

Article Title:

Exploring drought-to-flood interactions and dynamics: a global case review

Article Category:

1
2

Authors:

Marlies H. Barendrecht^{1,2}

¹Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,

² Department of Geography, King's College London, Strand, London WC2R 2LS, UK

<https://orcid.org/0000-0002-3825-0123>

Alessia Matanó

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Heidi Mendoza

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands, <https://orcid.org/0000-0002-5836-7062>

Ruben Weesie

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Melanie Rohse

Global Sustainability Institute, Anglia Ruskin University, UK

Johanna Koehler^{1,2}

¹ Public Administration and Policy Group, Wageningen University and Research, Wageningen, The Netherlands

² Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands,

<https://orcid.org/0000-0002-9045-4844>

Marleen de Ruiter

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Margaret Garcia

School of Sustainable Engineering & the Built Environment, Arizona State University,
<https://orcid.org/0000-0002-2864-2377>

Maurizio Mazzoleni

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Jeroen C. J. H. Aerts

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands, <https://orcid.org/0000-0002-2162-5814>

Philip J. Ward

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands, <https://orcid.org/0000-0001-7702-7859>

Giuliano Di Baldassarre

Centre of Natural Hazards and Disaster Science (CNDS), Uppsala University, Uppsala, Sweden, <https://orcid.org/0000-0002-8180-4996>

Rosie Day

School of Geography, earth and Environmental Sciences, University of Birmingham, UK

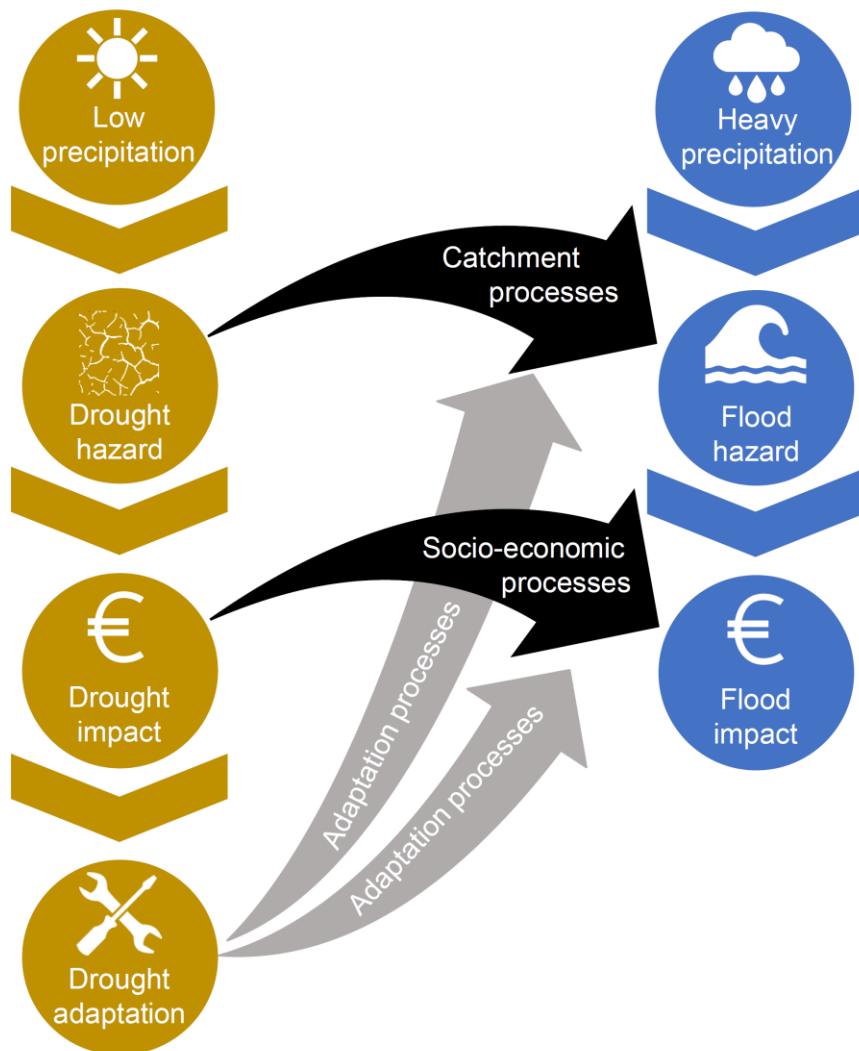
Anne F. Van Loon

Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands, <https://orcid.org/0000-0003-2308-0392>

5 There are no conflicts of interest to declare.

6

7


8 **Abstract**

9 This study synthesises the current understanding on the hydrological and human impact and
10 adaptation processes underlying drought-to-flood events (i.e. consecutive drought and flood events),
11 and how they interact. Based on an analysis of literature and a global assessment of historic cases,
12 we show how drought can affect flood risk and assess under which circumstances drought-to-flood
13 interactions can lead to increased or decreased risk. We make a distinction between hydrological,
14 socio-economic and adaptation processes. Hydrological processes include storage and runoff
15 processes, which both seem to mostly play a role when the drought is a multiyear event and when the
16 flood occurs during the drought. However, which process is dominant when and where, and how this
17 is influenced by human intervention should be further researched. Processes related to socio-
18 economic impacts have been studied less than hydrological processes, but in general, changes in
19 vulnerability seem to play an important role in increasing or decreasing drought-to-flood impacts.
20 Additionally, there is evidence of increased water quality problems due to drought-to-flood, compared
21 to drought or flood by themselves. Adaptation affects both hydrological (e.g. through groundwater
22 extraction) or socio-economic (e.g. influencing vulnerability) processes. There are many examples of
23 adaptation, but there is limited evidence of when and where certain processes occur and why.
24 Overall, research on drought-to-flood events is scarce. To increase our understanding of drought-to-
25 flood events we need more comprehensive studies on the underlying hydrological, socio-economic
26 and adaptation processes and their interactions, as well as the circumstances that lead to the
27 dominance of certain processes.

28

29

30 **Graphical/Visual Abstract and Caption**

31

32 A review of the hydrological, socio-economic and adaptation processes underlying drought-to-flood
33 interactions and dynamics.

34

35

36 **1. INTRODUCTION**

37 Drought and floods are opposite hydrological extremes, but their risks are not independent. When an
38 extreme flood event occurs shortly after a major drought (i.e. drought-to-flood), its consequences can
39 be catastrophic. Drought-to-flood events are often initially not perceived as a disaster. After a long
40 drought, the first rains are welcome (Little et al., 2001; Parry et al., 2013), as they can result in a
41 recovery of the ecosystem (Bennett et al., 2014) and the replenishment of water resources (Brauer et
42 al., 2011). In some cases, however, this positive situation turns into a disaster, depending on physical
43 and social processes and their interactions. For example, in the Millennium Drought in Australia
44 (2000-10) followed shortly after by widespread flooding in the south and east of the country (Van Dijk
45 et al., 2013); the 2017-18 drought in East Africa quickly followed by floods that killed hundreds
46 (ReliefWeb, 2018) or the 2019 Mozambique deadly flooding that occurred at the end of a long drought
47 in the region (Cowan & Infante, 2019). When, where, and for whom drought-to-flood events are a
48 benefit or a disaster is still unclear. There are several processes through which a drought event can
49 influence a subsequent flood event: atmospheric processes affecting the meteorology; catchment
50 processes affecting the hydrology; socio-economic processes affecting impacts; or adaptation
51 processes, potentially affecting both hydrology and socio-economic impacts.

52

53 Both dry and wet climate extremes are occurring more frequently and with increasing severity (Rodell
54 & Li, 2023) and are expected to become even more frequent and intense with ongoing climate change
55 (IPCC, 2023). He & Sheffield (2020) show that, in certain areas across the globe, the frequency of
56 rapid dry-to-wet transitions has also increased over the past 30 years. In addition, the time between
57 consecutive dry and wet events has been shown to be decreasing, implying that there is less time to
58 recover from the impacts of the dry extreme before the wet extreme occurs (Rashid & Wahl 2022).
59 This shows the importance of improving the understanding of drought-to-flood events and how the
60 different processes that occur during and after a drought event increase or decrease the occurrence,
61 severity and impacts of a consequent flood event.

62

63 Dry-wet transitions have gained increasing scientific interest, but most studies focus on the
64 atmospheric processes behind shifts from low to high rainfall (e.g. Dong et al., 2011, Singh et al.,
65 2014; Payne et al. 2020). For example, on the US West Coast, 33%–74% of persistent droughts over

66 1950-2010 were ended by atmospheric rivers (Dettinger, 2013). Other case studies, mostly in the
67 USA revealed that dry-wet transitions resulted from a reversal of the 'ridge–trough' circulation pattern,
68 so a persistent high-pressure ridge changing to a persistent low-pressure trough in the same location
69 (e.g. Dong et al., 2011; Yang et al. 2013; Wang et al., 2017). In some studies, this has been related to
70 the migration of the jet stream (e.g. Payne et al., 2020; Parry et al., 2013; Wahl et al. 2019). In
71 addition, large-scale ocean-atmosphere processes seem to play a role in rapid transitions between
72 dry and wet periods. For example, in the Amazon region such an abrupt transition was ascribed to
73 negative sea surface temperature anomalies corresponding to a La Niña-like mode (Espinoza et al.,
74 2013). Several studies in China also relate abrupt dry-to-wet alterations to anomalies in sea surface
75 temperatures and large-scale ocean atmospheric modes (e.g. Wu et al., 2006a; Wu et al., 2006b).
76 Other cases show that drought also enhances rain production, for example by increased convection
77 due to dry soils leading to vertical air motion intensifying precipitation of atmospheric rivers (Gimeno
78 et al., 2014). Both increased moisture transport and more active rain-producing systems may play a
79 role in dry-wet transitions (e.g. Dong et al., 2011; Maxwell et al., 2017; Ma et al., 2019).

80

81 Whether these meteorological conditions develop into a drought-to-flood hazard and associated
82 impacts is dependent on hydrological, socio-economic and adaptation processes. There are some
83 studies that provide examples of human adaptation to drought (or flooding) and how this affects the
84 other extreme (Ward et al., 2020; De Ruiter et al., 2021; Garcia et al. 2022), but the underlying
85 physical and social processes that play a role in drought-to-flood events have been studied less and
86 an overview of their reducing and enhancing effects is lacking. In this study, we aim to synthesise the
87 current understanding on the hydrological, impact and adaptation processes behind drought-to-flood
88 events, as well as their interactions. Based on an analysis of literature and a global assessment of
89 historic drought-to-flood cases through a review of grey and peer-reviewed literature (for a description
90 of the methods see the Supplementary material), we show the diversity of processes that govern how
91 drought affects flood risk and assess the circumstances under which positive and negative effects and
92 feedbacks occur, subdivided in sections on "Catchment processes" (Section 2), "Impacts"(Section 3)
93 and "Adaptation processes" (Section 4). Besides providing new insights on drought-to-flood
94 interactions, we identify research gaps that should be addressed to better understand and improve
95 the management of drought-to-flood events (Section 5).

97 **2. CATCHMENT PROCESSES INFLUENCING DROUGHT-TO-FLOOD EVENTS**

98 This section explores how drought can alter catchment processes and how these changes can affect
 99 a subsequent flood event. In some cases, a drought can exacerbate subsequent flooding. In other
 100 cases, a change in catchment processes because of a drought can reduce subsequent flooding or
 101 make it less likely to occur. An overview of the different processes is provided, as well as an
 102 exploration of when and where different processes may be dominant. We make a distinction between
 103 storage and runoff process. We provide an overview of the processes discussed in this section and
 104 the factors that influence when and where they are dominant in Table 1.

105

106 **Table 1.** Summary of catchment processes and the factors influencing when and where they are
 107 dominant. This overview is based on, in many cases, limited evidence and more research is
 108 necessary to get a better overview of the catchment characteristics influencing when and where these
 109 processes are dominant.

Process group	Dominance	Process	Effect on flooding
Storage depletion	Dominant in arid catchments, broader and flatter valley catchments, catchments with deeper soils and catchments with more groundwater variability	Dry antecedent soil moisture conditions	Decrease
	Dominant in case of riverine flooding	Groundwater disconnecting from surface water	Decrease
Runoff processes	Generally dominant across climate and catchment types	Vegetation response	Decrease Increase in places with low aridity, high baseflow, a shift from snow to rain or

	Dominant in case of flash and pluvial flooding		resilience of high-elevation runoff.
		Decreased infiltration and increased surface runoff	Increase
		Snow related processes	Decrease in case of a lower snowmelt peak because of below normal snowmelt or when precipitation falls as rain instead of snow
			Increase in case of rain falling on snow

110

111

112 **2.1 Storage processes**

113 The hydrological conditions at the end of a long drought are not the type of conditions that are prone
 114 to result in flooding when heavy rainfall occurs. For example, subsurface storage will be low and will
 115 need to be replenished. With dry antecedent soil moisture conditions, a lower flood is expected
 116 (Pathiraja et al., 2012; Evans et al., 1999; Blöschl et al., 2015; Berghuijs et al., 2016), making
 117 drought-to-flood events less likely or less extreme. For example, the flash flood in the Netherlands in
 118 the summer of 2010, was less severe than it could have been because the first rainfall was stored in
 119 the dry soils (Brauer et al., 2011). In the UK 2010-12 drought-to-flood event, initial rainfall led to soil
 120 moisture recovery. It was only prolonged heavy rainfall that resulted in flooding (Parry et al., 2013),
 121 with variability in time to peak discharge between quickly and slowly responding catchments (Parry et
 122 al., 2016). This suggests that, with greater storage depletion after more severe drought, recovery
 123 takes longer (Bravar and Kavvas, 1991), as found by Parry et al. (2016) in the UK. However, in some
 124 catchments in Australia, there was no such buffer effect and the flooding occurred soon after the
 125 drought (Yang et al., 2017).

126

127 The process of flood mitigation due to empty or low water storage caused by preceding droughts is
128 not frequently mentioned in our case review of past drought-to-flood events. This is likely because this
129 process alleviates flooding, thereby reducing or eliminating impacts. These events are therefore not
130 included in our database (since it only includes cases with reported impacts). There were only two
131 cases, in Saskatchewan, Canada and Iowa, United States of America, where increased storage
132 availability because of the drought was mentioned as a process that caused flooding to be less
133 severe than it could have been (CBC News, 2015; Danielson, 2014).

134

135 One of the mechanisms that would explain an additional delay in the response of the hydrological
136 system to excessive rainfall after drought is decreasing groundwater levels during drought, leading to
137 groundwater disconnecting from surface water (Eltahir and Yeh, 1999; Parry et al., 2013). This
138 causes contraction in the stream network, shrinkage of the saturated partial contribution area, and
139 slower pathways for water. One of the reasons is that it takes more water for saturation excess flow to
140 occur (Saft et al., 2016). This would imply that heavier and longer duration rainfall is necessary for
141 flooding to develop as a result of saturation overland flow. However, pluvial flooding from infiltration
142 excess in the case of short heavy rain events would not be affected by this contraction. In addition,
143 with the contraction of the stream network the contribution of groundwater to the stream becomes
144 lower, up to the point that the stream loses the connection with the groundwater and groundwater no
145 longer contributes to the discharge. Large amounts of recharge are needed for groundwater and
146 stream to reconnect and for groundwater to start contributing significantly to the discharge (Poeter et
147 al., 2020). Drought recovery tends to be asymmetric (Eltahir and Yeh, 1999), with changes to the
148 stream network taking longer to recover than to develop. Therefore, it would take longer for flooding to
149 develop after a drought.

150

151 **2.2 Runoff processes**

152 In the literature, there is also evidence for drought-induced changes in the land surface activating
153 quick runoff pathways, which would suggest that catchments do not need to recover fully, with storage
154 completely replenished, before flooding can occur (Parry et al., 2013). One mechanism that could
155 play a role is vegetation response. In Australia for example, many catchments remained in a lower

156 runoff state for more than seven years after the Millenium drought and showed no sign of recovery to
157 the pre-drought runoff state (Peterson et al., 2021). In this case, the (lack of) recovery is not controlled
158 by refilling of subsurface storage, but rather the authors postulate that it is related to a vegetation
159 response leading to increased evapotranspiration (Peterson et al., 2021). However, the authors only
160 investigated changes in annual runoff, and not changes in runoff extremes. In a study in the southern
161 Appalachians, in California, Scaife and Band (2017) find that stormflow response is higher after a
162 drought, because of a reduction in transpiration. In a study investigating changing rainfall-runoff
163 response during drought in 14 basins in California, Maurer et al. (2022) find that in basins with low
164 aridity, high baseflow, a shift from snow to rain (i.e. more precipitation falling as rain instead of snow) ,
165 or resilience of high-elevation runoff (i.e. no significant decreases in high-elevation runoff during a
166 drought), the rainfall-runoff response is higher than expected compared to the rainfall-runoff response
167 under normal conditions. Whether a drought increases or decreases the rainfall-runoff response,
168 therefore seems to depend on the climatic and catchment conditions.

169

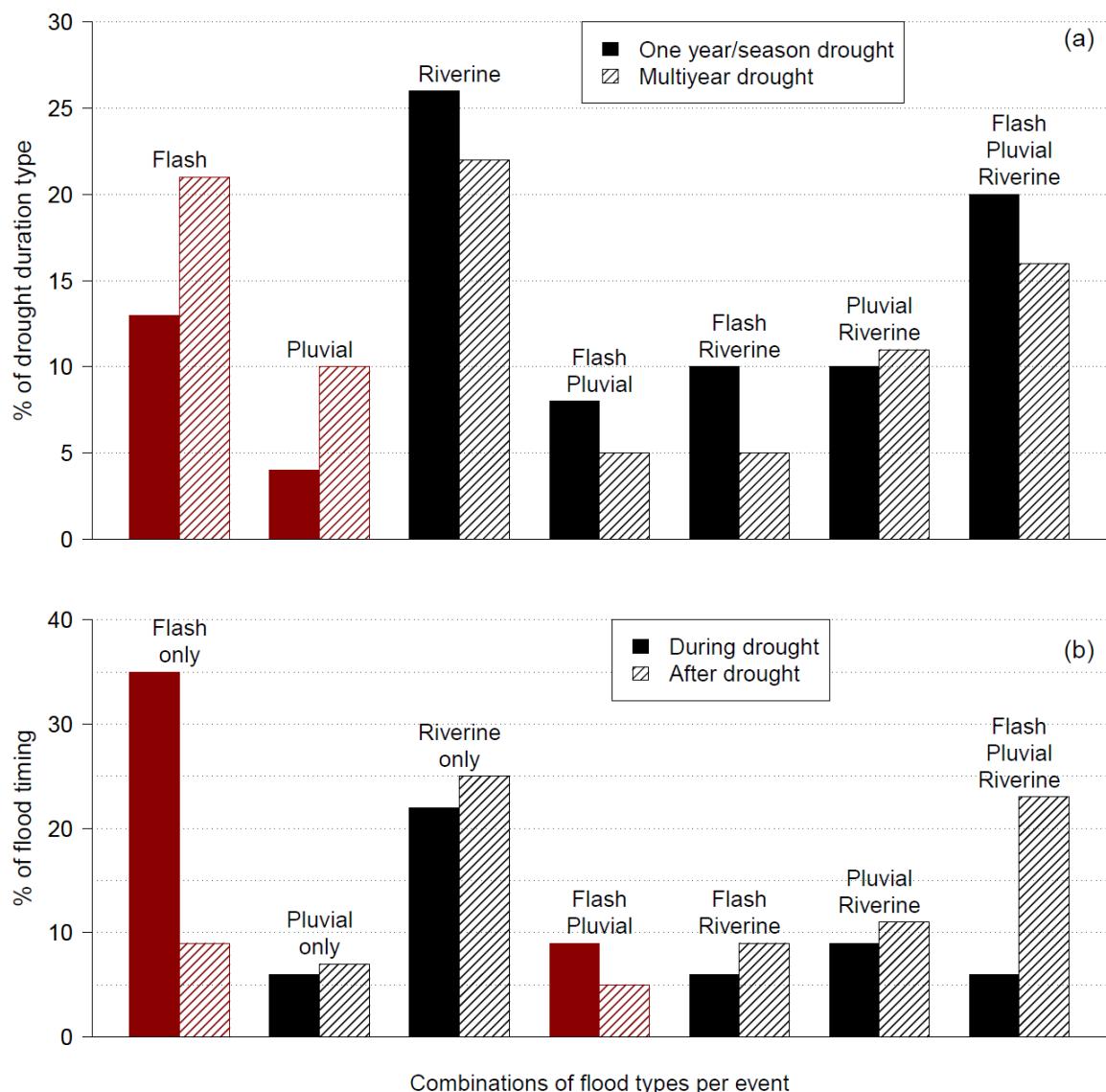
170 Many studies report increased runoff after drought because of decreased infiltration rates and
171 increased surface runoff (Descroix et al., 2009), for example because of increased soil compaction
172 (Alaoui et al., 2017) or hydrophobicity (Evans et al., 1999). Also, soil cracking can result in quick
173 vertical flow of rainwater (Miller et al., 1997) and land cover changes can affect infiltration excess
174 runoff generation, surface runoff routing and spatial connectivity, usually increasing (but in some
175 cases decreasing) flooding (Rogger et al., 2017). Wildfires, often related to drought, have been found
176 to change flow pathways (Murphy et al., 2018) and increase the risk of other hazards including flash
177 floods, debris flows and landslides (Moftakhari and AghaKouchak, 2019) (see Box 1 for more details
178 on wildfires). The question remains whether these changes in pathways persist long after the end of
179 the drought (Worrall et al., 2007) and whether they are important at the catchment scale (Blöschl et
180 al., 2007; Alaoui et al., 2017).

181 In snow-dominated regions, other mechanisms can explain the relation between drought and flooding.
182 Early or below-normal snow melt in dry and warm years, could lower the snowmelt peak, reducing
183 snowmelt floods (Van Loon et al., 2015). The same occurs when precipitation falls as rain instead of
184 snow, resulting in decreased snowfall and snowpack (Tabari, 2020). On the other hand, early snow
185 melt could also lead to higher peak runoff. Hatchett and McEvoy (2018) found that many snow

186 droughts were characterized by lower snow fractions and midwinter peak runoff events. Under higher
187 winter and spring temperatures (often co-occurring with drought), rain-on-snow flood events are
188 expected to shift in occurrence: from spring to winter (Freudiger et al., 2014) and from lower to higher
189 elevations (Musselman et al., 2018). We can also speculate that drought in snow-covered areas could
190 potentially lead to compacted snowpacks that could result in more severe rain-on-snow floods when
191 rainfall occurs (Rössler et al., 2014), but more research would be needed on this.

192

193 **2.3 Which process is dominant, when and where?**


194 Limited studies exist on effects at the catchment scale to answer the question of where and when
195 storage depletion processes or runoff processes are dominant. Rainfall-runoff relationships are a
196 good overarching metric to study effects at the catchment scale. Rainfall-runoff relationships often
197 decrease during multi-year droughts. In these cases, the same amount of rainfall will produce lower
198 runoff after a prolonged dry period compared to normal circumstances, as seen in Australia (Saft et
199 al., 2015; Peterson et al., 2021) and Chile (Garreaud et al., 2017). In Algeria, however, rainfall-runoff
200 relationships were found to increase, leading to less infiltration, more surface runoff and higher flood
201 hazard (Sofiane et al., 2019). Although in this case it is not clear what specific process may have
202 caused this decrease in infiltration and increase in runoff. Stronger decreases in rainfall-runoff
203 relationships were found to be related to aridity (Saft et al., 2016; Garreaud et al., 2017), broader and
204 flatter valley catchments (Saft et al., 2016; Yang et al., 2017), deeper soils, and more groundwater
205 variability (Saft et al., 2016). Therefore, this may indicate that in areas with larger subsurface water
206 depletion due to an arid climate, permeable geology, or deeper soils, the effect of runoff processes is
207 less dominant and instead the effect of filling up of depleted storage is more dominant, whereas in
208 wetter, more quickly-responding catchments the balance might tip to runoff increase after drought.

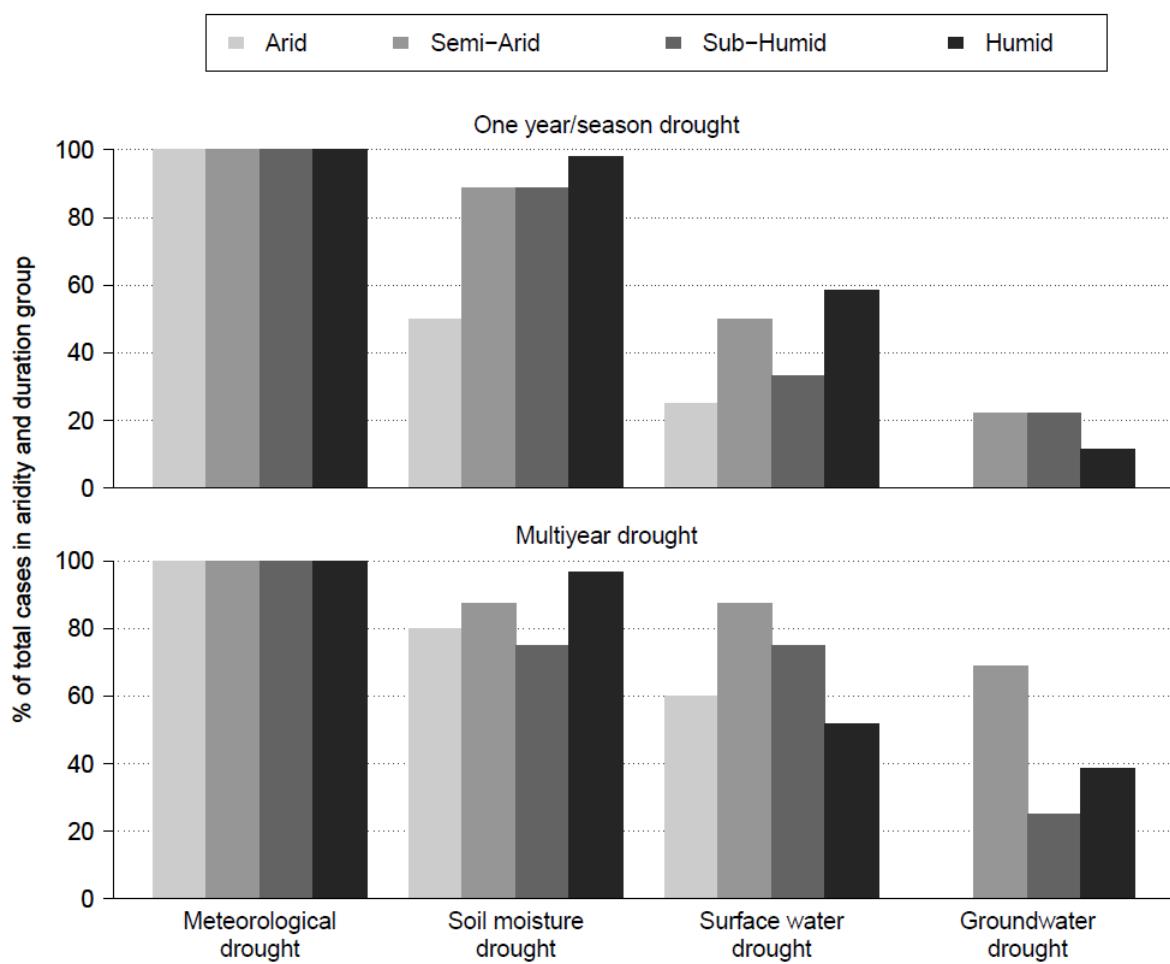
209

210 In the global case review, we also find that the type of flood is important in drought-to-flood events.
211 We define the type of flood generating process following the typology proposed by Merz & Blöschl
212 (2003). Short-rain flood was the most frequently reported flood process (120 cases), whereas long-
213 rain flood (34), tropical cyclone (20) and snowmelt flood (3) were reported less often as the dominant
214 process causing flooding. The more frequent occurrence of short-rain floods points to high intensity
215 rainfall events and limited infiltration, which may indicate that, in general, across all climate types,

216 drought-induced changes to the land surface activating quick runoff pathways are a dominant
217 process. In addition, flood events reported as flash flood or pluvial flood (rather than a riverine flood or
218 a combination of flash and/or pluvial with riverine flooding) were mentioned more often in case of a
219 multi-year drought than a within year drought (Figure 1a) and flash floods are reported to occur more
220 during rather than after a drought (Figure 1b). This may be because during a multi-year drought the
221 land surface is affected more severely than during a one-year drought, for example with changes in
222 vegetation or soil properties, causing quick-runoff generation processes. However, it could also be
223 that flash floods and pluvial floods after a drought instead of during a drought are not reported in our
224 case review because the excessive rainfall refills depleted storage and did not cause (severe)
225 impacts. In case of riverine flooding (which was reported much less often), storage depletion
226 processes may be more dominant. This may be especially the case in arid regions, as discussed in
227 the previous paragraph. We find some evidence for this in our case review. With groundwater drought
228 most often reported in semi-arid cases as shown in Figure 2 (there are no reports of groundwater
229 drought in arid cases, but this may be due to the low number of cases with an arid climate in our case
230 review). This may indicate an increase in available storage before a subsequent high rainfall period.
231 However, there are also a several cases with sub-humid and humid climate conditions that are
232 reporting groundwater drought, which indicates there may be other factors influencing the importance
233 of storage depletion process, besides aridity.

234

235


236 **Figure 1.** Percentage of cases reporting a certain flood type differentiated by drought duration (a),
237 and percentages of cases reporting a certain flood type differentiated by flood timing during or after
238 the drought (b). Highlighted in red are the event types (flash flood and pluvial flood) that occur more
239 often in relation to a multiyear drought than to a one-year drought (a), and the event types (flash flood
240 and flash and pluvial flood combined) that occur more often during than after a drought (b).

241

242 All of these processes and their importance depend on the speed of drought recovery and the time
243 lag between the drought and the heavy rainfall. The rate and duration of drought recovery are strongly
244 dependent on climate and catchment properties, such as elevation, slope, average catchment
245 wetness, and soil conditions (Parry et al., 2016; Yang et al., 2017; Ganguli et al., 2022). Additionally,

246 human activities, including land use change, groundwater abstraction, and reservoir operation, have
247 been found to prolong recovery (Apurv et al., 2017; Margariti et al., 2019) and shift seasonality (Wang
248 et al., 2020). In many locations across the globe, the recovery time (i.e., the time between the drought
249 and the flood event) is decreasing, meaning that there is less time for the system to recover before
250 the next extreme happens (Rashid and Wahl, 2022). In the case review, we find that a flash flood by
251 itself or in combination with pluvial flooding (rather than pluvial or riverine alone or flash flood in
252 combination with riverine) is more often reported during a drought than after a drought (Figure 1b).
253 This may be an indication of runoff processes being dominant showing that heavy rain can lead to
254 floods without terminating the drought. Riverine and compound flooding occurred mostly after the end
255 of a drought (Figure 1b), which may indicate that for riverine floods to develop, depleted storage first
256 needs to be replenished.

257
258

259

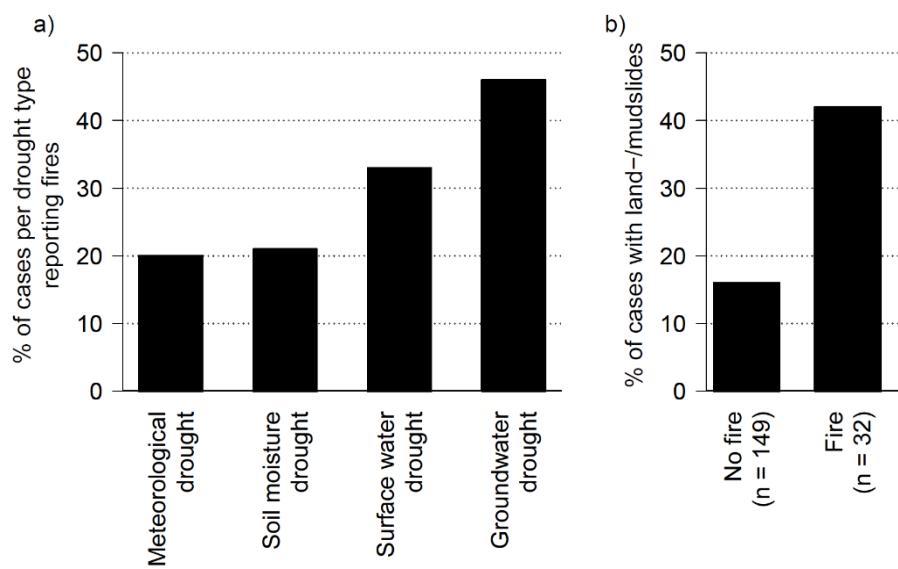
260 **Figure 2.** The percentage of cases of a certain drought duration (one year vs. multiple years)
261 reporting a certain drought type, separated by aridity group. Meteorological drought was reported in
262 all cases, whereas soil moisture, surface water and groundwater drought are reported in a decreasing
263 percentage of the cases. There is a clear difference between the propagation for multiyear and one-
264 year events.

265

266 Both storage depletion and refilling, and land-surface conditions are influenced by human activities,
267 especially during drought, but there is no empirical research on the effects of human activities on
268 consecutive drought and floods. For example, studies on changes in the rainfall-runoff relationship
269 (Saft et al., 2016; Garreaud et al., 2017; Yang et al., 2017) excluded “impaired” catchments.

270 Recent research has started to quantify the effects of human activities on hydrological drought (Rangecroft et al., 2019), including Van Loon et al. (2022) who show that groundwater abstraction
271 makes a hydrological drought more severe. In addition, human activities can slow drought recovery
272 (Margariti et al., 2019). Flash floods (which, according to the case review, happen more often during a
273 drought) occur more frequently and/or are more severe in human-influenced catchments (Jodar-
274 Abellán et al., 2019; Mohamed and Worku, 2021). Human activities seem to enhance both storage
275 and runoff processes, with increased storage depletion leading to lower floods after droughts, and
276 land-surface changes leading to higher floods after drought in human-dominated catchments. These
277 human activities are discussed in detail in section 4 on adaptation processes.

279


280

281

282 **Sidebar title: Role of wildfires and landslides in drought-to-flood events**

283 Drought increases the frequency and severity of wildfire (Riley et al. 2013), increasing flammability
284 and interacting with other fire spread controls such as the prevalence of fire weather conditions (Littell
285 et al. 2016). Wildfire drives changes in vegetation and soil properties making overland flow the
286 dominant flow path post-wildfire (Rountree et al., 2000) increasing the risk of flooding (McGuire et al.
287 2021; Moftakhar and AghaKouchak, 2019).

288 This was illustrated in Australia where the 2019-2020 wildfires were a consequence of a widespread
 289 drought and heatwave. While at first, torrential rain assisted in containing the fires, the wildfires had
 290 decreased infiltration capacity and flash floods soon followed (Alexandra & Finlayson, 2020).
 291 Landslide risk increases up to several years after a wildfire, when a wildfire followed by extreme
 292 precipitation causes increased run-off generated debris flows and slope instability (Rengers et al.,
 293 2020). In a study of Southern California, Rengers et al. (2020) found that slopes that burned 3 years
 294 prior to an extreme rainfall event, had the highest landslide density. Handwerger et al. (2019) report
 295 an increased risk in landslides during drought-to-flood events even without wildfires, because a rapid
 296 shift from drought to extreme rainfall may trigger the acceleration of landslides.
 297 Our case review indicates that wildfires occur more often when a drought has propagated to a
 298 hydrological drought (Figure 3a). In case wildfires are reported during the drought event, landslides
 299 are also more often reported after the flood event (Figure 3b).

300
 301 **Figure 3.** Percentage of cases with a certain drought type also reporting fires (a) and percentage of
 302 cases with and without reports of fire reporting land- or mudslides (b). If a case reports a groundwater
 303 drought it becomes more likely that there are also reports of fires. In case there are reports of fire, it is
 304 more likely that there are also reports of mud- or landslides.

307 3. IMPACTS OF DROUGHT-TO-FLOOD EVENTS

308 In this section we explore how drought impacts affect flood impacts. Droughts are generally long-
309 lasting and have a range of cascading impacts on both the physical and societal system (Stahl et al.,
310 2016; Sugg et al., 2020; De Brito, 2021). These impacts can continue into the period after the drought
311 ended. If society is hit by a next event (heavy rainfall resulting in flooding) the impacts of flooding may
312 be increased due to the preceding drought impacts.

313

314 **3.1 Drought impacts on the physical system**

315 Drought can impact the physical system, thereby making subsequent flood impacts more likely.
316 Drought can cause damage to infrastructure, including infrastructure for flood risk mitigation. For
317 example, during droughts, dikes and levees can suffer from cracking, which can increase the
318 probability of failure (either during the drought itself or during subsequent wet periods). Examples of
319 this are abundant in the literature, especially for the Netherlands (e.g. Van Baars, 2005; Van Baars
320 and Van Kempen, 2009), Australia (e.g. Jaksa et al., 2013; Hubble and De Carli, 2015; IWMI, 2017),
321 and the USA (Vahedifard et al., 2016; Vahedifard et al., 2017). This happens mostly in lowland areas
322 with dikes made of peat and clay or on peat / clay soils that are prone to cracking during drought.

323

324 Moreover, drought-to-flood events can increase impacts by degrading water quality and creating
325 favourable conditions for the development of diseases that impact human health. In our case review,
326 we find that impacts on human health were most often reported in low-income countries (Figure 4).
327 We also found examples in the scientific literature. For example, Effler et al. (2001) showed that the
328 E. Coli outbreak in Swaziland and South Africa in 2000 was preceded by intense precipitation
329 following a three-month drought period. It was shown that high concentrations of pathogens occurred
330 during the drought period, because livestock used human water sources, thereby increasing human
331 exposure during consequent heavy rainfall (Levy et al., 2016). Drought-to-flood events can also result
332 in large-scale simultaneous hatching of mosquito eggs, leading to the transmission and outbreaks of,
333 for example, Rift Valley fever virus (Stanke et al., 2013). In addition, these events can alter water
334 quality due to deposition of pollutants within the soil during drought period and their consequent
335 discharge into the river during flood events (Mishra et al., 2021). Moreover, consecutive dry and wet
336 periods result in elevated phosphorus release and consequent water quality degradation (Laudon et

337 al., 2005). Alteration of river nutrients concentration can cause severe fish mortality (Laudon et al.,
338 2005) and eutrophication of surface water bodies (Wurtsbaugh et al., 2019).

339

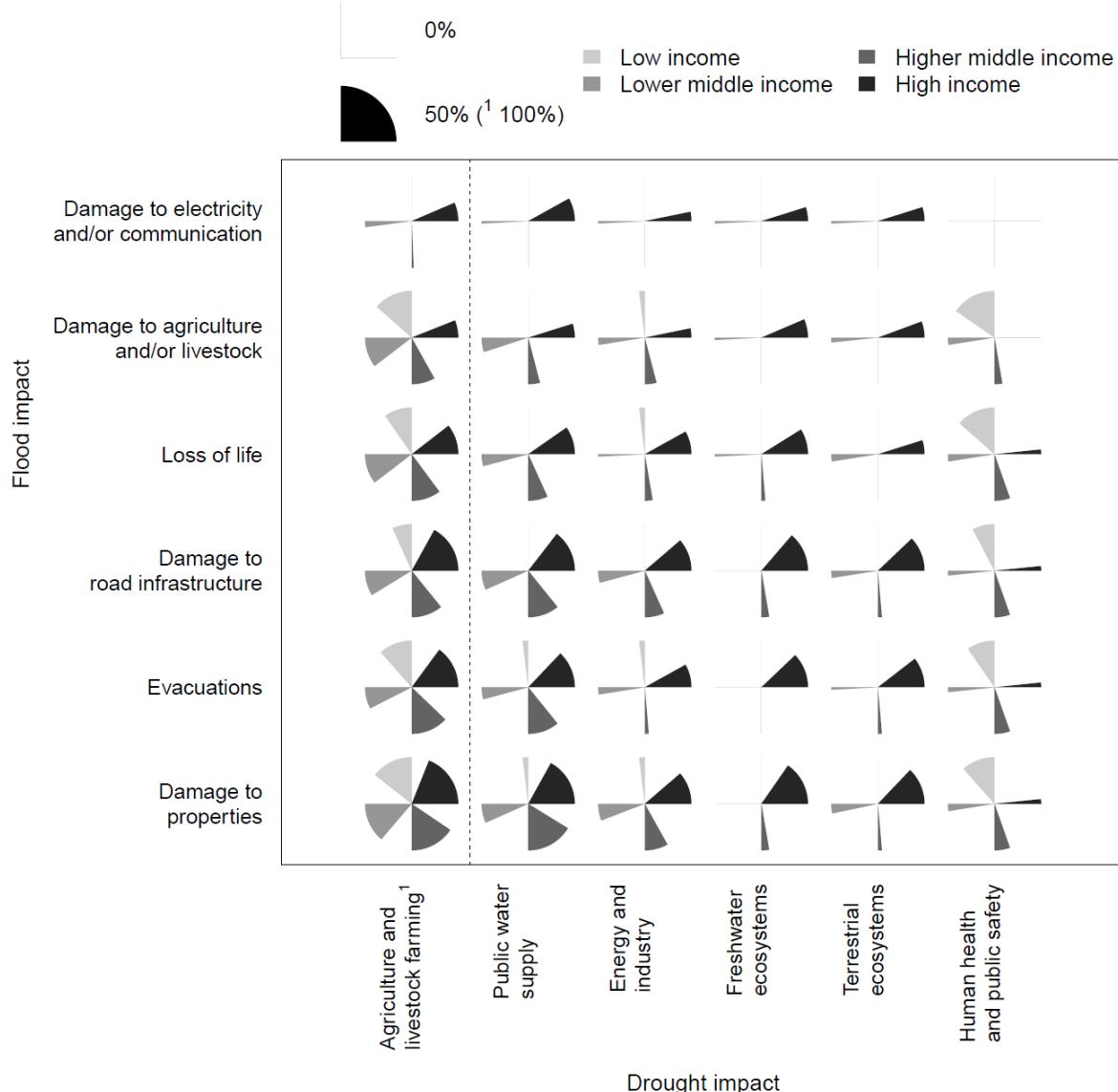
340 3.2 Drought impacts on the socio-economic systemImpacts of drought on the physical system (e.g.
341 water supply infrastructure) can also impact water supply, leading to water insecurity. Drought
342 impacts on agriculture and public drinking water supply were the most common impacts reported in
343 the case review (Figure 4). Drinking water supply is often disrupted during drought, especially if
344 communities or households rely on local sources that are not connected to a network (Mullin et al.,
345 2020). This may not only be due to lower water levels, but also to more sediments in the water intake,
346 more breakage of handpumps, and more damage to pipes because of soil subsidence (Thomas et al.,
347 2020; Wlostowski et al., 2022). Drinking water companies then need to repair pumps and pipes and/or
348 invest in finding other sources of drinking water, thereby depleting financial reserves (Koehler et al.,
349 2018). For example, in the 2011–2017 drought in California (USA), many community water services
350 requested emergency funding from the state to maintain water delivery to low-income populations
351 (Mullin et al., 2020). This left drinking water supply in a vulnerable position in the case of a
352 subsequent flood destroying drinking water infrastructure (Fekete et al., 2019; Njogu, 2021). For
353 women and girls in rural communities in low-income countries walking distance to drinking water
354 sources increases during drought (MacAllister et al., 2020; Arku & Arku, 2010). This creates many
355 cascading impacts, for example increased exposure to sexual harassment, missing school, less time
356 to work on the land to provide food for the family or to work on other sources of income (Tallman et
357 al., 2022), which all potentially increase vulnerability to flooding (and other hazards).

358 Drought impacts leading to changes in vulnerability, which increase the susceptibility to subsequent
359 flooding, occurs through multiple processes. Multi-year droughts cause long-term impacts such as
360 physical and mental health issues, long-term financial struggles, lack of education, erosion of social
361 coherence, and increase in social conflicts (e.g. Sena et al., 2017; Matanó et al., 2022), especially in
362 low-income countries. Sena et al. (2017), for example, found that in Brazil health and well-being are
363 lower in regions that experience drought more regularly than the rest of the country, implying that
364 drought increases vulnerability. In contrast, repeated extreme flooding has been found to reduce
365 vulnerability in subsequent flood events due to enhanced awareness and adaptation (Kreibich et al.,
366 2017). These studies focus on multiple occurrences of the same hazard, but to understand the social

367 processes behind drought-to-flood events we need to understand cascading impacts and changes in
368 vulnerability between different hazard types (Siegel et al., 2003; De Ruiter and Van Loon, 2022). One
369 study by Rockstrom (2003) mentions how drought-induced unemployment leads to increased financial
370 struggles during flood, but more research is needed on cascading vulnerabilities.

371

372 A combination of impacts on agriculture and livestock, from both the drought and the flood event is
373 reported quite often in the case review (although most frequently in low- and lower middle-income
374 countries, see Figure 4). The vulnerability of livestock to flooding may be increased by a preceding
375 drought, as was the case in Queensland in 2019 (Cowan et al., 2022), where cattle was weakened
376 due to a lack of food during a drought which increased their vulnerability during the following flood
377 causing many of them to die from exposure. Vegetation conditions can be an important factor in
378 drought-to-flood events. Agriculture that has suffered during drought can be further impacted by
379 extreme rain events. Cobon et al. (2016) found that, in coffee plantations, alterations of extreme dry
380 and wet periods reduce coffee bean size. Drought-to-flood can have severe effects on crop yield,
381 based on the intensity of the consecutive hydrological extremes, soil conditions, and crop growth
382 stage (Gao et al., 2019; McCarthy et al., 2021). Impacts on agriculture cascade further to health,
383 financial and societal impacts, thereby potentially increasing the vulnerability of the population. If the
384 drought is followed by a flood, food availability could decrease even further and access to water, food
385 and health care could be reduced even more (Matanó et al., 2022).


386

387 These effects are not uniform throughout society. Natural hazards do not affect people equally
388 (Neumayer & Plümper, 2007) and differences in societal vulnerabilities can exacerbate the inequality
389 of impacts of consecutive droughts and floods. Low-income groups are more at risk of damages
390 caused by hydrological extremes due to structural inequalities (Andrijevic et al., 2020). Moreover,
391 social groups are impacted differently by hazards because of the different access to resources for
392 preventing, mitigating, or recovering from extreme events (Masozera et al., 2007). As a result, groups
393 that possess resources for adopting individual prevention and mitigation actions against one hazard
394 type can become less vulnerable to another consequent hazard compared with groups that do not
395 have such means. In addition, the recovery of people and economies after a drought ends is
396 important. Societies that quickly bounce back or even forward will be less vulnerable to a next event

397 than societies that recover slowly (Di Baldassarre et al., 2018). The latter are more prone to collapse
398 when faced with subsequent extreme events (Weiss and Bradley, 2001; Kuil et al., 2016).

399

400 The differences between groups (or countries) with different amounts of resources is also reflected in
401 our case review. While we do not find evidence of specific drought impacts causing an increase in a
402 specific flood impact, we do find evidence of income levels as a common driver to the type of impacts
403 that are reported most in a country. Figure 4 shows that drought impacts on public water supply,
404 energy/industry and ecosystems are more often reported in higher-income countries (the darker
405 coloured upper right and lower right quadrants) than in lower-income countries (the lighter coloured
406 lower left and upper left quadrants) and this coincides with a higher reporting of the flood impacts of
407 damage to properties and road infrastructure and more reported evacuations. In contrast, damage to
408 agriculture as a flood impact is more often reported in lower-income countries and often coincides
409 with reported agricultural impacts from drought (which is generally high across all income groups). In
410 addition, drought impacts on human health and public safety are mostly reported in low-income
411 countries and they often coincide with a high frequency of reported loss of life due to flooding as well
412 as with damage to agriculture and/or livestock due to flooding.

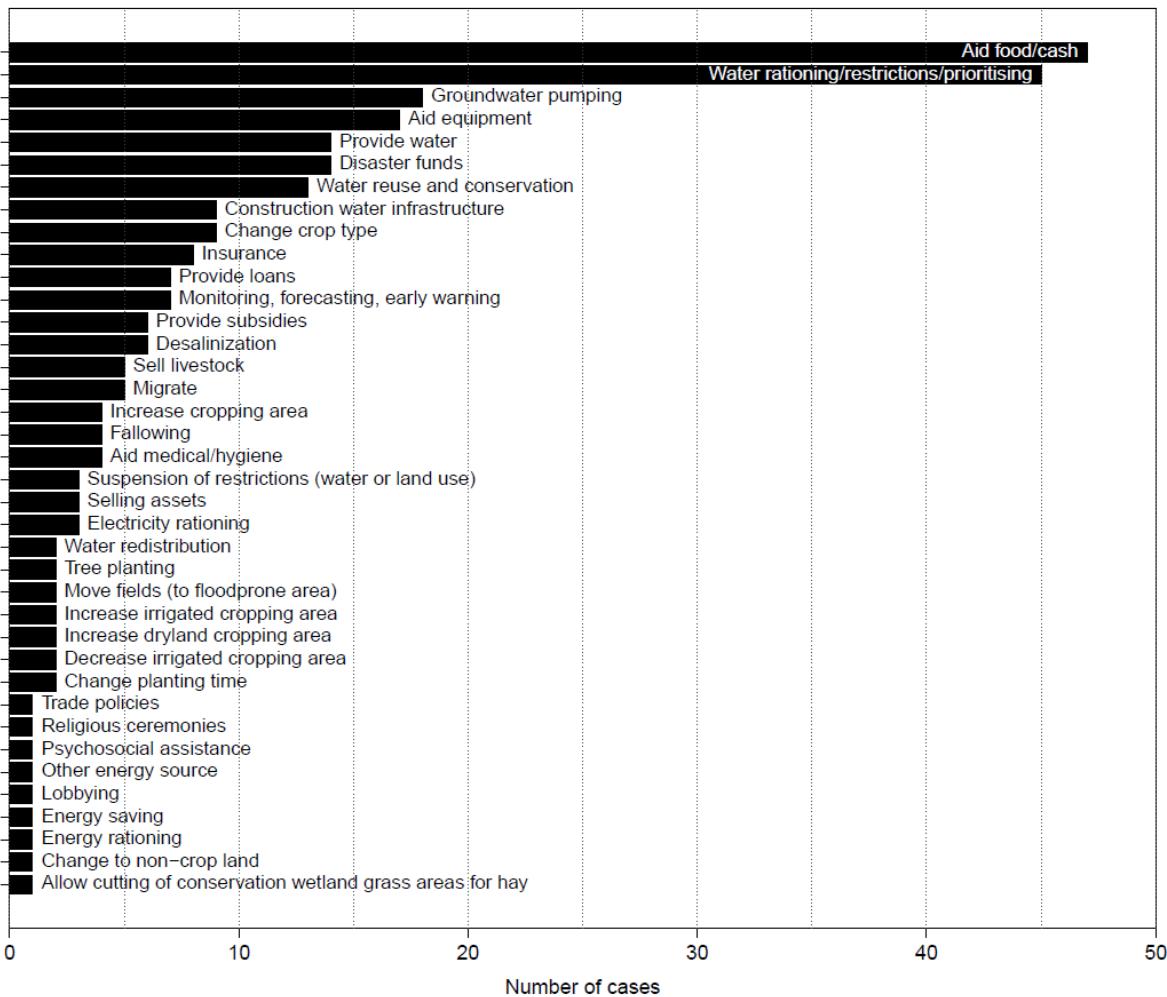
413

414 **Figure 4.** Percentage of cases per income group reporting both a certain drought impact (x-axis) and
 415 flood impact (y-axis). The four quadrants represent the four income groups. An empty quadrant
 416 means zero % of the cases in the corresponding income group report this combination of impacts and
 417 a full quadrant means 50 % of the cases report this combination of impacts. Note that for the first
 418 column of drought impacts "Agriculture and livestock farming" a full quadrant means 100 % of the
 419 cases report this impact combination. This was done for visualisation purposes.

420

421 **4. ADAPTATION PROCESSES AFFECTING DROUGHT-TO-FLOOD EVENTS**

422 In this section, we discuss how human adaptation to drought can affect flood risk. Besides leading to
 423 more impacts and increased vulnerability (Section 3), long, multi-year droughts allow ample time for


424 drought responses, management and adaptation (Watts et al., 2012). Human adaptation processes
425 can affect the catchment processes and impacts discussed in the previous sections, both positively
426 and negatively. Responses to drought that increase flood risk are sometimes called maladaptation
427 (Adger et al., 2005; Ward et al., 2020). Ward et al. (2020) provide an extensive review of how drought
428 adaptation measures can influence flood risk (and how flood adaptation measures can influence
429 drought risk). Here, we provide a summary of their findings and compare them with the evidence from
430 the case review.

431

432 **4.1 Adaptation processes affecting hydrological processes**

433 As mentioned in Section 2, increased groundwater abstraction in response to a drought can
434 potentially reduce flooding. Groundwater abstraction is often increased during drought, which
435 depletes storage and potentially slows drought recovery (Wendt et al., 2021; Apurv et al., 2017),
436 making drought-to-flood events less likely, depending on the local geology and the type of flood event
437 that follows the drought. Groundwater abstraction is one of the drought adaptation measures that was
438 reported most often in the case review (Figure 5). This measure is mostly reported in higher-income
439 (i.e. both high- and higher middle-income) countries (Figure 6). Ward et al. (2020), discuss how
440 increased groundwater abstraction can also increase the risk of flooding, because it can lead to
441 subsidence. Stopping abstraction can also lead to flooding, for example, in the case of the foggaras (a
442 traditional irrigation system) of Bouda in Algeria. An initial increase of groundwater extraction through
443 boreholes caused the foggaras to run dry and their long disuse caused a state of disrepair. When the
444 groundwater pumping through boreholes was reduced, the foggaras started flowing again, but could
445 not handle the amount of water due to their state of disrepair, causing flooding of sebkhas and palm
446 groves (Boutadara et al., 2018). The opposite of groundwater abstraction, managed aquifer recharge,
447 or the construction of other water storage infrastructure, such as sand dams, can be beneficial for
448 both drought and flooding (Ward et al. 2020). The construction of new water infrastructure in response
449 to a drought was found in several cases in the case review (Figure 5). In addition, there are several
450 examples of drought adaptation measures that can have a negative effect on subsequent flooding by
451 influencing catchment processes, such as reservoir operation strategies and agricultural practices and
452 land use change (Ward et al., 2020).

453

454

455 **Figure 5.** Number of cases reporting a drought adaptation measure.

456

457 **4.2 Adaptation measures affecting impacts**

458 Ward et al. (2020) also discuss how awareness and risk perception of flooding can be influenced by
 459 drought experience and how a focus on drought preparedness can decrease the preparedness for
 460 flooding. These processes can increase the vulnerability to flooding. There are also several drought
 461 adaptation measures or coping strategies that increase exposure to flooding, such as migration (Ward
 462 et al. 2020). Flood exposure could be increased by drought-induced migration resulting in people
 463 living in floodplains (FGS, 2018), but migration is complex and not always directly attributable to
 464 drought (Black et al., 2013). However, it was reported as a drought response in some instances in the
 465 case review (Figure 5). Another example of a drought coping mechanism that results in a higher
 466 exposure to flooding is when farmers decide to delay planting until the rains start. When the rains do
 467 start, but are extreme, they may wash away seeds or make sowing impossible, as happened, for

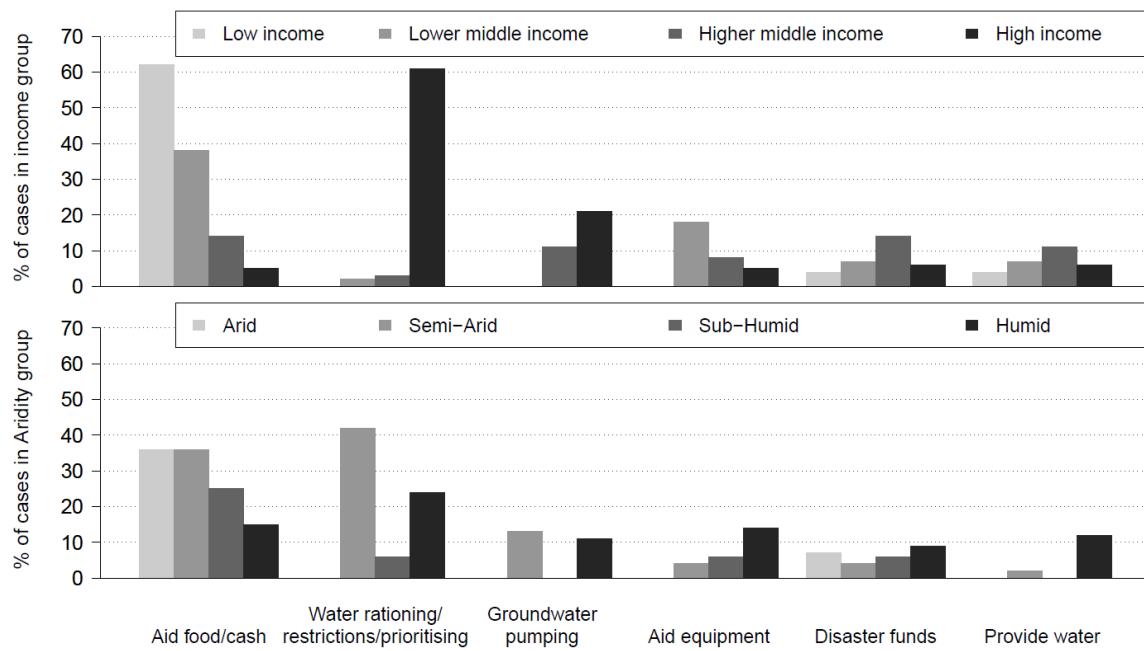
468 example, in Bundhelkhand, India (Pateriya, 2016). In addition, the uptake of drought resistant crops
469 which may be vulnerable to heavy rain (Tirado & Cotter, 2010) and food aid reducing outmigration in
470 drought-struck and flood-prone areas (Salite & Poskitt, 2019) are other drought measures that
471 increase exposure to flooding.

472

473 In the case review we found that in low-income countries food aid or cash aid is the most reported
474 adaptation measure (Figure 6). Government and NGO support could be exhausted during the
475 drought, meaning that limited aid would be available during a subsequent flood (Matanó et al., 2022).
476 On the other hand, responses that aim to reduce vulnerability to drought can also be beneficial during
477 floods. Mavhura (2019) found, for a case in Northern Zimbabwe, that vulnerability to flood and drought
478 was influenced by the same drivers, such as low incomes or few savings. Measures and policies that
479 address these drivers, would be beneficial for reducing both flood and drought vulnerability.

480

481 Another adaptation measure reported frequently in the case review is water rationing or the prioritising
482 of certain users (Figure 6). This measure is more often reported in high-income countries and semi-
483 arid countries. The latter could be because these places may be more experienced with dry
484 conditions and have regulations in place for the rationing and prioritising of water use in case of a
485 drought. However, there is also a high percentage of cases with a humid climate reporting this
486 measure, which may indicate that high-income is a more important factor, possibly because high-
487 income countries more often have a regulated public water supply system in place. These regulations
488 may lead to unequal impacts because water users may face different levels of reduction in water
489 supply, depending on the legislation, prevailing water rights and social inequalities (Lund et al., 2018;
490 Savelli et al., 2021). Therefore, different water users may experience different levels of increases in
491 vulnerability, which may influence their ability to cope with a subsequent flood. These unequal effects
492 hold for adaptation measures in general, just like for impacts. Adaptation measures benefit some
493 groups more than others and responses that are beneficial for one group may not be for another
494 group (Masozena et al., 2007; Savelli et al., 2021). In California, for example, cuts in water supply did
495 not severely affect the agricultural sector, who used groundwater as an alternative, but the
496 combination of cuts in water supply and the effects of adaptation measures taken by the agricultural
497 sector (such as groundwater extraction) led to increased vulnerability of ecosystems and the people


498 that rely on them (Christian-Smith et al., 2015). Another example of increased vulnerability of
499 ecosystems because of human adaptation is the case of Guadiana wetlands in Spain, where
500 groundwater abstraction was found to have four times higher impact on the ecosystem than drought
501 (Van Loon and Van Lanen, 2013).

502

503 In general, risks are experienced differently and lead to varying adaptation strategies, depending on
504 the management structure (e.g. public, private or community responses) and the type of hazard (e.g.
505 drought or flood). In a review on pre-disaster planning and preparedness for droughts and floods,
506 Raikes et al. (2019) found that drought management tends to be responsive, while flood management
507 is more risk-based, including prevention and preparation. In addition, some countries may have a
508 more centralised approach to flood and drought risk management, such as the Netherlands and
509 Poland, while in other countries, such as the United States, risk management is increasingly
510 privatised (Raikes et al., 2019). This affects the type of adaptation measures that may be adopted.

511

512

513

514 **Figure 6.** Percentage of cases per income group (top) and aridity group (bottom) reporting a certain
515 drought adaptation measure. Food and cash aid are reported more often in lower income countries

516 while water rationing and groundwater pumping are reported more often in higher income countries.

517 Water rationing is reported slightly more often in semi-arid countries.

518

519 **5. CONCLUDING REMARKS**

520 **5.1 Main findings**

521 This review has provided an overview of the processes and feedbacks that are important in drought-to-flood events. We find that drought can increase subsequent flood occurrence and severity due to increased surface runoff, but it can also decrease subsequent flooding due to storage depletion.

524 There is little evidence as to which process may generally be dominant. Storage depletion processes seem to be more prevalent in arid places, as well as in broader and flatter valley catchments and places with deeper soils or more groundwater variability. This also depends on the type of flood that occurs during or after the drought event. For high-intensity rain events and flash floods, storage depletion process are less important. Both increased runoff and storage depletion processes seem to mostly play a role when the drought is a multi-year drought and when the flood occurs during the drought (e.g. the drought is not ended by the flooding). Human activities seem to enhance both processes, with increased storage depletion leading to lower floods after droughts and land-surface changes leading to higher floods after drought in human-dominated catchments.

533

534 In terms of impacts, there is clear evidence that drought-to-flood events cause more impacts than if the hazards would occur on their own; clear examples are breaking levee systems and causing water quality problems. In general, the socio-economic processes that underlie drought-to-flood events seem to be mostly related to changes in vulnerability. The drought may cause increases in the vulnerability of people, crops or livestock, which causes impacts of a subsequent or co-occurring flood to be worse than from two separate events alone. This depends on the initial vulnerability and how quickly communities are able to recover. Impacts and changing vulnerability are not the same for everyone. Which process is dominant where, when, and for whom, is strongly dependent on the context of the drought-to-flood event. Characteristics like climate, geology, land use, and socio-economic, cultural, and political context determine the impacts and responses and therefore the interactions between drought and flood impacts.

545

546 The case review has shown that there is a huge diversity in adaptation measures implemented.
547 Several adaptation measures are focused on reducing the overall vulnerability of the population,
548 which makes them beneficial for both flood and drought risk management. In addition, there are
549 several measures that focus on storing excess water, which can reduce both drought and flood risk
550 (e.g. managed aquifer recharge, sand and earth dams). Groundwater abstraction (reported most often
551 in higher income and arid places) can have a positive effect on flood risk, by increasing storage
552 space, but can also increase subsidence. Finally, the awareness or memory of flood risk may decline
553 due to a drought, which can negatively affect flood risk. Adaptation processes in response to a
554 drought can affect socio-economic processes in several ways, changing the risk perception, exposure
555 and vulnerability to flooding.

556

557 **5.2 Outlook**

558 We argue that more research is needed on drought-to-flood events. In particular, further investigation
559 would be useful regarding which characteristics, such as climate, geology, land use, and socio-
560 economic, cultural, and political context, determine which drought-to-flood processes and feedbacks
561 are important. In terms of hydrological processes, it would be interesting to further investigate when
562 and where storage depletion and runoff processes are dominant and how human interventions affect
563 this. There is still a lot unknown about processes related to impacts and further research into whether
564 certain drought impacts make certain flood impacts more likely, or into whether there are common
565 drivers of these impacts and when and where these occur. In addition, changes in vulnerability require
566 further investigation in drought-to-flood events (De Ruiter & Van Loon, 2022). This review does not
567 provide much evidence of which adaptation measures are taken when and where and how this affects
568 flood risk. Characteristics of the social and hydrological system that influence the feasibility and
569 effectiveness of adaptation measures, as well as their influence on flood risk could be further
570 investigated. In addition, adaptation measures may be beneficial for some while they are harmful to
571 others. When and where this is the case is something that could be addressed in future research.

572

573 Methods that can increase our understanding of the specific hydrological and social processes
574 happening during drought-to-flood events include detailed case study analyses, as suggested by

575 Mostert (2018). Qualitative case studies can also be compared to find generalizable results,
576 especially if and when a larger body of case study analyses becomes available, for example using
577 qualitative comparison analysis (Srinivasan, 2012). System characteristics (both social and
578 hydrological) that lead to certain processes being dominant, or certain adaptation measures being
579 feasible or not, can be investigated using large-scale comparative studies. This approach has already
580 been applied in hydrological studies to, for example, investigate which characteristics influence the
581 seasonality and magnitude of maximum annual flows (Berghuijs, 2016). These qualitative and
582 quantitative case studies can be combined to both create new insights and report the findings to
583 different audiences (e.g. Grainger et al. 2016). Finally, management alternatives can be explored
584 using models that incorporate both the hydrological and social processes (e.g. Mazzoleni et al. 2021).
585 Using these models, scenarios can be developed and explored using for example adaptation
586 pathways (Werners et al., 2021), where not only the effects of management and adaptation choices
587 on drought risk are taken into account, but also the effects on flood risk.

588

589 Improving our knowledge on drought-to-flood events and their interactions will help in designing more
590 robust measures that do not have adverse effects on the opposite risk, now or in the future. The
591 necessity for the analysis of system-wide, short-term and long-term implications is already recognised
592 for both drought and flood risk management separately. Here we argue that this should also be
593 expanded to the study and management of drought and flood risk together. Identifying drought-to-
594 flood processes and their characteristics would not only help in the design of robust measures that
595 hold under future risk scenarios but would also help identify opportunities for reducing both drought
596 and flood risk at the same time, by implementing measures that are beneficial for both, such as the
597 reduction of overall vulnerability or measures such as managed aquifer recharge.

598

599 **Acknowledgements**

600 We would like to thank two anonymous reviewers and the Editors, Thom Bogaard and Jan Seibert, for
601 their useful comments to the original version of the manuscript. Their comments have been very
602 helpful in improving the manuscript.

603

604 **Data Availability Statement**

605 The data that support the findings of this study are available from the corresponding author upon
606 reasonable request.

607

608 **Funding Information**

609 This research was funded by the European Research Council (ERC-2020-StG 948601).

610

611 **References**

612 Adger, W.N., Arnell, N.W. and Tompkins, E.L., 2005. Successful adaptation to climate change across
613 scales. *Global environmental change*, 15(2), pp.77-86.

614

615 Alaoui, A., Rogger, M., Peth, S., & Blöschl, G. (2018). Does soil compaction increase floods? A
616 review. *Journal of hydrology*, 557, 631-642.

617

618 Alexandra, J., & Finlayson, C. M. (2020). Floods after bushfires: rapid responses for reducing impacts
619 of sediment, ash, and nutrient slugs. *Australasian Journal of Water Resources*, 24(1), 9-11.

620

621 Andrijevic, M., Crespo Cuaresma, J., Lissner, T., Thomas, A., & Schleussner, C. F. (2020).
622 Overcoming gender inequality for climate resilient development. *Nature Communications*, 11(1),
623 6261. Doi:10.1038/s41467-020-19856-w

624

625 Antwi-Agyei, P., Dougill, A. J., Stringer, L. C., & Codjoe, S. N. A. (2018). Adaptation opportunities and
626 maladaptive outcomes in climate vulnerability hotspots of northern Ghana. *Climate Risk
627 Management*, 19, 83-93. <https://doi.org/10.1016/j.crm.2017.11.003>.

628

629 Apurv, T., Sivapalan, M., & Cai, X. (2017). Understanding the role of climate characteristics in drought
630 propagation. *Water Resources Research*, 53(11), 9304-9329.

631

632 Arku, F. S., & Arku, C. (2010). I cannot drink water on an empty stomach: A gender perspective on
633 living with drought. *Gender & Development*, 18(1), 115-124.

634

635 Aziz, S. (2022, November 16) Fires to floods: How extreme weather has played out in B.C. in 2021.
636 *Global News*. <https://globalnews.ca/news/8379181/bc-wildfires-floods-2021/>

637

638 Barendrecht, M. H., Viglione, A., Kreibich, H., Merz, B., Vorogushyn, S., & Blöschl, G. (2019). The
639 value of empirical data for estimating the parameters of a sociohydrological flood risk model. *Water
640 Resources Research*, 55(2), 1312-1336.

641

642 Bennett, J. M., Nimmo, D. G., Clarke, R. H., Thomson, J. R., Cheers, G., Horrocks, G. F., ... & Mac

643 Nally, R. (2014). Resistance and resilience: can the abrupt end of extreme drought reverse avifaunal

644 collapse?. *Diversity and Distributions*, 20(11), 1321-1332.

645

646 Berghuijs, W. R., Woods, R. A., Hutton, C. J., & Sivapalan, M. (2016). Dominant flood generating

647 mechanisms across the United States. *Geophysical Research Letters*, 43(9), 4382-4390.

648

649 Black, R., Arnell, N. W., Adger, W. N., Thomas, D., & Geddes, A. (2013). Migration, immobility and

650 displacement outcomes following extreme events. *Environmental Science & Policy*, 27, S32-S43.

651 <https://doi.org/10.1016/j.envsci.2012.09.001>

652

653 Blöschl, G., Ardoin-Bardin, S., Bonell, M., Dorninger, M., Goodrich, D., Gutknecht, D., ... & Szolgay, J.

654 (2007). At what scales do climate variability and land cover change impact on flooding and low

655 flows?. *Hydrological processes*, 21(9), 1241-1247.

656

657 Blöschl, G., Gaál, L., Hall, J., Kiss, A., Komma, J., Nester, T., ... & Viglione, A. (2015). Increasing river

658 floods: fiction or reality?. *Wiley Interdisciplinary Reviews: Water*, 2(4), 329-344.

659

660 Boutadara, Y., Remini, B., & Benmamar, S. (2018). The foggaras of Bouda (Algeria): from drought to

661 flood. *Applied Water Science*, 8, 1-11.

662

663 Brauer, C. C., Teuling, A. J., Overeem, A., Van Der Velde, Y., Hazenberg, P., Warmerdam, P. M. M.,

664 & Uijlenhoet, R. (2011). Anatomy of extraordinary rainfall and flash flood in a Dutch lowland

665 catchment. *Hydrology and Earth System Sciences*, 15(6), 1991-2005.

666

667 Bravar, L., & Kavvas, M. L. (1991). On the physics of droughts. II. Analysis and simulation of the

668 interaction of atmospheric and hydrologic processes during droughts. *Journal of Hydrology*, 129(1-4),

669 299-330.

670

671 Bubeck, P., Botzen, W. J. W., & Aerts, J. C. (2012). A review of risk perceptions and other factors that
672 influence flood mitigation behavior. *Risk Analysis: An International Journal*, 32(9), 1481-1495.

673

674 Canadian Press. (2022, October 13). B.C. government says it's ready to deploy sandbags, tiger dams
675 in case of floods. *Canadian Press*. <https://www.cbc.ca/news/canada/british-columbia/bc-province-flood-preparedness-drought-1.6615977>

677

678 CBC News. (2015, July 30). Torrential Saskatchewan rain was 1-in-100-year event. *CBC News*.
679 <https://www.cbc.ca/news/canada/saskatchewan/torrential-saskatchewan-rain-was-1-in-100-year-event-1.3173683>

681

682 Cobon, D. H., Ewai, M., Inape, K., & Bourke, R. M. (2016). Food shortages are associated with
683 droughts, floods, frosts and ENSO in Papua New Guinea. *Agricultural Systems*, 145, 150-164.

684

685 Cowan, S., & Infante, V. (2019). From Cyclone to Food Crisis: Ensuring the needs of women and girls
686 are prioritized in the Cyclone Idai and Kenneth responses.

687

688 Cowan, T., Wheeler, M. C., de Burgh-Day, C., Nguyen, H., & Cobon, D. (2022). Multi-week prediction
689 of livestock chill conditions associated with the northwest Queensland floods of February
690 2019. *Scientific Reports*, 12(1), 5907.

691

692 Christian-Smith, J., Levy, M. C., & Gleick, P. H. (2015). Maladaptation to drought: a case report from
693 California, USA. *Sustainability Science*, 10(3), 491-501.

694

695 Danielson, D., (2014, October 13). Slow, steady rains wash away Iowa drought. *Radio Iowa*.
696 <https://www.radioiowa.com/2014/10/13/slow-steady-rains-wash-away-iowa-drought/>

697

698 de Brito, M. M. (2021). Compound and cascading drought impacts do not happen by chance: A
699 proposal to quantify their relationships. *Science of the Total Environment*, 778, 146236.

700

701 De Ruiter, M. C., de Bruijn, J. A., Englhardt, J., Daniell, J. E., de Moel, H., & Ward, P. J. (2021). The
702 asynergies of structural disaster risk reduction measures: Comparing floods and earthquakes. *Earth's
703 Future*, 9(1), e2020EF001531.

704

705 De Ruiter, M. C., & Van Loon, A. F. (2022). The challenges of dynamic vulnerability and how to
706 assess it. *Iscience*, 104720.

707

708 De Trincheria Gomez, J., Dawit, D., Famba, S., Leal Filho, W., Malesu, M., Mussera, P. V., ... &
709 Wuta, M. (2018). Using rainwater for off-season small-scale irrigation in arid and semi-arid areas of
710 Sub-Saharan Africa: key working principles and best practices. *Rainwater-Smart Agriculture in Arid
711 and Semi-Arid Areas: Fostering the Use of Rainwater for Food Security, Poverty Alleviation,
712 Landscape Restoration and Climate Resilience*, 9-36.

713

714 Debnath, M., & Nayak, D. K. (2022). Assessing drought-induced temporary migration as an
715 adaptation strategy: Evidence from rural India. *Migration and Development*, 11(3), 521-542.

716

717 Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., ... & Sighomnou, D. (2009).
718 Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and
719 Sudanian areas of West Africa: A synthesis. *Journal of Hydrology*, 375(1-2), 90-102.

720

721 Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. (2011). Atmospheric rivers,
722 floods and the water resources of California. *Water*, 3(2), 445-478.

723

724 Dettinger, M. D. (2013). Atmospheric rivers as drought busters on the US West Coast. *Journal of
725 Hydrometeorology*, 14(6), 1721-1732.

726

727 Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I., ... & Van
728 Loon, A. F. (2018). Water shortages worsened by reservoir effects. *Nature Sustainability*, 1(11), 617-
729 622., <https://doi.org/10.1038/s41893-018-0159-0>.

730

731 Di Baldassarre, G., Mondino, E., Rusca, M., Del Giudice, E., Mård, J., Ridolfi, E., ... & Raffetti, E.
732 (2021). Multiple hazards and risk perceptions over time: the availability heuristic in Italy and Sweden
733 under COVID-19. *Natural Hazards and Earth System Sciences*, 21(11), 3439-3447.

734

735 Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., ... & Sapiano, M. (2019).
736 Sixty years of global progress in managed aquifer recharge. *Hydrogeology journal*, 27(1), 1-30.

737

738 Dong, X., Xi, B., Kennedy, A., Feng, Z., Entin, J. K., Houser, P. R., ... & Jiang, T. (2011). Investigation
739 of the 2006 drought and 2007 flood extremes at the Southern Great Plains through an integrative
740 analysis of observations. *Journal of Geophysical Research: Atmospheres*, 116(D3).

741

742 Effler, E., Isaäcson, M., Arntzen, L., Heenan, R., Canter, P., Barrett, T., ... & Griffin, P. M. (2001).
743 Factors contributing to the emergence of Escherichia coli O157 in Africa. *Emerging infectious
744 diseases*, 7(5), 812.

745

746 Eltahir, E. A., & Yeh, P. J. F. (1999). On the asymmetric response of aquifer water level to floods and
747 droughts in Illinois. *Water Resources Research*, 35(4), 1199-1217.

748

749 Espinoza, J. C., Ronchail, J., Frappart, F., Lavado, W., Santini, W., & Guyot, J. L. (2013). The major
750 floods in the Amazonas River and tributaries (Western Amazon basin) during the 1970–2012 period:
751 A focus on the 2012 flood. *Journal of Hydrometeorology*, 14(3), 1000-1008.

752

753 Evans, M. G., Burt, T. P., Holden, J., & Adamson, J. K. (1999). Runoff generation and water table
754 fluctuations in blanket peat: evidence from UK data spanning the dry summer of 1995. *Journal of
755 Hydrology*, 221(3-4), 141-160.

756

757 Faunt, C. C., & Sneed, M. (2015). Water availability and subsidence in California's Central
758 Valley. *San Francisco Estuary and Watershed Science*, 13(3).

759

760 Federal Government of Somalia (FGS), 2018. Somalia Drought Impact and Needs Assessment (Vol.
761 1): Synthesis report <https://reliefweb.int/repo/35omalia/35omalia-drought-impact-and-needs-assessment-vol-1-synthesis-report> [last accessed: 26 Sept 2023]

763

764 Fekete, A. (2019). Critical infrastructure and flood resilience: Cascading effects beyond water. *Wiley Interdisciplinary Reviews: Water*, 6(5), e1370.

766

767 Fraser, B. (2017). Peru's floods teach tough lessons. *Nature*, 544(7651), 405-406.

768 Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., & Marcomini, A. (2016). A review of multi-
769 risk methodologies for natural hazards: Consequences and challenges for a climate change impact
770 assessment. *Journal of environmental management*, 168, 123-132.

771 doi:10.1016/j.jenvman.2015.11.011

772

773 Freudiger, D., Kohn, I., Stahl, K. & Weiler, M. 2014. Large-scale analysis of changing frequencies of
774 rain-on-snow events with flood-generation potential. *Hydrol. Earth Syst. Sci.*, 18, 2695-2709.

775

776 Ganguli, P., Singh, B., Reddy, N. N., Raut, A., Mishra, D., & Das, B. S. (2022). Climate-catchment-soil
777 control on hydrological droughts in peninsular India. *Scientific Reports*, 12(1), 8014.

778

779 Gao, Y., Hu, T., Wang, Q., Yuan, H., & Yang, J. (2019). Effect of drought–flood abrupt alternation on
780 rice yield and yield components. *Crop Science*, 59(1), 280-292.

781 <https://doi.org/10.2135/cropsci2018.05.0319>

782

783 Garcia, Margaret, David Yu, Samuel Park, Peyman Yousefi, Behshad Mohajer, and Murugesu
784 Sivapalan. 2022. "Weathering Water Extremes and Cognitive Biases in a Changing Climate." *Water
785 Security* (January):100110.

786

787 Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., ... &
788 Zambrano-Bigiarini, M. (2017). The 2010–2015 megadrought in central Chile: Impacts on regional
789 hydroclimate and vegetation. *Hydrology and earth system sciences*, 21(12), 6307-6327.

790

791 Gillett, N. P., Cannon, A. J., Malinina, E., Schnorbus, M., Anslow, F., Sun, Q., ... & Castellan, A.

792 (2022). Human influence on the 2021 British Columbia floods. *Weather and Climate Extremes*, 36,

793 100441. <http://dx.doi.org/10.2139/ssrn.4025205>

794

795 Gimeno, L., Nieto, R., Vázquez, M., & Lavers, D. A. (2014). Atmospheric rivers: A mini-

796 review. *Frontiers in Earth Science*, 2, 2.

797

798 Grainger, S., Mao, F., & Buytaert, W. (2016). Environmental data visualisation for non-scientific

799 contexts: Literature review and design framework. *Environmental Modelling & Software*, 85, 299-318.

800

801 Handwerger, A. L., Huang, M. H., Fielding, E. J., Booth, A. M., & Bürgmann, R. (2019). A shift from

802 drought to extreme rainfall drives a stable landslide to catastrophic failure. *Scientific reports*, 9(1), 1-

803 12.

804

805 Hatchett, B. J., & McEvoy, D. J. (2018). Exploring the origins of snow drought in the northern Sierra

806 Nevada, California. *Earth Interactions*, 22(2), 1-13.

807

808 He, X., & Sheffield, J. (2020). Lagged compound occurrence of droughts and pluvials globally over

809 the past seven decades. *Geophysical Research Letters*, 47(14), e2020GL087924.

810

811 Hubble, T., & De Carli, E. The Millennium Drought riverbank failures. Lower Murray River–South

812 Australia. *Goyder Institute for Water Research Technical Report Series*, (15/5).

813

814 IPCC, 2023: Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I,

815 II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core

816 Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi:

817 10.59327/IPCC/AR6-9789291691647

818

819 IWMI, 2017. Underground Taming of Floods for Irrigation (UTFI), International Water Management
820 Institute, <http://utfi.iwmi.org/>

821

822 Jaksa, M. B., Hubble, T. C. T., Kuo, Y. L., Liang, C., & De Carli, E. V. (2013). Riverbank Collapse
823 Along the Lower River Murray. *Goyder Institute for Water Research Technical Report Series*, (15/13).

824

825 Jedd, T. M. (2019). The limits of resilience in US community responses to recent drought
826 events. *Community Development*, 50(2), 141-159.

827 Jodar-Abellan, A., Valdes-Abellan, J., Pla, C., & Gomariz-Castillo, F. (2019). Impact of land use
828 changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged
829 watersheds (SE Spain). *Science of the Total Environment*, 657, 1578-1591.

830

831 Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts
832 and management strategies for crop production in waterlogged or flooded soils: A review. *Agronomy
833 Journal*, 112(3), 1475-1501.

834

835 Koehler, J., Rayner, S., Katuva, J., Thomson, P., & Hope, R. (2018). A cultural theory of drinking
836 water risks, values and institutional change. *Global Environmental Change*, 50, 268-277.

837

838 Kreibich, H., & Thielen, A. H. (2009). Coping with floods in the city of Dresden, Germany. *Natural
839 Hazards*, 51, 423-436.

840

841 Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C., Apel, H., Aronica, G. T., ... & Merz, B.
842 (2017). Adaptation to flood risk: Results of international paired flood event studies. *Earth's
843 Future*, 5(10), 953-965.

844

845 Kuil, L., Carr, G., Viglione, A., Prskawetz, A., & Blöschl, G. (2016). Conceptualizing socio-hydrological
846 drought processes: The case of the Maya collapse. *Water resources research*, 52(8), 6222-6242.

847

848 Lasage, R., Aerts, J. C. J. H., Mutiso, G. C., & De Vries, A. (2008). Potential for community based
849 adaptation to droughts: Sand dams in Kitui, Kenya. *Physics and Chemistry of the Earth, Parts*
850 *A/B/C*, 33(1-2), 67-73.

851

852 Laudon, H., Poléo, A. B., Vøllestad, L. A., & Bishop, K. (2005). Survival of brown trout during spring
853 flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled
854 pre-industrial water quality. *Environmental Pollution*, 135(1), 121-130.

855

856 Levy, K., Woster, A. P., Goldstein, R. S., & Carlton, E. J. (2016). Untangling the impacts of climate
857 change on waterborne diseases: a systematic review of relationships between diarrheal diseases and
858 temperature, rainfall, flooding, and drought. *Environmental science & technology*, 50(10), 4905-4922.

859

860 Lees, M., Knight, R., & Smith, R. (2022). Development and application of a 1D compaction model to
861 understand 65 years of subsidence in the San Joaquin Valley. *Water Resources Research*, 58(6),
862 e2021WR031390.

863

864 Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships
865 between drought and forest fire in the United States. *Global change biology*, 22(7), 2353-2369.

866

867 Little, P. D., Mahmoud, H., & Coppock, D. L. (2001). When deserts flood: risk management and
868 climatic processes among East African pastoralists. *Climate Research*, 19(2), 149-159.

869

870 Llasat, M. C., Llasat-Botija, M., Barnolas, M., López, L., & Altava-Ortiz, V. (2009). An analysis of the
871 evolution of hydrometeorological extremes in newspapers: the case of Catalonia, 1982–2006. *Natural*
872 *Hazards and Earth System Sciences*, 9(4), 1201-1212., <https://doi.org/10.5194/nhess-9-1201-2009>

873

874

875 Locatelli, L., Mark, O., Mikkelsen, P. S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., & Binning, P. J.
876 (2017). Hydrologic impact of urbanization with extensive stormwater infiltration. *Journal of*
877 *Hydrology*, 544, 524-537., <https://doi.org/10.1016/j.jhydrol.2016.11.030>.

878

879 Lund, J., Medellin-Azuara, J., Durand, J., & Stone, K. (2018). Lessons from California's 2012–2016

880 drought. *Journal of Water Resources Planning and Management*, 144(10), 04018067.

881

882 Ma, Y., Yang, Y., & Wang, C. (2019). How essential of the balance between large and small scale

883 features to reproduce precipitation during a sudden sharp turn from drought to flood. *Climate*

884 *Dynamics*, 52, 5013-5029.

885

886 MacAllister, D. J., MacDonald, A. M., Kebede, S., Godfrey, S., & Calow, R. (2020). Comparative

887 performance of rural water supplies during drought. *Nature communications*, 11(1), 1099.

888

889 Margariti, J., Rangecroft, S., Parry, S., Wendt, D. E., & Van Loon, A. F. (2019). Anthropogenic

890 activities alter drought termination. *Elementa: Science of the Anthropocene*, 7.

891

892 Marhaento, H., Booij, M. J., Rahardjo, N., & Ahmed, N. (2021). Impacts of forestation on the annual

893 and seasonal water balance of a tropical catchment under climate change. *Forest Ecosystems*, 8(1),

894 1-16.

895

896 Masozera, M., Bailey, M., & Kerchner, C. (2007). Distribution of impacts of natural disasters across

897 income groups: A case study of New Orleans. *Ecological economics*, 63(2-3), 299-306.

898 doi:10.1016/j.ecolecon.2006.06.013

899

900 Matanó, A., de Ruiter, M. C., Koehler, J., Ward, P. J., & Van Loon, A. F. (2022). Caught Between

901 Extremes: Understanding Human-Water Interactions During Drought-To-Flood Events in the Horn of

902 Africa. *Earth's Future*, 10(9), e2022EF002747.

903

904 Maurer, T., Avanzi, F., Glaser, S. D., & Bales, R. C. (2022). Drivers of drought-induced shifts in the

905 water balance through a Budyko approach. *Hydrology and Earth System Sciences*, 26(3), 589-607.

906

907 Mavhura, E. (2019). Systems analysis of vulnerability to hydrometeorological threats: An exploratory
908 study of vulnerability drivers in Northern Zimbabwe. *International Journal of Disaster Risk
909 Science*, 10, 204-219.

910

911 Maxwell, J. T., Knapp, P. A., Ortegren, J. T., Ficklin, D. L., & Soulé, P. T. (2017). Changes in the
912 mechanisms causing rapid drought cessation in the southeastern United States. *Geophysical
913 Research Letters*, 44(24), 12-476.

914

915 Mazzoleni, M., Mondino, E., Di Baldassarre, G., & Odongo, V. O. (2021). Water management,
916 hydrological extremes, and society: modeling interactions and phenomena. *Ecology & Society*, 26(4).

917

918 McCarthy, N., Kilic, T., Brubaker, J., Murray, S., & de la Fuente, A. (2021). Droughts and floods in
919 Malawi: impacts on crop production and the performance of sustainable land management practices
920 under weather extremes. *Environment and Development Economics*, 26(5-6), 432-449.

921

922 McGuire, L. A., Youberg, A. M., Rengers, F. K., Abramson, N. S., Ganesh, I., Gorr, A. N., ... &
923 Fenerty, B. (2021). Extreme precipitation across adjacent burned and unburned watersheds reveals
924 impacts of low severity wildfire on debris-flow processes. *Journal of Geophysical Research: Earth
925 Surface*, 126(4), e2020JF005997.

926

927 Melville-Rea, H. (2022). Parched and impatient: Political engagement after drought. *Political
928 Geography*, 96, 102516.

929

930 Merz, R., & Blöschl, G. (2003). A process typology of regional floods. *Water resources
931 research*, 39(12).

932

933 Miller, J. D., Gaskin, G. J., & Anderson, H. A. (1997). From drought to flood: Catchment responses
934 revealed using novel soil water probes. *Hydrological processes*, 11(5), 533-541.

935

936 Mishra, A., Alnahit, A., & Campbell, B. (2021). Impact of land uses, drought, flood, wildfire, and
937 cascading events on water quality and microbial communities: A review and analysis. *Journal of*
938 *Hydrology*, 596, 125707.

939

940 Moftakhi, H., & AghaKouchak, A. (2019). Increasing exposure of energy infrastructure to compound
941 hazards: cascading wildfires and extreme rainfall. *Environmental Research Letters*, 14(10), 104018.

942

943 Mohamed, A., & Worku, H. (2021). Urban land cover and morphometric analysis for flash flood
944 vulnerability mapping and riparian landscape conservation in Kebena River watershed, Addis Ababa.
945 *Applied Geomatics*, 13(1), 15-28.

946

947 Mostert, E. (2018). An alternative approach for socio-hydrology: case study research. *Hydrology and*
948 *Earth System Sciences*, 22(1), 317-329.

949

950 Mullin, M. (2020). The effects of drinking water service fragmentation on drought-related water
951 security. *Science*, 368(6488), 274-277.

952

953 Murphy, S. F., McCleskey, R. B., Martin, D. A., Writer, J. H., & Ebel, B. A. (2018). Fire, flood, and
954 drought: extreme climate events alter flow paths and stream chemistry. *Journal of Geophysical*
955 *Research: Biogeosciences*, 123(8), 2513-2526.

956

957 Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., Barlage, M. & Rasmussen,
958 R. 2018. Projected increases and shifts in rain-on-snow flood risk over western North America. *Nature*
959 *Climate Change*, 8, 808-812.

960

961 Ncube-Phiri, S., Mundavanhu, C., & Mucherera, B. (2014). The complexity of maladaptation
962 strategies to disasters: The case of Muzarabani, Zimbabwe. *Jàmbá: Journal of Disaster Risk*
963 *Studies*, 6(1), 11.

964

965 Norman, B., Newman, P., & Steffen, W. (2021). Apocalypse now: Australian bushfires and the future
966 of urban settlements. *npj Urban Sustainability*, 1(1), 2.

967

968 Neumayer, E., & Plümper, T. (2007). The gendered nature of natural disasters: The impact of
969 catastrophic events on the gender gap in life expectancy, 1981–2002. *Annals of the association of*
970 *American Geographers*, 97(3), 551-566. doi:10.1111/j.1467-8306.2007.00563.x

971

972 Njogu, H. W. (2021). Effects of floods on infrastructure users in Kenya. *Journal of Flood Risk*
973 *Management*, 14(4), e12746.

974

975 Parry, S., Marsh, T., & Kendon, M. (2013). 2012: from drought to floods in England and
976 Wales. *Weather*, 68(10), 268-274.

977

978 Parry, S., Wilby, R. L., Prudhomme, C., & Wood, P. J. (2016). A systematic assessment of drought
979 termination in the United Kingdom. *Hydrology and Earth System Sciences*, 20(10), 4265-4281.

980

981 Pateriya, A. (2016, July 10). Bundelkhand: From drought to floods. *The Hindustan Times*.
982 <https://www.hindustantimes.com/bhopal/bundelkhand-from-drought-to-floods/story-mCnXxVE6y2Mm5rJR2GUCJP.html>

984

985 Pathiraja, S., Westra, S., & Sharma, A. (2012). Why continuous simulation? The role of antecedent
986 moisture in design flood estimation. *Water Resources Research*, 48(6).

987

988 Payne, A. E., Demory, M. E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., ... & Ralph, F. M.
989 (2020). Responses and impacts of atmospheric rivers to climate change. *Nature Reviews Earth &*
990 *Environment*, 1(3), 143-157.

991

992 Peterson, T. J., Saft, M., Peel, M. C., & John, A. (2021). Watersheds may not recover from
993 drought. *Science*, 372(6543), 745-749.

994

995 Poeter, E., Fan, Y., Cherry, J., Wood, W., & Mackay, D. (2020). *Groundwater in our water cycle*.
996 *Getting to know earth's most important fresh water source*. The Groundwater Project.
997 <https://doi.org/10.21083/978-1-7770541-1-3>
998
999 Raikes, J., Smith, T. F., Jacobson, C., & Baldwin, C. (2019). Pre-disaster planning and preparedness
1000 for floods and droughts: A systematic review. *International Journal of Disaster Risk Reduction*, 38,
1001 101207.
1002
1003 Rain, D., Engstrom, R., Ludlow, C., & Antos, S. (2011). Accra Ghana: A city vulnerable to flooding
1004 and drought-induced migration. *Case study prepared for cities and climate Change: Global Report on*
1005 *Human Settlements, 2011*, 1-21. https://ipcc.sdsu.edu/wp-content/uploads/2019/03/Rain_etal_Ch4.pdf
1006
1007
1008 Rangecroft, S., Van Loon, A. F., Maureira, H., Verbist, K., & Hannah, D. M. (2019). An observation-
1009 based method to quantify the human influence on hydrological drought: upstream–downstream
1010 comparison. *Hydrological Sciences Journal*, 64(3), 276-287.
1011
1012 Rashid, M. M., & Wahl, T. (2022). Hydrologic risk from consecutive dry and wet extremes at the global
1013 scale. *Environmental Research Communications*, 4(7), 071001.
1014
1015 Reliefweb (2018, May 15). From drought to flooding: More than a million people struggling as
1016 continual rain submerges homes across East Africa. *Reliefweb*.
1017 [https://reliefweb.int/report/somalia/drought-flooding-more-million-people-struggling-continual-rain-
1018 submerges-homes-across](https://reliefweb.int/report/somalia/drought-flooding-more-million-people-struggling-continual-rain-submerges-homes-across)
1019
1020 Rengers, F. K., McGuire, L. A., Oakley, N. S., Kean, J. W., Staley, D. M., & Tang, H. (2020).
1021 Landslides after wildfire: Initiation, magnitude, and mobility. *Landslides*, 17, 2631-2641.
1022

1023 Riley, K. L., Abatzoglou, J. T., Grenfell, I. C., Klene, A. E., & Heinsch, F. A. (2013). The relationship of
1024 large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: the role of
1025 temporal scale. *International Journal of Wildland Fire*, 22(7), 894-909.

1026

1027 Rockström, J., 2003. Resilience building and water demand management for drought mitigation.
1028 Physics and Chemistry of the Earth, Parts A/B/C, 28(20-27), pp.869-877

1029

1030 Rodell, M., & Li, B. (2023). Changing intensity of hydroclimatic extreme events revealed by GRACE
1031 and GRACE-FO. *Nature Water*, 1(3), 241-248.

1032

1033 Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J. C., Bodner, G., Borga, M., ... & Blöschl, G. (2017).
1034 Land use change impacts on floods at the catchment scale: Challenges and opportunities for future
1035 research. *Water resources research*, 53(7), 5209-5219. doi:10.1002/2017WR020723

1036

1037 Rössler, O., Froidevaux, P., Börst, U., Rickli, R., Martius, O. & Weingartner, R. 2014. Retrospective
1038 analysis of a nonforecasted rain-on-snow flood in the Alps – a matter of model limitations or
1039 unpredictable nature? *Hydrol. Earth Syst. Sci.*, 18, 2265-2285.

1040

1041 Rountree, M.W., Rogers, K.H. and Heritage, G.L., 2000. Landscape state change in the semi-arid
1042 Sabie River, Kruger National Park, in response to flood and drought. *South African Geographical
1043 Journal*, 82(3), pp.173-181.

1044

1045 Rufat, S., Tate, E., Burton, C. G., & Maroof, A. S. (2015). Social vulnerability to floods: Review of case
1046 studies and implications for measurement. *International journal of disaster risk reduction*, 14, 470-486.

1047

1048 Ryan, C., & Elsner, P. (2016). The potential for sand dams to increase the adaptive capacity of East
1049 African drylands to climate change. *Regional Environmental Change*, 16, 2087-2096.

1050

1051 Saaf, E. J., Figueres, C., Waterloo, M. J., de Wit, G., & Nicolin, V. (2019). Niger-Niamey, Niger
1052 River. *DRR-Team Mission Report DRR218NE01. The Hague, The Netherlands*.

1053

1054 Saft, M., Western, A. W., Zhang, L., Peel, M. C., & Potter, N. J. (2015). The influence of multiyear
1055 drought on the annual rainfall-runoff relationship: An Australian perspective. *Water Resources*
1056 *Research*, 51(4), 2444-2463.

1057

1058 Saft, M., Peel, M. C., Western, A. W., & Zhang, L. (2016). Predicting shifts in rainfall-runoff partitioning
1059 during multiyear drought: Roles of dry period and catchment characteristics. *Water Resources*
1060 *Research*, 52(12), 9290-9305.

1061

1062 Salite, D., & Poskitt, S. (2019). Managing the impacts of drought: The role of cultural beliefs in small-
1063 scale farmers' responses to drought in Gaza Province, southern Mozambique. *International Journal of*
1064 *Disaster Risk Reduction*, 41, 101298.

1065

1066 Savelli, E., Rusca, M., Cloke, H., & Di Baldassarre, G. (2021). Don't blame the rain: Social power and
1067 the 2015–2017 drought in Cape Town. *Journal of Hydrology*, 594, 125953.
1068 doi:10.1016/j.jhydrol.2020.125953

1069

1070 Scaife, C. I., & Band, L. E. (2017). Nonstationarity in threshold response of stormflow in southern
1071 Appalachian headwater catchments. *Water Resources Research*, 53(8), 6579-6596.

1072

1073 Schaer, C. (2015). Condemned to live with one's feet in water? A case study of community based
1074 strategies and urban maladaptation in flood prone Pikine/Dakar, Senegal. *International Journal of*
1075 *Climate Change Strategies and Management*.

1076

1077 Sena, A., Ebi, K. L., Freitas, C., Corvalan, C., & Barcellos, C. (2017). Indicators to measure risk of
1078 disaster associated with drought: Implications for the health sector. *PLoS one*, 12(7), e0181394.

1079

1080 Siegel, J.M., Shoaf, K.I., Afifi, A.A. and Bourque, L.B., 2003. Surviving two disasters: Does reaction to
1081 the first predict response to the second?. *Environment and Behavior*, 35(5), pp.637-654

1082

1083 Singh, D., Tsiang, M., Rajaratnam, B., & Diffenbaugh, N. S. (2014). Observed changes in extreme
1084 wet and dry spells during the South Asian summer monsoon season. *Nature Climate Change*, 4(6),
1085 456-461.

1086

1087 Sofiane, K., Abdesselam, M., & Nekkache, G. A. (2019). Long-term seasonal characterization and
1088 evolution of extreme drought and flooding variability in northwest Algeria. *Meteorology Hydrology and*
1089 *Water Management. Research and Operational Applications*, 7.

1090

1091 Srinivasan, V., Lambin, E. F., Gorelick, S. M., Thompson, B. H., & Rozelle, S. (2012). The nature and
1092 causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water
1093 studies. *Water resources research*, 48(10).

1094

1095 Stahl, K., Kohn, I., Blauthut, V., Urquijo, J., De Stefano, L., Acácio, V., ... & Van Lanen, H. A. (2016).
1096 Impacts of European drought events: insights from an international database of text-based
1097 reports. *Natural Hazards and Earth System Sciences*, 16(3), 801-819.

1098

1099 Stanke, C., Kerac, M., Prudhomme, C., Medlock, J., & Murray, V. (2013). Health effects of drought: a
1100 systematic review of the evidence. *PLoS currents*, 5.

1101

1102 Sugg, M., Runkle, J., Leeper, R., Bagli, H., Golden, A., Handwerger, L. H., ... & Woolard, S. (2020). A
1103 scoping review of drought impacts on health and society in North America. *Climatic Change*, 162,
1104 1177-1195.

1105

1106 Sutanto, S. J., Vitolo, C., Di Napoli, C., D'Andrea, M., & Van Lanen, H. A. (2020). Heatwaves,
1107 droughts, and fires: Exploring compound and cascading dry hazards at the pan-European
1108 scale. *Environment international*, 134, 105276.

1109

1110 Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water
1111 availability. *Scientific reports*, 10(1), 1-10.

1112

1113 Tallman, P. S., Collins, S., Salmon-Mulanovich, G., Rusyidi, B., Kothadia, A., & Cole, S. (2023). Water
1114 insecurity and gender-based violence: A global review of the evidence. *Wiley Interdisciplinary
1115 Reviews: Water*, 10(1), e1619.

1116

1117 Thomas, E., Jordan, E., Linden, K., Mogesse, B., Hailu, T., Jirma, H., ... & Collins, G. (2020).
1118 Reducing drought emergencies in the Horn of Africa. *Science of the Total Environment*, 727, 138772.

1119

1120 Tirado, R., & Cotter, J. (2010). Ecological farming: Drought-resistant agriculture. *Exeter, UK:
1121 Greenpeace Research Laboratories*.

1122

1123 Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and
1124 probability. *Cognitive psychology*, 5(2), 207-232.

1125

1126 Urquijo, J., & De Stefano, L. (2016). Perception of drought and local responses by farmers: a
1127 perspective from the Jucar River Basin, Spain. *Water Resources Management*, 30, 577-591.,
1128 <https://doi.org/10.1007/s11269-015-1178-5>.

1129

1130 Vahedifard, F., Robinson, J. D., & AghaKouchak, A. (2016). Can protracted drought undermine the
1131 structural integrity of California's earthen levees?. *Journal of Geotechnical and Geoenvironmental
1132 Engineering*, 142(6), 02516001.

1133

1134 Vahedifard, F., AghaKouchak, A., Ragno, E., Shahrokhbadi, S., & Mallakpour, I. (2017). Lessons
1135 from the Oroville dam. *Science*, 355(6330), 1139-1140.

1136

1137 Van Baars, S. (2005). The horizontal failure mechanism of the Wilnis peat dyke. *Géotechnique*, 55(4),
1138 319-323., <https://doi.org/10.1680/geot.2005.55.4.319>.

1139

1140 Van Baars, S., & Van Kempen, I. M. (2009). The causes and mechanisms of historical dike failures in
1141 the Netherlands. *E-WAter journal*, 2009.

1142

1143 Van den Honert, R. C., & McAneney, J. (2011). The 2011 Brisbane floods: causes, impacts and
1144 implications. *Water*, 3(4), 1149-1173.

1145

1146 Van Dijk, A. I., Beck, H. E., Crosbie, R. S., De Jeu, R. A., Liu, Y. Y., Podger, G. M., ... & Viney, N. R.
1147 (2013). The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and
1148 implications for water resources, ecosystems, economy, and society. *Water Resources
1149 Research*, 49(2), 1040-1057.

1150

1151 Van Loon, A. F., & Van Lanen, H. A. (2013). Making the distinction between water scarcity and
1152 drought using an observation-modeling framework. *Water Resources Research*, 49(3), 1483-1502.

1153

1154 Van Loon, A. F., Ploum, S. W., Parajka, J., Fleig, A. K., Garnier, E., Laaha, G., & Van Lanen, H. A. J.
1155 (2015). Hydrological drought types in cold climates: quantitative analysis of causing factors and
1156 qualitative survey of impacts. *Hydrology and Earth System Sciences*, 19(4), 1993-2016.

1157

1158 Van Loon, A. F., Rangecroft, S., Coxon, G., Werner, M., Wanders, N., Di Baldassarre, G., ... & Van
1159 Lanen, H. A. (2022). Streamflow droughts aggravated by human activities despite
1160 management. *Environmental Research Letters*, 17(4), 044059.

1161

1162 Vasquez, T. (2022). An unprecedented Pacific Northwest heat wave rings alarm
1163 bells. *Weatherwise*, 75(1), 22-27.

1164

1165 Wahl, E. R., Zorita, E., Trouet, V., & Taylor, A. H. (2019). Jet stream dynamics, hydroclimate, and fire
1166 in California from 1600 CE to present. *Proceedings of the National Academy of Sciences*, 116(12),
1167 5393-5398.

1168

1169 Wang, S.Y.S., Yoon, J.H., Becker, E. and Gillies, R., 2017. California from drought to deluge. *Nature
1170 Climate Change*, 7(7), p.465

1171

1172 Wang, M., Jiang, S., Ren, L., Xu, C. Y., Yuan, F., Liu, Y., & Yang, X. (2020). An approach for
1173 identification and quantification of hydrological drought termination characteristics of natural and
1174 human-influenced series. *Journal of Hydrology*, 590, 125384.

1175

1176 Ward, P. J., de Ruiter, M. C., Mård, J., Schröter, K., Van Loon, A., Veldkamp, T., ... & Wens, M.
1177 (2020). The need to integrate flood and drought disaster risk reduction strategies. *Water Security*, 11,
1178 100070.

1179

1180 Watts, G., von Christierson, B., Hannaford, J., & Lonsdale, K. (2012). Testing the resilience of water
1181 supply systems to long droughts. *Journal of Hydrology*, 414, 255-267.

1182

1183 Weiss, H., & Bradley, R. S. (2001). What drives societal collapse?. *Science*, 291(5504), 609-610.

1184

1185 Wendt, D. E., Bloomfield, J. P., Van Loon, A. F., Garcia, M., Heudorfer, B., Larsen, J., & Hannah, D.
1186 M. (2021). Evaluating integrated water management strategies to inform hydrological drought
1187 mitigation. *Natural Hazards and Earth System Sciences*, 21(10), 3113-3139

1188

1189 Werners, S. E., Wise, R. M., Butler, J. R., Totin, E., & Vincent, K. (2021). Adaptation pathways: A
1190 review of approaches and a learning framework. *Environmental Science & Policy*, 116, 266-275.

1191

1192 Wlostowski, A. N., Jennings, K. S., Bash, R. E., Burkhardt, J., Wobus, C. W., & Aggett, G. (2022). Dry
1193 landscapes and parched economies: A review of how drought impacts nonagricultural socioeconomic
1194 sectors in the US Intermountain West. *Wiley Interdisciplinary Reviews: Water*, 9(1), e1571.

1195

1196 Worrall, F., Burt, T. P., & Adamson, J. K. (2007). Change in runoff initiation probability over a severe
1197 drought in a peat soil—implications for flowpaths. *Journal of Hydrology*, 345(1-2), 16-26.

1198

1199 Wu, Z., Li, J., He, J., & Jiang, Z. (2006a). Occurrence of droughts and floods during the normal
1200 summer monsoons in the mid-and lower reaches of the Yangtze River. *Geophysical Research
Letters*, 33(5).

1202

1203 Wu, Z., Li, J., He, J., & Jiang, Z. (2006b). Large-scale atmospheric singularities and summer long-
1204 cycle droughts-floods abrupt alternation in the middle and lower reaches of the Yangtze
1205 River. *Chinese Science Bulletin*, 51, 2027-2034.

1206

1207 Wurtsbaugh, W. A., Paerl, H. W., & Dodds, W. K. (2019). Nutrients, eutrophication and harmful algal
1208 blooms along the freshwater to marine continuum. *Wiley Interdisciplinary Reviews: Water*, 6(5),
1209 e1373.

1210

1211 Yang, S., Wu, B., Zhang, R. and Zhou, S., 2013. Relationship between an abrupt drought-flood
1212 transition over mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over
1213 mid-high latitudes of East Asia. *Acta Meteorologica Sinica*, 27(2), pp.129-143.

1214

1215 Yang, Y., McVicar, T. R., Donohue, R. J., Zhang, Y., Roderick, M. L., Chiew, F. H., ... & Zhang, J.
1216 (2017). Lags in hydrologic recovery following an extreme drought: Assessing the roles of climate and
1217 catchment characteristics. *Water Resources Research*, 53(6), 4821-4837.