments.** T. ni and S. exigua larvae were obtained from Benzon Research (Carlisle, 201 Pennsylvania, USA). First instar larvae were raised individually in 5 ml wells on an AD appropriate 202 for each species with antibiotics at 25°C and 50% humidity, unless otherwise indicated. 203 The HDAC inhibitors SFN, TSA, and ROM were obtained commercially from Millipore Sigma 204 (Burlington, Massachusetts, USA) and BioVision Incorporated (Waltham, Massachusetts, USA). 205 Each HDAC inhibitor was solubilized in ethanol and added to each well to cover the surface of the AD. The ethanol was fully evaporated for 8h at 20°C. One first instar larva was transferred into each 206

207 well on Day 0. Larvae fed ad lib and generally consumed half of the AD by Day 7. We employed a 208 variety of negative controls, including larvae feeding on AD alone and larvae feeding on AD treated 209 with the ethanol carrier solvent only. In a few cases we raised a second generation by allowing 210 larvae to pupate, emerge as moths, and mate within treatment groups. In these cases, second-211 generation larvae were reared from the eggs on AD without HDAC inhibitors. 212 The amount of SFN utilized in these experiments is similar to what is ingested during natural 213 feeding. For example, we typically used SFN concentrations of 0-70 mM, applied as 30-40 µl 214 aliquots to each well containing AD. This range of concentrations is similar to that of cruciferous 215 plant foliage and lower than levels reported in buds, flowers, sprouts, or seeds. The doses are also comparable to those used in medical studies [93]. We also conducted parallel experiments wherein 216 HDAC inhibitors were applied topically to eggs, using DMSO as a penetrating solvent. 217 218 Sample collection. Larvae developed in individual wells until pupation, approximately Day 14 219 depending on species, treatment, and temperature. Larval masses, larval widths, and survivorship 220 were recorded. Fat body tissues, and in some cases ovaries, were collected by microdissection from 221 a subset of larvae, approximately four days before control larvae would start pupation. Tissues used 222 to quantify HDAC enzyme activities were stored immediately at -80°C [94]. Tissues for RNA-seq 223 analyses were preserved in RNA/ater (Invitrogen, San Diego, California, USA; ThermoFisher 224 Scientific, Waltham, Massachusetts, USA) using 1 ml per 100 mg tissue, and stored at -80°C. 225 HDAC enzyme activity. Extracts of nuclear and cytoplasmic proteins were made from isolated 226 tissues (BioVision K266-25, Waltham, Massachusetts, USA). HDAC enzyme activity was determined 227 using an HDAC Activity Fluorometric Assay Kit (BioVision K330-100, Waltham, Massachusetts, 228 USA) and normalized to protein concentration in each extract. 229 RNA extraction, library construction, and sequencing. Larvae from each experiment group were 230 dissected to isolate fat body tissue. Fat bodies from three to five individual larvae were pooled per 231 replicate. Thawed samples were centrifuged at 10,000 x g for 20 seconds and RNA/ater was 232 removed from pelleted tissue. Total RNA was extracted from the tissue twice using Buffer A (50 mM 233 sodium acetate pH 5.2, 10 mM EDTA, 1 % SDS) saturated phenol heated to 65 °C, followed by phenol/chloroform (1:1) extraction. Extracts were ethanol precipitated, resuspended in ddH₂O and 234 235 ethanol precipitated again. Final pellets were resuspended in ddH₂O to a concentration of 500-1500 236 ng/ml. RNA concentration was determined using a DS-11 spectrophotometer (DeNovix, Wilmington, 237 Delaware, USA). Total RNA quality was assessed using RNA Nano Chips and a 2100 BioAnalyzer 238 (Agilent, Santa Clara, California, USA) and Qubit RNA High Sensitivity Assay (ThermoFisher, 239 Waltham, Massachusetts, USA), followed by High Sensitivity RNA ScreenTape Analysis (Agilent, 240 Santa Clara, California, USA).

241	Library construction and sequencing was performed by Admera Health Biopharma Services (South
242	Plainfield, New Jersey, USA). Poly(A) selection was performed using the NEBNext Poly(A) mRNA
243	Magnetic Isolation Module (New England Biolabs, Ipswich, Massachusetts, USA) following the
244	manufacturer's protocols. RNA-seq libraries were generated using the NEBNext Ultra II RNA Library
245	Prep Kit for Illumina (New England Biolabs, Ipswich, Massachusetts, USA) following manufacturer's
246	protocols. Libraries were quality checked using the Qubit dsDNA High Sensitivity Assay
247	(ThermoFisher, Waltham, Massachusetts, USA), followed by High Sensitivity DNA ScreenTape
248	analysis (Agilent, Santa Clara, California, USA) and qPCR (KAPA SYBR FAST qPCR Master Mix
249	(2X) Kit; Roche, Basel, Switzerland). Libraries were standardized to equal molar ratios and then
250	pooled. Paired-end 150-bp reads were generated using the NovaSeq S4 platform (Illumina, San
251	Diego, California, USA). All raw sequence reads were deposited in the NIH GEO under project
252	number GSE234351.
253	RNA-seq processing and analysis. Reads for all RNA-seq experiments were quality checked with
254	FastQC (v0.11.9) [95] and were processed with Trimmomatic (v0.39) [96] using the following
255	parameters: LEADING:5, TRAILING:5, MAXINFO:36:0.2, MINLEN:50. <i>T. ni</i> reads were aligned to
256	the <i>T. ni</i> Cornell-1 isolate genome (obtained from the <i>T. ni</i> Genome Database on 2022-05-25) and
257	$\it S.~exigua~reads~were~aligned~to~the~\it S.~exigua~TB_SE_WUR_2020~isolate~genome~(WGS~JACEFF01~color)$
258	obtained from the NCBI Genome Database on 2022-06-06)[97,98]. Reads were aligned using
259	HISAT2 (v2.2.1) with the default parameters, and alignments were quality checked using QualiMap
260	(v2.2.1)[99]. featureCounts implemented in the Rsubread package (v2.12.2) was used to calculate
261	read counts for each gene using the appropriate species-specific annotations [100]. Low-count
262	genes (mean counts-per-million [CPM] across all samples > 10) were filtered and read counts were
263	normalized using the trimmed mean of M-value normalization method. Differential expression
264	analysis was performed with edgeR (v3.40.2) [101,102] using a general linearized model comparing
265	the mean expression for all pairwise combinations of treatments, pairing triplicate samples, and
266	taking the Benjamini and Hochberg false discovery rate (FDR) < 0.05 as significant [103].
267	One-to-one orthologs between <i>T. ni</i> and <i>S. exigua</i> were assigned using the reciprocal best hit
268	method with BLAST [104]. Hierarchical clustering was performed using Cluster 3.0 [105] and
269	visualized in JavaTreeView [106]. KEGG and GO annotation terms were assigned to each genome
270	using eggNOG (v2.1.7) [107]. Functional enrichment analysis of orthologous gene lists was
271	performed with clusterProfiler (v4.6.0) [108], using a hypergeometric test, taking as background the
272	set of genes in each species that were retained after filtering for low count genes, and taking the
273	Benjamini and Hochberg FDR < 0.05 as significant [103].

RESULTS

The growth of the generalist feeder, *S. exigua*, but not the specialist feeder *T. ni*, was negatively affected by HDAC inhibitors. SFN slowed the development of *S. exigua* larvae in a dose-dependent manner. *S. exigua* larvae feeding upon the highest doses of SFN were, on average, less than half the size of those in the control groups at Day 11 (Figure 2A). The treated larvae seemed otherwise healthy: they readily fed on diets containing SFN and pupated normally and there was no significant mortality. In contrast, the development of *T. ni* larvae was generally unaffected by SFN. For example, SFN had no impact on *T. ni* larval mass at Day 7 (P=0.502) or Day 11 (P=0.780; Figure 2A) and there were no obvious changes in feeding, behavior, or pupation.

Topical application of SFN elicited responses similar to feeding. We observed similar results when SFN was applied topically to egg masses (Figure 2B). Direct SFN treatment inhibited the development of *S. exigua* (Student's t-test; P<0.001). In contrast, we observed that *T. ni* larvae from SFN-treated eggs grew *faster*, compared to controls (Student's t-test; P<0.001).

Stronger HDAC inhibitors challenge the resistance of *T. ni. T. ni* appeared to be resistant to the effects of SFN at natural concentrations, so we attempted to overwhelm this resistance by exposing larvae to ROM, one of the strongest pharmaceutical HDAC inhibitors. We observed that the growth of *T. ni* larvae was reduced dramatically by ROM in a dose-dependent manner (Figure 2C). ROM treatments also delayed pupation up to 5 days and delayed the emergence of adult moths up to 10 days, on average. Only the highest treatment of 18.5 μM ROM caused significant mortality. Nevertheless, consistent with the aforementioned results, *T. ni* was less impacted than *S. exigua*.

Long-term effects. We observed some impacts of HDAC inhibitors on later developmental milestones. In the SFN treatment groups, the emergence of *S. exigua* moths was often delayed by a few days. Stronger HDAC inhibitor drugs slowed the emergence of *S. exigua* moths more dramatically (Figure 2D). Interestingly, the emergence of *T. ni* moths was not delayed. Instead, it was *accelerated* by approximately two days in both TSA and the highest concentrations of SFN (Figure 2D). Despite these effects on larval development, we never detected differences in pupal mass or the size, appearance, and behavior of adult moths for any treatment group.

Figure 2. Effects of HDAC inhibitors on development of *S. exigua* and *T. ni* larvae. (A) The mass of *S. exigua* larvae was reduced by consumption of SFN at Day 11 (One-way ANOVA, P=0.006; red bars). No significant effect on larval mass was observed for *T. ni* (One-way ANOVA, P=0.780; blue bars). (B) By Day 11, the width of *S. exigua* larvae was reduced when eggs were directly exposed to SFN (Student's t-test, P<0.001; red bars). In contrast, the width of *T. ni* larvae was not reduced but instead increased by Day 11 (Student's t-test, P<0.001; blue bars). Con.

311	indicates use of the DMSO carrier solvent. (C) S. exigua larval mass was decreased at both Day /
312	(One-way ANOVA, P<0.001) and Day 11 (One-way ANOVA, P<0.001) after exposure to the
313	powerful HDAC inhibitor ROM. T. ni larval mass was also decreased at Day 7 (One-way ANOVA,
314	P<0.001) and Day 11 (One-way ANOVA, P<0.001). (D) The emergence of S. exigua moths was not
315	delayed by the consumption of SFN, although TSA delayed moth emergence by about two days
316	(One-way ANOVA, P=0.003). The emergence of <i>T. ni</i> moths was not delayed by SFN or TSA.
317	Instead, both TSA and SFN accelerated moth emergence significantly (One-way ANOVA, P<0.003).
318	Control indicates the use of the EtOH carrier solvent. All data represent the mean +/- SE; letters
319	indicate the results of post hoc tests; bars with the same letters are not significantly different at
320	α=0.05 according to pairwise multiple comparisons.
321	
322	SFN inhibits HDAC enzymes in S. exigua but not T. ni. We expected the consumption of SFN
323	and TSA to inhibit the activity of HDAC enzymes in larval tissues, as they do in mammals, and
324	indeed this was the case for <i>S. exigua</i> . In this species, HDAC enzyme activity was reduced by ~50%
325	by SFN (Figure 3A). In contrast, HDAC enzyme activities in <i>T. ni</i> tissues were not inhibited by
326	exposure to SFN.
327	
328	We wondered if the HDAC enzymes of <i>T. ni</i> were naturally resistant to SFN. To test this, we
329	extracted nuclear and cytoplasmic HDAC enzymes from both species and exposed them to SFN in
330	vitro. The enzymes extracted from both species were inhibited equally by SFN (Figure 3B)
331	suggesting that HDAC enzymes from <i>T. ni</i> were not inherently more resistant to SFN.
332	
333	Figure 3. Effect of SFN on HDAC enzymes in S. exigua and T. ni. (A) The activity of HDAC
334	enzymes in nuclear extracts was reduced in <i>S. exigua</i> after consumption of SFN (Student's t-test,
335	P=0.023; red bars). In contrast, enzyme activity was not reduced in <i>T. ni</i> (Student's t-test, P=0.333;
336	blue bars). (B) Nuclear and cytoplasmic HDAC enzymes were extracted from <i>S. exigua</i> (red) and <i>T.</i>
337	ni (blue), and their activities were quantified in vitro in the presence of various concentrations of
338	SFN. Con. indicates use of the EtOH carrier solvent. Data represent the mean of 3-5 replicates +/-
339	SE.
340	
341	The effects of SFN on S. exigua are most apparent at higher temperatures. Changes in
342	temperature impacted larvae development, as expected (Figure 4). For both species, larval growth
343	rates increased markedly as temperatures increased from 23 to 29°C. Consistent with previously
344	described experiments where larvae consumed SFN, development of <i>S. exigua</i> was reduced by
345	consumption of SFN; this effect was most apparent at higher temperatures. For example, at 23°C
3/16	the mass of S evigua larvae was reduced 20% from 65 mg to 52 mg, on average whereas at 20°C

mass was reduced 30% from 226 mg to 157 mg, on average. In these experiments, consumption of SFN failed to affect the development of *T. ni* at any temperature.

348349350

351

352

347

Figure 4. Effect of temperature on larvae consuming SFN. Exposure to SFN affected the mass of *S. exigua* larvae at various temperatures. The impact of SFN on *S. exigua* was most apparent at higher temperatures. For *T. ni*, larval mass was not reduced by SFN at any temperature. Con. indicates use of the EtOH carrier solvent. P values are the results of Student's t-tests.

353 354

355356

357358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376377

378

379

380

SFN induces large-scale changes in gene expression. To investigate the consequences of HDAC inhibition in larvae consuming SFN or TSA (S1 Figure), we profiled transcriptome changes in S. exigua and T. ni fat body tissues, in biological triplicate. We applied a linear model to identify genes differentially expressed in each species, in response to each HDAC inhibitor. In all, we identified 1,792 and 2,454 genes whose expression was significantly altered in S. exigua and T. ni. respectively, after consumption of either SFN or TSA (S2 Figure). To directly compare the response between species, we identified one-to-one orthologs. In both species, the expression patterns were similar: approximately 85% of significantly differentially expressed genes are repressed in response to either SFN or TSA, while approximately 15% genes are induced (Figures 5B,C). The genes repressed in response to SFN strongly overlap the genes repressed in response to TSA. However, we also identified 181 and 409 genes in S. exigua and T. ni, respectively that showed speciesspecific repression. The genes induced in response to SFN and TSA have less overlap between species. Importantly, although the response patterns were similar for both species, the *magnitude* of the response to these HDAC inhibitors was greater in S. exigua compared to T. ni (Figure 5A). To explore the potential physiological effects of differential gene expression elicited by SFN and TSA, we clustered the orthologous expression responses and identified enrichment of KEGG pathways in specific gene clusters (Table 1). Both species exhibited reduced expression of genes associated with energy conversion pathways, including pyruvate metabolism, carbon metabolism, oxidative phosphorylation, the TCA cycle, glycolysis, and gluconeogenesis. Again, the degree to which these genes were repressed was less in T. ni as compared to S. exigua. In addition, both species showed increased expression of genes associated with ribosome biosynthesis and the production of cuticular proteins. Finally, a small cluster of 146 genes that were induced in *T. ni* but repressed in S. exigua showed a significant enrichment for genes involved in fatty acid degradation. It is possible that HDAC inhibitors such as SFN and TSA not only inhibit HDAC enzyme activity

directly but also repress the expression of genes encoding for these enzymes, a type of "double inhibition". To investigate this, we specifically examined the expression of known HDAC genes in

these species of insects. We identified six HDAC genes in each of our species: HDAC2 & 3 (Class I), HDAC6 & 7 (Class II), and HDAC11 (Class IV). Only HDAC11 was significantly repressed in our experiment, in both *S. exigua* and *T. ni* (S1 Table).

Figure 5. Consumption of SFN altered the expression of genes in fat body tissues of *S. exigua* and, to a lesser degree, *T. ni.* (**A**) Hierarchical clustering based on Euclidean distance of 1,721 orthologous genes significantly differentially expressed after exposure to either SFN (S) or TSA (T) in *S. exigua* (*S.e*) and *T. ni* (*T.n*). Values represent the log₂ fold-change relative to an EtOH control. Venn diagrams represent the overlap of orthologous genes significantly repressed in response to SFN or TSA (n = 1,615; **B**) or significantly induced in response to SFN or TSA (n = 307; **C**). For overlap categories representing less than 5% of the total number of genes, the number is not denoted in the Venn diagram.

Table 1. Enrichment for KEGG pathways in clusters of genes with different expression patterns.

Function	P value ^a	Number of Genes in Cluster	Number of Genes in Genome	Fold Enrichment over Background
Repressed in both species				
Pyruvate metabolism	5.00e-09	19	51	5.94
Oxidative phosphorylation	1.14e-05	27	148	2.91
Carbon metabolism	3.90e-05	25	141	2.83
Citrate cycle (TCA cycle)	7.72e-05	12	40	4.79
Biosynthesis of amino acids	0.0012	16	86	2.97
Cysteine and methionine metabolism	0.0057	10	45	3.54
Glycolysis / Gluconeogenesis	0.0191	10	53	3.01
Glycerophospholipid metabolism	0.0450	11	70	2.51
Induced both species				
Ribosome biogenesis in eukaryotes	6.41E-35	31	71	21.15
Repressed in S. exigua and induced in T. ni				
Fatty acid degradation	0.0306	4	42	9.95

^a P value from Bonferroni-corrected hypergeometric test.

Iflaviruses. Our RNA-seq analyses confirmed the presence of iflavirus 1, a positive-strand RNA virus, in the fat body tissues of *S. exigua*. This result was not surprising. Iflaviruses are common in lab-cultured populations [109] and field populations [110,111] of insects. In many insect species, including *S. exigua*, iflaviruses produce "covert infections" that are not lethal and do not produce

obvious signs of disease [109,112]. Carballo *et al.* noted that they are often detected serendipitously during transcriptomic studies [113], as was the case in our experiments. However, a few recent studies have suggested that there may be direct or indirect effects of iflavirus infection, for example interactions with other viruses or predators known to affect insect fitness [113]. We wondered if the consumption of HDACi in our experiments affected the abundance of iflavirus RNA. It did not; our analyses indicated that viral RNA levels were not impacted by the consumption of HDAC inhibitors by its host.

DISCUSSION

1. Sulforaphane can act as an epigenetic weapon against S. exigua

SFN, a natural HDAC inhibitor produced by cruciferous plants, disrupted the development of the beet armyworm, *S. exigua*, when consumed at natural concentrations. In general, SFN slowed larval growth by ~50%. Interestingly, there was no significant mortality. Larvae fed normally, were otherwise healthy, and pupated to produce adult moths. In this species, consumption of SFN inhibited the activity of HDAC enzymes in the nucleus and the cytoplasm of fat body tissues by ~50% and resulted in large scale changes in patterns of gene expression. We detected 1,792 differentially expressed genes in *S. exigua* larvae consuming SFN. In general, genes associated with central energy production pathways were downregulated while genes associated with ribosome construction and cuticle formation were upregulated in fat body tissues. The method of SFN treatment did not seem to matter: similar responses were observed when SFN was consumed in the diet and when eggs were treated topically with SFN, supporting the hypothesis that SFN acts directly as a HDAC inhibitor rather than affecting feeding rates. The effects of dietary TSA, a pharmaceutical HDAC inhibitor, were similar. These observations support our hypothesis that SFN acts as a chemical defense by disrupting the epigenetic control systems of herbivorous insects.

2. *T. ni* is more resistant to SFN

 Interestingly, the specialist herbivore *T. ni* was at least partly resistant to the effects of SFN. The development of *T. ni* larvae was rarely affected by SFN, whether the substance was consumed in the diet or applied topically to eggs. Similarly, consumption of SFN did not inhibit HDAC enzyme activity in this species. In fact, HDAC enzyme activities remained high in fat body tissues despite consumption of SFN and/or the known HDAC inhibitor TSA.

 The difference in responsiveness between *S. exigua* and *T. ni* is not surprising. Herbivores often possess different co-evolutionary adaptations allowing them to feed on toxic host plants with various levels of success [80,83,89,90,114-116]. We considered how some of these adaptations may explain our results. First, some grazers possess mechanisms to deactivate or redirect the "mustard oil bomb" reactions, preventing the accumulation of products such as SFN. These adaptations would be irrelevant in our experiments because larvae consumed SFN directly. Second, we considered that some specialized grazers possess mechanisms to deactivate isothiocyanates via conjugation in the gut. These mechanisms could have protected larvae from SFN in our feeding experiments, however this would not explain the similar results obtained when SFN was applied topically to eggs (Figure 2B). Similarly, it would not explain why *T. ni* is generally resistant to TSA (Figure 3A). Third, we considered the possibility that the resistance of *T. ni* in our experiments, compared to *S. exigua*, was due to differences in the insects' HDAC enzymes themselves; however, this seems not to be the case. HDAC enzymes isolated from T. ni and S. exigua were inhibited equally by SFN in vitro (Figure 3B). Finally, we considered that *T. ni* consuming foliage containing SFN may compensate by overproducing HDAC enzymes; however, we did not find evidence for this either. The expression of HDAC genes was not increased in larvae consuming SFN or TSA. The lone exception was a gene for a poorly understood HDAC enzyme (HDAC11; S1 Table) which was indeed overexpressed in response to SFN and/or TSA. This by itself seems unlikely to explain our results. It is possible that T. *ni* could increase the level of HDAC enzymes via some post-transcriptional mechanism.

3. Sulforaphane induces large-scale changes in gene expression

The consumption of SFN affected the expression of thousands of genes. Overall, the patterns of differentially expressed genes were similar in both species in response to SFN and TSA, suggesting that SFN does indeed act primarily as an HDAC inhibitor when consumed in the diet at natural concentrations. Although the patterns of gene expression were similar, the magnitude of changes was generally greater in *S. exigua* as compared to *T. ni*. (Figure 5). In short, similar genes were affected but to a lesser degree in *T.ni*, corresponding with the resistance of this species that we observed in these experiments.

KEGG pathway analyses indicated that the consumption of SFN and TSA impacted core metabolic processes. Both HDAC inhibitors downregulated many genes associated with energy conversion pathways, including glycolysis, gluconeogenesis, pyruvate metabolism, and oxidative phosphorylation, in both species. HDAC inhibitors are well-known to impact energy conversion pathways in cancer cells [59,117] where they usually downregulate genes associated with glycolysis, thereby counteracting the Warburg Effect [118]. However, our results differ in that genes from

virtually all energy conversion pathways were downregulated. We also observed a dramatic upregulation of genes associated with protein synthesis in both species, after consumption of both HDAC inhibitors. A similar result was observed in mouse embryos treated with TSA [119,120]. Finally, we observed the upregulation of cuticular protein genes, in both species, which could have implications for development.

In some previous studies HDAC inhibitors, including TSA, have been observed to lower the expression of HDAC genes [121]. In this sense, these substances were doubly inhibitory: disrupting the activity of HDAC enzymes and downregulating the expression of HDAC genes. However, we did not observe this for most of the HDAC genes identified in *S. exigua* or *T. ni*.

4. Extending this work to test hypotheses in the field

These observations demonstrate that dietary SFN can inhibit the HDAC enzymes of herbivores, disrupting gene expression and development. Specifically, we demonstrated that SFN slowed the development of *S. exigua*, an important agricultural pest. In these laboratory experiments, we examined the effects of SFN alone, rather than in combination with other defenses present in cruciferous plants. The next step is to evaluate the effectiveness of SFN as an epigenetic weapon in nature.

Based on these results, we envision three possible ways in which SFN could act as an effective defense against susceptible herbivores in nature. First, SFN may cause larvae to be smaller, for a longer time. According to the *slow growth – high mortality* hypothesis, this would extend the window of vulnerability during which caterpillars are most exposed to predators [122,123]. Indeed, this effect has been observed for caterpillars feeding on cruciferous plants in nature [123]. If this is the case SFN would be most effective as a defense in a natural setting when predators are present. Second, SFN could slow development sufficiently to reduce the number of herbivore generations over the course of a growing season. For *S. exigua* we typically observe delays of 2-3 days from first instar larvae to the emergence of moths. However, in longer experiments examining a complete life cycle, we have observed delays of 5-7 days after consumption of SFN. For comparison, the life cycle of *S. exigua* in the field is approximately 22-28 days, rapid enough to generate six generations during the summer in Florida (USA) [124]. Based on our results, SFN could slow development to the point of eliminating one generation of *S. exigua* caterpillars per growing season.

Finally, SFN could sabotage the phenotypic plasticity – the adaptability – of these herbivores, which may be especially detrimental for insects since they rely upon their remarkable phenotypic flexibility

508 for their ecological success [38,92,125-128]. For instance, herbivores commonly adjust their 509 phenotypes to circumvent the induced defense responses of plants in real-time [1–5,129]. If SFN 510 interferes with phenotypic plasticity, it may be most damaging in combination with other plant 511 defenses. In cruciferous plants, synergistic effects of multiple glucosinolates are well-known. It is 512 also interesting to note that such synergistic combinations of HDAC inhibitors and other chemical 513 agents have been documented in medical studies [130,131]. 514 515 The effects of SFN on S. exigua were most apparent at higher temperatures, suggesting that SFN 516 may be most effective in warmer regions or late in the growing season. This result also indicates that 517 continued climate warming may increase the effectiveness of SFN as an epigenetic weapon against 518 herbivores. 519 520 **ACKNOWLEGMENTS** 521 We are grateful for the advice and assistance of Amy Witter (Department of Chemistry, Dickinson 522 College), Chad Finkenbinder (Benzon Industries), and undergraduate researchers Whitney Finney, Ashely Groff, Marisa Arreola, Peter Gibson, Kyle Ngo, Caroline Nilsen, and Eryn Nelson. Support 523 524 was provided by Dickinson College's Research and Development Committee and by National 525 Science Foundation award IOS-2151434. 526 527 528 **REFERENCES** 529 Wu J, Baldwin IT. New insights into plant responses to the attack from insect herbivores. 530 1. Annu Rev Genet 2010;44: 1–24. doi:10.1146/annurev-genet-102209-163500 531 532 2. Kessler A, Baldwin IT. Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol. 2002;53: 299-328. doi:10.1146/annurev.arplant.53.100301.135207 533 Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New 534 3. Phytol. 1994;127: 617-633. doi:10.1111/j.1469-8137.1994.tb02968.x 535 Harborne JB. Induced defence systems in plants. Physiol Plant. 1985;64: 5A. 536 4. 5. Karban R. The ecology and evolution of induced resistance against herbivores. Funct Ecol. 537 538 2011;25: 339–347. doi:10.1111/j.1365-2435.2010.01789.x 539 6. Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates. Annu Rev Plant Biol. 2006;57: 303-333. doi:10.1146/annurev.arplant.57.032905.105228 540 War AR, Paulrai MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al, Mechanisms of 541 7. plant defense against insect herbivores. Plant Signal Behav. 2012;7: 1306-1320. 542 doi:10.4161/psb.21663 543

- 8. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21: 381–395. doi:10.1038/cr.2011.22
- 546 9. Campos EI, Reinberg D. Histones: annotating chromatin. Annu Rev Genet. 2009;43: 559–547 599. doi:10.1146/annurev.genet.032608.103928
- 10. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70: 81– 120. doi:10.1146/annurev.biochem.70.1.81
- 550 11. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26: 5541–5552. doi:10.1038/sj.onc.1210620
- 552 12. Seidel C, Schnekenburger M, Dicato M, Diederich M. Histone deacetylase modulators 553 provided by Mother Nature. Genes Nutr. 2012;7: 357–367. doi:10.1007/s12263-012-0283-9
- 13. Bassett SA, Barnett MPG. The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Nutrients. 2014;6: 4273–4301. doi:10.3390/nu6104273
- 556 14. Singh AK, Bishayee A, Pandey AK. Targeting histone deacetylases with natural and synthetic agents: an emerging anticancer strategy. Nutrients. 2018;10: 731. doi:10.3390/nu10060731
- 558 15. Evans LW, Ferguson BS. Food bioactive HDAC inhibitors in the epigenetic regulation of heart failure. Nutrients. 2018;10: 1120. doi:10.3390/nu10081120
- Losson H, Schnekenburger M, Dicato M, Diederich M. Natural compound histone deacetylase inhibitors (HDACi): synergy with inflammatory signaling pathway modulators and clinical applications in cancer. Molecules. 2016;21: 1608. doi:10.3390/molecules21111608
- 563 17. Egner PA, Chen JG, Wang JB, Wu Y, Sun Y, Lu JH, et al. Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res (Phila). 2011;4: 384–395. doi:10.1158/1940-6207.CAPR-10-0296
- Kaiser AE, Baniasadi M, Giansiracusa D, Giansiracusa M, Garcia M, Fryda Z, et al.
 Sulforaphane: a broccoli bioactive phytocompound with cancer preventive potential. Cancers (Basel). 2021;13: 4796. doi:10.3390/cancers13194796
- 569 19. Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş S-C, et al. The 570 anticancer potential of plant-derived nutraceuticals via the modulation of gene expression. 571 Plants (Basel). 2022;11: 2524. doi:10.3390/plants11192524
- 572 20. Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role 573 for epigenetics. Biochem Pharmacol. 2010;80: 1771–1792. doi:10.1016/j.bcp.2010.06.036
- 574 21. Carlos-Reyes Á, López-González JS, Meneses-Flores M, Gallardo-Rincón D, Ruíz-García E,
 575 Marchat LA, et al. Dietary compounds as epigenetic modulating agents in cancer. Front
 576 Genet. 2019;10. doi:10.3389/fgene.2019.00079
- 577 22. Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics. 2019;11: 82. doi:10.1186/s13148-019-0659-4
- Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development.
 Nature. 2007;447: 425–432. doi:10.1038/nature05918

- 581 24. Duncan EJ, Gluckman PD, Dearden PK. Epigenetics, plasticity, and evolution: how do we link 582 epigenetic change to phenotype? J Exp Zoolog B Mol Dev Evol. 2014;322: 208–220. 583 doi:10.1002/jez.b.22571
- 584 25. Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11: 106–115. doi:10.1111/j.1461-0248.2007.01130.x
- 586 26. Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol. 2017;30: 1612– 1632. doi:10.1111/jeb.13130
- 588 27. Boquete MT, Muyle A, Alonso C. Plant epigenetics: phenotypic and functional diversity beyond the DNA sequence. Am J Bot. 2021;108: 553–558. doi:10.1002/ajb2.1645
- 590 28. Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colomé-Tatché M, et al. Ecological 591 plant epigenetics: evidence from model and non-model species, and the way forward. Ecol 592 Lett. 2017;20: 1576–1590. doi:10.1111/ele.12858
- 593 29. Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF. Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. Int J Mol Sci. 2020;21: 7457. doi:10.3390/ijms21207457
- 596 30. Ramos-Cruz D, Troyee AN, Becker C. Epigenetics in plant organismic interactions. Curr Opin Plant Biol. 2021;61: 102060. doi:10.1016/j.pbi.2021.102060
- 598 31. Richards CL, Bossdorf O, Pigliucci M. What role does heritable epigenetic variation play in phenotypic evolution? BioScience. 2010;60: 232–237. doi:10.1525/bio.2010.60.3.9
- Auge GA, Leverett LD, Edwards BR, Donohue K. Adjusting phenotypes via within- and across-generational plasticity. New Phytol. 2017;216: 343–349. doi:10.1111/nph.14495
- Thorson JLM, Smithson M, Beck D, Sadler-Riggleman I, Nilsson E, Dybdahl M, et al. Epigenetics and adaptive phenotypic variation between habitats in an asexual snail. Sci Rep. 2017;7: 14139. doi:10.1038/s41598-017-14673-6
- Lo N, Simpson SJ, Sword GA. Epigenetics and developmental plasticity in orthopteroid insects. Curr Opin Insect Sci. 2018;25: 25–34. doi:10.1016/j.cois.2017.11.003
- Glastad KM, Hunt BG, Goodisman MAD. Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annu Rev Entomol. 2019;64: 185–203. doi:10.1146/annurev-ento-011118-111914
- Jones CM, Lim KS, Chapman JW, Bass C. Genome-wide characterization of DNA methylation in an invasive lepidopteran pest, the cotton bollworm *Helicoverpa armigera*. G3 (Bethesda). 2018;8: 779–787. doi:10.1534/g3.117.1112
- 513 37. Villagra C, Frías-Lasserre D. Epigenetic molecular mechanisms in insects. Neotrop Entomol. 2020;49: 615–642. doi:10.1007/s13744-020-00777-8
- Verlinden H. Insect Epigenetics. San Diego, CA, USA: Elsevier Science; 2017. Available: http://unr-ra.scholarvox.com/book/88849594
- Roy A, Palli SR. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics. 2018;19: 934. doi:10.1186/s12864-018-5323-4

- 619 40. Gegner J, Baudach A, Mukherjee K, Halitschke R, Vogel H, Vilcinskas A. Epigenetic
- mechanisms are involved in sex-specific trans-generational immune priming in the
- lepidopteran model host *Manduca sexta*. Front Physiol. 2019;10: 137.
- doi:10.3389/fphys.2019.00137
- 41. Barnes VL, Laity KA, Pilecki M, Pile LA. Systematic analysis of SIN3 histone modifying
- 624 complex components during development. Sci Rep. 2018;8: 17048. doi:10.1038/s41598-018-
- 625 35093-0
- 626 42. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, et al. A single female-specific
- 627 piRNA is the primary determiner of sex in the silkworm. Nature. 2014;509: 633-636.
- 628 doi:10.1038/nature13315
- 629 43. Ozawa T, Mizuhara T, Arata M, Shimada M, Niimi T, Okada K, et al. Histone deacetylases
- control module-specific phenotypic plasticity in beetle weapons. Proc Natl Acad Sci U S A.
- 631 2016;113: 15042–15047. doi:10.1073/pnas.1615688114
- 632 44. Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C, Ray A, et al. Epigenetic
- 633 (re)programming of caste-specific behavior in the ant *Camponotus floridanus*. Science.
- 634 2016;351: aac6633. doi:10.1126/science.aac6633
- 45. Monroy Kuhn JM, Meusemann K, Korb J. Long live the queen, the king and the commoner?
- Transcript expression differences between old and young in the termite *Cryptotermes*
- 637 secundus. PLoS ONE. 2019;14: e0210371. doi:10.1371/journal.pone.0210371
- 46. Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, et al. Molecular traces of alternative
- social organization in a termite genome. Nat Commun. 2014;5: 3636.
- doi:10.1038/ncomms4636
- 47. Lyko F, Maleszka R. Insects as innovative models for functional studies of DNA methylation.
- Trends Genet. 2011;27: 127–131. doi:10.1016/j.tig.2011.01.003
- 643 48. Glastad KM, Arsenault SV, Vertacnik KL, Geib SM, Kay S, Danforth BN, et al. Variation in
- DNA methylation is not consistently reflected by sociality in Hymenoptera. Genome Biol Evol.
- 645 2017;9: 1687–1698. doi:10.1093/gbe/evx128
- 646 49. Ho E, Clarke JD, Dashwood RH. Dietary sulforaphane, a histone deacetylase inhibitor for
- 647 cancer prevention. J Nutr. 2009;139: 2393–2396. doi:10.3945/jn.109.113332
- 648 50. Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone
- deacetylase in vivo and suppresses tumorigenesis in *Apc*^{min} mice. FASEB J. 2006;20: 506–
- 650 508. doi:10.1096/fj.05-4785fje
- 651 51. Capuano E, Dekker M, Verkerk R, Oliviero T. Food as pharma? The case of glucosinolates.
- 652 Curr Pharm Des. 2017;23: 2697–2721. doi:10.2174/1381612823666170120160832
- 653 52. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug
- 654 Discov. 2006;5: 493–506. doi:10.1038/nrd2060
- 655 53. Hassan F, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A, et al. Curcumin as an
- alternative epigenetic modulator: mechanism of action and potential effects. Front Genet.
- 657 2019;10: 514. doi:10.3389/fgene.2019.00514

- 658 54. Hu Y-T, Tang C-K, Wu C-P, Wu P-C, Yang E-C, Tai C-C, et al. Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated *Apis mellifera*. Insect Mol Biol. 2018;27: 512–521. doi:10.1111/imb.12390
- Kumar JS, Suman S, Chandna S. Radioresistant Sf9 insect cells readily undergo an intrinsic mode of apoptosis in response to histone deacetylase (HDAC) inhibition. Mol Cell Biochem.
 2018;444: 207–218. doi:10.1007/s11010-017-3245-0
- 664 56. Peng Y, Song J, Lu J, Chen X. The histone deacetylase inhibitor sodium butyrate inhibits baculovirus-mediated transgene expression in Sf9 cells. J Biotechnol. 2007;131: 180–187. doi:10.1016/j.jbiotec.2007.06.009
- Zhang J-L, Yuan X-B, Chen S-J, Chen H-H, Xu N, Xue W-H, et al. The histone deacetylase
 NIHDAC1 regulates both female and male fertility in the brown planthopper, *Nilaparvata lugens*. Open Biol. 2018;8: 180158. doi:10.1098/rsob.180158
- 58. Bai X, Yao L, Ma X, Xu X. Small molecules as SIRT modulators. Mini Rev Med Chem.
 2018;18: 1151–1157. doi:10.2174/1389557516666160620095103
- 59. Li G, Tian Y, Zhu W-G. The roles of histone deacetylases and their inhibitors in cancer therapy. Front Cell Dev Biol. 2020;8: 576946. doi:10.3389/fcell.2020.576946
- 674 60. Houghton CA, Fassett RG, Coombes JS. Sulforaphane: translational research from laboratory bench to clinic. Nutr Rev. 2013;71: 709–726. doi:10.1111/nure.12060
- 676 61. Vanduchova A, Anzenbacher P, Anzenbacherova E. Isothiocyanate from broccoli,
 677 sulforaphane, and its properties. J Med Food. 2019;22: 121–126. doi:10.1089/jmf.2018.0024
- 678 62. Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocyanates in health and disease.
 679 Trends Mol Med. 2012;18: 337–347. doi:10.1016/j.molmed.2012.04.003
- 63. Sun Y, Zhou S, Guo H, Zhang J, Ma T, Zheng Y, et al. Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism. 2020;102: 154002.
 683 doi:10.1016/j.metabol.2019.154002
- 684 64. Santín-Márquez R, Alarcón-Aguilar A, López-Diazguerrero NE, Chondrogianni N, Königsberg, 685 M. Sulfoaphane - role in aging and neurodegeneration. GeroScience. 2019;41: 655-670. 686 doi:10.1007/s11357-019-00061-7
- 65. Bhattacharjee S, Dashwood RH. Epigenetic regulation of NRF2/KEAP1 by phytochemicals. Antioxidants (Basel). 2020;9: 865. doi:10.3390/antiox9090865
- 689 66. Naujokat C, McKee DL. The "big five" phytochemicals targeting cancer stem cells: curcumin, 690 EGCG, sulforaphane, resveratrol and genistein. Curr Med Chem. 2021;28: 4321–4342. 691 doi:10.2174/0929867327666200228110738
- 692 67. Liu Z, Wang H, Xie J, Lv J, Zhang G, Hu L, et al. The roles of Cruciferae glucosinolates in disease and pest resistance. Plants (Basel). 2021;10: 1097. doi:10.3390/plants10061097
- 694 68. Pu Y, Qu Y, Chang L, Wang S-M, Zhang K, Ushida Y, et al. Dietary intake of glucoraphanin prevents the reduction of dopamine transporter in the mouse striatum after repeated

- 696 administration of MPTP. Neuropsychopharmacol Rep. 2019;39: 247-251. doi:10.1002/npr2.12060
- 698 69. Huang C, Wu J, Chen D, Jin J, Wu Y, Chen Z. Effects of sulforaphane in the central nervous system. Eur J Pharmacol. 2019;853: 153–168. doi:10.1016/j.ejphar.2019.03.010
- 70. Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, Atherton C, et al. Glutathione S-701 transferase M1 polymorphism and metabolism of sulforaphane from standard and high-702 glucosinolate broccoli. Am J Clin Nutr. 2005;82: 1283-1291. doi:10.1093/ajcn/82.6.1283
- 703 71. Curran KM, Bracha S, Wong CP, Beaver LM, Stevens JF, Ho E. Sulforaphane absorption and histone deacetylase activity following single dosing of broccoli sprout supplement in normal dogs. Vet Med Sci. 2018;4: 357–363. doi:10.1002/vms3.118
- 72. Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M. Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr. 2016;3: 24. doi:10.3389/fnut.2016.00024
- 73. Wittstock U, Burow M. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book. 2010;8: e0134. doi:10.1199/tab.0134
- 74. Vaughn SF, Berhow MA. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind Crops Prod. 2005;21: 193–202. doi:10.1016/j.indcrop.2004.03.004
- 75. Louda S, Mole S. Glucosinolates: chemistry and ecology. In: Herbivores: their interactions with secondary plant metabolites (second ed.). Academic Press. 1991. doi:10.1016/B978-0-12-597183-6.50009-7
- 76. Hopkins RJ, van Dam NM, van Loon JJA. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol. 2009;54: 57–83. doi:10.1146/annurev.ento.54.110807.090623
- 77. Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56: 5–51. doi:10.1016/S0031-9422(00)00316-2
- 723 78. Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: focus on glucoraphanin. J Funct Foods. 2014;7: 67–76. doi:10.1016/j.iff.2013.09.029
- 79. Zalucki MP, Zalucki JM, Perkins LE, Schramm K, Vassão DG, Gershenzon J, et al. A generalist herbivore copes with specialized plant defence: the effects of induction and feeding by *Helicoverpa armigera* (Lepidoptera: Noctuidae) larvae on intact *Arabidopsis thaliana* (Brassicales) plants. J Chem Ecol. 2017;43: 608–616. doi:10.1007/s10886-017-0855-7
- 729 80. Jeschke V, Kearney EE, Schramm K, Kunert G, Shekhov A, Gershenzon J, et al. How 730 glucosinolates affect generalist lepidopteran larvae: growth, development and glucosinolate 731 metabolism. Front Plant Sci. 2017;8: 1995. doi:10.3389/fpls.2017.01995
- Textor S, Gershenzon J. Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev. 2009;8: 149–170. doi:10.1007/s11101-008-9117-1

- 735 82. Robin AHK, Hossain MR, Park J-I, Kim HR, Nou I-S. Glucosinolate profiles in cabbage genotypes influence the preferential feeding of Diamondback moth (*Plutella xylostella*). Front Plant Sci. 2017;8: 1244. doi:10.3389/fpls.2017.01244
- Müller R, de Vos M, Sun JY, Sønderby IE, Halkier BA, Wittstock U, et al. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J Chem Ecol. 2010;36: 905–913. doi:10.1007/s10886-010-9825-z
- 741 84. Barth C, Jander G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 2006;46: 549–562. doi:10.1111/j.1365-313X.2006.02716.x
- Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, et al. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE.
 2008;3: e2068. doi:10.1371/journal.pone.0002068
- 747 86. Badenes-Perez FR, Reichelt M, Gershenzon J, Heckel DG. Interaction of glucosinolate 748 content of *Arabidopsis thaliana* mutant lines and feeding and oviposition by generalist and 749 specialist lepidopterans. Phytochemistry. 2013;86: 36–43. 750 doi:10.1016/j.phytochem.2012.11.006
- 87. Burow M, Müller R, Gershenzon J, Wittstock U. Altered glucosinolate hydrolysis in genetically engineered *Arabidopsis thaliana* and its influence on the larval development of *Spodoptera littoralis*. J Chem Ecol. 2006;32: 2333–2349. doi:10.1007/s10886-006-9149-1
- 754 88. Jeschke V, Gershenzon J, Vassão DG. Insect detoxification of glucosinolates and their 755 hydrolysis products. Adv Bot Res. 2016;80: 199–245. doi:10.1016/bs.abr.2016.06.003
- 756 89. Okamura Y, Dort H, Reichelt M, Tunström K, Wheat CW, Vogel H. Testing hypotheses of a coevolutionary key innovation reveals a complex suite of traits involved in defusing the mustard oil bomb. Proc Natl Acad Sci U S A. 2022;119: e2208447119.
 759 doi:10.1073/pnas.2208447119
- Jeschke V, Gershenzon J, Vassão DG. A mode of action of glucosinolate-derived
 isothiocyanates: detoxification depletes glutathione and cysteine levels with ramifications on
 protein metabolism in *Spodoptera littoralis*. Insect Biochem Mol Biol. 2016;71: 37–48.
 doi:10.1016/j.ibmb.2016.02.002
- 764 91. Sutherland DWS, Greene GL. Cultivated and wild host plants. In: Suppression and management of cabbage looper populations. US Dep Agric Tech Bull. 1984;1684: 1–13.
- Heidel-Fischer HM, Kirsch R, Reichelt M, Ahn S-J, Wielsch N, Baxter SW, et al. An insect counteradaptation against host plant defenses evolved through concerted neofunctionalization. Mol Biol Evol. 2019;36: 930–941. doi:10.1093/molbev/msz019
- 769 93. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: is it the source or dose that matters? Molecules. 2019;24: 3593. doi:10.3390/molecules24193593
- 571 94. Linn CE, Poole KR, Roelofs WL, Wu W-Q. Circadian changes in melatonin in the nervous system and hemolymph of the cabbage looper moth, *Trichoplusia ni*. J Comp Physiol A. 1995;176: 761-771. doi:10.1007/BF00192624

- 774 95. Andrews, S. FastQC: a quality control tool for high throughput sequence data. Version 0.11.9 [software]. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc
- 96. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114–2120. doi:10.1093/bioinformatics/btu170
- 778 97. Chen W, Yang X, Tetreau G, Song X, Coutu C, Hegedus D, et al. A high-quality chromosome-779 level genome assembly of a generalist herbivore, *Trichoplusia ni*. Mol Ecol Resour. 2019;19: 780 485–496. doi:10.1111/1755-0998.12966
- 781 98. Simon S, Breeschoten T, Jansen HJ, Dirks RP, Schranz ME, Ros VID. Genome and
 782 transcriptome analysis of the beet armyworm *Spodoptera exigua* reveals targets for pest
 783 control. G3 (Bethesda). 2021;11: jkab311. doi:10.1093/g3journal/jkab311
- 784 99. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality 785 control for high-throughput sequencing data. Bioinformatics. 2016;32: 292–294. 786 doi:10.1093/bioinformatics/btv566
- Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47: e47.
 doi:10.1093/nar/gkz114
- 790 101. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–140. doi:10.1093/bioinformatics/btp616
- 793 102. Chen Y, Lun ATL, Smyth GK. From reads to genes to pathways: differential expression 794 analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. 795 F1000Research. 2016;5: 1438. doi:10.12688/f1000research.8987.2
- 796 103. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57: 289–300. doi:10.1111/j.2517-6161.1995.tb02031.x
- 799 104. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389–3402. doi:10.1093/nar/25.17.3389
- 105. de Hoon M. Cluster 3.0. Version 3.0 [software] University of Tokyo, Human Genome Center. 2002 Oct. Available from: http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv.
- 804 106. Saldanha AJ. Java Treeview—extensible visualization of microarray data. Bioinformatics. 2004;20: 3246–3248. doi:10.1093/bioinformatics/bth349
- 107. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38: 5825–5829. doi:10.1093/molbev/msab293
- 809 108. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment
 810 tool for interpreting omics data. Innovation (Camb). 2021;2: 100141.
 811 doi:10.1016/j.xinn.2021.100141

- Jakubowska AK, D'Angiolo M, González-Martínez RM, Millán-Leiva A, Carballo A, Murillo R, 812 813 et al. Simultaneous occurrence of covert infections with small RNA viruses in the lepidopteran Spodoptera exigua. J Invertebr Pathol. 2014;121: 56–63. doi:10.1016/j.jip.2014.06.009 814 Martínez-Solís M. Collado MC, Herrero S. Influence of diet, sex, and viral infections on the gut 815 microbiota composition of Spodoptera exiqua caterpillars. Front Microbiol. 2020;11: 753. 816 doi:10.3389/fmicb.2020.00753 817 818 111. Virto C, Navarro D, Tellez MM, Herrero S, Williams T, Murillo R, et al. Natural populations of 819 Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J 820 Invertebr Pathol. 2014;122: 22–27. doi:10.1016/j.jip.2014.07.007 112. Millán-Leiva A, Jakubowska AK, Ferré J, Herrero S. Genome sequence of SelV-1, a novel 821 virus from the *Iflaviridae* family infective to *Spodoptera exigua*. J Invertebr Pathol. 2012;109: 822 823 127-133. doi:10.1016/j.jip.2011.10.009 113. Carballo A, Williams T, Murillo R, Caballero P. Iflavirus covert infection increases 824 825 susceptibility to nucleopolyhedrovirus disease in Spodoptera exigua. Viruses. 2020;12: 509. doi:10.3390/v12050509 826 827 Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J. Glucosinolate hydrolysis 828 and its impact on generalist and specialist insect herbivores. Recent Adv Phytochem. 2003;37: 101-125. doi:10.1016/S0079-9920(03)80020-5 829 830 115. Bidart-Bouzat MG, Kliebenstein D. An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores. Oecologia. 831 2011;167: 677-689. doi:10.1007/s00442-011-2015-z 832 Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, et al. Successful 833 834 herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci U S A. 2004;101: 4859-4864. doi:10.1073/pnas.0308007101 835 Nguyen TTT, Zhang Y, Shang E, Shu C, Torrini C, Zhao J, et al. HDAC inhibitors elicit 836 837 metabolic reprogramming by targeting super-enhancers in glioblastoma models. J Clin Invest. 2020;130: 3699-3716. doi:10.1172/JCI129049 838 839 Bishayee K, Nazim UM, Kumar V, Kang J, Kim J, Huh S-O, et al. Reversing the HDAC-840 inhibitor mediated metabolic escape in MYCN-amplified neuroblastoma. Biomed 841 Pharmacother. 2022;150: 113032. doi:10.1016/j.biopha.2022.113032 842 Inoue K, Oikawa M, Kamimura S, Ogonuki N, Nakamura T, Nakano T, et al. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos 843 produced by somatic cell nuclear transfer. Sci Rep. 2015;5: 10127. doi:10.1038/srep10127 844 Bui H-T, Wakayama S, Kishigami S, Park K-K, Kim J-H, Thuan NV, et al. Effect of Trichostatin 845 846 A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol Reprod. 2010;83: 454-463. 847
- Li X, Kato Y, Tsuji Y, Tsunoda Y. The effects of trichostatin A on mRNA expression of
 chromatin structure-, DNA methylation-, and development-related genes in cloned mouse
 blastocysts. Cloning Stem Cells. 2008;10: 133–142. doi:10.1089/clo.2007.0066

doi:10.1095/biolreprod.109.083337

848

852 853 854	122.	Pearse IS, LoPresti E, Schaeffer RN, Wetzel WC, Mooney KA, Ali JG, et al. Generalising indirect defence and resistance of plants. Ecol Lett. 2020;23: 1137–1152. doi:10.1111/ele.13512
855 856 857	123.	Benrey B, Denno RF. The slow-growth–high-mortality hypothesis: a test using the cabbage butterfly. Ecology. 1997;78: 987–999. doi:10.1890/0012-9658(1997)078[0987:TSGHMH]2.0.CO;2
858 859	124.	Wilson JW. Notes on the biology of <i>Laphygma exigua</i> Huebner. Fla Entomol. 1932;16: 33–39. doi:10.2307/3492536
860 861	125.	Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? Plant J. 2018;93: 703–728. doi:10.1111/tpj.13773
862 863	126.	Dussourd DE. Behavioral sabotage of plant defenses by insect folivores. Annu Rev Entomol. 2017;62: 15–34. doi:10.1146/annurev-ento-031616-035030
864 865 866	127.	Dobler S, Dalla S, Wagschal V, Agrawal AA. Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na, K-ATPase. Proc Natl Acad Sci U S A. 2012;109: 13040–13045. doi:10.1073/pnas.1202111109
867 868	128.	Karban R, Agrawal AA. Herbivore offense. Annu Rev Ecol Syst. 2002;33: 641–664. doi:10.1146/annurev.ecolsys.33.010802.150443
869 870 871	129.	Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, et al. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 2012;158: 854–863. doi:10.1104/pp.111.187831
872 873 874	130.	Arora I, Sharma M, Tollefsbol TO. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int J Mol Sci. 2019;20: 4567. doi:10.3390/ijms20184567
875 876 877	131.	Suraweera A, O'Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front Oncol. 2018;8: 92. doi:10.3389/fonc.2018.00092
878		