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Abstract

This study synthesises the current understanding on the hydrological and human impact and
adaptation processes underlying drought-to-flood events (i.e. consecutive drought and flood events),
and how they interact. Based on an analysis of literature and a global assessment of historic cases,
we show how drought can affect flood risk and assess under which circumstances drought-to-flood
interactions can lead to increased or decreased risk. We make a distinction between hydrological,
socio-economic and adaptation processes. Hydrological processes include storage and runoff
processes, which both seem to mostly play a role when the drought is a multiyear event and when the
flood occurs during the drought. However, which process is dominant when and where, and how this
is influenced by human intervention should be further researched. Processes related to socio-
economic impacts have been studied less than hydrological processes, but in general, changes in
vulnerability seem to play an important role in increasing or decreasing drought-to-flood impacts.
Additionally, there is evidence of increased water quality problems due to drought-to-flood, compared
to drought or flood by themselves. Adaptation affects both hydrological (e.g. through groundwater
extraction) or socio-economic (e.g. influencing vulnerability) processes. There are many examples of
adaptation, but there is limited evidence of when and where certain processes occur and why.
Overall, research on drought-to-flood events is scarce. To increase our understanding of drought-to-
flood events we need more comprehensive studies on the underlying hydrological, socio-economic
and adaptation processes and their interactions, as well as the circumstances that lead to the

dominance of certain processes.
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32  Areview of the hydrological, socio-economic and adaptation processes underlying drought-to-flood
33  interactions and dynamics.
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1. INTRODUCTION

Drought and floods are opposite hydrological extremes, but their risks are not independent. When an
extreme flood event occurs shortly after a major drought (i.e. drought-to-flood), its consequences can
be catastrophic. Drought-to-flood events are often initially not perceived as a disaster. After a long
drought, the first rains are welcome (Little et al., 2001; Parry et al., 2013), as they can result in a
recovery of the ecosystem (Bennett et al., 2014) and the replenishment of water resources (Brauer et
al., 2011). In some cases, however, this positive situation turns into a disaster, depending on physical
and social processes and their interactions. For example, in the Millennium Drought in Australia
(2000-10) followed shortly after by widespread flooding in the south and east of the country (Van Dijk
et al., 2013); the 2017-18 drought in East Africa quickly followed by floods that killed hundreds
(ReliefWeb, 2018) or the 2019 Mozambique deadly flooding that occurred at the end of a long drought
in the region (Cowan & Infante, 2019). When, where, and for whom drought-to-flood events are a
benefit or a disaster is still unclear. There are several processes through which a drought event can
influence a subsequent flood event: atmospheric processes affecting the meteorology; catchment
processes affecting the hydrology; socio-economic processes affecting impacts; or adaptation

processes, potentially affecting both hydrology and socio-economic impacts.

Both dry and wet climate extremes are occurring more frequently and with increasing severity (Rodell
& Li, 2023) and are expected to become even more frequent and intense with ongoing climate change
(IPCC, 2023). He & Sheffield (2020) show that, in certain areas across the globe, the frequency of
rapid dry-to-wet transitions has also increased over the past 30 years. In addition, the time between
consecutive dry and wet events has been shown to be decreasing, implying that there is less time to
recover from the impacts of the dry extreme before the wet extreme occurs (Rashid & Wahl 2022).
This shows the importance of improving the understanding of drought-to-flood events and how the
different processes that occur during and after a drought event increase or decrease the occurrence,

severity and impacts of a consequent flood event.

Dry-wet transitions have gained increasing scientific interest, but most studies focus on the
atmospheric processes behind shifts from low to high rainfall (e.g. Dong et al., 2011, Singh et al.,

2014; Payne et al. 2020). For example, on the US West Coast, 33%—74% of persistent droughts over
5
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1950-2010 were ended by atmospheric rivers (Dettinger, 2013). Other case studies, mostly in the
USA revealed that dry-wet transitions resulted from a reversal of the ‘ridge—trough’ circulation pattern,
so a persistent high-pressure ridge changing to a persistent low-pressure trough in the same location
(e.g. Dong et al., 2011; Yang et al. 2013; Wang et al., 2017). In some studies, this has been related to
the migration of the jet stream (e.g. Payne et al., 2020; Parry et al., 2013; Wahl et al. 2019). In
addition, large-scale ocean-atmosphere processes seem to play a role in rapid transitions between
dry and wet periods. For example, in the Amazon region such an abrupt transition was ascribed to
negative sea surface temperature anomalies corresponding to a La Nifia-like mode (Espinoza et al.,
2013). Several studies in China also relate abrupt dry-to-wet alterations to anomalies in sea surface
temperatures and large-scale ocean atmospheric modes (e.g. Wu et al., 2006a; Wu et al., 2006b).
Other cases show that drought also enhances rain production, for example by increased convection
due to dry soils leading to vertical air motion intensifying precipitation of atmospheric rivers (Gimeno
et al., 2014). Both increased moisture transport and more active rain-producing systems may play a

role in dry-wet transitions (e.g. Dong et al., 2011; Maxwell et al., 2017; Ma et al., 2019).

Whether these meteorological conditions develop into a drought-to-flood hazard and associated
impacts is dependent on hydrological, socio-economic and adaptation processes. There are some
studies that provide examples of human adaptation to drought (or flooding) and how this affects the
other extreme (Ward et al., 2020; De Ruiter et al., 2021; Garcia et al. 2022), but the underlying
physical and social processes that play a role in drought-to-flood events have been studied less and
an overview of their reducing and enhancing effects is lacking. In this study, we aim to synthesise the
current understanding on the hydrological, impact and adaptation processes behind drought-to-flood
events, as well as their interactions. Based on an analysis of literature and a global assessment of
historic drought-to-flood cases through a review of grey and peer-reviewed literature (for a description
of the methods see the Supplementary material), we show the diversity of processes that govern how
drought affects flood risk and assess the circumstances under which positive and negative effects and
feedbacks occur, subdivided in sections on “Catchment processes” (Section 2), “Impacts”(Section 3)
and “Adaptation processes” (Section 4). Besides providing new insights on drought-to-flood
interactions, we identify research gaps that should be addressed to better understand and improve

the management of drought-to-flood events (Section 5).
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2. CATCHMENT PROCESSES INFLUENCING DROUGHT-TO-FLOOD EVENTS

This section explores how drought can alter catchment processes and how these changes can affect

a subsequent flood event. In some cases, a drought can exacerbate subsequent flooding. In other

cases, a change in catchment processes because of a drought can reduce subsequent flooding or

make it less likely to occur. An overview of the different processes is provided, as well as an

exploration of when and where different processes may be dominant. We make a distinction between

storage and runoff process. We provide an overview of the processes discussed in this section and

the factors that influence when and where they are dominant in Table 1.

Table 1. Summary of catchment processes and the factors influencing when and where they are

dominant. This overview is based on, in many cases, limited evidence and more research is

necessary to get a better overview of the catchment characteristics influencing when and where these

processes are dominant.

Process | Dominance Process Effect on flooding
group
Storage Dominant in arid catchments, broader Dry Decrease
depletion = and flatter valley catchments, antecedent
catchments with deeper soils and soil moisture
catchments with more groundwater conditions
variability Groundwater Decrease
disconnecting
Dominant in case of riverine flooding from surface
water
Runoff Generally dominant across climate and = Vegetation Decrease
processes catchment types response Increase in places with low

aridity, high baseflow, a

shift from snow to rain or
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Dominant in case of flash and pluvial resilience of high-elevation
flooding runoff.
Decreased Increase
infiltration and
increased
surface runoff
Snow related Decrease in case of a
processes lower snowmelt peak
because of below normal
snowmelt or when
precipitation falls as rain
instead of snow
Increase in case of rain

falling on snow

2.1 Storage processes

The hydrological conditions at the end of a long drought are not the type of conditions that are prone
to result in flooding when heavy rainfall occurs. For example, subsurface storage will be low and will
need to be replenished. With dry antecedent soil moisture conditions, a lower flood is expected
(Pathiraja et al., 2012; Evans et al., 1999; Bldschl et al., 2015; Berghuijs et al., 2016), making
drought-to-flood events less likely or less extreme. For example, the flash flood in the Netherlands in
the summer of 2010, was less severe than it could have been because the first rainfall was stored in
the dry soils (Brauer et al., 2011). In the UK 2010-12 drought-to-flood event, initial rainfall led to soil
moisture recovery. It was only prolonged heavy rainfall that resulted in flooding (Parry et al., 2013),
with variability in time to peak discharge between quickly and slowly responding catchments (Parry et
al., 2016). This suggests that, with greater storage depletion after more severe drought, recovery
takes longer (Bravar and Kavvas, 1991), as found by Parry et al. (2016) in the UK. However, in some
catchments in Australia, there was no such buffer effect and the flooding occurred soon after the

drought (Yang et al., 2017).
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The process of flood mitigation due to empty or low water storage caused by preceding droughts is
not frequently mentioned in our case review of past drought-to-flood events. This is likely because this
process alleviates flooding, thereby reducing or eliminating impacts. These events are therefore not
included in our database (since it only includes cases with reported impacts). There were only two
cases, in Saskatchewan, Canada and lowa, United States of America, where increased storage
availability because of the drought was mentioned as a process that caused flooding to be less

severe than it could have been (CBC News, 2015; Danielson, 2014).

One of the mechanisms that would explain an additional delay in the response of the hydrological
system to excessive rainfall after drought is decreasing groundwater levels during drought, leading to
groundwater disconnecting from surface water (Eltahir and Yeh, 1999; Parry et al., 2013). This
causes contraction in the stream network, shrinkage of the saturated partial contribution area, and
slower pathways for water. One of the reasons is that it takes more water for saturation excess flow to
occur (Saft et al., 2016). This would imply that heavier and longer duration rainfall is necessary for
flooding to develop as a result of saturation overland flow. However, pluvial flooding from infiltration
excess in the case of short heavy rain events would not be affected by this contraction. In addition,
with the contraction of the stream network the contribution of groundwater to the stream becomes
lower, up to the point that the stream loses the connection with the groundwater and groundwater no
longer contributes to the discharge. Large amounts of recharge are needed for groundwater and
stream to reconnect and for groundwater to start contributing significantly to the discharge (Poeter et
al., 2020). Drought recovery tends to be asymmetric (Eltahir and Yeh, 1999), with changes to the
stream network taking longer to recover than to develop. Therefore, it would take longer for flooding to

develop after a drought.

2.2 Runoff processes

In the literature, there is also evidence for drought-induced changes in the land surface activating
quick runoff pathways, which would suggest that catchments do not need to recover fully, with storage
completely replenished, before flooding can occur (Parry et al., 2013). One mechanism that could

play a role is vegetation response. In Australia for example, many catchments remained in a lower
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runoff state for more than seven years after the Millenium drought and showed no sign of recovery to
the pre-drought runoff state (Peterson et al., 2021). In this case, the (lack of) recovery is not controlled
by refilling of subsurface storage, but rather the authors postulate that it is related to a vegetation
response leading to increased evapotranspiration (Peterson et al., 2021). However, the authors only
investigated changes in annual runoff, and not changes in runoff extremes. In a study in the southern
Appalachians, in California, Scaife and Band (2017) find that stormflow response is higher after a
drought, because of a reduction in transpiration. In a study investigating changing rainfall-runoff
response during drought in 14 basins in California, Maurer et al. (2022) find that in basins with low
aridity, high baseflow, a shift from snow to rain (i.e. more precipitation falling as rain instead of snow) ,
or resilience of high-elevation runoff (i.e. no significant decreases in high-elevation runoff during a
drought), the rainfall-runoff response is higher than expected compared to the rainfall-runoff response
under normal conditions. Whether a drought increases or decreases the rainfall-runoff response,

therefore seems to depend on the climatic and catchment conditions.

Many studies report increased runoff after drought because of decreased infiltration rates and
increased surface runoff (Descroix et al., 2009), for example because of increased soil compaction
(Alaoui et al., 2017) or hydrophobicity (Evans et al., 1999). Also, soil cracking can result in quick
vertical flow of rainwater (Miller et al., 1997) and land cover changes can affect infiltration excess
runoff generation, surface runoff routing and spatial connectivity, usually increasing (but in some
cases decreasing) flooding (Rogger et al., 2017). Wildfires, often related to drought, have been found
to change flow pathways (Murphy et al., 2018) and increase the risk of other hazards including flash
floods, debris flows and landslides (Moftakhari and AghaKouchak, 2019) (see Box 1 for more details
on wildfires). The question remains whether these changes in pathways persist long after the end of
the drought (Worrall et al., 2007) and whether they are important at the catchment scale (Bloschl et
al., 2007; Alaoui et al., 2017).

In snow-dominated regions, other mechanisms can explain the relation between drought and flooding.
Early or below-normal snow melt in dry and warm years, could lower the snowmelt peak, reducing
snowmelt floods (Van Loon et al., 2015). The same occurs when precipitation falls as rain instead of
snow, resulting in decreased snowfall and snowpack (Tabari, 2020). On the other hand, early snow

melt could also lead to higher peak runoff. Hatchett and McEvoy (2018) found that many snow

10
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droughts were characterized by lower snow fractions and midwinter peak runoff events. Under higher
winter and spring temperatures (often co-occurring with drought), rain-on-snow flood events are
expected to shift in occurrence: from spring to winter (Freudiger et al., 2014) and from lower to higher
elevations (Musselman et al., 2018). We can also speculate that drought in snow-covered areas could
potentially lead to compacted snowpacks that could result in more severe rain-on-snow floods when

rainfall occurs (Réssler et al., 2014), but more research would be needed on this.

2.3 Which process is dominant, when and where?

Limited studies exist on effects at the catchment scale to answer the question of where and when
storage depletion processes or runoff processes are dominant. Rainfall-runoff relationships are a
good overarching metric to study effects at the catchment scale. Rainfall-runoff relationships often
decrease during multi-year droughts. In these cases, the same amount of rainfall will produce lower
runoff after a prolonged dry period compared to normal circumstances, as seen in Australia (Saft et
al., 2015; Peterson et al., 2021) and Chile (Garreaud et al., 2017). In Algeria, however, rainfall-runoff
relationships were found to increase, leading to less infiltration, more surface runoff and higher flood
hazard (Sofiane et al., 2019). Although in this case it is not clear what specific process may have
caused this decrease in infiltration and increase in runoff. Stronger decreases in rainfall-runoff
relationships were found to be related to aridity (Saft et al., 2016; Garreaud et al., 2017), broader and
flatter valley catchments (Saft et al., 2016; Yang et al., 2017), deeper soils, and more groundwater
variability (Saft et al., 2016). Therefore, this may indicate that in areas with larger subsurface water
depletion due to an arid climate, permeable geology, or deeper soils, the effect of runoff processes is
less dominant and instead the effect of filling up of depleted storage is more dominant, whereas in

wetter, more quickly-responding catchments the balance might tip to runoff increase after drought.

In the global case review, we also find that the type of flood is important in drought-to-flood events.
We define the type of flood generating process following the typology proposed by Merz & Bldschl
(2003). Short-rain flood was the most frequently reported flood process (120 cases), whereas long-
rain flood (34), tropical cyclone (20) and snowmelt flood (3) were reported less often as the dominant
process causing flooding. The more frequent occurrence of short-rain floods points to high intensity

rainfall events and limited infiltration, which may indicate that, in general, across all climate types,

11
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drought-induced changes to the land surface activating quick runoff pathways are a dominant
process. In addition, flood events reported as flash flood or pluvial flood (rather than a riverine flood or
a combination of flash and/or pluvial with riverine flooding) were mentioned more often in case of a
multi-year drought than a within year drought (Figure 1a) and flash floods are reported to occur more
during rather than after a drought (Figure 1b). This may be because during a multi-year drought the
land surface is affected more severely than during a one-year drought, for example with changes in
vegetation or soil properties, causing quick-runoff generation processes. However, it could also be
that flash floods and pluvial floods after a drought instead of during a drought are not reported in our
case review because the excessive rainfall refills depleted storage and did not cause (severe)
impacts. In case of riverine flooding (which was reported much less often), storage depletion
processes may be more dominant. This may be especially the case in arid regions, as discussed in
the previous paragraph. We find some evidence for this in our case review. With groundwater drought
most often reported in semi-arid cases as shown in Figure 2 (there are no reports of groundwater
drought in arid cases, but this may be due to the low number of cases with an arid climate in our case
review). This may indicate an increase in available storage before a subsequent high rainfall period.
However, there are also a several cases with sub-humid and humid climate conditions that are
reporting groundwater drought, which indicates there may be other factors influencing the importance

of storage depletion process, besides aridity.
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Figure 1. Percentage of cases reporting a certain flood type differentiated by drought duration (a),
and percentages of cases reporting a certain flood type differentiated by flood timing during or after

the drought (b). Highlighted in red are the event types (flash flood and pluvial flood) that occur more
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All of these processes and their importance depend on the speed of drought recovery and the time

lag between the drought and the heavy rainfall. The rate and duration of drought recovery are strongly

dependent on climate and catchment properties, such as elevation, slope, average catchment

wetness, and soil conditions (Parry et al., 2016; Yang et al., 2017; Ganguli et al., 2022). Additionally,

13



246

247

248

249

250

251

252

253

254

255

256

257

258

259

human activities, including land use change, groundwater abstraction, and reservoir operation, have
been found to prolong recovery (Apurv et al., 2017; Margariti et al., 2019) and shift seasonality (Wang
et al., 2020). In many locations across the globe, the recovery time (i.e., the time between the drought
and the flood event) is decreasing, meaning that there is less time for the system to recover before
the next extreme happens (Rashid and Wahl, 2022). In the case review, we find that a flash flood by
itself or in combination with pluvial flooding (rather than pluvial or riverine alone or flash flood in
combination with riverine) is more often reported during a drought than after a drought (Figure 1b).
This may be an indication of runoff processes being dominant showing that heavy rain can lead to
floods without terminating the drought. Riverine and compound flooding occurred mostly after the end
of a drought (Figure 1b), which may indicate that for riverine floods to develop, depleted storage first

needs to be replenished.
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Figure 2. The percentage of cases of a certain drought duration (one year vs. multiple years)
reporting a certain drought type, separated by aridity group. Meteorological drought was reported in
all cases, whereas soil moisture, surface water and groundwater drought are reported in a decreasing
percentage of the cases. There is a clear difference between the propagation for multiyear and one-

year events.

Both storage depletion and refilling, and land-surface conditions are influenced by human activities,
especially during drought, but there is no empirical research on the effects of human activities on
consecutive drought and floods. For example, studies on changes in the rainfall-runoff relationship
(Saft et al., 2016; Garreaud et al., 2017; Yang et al., 2017) excluded “impaired” catchments.

Recent research has started to quantify the effects of human activities on hydrological drought (
Rangecroft et al., 2019), including Van Loon et al. (2022) who show that groundwater abstraction
makes a hydrological drought more severe. In addition, human activities can slow drought recovery
(Margariti et al., 2019). Flash floods (which, according to the case review, happen more often during a
drought) occur more frequently and/or are more severe in human-influenced catchments (Jodar-
Abellan et al., 2019; Mohamed and Worku, 2021). Human activities seem to enhance both storage
and runoff processes, with increased storage depletion leading to lower floods after droughts, and
land-surface changes leading to higher floods after drought in human-dominated catchments. These

human activities are discussed in detail in section 4 on adaptation processes.

Sidebar title: Role of wildfires and landslides in drought-to-flood events

Drought increases the frequency and severity of wildfire (Riley et al. 2013), increasing flammability
and interacting with other fire spread controls such as the prevalence of fire weather conditions (Littell
et al. 2016). Wildfire drives changes in vegetation and soil properties making overland flow the
dominant flow path post-wildfire (Rountree et al., 2000) increasing the risk of flooding (McGuire et al.

2021; Moftakhari and AghaKouchak, 2019).
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This was illustrated in Australia where the 2019-2020 wildfires were a consequence of a widespread

drought and heatwave. While at first, torrential rain assisted in containing the fires, the wildfires had
decreased infiltration capacity and flash floods soon followed (Alexandra & Finlayson, 2020).
Landslide risk increases up to several years after a wildfire, when a wildfire followed by extreme
precipitation causes increased run-off generated debris flows and slope instability (Rengers et al.,
2020). In a study of Southern California, Rengers et al. (2020) found that slopes that burned 3 years
prior to an extreme rainfall event, had the highest landslide density. Handwerger et al. (2019) report
an increased risk in landslides during drought-to-flood events even without wildfires, because a rapid
shift from drought to extreme rainfall may trigger the acceleration of landslides.

Our case review indicates that wildfires occur more often when a drought has propagated to a
hydrological drought (Figure 3a). In case wildfires are reported during the drought event, landslides

are also more often reported after the flood event (Figure 3b).
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Figure 3. Percentage of cases with a certain drought type also reporting fires (a) and percentage of
cases with and without reports of fire reporting land- or mudslides (b). If a case reports a groundwater
drought it becomes more likely that there are also reports of fires. In case there are reports of fire, it is

more likely that there are also reports of mud- or landslides.

3. IMPACTS OF DROUGHT-TO-FLOOD EVENTS
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In this section we explore how drought impacts affect flood impacts. Droughts are generally long-
lasting and have a range of cascading impacts on both the physical and societal system (Stahl et al.,
2016; Sugg et al., 2020; De Brito, 2021). These impacts can continue into the period after the drought
ended. If society is hit by a next event (heavy rainfall resulting in flooding) the impacts of flooding may

be increased due to the preceding drought impacts.

3.1 Drought impacts on the physical system

Drought can impact the physical system, thereby making subsequent flood impacts more likely.
Drought can cause damage to infrastructure, including infrastructure for flood risk mitigation. For
example, during droughts, dikes and levees can suffer from cracking, which can increase the
probability of failure (either during the drought itself or during subsequent wet periods). Examples of
this are abundant in the literature, especially for the Netherlands (e.g. Van Baars, 2005; Van Baars
and Van Kempen, 2009), Australia (e.g. Jaksa et al., 2013; Hubble and De Carli, 2015; IWMI, 2017),
and the USA (Vahedifard et al., 2016; Vahedifard et al., 2017). This happens mostly in lowland areas

with dikes made of peat and clay or on peat / clay soils that are prone to cracking during drought.

Moreover, drought-to-flood events can increase impacts by degrading water quality and creating
favourable conditions for the development of diseases that impact human health. In our case review,
we find that impacts on human health were most often reported in low-income countries (Figure 4).
We also found examples in the scientific literature. For example, Effler et al. (2001) showed that the
E. Coli outbreak in Swaziland and South Africa in 2000 was preceded by intense precipitation
following a three-month drought period. It was shown that high concentrations of pathogens occurred
during the drought period, because livestock used human water sources, thereby increasing human
exposure during consequent heavy rainfall (Levy et al., 2016). Drought-to-flood events can also result
in large-scale simultaneous hatching of mosquito eggs, leading to the transmission and outbreaks of,
for example, Rift Valley fever virus (Stanke et al., 2013). In addition, these events can alter water
quality due to deposition of pollutants within the soil during drought period and their consequent
discharge into the river during flood events (Mishra et al., 2021). Moreover, consecutive dry and wet

periods result in elevated phosphorus release and consequent water quality degradation (Laudon et
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al., 2005). Alteration of river nutrients concentration can cause severe fish mortality (Laudon et al.,

2005) and eutrophication of surface water bodies (Wurtsbaugh et al., 2019).

3.2 Drought impacts on the socio-economic systemimpacts of drought on the physical system (e.g.
water supply infrastructure) can also impact water supply, leading to water insecurity. Drought
impacts on agriculture and public drinking water supply were the most common impacts reported in
the case review (Figure 4). Drinking water supply is often disrupted during drought, especially if
communities or households rely on local sources that are not connected to a network (Mullin et al.,
2020). This may not only be due to lower water levels, but also to more sediments in the water intake,
more breakage of handpumps, and more damage to pipes because of soil subsidence (Thomas et al.,
2020; Wlostowski et al., 2022). Drinking water companies then need to repair pumps and pipes and/or
invest in finding other sources of drinking water, thereby depleting financial reserves (Koehler et al.,
2018). For example, in the 2011-2017 drought in California (USA), many community water services
requested emergency funding from the state to maintain water delivery to low-income populations
(Mullin et al., 2020). This left drinking water supply in a vulnerable position in the case of a
subsequent flood destroying drinking water infrastructure (Fekete et al., 2019; Njogu, 2021). For
women and girls in rural communities in low-income countries walking distance to drinking water
sources increases during drought (MacAllister et al., 2020; Arku & Arku, 2010). This creates many
cascading impacts, for example increased exposure to sexual harassment, missing school, less time
to work on the land to provide food for the family or to work on other sources of income (Tallman et
al., 2022), which all potentially increase vulnerability to flooding (and other hazards).

Drought impacts leading to changes in vulnerability, which increase the susceptibility to subsequent
flooding, occurs through multiple processes. Multi-year droughts cause long-term impacts such as
physical and mental health issues, long-term financial struggles, lack of education, erosion of social
coherence, and increase in social conflicts (e.g. Sena et al., 2017; Matan¢ et al., 2022), especially in
low-income countries. Sena et al. (2017), for example, found that in Brazil health and well-being are
lower in regions that experience drought more regularly than the rest of the country, implying that
drought increases vulnerability. In contrast, repeated extreme flooding has been found to reduce
vulnerability in subsequent flood events due to enhanced awareness and adaptation (Kreibich et al.,

2017). These studies focus on multiple occurrences of the same hazard, but to understand the social
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processes behind drought-to-flood events we need to understand cascading impacts and changes in
vulnerability between different hazard types (Siegel et al., 2003; De Ruiter and Van Loon, 2022). One
study by Rockstrom (2003) mentions how drought-induced unemployment leads to increased financial

struggles during flood, but more research is needed on cascading vulnerabilities.

A combination of impacts on agriculture and livestock, from both the drought and the flood event is
reported quite often in the case review (although most frequently in low- and lower middle-income
countries, see Figure 4). The vulnerability of livestock to flooding may be increased by a preceding
drought, as was the case in Queensland in 2019 (Cowan et al., 2022), where cattle was weakened
due to a lack of food during a drought which increased their vulnerability during the following flood
causing many of them to die from exposure. Vegetation conditions can be an important factor in
drought-to-flood events. Agriculture that has suffered during drought can be further impacted by
extreme rain events. Cobon et al. (2016) found that, in coffee plantations, alterations of extreme dry
and wet periods reduce coffee bean size. Drought-to-flood can have severe effects on crop yield,
based on the intensity of the consecutive hydrological extremes, soil conditions, and crop growth
stage (Gao et al., 2019; McCarthy et al., 2021). Impacts on agriculture cascade further to health,
financial and societal impacts, thereby potentially increasing the vulnerability of the population. If the
drought is followed by a flood, food availability could decrease even further and access to water, food

and health care could be reduced even more (Matano et al., 2022).

These effects are not uniform throughout society. Natural hazards do not affect people equally
(Neumayer & Plumper, 2007) and differences in societal vulnerabilities can exacerbate the inequality
of impacts of consecutive droughts and floods. Low-income groups are more at risk of damages
caused by hydrological extremes due to structural inequalities (Andrijevic et al., 2020). Moreover,
social groups are impacted differently by hazards because of the different access to resources for
preventing, mitigating, or recovering from extreme events (Masozera et al., 2007). As a result, groups
that possess resources for adopting individual prevention and mitigation actions against one hazard
type can become less vulnerable to another consequent hazard compared with groups that do not
have such means. In addition, the recovery of people and economies after a drought ends is

important. Societies that quickly bounce back or even forward will be less vulnerable to a next event
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than societies that recover slowly (Di Baldassarre et al., 2018). The latter are more prone to collapse

when faced with subsequent extreme events (Weiss and Bradley, 2001; Kuil et al., 2016).

The differences between groups (or countries) with different amounts of resources is also reflected in
our case review. While we do not find evidence of specific drought impacts causing an increase in a
specific flood impact, we do find evidence of income levels as a common driver to the type of impacts
that are reported most in a country. Figure 4 shows that drought impacts on public water supply,
energy/industry and ecosystems are more often reported in higher-income countries (the darker
coloured upper right and lower right quadrants) than in lower-income countries (the lighter coloured
lower left and upper left quadrants) and this coincides with a higher reporting of the flood impacts of
damage to properties and road infrastructure and more reported evacuations. In contrast, damage to
agriculture as a flood impact is more often reported in lower-income countries and often coincides
with reported agricultural impacts from drought (which is generally high across all income groups). In
addition, drought impacts on human health and public safety are mostly reported in low-income
countries and they often coincide with a high frequency of reported loss of life due to flooding as well

as with damage to agriculture and/or livestock due to flooding.
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417 a full quadrant means 50 % of the cases report this combination of impacts. Note that for the first

418 column of drought impacts “Agriculture and livestock farming” a full quadrant means 100 % of the

419 cases report this impact combination. This was done for visualisation purposes.

420

421 4. ADAPTATION PROCESSES AFFECTING DROUGHT-TO-FLOOD EVENTS

422 In this section, we discuss how human adaptation to drought can affect flood risk. Besides leading to

423 more impacts and increased vulnerability (Section 3), long, multi-year droughts allow ample time for
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drought responses, management and adaptation (Watts et al., 2012). Human adaptation processes
can affect the catchment processes and impacts discussed in the previous sections, both positively
and negatively. Responses to drought that increase flood risk are sometimes called maladaptation
(Adger et al., 2005; Ward et al., 2020). Ward et al. (2020) provide an extensive review of how drought
adaptation measures can influence flood risk (and how flood adaptation measures can influence
drought risk). Here, we provide a summary of their findings and compare them with the evidence from

the case review.

4.1 Adaptation processes affecting hydrological processes

As mentioned in Section 2, increased groundwater abstraction in response to a drought can
potentially reduce flooding. Groundwater abstraction is often increased during drought, which
depletes storage and potentially slows drought recovery (Wendt et al., 2021; Apurv et al., 2017),
making drought-to-flood events less likely, depending on the local geology and the type of flood event
that follows the drought. Groundwater abstraction is one of the drought adaptation measures that was
reported most often in the case review (Figure 5). This measure is mostly reported in higher-income
(i.e. both high- and higher middle-income) countries (Figure 6). Ward et al. (2020), discuss how
increased groundwater abstraction can also increase the risk of flooding, because it can lead to
subsidence. Stopping abstraction can also lead to flooding, for example, in the case of the foggaras (a
traditional irrigation system) of Bouda in Algeria. An initial increase of groundwater extraction through
boreholes caused the foggaras to run dry and their long disuse caused a state of disrepair. When the
groundwater pumping through boreholes was reduced, the foggaras started flowing again, but could
not handle the amount of water due to their state of disrepair, causing flooding of sebkhas and palm
groves (Boutadara et al., 2018). The opposite of groundwater abstraction, managed aquifer recharge,
or the construction of other water storage infrastructure, such as sand dams, can be beneficial for
both drought and flooding (Ward et al. 2020). The construction of new water infrastructure in response
to a drought was found in several cases in the case review (Figure 5). In addition, there are several
examples of drought adaptation measures that can have a negative effect on subsequent flooding by
influencing catchment processes, such as reservoir operation strategies and agricultural practices and

land use change (Ward et al., 2020).
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Figure 5. Number of cases reporting a drought adaptation measure.

4.2 Adaptation measures affecting impacts

Ward et al. (2020) also discuss how awareness and risk perception of flooding can be influenced by
drought experience and how a focus on drought preparedness can decrease the preparedness for
flooding. These processes can increase the vulnerability to flooding. There are also several drought
adaptation measures or coping strategies that increase exposure to flooding, such as migration (Ward
et al. 2020). Flood exposure could be increased by drought-induced migration resulting in people
living in floodplains (FGS, 2018), but migration is complex and not always directly attributable to
drought (Black et al., 2013). However, it was reported as a drought response in some instances in the
case review (Figure 5). Another example of a drought coping mechanism that results in a higher
exposure to flooding is when farmers decide to delay planting until the rains start. When the rains do

start, but are extreme, they may wash away seeds or make sowing impossible, as happened, for
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example, in Bundhelkhand, India (Pateriya, 2016). In addition, the uptake of drought resistant crops
which may be vulnerable to heavy rain (Tirado & Cotter, 2010) and food aid reducing outmigration in
drought-struck and flood-prone areas (Salite & Poskitt, 2019) are other drought measures that

increase exposure to flooding.

In the case review we found that in low-income countries food aid or cash aid is the most reported
adaptation measure (Figure 6). Government and NGO support could be exhausted during the
drought, meaning that limited aid would be available during a subsequent flood (Matané et al., 2022).
On the other hand, responses that aim to reduce vulnerability to drought can also be beneficial during
floods. Mavhura (2019) found, for a case in Northern Zimbabwe, that vulnerability to flood and drought
was influenced by the same drivers, such as low incomes or few savings. Measures and policies that

address these drivers, would be beneficial for reducing both flood and drought vulnerability.

Another adaptation measure reported frequently in the case review is water rationing or the prioritising
of certain users (Figure 6). This measure is more often reported in high-income countries and semi-
arid countries. The latter could be because these places may be more experienced with dry
conditions and have regulations in place for the rationing and prioritising of water use in case of a
drought. However, there is also a high percentage of cases with a humid climate reporting this
measure, which may indicate that high-income is a more important factor, possibly because high-
income countries more often have a regulated public water supply system in place. These regulations
may lead to unequal impacts because water users may face different levels of reduction in water
supply, depending on the legislation, prevailing water rights and social inequalities (Lund et al., 2018;
Savelli et al., 2021). Therefore, different water users may experience different levels of increases in
vulnerability, which may influence their ability to cope with a subsequent flood. These unequal effects
hold for adaptation measures in general, just like for impacts. Adaptation measures benefit some
groups more than others and responses that are beneficial for one group may not be for another
group (Masozera et al., 2007; Savelli et al., 2021). In California, for example, cuts in water supply did
not severely affect the agricultural sector, who used groundwater as an alternative, but the
combination of cuts in water supply and the effects of adaptation measures taken by the agricultural

sector (such as groundwater extraction) led to increased vulnerability of ecosystems and the people
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that rely on them (Christian-Smith et al., 2015). Another example of increased vulnerability of
ecosystems because of human adaptation is the case of Guadiana wetlands in Spain, where
groundwater abstraction was found to have four times higher impact on the ecosystem than drought

(Van Loon and Van Lanen, 2013).

In general, risks are experienced differently and lead to varying adaptation strategies, depending on
the management structure (e.g. public, private or community responses) and the type of hazard (e.g.
drought or flood). In a review on pre-disaster planning and preparedness for droughts and floods,
Raikes et al. (2019) found that drought management tends to be responsive, while flood management
is more risk-based, including prevention and preparation. In addition, some countries may have a
more centralised approach to flood and drought risk management, such as the Netherlands and
Poland, while in other countries, such as the United States, risk management is increasingly

privatised (Raikes et al., 2019). This affects the type of adaptation measures that may be adopted.

a 704 Low income Lower middle income = Higher middle income = High income
>
o
5 60+
£ 50
8
c 40_ .. B
C
w304
(0]
@ 20
o
2 L. ‘ e
= i
a 10— ‘ Arid Semi-Arid m Sub-Humid m Humid ‘
3
IS |
5 60
2 B0 o JE ST PTPS P JE O OO PO PO TPV EPTP PP TPPTPOO
T
< 40+
£
o 30
(0]
§ 204 . OO RO
2 n B == _ BN
ES
0
Water rationing/ Groundwater
Aid food/cash restrictions/prioritising pumping Aid equipment Disaster funds Provide water

Figure 6. Percentage of cases per income group (top) and aridity group (bottom) reporting a certain

drought adaptation measure. Food and cash aid are reported more often in lower income countries
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while water rationing and groundwater pumping are reported more often in higher income countries.

Water rationing is reported slightly more often in semi-arid countries.

5. CONCLUDING REMARKS

5.1 Main findings

This review has provided an overview of the processes and feedbacks that are important in drought-
to-flood events. We find that drought can increase subsequent flood occurrence and severity due to
increased surface runoff, but it can also decrease subsequent flooding due to storage depletion.
There is little evidence as to which process may generally be dominant. Storage depletion processes
seem to be more prevalent in arid places, as well as in broader and flatter valley catchments and
places with deeper soils or more groundwater variability. This also depends on the type of flood that
occurs during or after the drought event. For high-intensity rain events and flash floods, storage
depletion process are less important. Both increased runoff and storage depletion processes seem to
mostly play a role when the drought is a multi-year drought and when the flood occurs during the
drought (e.g. the drought is not ended by the flooding). Human activities seem to enhance both
processes, with increased storage depletion leading to lower floods after droughts and land-surface

changes leading to higher floods after drought in human-dominated catchments.

In terms of impacts, there is clear evidence that drought-to-flood events cause more impacts than if
the hazards would occur on their own; clear examples are breaking levee systems and causing water
quality problems. In general, the socio-economic processes that underlie drought-to-flood events
seem to be mostly related to changes in vulnerability. The drought may cause increases in the
vulnerability of people, crops or livestock, which causes impacts of a subsequent or co-occurring flood
to be worse than from two separate events alone. This depends on the initial vulnerability and how
quickly communities are able to recover. Impacts and changing vulnerability are not the same for
everyone. Which process is dominant where, when, and for whom, is strongly dependent on the
context of the drought-to-flood event. Characteristics like climate, geology, land use, and socio-
economic, cultural, and political context determine the impacts and responses and therefore the

interactions between drought and flood impacts.
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The case review has shown that there is a huge diversity in adaptation measures implemented.
Several adaptation measures are focused on reducing the overall vulnerability of the population,
which makes them beneficial for both flood and drought risk management. In addition, there are
several measures that focus on storing excess water, which can reduce both drought and flood risk
(e.g- managed aquifer recharge, sand and earth dams). Groundwater abstraction (reported most often
in higher income and arid places) can have a positive effect on flood risk, by increasing storage
space, but can also increase subsidence. Finally, the awareness or memory of flood risk may decline
due to a drought, which can negatively affect flood risk. Adaptation processes in response to a
drought can affect socio-economic processes in several ways, changing the risk perception, exposure

and vulnerability to flooding.

5.2 Outlook

We argue that more research is needed on drought-to-flood events. In particular, further investigation
would be useful regarding which characteristics, such as climate, geology, land use, and socio-
economic, cultural, and political context, determine which drought-to-flood processes and feedbacks
are important. In terms of hydrological processes, it would be interesting to further investigate when
and where storage depletion and runoff processes are dominant and how human interventions affect
this. There is still a lot unknown about processes related to impacts and further research into whether
certain drought impacts make certain flood impacts more likely, or into whether there are common
drivers of these impacts and when and where these occur. In addition, changes in vulnerability require
further investigation in drought-to-flood events (De Ruiter & Van Loon, 2022). This review does not
provide much evidence of which adaptation measures are taken when and where and how this affects
flood risk. Characteristics of the social and hydrological system that influence the feasibility and
effectiveness of adaptation measures, as well as their influence on flood risk could be further
investigated. In addition, adaptation measures may be beneficial for some while they are harmful to

others. When and where this is the case is something that could be addressed in future research.

Methods that can increase our understanding of the specific hydrological and social processes

happening during drought-to-flood events include detailed case study analyses, as suggested by
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Mostert (2018). Qualitative case studies can also be compared to find generalizable results,
especially if and when a larger body of case study analyses becomes available, for example using
qualitative comparison analysis (Srinivasan, 2012). System characteristics (both social and
hydrological) that lead to certain processes being dominant, or certain adaptation measures being
feasible or not, can be investigated using large-scale comparative studies. This approach has already
been applied in hydrological studies to, for example, investigate which characteristics influence the
seasonality and magnitude of maximum annual flows (Berghuijs, 2016). These qualitative and
quantitative case studies can be combined to both create new insights and report the findings to
different audiences (e.g. Grainger et al. 2016). Finally, management alternatives can be explored
using models that incorporate both the hydrological and social processes (e.g. Mazzoleni et al. 2021).
Using these models, scenarios can be developed and explored using for example adaptation
pathways (Werners et al., 2021), where not only the effects of management and adaptation choices

on drought risk are taken into account, but also the effects on flood risk.

Improving our knowledge on drought-to-flood events and their interactions will help in designing more
robust measures that do not have adverse effects on the opposite risk, now or in the future. The
necessity for the analysis of system-wide, short-term and long-term implications is already recognised
for both drought and flood risk management separately. Here we argue that this should also be
expanded to the study and management of drought and flood risk together. Identifying drought-to-
flood processes and their characteristics would not only help in the design of robust measures that
hold under future risk scenarios but would also help identify opportunities for reducing both drought
and flood risk at the same time, by implementing measures that are beneficial for both, such as the

reduction of overall vulnerability or measures such as managed aquifer recharge.
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