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Abstract 18 

Understanding the process of precipitation partitioning into evapotranspiration and streamflow is 19 

fundamental for water resource planning. The Budyko framework has been widely used to evaluate 20 

the factors influencing this process. Still, its application has primarily focused on studying 21 

watersheds with minimal human influence and on a relatively small number of factors. 22 

Furthermore, there are discrepancies in the literature regarding the effects of climatic factors and 23 

land use changes on this process. To address these gaps, this study aims to quantify the influence 24 

of climate and anthropogenic activities on streamflow generation in the contiguous United States. 25 

To accomplish this, we calibrated an analytical form of the Budyko curve from 1990 to 2020 for 26 

383 watersheds. We developed regional models of 𝜔, a free parameter introduced to account for 27 

controls of precipitation partitioning not captured in the original Budyko equation, within different 28 

climate zones. We computed 49 climatic and landscape factors that were related to 𝜔 using 29 

correlation analysis and stepwise multiple linear regression. The findings of this study show that 30 

human activities explained a low variance of the spatial heterogeneity of 𝜔 compared with the 31 

watershed slope and the synchronization between precipitation and potential evapotranspiration, 32 

nevertheless, urban development emerged as a factor in temperate climates, whereas irrigated 33 

agriculture emerged in cold climates. In arid climates, mean annual precipitation explains less than 34 

20% of the spatial variability in mean annual streamflow; furthermore, this climate is the most 35 

responsive to changes in 𝜔. These results provide valuable insights into how land use and climate 36 

interact to impact streamflow generation differently in the contiguous United States contingent on 37 

the regional climate, explaining discrepancies in the literature. 38 

Keywords: Budyko, Streamflow, Land use, Climate zones, Stepwise multiple linear regression 39 
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1 Introduction 40 

Climatic and anthropogenic processes have significantly shaped the hydrological cycle and water 41 

availability over the last decades worldwide (Haddeland et al., 2014). Among them, climate 42 

change, land use changes, structural adaptation measures (e.g., levee systems and reservoirs), and 43 

deforestation have resulted in changes in streamflow at different spatial and temporal scales (Dey 44 

& Mishra, 2017). Land use changes profoundly impact regional water balances (Pielke et al., 45 

2011), influencing interception, transpiration, evaporation, infiltration, and atmospheric blocking 46 

of precipitation, thus leading to changes in streamflow (Rogger et al., 2017; Tan et al., 2022). For 47 

instance, transforming vegetated areas into settlements may increase streamflow and reduce 48 

evapotranspiration (J. Du et al., 2012; Kundu et al., 2017; Wagner et al., 2013). Meanwhile, 49 

decreased areas under irrigated agriculture and decreased areas of forest cover have been 50 

associated with lower evapotranspiration and increased streamflow (Haddeland et al., 2006; 51 

Wagner et al., 2016). Augmenting irrigation results in a decline in streamflow through water 52 

withdrawals and an increase in water availability for evapotranspiration (Rost et al., 2008). 53 

Deforestation reduces evapotranspiration, leading to an increase in soil moisture and a decrease in 54 

soil storage capacity (Brown et al., 2005).  55 

Several areas of the contiguous United States (CONUS) have undergone substantial changes in 56 

land use due to many external factors such as land clearing, expansion of croplands, and urban 57 

growth (X. Li et al., 2023; Sohl et al., 2016). For example, the Corn Belt region has shifted from 58 

perennial grassland to annual row crops (Auch et al., 2018; Schilling et al., 2008). Forest extent 59 

has declined because of harvest, and shrubland and grassland have grown at the expense of this 60 

forest loss (Homer et al., 2020). Urban areas have shown a persistent increase, faster in southern 61 

states than in northern states (Homer et al., 2020). Future projections suggest rapid urban 62 
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expansion, some gain in forest cover, loss in pastures, and a possible increase in cropland, although 63 

these scenarios heavily depend on the underlying drivers of change (e.g., policy incentives, crop 64 

prices) (Lawler et al., 2014). 65 

Various studies have employed hydrological models to evaluate and project the impacts of land 66 

use on the hydrological cycle of various regions in the CONUS (e.g., Caldwell et al., 2012; Giri et 67 

al., 2019; Mishra et al., 2010; Parajuli et al., 2016). These studies have examined the impacts of 68 

diverse land uses on streamflow, encompassing shifts in cropping systems (Ahiablame et al., 2017; 69 

Frans et al., 2013; Schilling et al., 2008), irrigated agriculture (Ozdogan et al., 2010), and 70 

urbanization (C. Li et al., 2020). However, there is no consensus on the impact of land use changes 71 

on streamflow. For instance, Gupta et al. (2015) found a negligible influence of land use on 72 

increased streamflow in the midwestern USA. Meanwhile, Schilling (2016) and Schilling et al. 73 

(2008) have refuted this conclusion, asserting that the impacts of land use changes on streamflow 74 

in this region should not be neglected. These conflicting results highlight the research gaps in 75 

understanding the interactions between climate, hydrological processes, and land uses.  76 

The Budyko framework (Budyko, 1974) is a simple yet effective tool for evaluating how climate, 77 

surface characteristics, and land use interact and influence the water-energy balance. Under long-78 

term steady-state conditions and negligible changes in water storage, the Budyko framework 79 

assumes that the water balance is primarily governed by the water supply (i.e., precipitation) and 80 

the water demand (i.e., potential evapotranspiration) (H. Li et al., 2020). However, deviations of 81 

measured data from the original Budyko curve have led to adopting parameterized versions, often 82 

using a single shape parameter (e.g., Choudhury, 1999; Fu, 1981; Pike, 1964; Turc, 1954; H. Yang 83 

et al., 2008). The shape parameter is named the catchment characteristic or landscape parameter, 84 
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and it captures the combined influence of climate factors beyond supply and demand, like geology, 85 

vegetation, topography, and human activities, including land use, on precipitation partitioning.  86 

Several studies have explored the relationship between the single shape parameter 𝜔 (Fu 1981) 87 

and diverse physical factors such as slope, elevation, vegetation, soil storage, etc. (e.g., Bai et al., 88 

2020; D. Li et al., 2013; Liu & You, 2021; Xu et al., 2013). In the CONUS, Abatzoglou and Ficklin 89 

(2017) developed a generalized additive model of 𝜔 using topographic and climatic factors. Their 90 

model was built with 211 gages with minimal human influence, explaining 81.2% of the 91 

variability. However, when the model's performance was evaluated using 164 watersheds from the 92 

Model Parameter Estimation Project (MOPEX) with less stringent requirements in terms of human 93 

influence, the explained variability decreased to 65%. A previous study by Wang and Hejazi 94 

(2011) already pointed out that MOPEX watersheds are not free of human interferences and 95 

hypothesized possible relationships between streamflow change and human activities, such as 96 

irrigation or cropland area, but without a direct estimation of the effect or countereffects of these 97 

human activities on streamflow. A subsequent study by Z. Li and Quiring (2021b), relates the 98 

calibrated 𝜔 for 126 reference and 765 non-reference watersheds with physiographic and 99 

anthropogenic factors from the USGS database GAGES-II: Geospatial Attributes of Gages for 100 

Evaluating Streamflow (Falcone, 2011; Falcone et al., 2010). The authors concluded that forest 101 

coverage is important in representing spatial variability of 𝜔 in watersheds with limited human 102 

impact or reference watersheds. Meanwhile, urbanization is relevant in explaining spatial 103 

variability of 𝜔 in non-reference watersheds or watersheds with higher human imprints. While this 104 

study is a first attempt to quantify the contribution of different land uses and human activities in 105 

explaining the spatial variability of 𝜔, the model's performance exhibited regional differences. 106 

These differences can be attributed to the limitations of a model for the entire CONUS to account 107 
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for regional variations in significant independent variables. A recent global-scale study by Liu and 108 

You (2021) showed that the factors explaining the spatial variability of 𝜔 vary by region, 109 

particularly with climate regions, highlighting the necessity of developing regional models of 𝜔. 110 

However, this global scale study used non-human disturbed basins and natural catchment 111 

attributes. 112 

Although these prior studies have provided valuable insights, to the best of our knowledge, none 113 

have examined how climatic and landscape factors (i.e., topography, vegetation, geology, and 114 

anthropogenic activities) interact and influence 𝜔 differently in human-impacted and non-human-115 

impacted watersheds across various climatic regions within the CONUS. Additionally, previous 116 

studies have been limited in examining only a subset of these possible factors in the CONUS, 117 

mainly natural physiographic variables, despite the broad range of factors explored in the literature. 118 

Our study investigates the influence of anthropogenic activities and other catchment characteristics 119 

on the long-term water balance using the Budyko Framework for different climate zones in the 120 

CONUS, employing an extensive list of 49 factors. Specifically, this study focuses on how land 121 

use and its variability influence water-energy partitioning. We also identify which climates are 122 

more responsive to alterations in catchment characteristics, including land use changes. To 123 

accomplish this, we examine which variables, precipitation, potential evapotranspiration, or 124 

landscape factors account for the spatial distribution of mean annual streamflow in the CONUS.  125 

The specific questions of this study are:  126 

1. To what extent do climate variables and land uses explain the spatial heterogeneity of 𝜔 127 

within climate regions? 128 
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2. What is the spatial variability in streamflow explained by climate and catchment 129 

characteristics in different climate regions? 130 

To answer these questions, we classified watersheds in the CONUS by land use type and grouped 131 

them by climate region. Then, we calibrated 𝜔 from 1990 to 2020 using long-term hydroclimatic 132 

data. We calculated an extensive list of climatic, topographic, anthropogenic, vegetation, and 133 

geologic factors to select potential controls of 𝜔. After, we developed stepwise multiple linear 134 

regression models to explore how a subset of these controls explains the spatial variability of 𝜔 135 

within different climate regions. Finally, we computed the spatial variability on mean annual 136 

streamflow explained by precipitation, potential evapotranspiration, and 𝜔 also using linear 137 

regression models. 138 

2 Materials and Methods 139 

2.1 Hydro-climatic data and watershed classification 140 

Streamflow gages from the GAGES-II database were selected for this study (Falcone, 2011; 141 

Falcone et al., 2010). The GAGES-II database provided geospatial data, environmental 142 

characteristics, and anthropogenic influences for 9067 basins in 9 ecoregions of the CONUS. Daily 143 

streamflow data from 1990 to 2020 were submitted to a completeness requirement to ensure data 144 

gaps do not bias results. Streamflow gages must have complete data (a daily value for every day 145 

of the year) for at least eight out of every ten years for each decade (e.g., 1990-1999) and a 146 

maximum of 10 days missing in the other two years (Dudley et al., 2020). A total of 3165 gages 147 

out of the 9067 met this criterion. We also discarded basins smaller than 300 km2, reducing the 148 

streamflow gages for further study to 2193. We selected this threshold to strike a balance between 149 
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having sufficient watersheds in our sample and considering the spatial resolution of the climate 150 

raster data used. 151 

The 2193 basins were classified as either reference or non-reference watersheds according to their 152 

anthropogenic alteration. Reference basins represent near-to-natural flow conditions, while non-153 

reference basins are affected by human processes (e.g., urbanization). Non-reference basins were 154 

further subdivided into urban, agricultural, or regulated, using the thresholds that Dudley et al. 155 

(2020) proposed (Table 1). A basin was classified as “Other” if it failed to meet any of the criteria.  156 

Dudley et al. (2020) defined the high and low thresholds as the highest quartile and lowest half 157 

values of the human activities (e.g., urban area, cultivated land) among the gages, respectively. 158 

The 2019 National Land Cover Database (NLCD) (Dewitz & U.S. Geological Survey, 2021) is 159 

used to estimate the percentage of the basin used for cultivated crops and developed land. The 160 

normalized dam storage is calculated as the normalized dam storage of the reservoirs in the 161 

watershed multiplied by the drainage area and divided by the mean annual streamflow from 1990 162 

to 2020. 163 

Reference basins are minimally affected by direct human activities and belong to the USGS Hydro-164 

Climatic Data Network 2009 (HCDN-2009) (Lins, 2012). There are 261 watersheds that belong to 165 

the HCDN-2009, but only 158 of these watersheds met the low land-use thresholds in the 2019 166 

NLCD. A total of 86 watersheds exceeded the limits of cultivated land and 40 the threshold of 167 

urban land. Also, 23 watersheds have more than 60 days of normalized storage. This classification 168 

led to 158 reference gages, 68 urban gages, 172 agricultural gages, 209 regulated gages, and 1586 169 

gages in the “Other” group (Table 1). Only reference, urban, and agricultural gages (a total of 398) 170 

are used for subsequent analysis (Figure 1a), as regulated gages commonly violate the negligible 171 

change in storage assumption.  172 
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Both reference and non-reference basins were grouped in climate zones using the updated Köppen-173 

Geiger climate classification at 1 km resolution by Beck et al. (2018). This updated map exhibits 174 

greater accuracy compared to previous versions due to their generation using topographically 175 

corrected climatic maps. Then, we grouped some of the climate zones using the criterion proposed 176 

by Liu and You (2021) (Table 2) to prevent groups with low numbers of watersheds while 177 

preserving the primary climate characteristics related to the temperature and precipitation of each 178 

Köppen-Geiger climate zone (Table S1). We selected the climate that covers the largest fraction 179 

of the watershed when the watershed area falls in more than one climate zone. This classification 180 

resulted in 5 climate groups (Table 2). A total of four watersheds that belonged to the Dwb climate 181 

(Cold, Dry winter, Warm summer) were excluded from the analysis due to insufficient sample 182 

size. The Mid-Atlantic and New England regions belong to Cold2, the South to Temperate2, the 183 

Great Plains and Midwest to Cold2 and Arid, the West Coast to Temperate1, and the Rocky 184 

Mountains to Cold1 (Figure 1b).  185 

Daily precipitation and reference evapotranspiration were extracted from gridMET (Abatzoglou, 186 

2013) from 1990 to 2020 and averaged over each basin. The gridMET is a high-spatial-resolution 187 

(~4 km) gridded surface meteorological dataset, and it has been previously used in the context of 188 

the Budyko Framework in the CONUS (Abatzoglou & Ficklin, 2017; Guillén et al., 2021). There 189 

are several approaches to estimating the potential evapotranspiration, such as pan evaporation 190 

(Greve et al., 2015), the Penman-Monteith method based on a reference crop surface (Greve et al., 191 

2020), or the Hargreaves-Samani method based on temperature (Istanbulluoglu et al., 2012). The 192 

reference evapotranspiration is the evapotranspiration for a short well-watered grass with a static 193 

albedo of 0.23 (Allen et al. 1998). This method follows the standardized ASCE approach and was 194 

also used by Abatzoglou and Ficklin (2017).  195 
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 196 

Table 1 Low and high thresholds for watershed classification into reference and non-reference 197 

(agricultural, regulated, or urban) 198 

Classification 
by land use 
and regulation  

HCDN-
2009 

High land-use 
threshold 

Low land-use 
 threshold 

# 
watersheds 

Reference Yes none 
≤ 60 days normalized dam 

storage; ≤ 6% developed land; 
≤ 2% cultivated crops 

158 

Agricultural No > 20% cultivated 
crops 

≤ 60 days normalized dam 
storage; ≤ 6% developed land 172 

Regulated No 
> 180 days 

normalized dam 
storage 

≤ 2% cultivated crops; ≤ 6% 
developed land 209 

Urban No > 10% developed 
land 

≤ 2% cultivated crops; ≤ 60 
days normalized dam storage 68 

 199 

 200 

Table 2 Defining criteria of the Köppen-Geiger climate zones based on Beck et al. (2018) and Liu 201 

and You (2021) 202 

Classificatio
n by climate Code Abbreviatio

n 
Precipitatio
n type 

Descriptio
n Definition # watersheds 

Cold 

Dsc, 
Dsb Cold1 Dry 

summer 
Not Arid 
& Thot > 
10 & 
Tcold≤ 0 

Psdry < 40 & 
Psdry < Pwwet/3 

23 

Dfa, 
Dfb, 
Dfc 

Cold2 Without 
dry season 

Not (Psdry < 
40 & 

Psdry<Pwwet/3) 
or Not 

(Pwdry<Pswet/1
0) 

220 

Temperate 

Csa, 
Csb Temperate1 Dry 

summer Not Arid 
& Thot>10 
& 0 

<Tcold<18 

Psdry < 40 & 
Psdry < Pwwet/3 

21 

Cfa, 
Cfb Temperate2 Without 

dry season 

Not (Psdry < 
40 & 

Psdry<Pwwet/3) 
108 
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or Not 
(Pwdry<Pswet/1

0) 

Arid BSk, 
BSh Arid Steppe MAP<10 

× Pthreshold 
MAP≥5 × 
Pthreshold 

22 

 203 

Note. MAP indicates the mean annual precipitation; Tcold and Thot represent the average air 204 

temperature during the coldest and warmest months, respectively; Psdry and Pwdry denote the 205 

precipitation in the driest months of summer and winter, respectively; Pswet and Pwwet represent the 206 

precipitation in the wettest months of summer and winter, respectively; and Pthreshold means the 207 

precipitation threshold. Units: MAP in mm y-1; Tcold and Thot in °C and Pswet, Pwdry , and Pthreshold 208 

in mm. 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 
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 217 

 218 

Figure 1 (a) Spatial distribution in the CONUS of the reference, agricultural, and urban watersheds 219 

and (b) grouped by climate  220 
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2.2.Water-energy balance 221 

This study used the analytical form of the Budyko hypothesis proposed by Fu (1981), extensively 222 

implemented to study water-energy balances at different spatial and temporal scales (e.g., L. Cheng 223 

et al., 2011; C. Du et al., 2016; Greve et al., 2015; Koppa & Gebremichael, 2017; S. Li et al., 2022; 224 

Lv et al., 2019; Qiu et al., 2019; Sinha et al., 2019; L. Zhang et al., 2004; Zhao et al., 2020). The 225 

Fu equation estimates the watershed’s long-term evapotranspiration (ET) as a function of the ratio 226 

between the available water (precipitation, P) and energy (potential evapotranspiration, PET), also 227 

called aridity index (𝜙), and the catchment characteristic parameter (𝜔). Fu’s equation is expressed 228 

as follows: 229 

                                                	!"
#
= 1 + #!"

#
− )1 + *#!"

#
+
$
,
!
"                        (1) 230 

where 𝜔 can be calibrated with historical P and streamflow (Q). When 𝜔	equals 2.6, Fu’s curve 231 

corresponds to the traditional Budyko curve. High values of 𝜔 indicate watersheds where most of 232 

the P is used for ET. In contrast, low values of 𝜔 represent watersheds where a significant fraction 233 

of P becomes Q. For 𝜔<2, watersheds have a higher sensitivity to land use factors relative to 234 

climate factors, whereas for 𝜔>2, the climate factors tend to have greater importance (Zhou et al., 235 

2015). 236 

We calibrated 𝜔 for each watershed by minimizing the difference between the long-term mean ET 237 

(ET=P-Q) from 1990 to 2020 and the estimated ET by substituting the long-term mean P and PET 238 

into Fu’s equation. We deemed a 31-year time frame sufficient to guarantee insignificant changes 239 

in storage. According to Z. Li and Quiring’s (2021a) study, 84.4% of the 954 human-impacted 240 

watersheds they used from the GAGES-II database had a closed water balance for an 11-year time 241 

period. However, it is important to note that some watersheds, especially in arid catchments in the 242 
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western U.S., might have experienced storage changes due to groundwater withdrawals. Still, our 243 

sample size in this region is relatively small. The 𝜔 values were sampled from a uniform 244 

distribution from 1.25 to 9 with 0.01 increments, following the approach by Abatzoglou and 245 

Ficklin (2017). To ensure plausible water balances, we eliminated watersheds where Q>P or ET(P–246 

Q)>PET (Peel et al., 2010). We also excluded watersheds with a calibrated 𝜔 equal to 1.25, as it 247 

represents the minimum value for bare soil (Donohue et al., 2012). Furthermore, we tested the 248 

hypothesis that ET/P and 𝜔 varies across different climate regions and land uses using the Kruskal-249 

Wallis’s test.  250 

2.3.Selecting potential controls of 𝝎 251 

The literature provides an extensive list of controls that may govern 𝜔, which can generally be 252 

classified into two groups: climate-based and landscape controls (Padrón et al., 2017; Shao et al., 253 

2012; Vora & Singh, 2021). However, no primary control of 𝜔 has been defined to date because 254 

𝜔 has no prior physical meaning (Greve et al., 2015). The selection of factors was based on a 255 

systematic review conducted by Padrón et al. (2017) that investigated 𝜔 's controls at regional and 256 

global scales up until 2016. Additionally, we included the soil factors added to this review by Vora 257 

and Singh (2021) and other topographic and anthropogenic factors that Z. Li and Quiring (2021b) 258 

considered in their study conducted in the CONUS (Text S1). We computed 49 possible controls 259 

of 𝜔 classified into five categories, climatic (14), topographic (11), vegetation-related (5), 260 

anthropogenic (12), and geologic (7) (Table S2 and Table S3). 261 

Given the large number of controls considered, we expect possible cross-correlations that could 262 

weaken the inference in determining the effect of each control. Therefore, we need first to select a 263 

subset of potential controls of 𝜔 (Text S2). To do this, we evaluated the Spearman correlations 264 
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between 𝜔 and each control. We selected factors with the highest significant correlation with 𝜔 265 

and highly correlated with the other factors in the same category (Table S4 and Figure S1). In this 266 

way, we eliminate internally correlated factors while assuming that the selected factors are 267 

sufficient to represent the excluded factors. Previous studies have used a similar approach (e.g., 268 

Vora & Singh, 2021).  269 

We selected ten variables to investigate their potential relationship with 𝜔. These variables include 270 

relative cumulative moisture surplus (rCMS), fraction of precipitation falling as snow (SF), slope 271 

(Slope), forest cover (TreeCover), urban land (Settlements), cultivated land (Cultivated), irrigated 272 

agriculture (IrrAgri), percentage of urban land adjacent to a 100-meter width at each side of the 273 

main river (MAIN100DEV), number of dams in the watershed (NDams), and ratio of available 274 

water capacity in the top 1.5 meters of soil to precipitation (AWC0150:P). 275 

These ten variables became the independent variables against which omega was regressed in the 276 

stepwise multiple linear regression (SMLR) (Chu et al., 2019). All the retained variables in the 277 

SMLR are statistically significant at p-value<0.05 and have a Variance Inflation Factor<5 and 278 

tolerance>0.02. We normalized the dependent variable by applying a log transformation. 279 

Similarly, we applied either log or square root transformations for some of the independent 280 

variables that did not exhibit a linear relationship with 𝜔. Subsequently, we standardized the 281 

independent variables by subtracting their mean and dividing them by their standard deviation. 282 

The standardization is done to assess variable importance. Finally, we validate the variance 283 

explained by the factors in the SMLR models by constructing 10,000 models through bootstrap 284 

sampling with replacement (Text S3). 285 
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2.4.Spatial variability of streamflow in different climate regions  286 

We assessed the spatial variability of mean annual Q explained by climate (i.e., P or PET) and 287 

catchment characteristics (i.e., 𝜔) using SMLR. We created a SMLR for each climate region, using 288 

mean annual Q from 1990-2020 as the dependent variable and mean annual P, mean annual PET, 289 

and 𝜔 as predictors. To satisfy the requirement of constant variance in SMLR and to address an 290 

observed curvilinear relationship in the residuals versus fitted plot, we used quadratic terms for 291 

the variables P and PET instead of linear terms. All the retained variables in the SMLR are 292 

statistically significant at p-value<0.05 and have a Variance Inflation Factor<5 and tolerance>0.02. 293 

We also standardized the independent variables by subtracting their mean and dividing them by 294 

their standard deviation. 295 

3 Results 296 

3.1 Values of 𝝎 by climate region and land use 297 

The total number of watersheds was reduced from 394 to 383, because for 4 watersheds ET>PET, 298 

and for 7 watersheds, 𝜔 equals 1.25. The climate zone has a significant influence on both ET/P 299 

(chi-squared or test statistic H of the Kruskal-Wallis’s test = 70.29 and p-value<0.005) and 𝜔 (H 300 

= 71.52 and p-value<0.005). Also, the land use has a significant influence on both ET/P (H = 93.12 301 

and p-value<0.005) and 𝜔 (H = 71.15 and p-value<0.005). Our values of 𝜔 across CONUS range 302 

between 1.26 and 5.35, with overall, 𝜔>3 in the Great Plains and 𝜔<2 in the Northeast and along 303 

the West Coast. The highest 𝜔 corresponds to arid basins with a mean value of 2.96, primarily 304 

located in the Great Plains and Midwest, and the lowest 𝜔 to basins in the dry summer cold climate 305 

(Cold1) with a mean value of 1.70, mainly found along the Rocky Mountains in Idaho (ID), 306 

Montana (MT) and Wyoming (WY) (Figure 2a). Forty-eight watersheds have values of 𝜔 higher 307 
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than 3 and are primarily located in the Great Plains (Figure 2a), belong to cold climate without dry 308 

season (Cold2) (Figure 3a), and are agricultural (Figure 3b). Despite being in a humid climate, 309 

these watersheds are in the water-limited region (𝜙>1) (Figure 2b); therefore, high values of 𝜔 are 310 

not unexpected. Only 25% of the humid climate watersheds (Cold2) are in the energy-limited 311 

region (𝜙<1) (Figure 3a) and are in the Mid-Atlantic and New England. In Temperate2, exposed 312 

to higher temperatures than Cold2, approximately 50% of watersheds are in the water-limited 313 

region, mainly in Florida (FL) and Texas (TX). The other 50% of watersheds in the energy-limited 314 

region are in the Appalachian Mountains and Mississippi (MS). We found similar variation when 315 

looking at the Temperate1 climate. Watersheds belonging to this group in the northwest (Oregon 316 

(OR) and Northern California (CA)) are in the energy-limited region. Meanwhile, watersheds in 317 

the southwest (Arizona (AZ) and Southern California (CA)) are in the water-limited region. 318 

Overall, temperate climates have slightly higher 𝜔 than cold climates (Figure 4a), and agricultural 319 

watersheds have higher 𝜔, followed by urban and reference watersheds (Figure 4b). 320 

 321 
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 322 

Figure 2 (a) Calibrated 𝜔 for the 1990–2020 period for the 383 watersheds; (b) Watersheds 323 

classified as energy limited (aridity index (𝜙) <1) or water limited (𝜙 >1) 324 

 325 

Figure 3 Diagram of relative excess energy (PET/ET) and relative excess water (1 – P/PET) with 326 

lines of constant aridity (𝜙). The dot colors are the classification of watersheds based on (a) climate 327 

and (b) land use 328 
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329 

 330 

Figure 4 Boxplots of 𝜔 for (a) each climate region and (b) land use in the watershed. The middle 331 

line indicates the median, the box edges the 25th and 75th percentiles, and the dots are the outliers 332 

outside the whiskers at the 5th and 95th percentiles 333 

3.2 Climate and landscape controls explaining spatial heterogeneity of 𝝎 by climate 334 

region 335 

Different independent variables are identified as explanatory factors of the spatial variability in 336 

𝜔	across the various climate zones (Table 3). In the Cold1 climate, the slope is the only significant 337 

factor with an adjusted R2 of 0.43. Watersheds in the Cold1 climate, which exhibit the lowest 𝜔, 338 
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are predominantly located on the sides of the Rocky Mountains in Idaho, and have the steepest 339 

slopes among all watersheds, ranging between 18° and 28°. Conversely, watersheds in the same 340 

climate group, located along the west coast in California and Oregon, display higher 𝜔 values and 341 

are marked by less steep slopes.  342 

Within the Cold2 climate, we have identified four factors that collectively account for 76% of the 343 

spatial variability in 𝜔. These factors include two climatic controls, one human-related control, 344 

and one soil-related control. Among these, the most influential is the relative cumulative moisture 345 

surplus (rCMS), which represents the synchronization between P and PET. This factor explains 346 

65% of the variability alone. Geographically, P and PET display lower synchronization (higher 347 

rCMS) in the Northwest and Northeast leading to increased Q, and higher synchronization (lower 348 

rCMS) in the Midwest (Figure 5). The second most significant factor, though considerably less 349 

impactful than rCMS, is irrigated agriculture (IrrAgri), explaining 7% of the variability. 350 

Noteworthy agricultural watersheds with substantial irrigated land, such as Nebraska and Kansas 351 

(Dieter et al., 2018), exhibit a mean 𝜔 above 3. Conversely, watersheds in Iowa, North Dakota, 352 

and South Dakota, characterized by extensive cultivated land but minimal irrigated land, display 353 

an average 𝜔 below 3. Additionally, the available water for plants (AWC0150:P) and the snow 354 

fraction (SF) explained a residual variance. AWC0150:P is higher in the Midwest compared to the 355 

Northwest and Northeast regions (Figure 5), favoring higher ET due to increased water retention 356 

in the soil. In the northern part of the Midwest (North Dakota, South Dakota, and Minnesota) and 357 

Northwest, SF is higher favoring Q (Figure 5).  358 

In the Temperate1 climate, rCMS explains around 40% of the 𝜔’s spatial variability. The values 359 

of rCMS show a decreasing trend as we move from Oregon, where it reaches a maximum, along 360 

the west coast, reaching its lowest value in Arizona. Watersheds in Oregon exhibit a higher phase 361 
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shift P and PET, whereas in California and Arizona, P and PET are more seasonally synchronized, 362 

or PET sometimes exceeds P. The urban land in the riparian zone (MAIN100DEV), explains 363 

around 20% of the variability. This finding can be attributed to the distinctive characteristics of 364 

the urban watershed within this group, which stands out due to its high percentage of 365 

MAIN100DEV land and the highest value of 𝜔. 366 

Within the Temperate2 climate, slope is the most important factor, explaining 29% of the 𝜔’s 367 

spatial variability. Watersheds along the Appalachian Mountains exhibit the highest slopes within 368 

the group, ranging from 5° to 20° (Figure 6), with an average 𝜔 below 2.3. The level of 369 

urbanization (Settlements) served as a second factor, explaining 11% of the 𝜔’s spatial 370 

heterogeneity. Highly urbanized watersheds (>40% of the watershed’s area) are concentrated in 371 

South Carolina, Georgia, and Alabama and have an average 𝜔 of 2.1. Urbanization leads to 372 

increased streamflow, potentially due to reduced infiltration and soil moisture storage (O’Driscoll 373 

et al., 2010). SF accounts for a negligible variance, contributing only 3%. The watersheds in the 374 

Appalachian Mountains and Ouachita-Ozark Mountains in Arkansas have higher average SF 375 

values compared to those in the Coastal Plains (Figure 6). 376 

In arid regions, rCMS explains 63% of the total 𝜔’s spatial variability, while the slope accounts 377 

for 13% of the total variability, which amounts to 76%. Arid watersheds in the southwest regions 378 

of Arizona, New Mexico, and Nevada, as well as the Northwest in Oregon, exhibit higher slopes 379 

and rCMS values, resulting in lower 𝜔 values compared to arid watersheds in the Great Plains.  380 

The findings of the SMLR models constructed using bootstrapping sampling (Text S3) validate 381 

the variance explained by the controls (Table 3). We observed nearly identical average variances 382 

explained by each control when utilizing 10,000 SMLR models constructed via bootstrapping, 383 



22 

compared to using the original dataset. Nonetheless, discrepancies increase as the variance 384 

explained by the control decreases. 385 

Table 3 SMLR results for each climate region using ten controls of 𝜔. The Cumulative Adj. R2 386 

represents the incremental Adj. R2 added to the model with the inclusion of each variable and AIC 387 

is the Akaike Information Criterion of the model 388 

Climate Variable Coeff
icient 

Std. 
Error 

t-
value Pr (>|t|) p-value 

model 

Cum. 
Adj. 
R2 

Adj. 
R2 AIC 

Cold1 Slope -0.12 0.03 -3.99 7.82e-04 7.82e-04 0.43 0.43 -81.53 

Cold2 

rCMS -0.12 0.01 -9.96 < 2.2e-
16  

< 2.2e-16 
 

0.65 

0.76 
 

-314 
 

IrrAgri 0.03 0.01 3.09 0.002 0.72 
AWC0150:P 0.08 0.02 5.40 1.77e-07 0.73 

SF -0.05 0.01 -4.85 2.37e-06 0.76 

Temperate1 
rCMS -0.23 0.05 -4.30 1.03e-03 

6.63e-05 
0.40 

0.61 0.21 
MAIN100DEV 0.25 0.04 5.91 7.11e-05 0.61 

Temperate2 
Slope -0.07 0.02 -4.29 4.05e-05 

2.33e-13 
0.29 

0.43 -132.35 Settlements -0.06 0.01 -4.94 3.09e-06 0.40 
SF -0.04 0.02 -2.32 0.022 0.43 

Arid 
rCMS -0.14 0.03 -4.66 1.69e-04 

1.05e-06 
0.63 

0.76 15.06 
Slope -0.11 0.03 -3.99 7.80e-04 0.76 
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Figure 5 Boxplot of climatic variables explaining spatial heterogeneity of 𝜔 for Cold2 climate 389 

across the three geographical regions 390 

 391 

Figure 6 Boxplot of variables explaining spatial heterogeneity of 𝜔 for Temperate2 climate across 392 

different geographical regions 393 

 394 

3.3 Spatial variability of streamflow explained by climate and catchment 395 

characteristics across different climate regions 396 

 397 

The spatial variability of streamflow, attributed to climate and catchment characteristics, differs 398 

across various climate regions (Table 4). Precipitation accounts for more than 80% of the spatial 399 

variance in mean annual Q in all the climates, except in arid climates, where it only explains about 400 

16%. The catchment characteristics (𝜔) exhibit the most substantial influence on the spatial 401 

variance of mean annual Q in arid climates, explaining up to 48% of the variability, which is 402 

considerably higher than the other climates. In the Cold2 climate, catchment characteristics explain 403 
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10% of the spatial variance on mean annual Q, while in the remaining climates, the percentage of 404 

spatial variance explained by 𝜔 is below 10%. 405 

 406 

Table 4 SMLR results for each climate region using Q as dependent variable and P, PET, and	𝜔 407 

as independent variables. Var is the variable P, PET or 𝜔. The Cumulative Adj. R2 represents the 408 

incremental Adj. R2 added to the model with the inclusion of each variable and AIC is the Akaike 409 

Information Criterion of the model.  410 

Climate Var. Coefficient Std. 
Error t-value Pr (>|t|) 

p-value 
model 

Cumula
tive 
Adj. R2 

Adj. 
R2 
model 

AIC 

Cold1 
P 0.87 0.03 26.31 3.2e-15 

< 2e-16 
0.91 

0.99 -31.46 𝜔 -0.26 0.02 -10.62 6.4e-09 0.98 
PET -0.06 0.02 -2.62 0.018 0.99 

Cold2 
P 0.69 0.03 27.47 < 2e-16  

< 2e-16 
 

0.81 
0.93 59.93 𝜔 -0.28 0.03 -10.73 < 2e-16 0.91 

PET -0.11 0.02 -5.36 2.1e-07 0.93 

Temperate1 
P 0.77 0.06 11.98 1.2e-07 

8.5e-10 
0.93 

0.98 -8.53 𝜔 -0.14 0.05 -3.13 0.009 0.97 
PET -0.18 0.07 -2.67 0.02 0.98 

Temperate2 
P 0.87 0.03 26.72 < 2e-16 

< 2e-16 
0.94 

0.99 -181.9 𝜔 -0.13 0.01 -21.58 < 2e-16 0.98 
PET -0.11 0.01 -8.64 8.1e-14 0.99 

Arid 
𝜔 -0.29 0.08 -3.42 0.003 

2.0e-05 
0.48 

0.79 36.77 P 0.47 0.11 4.26 0.0004 0.64 
PET -0.36 0.10 -3.55 0.002 0.79 

 411 

4 Discussion 412 

4.1.  To what extent do climate variables and land uses explain the spatial 413 

heterogeneity of 𝝎 within climate regions? 414 

Our analysis reveals that climatic variables, specifically the phase shift between P and PET, are 415 

more relevant in humid climates in the Northeast and Midwest (Cold2 climate) and arid climates 416 



25 

in the Southwest and Great Plains relative to other areas. In contrast, in other climates, topographic 417 

variables, such as slope, appear to be more important, notably in the Southeast (Temperate2 418 

climate) and Northwest (Cold1 climate) (Table 3). This finding aligns with our expectations, as 419 

we observed variations in the Spearman correlations between	𝜔 and these factors across different 420 

climates (Table S4). Our Spearman correlations between 𝜔 and the climatic factors for the Cold2 421 

climate (i.e., 0.72 for AWC0150:P and -0.77 rCMS, Table S4), which represents the largest group, 422 

align in magnitude with those reported by Abatzoglou and Ficklin (2017) for the entire CONUS. 423 

However, these correlations significantly diminish in other climates. Hence, using the same factors 424 

to predict 𝜔 in the entire CONUS overlooks distinctions in the roles of climatic and landscape 425 

factors to explain regional differences in water balances. Abatzoglou and Ficklin (2017)’s model 426 

for the entire CONUS attributed a nominal influence of slope on 𝜔. However, our findings 427 

demonstrate its relevance, particularly in Cold1 and Temperate2 climates, where the Rocky 428 

Mountains and Appalachian Mountains are located. Meanwhile, Guillén et al. (2021) determined 429 

that elevation as the primary landscape factor in their localized study of watersheds in the 430 

Appalachian Mountains due to the direct positive relationship between altitude and precipitation. 431 

These differences demonstrate the scale-dependent nature of the factors governing precipitation 432 

partitioning. Consequently, factors like elevation or snow might have minimal influence on 433 

broader regional climate patterns but still affect precipitation partitioning at smaller, localized 434 

scales. 435 

A novelty of this study is our emphasis on anthropogenic activities, which extends previous 436 

research using the Budyko framework focused on studying non-human modified basins. In the 437 

CONUS, Wang and Hejazi (2011) hypothesized about the potential influence of human activities 438 

(e.g., dam storage, population density, cropland area) on streamflow changes. Meanwhile, Z. Li 439 
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and Quiring (2021b) observed that factors explaining spatial differences in 𝜔 differ between 440 

human-impacted and non-human-impacted watersheds. Z. Li and Quiring (2021b) found that dam 441 

storage and urbanization better represent the spatial heterogeneity of 𝜔 in human-impacted 442 

watersheds. In this study, the number of dams does not appear to be a significant factor in any of 443 

the SMLRs, which may be attributed to the exclusion of regulated watersheds from the analysis. 444 

We found that in the climates with the largest sample of watersheds (Cold2 and Temperate2 445 

climates), different anthropogenic activities account for spatial differences in the long-term water 446 

balances, as agricultural watersheds concentrate in the Cold2 climate and urban watersheds in the 447 

Temperate2 climate. This highlights the importance of climate regions in shaping the effects of 448 

land use change on streamflow generation and emphasizes the need to build regional models of 𝜔. 449 

Over the period from 1990 to 2020, irrigated agriculture in the Midwest and Central Plains has 450 

intensified ET, while urban areas in the Southeast have increased Q.  451 

Water balances in humid watersheds of the Northeast and Midwest and arid watersheds of the 452 

Southwest and Great Plains are driven by the synchronization between P and PET (Table 3). 453 

Consequently, any shift in the seasonal dynamics of P and PET can greatly impact droughts and 454 

freshwater availability in these regions. Agricultural watersheds in the Midwest have benefited 455 

from a strong synchronization between P and PET complemented by their capacity to retain soil 456 

moisture (Figure 5). However, the region may encounter challenges in the future due to rising 457 

warm-season temperatures and the increasing occurrence of more variable and extreme 458 

precipitation events (Angel et al., 2018). These shifts in P and PET patterns could lead to excess 459 

soil moisture in the spring caused by increased precipitation, followed by insufficient levels during 460 

the summer growing season due to elevated temperatures (Wehner et al., 2017). Increased 461 

humidity in the spring, resulting in increased rainfall, is also associated with a higher frequency of 462 
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flooding events (Angel et al., 2018), posing risks to both the population and agriculture fields 463 

(Wing et al., 2018). Concurrently, rising temperatures will lead to an increased vapor pressure 464 

deficit, compelling farmers to extend their irrigation areas, which currently rely on rain, to maintain 465 

crop productivity since precipitation is not expected to increase at the same rate (DeLucia et al., 466 

2019; Overpeck & Udall, 2020). Szilagyi (2018) found that, in the most extensively irrigated fields 467 

in Nebraska, ET rates have increased by 7mm decade-1 from 1979 to 2015 along with a reduction 468 

of P. This phenomenon occurred because irrigation resulted in a more stable air stratification over 469 

the cooler irrigated crop surfaces, ultimately causing the excess moisture to be dropped somewhere 470 

downwind. This study shows that irrigated agriculture explains 7% of the spatial variability in 𝜔 471 

in the Midwest (Table 3), with a correlation coefficient of 0.6 (p-value<0.05) (Table S4). 472 

Therefore, the anticipated increase in irrigation will further intensify ET under high-temperature 473 

days when evaporative demand is the greatest, consequently exacerbating the long-term 474 

aridification of these watersheds.  475 

Spatial differences in water balances across the Southeast can be attributed to the watershed's slope 476 

and level of urbanization. The Southeast is experiencing significant urbanization, with some of the 477 

fastest-growing cities in the USA, particularly in swiftly developing urban centers in Florida, North 478 

Carolina, and South Carolina. This region has also experienced an increase in the frequency and 479 

intensity of precipitation events, and this trend is projected to persist in the future (Easterling et 480 

al., 2017). Urbanization in the Southeast has been linked to processes that amplify intense rainfall 481 

events, such as urban heat island dynamics or elevated aerosol production, and it has also led to 482 

higher runoff ratios and peak flows (Ashley et al., 2012; O’Driscoll et al., 2010). For instance, 483 

Diem et al. (2018) showed a 26% increase in annual streamflow and a rise in runoff ratio from 484 

0.35 to 0.45 due to urbanization in some watersheds in the Atlanta Metropolitan area from 1986 485 
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to 2015. C. Li et al. (2020) reported that the southeastern US exhibits a more pronounced 486 

hydrological response to urbanization compared to other regions in the CONUS, resulting in a 487 

higher water yield due to the expansion of impervious areas and loss in vegetated areas. In this 488 

study, we found that in the Southeast, the urban area within the watershed accounts for 11% of the 489 

spatial variability in 𝜔 between 1990 and 2020 (Table 3), with a correlation coefficient of -0.22 490 

(p-value<0.05) (Table S4).  491 

In the other climate groups, the sample size constrains the range of variability of the controls, 492 

thereby limiting the interpretation of the SMLRs. We selected a subset of factors to regress against 493 

𝜔; however, due to the unknown nature of 𝜔 and the broad range of factors that may influence it, 494 

we acknowledge that this selection can be somewhat subjective. However, it is important to note 495 

that the parameter 𝜔 is highly correlated with the selected controls, which are also highly cross-496 

correlated with the other controls in the same category (Figure S1), meaning that they represent 497 

similar hydrological processes. Also, the significant relationship between the selected controls and 498 

𝜔 indicates that modification of these controls can affect precipitation partitioning. In this analysis, 499 

we used 𝜔 as a proxy of ET/P to regress against the controls; by doing so, we introduced some 500 

uncertainties, especially when a catchment reaches the water and energy limits (Reaver et al., 501 

2022). Nevertheless, employing 𝜔 as the dependent variable instead of ET/P enables the 502 

identification of controls beyond those exerted by 𝜙. While we relied on past studies to assess the 503 

closed water balances (i.e., Z. Li & Quiring, 2021a), we recognize a limitation that certain human-504 

affected basins might have undergone alterations in water storage due to groundwater withdrawals. 505 

The groundwater depletion is more notable in semiarid to arid watersheds in the western US 506 

(Konikow, 2013), but our sample size in this region is relatively small. 507 



29 

4.2. What is the spatial variability in streamflow explained by climate and catchment 508 

characteristics in different climate regions? 509 

Our results indicate that arid climates are especially sensitive to changes in the catchment 510 

characteristics represented by 𝜔. Specifically, 𝜔 explains around half of the spatial variability in 511 

the mean annual Q of arid catchments, meanwhile, mean annual P explains less than one-fourth 512 

(Table 4). In arid regions, alterations to forest cover or other land-use/land-cover types can result 513 

in more significant streamflow changes. Also, past research has found that streamflow is more 514 

responsive to land use and vegetation changes in arid regions (Wang & Hejazi, 2011; S. Zhang et 515 

al., 2016; Zhou et al., 2015; Bhaskar et al., 2020). For example, vegetation shows higher sensitivity 516 

to precipitation in dry regions, leading to an increase in vegetation cover, soil moisture, and 517 

changes in water availability (Y. Zhang et al., 2022). It is also important to note that 𝜔 518 

encompasses other factors beyond anthropogenic activities, such as changes in topography, soil 519 

characteristics, precipitation patterns, and temperature. These factors also influence 𝜔 but typically 520 

involve longer-term processes (i.e., erosion, climate change) and are considered relatively more 521 

stable over time than rapidly changing human-induced activities (i.e., land use changes). To better 522 

assess the sensitivity of arid regions to land use changes, future research should investigate a larger 523 

number of watersheds affected by diverse land use/land cover alterations (e.g., urban expansion, 524 

deforestation). The sample we studied within this region is relatively small, with half of the 525 

watersheds categorized as reference or free from human intervention. Cold and Temperate 526 

climates, on the other hand, are primarily driven by the mean annual P, although cold climates 527 

show slightly higher sensitivity to changes in 𝜔 than temperate climates. This finding helps 528 

reconcile contradictions in the literature by demonstrating that some climates are more sensitive 529 

to changes in catchment characteristics, including land use and land cover changes, than others.  530 
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Climate has a significant influence on 𝜔 and ET/P ratio in the CONUS, as observed in other intra-531 

regional (Guillén et al., 2021) and global studies (Liu & You, 2021; Padrón et al., 2017). Arid 532 

regions exhibit the highest 𝜔 values, followed by temperate and cold regions. These findings 533 

highlight how climate groups can account for a portion of the spatial variability in 𝜔 across the 534 

CONUS, although there are broad ranges of 𝜔 within groups (Figure 4a). Land use also exerts a 535 

significant influence on 𝜔 and ET/P ratio in the CONUS. Agricultural watersheds display the 536 

highest 𝜔 values, while reference watersheds display higher dispersion (Figure 4b). Most of the 537 

watersheds (72%) in humid climates (Cold1 and Cold2) and half in temperate climates 538 

(Temperate1 and Temperate2) are water-limited and not energy-limited, contradicting commonly 539 

held assumptions (Figure 3a). We found that humid watersheds falling within the water-limited 540 

spectrum are mainly agricultural and concentrated in the Midwest, whereas water-limited 541 

watersheds in the temperate climate are primarily urban and spread across the South. We showed 542 

that there are complex interactions between climate factors and agricultural-urban factors that 543 

make the effect of land use different across climates. By building regional models of 𝜔, we gained 544 

insight into how land use contributes to disparities in water balances within distinct climate 545 

regions. Our findings provide valuable insights into the critical factors to consider in the 546 

management of regional water resources and inform about the hydrological sensitivities to future 547 

climate and land use changes. 548 
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