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We develop a new probabilistic method for deriving deviation estimates in directed planar polymer and
percolation models. The key estimates are for exit points of geodesics as they cross transversal down-
right boundaries. These bounds are of optimal cubic-exponential order. We derive them in the context
of last-passage percolation with exponential weights for a class of boundary conditions including the
stationary case. As a result, the probabilistic coupling method is empowered to treat a variety of problems
optimally, which could previously be achieved only via inputs from integrable probability. As applications
in the bulk setting, we obtain upper bounds of cubic-exponential order for transversal fluctuations of
geodesics, and cube-root upper bounds with a logarithmic correction for distributional Busemann limits
and competition interface limits. Several other applications are already in the literature.
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1. Introduction

1A. Purpose of this work. This paper introduces a new method for deriving probability estimates for

directed planar polymer and percolation models. This method operates naturally in the context of the

probabilistic coupling approach. It utilizes a generating function of the process with two distinct boundary
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conditions on the axes. It yields probability bounds of optimal exponential order, for the first time

within the coupling approach. This allows the coupling approach to match the strength of the integrable

probability approach in the treatment of a variety of problems of planar random growth.

We develop the technique for the exponential corner growth model since this is the most-studied

example in the KPZ class. The ideas will transfer readily to other planar models with tractable increment

or ratio stationary versions. Indeed, since the first version [42] of this paper, some key aspects of our

approach have been implemented for the geometric corner growth model [58], integrable lattice polymers

[71; 102], the O’Connell–Yor polymer [70] and, most remarkably, a nonintegrable1 model of interacting

diffusions [71] that includes the O’Connell–Yor polymer (introduced in [84]) as a special case.

Our main result gives control of the exit point of the geodesic from the axes. This is often the starting

point for applications of the coupling methodology because it is based on comparisons of several versions

of the process. From these bounds follow a number of applications. Some applications are described in this

paper. Other applications2 concern optimal-order (at least up to logarithmic factors) central moment bounds

for last-passage times [43, Theorem 3.1], and transversal fluctuations and coalescence bounds for finite

and semi-infinite geodesics [28, Theorems 2.2 and 2.8; 98, Theorem 2.3]. These results were previously

inaccessible to the coupling approach, and could be proved only through inputs from integrable probability.

Next this introduction describes the broader KPZ class, the coupling approach to their study, our results

and their first applications, and related literature. The reader familiar with the subject can check our

notation in Section 2 and proceed to the results in Sections 3 and 4. The organization of the paper is

described in Section 1H below.

1B. Kardar–Parisi–Zhang class of planar stochastic models. The Kardar–Parisi–Zhang (KPZ) univer-

sality [68] predicts long-time fluctuations in one-dimensional, out-of-equilibrium, stochastic interface

growth with nonlinearly slope-dependent vertical speed, local only constraints, a smoothing mechanism

and rapidly decorrelating space-time noise. After a long time T > 0, the interface is expected to display

height fluctuations on T 1=3 scale and nontrivial spatial correlations on T 2=3 scale. Furthermore, with

suitable centering and rescaling, the evolution of the interface is expected to converge to that of a universal

limiting interface, the KPZ fixed point [77], started from the limiting initial conditions. The broader

significance of these predictions is that the same scaling and, at least to a large extent, the limit behavior

are also believed and partially confirmed to arise in a diverse array of probabilistic models and physical

systems. These form the KPZ universality class in 1C 1 (one space and one time) dimensions, and

include certain interacting particle systems, random matrix ensembles, stochastic PDEs, and models of

polymers in random media, growth of bacterial colonies, and liquid percolation. In-depth introductions to

the subject from both mathematical and physical perspectives can be found in the review articles [37; 69;

89; 90]. The short surveys [2; 39; 54] also provide a summary of major milestones and some interesting

research directions in this area.

From a mathematical perspective, much of the KPZ prediction remains conjectural. However, for a small

class of integrable (exactly solvable) models with special structure, it has been possible to rigorously verify

1In the sense that there is no integrable structure beyond the existence of product-form invariant measures.
2Some of the cited works utilized an earlier preprint [42] of this paper.
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some aspects of the KPZ universality. The field of integrable probability, which exploits the structural

properties of models to the greatest extent, often provides the most precise results on the KPZ class models

and presently offers the only feasible path for rigorous analysis to the point of computing limit distributions.

In the integrable approach, one first derives explicit formulas in the form of Fredholm determinants for

the expectations of certain observables of interest, typically through versions of the Robinson–Schensted–

Knuth (RSK) correspondence, the machinery of determinantal point processes or the Bethe ansatz, and then

computes a suitable limit via the methods of asymptotic analysis. This line of argument was first demon-

strated in the breakthrough articles [4; 65] and has since expanded remarkably in scope [26; 27; 38; 67].

The techniques of integrable probability do not seem well suited, however, to study the KPZ universality

beyond the integrable settings due to being too closely tied to the special, model-specific properties.

Therefore, the development of alternative methodologies reliant on more broadly available structures and

with greater potential for generalization merits research attention.

1C. Coupling approach. One promising probabilistic approach capable of identifying the KPZ scaling

exponents is the coupling method introduced by E. Cator and P. Groeneboom in the context of Hammers-

ley’s process [29; 30]. This is a particularly versatile scheme that has since been further developed and

fruitfully adapted to a variety of KPZ class models, including some directed percolation models [9; 36],

particle systems with nearest-neighbor interaction [11; 12; 8] and directed polymers [10; 13; 34; 78; 96].

In broad strokes, the method compares a model under study with its stationary versions through suitable

couplings, and likely produces results as long as the latter models are sufficiently tractable. For example,

it would at least in principle be applicable in all integrable directed percolation and polymers on the

integer quadrant considered in [3; 16; 33; 40; 83; 91; 99], including their inhomogeneous generalizations.

Furthermore, the variants of these models with general i.i.d. weights having finite p-th moment for

some p > 2 also possess stationary versions [57; 63], although no longer in explicit form. This raises

the attractive, albeit presently highly speculative, prospect that the coupling method can potentially be

improved in the future to the extent of being able to study the KPZ exponents in such nonintegrable

settings of great interest. As perhaps encouraging developments in this respect, some aspects of limit

shapes and geodesics in i.i.d. directed percolation as well as the positive temperature counterparts of these

objects in i.i.d. directed polymers have been successfully studied in recent works [56; 57; 63; 64] through

coupling arguments.

On the other hand, there are also drawbacks to the coupling approach. Besides being unable to access

the KPZ limit distributions, prior to the present work, the coupling method produced weaker than optimal

results in some applications. Most notably, it provided only polynomially decaying3 left-tail bounds for

the last-passage time and free energy, which was a main source of limitations and suboptimalities in

various results. For example, before this work, optimal-order bounds were available via the coupling

3Before this work, the best left-tail fluctuation bounds for last-passage times accessible via the coupling approach had
cubic decay; see [9; 97] for example. On the polymer side, the results of [81; 82] imply polynomially (of arbitrary degree)
decaying fluctuation bounds for the free energy in the stationary versions of the O’Connell–Yor polymer and integrable lattice
polymers. We also remind here that optimal-order/sharp exponential tail bounds are available through integrable or random
matrix techniques [5; 72].
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approach only for certain low central moments of these random variables. In a recent advance, refining

the coupling method suitably, preprints [81; 82] managed to establish nearly optimal (with an �-deficiency

in the exponents) bounds for all central moments of the free energies in the stationary versions of the

O’Connell–Yor polymer and the four basic integrable lattice polymers. As our work demonstrates,

however, there is still significant room for further fundamental improvements to the method.

The purpose of this article is to optimize the coupling method in a key aspect, namely, the exit point

bounds. As a result, the method is brought on par with integrable probability in handling a variety of

problems of interest. Being able to achieve optimal results via the coupling approach is of some significance

because the method can be preferable in these situations on account of its aforementioned virtues.

1D. Exponential last-passage percolation. Our setting is the last-passage percolation (LPP) on the

nonnegative integer quadrant Z
2
�0 with independent exponential weights. The rates of the exponentials

equal 1 in the bulk Z
2
>0, w on the horizontal axis Z>0 � f0g and 1� z on the vertical axis f0g � Z>0 for

some parameters w > 0 and z < 1. The weight at the origin is irrelevant and set to zero. The basic objects

of study are the last-passage times and geodesics defined in Section 2A.

The exponential LPP is among the most-studied integrable models in the KPZ universality class [9;

24; 88], owing in large part to its close connection to the totally asymmetric simple exclusion process

(TASEP) started with the two-sided product Bernoulli initial condition and a single second-class particle

at the origin. More specifically, the initial occupation probabilities for the sites of Z>0 and Z<0 equal

z and w, respectively, assuming now that w 2 .0; 1� and z 2 Œ0; 1/. For the present work, the particle

system picture only serves as a motivating context. Our proofs are developed entirely within the LPP

framework from the stationarity properties of the equilibrium case w D z. A point to stress here is that

the choice of the exponential LPP (among the integrable settings to which the coupling approach applies)

is not a requirement but made for concreteness as well as relative simplicity and significance of the model.

Analogous developments to ours can likely be carried out in all previously listed integrable directed

percolation and polymers. These extensions are left for future works.

1E. Overview of main results and methodology. An important role in the coupling approach to the LPP

is played by the exit points of the geodesics out of the origin in the equilibrium regime. The most basic

case is the exit point from the axes, which is the last vertex that the geodesic visits on the axes before

entering into the bulk. More generally, we consider the exit point from an arbitrary down-right path; see

Section 2B for the precise notion. Our interest is in the right-tail event in which the exit point is at least

a given distance away from a fixed base vertex on the down-right path. The collection of such events

describes, for example, the transversal fluctuations of the geodesic.

Our main results on the exit points in the exponential LPP are upper and lower bounds of matching cubic-

exponential order for the right-tail fluctuations, covering primarily the equilibrium regimewDz (Theorems

3.1 and 3.6). Crucially for our purposes of empowering the coupling method, the preceding bounds are

obtained utilizing no more than the knowledge of the explicit equilibrium models and the stationarity of

the last-passage increments there. Also worth noting with a view to future extensions is that the stronger

distributional feature known as the Burke property (see (2-12)) is also not used at this stage, although it
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does come in for our applications mentioned below. Our exit point bounds can be equivalently rephrased

in terms of increment-stationary path-to-point exponential LPP as well (Propositions B.6 and B.7).

Before the present work, known proofs of exponentially decaying fluctuation upper bounds for geodesic

exit points relied on LPP fluctuation upper bounds with exponential decay. Examples of this approach can

be found in the proofs of [19, Theorem 11.1], [53, Lemma 3.6] and [48, Lemma 2.5]. In particular, these

arguments achieve optimal-order cubic-exponential decay for exit points starting from LPP fluctuation

upper bounds with exponent 3
2

. Prior to [43], which builds on this article, the known techniques that can

produce such bounds for the left-tail analyze exact distributional formulas for last-passage times either

via Riemann–Hilbert methods [5; 74; 75], or via tridiagonalization methods applied to the closely related

Laguerre unitary ensemble [72], or via H. Widom’s trace trick [100] combined with steepest-descent

methods applied to the trace of the associated correlation kernel [6]. On the other hand, before this article,

the coupling method provided only cubically decaying left-tail fluctuation upper bounds4 for last-passage

times [9]. This made it challenging to obtain optimal-order exit point upper bounds via the coupling

approach. In fact, the best upper bounds available via the coupling approach prior to our work were

cubically decaying [9, Theorem 2.2 and 2.5; 86, Lemma 2.2; 87, Lemma 3.7; 97, Proposition 5.9].

The main novelty of the present work is that optimal-order exit point upper bounds are obtained here

through the coupling method, without inputs from integrable probability or random matrix theory. This is

achieved through a moment generating function identity previously observed in a preprint of E. Rains

[91] and recorded as Proposition 2.1 below. In [91], this identity is derived from determinantal formulas

developed in [3] for the distribution of last-passage times. We give a short probabilistic proof utilizing

the increment-stationary LPP process. We also find that Rains’ identity is a natural generalization of

the well-known variance identity of Balázs–Cator–Seppäläinen; see (2-19) below. The latter identity

and its variants formed the basis of the fluctuation theory developed with the coupling approach for

integrable directed LPP since the seminal articles [9; 29; 30]. See, for example, the recent lecture notes

covering the exponential LPP [97]. The key observation in the present work is that (2-19) can be upgraded

to Proposition 2.1 without leaving the coupling context, and the fluctuation theory based on the latter

produces optimal results previously inaccessible via the coupling approach.

From Rains’ identity, we first extract a cubic-exponential order upper bound for the first step probability

of a geodesic out of the origin (Proposition 3.4) for the increment-stationary LPP. We then turn this bound

into our main upper bound (Theorem 3.1) with the aid of a known distributional identity [97, Lemma A.2]

(stated as Lemma 5.5 below) relating the exit points from the axes to those from general L-shaped paths.

The proof of our main lower bound (Theorem 3.6) follows the same broader strategy with a key step being

the derivation of a cubic-exponential lower bound for the first step probability (Proposition 3.9). The

proof of the latter is more involved than the corresponding upper bound. It combines a change-of-measure

argument originated in [8] together with our exit point upper bounds. We point out that the technique

from [8] was previously adapted to the exponential LPP [97] and has been employed recently to obtain

4After our work, it has become possible to achieve optimal-order left-tail fluctuation upper bounds within the coupling
framework through combining [43, Proposition 4.5] with the generic results of [55]. See also [70] where similar strategy is
employed for the O’Connell–Yor polymer.
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coalescence bounds for semi-infinite geodesics [98]. An intermediate result in [98, Theorem 4.1] is a

lower bound of optimal-order for the exit points from the axes. Our main lower bound extends this result

mainly to arbitrary down-right paths through a similar argument.

We conclude this section by commenting on some hypotheses in our main results. First, our main

lower bound requires an arbitrarily small but fluctuations-scale distance between the exit point and the

base vertex. Such a condition is expected on grounds that exit points should exhibit a different decay

behavior for small deviations, which has been recently studied for the bulk model (with i.i.d. Exp.1/

weights) in [17]. Also, our exit point bounds apply to geodesics with endpoints away from the axes. For

fluctuation bounds on steep geodesics, see [22, Theorems 2.5 and 2.7].

1F. Some applications and extensions. Our second set of results demonstrates some initial applications

of our exit point upper bounds. Theorem 4.1 provides cubic-exponential order fluctuation upper bounds

for the exit points of the bulk geodesics. The order of decay in this result should be optimal on account

of universality and a recent optimal-order cubic-exponential lower bound for the geodesics in the Poisson

LPP [60, Proposition 1.4]. The authors employed some LPP moderate deviation bounds from [74; 75] as

the only inputs from integrable probability. After the present article, it has become possible to reproduce

these inputs through the coupling approach [42; 43]5, which suggests that optimal-order lower bounds

complementary to Theorem 4.1 can also be established within the coupling framework.

The remaining applications utilize the Burke property. The next one concerns Busemann functions,

namely, the a.s. directional limits of the last-passage increments. Our interest is in the speed of distributional

convergence. Theorem 4.4 provides speed upper bounds with cube-root decay (up to logarithms) in the

bulk setting. This result is in the spirit of [15, Theorem 2.1], which proved an upper bound for the total

variation distance between the LPP increments in the bulk and in a suitable equilibrium model. Compared

with our speed bounds, their result provides bounds with respect to a stronger metric but with a weaker

decay rate; see Remark 4.5. Our proof is based on Proposition 3.4 and the crossing lemma (Lemma A.2).

We expect that our upper bounds are of optimal-order, and it might be possible to deduce matching lower

bounds from the coalescence and stability results of [15; 28] but we do not pursue this point here.

We also study the speed of distributional convergence for the limiting direction of the competition

interface, the boundary between two geodesic subtrees sharing the same root vertex. In the bulk case,

Theorem 4.7 gives upper speed bounds with cube-root decay (up to logarithms). Encountering the same

quantitative bound as in Theorem 4.4 is not surprising since the distribution of the competition interface

direction can be recovered from the Busemann functions in the limit. This suggest that Theorem 4.7 can

possibly be extracted from Theorem 4.4 as a corollary but we could not find such an argument without

some loss in the strength of the bound. Our proof of Theorem 4.7 is instead a separate application of

Proposition 3.4 and the crossing lemma. We again expect that our upper bound is optimal in order and

a matching lower bound might be achievable in view of [15; 28] but presently do not attempt putting

together a proof. Subsequently, we examine the competition interface in the equilibrium case and observe

a dramatically different behavior in the speed of distributional convergence. Theorem 4.8 provides

5A forthcoming update to our preprint [42] will present a coupling proof of the right-tail lower bound analogous to the input
[60, Theorem 2.3] for the exponential LPP.
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matching order upper and lower speed bounds of cubic-exponential order. This result is derived from the

corresponding bounds in Propositions 3.4 and 3.9 for the first step probabilities.

A natural extension of Theorems 4.7 and 4.8 would be to determine the speed of convergence for the

competition interface for the full range of the boundary parameters w > 0 and z < 1. (The bulk and

equilibrium cases correspond to taking .w; z/D .1; 0/ and w D z, respectively). It is natural to expect

that the convergence speed exhibits an interesting transition that parallels the one from [51; 52] describing

when the competition interface has a deterministic or random limiting direction. Another follow-up

would be to investigate whether our speed bounds for the competition interface translate to bounds for

the second-class particle of TASEP. As far as we are aware, there are no results quantifying the speed of

convergence for the latter. We leave these extensions to future works to explore.

The last pair of results in this work recasts our main upper and lower exit point bounds in terms

of increment-stationary down-right-path-to-point exponential LPP. These reformulations are stated as

Proposition B.6 and B.7, respectively. We derive them as corollaries of Theorems 3.1 and 3.6 after

developing a suitable generalization (Proposition B.5) of the distributional identity [97, Lemma A.2].

Some line-to-point special cases of these bounds have been utilized in some recent articles [23; 53; 86].

Similarly, our path-to-point extensions can be potentially useful in future works.

1G. Related literature. We briefly touch on literature related to exit points, Busemann functions and

competition interfaces, each of which is a major topic of research.

Exit points (as defined in this work) are of interest since they capture geodesic fluctuations and are

also closely connected to geodesic coalescence [85]. An early work concerning exit points is [66] which

rigorously verified the wandering exponent of geodesics as 2
3

for the Poisson LPP. This determines the

correct scale of fluctuations for the geodesic exit points. Starting with articles [9; 30] employing the

coupling approach and with article [19] importing more powerful inputs from integrable probability, an

increasingly refined picture of fluctuations emerged through tail bounds. By now, fluctuation bounds

for geodesic exit points have featured frequently in the literature, often in service of proving some

deeper properties of last-passage times. Some earliest applications of exit point bounds obtain optimal-

order variance bounds [9; 30] through identities such as (2-19) below. Further applications concern the

nonexistence of infinite bigeodesics [14; 22; 58], geodesic coalescence [20; 98; 103], modulus of continuity

[60], temporal correlations [18; 21; 49] and tightness [32; 35; 48; 86] of last-passage times, empirical

distribution of weights along geodesics [76] and mixing times of TASEP on a ring [94], among other topics.

Since the influential works [61; 62; 73], Busemann functions have become a useful instrument in the

study of geodesics in both undirected first-passage percolation (FPP) and directed LPP. For an overview

of the related literature, see the surveys [1; 92]. Following the approach of [80], the existence of the a.s.

Busemann limits in the exponential LPP was first proved in [50] for a deterministic set of fixed directions

of full Lebesgue measure. (See also the earlier work [101] where Busemann functions are constructed

for the Poisson LPP.) The result was subsequently extended to each fixed direction in [41]. The limits

were later established in broad generality in a joint work of the third author [57]. Their result covers LPP

with i.i.d. weights bounded from below and of finite p-th moment for some p > 2, and applies to all

directions except those into the closed (possibly degenerate) flat regions of the shape function with at
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least one boundary direction where the shape function is not differentiable. The lower bound requirement

on the weights was removed afterwards in [63]. See also the discussion in [64, Appendix A].

Competition interface was introduced in [50] in the context of exponential LPP as a notion of a

boundary between competing growth processes. See also the earlier work [59] which studied competition

in exponential FPP. A main significance of the competition interface in the exponential LPP is that it

captures the trajectory of the second-class particle in the associated TASEP [50; 51; 52]. Consequently,

an initial set of results on the competition interface comes from translating the predating TASEP literature

on the second-class particle; see [44; 45; 46; 79; 88; 95], for example. We refer the reader to [51; 52] for

a more detailed account. The competition interface also naturally features in a characterization of the

exceptional directions of noncoalescence in the geometry of the semi-infinite geodesics [64].

Ferrari and Pimentel [50] proved the a.s. existence of the limiting direction of the competition interface

and identified its distribution explicitly. (See also [46; 79] for the corresponding result on the second-class

particle.) The preceding result was extended in [31; 52] to the down-right-path-to-point exponential LPP

assuming that the boundary path has asymptotic directions on both ends. In another direction of gen-

eralization, [56] proved the a.s. convergence for the LPP with general i.i.d. weights on Z
2
>0 under the

assumptions that the weights are bounded from below and have continuous distributions of finite p-th

moment for some p > 2, and the shape function is differentiable at the endpoints of its linear segments.

The lower bound assumption on the weights was later eliminated in [63]. Although it is not within the

focus of the present work, the fluctuations of the competition interface around its limiting direction, and the

related fluctuations of the second-class particle have also received renewed attention recently; see [47; 53].

1H. Organization of the paper. Section 2 defines the exponential LPP model, its geodesics and exit

points, and the increment-stationary version. The key generating function identity is in Proposition 2.1.

Section 3 records the main results, namely, matching upper and lower bounds on fluctuations of exit points.

Section 4 collects some applications of the main bounds to transversal fluctuations of bulk geodesics, and to

speed of distributional convergence to Busemann functions and the limiting competition interface direction.

Sections 5 and 6 contain the proofs. Appendix A contains auxiliary technical results for LPP with arbitrary

real weights. Appendix B extends our main bounds to certain path-to-point LPP processes, and relates

our work to the recent exit point bounds from [53; 86]. Appendix C contains some basic estimates.

Notation and conventions. Let ∅ denote the empty set and define min∅ D inf∅ D 1 and max∅ D
sup∅ D �1. Let Z and R denote the sets of integers and reals, respectively. For A � R, x 2 R and

relation � 2 f�; >;�; <g, let A�x D fa 2 A W a� xg. For example, Z>0 denotes the positive integers.

Define Œn�D f1; 2; : : : ; ng for n 2 Z>0 and Œ0�D ∅. For x 2 R, let xC D maxfx; 0g and x� D .�x/C.

Also, let bxc D sup Z�x and dxe D inf Z�x . Our convention is that R
0 D R

Œ0� D R
∅ D f∅g.

For a finite sequence � D .�i /i2Œn� in Z
2, `.�/D n indicates the number of terms in (the length of) � .

We refer to the set f�i W i 2 Œn�g also as � .

For any subset A� S of an arbitrary space S , the indicator function 1A W S ! f0; 1g equals 1 on A

and 0 on the complement S XA. The cardinality of A is denoted by #A.

Let X � Exp.�/ for �> 0 mean X is a rate � exponential random variable with the mean E.X/D ��1
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and the moment generating functionE.etX /D�.t��/�1
1ft<�gC11ft��g for t 2 R. Also, Y ��Exp.�/

means that �Y � Exp.�/. If X � Exp.�/ and Y � �Exp.�/ are independent, the distribution of X CY

is denoted by Exp.�/� Exp.�/.

The same name (e.g., C0; c0) may refer to different constants that appear in various steps within a proof.

2. Exit points in exponential last-passage percolation

This section contains a precise description of the model and the main tools utilized for its treatment in the

present work.

2A. Last-passage times with exponential weights. Given parameters w > 0 and z < 1, consider indepen-

dent random weights f y!w;z.i; j / W i; j 2 Z�0g such that y!w;z.0; 0/D 0, and

y!w;z.i; j /�

8
<
:

Exp.1/ if i; j > 0;
Exp.w/ if i > 0; j D 0;
Exp.1� z/ if i D 0; j > 0:

(2-1)

These weights can be coupled through a single collection f�.i; j / W i; j 2 Z�0g of i.i.d. Exp.1/-distributed

random real numbers by setting

y!w;z.i; j /D �.i; j /

�
1fi;j >0g C 1fi>0;j D0g

w
C 1fiD0;j >0g

1� z

�
for i; j 2 Z�0: (2-2)

The boundary rates in (2-1) are chosen so that the case w D z gives rise to the increment-stationary LPP

process to be discussed in Section 2C.

Let P denote the probability measure on the sample space of the �-variables, and E denote the

corresponding expectation.

Throughout, we employ the following notational conventions with respect to (2-2) and various quantities

defined from these weights. We drop one z from the superscript when w D z ( y!z D y!z;z), and omit w

when j > 0 since there is no dependence on w in that case. Similarly, z is omitted when i > 0. Finally,

to distinguish the bulk weights (those on Z
2
>0), we also remove the hat from the notation and write

!.i; j /D y!w;z.i; j / when i; j > 0.

A finite sequence � D .�/k2Œ`.�/� in Z
2 is called an up-right path if �kC1 ��k 2 f.1; 0/; .0; 1/g for

k2 Œ`.�/�1�. Let…m;n
p;q denote the set of all up-right paths � from �1 D .p; q/2Z

2 to �`.�/ D .m; n/2Z
2.

For .m; n/; .p; q/ 2 Z
2
�0, introduce the last-passage time from .p; q/ to .m; n/ by

yGw;z
p;q .m; n/D max

�2…
m;n
p;q

X

.i;j /2�

y!w;z.i; j /: (2-3)

The case m; n; p; q > 0 of (2-3) defines the bulk last-passage times

Gp;q.m; n/D yGw;z
p;q .m; n/D max

�2…
m;n
p;q

X

.i;j /2�

!.i; j /: (2-4)

For often-used initial points we abbreviate yGw;z.m; n/D yGw;z
0;0 .m; n/ and G.m; n/D G1;1.m; n/.
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A maximizing path � 2…m;n
p;q in (2-3) (and in (2-4)) is called a geodesic (or y!w;z-geodesic to indicate

the weights) from .p; q/ to .m; n/. Since the marginal distributions of y!w;z given in (2-1) are continuous,

when p�m and q � n, a.s. there exists a unique geodesic �w;z
p;q .m; n/2…m;n

p;q (also denoted by �m;n;w;z
p;q

as convenient).

2B. Exit points of geodesics from down-right paths. A down-right path is a finite sequence � D
.�k/k2Œ`.�/� in Z

2 such that �kC1 � �k 2 f.1; 0/; .0;�1/g for k 2 Œ`.�/� 1�. A frequent special case for

the sequel is when � is the L-shaped path Lm;n
p;q from �1 D .p; n/ to �`.�/ D .m; q/ such that .p; q/ 2 �

for some .m; n/; .p; q/ 2 Z
2 with p �m and q � n.

Let � be an up-right path and � be a down-right path. If � \ � ¤ ∅ then define the exit point Z�;� of

� from � as the unique index k0 2 Œ`.�/� such that

�k0
D �l0

; where l0 D maxfl 2 Œ`.�/� W �l 2 �g: (2-5)

In other words, �Z�;�
is the last vertex of � on �. See Figure 1.

Fix a base vertex �b D .i0; j0/ on � for some b 2 Œ`.�/�. We represent the exit point also relative to

.i0; j0/ by

Z�

�;�;i0;j0
D .Z�;� � b/� for both signs � 2 fC;�g: (2-6)

For all paths �; � and base points �b 2 �, this quantity is zero for at least one choice of sign � 2 fC;�g.

To guarantee the existence of exit points, paths are restricted in the sequel as follows. With .p; q/D�1,

assume that �`.�/ 2 fug � Z�q and �1 2 Z�p � fvg for some u; v 2 Z. Necessarily, u� p and v � q. Let

V� denote the set of all vertices .m; n/ 2 Z�u � Z�v such that

m� i and n� j for some .i; j / 2 �: (2-7)

Then, under the further assumption that �`.�/ 2 V� , the intersection � \ � ¤ ∅ as required for the

definition of Z�;� . Figure 1 illustrates this.

Assume now that � � Z
2
�0. For each .m; n/ 2 V� and the choice of the sign � 2 fC;�g, define the

(maximal) exit point from � of y!w;z-geodesics in …m;n
0;0 by

Zw;z;�
�;i0;j0

.m; n/D maxfZ�

�;�;i0;j0
W � 2…m;n

0;0 is a y!w;z-geodesicg a.s.D Z�

�
w;z
0;0 .m;n/;�;i0;j0

: (2-8)

These are our main objects of study. Definition (2-8) makes sense since � \� ¤ ∅ for each � 2…m;n
0;0 by

the restriction on �. The second equality above is due to the a.s. uniqueness of the geodesic �w;z
0;0 .m; n/.

When �DLDL
u;v
i0;j0

is the L-shaped path with lower left base vertex �b D .i0; j0/ (where bDv�j0C1),

(2-8) simplifies to

Zw;z;C
L;i0;j0

.m; n/
a.s.D

�
maxfk 2 Z�0 W .i0 C k; j0/ 2 �w;z

0;0 .m; n/g
�C
;

Zw;z;�
L;i0;j0

.m; n/
a.s.D

�
maxfk 2 Z�0 W .i0; j0 C k/ 2 �w;z

0;0 .m; n/g
�C
: (2-9)

To distinguish the case i0 D j0 D 0 where L lies on the coordinate axes and contains the origin, we
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because the weights are nonnegative and !z.0; 1/� Exp.1� z/. Likewise, the left-hand side is infinite if

z � 0 and m> 0. Finally, if either mD 0 or nD 0 then the left-hand side reduces to the l.m.g.f. of the

sum of i.i.d. exponentials.

Remark 2.3. A more general form of Proposition 2.1 appeared in a preprint of Rains [91, Corollar-

ies 3.3–3.4]. His version covers mixtures of the exponential and Poisson LPP, and mixtures of the

geometric and Bernoulli LPP, and allows some inhomogeneity in parameters. Two proofs for the identity

are provided in [91], both of which ultimately rely on exact determinantal formulas for the distribution of

the last-passage times developed in [3]. The short argument above extends readily to the inhomogeneous

exponential and geometric LPP but we have not attempted to verify this in the full setting of [91]. Since

the initial appearance of this work, versions of Proposition 2.1 have been proved also in some integrable

polymer models [70; 71; 102] as well as for a nonintegrable model of interacting diffusions [71] that

generalizes the O’Connell–Yor polymer.

Remark 2.4. The variance identity of Balázs–Cator–Seppäläinen [9, Lemma 4.6] can be recovered from

Proposition 2.1. We give a formal calculation which can be made rigorous. Exponentiating, multiplying

through by expf�.w� z/Mzg and Taylor expanding lead to

expfLw;z � .w� z/Mzg D E
�
expf.w� z/.yGw;z � Mz/g

�
D

1X

pD0

.w� z/p
pŠ

� E Œ.yGw;z � Mz/p�;

where the vertex .m; n/ is dropped for brevity. Differentiating twice with respect to w and setting w D z

yield

@w jwDzfMw.m; n/g D 2@w jwDzfE ŒyGw;z.m; n/�g C VarŒyGz.m; n/�

on account of the identity @wLw;z D Mw . Hence, with the left-hand side above written explicitly, one

obtains that

VarŒyGz.m; n/�D �m
z2

C n

.1� z/2 � 2@w jwDzfE ŒyGw;z.m; n/�g: (2-18)

This identity essentially appears within the proof of [9, Lemma 4.6]. The argument there computes the

derivative in (2-18) in terms of the exit point, which results in the final form of the variance identity

VarŒyGz.m; n/�D �m
z2

C n

.1� z/2 C 2

z
� E

� Zz;hor.m;n/X

iD0

y!z.i; 0/

�
: (2-19)

The analogue of (2-19) for the Poisson LPP was previously observed in [30, Theorem 2.1]. An early

analogous identity relating the variance of the particle current to the expected position of the second-class

particle in TASEP appeared in [45]. Balász and Seppäläinen [7] generalized such identities to a broader

class of stochastic particle processes.

3. Main fluctuation bounds for exit points

We present our main results on the exit points. Theorems 3.1 and 3.6 below provide upper and lower fluctu-

ation bounds in suitable regimes for the right tail of the exit points in (2-8). A key point is that these bounds
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capture the correct cubic-exponential order of decay and are derived from the stationarity feature (2-13)

without integrable probability. Alternative formulations of the same results in terms of increment-stationary

down-right-path-to-point exponential LPP are included in Appendix B as Propositions B.6 and B.7.

To ensure the uniformity of various bounds, vertices are often restricted to the cone

Sı D f.x; y/ 2 R
2
>0 W x � ıy and y � ıxg (3-1)

for some fixed ı > 0.

3A. Main upper bounds. The following theorem gives right-tail upper bounds on the exit point where

the geodesic �w;z
0;0 .mC i0; nC j0/ leaves a down-right path �, relative to the base vertex .i0; j0/ on �.

The increment-stationary case is the one with w D z. Figure 4 illustrates the statement. The set V� was

defined at (2-7).

Theorem 3.1. Fix ı > 0. There exist finite positive constants c0 D c0.ı/, �0 D �0.ı/ and N0 D N0.ı/

such that the following statements hold whenever w > 0, z < 1, .m; n/ 2 Sı \ Z
2
�N0

, s � .mC n/�2=3,

.i0; j0/ 2 Z
2
�0, and � is a down-right path on Z

2
�0 with .i0; j0/ 2 � and .mC i0; nC j0/ 2 V� :

(a) If minfw; zg � �.m; n/� �0s.mCn/�1=3 then

P
˚
Zw;z;C

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�c0 minfs3; mCngg:

(b) If maxfw; zg � �.m; n/C �0s.mCn/�1=3 then

P
˚
Zw;z;�

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�c0 minfs3; mCngg:

Remark 3.2. Assume further that `.�/ � C.mC n/ for some constant C > 0. Then the probabilities

above vanish for s >C.mCn/1=3. Therefore, the bounds in the theorem can be replaced with expf�c1s
3g

where c1 D c0 minfC�3; 1g.

The following corollary for the L-shaped down-right path on the coordinate axes strengthens an exit

point bound from the earlier version of this article [42, Theorem 2.5]. A similar bound also appeared

independently in [25, Theorem 2.5].

Corollary 3.3. Fix ı > 0. There exist finite positive constants c0 D c0.ı/, �0 D �0.ı/ and N0 D N0.ı/

such that the following statements hold whenever w > 0, z < 1, .m; n/ 2 Sı \Z
2
�N0

and s � .mCn/�2=3:

(a) If minfw; zg � �.m; n/� �0s.mCn/�1=3 then

P
˚
Zw;z;hor.m; n/ > s.mCn/2=3

	
� expf�c0s

3g:

(b) If maxfw; zg � �.m; n/C �0s.mCn/�1=3 then

P
˚
Zw;z;ver.m; n/ > s.mCn/2=3

	
� expf�c0s

3g:

Proof. Apply Theorem 3.1 with .i0; j0/D .0; 0/ and � DL
m;n
0;0 . The result then follows from Remark 3.2

since `.�/DmCnC 1� 2.mCn/. �
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whenever .m; n/2Sı \Z
2
>0 and 0� s� �.mCn/1=3 for some constants C0 DC0.ı/>0 and �D �.ı/>0.

The leading order term in (3-2) arises from some optimal choices in the proof. See Remark 5.2 for more

details. We do not know whether the constant �1
6

is indeed sharp.

3C. Main lower bounds. The next theorem states the lower bounds complementary to Theorem 3.1.

Note that, unlike the situation in Theorem 3.1, the s parameter is now bounded from below by some fixed

� > 0 and the constants N0 and C0 depend on �.

Theorem 3.6. Fix ı > 0, � > 0 and K � 0. There exist finite positive constants c0 D c0.ı;K/, C0 D
C0.ı; �;K/ and N0 DN0.ı; �;K/ such that the following statements hold whenever .m; n/ 2 Sı \ Z

2
�N0

,

s 2 Œ�; c0.mCn/1=3�, w > 0, z < 1, .i0; j0/ 2 Z
2
�0, and � is a down-right path on Z

2
�0 with .i0; j0/ 2 �

and .mC i0; nC j0/ 2 V� :

(a) If maxfw; zg � �.m; n/CKs.mCn/�1=3 then

P
˚
Zw;z;C

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�C0s

3g:

(b) If minfw; zg � �.m; n/�Ks.mCn/�1=3 then

P
˚
Zw;z;�

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�C0s

3g:

The special case of Theorem 3.6 where .i0; j0/D .0; 0/ and � D L
m;n
0;0 gives the lower bounds that

match the upper bounds in Corollary 3.3.

Corollary 3.7. Fix ı > 0, � > 0 and K � 0. There exist finite positive constants c0 D c0.ı;K/, C0 D
C0.ı; �;K/ and N0 DN0.ı; �;K/ such that the following statements hold whenever .m; n/ 2 Sı \ Z

2
�N0

,

s 2 Œ�; c0.mCn/1=3�, w > 0 and z < 1:

(a) If maxfw; zg � �.m; n/CKs.mCn/�1=3 then

P
˚
Zw;z;hor.m; n/ > s.mCn/2=3

	
� expf�C0s

3g:

(b) If minfw; zg � �.m; n/�Ks.mCn/�1=3 then

P
˚
Zw;z;ver.m; n/ > s.mCn/2=3

	
� expf�C0s

3g:

Remark 3.8. The result implies the following lower bound in the increment-stationary case: given ı > 0

and � > 0, there exist positive constants c0 D c0.ı/, C0 D C0.ı; �/ and N0 DN0.ı; �/ such that

P
˚
maxfZz;hor.m; n/;Zz;ver.m; n/g> s.mCn/2=3

	
� expf�C0s

3g (3-3)

whenever .m; n/ 2 Sı \ Z
2
�N0

, z 2 .0; 1/ and s 2 Œ�; c0.mCn/1=3�. This bound has essentially the same

content as a recent result in [98, Theorem 4.1] that was also proved without integrable probability, by an

adaptation of a change-of-measure argument from [8; 97]. Our proof of Theorem 3.6 is in a similar spirit.
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3D. Lower bounds for the first step probabilities. The next result gives lower bounds complementing

the upper bounds in Proposition 3.4. The result serves as a main step in our proof of Theorem 3.6.

Proposition 3.9. Fix ı > 0 and � > 0. There exist finite positive constants C0 D C0.ı; �/, �0 D �0.ı/

and N0 D N0.ı; �/ such that the following statements hold for .m; n/ 2 Sı \ Z
2
�N0

and z 2 .0; 1/ with

jz� �j � �0 where � D �.m; n/:

(a) If z � �C �.mCn/�1=3 then

PfZz;hor.m; n/ > 0g � expf�C0.mCn/.z� �/3g:

(b) If z � � � �.mCn/�1=3 then

PfZz;ver.m; n/ > 0g � expf�C0.mCn/.� � z/3g:

4. Applications of main exit point bounds

We apply some results from Section 3 to obtain fluctuation upper bounds for the geodesics in the bulk,

and speed bounds for the distributional convergence of the LPP increments and the competition interface

direction.

4A. Exit point upper bounds for geodesics in the bulk. In our framework, by virtue of the identity

fyG1;0.m; n/ W .m; n/ 2 Z
2
�0g dist.D fG.mC 1; nC 1/�!.1; 1/ W .m; n/ 2 Z

2
�0g; (4-1)

bounds on transversal fluctuations of bulk geodesics can be expressed as right-tail bounds for the exit

points in (2-8) when w D 1 and z D 0. The exit point bounds from Section 3 do not apply in this case

due to the restrictions there on the parameters. Nevertheless, utilizing the ordering of geodesics with

a common endpoint, the upper bound in Theorem 4.1 below can be deduced from Theorem 3.1 and

Proposition 3.4 in a fairly straightforward manner.

Theorem 4.1. Fix ı > 0. There exist finite positive constants c0 D c0.ı/; �0 D �0.ı/; N0 D N0.ı/ and

s0 D s0.ı/ such that

P
˚
Z1;0;�

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�c0 minfs3; mCngg

whenever � 2 fC;�g, s � s0, .m; n/ 2 Sı \ Z
2
�N0

, .i0; j0/ 2 Z
2
�0 subject to

j�.mC i0 C 1; nC j0 C 1/� �.m; n/j � �0s.mCn/�1=3; (4-2)

and � is a down-right path in Z
2
�0 with .i0; j0/ 2 � and .mC i0; nC j0/ 2 V� .

Remark 4.2. Note from (2-16) that the left-hand side of (4-2) equals zero if and only if the vertices .0; 0/,

.m; n/ and .mCi0C1; nCj0C1/ are colinear. On the grounds of this and the continuity of the function �,

condition (4-2) can be interpreted as indicating the approximate collinearity of the preceding vertices.
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Remark 4.3. Uniform bounds similar to [28, Theorem 2.8] but weaker by a logarithmic factor can

be readily obtained from Theorem 4.1 via the union bound. To demonstrate, let .x; y/ 2 Sı and

.pk; qk/D .bkxc; bkyc/ for k 2 Z�0. Pick N 2 Z>0, and consider the L-shaped paths Lk;N D L
pN ;qN

pk ;0

for k 2 ŒN �[ f0g. Theorem 4.1 implies the existence of positive constants c0; N0 and s0 depending only

on ı such that

P
˚
Z1;0;C

Lk;N ;pk ;qk
.pN ; qN / > tk.N � k/2=3 for N �M � k �N �N0

	
�

N �N0X

kDN �M

expf�c0t
3
k g

whenever M 2 ŒN � with M � N0 and tk � s0 for N � M � k � N � N0. In particular, setting

tk D s.logM/1=3 above for some s � s0, and choosing s0 and N0 sufficiently large yields

P
˚
Z1;0;C

Lk;N ;pk ;qk
.pN ; qN / > s.logM/1=3.N � k/2=3 for N �M � k �N �N0

	
� expf�c0s

3 logM g

after renaming the constant c0.

4B. Speed of the distributional convergence to Busemann functions. We now turn to an application of

Proposition 3.4 to bound from above the speed of distributional convergence of the bulk LPP increments

to the Busemann functions.

Denote the increments of the bulk LPP process with respect to the initial point by

Bhor
i;j .m; n/D Gi;j .m; n/� GiC1;j .m; n/;

Bver
i;j .m; n/D Gi;j .m; n/� Gi;j C1.m; n/ (4-3)

for m; n 2 Z>0, i 2 Œm� and j 2 Œn�. By definition (2-4) (and the convention that max∅ D �1), these

increments are equal to C1 when i Dm and j D n, respectively.

It is known [41; 50] that, for any given direction vector .x; y/2 R
2
>0, there exists a stationary stochastic

process fbhor
i;j .x; y/; b

ver
i;j .x; y/ W i; j 2 Z>0g and an event of full probability on which the limits

lim
N !1

Bhor
i;j .mN ; nN /D bhor

i;j .x; y/ and lim
N !1

Bver
i;j .mN ; nN /D bver

i;j .x; y/ (4-4)

hold for all .i; j / 2 Z
2
>0 and sequences f.mN ; nN /gN �1 � Z

2
>0 such that minfmN ; nN g ! 1 and

mN =nN ! x=y. The limits (4-4) are examples of Busemann functions evaluated, respectively, at pairs

..i; j /; .i C 1; j // and ..i; j /; .i; j C 1// of adjacent vertices.

The following distributional properties of the Busemann functions were obtained in [31, Lemma 3.3].

The marginal distributions are given by

bhor
i;j .x; y/� Expf�.x; y/g and bver

i;j .x; y/� Expf1� �.x; y/g (4-5)

for .i; j /2 Z
2
>0 and .x; y/2 R

2
>0. Furthermore, for any down-right path � in Z

2
>0 (recalling the definition

of R� and D� in (2-11)) the collection

fbhor
�i
.x; y/ W i 2R�g [ fbver

�j
.x; y/ W j 2D�g (4-6)
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is jointly independent. Comparing with (2-12), one recognizes that the Busemann functions in (4-6) have

the same joint distribution as the (absolute) increments of the yGz-process along �, namely, the collection

fyGz.�iC1/� yGz.�i / W i 2R�g [ fyGz.�j �1/� yGz.�j / W j 2D�g when z D �.x; y/.

For each p; q 2 Z�0 and z 2 .0; 1/, introduce the functions fz;hor
p;q ; fz;ver

p;q W R
p � R

q ! Œ0; 1� by

fz;hor
p;q .s; t/D

Y

i2Œp�

expf�s�
i zg

Y

j 2Œq�

.1� expf�tCj .1� z/g/;

fz;ver
p;q .s; t/D

Y

i2Œp�

.1� expf�sC
i zg/

Y

j 2Œq�

expf�t�j .1� z/g (4-7)

for sD .si /i2Œp� 2 R
p and t D .tj /j 2Œq� 2 R

q . Suppose pD #R� and qD #D� equal the number of down

and right steps in �. Then the functions fz;ver
p;q and fz;hor

p;q give two representations of the joint distribution

of the increments .yGz.�kC1/� yGz.�k//k2Œ`.�/�1�. Indeed, by definition (4-7) and (2-12),

fz;ver
p;q .s; t/D P

˚
y!z

i;0 � si for i 2 Œp� and y!z
0;j � �tj for j 2 Œq�

	

D P
˚yGz.�ri C1/� yGz.�ri

/� si for i 2 Œp� and yGz.�dj
/� yGz.�dj �1/� tj for j 2 Œq�

	
;

where .ri /i2Œp� and .dj /j 2Œq� denote the elements of R� and D� in increasing order. Similarly, fz;hor
p;q

gives the joint distribution of the reversed increments .yGz.�k/� yGz.�kC1//k2Œ`.�/�1�. In particular, from

the discussion in the preceding paragraph, one has

f�.x;y/;hor
p;q .s; t/D P

˚
bhor

�ri
.x; y/� �si for i 2 Œp� and bver

�dj
.x; y/� tj for j 2 Œq�

	
;

f�.x;y/;ver
p;q .s; t/D P

˚
bhor

�ri
.x; y/� si for i 2 Œp� and bver

�dj
.x; y/� �tj for j 2 Œq�

	
: (4-8)

Let m; n 2 Z>0 be sufficiently large such that m� u and n� v for any .u; v/ 2 � . In the same vein as

in (4-8), define the prelimiting functions Fm;n;hor
� ;Fm;n;ver

� W R
p � R

q ! Œ0; 1� by

Fm;n;hor
� .s; t/D P

˚
Bhor

�ri
.m; n/� �si for i 2 Œp� and Bver

�dj
.m; n/� tj for j 2 Œq�

	
;

Fm;n;ver
� .s; t/D P

˚
Bhor

�ri
.m; n/� si for i 2 Œp� and Bver

�dj
.m; n/� �tj for j 2 Œq�

	
(4-9)

for s 2 R
p and t 2 R

q . In light of (4-4), (4-5) and (4-6), for fixed � and .x; y/,

lim
N !1

FdNxe;dNye;�
� .s; t/D f �.x;y/;�

p;q .s; t/ for each s 2 R
p; t 2 R

q and � 2 fhor; verg: (4-10)

A natural problem is then the speed of convergence. The next result provides some bounds in this direction.

Theorem 4.4. Let ı > 0 and � > 0. There exist constants N0 DN0.ı; �/ > 0 and C0 D C0.ı/ > 0 such

that

jFm;n;hor
� .s; t/� f�.m;n/;hor

p;q .s; t/j � C0.1C 1fq�1g log q/

�
log.mCn/

.mCn/

�1=3

;

jFm;n;ver
� .s; t/� f�.m;n/;ver

p;q .s; t/j � C0.1C 1fp�1g logp/

�
log.mCn/

.mCn/

�1=3

whenever .m; n/2 Sı \Z
2
�N0

, � is a down-right path contained in Œ1; �.mCn/2=3�2, pD #R� , qD #D� ,

s 2 R
p and t 2 R

q .
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Remark 4.5. Let us compare Theorem 4.4 with a related previous result from [15]. Let � > 0, N 2 Z>0

and RN D Z
2
>0 \ Œ0; �N 2=3�2. Consider the total variation distance between the joint distributions of the

two collections

fB�

i;j .N;N / W .i; j;�/ 2RN � fhor; vergg and fb�

i;j .1; 1/ W .i; j;�/ 2RN � fhor; vergg:

Theorem 2.1 in [15] shows that this distance is at most C�3=8 for all � � c and N � 1 for some positive

constants c and C . (Their result covers all directions not just .1; 1/). The total variation is stronger as

a metric than the c.d.f. distance, which is the notion of distance considered in Theorem 4.4. Therefore,

taking � DN�2=3 above yields

jPfB�

1;1.N;N /� xg � Pfb�

1;1.N;N /� xgj � CN�1=4 for x 2 R and � 2 fhor; verg:

This is weaker than the order .logN/1=3N�1=3 bound provided by Theorem 4.4.

Remark 4.6. Our expectation is that the upper bounds of Theorem 4.4 are optimal up to logarithmic

factors but we are unable to verify this at the moment. We are also unaware of any lower bounds for

the speed of convergence to the Busemann functions in any LPP setting. It would be nice to have lower

bounds complementary to Theorem 4.4; we leave this interesting problem as a topic of future works.

4C. Speed of the distributional convergence of the competition interface direction. We describe one

more application of Proposition 3.4, of a flavor similar to Theorem 4.4. This time we bound from above

the speed of distributional convergence of the competition interface to its limiting direction.

For the definitions in this section, restrict to the full probability event on which the geodesic �m;n

from .1; 1/ to .m; n/ is unique for all m; n 2 Z>0. Partition Z
2
>0 X f.1; 1/g into the subsets

T
hor D f.m; n/ 2 Z

2
>0 W .2; 1/ 2 �m;ng D f.m; n/ 2 Z

2
>0 W G2;1.m; n/ > G1;2.m; n/g; (4-11)

T
ver D f.m; n/ 2 Z

2
>0 W .1; 2/ 2 �m;ng D f.m; n/ 2 Z

2
>0 W G2;1.m; n/ < G1;2.m; n/g: (4-12)

As a consequence of planarity and the uniqueness of geodesics, the sets above enjoy the structure

.k; l/ 2 T
hor implies that Z�k � Œl �� T

hor; (4-13)
.k; l/ 2 T

ver implies that Œk�� Z�l � T
ver: (4-14)

See Figure 5.

The competition interface is a notion of a boundary between T hor and T ver introduced by P. A. Ferrari

and L. Pimentel in [50]. One precise definition of it is as the unique sequence ' D .'n/n2Z>0
D

.'hor
n ; 'ver

n /n2Z>0
in Z

2
>0 such that, for all n 2 Z>0,

.'hor
n C 1; 'ver

n / 2 T
hor; .'hor

n ; 'ver
n C 1/ 2 T

ver and 'hor
n C'ver

n D nC 1: (4-15)

The existence and uniqueness of ' can be seen from properties (4-13)–(4-14). The original definition

from [50] describes the competition interface recursively as follows:

'hor
1 D 1; 'hor

n D 'hor
n�1 C 1fG.'hor

n�1 C 1; 'ver
n�1/ < G.'hor

n�1; '
ver
n�1 C 1/g; (4-16)

'ver
1 D 1; 'ver

n D 'ver
n�1 C 1fG.'hor

n�1 C 1; 'ver
n�1/ > G.'hor

n�1; '
ver
n�1 C 1/g (4-17)
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The geodesic �w;z
0;0 .m; n/ is a.s. unique for each .m; n/ 2 Z

2
�0. On this event of probability one, define

y'w;z as the unique sequence in Z
2
�0 such that

.y'w;z;hor
n C 1; y'w;z;ver

n / 2 yT w;z;hor; .y'w;z;hor
n ; y'w;z;ver

n C 1/ 2 yT w;z;ver;

y'w;z;hor
n C y'w;z;ver

n D n for n 2 Z�0: (4-20)

Definition (4-20) coincides with (4-15) for w D 1 and z D 0 in the sense that the sequences .y'1;0
n /n2Z�0

and .'nC1 � .1; 1//n2Z�0
are equal in distribution.

For any w 2 .0; 1� and z 2 Œ0; 1/, the limit distribution of y'w;z has also been computed explicitly [52,

Theorem 2], and is given by

lim
n!1

Pfy'w;z;hor
n � nxg D 1fw > zg

w� z
�
minfw; �.x; 1� x/g � minfz; �.x; 1� x/g

�

C 1fw � zg1f�.x; 1� x/ > �w;zg for x 2 Œ0; 1�

except at the point of discontinuity �.x; 1� x/D �w;z D �.wz; .1�w/.1� z// in the case w � z.

The next result provides matching-order upper and lower speed bounds for the distributional convergence

of y'z in the equilibrium case w D z. The main point is to contrast the cubic-exponential decay below

with the cube-root decay in Theorem 4.7. It would be nice to have optimal-order speed bounds for the full

range of the w and z parameters illuminating the transition in the speed of convergence from cube-root to

cubic-exponential decay. We leave this to future works.

Theorem 4.8. Fix ı > 0 and � > 0. The following statements hold for all x 2 Œı; 1� ı� and z 2 .0; 1/
subject to the indicated assumptions:

(a) There exist positive constants c0 D c0.ı/ and A0 D A0.ı/ such that

ˇ̌
Pfy'z;hor

n � nxg � 1f�.x; 1� x/ > zg
ˇ̌
� exp

˚
�c0nj�.x; 1� x/� zj3

	
;

whenever n 2 Z>0 and j�.x; 1� x/� zj � A0n
�1.

(b) There exist positive constants �0 D �0.ı/, C0 D C0.ı; �/ and N0 DN0.ı; �/ such that

ˇ̌
Pfy'z;hor

n � nxg � 1f�.x; 1� x/ > zg
ˇ̌
� exp

˚
�C0nj�.x; 1� x/� zj3

	
;

whenever n 2 Z�N0
and j�.x; 1� x/� zj 2 Œ�n�1=3; �0�.

5. Proofs of the exit point bounds

We begin to prove our main results. This part is divided into Sections 5A–5E devoted to the proofs of

Proposition 3.4, Theorem 3.1, Proposition 3.9, and Theorems 3.6 and 4.1, respectively. The proofs of

Theorems 4.4, 4.7 and 4.8 will appear in Section 6.

5A. Proof of the upper bounds for the first step probabilities. For the proof of Proposition 3.4, let us

first record a suitable Taylor approximation of the l.m.g.f. in (2-17). From definitions (2-14) and (2-17),

one has the identity

Lw;z.x; y/D
Z w

z

Mt .x; y/ dt for w; z 2 .0; 1/ with w � z and x; y 2 R�0: (5-1)
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Define the function

�.x; y/D
�


.x; y/

�.x; y/.1� �.x; y//

�1=3

D .
p
xC p

y /4=3

x1=6y1=6
for x; y 2 R>0: (5-2)

This is connected to (2-14) through

�.x; y/3 D 1
2
@2

zjzD�.x;y/fMz.x; y/g for x; y 2 R>0: (5-3)

Lemma 5.1. Let x; y 2 R>0 and w; z 2 .0; 1/ with w � z. Abbreviate 
 D 
.x; y/, � D �.x; y/ and

� D �.x; y/. Fix ı > 0 and � > 0. There exists a constant C0 D C0.ı; �/ > 0 such that

ˇ̌
Lw;z.x; y/� .w� z/
 � 1

3
�3f.w� �/3 � .z� �/3g

ˇ̌
� C0.xCy/f.w� �/4 C .z� �/4g

whenever .x; y/ 2 Sı and w; z 2 .�; 1� �/.

Proof. This follows from (5-1) and Lemma C.2. �

Proof of Proposition 3.4. By symmetry, it suffices to prove (a). Assume z > � and write �D 1
4
.z� �/ > 0.

In the computations below, the arguments of the LPP values and various functions are fixed at the vertex

.m; n/ and omitted. Using definitions (2-3) and (2-10), monotonicity, the Cauchy–Schwarz inequality

and Proposition 2.1, one arrives at

PfZz;hor > 0g D PfyGz
1;0 � yGz

0;1g � PfyGz�2�
1;0 � yGz

0;1g
D E

�
expf�yGz�2�

1;0 ��yGz�2�;zg1fyGz�2�
1;0 � yGz

0;1g
�

� E Œexpf�yGz�2�
1;0 ��yGz�2�;zg�

� E Œexpf2�yGz�2�
1;0 g�1=2

E Œexpf�2�yGz�2�;zg�1=2

D E Œexpf2�yGz�2�
1;0 g�1=2 exp

˚
1
2

Lz�2�;z
	

� E Œexpf2�yGz�2�;z�4�g�1=2 exp
˚

1
2

Lz�2�;z
	

D exp
˚

1
2

Lz�2�;z�4� C 1
2

Lz�2�;z
	

D exp
˚

1
2

Lz�2�;z�4� � 1
2

Lz;z�2�
	
: (5-4)

The minus sign in the final step comes from switching the order of the parameters z � 2� and z in the

superscript; see definition (2-17).

Since .m; n/ 2 Sı , the last exponent in (5-4) can be bounded by means of Lemmas 5.1 and C.1 as

follows (see Figure 6): for some constants C0; c0; � > 0 depending only on ı,

Lz�2�;z�4� � Lz;z�2� D L�C2�;� � L�C4�;�C2�

�
�
2�
 C 1

3
8�3�3

�
�

�
2�
 C 1

3
.64�3 � 8�3/�3

�
CC0.mCn/�4

D �16�3�3 CC0.mCn/�4

� �2c0.mCn/�3 CC0.mCn/�4

� �c0.mCn/�3

provided that �� �. This completes the proof in the case �� �.





634 ELNUR EMRAH, CHRISTOPHER JANJIGIAN AND TIMO SEPPÄLÄINEN

(a) If Z�

�;�;i0;j0
> r then b � r 2 Œ`.�/� and Z�

�;L;ir ;jr
> 0 where .ir ; jr/D �b�r and LD L

m;n
ir ;jr

.

(b) If b � r 2 Œ`.�/� and Z�

�;L;ir ;jr
> 0 where ir ; jr and L are as in (a) then Z�

�;�;i0;j0
� r .

Proof. By symmetry, it suffices to verify the claims for � D C.

To obtain (a), assume that ZC
�;�;i0;j0

> r . By definition (2-6), Z�;� D b C s for some s > r with

b C s 2 Œ`.�/�. Since � is down-right, writing .is; js/ D �bCs , one has ir � is � m and js � jr � n.

Therefore, and also because � is up-right and contains f.is; js/; .m; n/g, � also contains .u; jr/ for some

u2 Z\Œis; m�. If uD ir then necessarily ir D is and the vertical segment f.ir ; j / W j 2 Z\Œjs; jr �g ��\�
but this contradicts the present assumption that � exits � at .is; js/¤ .ir ; jr/. Hence, u > ir . Then, by

definition (2-6), ZC
�;L;ir ;jr

> 0 as claimed.

Now we prove (b). Assume that b C r 2 Œ`.�/� and ZC
�;L;ir ;jr

> 0. Then .v; jr/ 2 � for some

v 2 Z\ Œir C1;m� by (2-6). Because � is up-right path with f.p; q/; .v; jr/g � � while � is a down-right

path with .ir ; jr/ 2 � and �`.�/ 2 fmg � Z, from the inequalities p � ir � v � m, one concludes that

�bCt D .it ; jt / 2 � for some t � r with bC t 2 Œ`.�/�. Due to the strict inequality v > ir and that � is

up-right with .v; jr/ 2 � , one has � \ .firg � Z>jr
/ D ∅. Hence, �k 62 � for k 2 ŒbC r � 1� because

� is down-right and �bCr D .ir ; jr/. Since also .it ; jt / 2 � \ �, it follows from definition (2-5) that

Z�;� � bC r , and therefore ZC
�;�;i0;j0

� r by (2-6). �

Next a monotonicity property for the geodesic exit points defined at (2-8).

Lemma 5.4. The exit points in (2-8) satisfy the following properties for each .m; n/ 2 V� :

(a) Zw;z;C
�;i0;j0

.m; n/ is nonincreasing in w and z.

(b) Zw;z;�
�;i0;j0

.m; n/ is nondecreasing in w and z.

Proof. Note from (2-2) that y!w.i; 0/ is decreasing inw, and y!z.0; j / is increasing in z for each i; j 2 Z>0.

The claimed monotonicities are then special cases of Lemma A.1. �

The following distributional identity connects the exit points from L-shaped paths and to those from

the axes. A statement to the same effect appeared previously in [97, Lemma A.2]. The lemma can also be

derived as a corollary of Proposition B.5.

Lemma 5.5. Let m; n; p; q 2 Z�0, LD L
mCp;nCq
p;q and z 2 .0; 1/. Then

Zz;C
L;p;q.mCp; nC q/

dist.D Zz;hor.m; n/ and Zz;�
L;p;q.mCp; nC q/

dist.D Zz;ver.m; n/:

To establish Theorem 3.1, one needs one more lemma comparing the values of the minimizer (2-16) at

different vertices.

Lemma 5.6. Let x; y 2 R>0 and ı 2 R�0. Then

�.xC ı; y/� �.x; y/D ı.1� �.x; y//
.
p
xC ıC p

y/.
p
xC ıC p

x/
;

�.x; yC ı/� �.x; y/D � ı�.x; y/

.
p
xC

p
yC ı/.

p
yC

p
yC ı/

:
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in (5-6), one obtains that

P
˚
Zz;C

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�c0s

3g (5-8)

for s 2 Œ.mC n/�2=3; c.mC n/1=3� and some constant c0 D c0.ı/ > 0. The bound in (5-8) also holds

trivially when ik >mC i0 or bCk > `.�/ because in both cases the event on the left-hand side is empty.

Assume now that s > c.mCn/1=3. Then, by (5-8),

P
˚
Zz;C

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� P

˚
Zz;C

�;i0;j0
.mC i0; nC j0/ > c.mCn/

	

� expf�c0c
3.mCn/g: (5-9)

Combining (5-8) and (5-9), and redefining c0 suitably (for example, as c0c
3) completes the proof of

part (a). Part (b) is treated similarly. �

5C. Proof of the lower bound for the first step probabilities. The main idea behind the proof of

Proposition 3.9 is a suitable change of the rates on the boundaries. This type of change-of-measure

argument originated in [8] and has been employed recently in [97; 98]. Changing the measure brings in

weights with mixed boundary rates. In our proof, these weights can be defined from the i.i.d. Exp.1/-

distributed weights f�.i; j / W i; j 2 Z�0g by

z!w;z;k.i; j /D �.i; j / �
�
1fi;j >0g C1fj D0g

n
1fi>kg

w
C 1f0<i�kg

z

o
C1fiD0g

n
1fj >kg

1�w C 1f0<j �kg

1�z

o�
(5-10)

for i; j; k 2 Z�0 and w; z 2 .0; 1/. For clarity, let us indicate the last-passage times and exit points defined

from the weights z!w;z;k also with the decoration z and superscript w; z; k as in zZw;z;k;hor, for example.

Proof of Proposition 3.9. We prove only (a) leaving out the similar argument for (b).

Let .m; n/2Sı \Z
2
>0. By Lemma C.1(b), �D �.m; n/2 .�0; 1��0/ for some constant �0 D �0.ı/ > 0.

Choose N0 D N0.ı; �/ > 0 sufficiently large such that �N�1=3
0 � 1

8
�0. Assuming m; n � N0 from

now on, pick z 2
�
� C �.m C n/�1=3; � C 1

8
�0

�
. Then put � D z � � 2

�
�.m C n/�1=3; 1

8
�0

�
and

wD ��� 2
�

7
8
�0; 1��0

�
. Hence, z�wD 2�. Introduce another constant r D r.ı; �/� 1 to be specified

below and let k D br�.mCn/c. Since k � �N
2=3
0 � 1, choosing N0 large enough ensures that k � 1.

We have

PfZw;hor.m; n/ > 0g2

D
�
w

z

�2k�
1�w
1� z

�2k

E
�
1fzZw;z;k;hor.m; n/ > 0g exp

˚
2�ŒyGz.k; 0/� yGz.0; k/�

	�2

�
�
w

z

�2k�
1�w
1� z

�2k

E
�
exp

˚
4�ŒyGz.k; 0/� yGz.0; k/�

	�
PfzZw;z;k;hor.m; n/ > 0g

D
�
w

z

�2k�
1�w
1� z

�2k�
z

z� 4�

�k�
1� z

1� zC 4�

�k

PfzZw;z;k;hor.m; n/ > 0g; (5-11)
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where the first step changes the measure such that the underlying weights y!w are replaced with z!w;z;k .

Note that the associated Radon–Nikodym derivative is given by

�
w

z

�k Y

i2Œk�

expf2�z!w;z;k.i; 0/g �
�
1�w
1�z

�k Y

j 2Œk�

expf�2�z!w;z;k.0; j /g

D
�
w

z

�k
expf2�yGz.k; 0/g �

�
1�w
1�z

�k
expf�2�yGz.0; k/g:

The second step below applies the Cauchy–Schwarz inequality. For the last equality, use independence

and recall that 4�� 1
2
�0 < �0 � � < z.

By virtue of Proposition 3.4(b) and the choices of w and �, for some constant c0 D c0.ı/ > 0, the first

probability in (5-11) obeys the bound

PfZw;hor.m; n/ > 0g D 1� PfZw;ver.m; n/ > 0g
� 1� expf�c0.mCn/�3g
� 1� expf�c0�

3g D p0 > 0: (5-12)

Next bound the logarithm of the product of the first four factors on the last line of (5-11) as follows.

For some constant C1 D C1.ı/ > 0,

2k log

�
1� 2�

z

�
� k log

�
1� 4�

z

�
C 2k log

�
1C 2�

1� z

�
� k log

�
1C 4�

1� z

�

� 4k�2

z2
C 4k�2

.1� z/2 CC1k�
3

� C1r�
3.mCn/: (5-13)

For the first inequality in (5-13), apply the estimate
ˇ̌
log.1C t /� tC 1

2
t2

ˇ̌
� jt j3 for t 2

�
�1

2
; 1

2

�
recalling

that �� 1
8
�0 and z 2

�
�0; 1� 1

2
�0

�
. The second inequality inserts the definition of k, and uses the bounds

on z once more.

Now turn to the last probability in (5-11). Recall that the weights in (2-2) and (5-10) are all coupled

through the �-variables. Let E DE
w;z;k
m;n denote the event on which the inequalities

zZw;z;k;hor.m; n/ > 0 and maxfZw;hor.m; n/;Zz;hor.m; n/;Zz;ver.m; n/g � k (5-14)

all hold. Also, write F DF
w;z;k
m;n for the event of the second inequality in (5-14). By virtue of Corollary 3.3,

the probability of the complementary event is at most

PfF cg � 3 expf�c1r
3�3.mCn/g (5-15)

for some constant c1 D c1.ı/ > 0 provided that N0 and r are sufficiently large. From r specifically, it

would suffice to require minfr�; r Q�0g � 1 where Q�0 D Q�0.ı/ refers to the constant denoted with �0 in the

statement of the corollary. (Then s D r�.mCn/1=3 � r� � 1� .mCn/�2=3 and z� � D � �w D ��
Q�0r�D Q�0s.mCn/�1=3 as needed.) Let us next claim the containment

E � fZz;hor.m; n/ > 0g (5-16)
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whose verification is deferred to the end of the proof. Combining (5-15) and (5-16) via a union bound yields

PfzZw;z;k;hor.m; n/ > 0g � PfZz;hor.m; n/ > 0g C 3 expf�c1r
3�3.mCn/g: (5-17)

Putting together (5-11), (5-12), (5-13) and (5-17) results in

PfZz;hor.m; n/ > 0g � p2
0 expf�C1r�

3.mCn/g � 3 expf�c1r
3�3.mCn/g

� 1
2
p2

0 expf�C1r�
3.mCn/g � expf�2C1r�

3.mCn/g:

The inequalities on the last line hold for sufficiently large r since �3.mCn/� �3. Then the conclusion

of (a) holds with C0 D 2C1r .

It remains to verify (5-16) to complete the proof of (a). Restrict to the event E below. Then

0 < zZw;z;k;hor.m; n/ � Zw;hor.m; n/ � k where the middle inequality comes from Lemma A.1 (the

first monotonicity in part (a)) and since w � z. Consequently,

max
i2Œk�

fyGz.i; 0/C Gi;1.m; n/g D zGw;z;k.m; n/D zGw;z;k
1;0 .m; n/� zGw;z;k

0;1 .m; n/

� max
j 2Œk�

fyGz.0; j /C G1;j .m; n/g: (5-18)

Since also maxfZz;hor.m; n/;Zz;ver.m; n/g � k, one concludes from (5-18) that yGz
1;0.m; n/� yGz

0;1.m; n/.

Hence, (5-16) holds. �

5D. Proof of the main lower bound. Our proof of Theorem 3.6 is a suitable modification of the proof of

Theorem 3.1.

Proof of Theorem 3.6. Let c0 D c0.ı;K/ > 0 and N0 DN0.ı; �;K/ > 0 denote constants to be chosen

below. Let .m; n/2Sı \Z
2
�N0

and s 2 Œ�; c0.mCn/1=3� taking N0 � .�=c0/
3 to ensure that the preceding

interval is nonempty. Let k D bs.mC n/2=3c � c0.mC n/. After decreasing c0 and increasing N0 if

necessary, one has 1� k < m.

Ifw>0 and z <1 with maxfw; zg � �.m; n/CKs.mCn/�1=3 then it follows from Lemma C.1(b) that

0 <maxfw; zg � �.m; n/CKc0 < 1

for sufficiently small c0. Then, appealing to the monotonicity in Lemma 5.4, it suffices to prove the

bound in (a) for the exit point Zmaxfw;zg;maxfw;zg;C
�;i0;j0

, which makes sense according to definition (2-8) since

maxfw; zg 2 .0; 1/. Consequently, the bound in (a) reduces to the case w D z. Hence, pick z 2 .0; 1/
such that z � �.m; n/CKs.mCn/�1=3. Via another appeal to Lemma 5.4, it suffices to restrict to the

case z � �.m; n/ in proving (a).

Let .i0; j0/2 Z
2
�0, and � be a down-right path on Z

2
�0 such that .mCi0; nCj0/2V� and �b D .i0; j0/

for some b 2 Œ`.�/�. Then k C b < `.�/ since the path � takes at least m steps from �b 2 fi0g � Z to

�`.�/ 2 Z�mCi0
�Z. Consider the L-shaped path Lk DL

mCi0;nCj0

ik ;jk
where .ik; jk/ denotes the coordinates

of �bCkC1. (The picture is the same as in Figure 8 except that the vertex �bCkC1 is used instead of �bCk).
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Now appeal to Lemma 5.3(b) and then Lemma 5.5 (in the last step) to obtain

P
˚
Zz;C

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
D P

˚
Zz;C

�;i0;j0
.mC i0; nC j0/ > k

	

D P
˚
Zz;C

�;i0;j0
.mC i0; nC j0/� kC 1

	

� P
˚
Zz;C

Lk ;ik ;jk
.mC i0; nC j0/ > 0

	

D P
˚
Zz;hor.mC i0 � ik; nC j0 � jk/ > 0

	
: (5-19)

The computation in (5-7) still gives

�.mC i0 � ik; nC j0 � jk/� �.m; n/� �a0s.mCn/�1=3 (5-20)

for some constant a0 D a0.ı/ > 0. In the same vein, one also obtains the lower bound

�.mCi0�ik; nCj0�jk/��.m; n/� �A0.ik �i0Cj0�jk/

2.mCn/ D �A0.kC1/
2.mCn/ � �A0s.mCn/�1=3 (5-21)

for some constantA0 DA0.ı/>0. Due to (5-20), and the assumptions that z� �.m; n/ and s� �, one has

z� �.mC i0 � ik; nC j0 � jk/� a0s.mCn/�1=3 � a0�.mCn/�1=3: (5-22)

Also, by (5-21) and the assumptions that z � �.m; n/CKs.mCn/�1=3 and s � c0.mCn/1=3,

z� �.mC i0 � ik; nC j0 � jk/� .KCA0/s.mCn/�1=3 � .KCA0/c0: (5-23)

With c0 chosen sufficiently small, .mC i0 � ik; nC j0 � jk/ 2 Sı=2 and the last expression in (5-23) can

be made .KCA0/c0 � �0

�
1
2
ı
�

where �0 refers to the constant in Proposition 3.9. Then Proposition 3.9(a)

applied to the last probability in (5-19) yields

P
˚
Zz;C

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	

� exp
˚
�C1.mC i0 � ik CnC j0 � jk/.z� �.mC i0 � ik; nC j0 � jk//

3
	

� expf�C0s
3g (5-24)

for some constants C1 D C1.ı; �/ > 0 and C0 D C0.ı; �;K/ > 0 provided that N0 is sufficiently large.

The final inequality in (5-24) relies on the first bound in (5-23). This finishes the proof of (a), and the

proof of (b) is completely analogous. �

5E. Proof of the exit point upper bounds for bulk geodesics. We conclude this section with the proof of

Theorem 4.1.

Proof of Theorem 4.1. Let c; �0; s0 and N0 denote positive constants depending only on ı and to be

chosen in the course of the proof. Let .m; n/ 2 Sı \ Z
2
�N0

, s 2 Œs0; c.mCn/1=3� and k D bs.mCn/2=3c
where N0 is taken sufficiently large to ensure the existence of s. Pick .i0; j0/ 2 Z

2
�0 subject to (4-2), and

a down-right path � on Z
2
�0 such that .i0; j0/ 2 � and .mC i0; nC j0/ 2 V� . Write b 2 Œ`.�/� for the

unique index for which �b D .i0; j0/, and Q� D �C .1; 1/ for the down-right path obtained by shifting the

vertices in � by .1; 1/.
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Putting together (5-25), (5-26) and (5-27) and choosing s0 sufficiently large establishes the claimed

upper bound for s 2 Œs0; c.mCn/1=3� when � D C. The upper bound extends to s > c.mCn/1=3 after

modifying c0 suitably (as done previously in (5-9)). The case � D � is handled similarly. �

6. Proofs of the speed bounds

This section proves Theorems 4.4, 4.7 and 4.8. The proofs of first two results utilize Proposition 3.4,

monotonicity properties of last-passage times, planarity, and increment-stationary LPP processes with

northeast boundary weights. To introduce these processes, first define the weights

z!w;z;m;n.i; j /D �.i; j /

�
1fi�m;j �ng C 1fi�m;j DnC1g

w
C 1fiDmC1;j �ng

1� z

�
(6-1)

for w > 0, z < 1, m; n 2 Z>0, i 2 ŒmC 1� and j 2 ŒnC 1�. In particular, z!w;z;m;n.mC 1; nC 1/ D 0.

Then let

zGw;z;m;n
p;q .k; l/D max

�2…
p;q

k;l

X

.i;j /2�

z!w;z;m;n.i; j / for p; k 2 ŒmC 1� and q; l 2 ŒnC 1�: (6-2)

A comparison of (2-1)–(2-3) with (6-1)–(6-2) shows the distributional identity

fzGw;z;m;n
p;q .k; l/ W p; k 2 ŒmC 1�; q; l 2 ŒnC 1�g

dist.D fyGw;z
mC1�p;nC1�q.mC 1� k; nC 1� l/ W p; k 2 ŒmC 1�; q; l 2 ŒnC 1�g: (6-3)

Below we use (6-2) only in the stationary case w D z and, as before, write z only once in the superscript.

6A. Proofs of the bounds for the Busemann limits. As the first step towards the proof of Theorem 4.4,

let us bound the c.d.f.s. in (4-9) via the c.d.f.s. in (4-7).

Lemma 6.1. Let � be a down-right path in Z
2
>0. Let .u; l/ and .k; v/ denote the first and last points on �

(in the down-right direction). Let ı > 0, .m; n/ 2 Sı \ .Z�k � Z�l/, pD k�u, q D l �v, s 2 R
p, t 2 R

q

and z 2 .0; 1/. Write � D �.m� k C 1; n� vC 1/ and � D �.m� uC 1; n� l C 1/. Then there exist

constants c D c.ı/ > 0 and � D �.ı/ > 0 such that

Fm;n;hor
� .s; t/� fz;hor

p;q .s; t/C expf�c.mCn/.� � z/3g if z < �;

Fm;n;hor
� .s; t/� fz;hor

p;q .s; t/� expf�c.mCn/.z� �/3g if z > �;

Fm;n;ver
� .s; t/� fz;ver

p;q .s; t/C expf�c.mCn/.z� �/3g if z > �;

Fm;n;ver
� .s; t/� fz;ver

p;q .s; t/� expf�c.mCn/.� � z/3g if z < �

provided that k; l � �.mCn/.

Proof. We prove the first two inequalities. The remaining two can be obtained in a similar manner.

Recall (2-11). The number of right and down steps of � are given by #R� D p and #D� D q. Let

.ri /i2Œp� and .dj /j 2Œq� denote the enumerations of R� and D� , respectively, in increasing order. Write

E0 for the event

zGz;m;n
mC1;nC1.�ri

/� zGz;m;n
mC1;nC1.�ri C1/� �si for i 2 Œp�;

zGz;m;n
mC1;nC1.�dj

/� zGz;m;n
mC1;nC1.�dj �1/� tj for j 2 Œq�:
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Noting that � is a sequence of length `.�/D LD pC qC 1, define another sequence Q� D . Q�i /i2ŒL� via

Q�i D .mC 1; nC 1/� �LC1�i for i 2 ŒL�. Then Q� is also a down-right path with RQ� D fL� ri W i 2 Œp�g
and DQ� D fLC 2�dj W j 2 Œq�g. Now on account of (6-3), (2-12) and definition (4-7), the probability of

E0 can be computed exactly:

PfE0g D P
˚yGz..mC 1; nC 1/� �ri

/� yGz..mC 1; nC 1/� �ri C1/� �si for i 2 Œp�;
yGz..mC 1; nC 1/� �dj

/� yGz..mC 1; nC 1/� �dj �1/� tj for j 2 Œq�
	

D P
˚yGz. Q�LC1�ri

/� yGz. Q�L�ri
/� �si for i 2 Œp�;

yGz. Q�LC1�dj
/� yGz. Q�LC2�dj

/� tj for j 2 Œq�
	

D
Y

i2Œp�

expf�s�
i zg

Y

j 2Œq�

.1� expf�tCj .1� z/g/

D fz;hor
p;q .s; t/: (6-4)

Define the events E1 and E2 exactly as E0 but replace the base point .mC 1; nC 1/ with .m; nC 1/

and .mC 1; n/, respectively. That is, E1 denotes the event

zGz;m;n
m;nC1.�ri

/� zGz;m;n
m;nC1.�ri C1/� �si for i 2 Œp�;

zGz;m;n
m;nC1.�dj

/� zGz;m;n
m;nC1.�dj �1/� tj for j 2 Œq�;

while E2 denotes the event

zGz;m;n
mC1;n.�ri

/� zGz;m;n
mC1;n.�ri C1/� �si for i 2 Œp�;

zGz;m;n
mC1;n.�dj

/� zGz;m;n
mC1;n.�dj �1/� tj for j 2 Œq�:

From a union bound and (6-3), one obtains that

PfE1g D P
˚
E1\fzGz;m;n

m;nC1.k; v/� zGz;m;n
mC1;n.k; v/g

	
CP

˚
E1\fzGz;m;n

m;nC1.k; v/ <
zGz;m;n

mC1;n.k; v/g
	

D P
˚
E0\fzGz;m;n

m;nC1.k; v/� zGz;m;n
mC1;n.k; v/g

	
CP

˚
E1\fzGz;m;n

m;nC1.k; v/ <
zGz;m;n

mC1;n.k; v/g
	

� PfE0gCP
˚zGz;m;n

m;nC1.k; v/ <
zGz;m;n

mC1;n.k; v/
	

D PfE0gCP
˚yGz

1;0.mC1�k; nC1�v/ < yGz
0;1.mC1�k; nC1�v/

	

D PfE0gCP
˚
Zz;ver.mC1�k; nC1�v/ > 0

	
: (6-5)

In the second step above, we utilized this consequence of planarity and a.s. uniqueness of geodesics: if the

geodesic from .mC1; nC1/ to .k; v/ visits .m; nC1/ then a.s. so does the geodesic from .mC1; nC1/

to any point in Œk�� .ŒnC 1�X Œv� 1�/� �. See Figure 10. Similar reasoning also gives

PfE2g D P
˚
E2 \fzGz;m;n

mC1;n.u; l/� zGz;m;n
m;nC1.u; l/g

	
CP

˚
E2 \fzGz;m;n

mC1;n.u; l/ <
zGz;m;n

m;nC1.u; l/g
	

D P
˚
E0 \fzGz;m;n

mC1;n.u; l/� zGz;m;n
m;nC1.u; l/g

	
CP

˚
E2 \fzGz;m;n

mC1;n.u; l/ <
zGz;m;n

m;nC1.u; l/g
	

� PfE0g � P
˚zGz;m;n

mC1;n.u; l/ <
zGz;m;n

m;nC1.u; l/
	

D PfE0g � P
˚yGz

0;1.mC 1�u; nC 1� l/ < yGz
1;0.mC 1�u; nC 1� l/

	

D PfE0g � P
˚
Zz;hor.mC 1�u; nC 1� l/ > 0

	
: (6-6)
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Lemma 6.2. Let ı > 0, p; q 2 Z�0, s 2 R
p, t 2 R

q and w; z 2 .ı; 1� ı/ with w � z. There exists a

constant C0 D C0.ı/ > 0 such that

0� fz;hor
p;q .s; t/� fw;hor

p;q .s; t/� C0.1C 1fq>0g log q/.w� z/;
0� fw;ver

p;q .s; t/� fz;ver
p;q .s; t/� C0.1C 1fp>0g logp/.w� z/:

Proof. Writing s D .si /i2Œp� and t D .tj /j 2Œq�, the z-derivative of fz D fz;hor
p;q .s; t/ is given by

@zf
z D �f z

X

i2Œp�

s�
i �f z

X

j 2Œq�

tCj e
�t

C

j
.1�z/

1� e�t
C

j
.1�z/

; (6-7)

where the j -th term in the second sum is interpreted as zero when tj � 0. Since f z > 0, (6-7) shows that

f z is nonincreasing in z proving the first inequality asserted in the lemma.

To obtain the second inequality, first note that the absolute value of the first term in the right-hand side

of (6-7) is at most

f z
X

i2Œp�

s�
i �

X

i2Œp�

s�
i exp

�
�

X

i2Œp�

s�
i z

�
� 1

z
sup
t�0

fte�tg D 1

ez
: (6-8)

Next bound the second term in the right-hand side of (6-7) in absolute value from above by the function

'q.t/D
X

k2Œq�

tC
k
e�t

C

k
.1�z/

Y

j 2Œq�
j ¤k

.1� e�t
C

j
.1�z//: (6-9)

If tk � 0 for some k 2 Œq� then all terms vanish on the right-hand side. In the case q 2 f0; 1g, one has

'q.t/ � e�1.1� z/�1 similarly to (6-8). Assume that q > 1 and tk > 0 for k 2 Œq� from here until the

last paragraph. Our objective is to maximize 'q over R
q
>0. To aid the next computation, change the

variables via uk D 1� expf�tk.1� z/g 2 .0; 1/ for k 2 Œq�. Then (6-9) turns into the following function

of uD .uk/k2Œq� 2 .0; 1/q:

 q.u/D � 1

1� z
X

k2Œq�

.1�uk/ log.1�uk/
Y

j 2Œq�
j ¤k

uj : (6-10)

Note that  q extends continuously to Œ0; 1�q , and the boundary values are given by

 q.u/juj D0 D 0 and  q.u/juj D1 D  q�1.u
j / for j 2 Œq�; (6-11)

where uj 2 R
q�1 is obtained from u by deleting the j -th coordinate.

The partial u-derivatives of  q are given by

.1� z/@r q.u/D .1C log.1�ur//
Y

j 2Œq�Xfrg

uj �
X

k2Œq�Xfrg

.1�uk/ log.1�uk/
Y

j 2Œq�Xfk;rg

uj

D
Y

j 2Œq�Xfrg

uj �
�
1C log.1�ur/�

X

k2Œq�Xfrg

�
1

uk

� 1
�

log.1�uk/

�
: (6-12)
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Note from (6-12) that u 2 .0; 1/q is a zero of the gradient r q if and only if

1C log.1�ur/

ur
D

X

k2Œq�

�
1

uk

� 1
�

log.1�uk/ for each r 2 Œq�: (6-13)

Since the function x 7! x�1 log.1� x/ is strictly decreasing on .0; 1/, (6-13) holds if and only if the

coordinates uk D v for k 2 Œq� for some v 2 .0; 1/ such that

1C
�
q� q� 1

v

�
log.1� v/D 0: (6-14)

The left-hand side of (6-14) defines a continuous function g D g.v/ on .0; 1/ that is decreasing since its

derivative

g0.v/D .q� 1/
v2

log.1� v/�
�
q� q� 1

v

�
1

1� v D � 1

1� v C .q� 1/
v2

.log.1� v/C v/ < 0;

where the last inequality can be seen from the expansion log.1� t /D �
P1

iD1 t
i=i . Furthermore, the

limits of g at the endpoints 0 and 1 can be computed as q and �1, respectively. Therefore, there exists a

unique vq 2 .0; 1/ such that (6-14) holds. The next step is to verify that

vq � 1� 1

e2q
: (6-15)

Arguing by contradiction, suppose that (6-15) is false. Then, by the monotonicity of g,

0D g.vq/ < g

�
1� 1

e2q

�
D 1�

1� 1

e2

1� 1

e2q

.2C log q/� 1� 2
�
1� 1

e2

�
< 0; (6-16)

a contradiction. Therefore, (6-15) holds.

Now, setting uj D vq for j 2 Œq� in (6-10) leads to

.1� z/ q..vq/j 2Œq�/D �q.1� vq/ log.1� vq/v
q�1
q

� �.1� vq/ log.1� vq/� .q� 1/.1� vq/ log.1� vq/v
q�1
q

D �.1� vq/ log.1� vq/� .1C log.1� vq//v
q
q (6-17)

� 1

e
C .1C log q/vq

q � 2C log q: (6-18)

Line (6-17) above comes from (6-14). The first inequality in (6-18) bounds the two terms of (6-17)

separately and uses (6-15).

From (6-18), the structure of the boundary values (6-11) and the positivity of (6-10), one concludes that

sup
t2Rq

'q.t/D sup
t2R

q
>0

'q.t/D sup
u2Œ0;1�q

 q.u/� 2C log q

1� z : (6-19)
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Combining (6-19) with the bounds in the case q 2 f0; 1g and (6-8) gives

@zf
z � C0.1C 1fq>0g log q/ for z 2 .ı; 1� ı/

for some constant C0 D C0.ı/ > 0. Then the second inequality of the lemma follows from the mean

value theorem.

The proofs of the remaining inequalities are similar, and are therefore omitted. �

Proof of Theorem 4.4. Let .m; n/ 2 Sı \Z
2
�N0

where N0 DN0.ı; �/ > 0 is a constant to be chosen below.

Let � be a down-right path contained in Œ1; �.mCn/2=3�2 takingN0 large enough to ensure that the preced-

ing set is nonempty. Write .u; l/D�1 and .k; v/D�`.�/ for the first and last vertices, respectively, on �. Let

w D �C
�
r log.mCn/

mCn

�1=3

and z D � �
�
r log.mCn/

mCn

�1=3

;

where � D �.mC 1� k; nC 1� v/, � D �.mC 1� u; nC 1� l/ and r D r.ı/ > 0 is another constant

to be specified below. Lemmas C.1(b) and 5.6 combined with the fact that k; l � �.mC n/2=3 imply

that w; z 2 .�0; 1� �0/ > 0 for some constant �0 D �.ı/ > 0, provided that N0 is sufficiently large. Let

p D k�uD #R� , q D l � v D #D� , s 2 R
p and t 2 R

q . From the choice of z and the first inequalities

in Lemmas 6.1 and 6.2, one obtains that

Fm;n;hor
� .s; t/� fz;hor

p;q .s; t/C expf�c0.mCn/.� � z/3g
D fz;hor

p;q .s; t/C 1

.mCn/c0r

� f�;hor
p;q .s; t/CC0.1C 1fq>0g log q/jz� �j C 1

.mCn/c0r

� f�;hor
p;q .s; t/CC0.1C 1fq>0g log q/

�
j� � �j C

�
r log.mCn/

mCn

�1=3�
C 1

.mCn/c0r

� f�;hor
p;q .s; t/C 2C0.1C 1fq>0g log q/

�
r log.mCn/

mCn

�1=3

C 1

.mCn/c0r

for some constants c0 D c0.ı/ > 0, C0 D C0.ı/ > 0 and sufficiently large N0. The last inequality above

holds because

j� � �j � C.kC v/

mCn
� C.kC l/

mCn
� 2C�

.mCn/1=3

for some constant C D C.ı/ > 0 by virtue of Lemma 5.6 and that k; l � �.mC n/2=3. Now choosing

r D 1=.3c0/ yields

Fm;n;hor
� .s; t/� f�;hor

p;q .s; t/CC0.1C 1fq>0g log q/

�
log.mCn/

mCn

�1=3

after adjusting C0. The complementary lower bound is established similarly using w instead of z. The

second set of bounds in the theorem are also proved similarly. �
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6B. Proof of the speed bounds for the competition interface.

Proof of Theorem 4.7. Let n 2 Z>1 and k 2 Œn� 1�. Restrict to the full probability event on which the

competition interface ' is well defined. Then

f'hor
n > kg D f.kC 1; n� kC 1/ 2 T

verg
D fG2;1.kC 1; n� kC 1/ < G1;2.kC 1; n� kC 1/g
D fBhor

1;1.kC 1; n� kC 1/ > Bver
1;1.kC 1; n� kC 1g; (6-20)

where the first equality follows from (4-14) and definition (4-15), and the subsequent equalities are due to

definitions (4-12) and (4-3).

Put � D �.kC 1; n� k/ and let z > � to be chosen below. Then

Pf'hor
n � kg
D P

˚
Bhor

1;1.kC 1; n� kC 1/� Bver
1;1.kC 1; n� kC 1/

	

D P
˚zGz

kC1;n�kC1.1; 1/� zGz
kC1;n�kC1.2; 1/� zGz

kC1;n�kC1.1; 1/� zGz
kC1;n�kC1.1; 2/

	

� P
˚zGz

kC2;n�kC1.1; 1/� zGz
kC2;n�kC1.2; 1/� zGz

kC2;n�kC1.1; 1/� zGz
kC2;n�kC1.1; 2/

	
; (6-21)

where the derivation begins with (6-20), the second step writes the increments B�

1;1.kC 1; n� kC 1/

for � 2 fhor; verg defined at (4-3) in terms of the process zGz D zGz;kC1;n�kC1 defined at (6-2) and the

inequality at the end holds by virtue of Lemma A.2.

The next display applies a union bound using the following implication of planarity and the uniqueness

of geodesics (as in the proof of Lemma 6.1): if the vertex .kC2; n�kC1/ is on the geodesic from .1; 2/

to .kC2; n�kC2/ then it must also be on the two geodesics from .1; 1/ and .2; 1/ to .kC2; n�kC2/. In

terms of the northeast LPP process, this means that the inequality zGz
kC1;n�kC2

.1; 2/<zGz
kC2;n�kC1

.1; 2/

implies that zGz
kC2;n�kC1

.i; j /D zGz
kC2;n�kC2

.i; j / for .i; j / 2 f.1; 2/; .1; 1/; .2; 1/g. Therefore,

the right-hand side of (6-21)

� P
˚zGz

kC2;n�kC2.1; 1/� zGz
kC2;n�kC2.2; 1/� zGz

kC2;n�kC2.1; 1/� zGz
kC2;n�kC2.1; 2/

	

C P
˚zGz

kC1;n�kC2.1; 2/ >
zGz

kC2;n�kC1.1; 2/
	

(6-22)

By virtue of (6-3) and then (2-12), the right-hand side of (6-22) can be written as

yGz.kC 1; n� kC 1/� yGz.kC 1; n� k/g C P
˚yGz

1;0.kC 1; n� k/ > yGz
0;1.kC 1; n� k/

	

D
Z 1

0

ze�zx

Z 1

x

.1� z/e�.1�z/y dy dxC P
˚
Zz;hor.kC 1; n� k/ > 0

	

D zC P
˚
Zz;hor.kC 1; n� k/ > 0

	
: (6-23)

To avoid a vacuous statement, assume that ı 2
�
0; 1

2

�
. Work with k 2 Œın; .1� ı/n� and n � N0 for

some sufficiently large N0 DN0.ı/ > 0 that ensures that the preceding interval contains some integers.

Then .kC 1; n� k/ 2 Sı=2. Therefore, by the assumption z > � and Proposition 3.4,

P
˚
Zz;hor.kC 1; n� k/ > 0

	
� expf�c0n.z� �/3g (6-24)
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for some constant c0 D c0.ı/ > 0. Set z D �C ..logn/=.3c0n//
1=3 after increasing N0 if necessary to

have z 2 .0; 1/. Resuming from (6-23) and using (6-24), one obtains that

Pf'hor
n � kg � �CC

�
logn

n

�1=3

(6-25)

for some constant C DC.ı/ > 0. For x 2 Œı; 1�ı�, setting kD dnxe in (6-25) and using Lemma 5.6 yield

Pf'hor
n � nxg � Pf'hor

n � dnxeg � �.dnxe C 1; n� dnxe/CC

�
logn

n

�1=3

� �.x; 1� x/C c

n
CC

�
logn

n

�1=3

� �.x; 1� x/CC0

�
logn

n

�1=3

for some constants c D c.ı/ > 0 and C0 D C0.ı/ > 0. The last bound also holds for n 2 f2; : : : ; N0g
after adjusting C0.

To prove the complementary lower bound, use Lemma A.2 to replace the inequality at (6-21) with

P
˚
Bhor

1;1.kC 1; n� kC 1/� Bver
1;1.kC 1; n� kC 1/

	

� P
˚zGz

kC1;n�kC2.1; 1/� zGz
kC1;n�kC2.2; 1/� zGz

kC1;n�kC2.1; 1/� zGz
kC1;n�kC2.1; 2/

	

and follow similar steps. �

Proof of Theorem 4.8. Let w > 0 and z < 1. From definition (4-20), one has

y'w;z;hor
n < k if and only if Zw;z;hor.k; n� kC 1/ > 0;

y'w;z;hor
n > k if and only if Zw;z;ver.kC 1; n� k/ > 0 (6-26)

for n 2 Z>0 and k 2 Œn�[ f0g.

Set w D z 2 .0; 1/ from here on. Let n 2 Z>0, and pick x 2 Œı; 1� ı� assuming that ı � 1
2

to avoid

vacuous statements. It follows from Lemmas 5.6 and C.1(b) that

ˇ̌
�.bnxc C 1; n� bnxc/� �.x; 1� x/

ˇ̌
� A0

2n
(6-27)

for some constant A0 D A0.ı/ > 0. Using (6-26), Proposition 3.4(a) and (6-27) leads to

P
˚

y'z;hor
n � nx

	
D P

˚
y'z;hor

n < bnxc C 1
	

D P
˚
Zz;hor.bnxc C 1; n� bnxc/ > 0

	

� exp
˚
�c0.nC 1/Œz� �.bnxc C 1; n� bnxc/�3

	

� exp
˚
�c0nŒz� �.x; 1� x/�3

	
(6-28)

for some constant c0 D c0.ı/ > 0 provided that z� �.x; 1� x/� A0n
�1. A similar computation using

Proposition 3.4(b) also gives

1� Pfy'z;hor
n � nxg D Pfy'z;hor

n > bnxcg D P
˚
Zz;ver.bnxc C 1; n� bnxc/ > 0

	

� exp
˚
�c0nŒ�.x; 1� x/� z�3

	
(6-29)

provided that z� �.x; 1� x/� �A0n
�1. Combining (6-28) and (6-29) yields (a).
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For part (b), pick a sufficiently large constant N0 D N0.ı; �/ > 0 such that �N�1=3
0 � A0N

�1
0 , and

work with n 2 Z�N0
. Assume also that j�.x; 1� x/� zj � �0 where �0 D �0.ı/ > 0 is a constant to be

chosen small. After the first line of (6-28), invoke Proposition 3.9(a) and appeal to (6-27) to obtain

Pfy'z;hor
n � nxg � exp

˚
�C0.nC 1/

�
z� �.bnxc C 1; n� bnxc/

�3	

� exp
˚
�C0nŒz� �.x; 1� x/�3

	

for some constant C0 D C0.ı; �/ > 0 provided that z� �.x; 1� x/� �n�1=3 � A0n
�1, �0 is sufficiently

small, and N0 is sufficiently large. In the same vein,

1� Pfy'z;hor
n � nxg � exp

˚
�C0nŒ�.x; 1� x/� z�3

	

provided that z� �.x; 1� x/� ��n�1=3. Hence, (b). �

Appendix A: Some deterministic properties of exit points and last-passage times

This section collects some general properties of last-passage times and exit points defined from arbitrary

real weights. Only subsections A1 and A2 are needed for the main text. The purpose of the remaining

material is to service Appendix B.

A1. Maximal exit points of geodesics. Let w D fw.i; j / W i; j 2 Zg be a collection of real (nonrandom)

weights on Z
2. As in (2-4), define the corresponding last-passage times by

Gp;q.m; n/D max
�2…

m;n
p;q

X

.i;j /2�

w.i; j / for m; n; p; q 2 Z: (A-1)

Any maximizing path � 2 …m;n
p;q in (A-1) is called a geodesic (or w-geodesic) from .p; q/ to .m; n/.

When p �m and q � n, being a nonempty and finite set, …m;n
p;q contains a geodesic, and possibly more

than one.

Fix .m0; n0/ 2 Z
2. Pick a down-right path � with �`.�/ 2 fug � Z�n0

and �1 2 Z�m0
� fvg for some

.u; v/2 Z�m0
�Z�n0

, and a base vertex .i0; j0/D �b for some b 2 Œ`.�/�. Refer to (2-7) for the definition

of the set V� .

Recalling (2-6), introduce the maximal (rightmost or leftmost) exit points of w-geodesics in …m;n
m0;n0

from � by

Z�

�;i0;j0
.m; n/D maxfZ�

�;�;i0;j0
W � 2…m;n

m0;n0
is a w-geodesicg (A-2)

for .m; n/ 2 V� and � 2 fC;�g. These are deterministic versions of the exit points in (2-8). The

right-hand side of (A-2) is well defined and finite since � \ � ¤ ∅ for each � 2…m;n
m0;n0

¤ ∅.

The next lemma records a monotonicity property for the exit points in (A-2).

Lemma A.1. The exit points in (A-2) satisfy the following properties for each .m; n/2V� , p 2 Z\Œm0; u�

and q 2 Z \ Œn0; v�:

(a) ZC
�;i0;j0

.m; n/ is nondecreasing and Z�
�;i0;j0

.m; n/ is nonincreasing as a function of w.p; n0/.

(b) ZC
�;i0;j0

.m; n/ is nonincreasing and Z�
�;i0;j0

.m; n/ is nondecreasing as a function of w.m0; q/.
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Proof. Let .m; n/ 2 V� and � 2…m;n
m0;n0

. Write L for the L-shaped path Lm;n
m0;n0

. Let k; l 2 Œ`.�/� denote

the unique indices such that �k D �Z�;�
and �l D LZ�;L

. Pick another path z� 2 …m;n
m0;n0

and define

the indices Qk; Ql 2 Œ`.z�/� analogously. Note that if k < `.�/ then �kC1 2 V� X � � Z>m0
� Z>n0

and

therefore �kC1 62 L. Hence, k � l and, similarly, Qk � Ql .
To prove the first statement in (a), let p 2 Z\Œm0; u�, and consider real weights zwD f zw.i; j / W i; j 2 Zg

such that zw.i; j /�w.i; j / if .i; j /D .p; n0/ and zw.i; j /Dw.i; j / otherwise. Let zZ�

�;i0;j0
.m; n/ denote

the exit points computed as in (A-2) using the zw-weights in place of the w-weights. From here on, choose

� as a w-geodesic and z� as a zw-geodesic.

Arguing by contradiction, suppose that

ZC
�;i0;j0

.m; n/ > zZC
�;i0;j0

.m; n/: (A-3)

Assume thatZ�;� is maximal over all choices of � as a w-geodesic. ThenZz�;� <Z�;� because otherwise

ZC
�;i0;j0

.m; n/ D ŒZ�;� � b�C � ŒZz�;� � b�C � zZC
�;i0;j0

.m; n/, which would violate assumption (A-3).

This means that the vertex z� Qk
appears strictly earlier than �k in the sequence � (namely, � first visits z� Qk

and then �k ¤ z� Qk
in the down-right direction). The maximality of Z�;� and (A-3) also imply that � is

not a zw-geodesic. Consequently,
X

s2Œ`.�/�

zw.�s/ <
X

s2Œ`.z�/�

zw.z�s/: (A-4)

Since � is a w-geodesic, the strict inequality in (A-4) is possible only if .p; n0/ 62 � and .p; n0/ 2 z�
due to the structure of the zw-weights. Since also �1 D z�1 D .m0; n0/ 2 L, necessarily p > m0 and

Z�;L <Zz�;L. Thus, �l comes strictly earlier than z�Ql
in the sequence L.

Now because L and � are both down-right, � and z� are both up-right, k � l and Qk � Ql , it follows from

the orderings of the exit points above that �r D z�Qr for some indices r 2 Z \ .l; k� and Qr 2 Z \ . Ql ; Qk�. See

Figure 11. Let � 2…m;n
m0;n0

denote the up-right path obtained from z� by replacing the segment fz�s W s 2
Œ`.z�/�X Œ Qr � 1�g with the segment f�s W s 2 Œ`.�/�X Œr � 1�g of � . Being disjoint from L, the preceding

segments are both w-geodesics. Hence, � is a zw-geodesic. Furthermore, by the construction, Z�;� DZ�;�

since r � k. Then zZC
�;i0;j0

.m; n/� ŒZ�;� �b�C D ŒZ�;� �b�C DZC
�;i0;j0

.m; n/ contradicting (A-3). The

claimed monotonicity of ZC
�;i0;j0

.m; n/ follows as a consequence.

The second statement in (a), and part (b) are obtained similarly. �

A2. Crossing (comparison) lemma. The next lemma states a well-known monotonicity for the increments

of planar first- and last-passage percolation. Different proofs can be found in [92, Lemma 6.2] and [97,

Lemma 4.6].

Lemma A.2. For the LPP values in (A-1), the following inequalities hold for i; j;m; n 2 Z with i �m

and j � n:

Gi;j .mC 1; n/�GiC1;j .mC 1; n/�Gi;j .m; n/�GiC1;j .m; n/

�Gi;j .m; nC 1/�GiC1;j .m; nC 1/I
Gi;j .m; nC 1/�Gi;j C1.m; nC 1/�Gi;j .m; n/�Gi;j C1.m; n/

�Gi;j .mC 1; n/�Gi;j C1.mC 1; n/:
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Let us refer to any maximizing path in (A-7) as a restricted geodesic (w-geodesic).

Now define the path-to-point last-passage time G� by

G�.m; n/D max
k2Œ`.�/�

�
1fk>bg

k�1X

rDb

w.�r/C 1fk<bg

bX

rDkC1

w.�r/CGı
�k
.m; n/

�

D max
k2Œ`.�/�

fGm0;n0
.�k/CGı

�k
.m; n/�w.�k/g �Gm0;n0

.i0; j0/ (A-9)

for .m; n/ 2 Z
2. The second equality above comes from (A-6).

Example A.3. In the case of L-shaped path � D L
u;v
i0;j0

, since the first two cases in (A-8) never occur,

(A-7) is the same as the unrestricted version G�k
.m; n/, and (A-9) is precisely the LPP in [97, (A.2)].

Furthermore, k is a maximizer in (A-9) if and only if �k 2 � for some w-geodesic � 2…m;n
i0;j0

.

As is clear from definition (A-9),G�.m; n/ is finite if and only ifGı
�k
.m; n/ is finite for some k 2 Œ`.�/�.

The latter is equivalent to the condition (2-7). On V� , the LPP values in (A-1) and (A-9) are further

related through the following lemma.

Lemma A.4. For the path-to-point LPP in (A-9), the following statements hold for each .m; n/ 2 V� :

(a) G�.m; n/DGm0;n0
.m; n/�Gm0;n0

.i0; j0/.

(b) If � 2…m;n
m0;n0

is a w-geodesic then Z�;� 2 Œ`.�/� is a maximizer in (A-9).

(c) If k 2 Œ`.�/� is a maximizer in (A-9) and � 2 …m;n
�;k

is a restricted w-geodesic then there exists a

w-geodesic � 2…m;n
m0;n0

such that Z�;� DZ�;� .

Remark A.5. The case � D L
u;v
i0;j0

of Lemma A.4 has the same content as [97, Lemma A.1] in view of

the characterization of the maximizers in Example A.3.

Proof of Lemma A.4. Let .m; n/ 2 V� . Consider a w-geodesic � 2 …m;n
m0;n0

. Let i 2 Œ`.�/� denote the

unique index such that �i D �z where z DZ�;� . Then, starting from (A-9), one obtains the lower bound

G�.m; n/CGm0;n0
.i0; j0/�Gm0;n0

.�z/CGı
�z
.m; n/�w.�z/

�Gm0;n0
.�z/C

X

j 2Œ`.�/�XŒi�

w.�j /

DGm0;n0
.�z/C

X

j 2Œ`.�/�XŒi�

w.�j /

DGm0;n0
.�z/CG�z

.m; n/�w.�z/

DGm0;n0
.m; n/: (A-10)

The second inequality in (A-10) holds by definitions (A-7)–(A-8) and the fact that if i < `.�/ then

�iC1 62 � and consequently f�j W j 2 Œ`.�/�X Œi�1�g 2…m;n
�;z . The first equality in (A-10) follows because

w- and w-weights coincide on Z
2 X �. The subsequent equalities are due to the assumption that � is a

w-geodesic.

To proceed in the converse direction, let k 2 Œ`.�/� be a maximizer in (A-9). Then …m;n
�;k

¤ ∅. Pick a

restricted w-geodesic � 2…m;n
�;k

. Write z DZ�;� 2 Œ`.�/�, and i 2 Œ`.�/� for the unique index such that
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� i D �z . Then develop the upper bound

G�.m; n/CGm0;n0
.i0; j0/DGm0;n0

.�k/CGı
�k
.m; n/�w.�k/

DGm0;n0
.�k/C

X

j 2Œ`.�/�Xf1g

w.�j /

DGm0;n0
.�k/C

X

j 2Œi�Xf1g

w.�j /C
X

j 2Œ`.�/�XŒi�

w.�j /

DGm0;n0
.�k/C

X

j 2Œi�Xf1g

w.�j /C
X

j 2Œ`.�/�XŒi�

w.�j /

DGm0;n0
.�z/C

X

j 2Œ`.�/�XŒi�

w.�j /

�Gm0;n0
.�z/CG�z

.m; n/�w.�z/

�Gm0;n0
.m; n/: (A-11)

The first two equalities in (A-11) use that k and � are maximizers in (A-9) and (A-7), respectively. The

fourth equality holds because �j 2 Z
2 X � for j 2 Œ`.�/�X Œi �. To justify the last equality in (A-11),

consider the case k > b first. Then the restrictions in (A-8) imply that �j D �kCj �1 for j 2 Œi �, and

z D kC i � 1. Consequently and by virtue of (A-6),

X

j 2Œi�Xf1g

w.�j /D
X

r2Œz�XŒk�

w.�r/DGm0;n0
.�z/�Gm0;n0

.�k/: (A-12)

A symmetric argument also gives (A-12) in the case k < b. Consider now the situation k D b. If i D 1

then z D k and (A-12) holds trivially. If i > 1 then the two possibilities z > b and z < b are handled

similarly to the cases k > b and k < b, respectively. Finally, the last two inequalities in (A-11) come

from definition (A-1).

Combining (A-10) and (A-11) yields (a). Moreover, all inequalities in (A-10) and (A-11) are in fact

equalities. Therefore, z is a maximizer in (A-9), and the vertices f�j W j 2 Œ`.�/�X Œi � 1�g extend to a

w-geodesic � 0 2…m;n
m0;n0

that exits � at Z� 0;� D z. Hence, (b) and (c). �

A4. An identity for the exit points. Define the exit points associated to (A-9) by

Z�

�;i0;j0
.m; n/D maxfŒk� b�� W k is a maximizer in (A-9)g for each � 2 fC;�g: (A-13)

The following lemma connects the notions in (A-2) and (A-13). A similar statement can be found in [87,

Example 2].

Lemma A.6. The exit points in (A-2) and (A-13) satisfy the relation

Z�

�;i0;j0
.m; n/DZ�

�;i0;j0
.m; n/ for each .m; n/ 2 V� and � 2 fC;�g:

Proof. The claim is a consequence of Lemma A.4(b)–(c), and definitions (A-2) and (A-13). �
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Let us next relate the !z-weights to the induced weights !z D f!z.i; j / W .i; j / 2 Z
2
�0g obtained from

the y!z-weights in the manner described around (A-5). More precisely,

!z.i; j /D 1fk>bgfyGz.�k/� yGz.�k�1/g C 1fk<bgfyGz.�k/� yGz.�kC1/g (B-4)

if .i; j /D �k for some k 2 Œ`.�/�, and !z D y!z.i; j / otherwise. The following lemma records that wz

and wz are identical in distribution on V� .

Lemma B.2. f!z.i; j / W .i; j / 2 V�g dist.D f!z.i; j / W .i; j / 2 V�g.

Proof. From definition (B-4) and by virtue of the Burke property (2-12), the weights f!z.�k/ W k 2 Œ`.�/�g
are independent with !z.�b/D 0 and the remaining are marginals given by

!z.�k/�

8
<̂

:̂

Exp.z/ if k > b and k� 1 2R� ;
�Exp.1� z/ if k > b and k 2D� ;
�Exp.z/ if k < b and k 2R� ;
Exp.1� z/ if k < b and kC 1 2D� :

(B-5)

Furthermore, the weights

f!z.i; j / W .i; j / 2 V� X �g D f y!z.i; j / W .i; j / 2 V� X �g (B-6)

are independent, and marginally Exp.1/-distributed by (2-1) because the set V� X � does not intersect the

axes. Finally, since the weights in (B-6) do not enter definition (B-4), the collection f!z.i; j / W .i; j /2V�g
is also independent. This completes the proof in view of the discussion following (B-2) where the joint

distribution of f!z.i; j / W .i; j / 2 V� X �g is described. �

Using !z as the weights, let Gz
p;q.m; n/ denote the last-passage time from .p; q/2 Z

2
�0 to .m; n/2 Z

2
�0

computed via (A-1), and write Gz;ı
�k
.m; n/ for the restricted last-passage times computed according to

(A-7) for each k 2 Œ`.�/�. (Recall that Gz;ı
�k
.m; n/ need not agree with Gz

�k
.m; n/ due to the additional

restrictions on the admissible paths in (A-7)). Now define the path-to-point last-passage time from � to

.m; n/ (with the base vertex .i0; j0/) by

Gz
�;i0;j0

.m; n/D max
k2Œ`.�/�

�
1fk>bg �

k�1X

rDb

!z.�r/C 1fk<bg �
bX

rDkC1

!z.�r/C Gz;ı
�k
.m; n/

�
: (B-7)

The right-hand side is the same as that of the first line in (A-9) except that the underlying weights are

now !z .

As explained in the next example and later in Examples B.9–B.10 below, (B-7) simultaneously

generalizes the yGz-process from Section 2C and some line-to-point LPP models considered in recent

literature.

Example B.3. When .i0; j0/D .0; 0/ (� D LD L
u;v
0;0 ), it follows from (B-3) and definitions (2-3) and

(B-7) that Gz
L;0;0.m; n/D yGz.m; n/ for .m; n/ 2 VL D .Œu�[ f0g/� .Œv�[ f0g/.

In the general situation, (B-7) enjoys a simple relation to the yGz-process on V� through the following

distributional identity.
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Proposition B.4. For the path-to-point LPP in (B-7),

fGz
�;i0;j0

.m; n/ W .m; n/ 2 V�g dist.D fyGz.m; n/� yGz.i0; j0/ W .m; n/ 2 V�g:

Proof. Consider the path-to-point LPP given by

Gz
�;i0;j0

.m; n/D max
k2Œ`.�/�

�
1fk>bg

k�1X

rDb

!z.�r/C 1fk<bg

bX

rDkC1

!z.�r/C Gz;ı
�k
.m; n/

�
(B-8)

for .m; n/ 2 Z
2
�0. The two maps that compute the LPP values in (B-8) from the !z-weights and the LPP

values in (B-7) from the !z-weights are identical. Hence, by Lemma B.2,

fGz
�;i0;j0

.m; n/ W .m; n/ 2 V�g dist.D fGz
�;i0;j0

.m; n/ W .m; n/ 2 V�g: (B-9)

Appealing to Lemma A.4(a), the terms on the right-hand side of (B-9) can be written as

Gz
�;i0;j0

.m; n/D yGz.m; n/� yGz.i0; j0/ for .m; n/ 2 V� : �

As a consequence of Proposition B.4, the Gz
�;i0;j0

-process inherits the Burke property (2-12).

B2. Distributional identities for the exit points. Introduce the exit points associated with the path-to-point

LPP (B-7) by

Z
z;�
�;i0;j0

.m; n/D maxfŒk� b�� W k is a maximizer in (B-7)g for each � 2 fC;�g: (B-10)

These recover (2-10) in the case i0 D j0 D 0; see Examples B.1 and B.3. Moreover, one has the following

key distributional connection to the exit points in (2-8).

Proposition B.5. The exit points in (B-10) satisfy the distributional identity

fZz;�
�;i0;j0

.m; n/ W .m; n/ 2 V� ;� 2 fC;�gg dist.D fZz;�
�;i0;j0

.m; n/ W .m; n/ 2 V� ;� 2 fC;�gg:

Proof. Consider the exit points given by

Zz;�
�;i0;j0

.m; n/D maxfŒk� b�� W k is a maximizer in (B-8)g for each � 2 fC;�g: (B-11)

Definitions (B-10) and (B-11) are the same except that they input !z and !z , respectively, as the weights.

Hence, by virtue of Lemma B.2,

fZz;�
�;i0;j0

.m; n/ W .m; n/ 2 V� ;� 2 fC;�gg dist.D fZz;�
�;i0;j0

.m; n/ W .m; n/ 2 V� ;� 2 fC;�gg:

On the other hand,

Zz;�
�;i0;j0

.m; n/D Zz;�
�;i0;j0

.m; n/ for each .m; n/ 2 V� and � 2 fC;�g;

by Lemma A.6 and definitions (2-8) and (A-2). �
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B3. Right-tail bounds for the exit points restated. The next pair of propositions bounds the right tail of the

exit points in (B-10). These statements are in fact equivalent to Theorems 3.1 and 3.6, respectively, by virtue

of Proposition B.5 and Lemma A.1. It is worth emphasis that the main text does not rely on the present

section. In particular, the following propositions should be viewed as applications of our main results.

Proposition B.6. Fix ı > 0. There exist finite positive constants c0 D c0.ı/, �0 D �0.ı/ and N0 DN0.ı/

such that

P
˚
Zz;�

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�c0 minfs3; mCngg

whenever �2fC;�g, .m; n/2Sı \Z
2
�N0

, s� .mCn/�2=3, z2 .0; 1/with jz��.m; n/j��0s.mCn/�1=3,

.i0; j0/ 2 Z
2
�0, and � is a down-right path on Z

2
�0 with .i0; j0/ 2 � and .mC i0; nC j0/ 2 V� .

Proof. The result follows from Proposition B.5 and Theorem 3.1. �

Proposition B.7. Fix ı > 0, � > 0 and K � 0. There exist finite positive constants c0 D c0.ı;K/,

C0 D C0.ı; �;K/ and N0 DN0.ı; �;K/ such that

P
˚
Zz;�

�;i0;j0
.mC i0; nC j0/ > s.mCn/2=3

	
� expf�C0s

3g

when �2fC;�g, .m; n/2Sı \Z
2
�N0

, s2 Œ�; c0.mCn/1=3�, z2 .0; 1/ with jz��.m; n/j�Ks.mCn/�1=3,

.i0; j0/ 2 Z
2
�0, and � is a down-right path on Z

2
�0 with .i0; j0/ 2 � and .mC i0; nC j0/ 2 V� .

Proof. Combine Proposition B.5 and Theorem 3.6. �

B4. Some line-to-point LPP as special cases. Our aim in this part is to demonstrate that the increment-

stationary line-to-point LPP processes introduced in [53; 86] arise from (B-7) as special cases. To this

end, it is convenient to first develop formula (B-7) into an alternative form as follows.

Introduce another collection !0 D f!0.i; j / W .i; j / 2 Z
2
�0g of weights by

!0.i; j /D 1f.i;j / 62�g � �.i; j /: (B-12)

Let G0
p;q.m; n/ denote the last-passage time from .p; q/ 2 Z

2
�0 and .m; n/ 2 Z

2
�0 computed with the

!0-weights as in (A-1). Then define a new path-to-point LPP by

G0;z
�;i0;j0

.m; n/D max
k2Œ`.�/�

�
1fk>bg

kX

rDb

!z.�r/C 1fk<bg

bX

rDk

!z.�r/C G0
�k
.m; n/

�
(B-13)

for .m; n/2 Z
2
�0. This process a.s. coincides on V� with the LPP given by (B-7) as the next lemma shows.

Lemma B.8. For each .m; n/ 2 V� , Gz
�;i0;j0

.m; n/
a.s.D G0;z

�;i0;j0
.m; n/.

Proof. Let .m; n/ 2 V� , k 2 Œ`.�/� and � 2 …m;n
�;k

. Let i 2 Œ`.�/� denote the unique index such that

�i D �Z where Z DZ�;� . Note from definition (A-8) that Z � k if k > b, and Z � k if k < b. (When

k D b, both Z � b and Z � b are possible.) Using these implications with the fact that !z.�b/D 0, the
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agreement of the !z and !0 weights on V� X �, and definition (B-13), one obtains that

1fk>bg �
k�1X

rDb

!z.�r/C 1fk<bg �
bX

rDkC1

!z.�r/C
X

s2Œ`.�/�

!z.�s/

D .1fk>bg C 1fkDb;Z�bg/ �
ZX

rDb

!z.�r/C .1fk<bg C 1fkDb;Z�bg/ �
bX

rDZ

!z.�r/C
X

s2Œ`.�/�XŒi�

!z.�s/

D 1fZ>bg �
ZX

rDb

!z.�r/C 1fZ<bg �
bX

rDZ

!z.�r/C
X

s2Œ`.�/�XŒi�

!0.�s/

� G0;z
�;i0;j0

.m; n/:

In view of definition (B-7), maximizing the first line above yields Gz
�;i0;j0

.m; n/� G0;z
�;i0;j0

.m; n/.

To obtain the converse inequality, assume that k is maximizer in (B-13) and pick a !0-geodesic

� 0 2…m;n
�k

.

Claim: � 0 2…�;k.m; n/ a.s. To verify this, consider the case k>b and k2D� . Then!z.�k/��ExpŒ1�z�
by definition (B-2). Restrict to the a.s. event that !z.�k/ < 0. For a contradiction, suppose that

� 0
2 D �k C .0; 1/. Then, using the preceding inequality and also that � 0

2 D �k�1 and !0.�k/D 0 yields

kX

rDb

!z.�r /C G0
�k
.m; n/D

kX

rDb

!z.�r /C
`.�0/X

sD1

!0.� 0
s/

D
kX

rDb

!z.�r /C
`.�0/X

sD2

!0.� 0
s/ <

k�1X

rDb

!z.�r /C
`.�0/X

sD2

!0.� 0
s/�

k�1X

rDb

!z.�r /C G0
�k�1

.m; n/;

which contradicts the choices of k and � 0. (The strict inequality above comes from dropping the negative

weight !z.�k/). The verification of the claim is similar in the case k < b and k 2R� , and is trivial in the

remaining case.

Write i 0 2 Œ`.� 0/� for the unique index such that � 0
i 0 D �Z0 where Z0 D Z� 0;� . It follows from the

claim above that, a.s., Z0 � k if k > b and Z0 � k if k < b. Furthermore, definition (B-2) implies that

!z.�r/ � Exp.z/ when k < r � Z0, and !z.�r/ � Exp.1� z/ when Z0 < r < k (including the case

k D b). In particular, these weights are all a.s. positive. This together with the fact that the !0-weights

vanish on � justifies the first inequality below. The subsequent step uses that the !z and !0 weights agree

on V� X �, and !z.�b/D 0. The final inequality comes from definition (B-7). We have

G0;z
�;i0;j0

.m; n/D 1fk>bg

kX

rDb

!z.�r/C 1fk<bg

bX

rDk

!z.�r/C
X

s2Œ`.� 0/�

!0.� 0
s/

a.s.
� 1fZ0�bg �

Z0X

rDb

!z.�r/C 1fZ0�bg

bX

rDZ0

!z.�r/C
X

s2Œ`.� 0/�XŒi 0�

!0.� 0
s/

D 1fZ0>bg �
Z0�1X

rDb

!z.�r/C 1fZ0<bg �
bX

rDZ0C1

!z.�r/C
X

s2Œ`.� 0/�XŒi 0�1�

!z.� 0
s/

� Gz
�;i0;j0

.m; n/: �
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Let us now discuss two special cases of (B-7).

Example B.9. Let z 2 .0; 1/ and n 2 Z>0. Consider the down-right path � of length `.�/ D 2nC 1

given by �k D .b.k � 1/=2c; n� bk=2c/ for k 2 Œ2nC 1�. In other words, � consists of the vertices on

the antidiagonals f.i; n� i/ W i 2 Œn�[ f0gg and f.i � 1; n� i/ W i 2 Œn�g. Choose the base vertex on � as

�b D .i0; j0/ where j0 D n� i0 and b D 2i0 C 1 for some i0 2 Œn�.
It follows from Lemma B.8 and the structure of � that

Gz
�;i0;j0

.n; n/
a.s.D max

k2Œ2nC1�
k is odd

�
1fk>bg

kX

rDb

!z.�r/C 1fk<bg

bX

rDk

!z.�r/C G0
�k
.n; n/

�

D max
i2Œn�[f0g

�
1fi>i0g �

2iC1X

rD2i0C1

!z.�r/C1fi<i0g �
2i0C1X

rD2iC1

!z.�r/C G0
�2iC1

.n; n/

�
: (B-14)

To justify dropping the terms with even k 2 Œ2nC 1� from the maximum above, consider the case k > b

for example. Then since !z.�kC1/� 0� !z.�k/ and !0.�k/D 0,

kX

rDb

!z.�r/C G0
�k
.n; n/D

kX

rDb

!z.�r/C maxfG0
�k�1

.n; n/;G0
�kC1

.n; n/g

� max

� k�1X

rDb

!z.�r/C G0
�k�1

.n; n/;

kC1X

rDb

!z.�r/C G0
�kC1

.n; n/

�
:

A similar reasoning also holds for the case k < b. Hence, the first step in (B-14) is justified.

The first two terms within the last maximum in (B-14) can be written as

Sz
i D 1fi>i0g

iX

sDi0C1

f!z.�2s/C!z.�2sC1/g C 1fi<i0g

i0X

sDiC1

f!z.�2s/C!z.�2s�1/g (B-15)

for each i 2 Œn�. In view of definition (B-2), Sz
i is a sum of ji � i0j i.i.d. terms with marginal distributions

ExpŒz��ExpŒ1�z� when i > i0 and ExpŒ1�z��ExpŒz� when i < i0. Returning to the last line in (B-14),

one has

Gz
�;i0;j0

.n; n/
a.s.D max

i2Œn�
fSz

i C G0
.i;n�i/.n; n/g: (B-16)

Up to the irrelevant shift by .i0; j0/, the right-hand side of (B-16) coincides with the type of line-to-point

LPP with stationary initial data considered in [86, Section 1.1].

Example B.10. Let us generalize Example B.9 to down-right paths with an arbitrary negative slope. Let

z 2 .0; 1/, �2 R<0, n2 Z>0 and j0 2 Œn�[f0g. Put i0 D �b�.n�j0/c 2 Z�0 andmD i0Cb��j0c 2 Z�0.

Consider a down-right path � that contains the vertices f.i0 Cb�.j �j0/c; j / W j 2 Œn�[f0gg � Z
2
�0. For

each j 2 Œn�[ f0g, let pj 2 Œ`.�/� denote the unique index such that �pj
D .i0 C b�.n� j � j0/c; n� j /.

Assume further that p0 D1,D� Dfpj C1 Wj 2 Œn�1�[f0gg and pn D`.�/. Then � is determined uniquely

as the down-right path that starts from �1 D .0; n/, ends at �`.�/ D .m; 0/ and, for each k 2 Œ`.�/� 1�,
leaves vertex �k via a down-step if and only if k D pj for some j 2 Œn�1�[ f0g. Choose the base vertex
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on � as �b D .i0; j0/ where b D pn�j0
. Note that the case �D �1 of the preceding setup corresponds

exactly to Example B.9.

Restrict to the case � 2 Œ�1; 0/. Then

Gz
�;i0;j0

.m; n/
a.s.D max

k2Œ`.�/�
k 62R�

�
1fk>bg

kX

rDb

!z.�r/C 1fk<bg

bX

rDk

!z.�r/C G0
�k
.m; n/

�

D max
j 2Œn�[f0g

�
1fj >n�j0g �

pjX

rDb

!z.�r/C 1fj <n�j0g �
bX

rDpj

!z.�r/C G0
�pj
.m; n/

�
; (B-17)

where the first equality is by virtue of Lemma B.8 and the choice of �. The justification for dropping

the terms k 2R� from the maximum is similar6 to the one given after (B-14) and omitted. The second

equality holds since Œ`.�/�XR� D fpj W j 2 Œn�[ f0gg. Generalizing (B-15), introduce the sum

Sz;�
j D 1fj <j0g �

pn�jX

rDb

!z.�r/C 1fj >j0g �
bX

rDpn�j

!z.�r/ (B-18)

for each j 2 Œn�[ f0g. Using (B-18) in (B-17) yields

Gz
�;i0;j0

.m; n/
a.s.D max

j 2Œn�[f0g
fSz;�

j C G0
.i0Cb�.j �j0/c;j /.m; n/g: (B-19)

The right-hand side of (B-19) can be recognized as the LPP defined in [53, (3.40)] up to the shift of the

origin to .i0; j0/.

Appendix C: Auxiliary estimates

Lemma C.1. Let ı > 0. The following statements hold:

(a) xCy � 
.x; y/� 2.xCy/ for x; y > 0.

(b) �.x; y/ 2 .�; 1� �/ for .x; y/ 2 Sı where � D
p
ı=2.

(c) .xCy/1=3 � �.x; y/� 2ı�1=3.xCy/1=3 for .x; y/ 2 Sı .

Proof. The claims are elementary consequences of definitions (2-15), (2-16) and (5-2). �

Next is an estimate of the mean function in (2-14).

Lemma C.2. Let x; y 2 R>0 and z 2 .0; 1/. Abbreviate 
 D 
.x; y/, � D �.x; y/ and � D �.x; y/. Fix

ı > 0 and � > 0. Then there exists a constant C0 D C0.ı; �/ > 0 such that

jMz.x; y/� 
 � �3.z� �/2j � C0.xCy/jz� �j3 for .x; y/ 2 Sı and z 2 .�; 1� �/:

6The assumption � � �1 comes in crucially here by ensuring that � does not take consecutive right steps. Consequently,
each vertex �k with k 2R� lies between two vertices of the form �pj

and �pj C1
for some j 2 Œn� 1�[ f0g.
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Proof. From definitions (2-14), (2-15) and (2-16), and the identity x=.�2/D y=..1� �/2/D 
 ,

Mz.x; y/� 
 D .z� �/
�

� x

z�
C y

.1� z/.1� �/

�

D .z� �/
�

� x

z�
C x

�2
C y

.1� z/.1� �/ � y

.1� �/2
�

D .z� �/2
�
x

z�2
C y

.1� z/.1� �/2
�

D .z� �/2

z.1� z/ :

Recalling the definition of � from (5-2), one obtains that

Mz.x; y/� 
 � �3.z� �/2 D .z� �/2
 �
�

1

z.1� z/ � 1

�.1� �/

�
D .z� �/3
 � �C z� 1

z.1� z/�.1� �/ :

The result follows from bounding the last expression above using Lemma C.1(a)–(b) and the assumption

z 2 .�; 1� �/. �
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