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ABSTRACT: A simple protocol is outlined herein for rapid access to enantiopure unnatural amino acids from trivial glutamate
and aspartate precursors. The method relies on Ag/Ni-electrocatalytic decarboxylative coupling and can be rapidly conducted
in parallel (24 reactions at a time) to ascertain coupling viability followed by scale-up for the generation of useful quantities

of UAAs for exploratory studies.

Unnatural amino acids (UAAs) are widely employed as
pharmacophores, spectroscopic probes, reagents for chem-
ical biology, and starting materials for peptidomimetics
(Figure 1A).1# Historically, the synthesis of UAAs relies on
polar bond disconnections, which are generally character-
ized by multistep sequences as summarized in Figure 1B. In
general, most classic approaches require the use of organo-
metallic reagents as starting materials, unstable intermedi-
ates, multiple protecting group manipulations and labori-
ous reaction set ups.> In some cases, structurally sim-
ple/trivial UAAs needed to be synthesized in as much as 10
steps with only one of those steps leading to a core modifi-
cation of the structure (i.e. forming a C-C bond).¢15 Over the
past decade, substantial progress towards developing more
direct approaches to UAAs has been made. For instance, pal-
ladium-catalyzed activation of inert $-C(sp3)-H bonds that
can capitalize on readily available amino acid starting mate-
rials have been described.’® A new appealing strategy is
emerging that takes advantage of the native functionality of
amino acids such as aspartate, glutamate, and lysine
wherein carboxylic acid and amino side chains can be acti-
vated for decarboxylative and deaminative radical cross
coupling, respectively.17-21 Building on our expertise on de-
carboxylative cross-couplings that leverage Ag functional-
ized electrode and Ni-electrocatalysis,22-2* we were poised
to demonstrate how the arylation of inexpensive and com-
mercially available natural amino acids like aspartic and
glutamic derivatives could be achieved in an operationally
simple fashion.2526 Disclosed herein is a useful exemplifica-
tion of this strategy laying out how a parallel reaction sys-
tem can be used to rapidly access libraries of UAAs.2” This
workflow, starting from the reactivity interrogation to the
synthesis of the desired unnatural amino acids, demon-
strates the utility of the previously developed electrochem-
ical method, and validates the development of innovative

strategies for the rapid access of pharmaceutically relevant
compounds.

The current study was pursued with the goal of accessing
UAAs through a parallel synthesis protocol for use in an on-
going medicinal chemistry program. As illustrated in Table
1, the commercial "E-hive" module from IKA was enlisted,
which conveniently attaches to ElectraSyn 2.0. The applica-
tion of this module in miniaturizing reactions and rapid as-
say generation has been demonstrated in multiple occa-
sions.22 The device can run 24 parallel reactions at a con-
stant potential, whereas the reaction vessel itself operates
as the anode (stainless steel), and a small graphite rod (part
of the cap) acts as the cathode, employing reaction condi-
tions which mirror the ones used in the standard cell elec-
trolysis. As proven before, the small scale guarantees the
proceeding of the reaction even without the magnesium
sacrificial anode.22 To showcase the setup's utility for li-
brary synthesis, a set of 4 redox-active esters (RAEs, Boc
and Fmoc protected aspartic and glutamic acid A1-A4)
were selected and screened against 20 arenes (B1-E2, 80
reactions total) that were of particular interest (Table 1A).
The reactions were easily set-up using stock solutions of the
respective starting materials and reagents on a 0.03-0.07
mmol scale and electrolyzed for 12h. Subsequently, product
formation was analyzed via Ultra-high Performance Liquid
Chromatography coupled with Diode Array Detector
(UPLC-DAD) using 10 mol% terphenyl as an internal stand-
ard and the success of the corresponding reactions was di-
vided into 3 categories: (Green) Product vs. internal stand-
ard ratio is higher than 0.5; (Yellow) Product vs. internal
standard ratio is lower than 0.5, and (Red): Desired Product
was not detected. Out of the 80 reactions, 54 were highly
successful (green), 22 were modestly successful (yellow),
and 4 products were not detected (red). This reactivity as-
say showcases great modularity and high functional group



tolerance of the utilized decarboxylative Ag functionalized
electrode Ni-electrocatalytic cross-coupling towards di-
versly substituted (hetero)aryl halides.

Electron-rich (6, 8, 9) as well as electron-poor (1, 7) aryl
iodides, imidazoles (25), pyridines (18, 23), pyrimidines (2,
4,16, 24), protected and unprotected azaindoles (5,11, 12,
20, 21, 26), unprotected pyridinones (19), chromenones
(3,14, 15, 27), imidazopyridazines (17, 22), indazoles (13)
and benzothiophenes (10) were successfully coupled with
at least one amino acid. Additionally, free alcohols (6, 8, 9,
14, 27) and amines (18), alkyl fluorides (7, 17, 22), thi-
oethers (2, 16, 24) and esters (2, 16, 24) were tolerated.
More importantly the applied method shows high chemose-
lectivity for electron-poor (hetero)aryl iodides, hence toler-
ating more electron-rich bromides and chlorides (1, 4, 17,
22, 23). This allows for further substitution of the (het-
ero)arene by using canonical methods such as Pd-catalyzed
Suzuki cross-coupling and therefore opens up to even more
diversly designed UAAs.

With a robust reactivity assay in hand, a library of se-
lected UAAs by synthesizing the corresponding UAAs on a
0.2-0.3 mmol scale (Table 1B). In this step, the standard IKA
ElectraSyn 2.0 cell was used, employing reaction conditions
similar to what has been previously reported.22 Thus, 5 Boc
protected (1-5) and 13 Fmoc protected (6-18) aspartic acid
analogs as well as 4 Boc (19-22) and 5 Fmoc protected (23-
27) glutamic acids were successfully scaled-up and isolated
(27 examples total), without any loss in enantiopurity. All of
the 20 arenes applied in the previous reactivity assay were
isolated in at least one example. Notably, the electrode ma-
terials, concentration, and current density applied in the
standardized procedure of the scale-up deviated signifi-
cantly from the conditions applied in the initial reactivity
assay, proving the robustness and translatability for E-hive
screening in this reaction.

To further demonstrate the ability of this method to sim-
plify UAA synthesis, six that were studied during the reac-
tivity assay and subsequently scaled-up have been previ-
ously synthesized using 2e- methodologies (Figure 3).
Those prior approaches required multi-step sequences re-
quiring the use of rare and expensive transition metals as
well as toxic and pyrophoric reagents. Several examples
were synthesized using traditional enolate chemistry (3, 8,
10, 13, 18, 25). Hence, UAA 8 was obtained after 4 steps in
0.3% overall yield (following Lipase resolution) and was in
contrast obtained as UAA 8a in 34% via DCC.28 UAA 10 was
previously obtained in 40% overall yield in racemic form af-
ter 5 steps.!! Despite obtaining UAA 10a in only 25% via
DCC, labor intensive processes and time can be saved and a
single enantiomer was obtained. Racemic UAA 13 was ob-
tained in 7 steps and 3% overall yield, whereas DCC deliv-
ered compound 13a in 52% as a single enantiomer in one
step.?? By using a chiral auxiliary (Schollkopf), UAA 18 was
obtained after 6 steps in 2% yield.3? In contrast, the current
method afforded UAA 18a in 47%. UAA 3 was obtained in
10-15% yield and in 6 steps via ring construction of the re-
spective chromenone.3! Instead, bromination of the respec-
tive hydroxy chromenone followed by DCC delivered UAA
3ain 39% yield. Finally, racemic UAA 25 was obtained after
7 steps in 12% overall yield utilizing Strecker chemistry,32

whereas DCC afforded enantiopure compound 25a in 30%
yield after a single step.

This work demonstrates how a library of UAAs can be
easily constructed in two stages from inexpensive aspartate
and glutamate-based RAE precursors: parallel screening on
small scale using a commercial potentiostat followed by
preparative scale reactions. Even though no substantial at-
tempts were made to optimize individual reactions beyond
the originally published conditions, yields for these one-
step processes are reasonable given the rapid access to
UAAs that is enabled for exploratory studies.

A. Bioactivity and Application of Unnatural Amino Acids
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FIGURE 1. (A) Bioactivity and application of unnatural amino
acids. (B) Prior synthetic approaches for the preparation of un-
natural amino acids and the proposed radical decarboxylative
arylation strategy.



A. Rapid Parallel Electrocatalytic Screen for Unnatural Amino Acid Synthesis
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FIGURE 2 (A) Parallel reaction screen for unnatural amino acid synthesis. Accurate reaction conditions and description of the setup
are reported in the Supporting Information. (B) Preparative scale synthesis of the unnatural amino acids previously tested in the
parallel synthesis platform. 22 mmol scale reaction. Bipy: 2,2'-Bipyridine.



Application of Ag-Ni Electrocatalytic Decarboxylative Arylation for the Synthesis of Unnatural Amino Acids
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Figure 3. Electrochemical synthesis of relevant unnatural amino acids compared to previous routes reported in literature.
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