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We develop a new probabilistic method for deriving deviation estimates in directed planar polymer and
percolation models. The key estimates are for exit points of geodesics as they cross transversal down-
right boundaries. These bounds are of optimal cubic-exponential order. We derive them in the context
of last-passage percolation with exponential weights for a class of boundary conditions including the
stationary case. As a result, the probabilistic coupling method is empowered to treat a variety of problems
optimally, which could previously be achieved only via inputs from integrable probability. As applications
in the bulk setting, we obtain upper bounds of cubic-exponential order for transversal fluctuations of
geodesics, and cube-root upper bounds with a logarithmic correction for distributional Busemann limits
and competition interface limits. Several other applications are already in the literature.
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1. Introduction

1A. Purpose of this work. This paper introduces a new method for deriving probability estimates for
directed planar polymer and percolation models. This method operates naturally in the context of the
probabilistic coupling approach. It utilizes a generating function of the process with two distinct boundary
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conditions on the axes. It yields probability bounds of optimal exponential order, for the first time
within the coupling approach. This allows the coupling approach to match the strength of the integrable
probability approach in the treatment of a variety of problems of planar random growth.

We develop the technique for the exponential corner growth model since this is the most-studied
example in the KPZ class. The ideas will transfer readily to other planar models with tractable increment
or ratio stationary versions. Indeed, since the first version [42] of this paper, some key aspects of our
approach have been implemented for the geometric corner growth model [58], integrable lattice polymers
[71; 102], the O’Connell-Yor polymer [70] and, most remarkably, a nonintegrable! model of interacting
diffusions [71] that includes the O’Connell-Yor polymer (introduced in [84]) as a special case.

Our main result gives control of the exit point of the geodesic from the axes. This is often the starting
point for applications of the coupling methodology because it is based on comparisons of several versions
of the process. From these bounds follow a number of applications. Some applications are described in this
paper. Other applications? concern optimal-order (at least up to logarithmic factors) central moment bounds
for last-passage times [43, Theorem 3.1], and transversal fluctuations and coalescence bounds for finite
and semi-infinite geodesics [28, Theorems 2.2 and 2.8; 98, Theorem 2.3]. These results were previously
inaccessible to the coupling approach, and could be proved only through inputs from integrable probability.

Next this introduction describes the broader KPZ class, the coupling approach to their study, our results
and their first applications, and related literature. The reader familiar with the subject can check our
notation in Section 2 and proceed to the results in Sections 3 and 4. The organization of the paper is
described in Section 1H below.

1B. Kardar-Parisi-Zhang class of planar stochastic models. The Kardar—Parisi—Zhang (KPZ) univer-
sality [68] predicts long-time fluctuations in one-dimensional, out-of-equilibrium, stochastic interface
growth with nonlinearly slope-dependent vertical speed, local only constraints, a smoothing mechanism
and rapidly decorrelating space-time noise. After a long time 7" > 0, the interface is expected to display
height fluctuations on T1/3 scale and nontrivial spatial correlations on T2/3 scale. Furthermore, with
suitable centering and rescaling, the evolution of the interface is expected to converge to that of a universal
limiting interface, the KPZ fixed point [77], started from the limiting initial conditions. The broader
significance of these predictions is that the same scaling and, at least to a large extent, the limit behavior
are also believed and partially confirmed to arise in a diverse array of probabilistic models and physical
systems. These form the KPZ universality class in 1 + 1 (one space and one time) dimensions, and
include certain interacting particle systems, random matrix ensembles, stochastic PDEs, and models of
polymers in random media, growth of bacterial colonies, and liquid percolation. In-depth introductions to
the subject from both mathematical and physical perspectives can be found in the review articles [37; 69;
89; 90]. The short surveys [2; 39; 54] also provide a summary of major milestones and some interesting
research directions in this area.

From a mathematical perspective, much of the KPZ prediction remains conjectural. However, for a small
class of integrable (exactly solvable) models with special structure, it has been possible to rigorously verify

In the sense that there is no integrable structure beyond the existence of product-form invariant measures.
2Some of the cited works utilized an earlier preprint [42] of this paper.
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some aspects of the KPZ universality. The field of integrable probability, which exploits the structural
properties of models to the greatest extent, often provides the most precise results on the KPZ class models
and presently offers the only feasible path for rigorous analysis to the point of computing limit distributions.
In the integrable approach, one first derives explicit formulas in the form of Fredholm determinants for
the expectations of certain observables of interest, typically through versions of the Robinson—Schensted—
Knuth (RSK) correspondence, the machinery of determinantal point processes or the Bethe ansatz, and then
computes a suitable limit via the methods of asymptotic analysis. This line of argument was first demon-
strated in the breakthrough articles [4; 65] and has since expanded remarkably in scope [26; 27; 38; 67].

The techniques of integrable probability do not seem well suited, however, to study the KPZ universality
beyond the integrable settings due to being too closely tied to the special, model-specific properties.
Therefore, the development of alternative methodologies reliant on more broadly available structures and
with greater potential for generalization merits research attention.

1C. Coupling approach. One promising probabilistic approach capable of identifying the KPZ scaling
exponents is the coupling method introduced by E. Cator and P. Groeneboom in the context of Hammers-
ley’s process [29; 30]. This is a particularly versatile scheme that has since been further developed and
fruitfully adapted to a variety of KPZ class models, including some directed percolation models [9; 36],
particle systems with nearest-neighbor interaction [11; 12; 8] and directed polymers [10; 13; 34; 78; 96].
In broad strokes, the method compares a model under study with its stationary versions through suitable
couplings, and likely produces results as long as the latter models are sufficiently tractable. For example,
it would at least in principle be applicable in all integrable directed percolation and polymers on the
integer quadrant considered in [3; 16; 33; 40; 83; 91; 99], including their inhomogeneous generalizations.
Furthermore, the variants of these models with general i.i.d. weights having finite p-th moment for
some p > 2 also possess stationary versions [57; 63], although no longer in explicit form. This raises
the attractive, albeit presently highly speculative, prospect that the coupling method can potentially be
improved in the future to the extent of being able to study the KPZ exponents in such nonintegrable
settings of great interest. As perhaps encouraging developments in this respect, some aspects of limit
shapes and geodesics in i.i.d. directed percolation as well as the positive temperature counterparts of these
objects in i.i.d. directed polymers have been successfully studied in recent works [56; 57; 63; 64] through
coupling arguments.

On the other hand, there are also drawbacks to the coupling approach. Besides being unable to access
the KPZ limit distributions, prior to the present work, the coupling method produced weaker than optimal
results in some applications. Most notably, it provided only polynomially decaying? left-tail bounds for
the last-passage time and free energy, which was a main source of limitations and suboptimalities in
various results. For example, before this work, optimal-order bounds were available via the coupling

3Before this work, the best left-tail fluctuation bounds for last-passage times accessible via the coupling approach had
cubic decay; see [9; 97] for example. On the polymer side, the results of [81; 82] imply polynomially (of arbitrary degree)
decaying fluctuation bounds for the free energy in the stationary versions of the O’Connell-Yor polymer and integrable lattice
polymers. We also remind here that optimal-order/sharp exponential tail bounds are available through integrable or random
matrix techniques [5; 72].
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approach only for certain low central moments of these random variables. In a recent advance, refining
the coupling method suitably, preprints [81; 82] managed to establish nearly optimal (with an e-deficiency
in the exponents) bounds for all central moments of the free energies in the stationary versions of the
O’Connell-Yor polymer and the four basic integrable lattice polymers. As our work demonstrates,
however, there is still significant room for further fundamental improvements to the method.

The purpose of this article is to optimize the coupling method in a key aspect, namely, the exit point
bounds. As a result, the method is brought on par with integrable probability in handling a variety of
problems of interest. Being able to achieve optimal results via the coupling approach is of some significance
because the method can be preferable in these situations on account of its aforementioned virtues.

1D. Exponential last-passage percolation. Our setting is the last-passage percolation (LPP) on the
nonnegative integer quadrant Zio with independent exponential weights. The rates of the exponentials
equal 1 in the bulk Zio, w on the horizontal axis Z~o x {0} and 1 — z on the vertical axis {0} x Z¢ for
some parameters w > 0 and z < 1. The weight at the origin is irrelevant and set to zero. The basic objects
of study are the last-passage times and geodesics defined in Section 2A.

The exponential LPP is among the most-studied integrable models in the KPZ universality class [9;
24; 88], owing in large part to its close connection to the totally asymmetric simple exclusion process
(TASEP) started with the two-sided product Bernoulli initial condition and a single second-class particle
at the origin. More specifically, the initial occupation probabilities for the sites of Z~¢ and Z ¢ equal
z and w, respectively, assuming now that w € (0, 1] and z € [0, 1). For the present work, the particle
system picture only serves as a motivating context. Our proofs are developed entirely within the LPP
framework from the stationarity properties of the equilibrium case w = z. A point to stress here is that
the choice of the exponential LPP (among the integrable settings to which the coupling approach applies)
is not a requirement but made for concreteness as well as relative simplicity and significance of the model.
Analogous developments to ours can likely be carried out in all previously listed integrable directed
percolation and polymers. These extensions are left for future works.

1E. Overview of main results and methodology. An important role in the coupling approach to the LPP
is played by the exit points of the geodesics out of the origin in the equilibrium regime. The most basic
case is the exit point from the axes, which is the last vertex that the geodesic visits on the axes before
entering into the bulk. More generally, we consider the exit point from an arbitrary down-right path; see
Section 2B for the precise notion. Our interest is in the right-tail event in which the exit point is at least
a given distance away from a fixed base vertex on the down-right path. The collection of such events
describes, for example, the transversal fluctuations of the geodesic.

Our main results on the exit points in the exponential LPP are upper and lower bounds of matching cubic-
exponential order for the right-tail fluctuations, covering primarily the equilibrium regime w = z (Theorems
3.1 and 3.6). Crucially for our purposes of empowering the coupling method, the preceding bounds are
obtained utilizing no more than the knowledge of the explicit equilibrium models and the stationarity of
the last-passage increments there. Also worth noting with a view to future extensions is that the stronger
distributional feature known as the Burke property (see (2-12)) is also not used at this stage, although it



EXIT POINT BOUNDS IN EXPONENTIAL LAST-PASSAGE PERCOLATION VIA COUPLING 613

does come in for our applications mentioned below. Our exit point bounds can be equivalently rephrased
in terms of increment-stationary path-to-point exponential LPP as well (Propositions B.6 and B.7).

Before the present work, known proofs of exponentially decaying fluctuation upper bounds for geodesic
exit points relied on LPP fluctuation upper bounds with exponential decay. Examples of this approach can
be found in the proofs of [19, Theorem 11.1], [53, Lemma 3.6] and [48, Lemma 2.5]. In particular, these
arguments achieve optimal-order cubic-exponential decay for exit points starting from LPP fluctuation
upper bounds with exponent % Prior to [43], which builds on this article, the known techniques that can
produce such bounds for the left-tail analyze exact distributional formulas for last-passage times either
via Riemann—Hilbert methods [5; 74; 75], or via tridiagonalization methods applied to the closely related
Laguerre unitary ensemble [72], or via H. Widom’s trace trick [100] combined with steepest-descent
methods applied to the trace of the associated correlation kernel [6]. On the other hand, before this article,
the coupling method provided only cubically decaying left-tail fluctuation upper bounds* for last-passage
times [9]. This made it challenging to obtain optimal-order exit point upper bounds via the coupling
approach. In fact, the best upper bounds available via the coupling approach prior to our work were
cubically decaying [9, Theorem 2.2 and 2.5; 86, Lemma 2.2; 87, Lemma 3.7; 97, Proposition 5.9].

The main novelty of the present work is that optimal-order exit point upper bounds are obtained here
through the coupling method, without inputs from integrable probability or random matrix theory. This is
achieved through a moment generating function identity previously observed in a preprint of E. Rains
[91] and recorded as Proposition 2.1 below. In [91], this identity is derived from determinantal formulas
developed in [3] for the distribution of last-passage times. We give a short probabilistic proof utilizing
the increment-stationary LPP process. We also find that Rains’ identity is a natural generalization of
the well-known variance identity of Baldzs—Cator—Seppéldinen; see (2-19) below. The latter identity
and its variants formed the basis of the fluctuation theory developed with the coupling approach for
integrable directed LPP since the seminal articles [9; 29; 30]. See, for example, the recent lecture notes
covering the exponential LPP [97]. The key observation in the present work is that (2-19) can be upgraded
to Proposition 2.1 without leaving the coupling context, and the fluctuation theory based on the latter
produces optimal results previously inaccessible via the coupling approach.

From Rains’ identity, we first extract a cubic-exponential order upper bound for the first step probability
of a geodesic out of the origin (Proposition 3.4) for the increment-stationary LPP. We then turn this bound
into our main upper bound (Theorem 3.1) with the aid of a known distributional identity [97, Lemma A.2]
(stated as Lemma 5.5 below) relating the exit points from the axes to those from general L-shaped paths.
The proof of our main lower bound (Theorem 3.6) follows the same broader strategy with a key step being
the derivation of a cubic-exponential lower bound for the first step probability (Proposition 3.9). The
proof of the latter is more involved than the corresponding upper bound. It combines a change-of-measure
argument originated in [8] together with our exit point upper bounds. We point out that the technique
from [8] was previously adapted to the exponential LPP [97] and has been employed recently to obtain

4After our work, it has become possible to achieve optimal-order left-tail fluctuation upper bounds within the coupling
framework through combining [43, Proposition 4.5] with the generic results of [55]. See also [70] where similar strategy is
employed for the O’Connell-Yor polymer.
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coalescence bounds for semi-infinite geodesics [98]. An intermediate result in [98, Theorem 4.1] is a
lower bound of optimal-order for the exit points from the axes. Our main lower bound extends this result
mainly to arbitrary down-right paths through a similar argument.

We conclude this section by commenting on some hypotheses in our main results. First, our main
lower bound requires an arbitrarily small but fluctuations-scale distance between the exit point and the
base vertex. Such a condition is expected on grounds that exit points should exhibit a different decay
behavior for small deviations, which has been recently studied for the bulk model (with i.i.d. Exp(1)
weights) in [17]. Also, our exit point bounds apply to geodesics with endpoints away from the axes. For
fluctuation bounds on steep geodesics, see [22, Theorems 2.5 and 2.7].

1F. Some applications and extensions. Our second set of results demonstrates some initial applications
of our exit point upper bounds. Theorem 4.1 provides cubic-exponential order fluctuation upper bounds
for the exit points of the bulk geodesics. The order of decay in this result should be optimal on account
of universality and a recent optimal-order cubic-exponential lower bound for the geodesics in the Poisson
LPP [60, Proposition 1.4]. The authors employed some LPP moderate deviation bounds from [74; 75] as
the only inputs from integrable probability. After the present article, it has become possible to reproduce
these inputs through the coupling approach [42; 43]°, which suggests that optimal-order lower bounds
complementary to Theorem 4.1 can also be established within the coupling framework.

The remaining applications utilize the Burke property. The next one concerns Busemann functions,
namely, the a.s. directional limits of the last-passage increments. Our interest is in the speed of distributional
convergence. Theorem 4.4 provides speed upper bounds with cube-root decay (up to logarithms) in the
bulk setting. This result is in the spirit of [15, Theorem 2.1], which proved an upper bound for the total
variation distance between the LPP increments in the bulk and in a suitable equilibrium model. Compared
with our speed bounds, their result provides bounds with respect to a stronger metric but with a weaker
decay rate; see Remark 4.5. Our proof is based on Proposition 3.4 and the crossing lemma (Lemma A.2).
We expect that our upper bounds are of optimal-order, and it might be possible to deduce matching lower
bounds from the coalescence and stability results of [15; 28] but we do not pursue this point here.

We also study the speed of distributional convergence for the limiting direction of the competition
interface, the boundary between two geodesic subtrees sharing the same root vertex. In the bulk case,
Theorem 4.7 gives upper speed bounds with cube-root decay (up to logarithms). Encountering the same
quantitative bound as in Theorem 4.4 is not surprising since the distribution of the competition interface
direction can be recovered from the Busemann functions in the limit. This suggest that Theorem 4.7 can
possibly be extracted from Theorem 4.4 as a corollary but we could not find such an argument without
some loss in the strength of the bound. Our proof of Theorem 4.7 is instead a separate application of
Proposition 3.4 and the crossing lemma. We again expect that our upper bound is optimal in order and
a matching lower bound might be achievable in view of [15; 28] but presently do not attempt putting
together a proof. Subsequently, we examine the competition interface in the equilibrium case and observe
a dramatically different behavior in the speed of distributional convergence. Theorem 4.8 provides

3 A forthcoming update to our preprint [42] will present a coupling proof of the right-tail lower bound analogous to the input
[60, Theorem 2.3] for the exponential LPP.
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matching order upper and lower speed bounds of cubic-exponential order. This result is derived from the
corresponding bounds in Propositions 3.4 and 3.9 for the first step probabilities.

A natural extension of Theorems 4.7 and 4.8 would be to determine the speed of convergence for the
competition interface for the full range of the boundary parameters w > 0 and z < 1. (The bulk and
equilibrium cases correspond to taking (w, z) = (1,0) and w = z, respectively). It is natural to expect
that the convergence speed exhibits an interesting transition that parallels the one from [51; 52] describing
when the competition interface has a deterministic or random limiting direction. Another follow-up
would be to investigate whether our speed bounds for the competition interface translate to bounds for
the second-class particle of TASEP. As far as we are aware, there are no results quantifying the speed of
convergence for the latter. We leave these extensions to future works to explore.

The last pair of results in this work recasts our main upper and lower exit point bounds in terms
of increment-stationary down-right-path-to-point exponential LPP. These reformulations are stated as
Proposition B.6 and B.7, respectively. We derive them as corollaries of Theorems 3.1 and 3.6 after
developing a suitable generalization (Proposition B.5) of the distributional identity [97, Lemma A.2].
Some line-to-point special cases of these bounds have been utilized in some recent articles [23; 53; 86].
Similarly, our path-to-point extensions can be potentially useful in future works.

1G. Related literature. We briefly touch on literature related to exit points, Busemann functions and
competition interfaces, each of which is a major topic of research.

Exit points (as defined in this work) are of interest since they capture geodesic fluctuations and are
also closely connected to geodesic coalescence [85]. An early work concerning exit points is [66] which
rigorously verified the wandering exponent of geodesics as % for the Poisson LPP. This determines the
correct scale of fluctuations for the geodesic exit points. Starting with articles [9; 30] employing the
coupling approach and with article [19] importing more powerful inputs from integrable probability, an
increasingly refined picture of fluctuations emerged through tail bounds. By now, fluctuation bounds
for geodesic exit points have featured frequently in the literature, often in service of proving some
deeper properties of last-passage times. Some earliest applications of exit point bounds obtain optimal-
order variance bounds [9; 30] through identities such as (2-19) below. Further applications concern the
nonexistence of infinite bigeodesics [14; 22; 58], geodesic coalescence [20; 98; 103], modulus of continuity
[60], temporal correlations [18; 21; 49] and tightness [32; 35; 48; 86] of last-passage times, empirical
distribution of weights along geodesics [76] and mixing times of TASEP on a ring [94], among other topics.

Since the influential works [61; 62; 73], Busemann functions have become a useful instrument in the
study of geodesics in both undirected first-passage percolation (FPP) and directed LPP. For an overview
of the related literature, see the surveys [1; 92]. Following the approach of [80], the existence of the a.s.
Busemann limits in the exponential LPP was first proved in [50] for a deterministic set of fixed directions
of full Lebesgue measure. (See also the earlier work [101] where Busemann functions are constructed
for the Poisson LPP.) The result was subsequently extended to each fixed direction in [41]. The limits
were later established in broad generality in a joint work of the third author [57]. Their result covers LPP
with i.i.d. weights bounded from below and of finite p-th moment for some p > 2, and applies to all
directions except those into the closed (possibly degenerate) flat regions of the shape function with at
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least one boundary direction where the shape function is not differentiable. The lower bound requirement
on the weights was removed afterwards in [63]. See also the discussion in [64, Appendix A].

Competition interface was introduced in [50] in the context of exponential LPP as a notion of a
boundary between competing growth processes. See also the earlier work [59] which studied competition
in exponential FPP. A main significance of the competition interface in the exponential LPP is that it
captures the trajectory of the second-class particle in the associated TASEP [50; 51; 52]. Consequently,
an initial set of results on the competition interface comes from translating the predating TASEP literature
on the second-class particle; see [44; 45; 46; 79; 88; 95], for example. We refer the reader to [51; 52] for
a more detailed account. The competition interface also naturally features in a characterization of the
exceptional directions of noncoalescence in the geometry of the semi-infinite geodesics [64].

Ferrari and Pimentel [50] proved the a.s. existence of the limiting direction of the competition interface
and identified its distribution explicitly. (See also [46; 79] for the corresponding result on the second-class
particle.) The preceding result was extended in [31; 52] to the down-right-path-to-point exponential LPP
assuming that the boundary path has asymptotic directions on both ends. In another direction of gen-
eralization, [56] proved the a.s. convergence for the LPP with general i.i.d. weights on Zio under the
assumptions that the weights are bounded from below and have continuous distributions of finite p-th
moment for some p > 2, and the shape function is differentiable at the endpoints of its linear segments.
The lower bound assumption on the weights was later eliminated in [63]. Although it is not within the
focus of the present work, the fluctuations of the competition interface around its limiting direction, and the
related fluctuations of the second-class particle have also received renewed attention recently; see [47; 53].

1H. Organization of the paper. Section 2 defines the exponential LPP model, its geodesics and exit
points, and the increment-stationary version. The key generating function identity is in Proposition 2.1.
Section 3 records the main results, namely, matching upper and lower bounds on fluctuations of exit points.
Section 4 collects some applications of the main bounds to transversal fluctuations of bulk geodesics, and to
speed of distributional convergence to Busemann functions and the limiting competition interface direction.
Sections 5 and 6 contain the proofs. Appendix A contains auxiliary technical results for LPP with arbitrary
real weights. Appendix B extends our main bounds to certain path-to-point LPP processes, and relates
our work to the recent exit point bounds from [53; 86]. Appendix C contains some basic estimates.

Notation and conventions. Let @ denote the empty set and define min @ = inf @ = co and max & =
sup @ = —oo. Let Z and R denote the sets of integers and reals, respectively. For A C R, x € R and
relation O € {>, >, <, <}, let Agx = {a € A :a O x}. For example, Z~ denotes the positive integers.

Define [n] = {1,2,...,n} forn € Z¢ and [0] = @. For x € R, let xT = max{x, 0} and x~ = (—x) ™.
Also, let [ x| = supZ<y and [x] = inf Z>. Our convention is that R® = RO = R? = (o).

For a finite sequence w = (77} ) ¢[] in 72, {(7r) = n indicates the number of terms in (the length of) 7.
We refer to the set {7; : i € [n]} also as 7.

For any subset A C S of an arbitrary space S, the indicator function 14 : § — {0, 1} equals 1 on A
and 0 on the complement S ~ A. The cardinality of A is denoted by #A.

Let X ~Exp(A) for A > 0 mean X is a rate A exponential random variable with the mean E(X) = A~!
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and the moment generating function E (e’X) =A(r—1)"! Tgr<py+00lysyy forz €R. Also, Y ~—Exp(1)
means that —Y ~ Exp(A). If X ~ Exp(1) and Y ~ —Exp(u) are independent, the distribution of X + Y
is denoted by Exp(A) — Exp(u).

The same name (e.g., Co, co) may refer to different constants that appear in various steps within a proof.

2. Exit points in exponential last-passage percolation

This section contains a precise description of the model and the main tools utilized for its treatment in the
present work.

2A. Last-passage times with exponential weights. Given parameters w > 0 and z < 1, consider indepen-
dent random weights {®"-*(i, j) : i, j € Z>o} such that ®"-*(0,0) = 0, and

Exp(1) ifi,j >0,
@Y% (i, j) ~ { Exp(w) ifi >0, =0, 2-1)
Exp(1—z)  ifi =0,/ >0.

These weights can be coupled through a single collection {n(i, j) :i, j € Z>o} of i.i.d. Exp(1)-distributed
random real numbers by setting

Lgi>0,j=0y Lfi=o0,j>0}
w + 1—z

51,1 = 106,10y + ) orijeza @2
The boundary rates in (2-1) are chosen so that the case w = z gives rise to the increment-stationary LPP
process to be discussed in Section 2C.

Let P denote the probability measure on the sample space of the n-variables, and E denote the
corresponding expectation.

Throughout, we employ the following notational conventions with respect to (2-2) and various quantities
defined from these weights. We drop one z from the superscript when w = z (®% = ®*?), and omit w
when j > 0O since there is no dependence on w in that case. Similarly, z is omitted when i > 0. Finally,
to distinguish the bulk weights (those on Zio), we also remove the hat from the notation and write
w(i,j)=o"2@,j)wheni,j>0.

A finite sequence 7 = (7)ke[e(r)] IN 72 is called an up-right path if w1 — . € {(1,0), (0, 1)} for
k el[l(m)—1]. Let Hp 4 denote the set of all up-right paths = from 771 = (p, q) € 72 to Ty(r)=(m,n) € 7.

For (m,n), (p,q) € Z>0, introduce the last-passage time from (p, g) to (m,n) by

GY 7 (m.n) = max > WAL ). (2-3)

TG i jyen
The case m, n, p,q > 0 of (2-3) defines the bulk last-passage times

Gp,q(m,n) = Gwz(m n)= max Z (i, j). (2-4)

(i, j)en

For often-used initial points we abbreviate Gw-* (m,n) = (A}sz (m,n) and G(m,n) = Gy,1(m,n).
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A maximizing path 7 € HZf’q" in (2-3) (and in (2-4)) is called a geodesic (or ®*-?-geodesic to indicate
the weights) from (p, ¢) to (m, n). Since the marginal distributions of ®%# given in (2-1) are continuous,
when p <m and g <n, a.s. there exists a unique geodesic ., (m,n) € I 7" (also denoted by 7,5 """

as convenient).

2B. Exit points of geodesics from down-right paths. A down-right path is a finite sequence v =
(VK )kefe(v)) in 72 such that v — v € {(1,0), (0, —1)} for k € [£(v) — 1]. A frequent special case for
the sequel is when v is the L-shaped path Llr,n,;ln from vy = (p,n) to v,y = (m, q) such that (p,q) € v
for some (m,n), (p.q) € Z* with p <m and g < n.

Let v be an up-right path and v be a down-right path. If ¥ N v # @ then define the exit point Z,, of
7 from v as the unique index ko € [£(v)] such that

Vk, = 7,, Where log =max{/ € [{(7)]:m €v}. (2-5)

In other words, vz, is the last vertex of = on v. See Figure 1.
Fix a base vertex vy = (ig, jo) on v for some b € [£(v)]. We represent the exit point also relative to

(io. jo) by
0

7T,V,00,J0

= (Zny—b)P  for both signs O € {+, —}. (2-6)

For all paths 7, v and base points v € v, this quantity is zero for at least one choice of sign O € {+, —}.

To guarantee the existence of exit points, paths are restricted in the sequel as follows. With (p, q) = 1,
assume that vy(,) € {u} x Z>4 and v1 € Z5, x {v} for some u, v € Z. Necessarily, u > p and v > ¢q. Let
V, denote the set of all vertices (m,n) € Z<, x Z<, such that

m>i and n>j for some (i, j) € v. 2-7)

Then, under the further assumption that my(;) € V,, the intersection 7 N v # & as required for the
definition of Z . Figure 1 illustrates this.

Assume now that v C ZZ>0. For each (m, n) € V,, and the choice of the sign O € {+, —}, define the
(maximal) exit point from v of W2 -geodesics in Hgfb" by

w,z,0
V,10,J0

O
TT,V,10,J0

O

(m,n) = max{Z 7oy (m,n),viio,jo

i S Hgf;)" is a ®¥*?-geodesic} = Z (2-3)

These are our main objects of study. Definition (2-8) makes sense since 7 Nv # & for each 7 € Hg’b" by

the restriction on v. The second equality above is due to the a.s. uniqueness of the geodesic thj (’)Z (m,n).
When v =L = L;>", is the L-shaped path with lower left base vertex vj = (io, jo) (Where b =v—jo+1),
(2-8) simplifies to
w,z,+ as. . (i . w,z +
ZL,io,jo(m’ n) = [max{k €Zs¢: (io +k, jo) € 70,0 (m, n)}] ,

Zy (m.n) = [maxik € Zso : (io. jo + k) € s (m.m)}] ™. (2-9)

To distinguish the case ip = jo = 0 where L lies on the coordinate axes and contains the origin, we
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Figure 1. Illustrations of the exit point of an up-right path 7 (dashed, black) from a down-
right path v (gray). Vertex vz, (black dot), the base vertex v = (io, jo) (White dot) and
the set V;, ~ v (light gray) are indicated. The nonzero values Z+ = Z ;Ttu io.jo above are

Z~ =2 (top left), Z* = 4 (top right), Z~ = 5 (bottom left) Z~ = 2 (bottom right).

simplify the notation in (2-9) to
Y5 ) = 208 (myn) and ZWFV(m,n) = 280 (m,n). (2-10)

Equivalently, Z%>?"T(m, n) is a.s. the distance that the geodesic n(l)” (’)Z (m,n) spends on the horizontal
axis, and Z"-%¥*"(m, n) the same for the vertical axis.

2C. Increment-stationary last-passage percolation. A central role in our treatment belongs to the
equilibrium (increment-stationary) versions of the exponential LPP and their characteristic directions. Let
us briefly recall these notions.

For a down-right path v in Z2, define the sets

Ry =1{i €e[t(v)—1]:vit1=v; +(1,0)},
Dy ={j e [l]~{1}:vj—1=v; +(0,1)} (2-11)

that encode the right and down steps of v, respectively. See Figure 2.
By virtue of a version of Burke’s theorem for LPP [9, Lemma 4.2], for each z € (0, 1), the increments
of the G*-process along any down-right path v contained in Zzzo enjoy this property: the collection

{(GZ(viy) =G () i € RIU{G" (v-1) —G*(v)) : j € Dy}
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Figure 2. A down-right path v and the sets R, and D, defined at (2-11). Vertices in R,
(dots) are the left endpoints of horizontal edges in v while the vertices in D,, (triangles)
are the lower endpoints of the vertical edges in v. Two vertices lie in both R, and D,,.

is jointly independent with the marginals given by

G*(vi41) —G*(v) ~Exp{z}  fori€R,,

R R (2-12)
G*(vj—1) —G*(vj) ~Exp{l —z} for j € D,.
As a consequence, the G* -process is increment-stationary in the sense that
Gz(m—I—p,n—l—q)—CA}Z(p,q)(ﬁ:MCAiz(m,n) for m,n, p,q € Z>p. (2-13)

Our exit point bounds (Theorems 3.1, 3.6 and 4.1, and Propositions 3.4 and 3.9) are derived from (2-13)

while our applications of these results to the Busemann limits, competition interface and path-to-point expo-

nential LPP (Theorems 4.4, 4.7 and 4.8, and Propositions B.6 and B.7) rely on the stronger property (2-12).
Introduce the function

MZ(x,y):g—kﬁ for x,y €e R>p and z € (0, 1). (2-14)

It follows from (2-13) that this function records the marginal means of the G* -process: E [GZ (m,n)] =
M?(m,n) form,n € Z¢. The curve z — M?(x, y) for z € (0, 1) and some fixed x, y € R is plotted
in Figure 3.

The shape function of the bulk G-process can be expressed in terms of (2-14) by

yGey) = inf M (x.y)=(Jx+ V¥)? for x,y € Rso. (2-15)
z€(0,1 -

A seminal result of H. Rost [93] identifies (2-15) as the limit limy oo N 'G([Nx], [Ny]) = y(x, y)
for x,y € Rs¢ P-as.
The unique minimizer in (2-15) is given by

(o) = —Y*  for (xuy) € RZ, ~ {(0,0)}. (2-16)

VXY

This function defines a bijection between directions (unit vectors) in R2>0 and the interval [0, 1]. When

z ={(x,y) € (0, 1), the vector (x, y) points in the characteristic direction of the G*? -process. In this
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M#(x, y

y(x,y

0 C(x,y) 1

Figure 3. The plot of the curve z > M?(x, y), z € (0, 1) (black) with x =4 and y = 5.
The minimum value y(x, y) and the unique minimizer ¢ (x, y) are indicated.

direction the geodesics from the origin exit the boundary within a submacroscopic neighborhood of the
origin. A precise version of the statement is contained in Theorem 3.1 below.

2D. The lL.m.g.f. of the LPP process with boundary weights. Define

LY%(x,y) = xlog(%) + ylog(ﬁ) for x,y € Rsp and w,z € (0, 1). 2-17)

At the heart of our development is the following identity that links (2-17) to the 1.m.g.f. of the G2 -process.
Proposition 2.1 [91]. Letm,n € Z>¢ and w, z € (0, 1). Then
log E [exp{(w — 2)GY% (m, n)}] =LY (m,n).

Proof. Recall (2-1). The second equality below uses the product inside the expectation as a Radon—
Nikodym derivative. This changes the rates of the exponential weights on the vertices {(i,0) : i € [m]}
from w to z. Then we use shift invariance (2-13) to obtain

m
lOgE[e(w—z)GW-z(m,n)] _ logE[(l_[ e(w—z)awz(i,O))e(w—z)(aw--'(m,n)—aw~z(m,()))]

i=1

—m log(ﬂ) 1 log E [ @@ 0n.1)-G* (m.0))
zZ

— w (w—2)G7(0,n)

=mlog| — | +log Ele ]
4

1—
=mlog(%) +nlog(ﬁ) = L¥Z(m, n). 0

Remark 2.2. While the left-hand side of the identity makes sense for w > 0 and z < 1, the restriction
w, z € (0, 1) does not lose anything interesting. Indeed, if w > 1 and n > 0 then w—z > 1—2z > 0 and

E [exp{(w —2)GY % (m, n)}] >E [exp{(l —2)w?(0, l)}] =00
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because the weights are nonnegative and w?(0, 1) ~ Exp(1 — z). Likewise, the left-hand side is infinite if
z <0 and m > 0. Finally, if either m = 0 or n = 0 then the left-hand side reduces to the l.m.g.f. of the
sum of i.i.d. exponentials.

Remark 2.3. A more general form of Proposition 2.1 appeared in a preprint of Rains [91, Corollar-
ies 3.3-3.4]. His version covers mixtures of the exponential and Poisson LPP, and mixtures of the
geometric and Bernoulli LPP, and allows some inhomogeneity in parameters. Two proofs for the identity
are provided in [91], both of which ultimately rely on exact determinantal formulas for the distribution of
the last-passage times developed in [3]. The short argument above extends readily to the inhomogeneous
exponential and geometric LPP but we have not attempted to verify this in the full setting of [91]. Since
the initial appearance of this work, versions of Proposition 2.1 have been proved also in some integrable
polymer models [70; 71; 102] as well as for a nonintegrable model of interacting diffusions [71] that
generalizes the O’Connell-Yor polymer.

Remark 2.4. The variance identity of Baldzs—Cator—Seppilédinen [9, Lemma 4.6] can be recovered from
Proposition 2.1. We give a formal calculation which can be made rigorous. Exponentiating, multiplying
through by exp{—(w — z)M?#} and Taylor expanding lead to

~ ad A ~
exp{LP — (w— 2)MF} = E[exp{(w — )G ~ M )] = 3 % E[G - M)
p=0 )

where the vertex (m, n) is dropped for brevity. Differentiating twice with respect to w and setting w = z
yield
Owlw=zAM" (m, n)} = 20p |w=z{E[G"* (m,n)]} + Var[G* (m,n)]

on account of the identity d,, L%+ = M™. Hence, with the left-hand side above written explicitly, one
obtains that
Var[G? (m, n)] = =2 + ——— 28y L= (E[G** (m, m)]}. 2-18)
z (1-2)2
This identity essentially appears within the proof of [9, Lemma 4.6]. The argument there computes the
derivative in (2-18) in terms of the exit point, which results in the final form of the variance identity

m " 2 Zz,hor(m,n)
Var[G? (m,n)] = =+ = + ;-E[ l;) a)z(i,O):|. (2-19)

The analogue of (2-19) for the Poisson LPP was previously observed in [30, Theorem 2.1]. An early
analogous identity relating the variance of the particle current to the expected position of the second-class
particle in TASEP appeared in [45]. Baldsz and Seppildinen [7] generalized such identities to a broader
class of stochastic particle processes.

3. Main fluctuation bounds for exit points

We present our main results on the exit points. Theorems 3.1 and 3.6 below provide upper and lower fluctu-
ation bounds in suitable regimes for the right tail of the exit points in (2-8). A key point is that these bounds
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capture the correct cubic-exponential order of decay and are derived from the stationarity feature (2-13)
without integrable probability. Alternative formulations of the same results in terms of increment-stationary
down-right-path-to-point exponential LPP are included in Appendix B as Propositions B.6 and B.7.

To ensure the uniformity of various bounds, vertices are often restricted to the cone

Ss :{(x,y)e[R&O:xz(Sy and y > §x} (3-1)
for some fixed § > 0.

3A. Main upper bounds. The following theorem gives right-tail upper bounds on the exit point where
the geodesic Jr(')‘j (’)Z (m+iop,n + jo) leaves a down-right path v, relative to the base vertex (ig, jo) on v.
The increment-stationary case is the one with w = z. Figure 4 illustrates the statement. The set V,, was
defined at (2-7).

Theorem 3.1. Fix § > 0. There exist finite positive constants co = ¢o(8), €9 = €o(8) and No = No(5)

such that the following statements hold whenever w > 0,z < 1, (m,n) € Sg N ZzzNo’ s > (m+n)~2/3,

(io, jo) € ZZZO, and v is a down-right path on Zéo with (ig, jo) € v and (m +ig,n + jo) € Vy:
(a) If minf{w, z} > L(m,n) —eos(m +n) /3 then
P{Zf’;g:;(m +ig,n + jo) > s(m + n)2/3} < exp{—co min{s>, m +n}}.
(b) If max{w, z} < C(m,n) + eos(m +n)~1/3 then
P{Zf’;g:;o(m +ig,n + jo) > s(m + n)2/3} < exp{—co min{s>, m +n}}.
Remark 3.2. Assume further that £(v) < C(m + n) for some constant C > 0. Then the probabilities

above vanish for s > C(m + n)l/ 3. Therefore, the bounds in the theorem can be replaced with exp{—c;s3}
where ¢; = co min{C 73, 1}.

The following corollary for the L-shaped down-right path on the coordinate axes strengthens an exit
point bound from the earlier version of this article [42, Theorem 2.5]. A similar bound also appeared
independently in [25, Theorem 2.5].

Corollary 3.3. Fix § > 0. There exist finite positive constants co = ¢o(6), €0 = €9(8) and Ng = No(5)
such that the following statements hold whenever w >0,z < 1, (m,n) € SgN Zz>N0 and s > (m +n)~2/3:

(@) If min{w, z} = (m,n) —eos(m +n)~'/3 then

P77 m, n) > s(m +n)?/3) < exp{—cos>}.
(b) If max{w,z} < &(m,n) + eos(m +n)~"/3 then

P{Z¥7 (m,n) > s(m +n)?/3} < exp{—cos>}.

Proof. Apply Theorem 3.1 with (ig, jo) = (0,0) and v = Lgfbn. The result then follows from Remark 3.2
since f(v)=m+n+1=<2(m+n). O



624

ELNUR EMRAH, CHRISTOPHER JANJIGIAN AND TIMO SEPPALAINEN

””” (m +ig,n + jo)
rl

Figure 4. Illustrates Theorem 3.1 in the case w = z = {(m, n). A possible occurrence
of the event that the geodesic & = négo(m +ip,n + jo) to a vertex (m +ip,n + jo) in
V), exits a down-right path v at a vertex (black dot) outside and below the s(m + n)?/3
neighborhood (gray dots) of the base vertex v, = (ig, jo) (white dot) is shown. By
part (a) of the theorem, the probability of this event is at most exp{—co min{s>,m +n}}.

3B. Upper bounds for the first step probabilities. The following proposition provides upper bounds of
optimal order for the probability of a geodesic from the origin taking the less likely initial step. The
complementary lower bounds come in Proposition 3.9 below. The statement is a main ingredient in the
proofs of several results in this work and is of independent interest.

Proposition 3.4. Fix § > 0. Let (m,n) € Sg N Zio, {=¢(m,n) and z € (0, 1). There exists a constant
co = ¢o(8) > 0 such that the following statements hold:

(@) If z > then

(b) If z < C then

P{Z%"(m,n) > 0} < exp{—co(m +n)(z —¢)*}.

P{ZZ’Ver(m’ n) > 0} < exp{—co(m + I’l)(é' —2)3}.

Remark 3.5. By tweaking the proof of Proposition 3.4, it is possible to restate the preceding bounds
with a precise constant and error term when z is sufficiently close to {. For example, fixing § > 0 and
setting z = { + & where o = o(m, n) is the scaling factor defined at (5-2) below, one has

3 C 4
P{Z7" (m,n) > 0} < exp{—% + i’ +°’:)1/3} (3-2)
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whenever (m, n) € SsNZ2 Zoand0<s=<e(m +n)1/3 for some constants Co = Co(8) > 0 and € = €(§) > 0.
The leading order term in (3-2) arises from some optimal choices in the proof. See Remark 5.2 for more

details. We do not know whether the constant —% is indeed sharp.

3C. Main lower bounds. The next theorem states the lower bounds complementary to Theorem 3.1.
Note that, unlike the situation in Theorem 3.1, the s parameter is now bounded from below by some fixed
€ > 0 and the constants Ny and Cy depend on €.

Theorem 3.6. Fix § > 0, € > 0 and K > 0. There exist finite positive constants co = co(8, K), Co =
Co(8, ¢, K) and No = No(8, €, K) such that the following statements hold whenever (m,n) € Sg N ZZ

s € [e,co(m+n)/3], w >0,z <1, (i, jo) € Z>0, and v is a down-right path on 72 So with (io, ]0) e v
and (m +ig,n + jo) € Vy:

(a) If max{w, z} < ¢(m,n) + Ks(m 4+ n)~1/3 then

P{Z)20 (m+io.n + jo) > s(m +n)*?} = exp{—Cos’}.

v,i0,jo
(b) If min{w, z} > ¢ (m,n) — Ks(m +n)~Y/3 then

P{Z i (m+1io,n+ jo) >s(m+n)2/3} > exp{—Cos°}.

v,io, JO

The special case of Theorem 3.6 where (i, jo) = (0,0) and v = Lgfbn gives the lower bounds that
match the upper bounds in Corollary 3.3.

Corollary 3.7. Fix 6 > 0, € > 0 and K > 0. There exist finite positive constants co = co(6, K), Cop =
Co(8,¢€, K) and No = No(8, €, K) such that the following statements hold whenever (m,n) € Sg N ZiNo
s €le,com+n)/3], w>0and z < 1:

(a) If max{w, z} < ¢(m,n) + Ks(m +n)~1/3 then

P{Z¥7 (m, n) > s(m +n)?/3} > exp{—Cos>}.
(b) If min{w, z} > &(m,n) — Ks(m + n)~'/3 then

P{Z¥7 (m,n) > s(m +n)?/3} > exp{—Cos>}.

Remark 3.8. The result implies the following lower bound in the increment-stationary case: given § > 0
and € > 0, there exist positive constants co = ¢o(8), Co = Co(8, €) and Ny = Ny(6, €) such that

P{max{ZZ’hOr(m, n),Z*""(m,n)} > s(m + n)2/3} > exp{—Cos>} (3-3)

whenever (m,n) € Sg N Z>N ,z€(0,1) and s € [e, co(m + n)'/3]. This bound has essentially the same
content as a recent result in [98, Theorem 4.1] that was also proved without integrable probability, by an
adaptation of a change-of-measure argument from [8; 97]. Our proof of Theorem 3.6 is in a similar spirit.
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3D. Lower bounds for the first step probabilities. The next result gives lower bounds complementing
the upper bounds in Proposition 3.4. The result serves as a main step in our proof of Theorem 3.6.

Proposition 3.9. Fix § > 0 and € > 0. There exist finite positive constants Co = Co(6, €), €9 = €9(6)
and Ny = No(8, €) such that the following statements hold for (m,n) € Sg N ZiNo and z € (0, 1) with
|z —¢| < e€o where £ = L (m,n):

@ Ifz>C+e(m +n)~Y/3 then
P{Z7""(m,n) > 0} > exp{—Co(m + n)(z — 0)*}.
(b) Ifz <& —e(m~+n)"13 then

P{Z7"*(m,n) > 0} = exp{—Co(m +n)(¢ — 2)°}.

4. Applications of main exit point bounds

We apply some results from Section 3 to obtain fluctuation upper bounds for the geodesics in the bulk,
and speed bounds for the distributional convergence of the LPP increments and the competition interface
direction.

4A. Exit point upper bounds for geodesics in the bulk. In our framework, by virtue of the identity

dist.

{GM0(m.n): (m.n) € 720} = AG(m + Lin+ 1) —w (1, 1) : (m,n) € 7%}, @-1)

bounds on transversal fluctuations of bulk geodesics can be expressed as right-tail bounds for the exit
points in (2-8) when w = 1 and z = 0. The exit point bounds from Section 3 do not apply in this case
due to the restrictions there on the parameters. Nevertheless, utilizing the ordering of geodesics with
a common endpoint, the upper bound in Theorem 4.1 below can be deduced from Theorem 3.1 and
Proposition 3.4 in a fairly straightforward manner.

Theorem 4.1. Fix § > 0. There exist finite positive constants co = co(8), €g = €0(8), No = No(8) and
so = 50(8) such that

P{Zl’O’E| (m+ig,n+ jo)>s(m+ n)2/3} < exp{—co min{s>, m +n}}

V,i0,J0
whenever O € {4+, —}, s > 59, (m,n) € Sg N Z2>N0, (io, jo) € Zéo subject to
1E(m +io+ 1.n+ jo+1)—&(m,n)| < eos(m+n)~V3, (4-2)
and v is a down-right path in Zéo with (ig, jo) € v and (m +ig,n + jo) € Vy.

Remark 4.2. Note from (2-16) that the left-hand side of (4-2) equals zero if and only if the vertices (0, 0),
(m,n) and (m+ig+1,n+ jo+ 1) are colinear. On the grounds of this and the continuity of the function ¢,
condition (4-2) can be interpreted as indicating the approximate collinearity of the preceding vertices.
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Remark 4.3. Uniform bounds similar to [28, Theorem 2.8] but weaker by a logarithmic factor can
be readily obtained from Theorem 4.1 via the union bound. To demonstrate, let (x,y) € Ss and
(Pk-qk) = (Lkx], |ky]) for k € Z>¢. Pick N € Z~, and consider the L-shaped paths Ly y = L;}iv(’)q’v
for k € [N]U{0}. Theorem 4.1 implies the existence of positive constants cg, No and s¢ depending only
on § such that

N—No

P{Zi/?;pk ax (PN-AN) > 1 (N — k)*? for N =M <k <N —No} < Z exp{—cot}}
k=N—M

whenever M € [N] with M > Ng and t; > so for N — M < k < N — Np. In particular, setting
ty = s(logM )1/ 3 above for some s > sg, and choosing s and Ny sufficiently large yields

P{Zi’}?.’;,pk’qk (pN.gN) > s(logM)l/g'(N—k)z/3 for N—M <k <N —NO} < exp{—cos>log M}

after renaming the constant cg.

4B. Speed of the distributional convergence to Busemann functions. We now turn to an application of
Proposition 3.4 to bound from above the speed of distributional convergence of the bulk LPP increments
to the Busemann functions.

Denote the increments of the bulk LPP process with respect to the initial point by

Bhor(m n) =G;j j(m,n)—Gjy1,;(m,n),
B/ (m,n) =G, j(m,n)— G, j+1(m,n) (4-3)

form,n € Z~¢,i € [m] and j € [n]. By definition (2-4) (and the convention that max & = —o0), these
increments are equal to +-0o wheni = m and j = n, respectively.

It is known [41; 50] that, for any given direction vector (x, y) € R2 ,, there exists a stationary stochastic

>0

process {bhor (x,), bVer (x,y):i,j € Z~¢} and an event of full probability on which the limits

th Bhor(mN ny) = bhor(x y) and hm B (mn.,nN) =b;%(x, ) 4-4)

hold for all (i, j) € 72 <o and sequences {(my,ny)jN>1 C Z>0 such that min{mpy,ny} — oo and
mpy/ny — x/y. The limits (4-4) are examples of Busemann functions evaluated, respectively, at pairs
((i,7),G+1,j))and ((Z, j), (i, j + 1)) of adjacent vertices.

The following distributional properties of the Busemann functions were obtained in [31, Lemma 3.3].
The marginal distributions are given by

by (x, ) ~ Exp{{(x, y)} and b} (x, y) ~Exp{l = {(x, )} (4-5)

for (i, j) € 7> Zoand (x,y) € R2 o- Furthermore, for any down-right path v in 72 < o (recalling the definition
of R, and D, in (2-11)) the collectlon

{by"(x,¥) 1i € Ry} U{bY(x, y) 1 j € Dy} (4-6)
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is jointly independent. Comparing with (2-12), one recognizes that the Busemann functions in (4-6) have
the same joint distribution as the (absolute) increments of the G? -process along v, namely, the collection
{GZ(vi+1) —G?(vi) 1i € Ry} U{G?(vj—1) —G?(vj) : j € Dy} when z = {(x, y).

For each p,q € Z>¢ and z € (0, 1), introduce the functions ff,:gor, flz,jffr :R? xR? — [0, 1] by

g (s.0) = [T expt=siz} [T 1 —expl=rf (1= 2)).

i€[p] j€lq]
Gy 0 =[] (0 —expl=szp) [ ] expt—r7(1-2)} (4-7)
i€[p] J€ldl

fors = (si)ie[p] € R? and t = (t;);¢[q) € RY. Suppose p = #R,, and ¢ = #D,, equal the number of down

and right steps in v. Then the functions flz,icvfr and flz)jgor give two representations of the joint distribution

of the increments (GZ (Ve+1) — G* (Vi) ke[t(v)—1]- Indeed, by definition (4-7) and (2-12),
£ (s,1) = P{@io <s; fori € [p] and &g ; > —t; for j € [}
= P{Gz(vri+1) —Gz(vri) <s; fori € [p] and Gz(vdj) —Gz(vdj_l) <t; for j €[q]}.

where (r;);e[p] and (d});e[4) denote the elements of R, and D, in increasing order. Similarly, ff,jgor
gives the joint distribution of the reversed increments (GZ (vp) — G? (Vk+1))kefe(v)—1]- In particular, from
the discussion in the preceding paragraph, one has

fgfg,y),hor(s, t) = P{bﬁ‘fr’lr (x,y)>—s; fori € [p] and b‘v,‘;rj (x.y) <t for j €[q]}.

fg’(g,y),ver(s, 1) = P{b?)‘;f (x,y) <s; fori €[p] and b;j;j (x,y)>—t; for j €[q]}.  (4-8)

Let m,n € Z~ be sufficiently large such that m > u and n > v for any (4, v) € . In the same vein as

in (4-8), define the prelimiting functions Ff,"’n’hor, Fib"Y RP x R — [0, 1] by

FT,n,hor(s,t) = P{Bgflr (m,n) > —s; fori € [p] and Blv,zrj (m,n) <t; for j €lql},

1}
I} @9

[
Fmmver (s 1) = P{B,l}‘r’lr (m,n) <s; fori € [p] and B]V,‘Z]_ (m,n) > —t; for j €q
for s € R? and r € R?. In light of (4-4), (4-5) and (4-6), for fixed v and (x, y),

lim FNYLIVYLO(s ) = pLen)D(s 1) for each s € R?,t € R? and O € {hor, ver}.  (4-10)

N—>oo

A natural problem is then the speed of convergence. The next result provides some bounds in this direction.

Theorem 4.4. Let § > 0 and € > 0. There exist constants No = No(8, €) > 0 and Co = Cy(8) > 0 such

that 13
log(m + n)
s ,h ( > ):h g
|FTn or(S,t)_fg’;”” 0r(s,t)| =< CO(1 +1{421}logq){m} ,
log(m + n) 13
n, _ t(m,n), “n+n)
|FT n Ver(s’ 1) fp’;" n ver(s’ Z)| =< CO(1 + ]l{pzl} log p){ (m + I’l)

whenever (m,n) € Sg N ZiNO, v is a down-right path contained in [1, e(m +n)?/3]2, p =#R,, q =#D,,
s €RP andt € RY.
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Remark 4.5. Let us compare Theorem 4.4 with a related previous result from [15]. Let e > 0, N € Z~o
and Ry = Zio N[0, eN2/3]2. Consider the total variation distance between the joint distributions of the
two collections

{BIL(N.N):(i.j.0) € Ry x thor,ver}} and {b7;(1,1): (i, j.0) € Ry x {hor, ver}}.

Theorem 2.1 in [15] shows that this distance is at most C €3/8 for all € <cand N > 1 for some positive
constants ¢ and C. (Their result covers all directions not just (1, 1)). The total variation is stronger as
a metric than the c.d.f. distance, which is the notion of distance considered in Theorem 4.4. Therefore,

-2/3

taking e = N above yields

|P{BEl(N, N) < x}—P{bEl(N, N)<x}| < CN~Y* for xeRandOe€ {hor, ver}.

This is weaker than the order (log N y1/3N~1/3 bound provided by Theorem 4.4.

Remark 4.6. Our expectation is that the upper bounds of Theorem 4.4 are optimal up to logarithmic
factors but we are unable to verify this at the moment. We are also unaware of any lower bounds for
the speed of convergence to the Busemann functions in any LPP setting. It would be nice to have lower
bounds complementary to Theorem 4.4; we leave this interesting problem as a topic of future works.

4C. Speed of the distributional convergence of the competition interface direction. We describe one
more application of Proposition 3.4, of a flavor similar to Theorem 4.4. This time we bound from above
the speed of distributional convergence of the competition interface to its limiting direction.

For the definitions in this section, restrict to the full probability event on which the geodesic 7"
from (1, 1) to (m, n) is unique for all m,n € Z~(. Partition Zio ~{(1, 1)} into the subsets

T = {(m,n) € Zio 2, ) en™" ={(m,n) € Zio :Ga,1(m,n) > Gy 2(m,n)}, 4-11)
TV = {(m,n) € 2%y : (1,2) € ™"} = {(m,n) € 7% : Go,1(m,n) < Gy 2(m,n)}. (4-12)

As a consequence of planarity and the uniqueness of geodesics, the sets above enjoy the structure

(k,1) € 7" implies that Zsj x [I] C T, (4-13)
(k,1) e TV implies that [k]xZ5; C T, (4-14)

See Figure 5.
The competition interface is a notion of a boundary between 7" and 7" introduced by P. A. Ferrari
and L. Pimentel in [50]. One precise definition of it is as the unique sequence ¢ = (¢n)nez-, =

(gol,;"r, 0y nez, In Zio such that, for all n € Z~,

((p’};or + 17(P;1]er) c Thor’ ((pgor, (P,Y,er + 1) c Tver and (p’l/llor +(P’\1/er =n+1. (4_15)

The existence and uniqueness of ¢ can be seen from properties (4-13)—(4-14). The original definition
from [50] describes the competition interface recursively as follows:

I =1, @l = gl L 1{G(PI + 1,957 ) < G(pl, op ) + 1)}, (4-16)
o =1, o =y + UG + Loy )) > Glep oty + 1)} (4-17)
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Figure 5. A simulation of the first N = 50 steps of the competition interface (black). The
vertices in 7" (lighter gray) and 7" (darker gray) below the antidiagonal i + j = N +1
are shown.

forn € Z~1. This says that ¢ always moves in the direction of the minimal increment of G. The equivalence
of (4-15) and (4-16)—(4-17) can be verified by induction. With R; = {(m,n) € Zio :G(m,n) <t}, one
can view the sets 7' NR; and T*' NR; as the states of two competing growth processes on Z2 , and the
path {¢, :n € Z~¢ and G(p,) <t} as the interface between them at time ¢ > 0. The study of competing
growth began with [59] in the context of first-passage percolation with exponential weights.

The distributional limit of ¢ computed in [50, Theorem 1] (see also [46; 79]) can be phrased in our
notation as follows: for x € [0, 1],

li)m P{pr <nx}={(x,1-x)= L = lim P{p," <nx}. (4-18)
n—oo

JX+A1—x nooo

The next result bounds the speed of convergence in (4-18) from above. Similarly to the situation with
Theorem 4.4, we predict the upper bound of Theorem 4.7 to be optimal up to logarithms but are unable to
produce a matching-order lower bound at this time.

Theorem 4.7. Let § > 0. There exists a constant Cy = Co(8) > 0 such that

logn)l/3

PLGh < nx}—£(x.1—x)| < Co(

forxel[§,1—68landn € Z~,.

We next take an initial step towards generalizing Theorem 4.7 to the exponential LPP with two-

sided boundary. Fix w > 0 and z < 1. Let $*Z = (@ " Inezoo = (gL-2her @n " nez., denote the

competition interface associated with the G2 -process. More precisely, let
Tw,zhor {(m,n) € Zéo : G’lu’bz(m,n) > Gg)”lz(m,n)},

/f-w,z,ver — {(m, n) c 2220 . Gﬁbz(m’n) < Gg]’slz(m,l’l)} (4—19)
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The geodesic n(')” (’)Z (m, n) is a.s. unique for each (m,n) € ZZZO. On this event of probability one, define
@¥>? as the unique sequence in Z2 <o such that

(§0w ,Z,hor +1 (D\w \Z, ver) e Tw ,Z, hor’ (Aw \Z, hor Aw z,ver + 1) = Tw,z,ver’
~w,z,hor AW,z ,ver

op + o2 =n for ne€Zsp. (4-20)

Definition (4-20) coincides with (4-15) for w = 1 and z = 0 in the sense that the sequences (@é’o)nezzo
and (¢n+1 — (1, 1))nez., are equal in distribution.

For any w € (0, 1] and z € [0, 1), the limit distribution of ¢">* has also been computed explicitly [52,
Theorem 2], and is given by

~ T{w >z
lim P{g¥#Mr <px} = Lw >z}
n—oo —

(min{w, ¢(x,1—=x)}—min{z, {(x, 1 —x)})
+ 1{w < z}1{¢(x,1 —x) > p*?*} for x €0, 1]

except at the point of discontinuity ¢(x, 1 —x) = p*? = {(wz, (1 —w)(1 —z)) in the case w < z.

The next result provides matching-order upper and lower speed bounds for the distributional convergence
of ¢ in the equilibrium case w = z. The main point is to contrast the cubic-exponential decay below
with the cube-root decay in Theorem 4.7. It would be nice to have optimal-order speed bounds for the full
range of the w and z parameters illuminating the transition in the speed of convergence from cube-root to
cubic-exponential decay. We leave this to future works.

Theorem 4.8. Fix § > 0 and € > 0. The following statements hold for all x € [§,1 — 8] and z € (0, 1)
subject to the indicated assumptions:

(a) There exist positive constants ¢y = co(8) and Ay = Ao(8) such that
!P{(pz hor < pxd —1{C(x, 1 —x) > z}} < exp{—con|¢(x,1—x) —Z|3}
whenever n € Zsqg and |&(x,1 —x) —z| > Aon~!

(b) There exist positive constants €g = €o(8), Co = Co(8, €) and N9 = No(6, €) such that
|P{@Z " < nx}—1{¢(x,1—x) > z}| = exp{—Con[{ (x,1—x) — z|*},

whenever n € Z>n, and [{(x,1 —x)—z| € [en=1/3 o).

5. Proofs of the exit point bounds

We begin to prove our main results. This part is divided into Sections SA-5E devoted to the proofs of
Proposition 3.4, Theorem 3.1, Proposition 3.9, and Theorems 3.6 and 4.1, respectively. The proofs of
Theorems 4.4, 4.7 and 4.8 will appear in Section 6.

5A. Proof of the upper bounds for the first step probabilities. For the proof of Proposition 3.4, let us
first record a suitable Taylor approximation of the l.m.g.f. in (2-17). From definitions (2-14) and (2-17),
one has the identity

w
LY%(x,y) = / M’ (x,y)dt for w,z € (0,1) withw >z and x, y € Rso. (5-1)
z
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Define the function

y(x,y) V3 ()R
,y) = =" Y-  f , R>p. 5-2
7= (g ) xifeyife 1T TR0 o2
This is connected to (2-14) through
o (x.¥)> = 302 2=¢ (e ) IM7 (x, )} for x,y € Rso. (5-3)

Lemma 5.1. Let x,y € Rso and w,z € (0, 1) with w > z. Abbreviate y = y(x,y), { = {(x,y) and
o =0(x,y). Fix § > 0 and € > 0. There exists a constant Co = Co(8, €) > 0 such that

LY (x, y) = (w—2)y =30 {(w =) = (2 =)} < Co(x + N{(w - O* + - %)
whenever (x,y) € Ss and w,z € (¢,1—¢).
Proof. This follows from (5-1) and Lemma C.2. O

Proof of Proposition 3.4. By symmetry, it suffices to prove (a). Assume z > { and write A = %(z —-£)>0.
In the computations below, the arguments of the LPP values and various functions are fixed at the vertex
(m,n) and omitted. Using definitions (2-3) and (2-10), monotonicity, the Cauchy—Schwarz inequality
and Proposition 2.1, one arrives at
P{Z*" > 0y = P{GT > Gf 1} = P{Gi ¢ = G§ 1}

= E [exp{AGi ** = AG"~ 2*’2}11{(}152A >G3 )]

< E[exp{/\GZ 21 AGZ—ZA,Z}]

< E[exp{2AGi ?!}]'/? E [exp{—2AG*~2+7}]1/2

—2A11/2 17 z—24,
= E[exp{2AGi 3?1}/ 2 exp{ L7247}
< E [exp{2)&Gz 2A,2—4A }] 1/2 exp{%LZ—ZA,Z}
exp{ 1pz— —2A,z—4A + le—Z)L,z}

- 2

— exp{ LZ 2A,z—4A lLZ,Z—ZA}. (5_4)
The minus sign in the final step comes from switching the order of the parameters z — 2A and z in the
superscript; see definition (2-17).

Since (m, n) € Sg, the last exponent in (5-4) can be bounded by means of Lemmas 5.1 and C.1 as
follows (see Figure 6): for some constants Cy, cg, € > 0 depending only on 4,

Lz—2)&,z—4/l _Lz,z—2)k — L§‘+ZA,§ _Lé‘+4k,§+2)&
< (2ay + 18230%) — 24y + 3(644% —=82%)0®) + Co(m + n)A*
=—16A303 4 Co(m +n)A*
< —2co(m 4 n)A> + Co(m +n)A*

< —co(m +n)A>

provided that A < €. This completes the proof in the case A <e.
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S

f’ N
Figure 6. Illustration of the last display in the proof of Proposition 3.4. The bound

LE+2A8 1 E4+4A.8424 meagures the difference of the areas of the regions shaded in gray

and darker gray. This quantity is of order (z — ¢)? because, for fixed x, y > 0, the curve
t +— M (x, y) (black) is approximately a parabola with the vertex at ({(x, y), y(x, y)).

When A € (¢, 1), the claimed bound also holds after adjusting co by a constant factor dependent only
on € = €(6). O

Remark 5.2. We sketch how (3-2) can be obtained by modifying the preceding proof. Choosing € > 0
small ensures that z = ¢ + % € (0,1) in view of Lemma C.1(c). Let p,q > 1 with % + % = 1. Using
Holder’s inequality instead of the Cauchy—Schwarz in display (5-4) leads to the bound
log P{Zz,hor > O} S _le—qk,z—(p—{—q)/\ + lLZ,Z—qA.’ (5_5)
p q
where A > 0 is a parameter to be chosen comparable to z — ¢. It can be seen from Lemma 5.1 and some
algebra that the right-hand side of (5-5) is at most

C0S4

o3
(m+n)t/3

T3P 2= 0= p’A7 =3p?qA (2 =) + pg* A ] +
Then calculus shows that the leading order term above attains its optimal value —%s?’ when p = %, q=3

and A = $(z—0).

5B. Proof of the main upper bound. In preparation for the proof of Theorem 3.1, the next lemma states
a simple geometric property of the exit points. See Figure 7 for an illustration. The top right picture
in particular exemplifies the case of equality in part (b). The lemma uses the notation for the L-shaped
down-right paths from Section 2B.

Lemma 5.3. Let w be an up-right path from (p,q) to (im,n). Let v be a down-right path such that
V1 € Z>p x{n} and vy(y) € {mj X Z»q. Pick some b € [€(v)] and write (i, jo) = vp. Let r € Z>¢o. Then
the following statements hold for each O € {+, —}:
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@ IfZ2, ;0o > 7 thenb Or € (L)) and ZT | ;. >0 where (ir, jr) = vpo, and L = L] .
(b) IfbOr € [L(v)] and Z:E!L,i,,jr > 0 where iy, jr and L are as in (a) then Z?Ev,io,jo >r.

Proof. By symmetry, it suffices to verify the claims for [J = +.

;_,V,io,jo > r. By definition (2-6), Z;, = b + s for some s > r with

b+ s € [£(v)]. Since v is down-right, writing (is, js) = Vp4s, One has i, < iy <m and j; < j, < n.

To obtain (a), assume that Z

Therefore, and also because 7 is up-right and contains {(is, js), (m,n)}, 7w also contains (u, j,) for some
u € ZNlis, m]. If u = i, then necessarily i, = i and the vertical segment {(i,, j): j € ZN|[Js, jr]} TNV
but this contradicts the present assumption that r exits v at (is, js) # (ir, jr). Hence, u > i,. Then, by

definition (2-6), Z; Liyjr > 0 as claimed.
Now we prove (b). Assume that b + r € [{(v)] and ZF > 0. Then (v, j) € m for some

7w, L,ir, jr

v e ZNJiy +1,m] by (2-6). Because 7 is up-right path with {(p, q), (v, j)} C & while v is a down-right
path with (i, j») € v and vy(,) € {m} x Z, from the inequalities p < i, < v < m, one concludes that
Vp+t = (iz, j:) € w for some t > r with b + ¢ € [{(v)]. Due to the strict inequality v > i, and that r is
up-right with (v, j) € w, one has # N ({i;} x Z-;,) = &. Hence, vy & & for k € [b + r — 1] because
v is down-right and vy, = (ir, jr). Since also (i;, j;) € = N v, it follows from definition (2-5) that
Zz,y > b+r, and therefore zt > r by (2-6). O

7,V,i0,J0 —

Next a monotonicity property for the geodesic exit points defined at (2-8).
Lemma 5.4. The exit points in (2-8) satisfy the following properties for each (m,n) € V,:

w,z . . . .
(@) Z, zo;t) (m,n) is nonincreasing in w and z.
bl bl

(b) Z:f) ;g’;)(m, n) is nondecreasing in w and z.
Proof. Note from (2-2) that ®" (i, 0) is decreasing in w, and & (0, j ) is increasing in z for each i, j € Z~y.

The claimed monotonicities are then special cases of Lemma A.1. O

The following distributional identity connects the exit points from L-shaped paths and to those from
the axes. A statement to the same effect appeared previously in [97, Lemma A.2]. The lemma can also be
derived as a corollary of Proposition B.5.

Lemma 5.5. Letm,n, p,q € Z>o, L = LI')",;;’)’"’L‘I and z € (0, 1). Then

dist. — dist.
27t J(mtpon+q) = ZFm.n) and 277, (m+ p.n+q) =25 (m.n).

To establish Theorem 3.1, one needs one more lemma comparing the values of the minimizer (2-16) at
different vertices.

Lemma 5.6. Let x,y € R>o and § € R>¢. Then

8(1—2¢(x,))
(VX +38+ /NWx+8+ Jx)
82(x,y)

(YOI Y 0)

Cx+8,y)=C(x.y) =

Cx,y+8)—Cl(x.y)=
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Figure 7. Illustrates Lemma 5.3 for the case [1 = + in three situations. Paths  (dashed
black), v (gray) and L (dashed gray), and the vertices v, = (ip, jo) (white dot) and
Vp4r = (ir, jr) (gray dot) are shown. The last vertices vz, , and Lz_ , that 7 visits on v
and L, respectively, are also marked (with black dots unless already indicated). Informally,
part (a) of the lemma says that if vz is strictly after v, along v then 7 exits L
from its horizontal segment. Part (b) says that if & exits L from its horizontal segment

then vz is strictly after or the same as v . On top left: Z;L’v’io’jo =6>r=2and
Ziri., =4>0 Ontopright Z . . =2=randZS . . =1>0. Onthe
bottom: Z;rrv oo = 3>r=1and Z: Lirj, = 4 > 0. These statements are consistent
with the claims of the lemma. In particular, the top right picture demonstrates the case of
equality in part (b).

Proof. These can be readily verified from (2-15) and (2-16). O

Proof of Theorem 3.1. Let €y = €0(8) and ¢ = ¢(§) denote positive constants to be chosen sufficiently
small below. Take Ng = No(§) > % Let (im,n) € Sg N ZzzNo’ (m+n)"23 <5 <c(m+n)t/? and
k = |s(m + n)?/3]. Note that the interval for s is nonempty and k > 1. The additional restriction on s
due to the upper bound will be lifted at the end of our argument.

Our aim is to verify the bound in (a). If w > 0 and z < 1 such that min{w, z} > {(m,n)—egs(m+n)~

then, by Lemma C.1(b) and since (m, n) € S,

1/3

1 > min{w, z} > ¢(m,n)—epc >0

provided that €gc is sufficiently small. Then on account of the monotonicity of the exit points recorded
in Lemma 5.4, it suffices to obtain (a) for the exit point ZT‘IZ{?O’Z}’mm{w’Z}”L, which is well defined
since min{w, z} € (0, 1). This reduces (a) to the case w = z. To treat this case, pick z € (0, 1) with

z>t(m,n)—eps(m+n)~1/3,
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Figure 8. Tllustrates the setup prior to display (5-6). Path v (gray), base vertex (ig, jo) =
vp (white dot), the geodesic & = ng,o(m +ig.n + jo) (black, dashed), vertex (ix, jx) =
Vp+k (gray dot) and path L = Ly = L;Z?:.;k’w” k' (gray, dashed) are shown. The exit
points vz and Lz_, (black dots) are also marked.

Let (ig, jo) € Zio and consider a down-right path v on Zio such that (m + ig,n + jo) € V, and
vp = (i, jo) for some b € [£(v)]. Assuming that b + k < E(v)_for now, let (ix, jx) = vp4k- Then ji <
Jjo <n+ jo. Assuming further that iy <m+io, let Ly = LZ’:}io’nJrj 9 denote the L-shaped down-right path
(see Section 2B) from (ig,n + jo) to (m + iy, ji) passing through the vertex (ix, ji). See Figure 8. Then

P{Z3l  (mtio,n+ jo) > sim+n)>P) = P{Z3T . (m+ig,n + jo) > k}

V,i05J0 V,i05J0

= P{Zz’k—tikajk (m +io.n + jo) > O}

= P{Z*"(m +io—ix.n+ jo— jx) > 0}, (5-6)

where the inequality comes from an application of Lemma 5.3(a) with the geodesic & = J'[g’o (m+io, n+jo),
and the subsequent equality holds by virtue of Lemma 5.5.

Because k < c(m+n) and (m, n) € Sg, choosing ¢ < 1 sufficiently small (depending on §) ensures that
(m—k,n+k) € Ss/>. Then (m+io—ig,n), (m,n+ jo—jix) € Ss;2 as well since both i —io, jo— jk €[0, k].
Combining these with Lemmas 5.6 and C.1(b) (applying the latter to bound the factors involving ¢) leads
to the bound
§(m+io—ix,n+ jo—jx)—E(m,n)

= S(m+io—ig.n+jo—jk)—{(m.n+jo—ji) +{(m.n+ jo—ji) =5 (m.n)

_ (ik—i0) A=E(m. n+ jo—jk)) 3 (jo—JK)§(m, n)
(Vm+io—ix+/n+jo—ji ) (Wm+io—ix+/m) (Vm+n+jo—ji)(Vn+/n+jo—ji)
- _ao(lk_r:loi‘njo_]k) _ _(mafn) < —%aos(m+n)—1/3 (5-7)

for some constant ag = ag(8) > 0. For the last step, recall that k = | s(m +n)?/3| > 1. Now choosing

€ < %ao gives

z—{(m+io—ig,n+ jo— jx) = Taos(m+n)~1/3

in view of (5-7) and the assumption on z. Note also that (m + ip — ix,n + jo — jk) € S5/ since
(m—k,n+k) € Ss/p and (m,n) € Ss. Therefore, appealing to Proposition 3.4(a) for the last probability
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in (5-6), one obtains that

P{Z (m+ig,n+ jo)>s(m +n)2/3} < exp{—cos>} (5-8)

,i0,J0

for s € [(m +n)"2/3, ¢(m + n)'/3] and some constant co = ¢o(§) > 0. The bound in (5-8) also holds
trivially when iy > m + iy or b + k > £(v) because in both cases the event on the left-hand side is empty.
Assume now that s > ¢(m + n)'/3. Then, by (5-8),

Pzt (m+ig,n+ jo) > s(m+n)?/3) < P{ZE o, ]O(M-i-lo,l’l + jo) > c(m +n)}

<exp{—coc>(m +n)}. (5-9)

UlO Jo

Combining (5-8) and (5-9), and redefining ¢ suitably (for example, as coc>) completes the proof of
part (a). Part (b) is treated similarly. O

5C. Proof of the lower bound for the first step probabilities. The main idea behind the proof of
Proposition 3.9 is a suitable change of the rates on the boundaries. This type of change-of-measure
argument originated in [8] and has been employed recently in [97; 98]. Changing the measure brings in
weights with mixed boundary rates. In our proof, these weights can be defined from the i.i.d. Exp(1)-
distributed weights {n(i, j) :i, j € Z>o} by

~ o . « . ]]_ i> ]l <i< ]]- > ]]- <j<

U5k ) = G, ) (Jl{i,j>o} i IL{j:g}{ {wk} 1+ Lo Z_k}} Flg= }{ Uk {(;_J k}}) (5-10)
fori, j,k € Z>9 and w, z € (0, 1). For clarity, let us indicate the last-passage times and exit points defined
from the weights @¥>#*F also with the decoration ™ and superscript w, z, k as in Z¥-2-6:0for example.

Proof of Proposition 3.9. We prove only (a) leaving out the similar argument for (b).

Let (m,n) € Sg ﬂZiO. By Lemma C.1(b), { = {(m, n) € (€9, | —€p) for some constant €9 = €o(§) > 0.
Choose Ng = No(8,¢€) > 0 sufficiently large such that 6N0_1/3 < %eo. Assuming m,n > Ny from
now on, pick z € [{ + e(m + n)~V3 ¢+ %60]. Then put A = z —¢ € [e(m + n)~ 1/3 leo] and
w=_(—A€ [ €0, 1—¢€p). Hence, z—w = 2. Introduce another constant r = r (8, €) > 1 to be specified
below and let k = [rA(m +n)]. Since k > €N, 2/3 _ 1, choosing Ny large enough ensures that k > 1.

We have
P{Z"(m n) > 0}?

w\?* (1—w\?* = A G
:(_) ( ) E[1{Z"#F" (. n) > 0} exp{2A4[G* (k. 0) ~G* 0.k} ]

z

w 2k 1_; 2k R . ~
E(?) (1—2) E [exp{4A[G” (k. 0) = G7 (0. k)1 | PAZ*5 m,m) > 0}
w * I-w * z ‘ -z “ Zw,z,k,hor
:(?) (1—2) (2—41) (1—z+4x) Pz (m.m) > 0}, (5-11)
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where the first step changes the measure such that the underlying weights @¥ are replaced with &%2-.

Note that the associated Radon—-Nikodym derivative is given by

(%)k l_[ exp{2A&¥+% K (i,0)} - (1 lﬁ)k l_[ exp{—213""54(0, )}

i€lk] je[k]_ (ﬂ)k ox {Z)Laz(k 0)}- (I__w)k ex {—2)&62(0 k)}
=7 1Y ’ 1—z P S

The second step below applies the Cauchy—Schwarz inequality. For the last equality, use independence
and recall that 44 < 60 <€ <<z

By virtue of Proposmon 3.4(b) and the choices of w and A, for some constant cg = co(8) > 0, the first
probability in (5-11) obeys the bound

P{Z"(m,n) > 0} = 1 — P{Z¥"(m,n) > 0}
> 1 —exp{—co(m +n)A3}
> 1 —exp{—coe>} = po > 0. (5-12)

Next bound the logarithm of the product of the first four factors on the last line of (5-11) as follows.
For some constant C; = C(§) > 0,

21 47 21 470
2klog(1——) klog(l——)+2klog(1+—) klog(l-i—l—)
z z -

4kA?  4kA?
< +

z2 (1—-2)2
< CirA3(m +n). (5-13)

+ C1kA?

For the ﬁrst inequality in (5- 13) apply the estimate |log(l +t)—t+ tz} <|t]3fort e [—— l] recalling
that A < 6() and z € (eo, 1— ) The second inequality inserts the definition of k, and uses the bounds
on z once more.

Now turn to the last probability in (5-11). Recall that the weights in (2-2) and (5-10) are all coupled
through the n-variables. Let E = E . jﬁ K denote the event on which the inequalities

Zv3khor Gy 1y >0 and  max{Z¥M"(m,n), 27" (m, n), 2%V (m,n)} <k (5-14)

all hold. Also, write F = F,,, nZk for the event of the second inequality in (5-14). By virtue of Corollary 3.3,
the probability of the complementary event is at most

P{F¢} <3exp{—c1r3A3(m +n)} (5-15)

for some constant ¢; = ¢1(8) > 0 provided that Ny and r are sufficiently large. From r specifically, it
would suffice to require min{re, réy} > 1 where €y = €¢(8) refers to the constant denoted with €q in the
statement of the corollary. (Thens = rA(m +n)'3>re>1>m+n)2Pandz—{=¢—w=21<

-1/3

€orA = €os(m +n) as needed.) Let us next claim the containment

E C{Z%™(m,n) > 0} (5-16)
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whose verification is deferred to the end of the proof. Combining (5-15) and (5-16) via a union bound yields
P{ZW5K0 1 ) > 0} < P{ZZM" (m, n) > 0} + 3 exp{—c1r3A3(m + n)}. (5-17)

Putting together (5-11), (5-12), (5-13) and (5-17) results in

P{Zz,hor(m, n) > 0} > pg exp{—Clrl3(m + n)} -3 exp{—C1r3)L3(m + n)}
> %p% exp{—C1rA>(m +n)} > exp{=2C17A>(m + n)}.

The inequalities on the last line hold for sufficiently large r since A3(m 4 n) > €3. Then the conclusion
of (a) holds with Cy = 2Cyr.

It remains to verify (5-16) to complete the proof of (a). Restrict to the event E below. Then
0 < Zw-zkhor iy yy < zwhory ) < k where the middle inequality comes from Lemma A.1 (the
first monotonicity in part (a)) and since w < z. Consequently,

max{GZ(z 0) + Gj,1(m, n)} = GY% (m,n) = ka(m n) >Gw Zk(m,n)
zma[llg]{62<o,j)+G1,,~(m,n)}. (5-18)
je

Since also max{Z?""°"(m, n), Z?"¥*(m,n)} < k, one concludes from (5-18) that CA}iO(m, n) > G(Z)’l (m,n).
Hence, (5-16) holds. O

5D. Proof of the main lower bound. Our proof of Theorem 3.6 is a suitable modification of the proof of
Theorem 3.1.

Proof of Theorem 3.6. Let co = co(8, K) > 0 and No = Ny(6, €, K) > 0 denote constants to be chosen
below. Let (m,n) € SsNZ2 SN ands € [e, co(m +n)1/3] taking No > (¢/co)> to ensure that the preceding
interval is nonempty. Let k = [s(m + n)%/3| < co(m + n). After decreasing co and increasing Ng if
necessary, one has 1 <k <m.

If w> 0 and z < 1 with max{w, z} < (m,n)+ Ks(m~+n)~1/3 then it follows from Lemma C.1(b) that

0 <max{w,z} <¢(m,n)+ Kcog <1

for sufficiently small co. Then, appealing to the monotonicity in Lemma 5.4, it suffices to prove the
max{w,z },max{w,z},+
v,10,J0
max{w, z} € (0, 1). Consequently, the bound in (a) reduces to the case w = z. Hence, pick z € (0, 1)
such that z < £(m, n) + Ks(m +n)~'/3. Via another appeal to Lemma 5.4, it suffices to restrict to the
case z > {(m, n) in proving (a).

Let (ig, jo) € Z>0, and v be a down-right path on Z o such that (m +ig,n + jo) € Vy, and v = (ig, jo)
for some b € [£(v)]. Then k + b < £(v) since the path v takes at least m steps from vy € {ip} X Z to
V() € Z>m+io X Z. Consider the L-shaped path Ly = L tionto

lksJk
of vy 4+x+1. (The picture is the same as in Figure 8 except that the vertex vy 41 is used instead of v, g).

bound in (a) for the exit point Z , which makes sense according to definition (2-8) since

where (i, ji) denotes the coordinates
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Now appeal to Lemma 5.3(b) and then Lemma 5.5 (in the last step) to obtain

P{ (m+zo,n+]o)>s(m+n)2/3} P{ (m + o, n+]0)>k}
P{Z5 . (m+io.n+ jo) =k +1}
{ T (mio.n+ jo) >0}
P{z

270N g — g n + jo — Jx) > O} (5-19)

VIoj() VlO]O

VlO Jo

The computation in (5-7) still gives
§m +io =i, n+ jo— ji) = ¢(m.n) < —aos(m +n)~/ (5-20)
for some constant ag = ag(8) > 0. In the same vein, one also obtains the lower bound

Aok —io+jo—jk) _ _Ao(k+1)
2(m+n) 2(m+n) —

Em+io—i,n+ jo—ji) = (m,n) = - = —Aos(m+m~12 (521)

for some constant A9 = A(8) > 0. Due to (5-20), and the assumptions that z > {(m, n) and s > €, one has
z—C(m+io—ig,n+ jo— jr) = aos(m+ n)_1/3 > age(m + n)_1/3. (5-22)

Also, by (5-21) and the assumptions that z < {(m,n) + Ks(m + n)" 13 and s < co(m +n)'/3,
z—C(m+io—ig,n+ jo— jx) < (K + Ag)s(m +n)"1/3 < (K + Ag)co. (5-23)

With cq chosen sufficiently small, (m +io —ix,n + jo — jx) € Ss/2 and the last expression in (5-23) can
be made (K + Ag)co < eo(%(g) where €g refers to the constant in Proposition 3.9. Then Proposition 3.9(a)
applied to the last probability in (5-19) yields

P{Zt . (m+io,n+ jo) > s(m+n)*/?}
> exp{—C1(m +io —ix +n+ jo— jx)(z —L(m +io —ig.n+ jo— jk))>}

> exp{—Cos>} (5-24)

Vl() Jo

for some constants C; = C;(8,¢) > 0 and Cy = Co(6, €, K) > 0 provided that Ny is sufficiently large.
The final inequality in (5-24) relies on the first bound in (5-23). This finishes the proof of (a), and the
proof of (b) is completely analogous. O

5E. Proof of the exit point upper bounds for bulk geodesics. We conclude this section with the proof of
Theorem 4.1.

Proof of Theorem 4.1. Let ¢, €g, s9 and Ny denote positive constants depending only on § and to be
chosen in the course of the proof. Let (m,n) € SgN Z>N , 5 €[so,c(m~+n)3and k = [s(m 4+ n)?/3]
where Ny is taken sufficiently large to ensure the existence of 5. Pick (ig, jo) € Z2 <o subject to (4-2), and
a down-right path v on 72 So such that (io, jo) € v and (m +io.n + jo) € V. Write b € [{(v)] for the
unique index for which v, = (ig, jo), and ¥ = v + (1, 1) for the down-right path obtained by shifting the
vertices in v by (1, 1).
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Figure 9. Illustrates the justification for the inequality in (5-25) in two situations. The
down-right path ¥ (gray) and the geodesics 7% = 7§ ,(M, N) (dashed black) and 7= =
m1,1(M, N) (dashed gray until it meets %) are shown. The exit points of 77 (black
dot) and 7 (gray dot unless already indicated) from b are marked. Note that 7% passes
through (1,0). Then Z,- 5 > Z, 5 a.s.

Abbreviate M =m +ig+1and N =n+ jo+ 1. Condition (4-2) and the upper bound on s imply that
|C(M,N)—¢(m,n)| <cep. Combining this with the fact that (m,n) € Sg, recalling definition (2-16) and
appealing to Lemma C.1(b), one concludes that (M, N) € S, for some constant £ = £(§) > 0 provided
that ¢ is sufficiently small given €o. (Importantly, € does not depend on the choice of ¢, which will be
used in a moment).

Let E ={Z,; > b+ k} where 7 denotes the geodesic 71,1 (M, N). Let

z=6(M,N)—eos(M + N)"'3>¢(M,N) - ceo.

Because (M, N) € Sg, by Lemma C.1(b) and after decreasing ¢ if necessary depending on ¢ and €, one
guarantees that z > 0. Then z € (0, 1) is a legitimate parameter below. We have

PAZ, Sy (m ot do.n + jo) > s(m +n)*PP} = P{Z, 505 (m + o, ”+Jo)>k} P{E}

< P{Z*(M,N)> O} + P{Z;) | ((M.N) >k}, (5-25)
where the first step in the argument is due to the choice of k, the second equality holds on the account of
(4-1) and to justify the final step, observe that if E' occurs and the geodesic 7§ (M, N) contains (1,0)
B+l j0+1(M N) > k by (2-8) (see Figure 9).

Now bound the last two probabilities in (5-25) as follows. By virtue of Proposition 3.4(b),

P{Z*¥"(M,N) > 0} <exp{—cos>} (5-26)

then necessarily ysas

for some constant ¢y = ¢g(§) > 0. Note also from (4-2) and the choice of z that
z—C(m,n) = —eps(M + N)_l/3 +¢(M,N)—¢(m,n) > —2¢9s(m + n)_1/3.
Therefore, for sufficiently small €g, one obtains from Theorem 3.1(a) that
P{Z§Zi+0+1,jo+1(M’ N) >k} <exp{—comin{s®,m +n}} (5-27)
after increasing No and decreasing cg if necessary.
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Putting together (5-25), (5-26) and (5-27) and choosing s sufficiently large establishes the claimed
upper bound for s € [so, ¢(m + n)'/3] when O = +. The upper bound extends to s > ¢(m + n)'/3 after
modifying cg suitably (as done previously in (5-9)). The case [0 = — is handled similarly. O

6. Proofs of the speed bounds

This section proves Theorems 4.4, 4.7 and 4.8. The proofs of first two results utilize Proposition 3.4,
monotonicity properties of last-passage times, planarity, and increment-stationary LPP processes with
northeast boundary weights. To introduce these processes, first define the weights

oW EM L i) =1, J')(ﬂ{ism,jsn} T

forw>0,z<1,mné€”Z-g,i €m+1]and j € [n + 1]. In particular, ®*>*™"(m + 1,n + 1) = 0.
Then let

Lii<m,j=n+1} N Li=m+1,j<n} 1)
w 1—z

épw’qz’m’"(k,l) = max Z oW F™Mi, j) for pk€[m+1]and g,l €[n+1]. (6-2)
’ nel'[k:[ (.))en

A comparison of (2-1)—(2-3) with (6-1)—(6-2) shows the distributional identity
{é;),z]z,m,n(k,l) pke[m+1],q.l€n+1]}
dist.

=Gy g+ 1—kn+1-D:pkelm+1l.qlen+1]}. (63)

Below we use (6-2) only in the stationary case w = z and, as before, write z only once in the superscript.

6A. Proofs of the bounds for the Busemann limits. As the first step towards the proof of Theorem 4.4,
let us bound the c.d.f.s. in (4-9) via the c.d.f.s. in (4-7).

Lemma 6.1. Let v be a down-right path in Zio. Let (u,l) and (k, v) denote the first and last points on v
(in the down-right direction). Let § > 0, (m,n) € Ss N\ (Zsy xZ>1), p=k—u,qg=1—v,s eRP, 1t € R?
and z € (0,1). Writet =t(m—k+1,n—v+1)andl =t(m—u+ 1,n—1 + 1). Then there exist
constants ¢ = c(8) > 0and e = €(8) > 0 such that

Frsmhor (g 1) < f;:g(’r(s, 1) +expi—c(m +n)(¢ -2’} ifz< ¢
F7mhor (s, 1) > £20 (s, 1) —exp{—c(m +n)(z = §)%}  ifz> ¢,
FPY (s, 1) < £:0° (s, 1) +exp{—c(m +n)(z — 0% ifz>¢,

FPYe (s, 1) > £:0° (s, 1) —exp{—c(m +n) (¢ -2)%} ifz <¢
provided that k,l < e(m + n).

Proof. We prove the first two inequalities. The remaining two can be obtained in a similar manner.

Recall (2-11). The number of right and down steps of v are given by #R,, = p and #D, = q. Let
(ri)ie[p) and (d;);e[q) denote the enumerations of R, and D,, respectively, in increasing order. Write
Ey for the event

Qz.m,n =z,m,n .
Gttt 1) =G 1 V1) = =i for i € [p],

~z,m,n ~z.m,n .
Gt r1a;) =Gy w1 (Va; ) =t for j €ql.
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Noting that v is a sequence of length £(v) = L = p + ¢ + 1, define another sequence ¥ = (V;);¢[z] Via
Vi=(m+1,n+1)—vp41—; fori € [L]. Then ¥ is also a down-right path with Ry ={L —r; :i € [p]}
and Dy ={L +2—d; : j € [¢q]}. Now on account of (6-3), (2-12) and definition (4-7), the probability of
Ey can be computed exactly:

P{Eo} = P{G*((m+1,n+1)—v;,) —G*((m + 1,n 4+ 1) — vy, 1) > —s; for i € [p],
G (m+1.n+1)—vg,)=G*((m+1,n+1)—vg,_y) <t; for j €[q]}
= P{GZ(ﬁL—i-l—r,') _GZ(]’}L—r,') > —s; fori € [p],
GZ(ﬁL+l—dj) _GZ(EL-i-Z—dj) =i for j € [q]}
= [ expi=s7z} [] (1 —expl=1f (1 -2}
i€[p] J€lql
= {20 (s,1). (6-4)
Define the events E£; and E» exactly as Eg but replace the base point (m + 1,n 4 1) with (m,n + 1)
and (m + 1, n), respectively. That is, £; denotes the event
Z m,n

G, n+1(vrz) Gm n+1(‘)r,+1) > —s; for i €[p],
zmn

m n—i—l(vdj) Gm n+1(Vdj—1) =t for j €[q].

while E, denotes the event

fnTlnn (vr;) — anT’lnn (vr;41) > —s; for i €[p],
From a union bound and (6-3), one obtains that

P{E\} = P{EIN{G"! (k,v) > GL (ko)) + P{ELN{GL Y (ko) < G, (k. v)}
= P{EoN{GE T (k,v) = G, (k, v)} )+ PLEL HGE, (k. v) < GEe, (k. o)1)

< PLEQ}+ P (G0, (eo) < G k. )

= P{Eo}+P{Gi y(m+1—k,n+1-v) <G5 (m+1—k,n+1-v)}

= P{Eo}+P{Z*""(m+1—k.n+1-v) > 0}. (6-5)
In the second step above, we utilized this consequence of planarity and a.s. uniqueness of geodesics: if the
geodesic from (m + 1,n 4+ 1) to (k, v) visits (m,n 4 1) then a.s. so does the geodesic from (m + 1,n + 1)
to any point in [k] x ([n + 1] ~[v —1]) D v. See Figure 10. Similar reasoning also gives
P{Ey} = P{E;n{G., (. 1) = Gt (u, DY} + P{E; (G, (u, ) < Gt (u, D)}

= P{Eo N {G", (u. 1) = GZwelt (u, DYy + P{E2 N {GL Y, (u, 1) < Gl (u, 1)}

> P{Eo}— P{GI, (. 1) < GLI (. 1)}

= P{Eo}—P{G5(m+1—un+1-1)<Gigm+1—un+1-1)}

= P{Eo}— P{Z*" (m+1—u,n+1-1)>0}. (6-6)
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Figure 10. Illustrates the justification for the second step in (6-5). If the geodesic (dashed
black) from (k,v) to (m + 1,n 4+ 1) visits (m,n + 1) then a.s. the geodesic from any
vertex in [k] x ([n 4 1]~ [v — 1]) (shaded region) to (m + 1,n + 1) also visits (m,n + 1).
In particular, this is true for any vertex on v (gray).

Assume now that k,/ < e(m + n) for some constant € = €(5) > 0 chosen sufficiently small to have
(m+1—k,n),(m,n+1-1) € Ss/». Then
Frmhor(g 1y = {Bhor(m n) > —s; fori € [p] and BVer (m.n) <t; for j €[q]}
= P{Gvr (m,n)— Gw i (m,n) > —s; forl € [pl,
Gy, (m,n) =Gy, _,(m,n) <1; for j & [q]}
= P{G%ZZ’Z(WZ) Gm (1) = —s; fori € [p],
Gron? (va;) — Gn® (va,—1) < 1 for j € [q]}
< P{Go 1 ) = Gl (vr 1) = =i for i € [p].

Gt (va,) — Gl (va, 1) <ty for j € [q]}

= P{E}
< P{Eo} + exp{—c(m +n)(§—z)3} when z <,

where the first two steps follow from definitions (4-9) and (4-3), the third equality follows from defini-
tion (6-2) and since k <m and [ < n, and the subsequent inequality is an application of Lemma A.2. The
final inequality holds for some constant ¢ = ¢(§) > 0 and z < ¢ by virtue of (6-5) and Proposition 3.4,
and because im+1—k,n+1—-v),iIm+1—-u,n+1-1) ¢ 5’5/2. A similar sequence of steps using
(6-6) also yields

Fmhor (s 1) > P{Ey} > P{Eo} —exp{—c(m +n)(z—¢)>} when z > ¢.
Then the proof is complete in view of (6-4). O
For optimal use of Lemma 6.1 ahead, we bound the variations of the functions
{f;:? 1 p.q € Z>0,0 € {hor, ver}}

with respect to the z-parameter.
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Lemma 6.2. Let § > 0, p,q € Z>0, s € R?, t e R? and w,z € (§,1 —8) with w > z. There exists a
constant Cy = Co(8) > 0 such that

0 < 505, 1) — £ (s, 1) < Co(1 + Lgg=0y log q)(w — 2).
0 <f) (s, 1) =577 (s, 1) < Co(l + Lypsoy log p)(w —2).

Proof. Writing s = (s;);e[p] and t = (1;)je[q]- the z-derivative of f* = ff,jgor(s, t) is given by

== s =Y

ielp] jelgg 1—e

t'-l-e—tf(l—z)
/ (6-7)

where the j-th term in the second sum is interpreted as zero when ¢; < 0. Since f? > 0, (6-7) shows that
f# is nonincreasing in z proving the first inequality asserted in the lemma.

To obtain the second inequality, first note that the absolute value of the first term in the right-hand side
of (6-7) is at most

z - - - 1 —ry_ 1
FEY ST s exP{— Yo s Z} < —sup{te™'} = —. (6-8)

ielpl  i€p) ielp) " =0

Next bound the second term in the right-hand side of (6-7) in absolute value from above by the function

+
pa) = e W=D T (1 -7 179, 6-9)
kelq] J€lql
J#k

If #;, < 0 for some k € [¢] then all terms vanish on the right-hand side. In the case ¢ € {0, 1}, one has
@q(1) < e 1(1 —z)~! similarly to (6-8). Assume that ¢ > 1 and #; > 0 for k € [g] from here until the
last paragraph. Our objective is to maximize ¢4 over [F\RZO. To aid the next computation, change the
variables via uy = 1 —exp{—tx(1 —z)} € (0, 1) for k € [g]. Then (6-9) turns into the following function

of u = (ug)kefq) € (0, D?:

1
Vo) =—7— > (I—w)log(l—up) [ ] w;. (6-10)
kelq] j_i(}]{]
J

Note that v/, extends continuously to [0, 1], and the boundary values are given by

Yg)y;=0 =0 and Yg@)lu,=1 = Yg1(u’)  for j €[q], (6-11)

where u/ € R77! is obtained from u by deleting the j-th coordinate.
The partial u-derivatives of v, are given by

(1=2)3,¥q@) = (I +log(l—uy)) [] wi— Y (-wlogl—wx) [] w

J€lgl~{r} kelg]~{r} J€lgl~tk,r}

= 1_[ uj-(l—i—log(l—ur)— Z (%—1) log(l—uk)). (6-12)

JelgI~tr} kelg]~{r}
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Note from (6-12) that u € (0, 1) is a zero of the gradient Vi, if and only if
log(1— 1
1+M = Z (——1) log(l —uy) foreachr elq]. (6-13)
Uy u
kelq]

Since the function x — x~!log(1 — x) is strictly decreasing on (0, 1), (6-13) holds if and only if the
coordinates u; = v for k € [¢] for some v € (0, 1) such that

1+ (q—qv:) log(1 —v) = 0. (6-14)

The left-hand side of (6-14) defines a continuous function g = g(v) on (0, 1) that is decreasing since its
derivative

£ 0= P og(1 -0~ (4 -

"_1) : L D g1 ) ) <0

=-— +
v 1—v 1—v
where the last inequality can be seen from the expansion log(1 —7) = — > 72, t'/i. Furthermore, the
limits of g at the endpoints 0 and 1 can be computed as ¢ and —oo, respectively. Therefore, there exists a

unique vg € (0, 1) such that (6-14) holds. The next step is to verify that

1
Vg < 1_% (6-15)

Arguing by contradiction, suppose that (6-15) is false. Then, by the monotonicity of g,

1

1——
1 1
0=g(vq)<g(1—7) =1- e? (2+10gq)§1—2(1——2) <0, (6-16)
e~q I_L e

e2q

a contradiction. Therefore, (6-15) holds.
Now, setting u; = v, for j € [g] in (6-10) leads to

(1 =2)¥q((vg)jelq) = —q(1 —vg) log(l — vq)vZ‘l
< —(1—vg)log(1—vg) — (g —1)(1 —vg) log(l — vq)vg_1
= —(1 —vg) log(1 —vg) — (1 +log(1 —vy))vd (6-17)
<L+ (1+logq)vg =2+ logg. (6-18)

Line (6-17) above comes from (6-14). The first inequality in (6-18) bounds the two terms of (6-17)
separately and uses (6-15).
From (6-18), the structure of the boundary values (6-11) and the positivity of (6-10), one concludes that

2+1o
sup @ (1) = sup () = sup V() < ——24 (6-19)

teR? terRY, uel0,1]4 -z
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Combining (6-19) with the bounds in the case g € {0, 1} and (6-8) gives
3z f# < Co(1 +1Lgy=oylogg) for z € (,1-6)

for some constant Co = Co(8) > 0. Then the second inequality of the lemma follows from the mean
value theorem.
The proofs of the remaining inequalities are similar, and are therefore omitted. O

Proof of Theorem 4.4. Let (m,n) € Ss N 7% S No where Ng = Ny(68, €) > 0 is a constant to be chosen below.
Let v be a down-right path contained in [1, € (m +n)2/ 32 taking Ny large enough to ensure that the preced-
ing set is nonempty. Write (u, /) = vy and (k, v) = vy, for the first and last vertices, respectively, on v. Let

o (T YTy (o)
m+n = m—+n

where L =¢(m+1—k,n+1—v),{=¢m+1—u,n+1—1)and r = r(§) > 0 is another constant
to be specified below. Lemmas C.1(b) and 5.6 combined with the fact that k! < €(m + n)2/3 imply
that w, z € (€9, 1 —€g) > 0 for some constant g = €(6) > 0, provided that N is sufficiently large. Let
p=k—u=4%#R,,q=1—v=#D,,s € RP and t € R?. From the choice of z and the first inequalities
in Lemmas 6.1 and 6.2, one obtains that

FY (s, 1) < B0 (5, 1) + expi—co(m +n) (¢ —2)°}

zhor
—f (s, l)—f—w

<§h“@zy+cal+1M>mk%qNZ—§“+

(m + n)cor
log(m + n) 1/3 1
< 51 (s, 1) + Co(1 + Ligmy | TOSmTR) -
(s,1) + Co(1 + Lig>o qu){w CH_( m+n (m + n)cor
log(m +n)\'/> 1
< 1% (5, 1) + 2Co (1 + Ty log ) | —o —
(S )+ 0( + {g>0} qu)( m+n (m+n)c0r

for some constants co = co(8) > 0, Co = Co(8) > 0 and sufficiently large Ng. The last inequality above
holds because
Ck+v)y C(k+1) 2Ce
£ -2l = =< = 1/3
m+n m+n ~ (m+n)t/

for some constant C = C(§) > 0 by virtue of Lemma 5.6 and that k,! < e(m + n)?/3. Now choosing
r =1/(3cp) yields

log(m +n)\"/
m-+n

FyRor(s, 1) < 85507 (s, 1) + Co(1 + g0y log ‘1)(

after adjusting Cy. The complementary lower bound is established similarly using w instead of z. The
second set of bounds in the theorem are also proved similarly. O
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6B. Proof of the speed bounds for the competition interface.

Proof of Theorem 4.7. Let n € Z~1 and k € [n — 1]. Restrict to the full probability event on which the
competition interface ¢ is well defined. Then

(M > kY ={(k+1,n—k+1) e T"}
={Gik+1,n—k+1)<Giatk+1,n—k+1)}
={BY(k+1Ln—k+1)>B{(k+1Ln—k-+1}, (6-20)

where the first equality follows from (4-14) and definition (4-15), and the subsequent equalities are due to
definitions (4-12) and (4-3).
Put ¢ =¢(k+1,n—k) and let z > ¢ to be chosen below. Then
Plpy” <k}
=P{BY[(k+1.n—k+1) <BY(k+1.n—k+1)}
= P{Gk+1 n—k+1(L 1D — Gk+1 n—k+1(2 1) = Gk+1 n—k+1(1L D _Gli+1,n—k+1(1’2)}
< PG anii1 (D =G k1 @D =G i (LD =Gy (1.2 (62D)
where the derivation begins with (6-20), the second step writes the increments B1 (k+1,n—k+1)
for O € {hor, ver} defined at (4-3) in terms of the process G? = GZk+1n—k+1 defined at (6-2) and the
inequality at the end holds by virtue of Lemma A.2.
The next display applies a union bound using the following implication of planarity and the uniqueness
of geodesics (as in the proof of Lemma 6.1): if the vertex (k +2,n —k + 1) is on the geodesic from (1, 2)

to (k+2,n—k +2) then it must also be on the two geodesics from (1 1)and (2,1) to (k +2,n—k+2).In
terms of the northeast LPP process, t this means that the inequality Gk ik +2(1 2) < G 42—k 41 (1,2)

implies that GkJr2 nkp1@J) = k+2 nk42 (@ J) for (7, j) € {(1,2), (1, 1), (2, 1)}. Therefore,
the right-hand side of (6-21)

<P{ k+2n—k+2(L D) = Gk+2n e+2(2: l)<Gk+2n 2 (1 1) — Gk+2n k+2(1.2)]
+P{ k+1n—kt2(1:2) > G} +2,n—k+1(1’2)} (6-22)

By virtue of (6-3) and then (2-12), the right-hand side of (6-22) can be written as
G*(k+1,n—k+1)=G*(k+1.n—k)} + P{G% o(k + 1.n —k) > G§ | (k + 1,n—k)}

— /ooze—“ /00(1 —2)e” 07DV dy dx + P{Z7""(k +1,n — k) > 0}

= ZO+ P{Zz’h‘”x(k +1.n—k)>0}. (6-23)

To avoid a vacuous statement, assume that § € (0, %) Work with k € [6n, (1 —§)n] and n > Ny for
some sufficiently large Ng = No(8) > O that ensures that the preceding interval contains some integers.
Then (k + 1,n —k) € S5/». Therefore, by the assumption z > ¢ and Proposition 3.4,

P{Z*" (k + 1,n —k) > 0} < exp{—con(z — )} (6-24)
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for some constant co = co(8) > 0. Set z = ¢ + ((logn)/(3con))'/? after increasing Ny if necessary to
have z € (0, 1). Resuming from (6-23) and using (6-24), one obtains that

logn)l/3

Plop" <k} <+ C( (6-25)

for some constant C = C(§) > 0. For x € [§, 1 —§], setting k = [nx] in (6-25) and using Lemma 5.6 yield

logn 1/3
n

Pl < nx} < Pl < [nx]} < £(Tnx] + Lo — [nx]) + c(

I
sé(x,l—x)+5+c(°g”
n n

1/3 1 1/3
) gg(x,1—x)+co( Og”)

for some constants ¢ = ¢(§) > 0 and Cy = Cy(8) > 0. The last bound also holds for n € {2, ..., No}
after adjusting Cp.
To prove the complementary lower bound, use Lemma A.2 to replace the inequality at (6-21) with

P{BY (k+1.n—k+1)<BYj(k+1.n—k +1)}
> P{Gis 1 pter2 (1D =Gt pier22 D S Gy (1D =GRy g0 (1.2))
and follow similar steps. O

Proof of Theorem 4.8. Let w > 0 and z < 1. From definition (4-20), one has

QY- <k if and only if  Z"7""(k,n—k 4+ 1) >0,
@w-#ht >k if and only if  Z"%"'(k + 1,n—k) > 0 (6-26)

forn € Z~¢ and k € [n] U {0}.
Set w =z € (0, 1) from here on. Let n € Z~, and pick x € [§, 1 — §] assuming that § < % to avoid
vacuous statements. It follows from Lemmas 5.6 and C.1(b) that

};(Lnxj+1,n—|_nxj)—§(x,l—x)}5% (6-27)

for some constant Ag = Ag(8) > 0. Using (6-26), Proposition 3.4(a) and (6-27) leads to

P{(’p\j’hor <nx}= P{(’p\j’hor <|nx]+1} = P{Zz’hor(LnxJ +1,n—|nx]) > 0}
<exp{—co(n + [z —¢(|nx] + 1,n—[nx])]*}
< exp{—con[z —C(x,1- x)]3} (6-28)

for some constant co = co(8) > 0 provided that z — ¢ (x, 1 —x) > Agn~!. A similar computation using
Proposition 3.4(b) also gives

1 — P{@ZM" < px} = P{@ZM" > |nx]} = P{Z*"(|nx] 4+ 1,n — |nx]) > 0}
<exp{—con[{(x, 1 —x)—z]*} (6-29)

provided that z — & (x, 1 —x) < —Aon~'. Combining (6-28) and (6-29) yields (a).
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For part (b), pick a sufficiently large constant No = Ng(8, €) > 0 such that e N, 1/3 > ANy ! and
work with n € Z> y,,. Assume also that [{(x, ] —x) —z| < €p where €g = €¢(d) > 0 is a constant to be
chosen small. After the first line of (6-28), invoke Proposition 3.9(a) and appeal to (6-27) to obtain

P{(’p\;’hOr <nx}> exp{—Co(n + 1)[2 —C(|nx]+1,n— Lnxj)]3}
> exp{—Con[z —¢(x,1 —x)]3}

for some constant Cy = Cy(8, €) > 0 provided that z — ¢ (x, 1 —x) > en™1/3 > Agn™1, €y is sufficiently
small, and Ny is sufficiently large. In the same vein,

1— P{pZ" < nx} > exp{—Con[l(x,1—x) —z]*}

provided that z — {(x, 1 —x) < —en~1/3. Hence, (b). O

Appendix A: Some deterministic properties of exit points and last-passage times

This section collects some general properties of last-passage times and exit points defined from arbitrary
real weights. Only subsections Al and A2 are needed for the main text. The purpose of the remaining
material is to service Appendix B.

Al. Maximal exit points of geodesics. Let w = {w(i, j):i, j € Z} be a collection of real (nonrandom)
weights on Z2. As in (2-4), define the corresponding last-passage times by
Gp,q(m,n) = max

Z w(i,j) for m,n,p,qe”. (A-1)
el

74 (i, ))enw

Any maximizing path 7 € HZ;In in (A-1) is called a geodesic (or w-geodesic) from (p, g) to (m,n).
When p <m and g < n, being a nonempty and finite set, HZ;]" contains a geodesic, and possibly more
than one.

Fix (mo,ngo) € Z2. Pick a down-right path v with Vo) €U X Z>py and vy € Z5,, % {v} for some
(U, V) € Z>my X Z>n,, and a base vertex (ig, jo) = vp for some b € [£(v)]. Refer to (2-7) for the definition
of the set V,,.

Recalling (2-6), introduce the maximal (rightmost or leftmost) exit points of w-geodesics in H%;fno
from v by

. - O . m,n .
Zyiojotm.n) =max{Z_, . . ;€ Il", is a w-geodesic} (A-2)

for (im,n) € V,, and O € {4, —}. These are deterministic versions of the exit points in (2-8). The
right-hand side of (A-2) is well defined and finite since = Nv # & for each 7 € H%(’)’fno % .
The next lemma records a monotonicity property for the exit points in (A-2).

Lemma A.1. The exit points in (A-2) satisfy the following properties for each (m,n) € Vy,, p € ZN[my, u]
and g € 7 N [ng, v]:
v_,io,jo

V,i0,J0

(a) ZT. . (m,n) is nondecreasing and Z (m, n) is nonincreasing as a function of w(p, no).

v,i0,J0
(b) Zj,io,jo (m,n) is nonincreasing and Z (m,n) is nondecreasing as a function of w(my, q).
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Proof. Let (m,n) € Vy, and 7t € ;y;2",,. Write L for the L-shaped path L, .. Let k, [ € [€()] denote
the unique indices such that 7 = vz, , and 1; = Lz, , . Pick another path & € Iy;",, and define
the indices k, [ € [£()] analogously. Note that if k < £(x) then w41 € Vi, ~v C Zsmy X Z>p, and
therefore 41 ¢ L. Hence, kK >/ and, similarly, k > l.

To prove the first statement in (a), let p € ZN[mo, u], and consider real weights w ={w (i, j):i, j € Z}
such that w(i, j) > w(i, j)if (i, j) = (p,no) and W(i, j) = w(i, j) otherwise. Let Zv io.jo M, 1) denote
the exit points computed as in (A-2) using the w-weights in place of the w-weights. From here on, choose
7 as a w-geodesic and 7 as a w-geodesic.

Arguing by contradiction, suppose that

(m,n) > Z7T (m,n). (A-3)

v ,105,J0 V,i0,J0
Assume that Z 5 ,, is maximal over all choices of 7 as a w-geodesic. Then Z5z , < Z5 ,, because otherwise
Z:rlo Jo (m,n) =[Zpy—b]tT < [Z7,,— bt Z:rlo o (m,n), which would violate assumption (A-3).
This means that the vertex 77 appears strictly earlier than 7z in the sequence v (namely, v first visits 77
and then 7y # 7 in the down-right direction). The maximality of Z,, and (A-3) also imply that 7 is

not a w-geodesic. Consequently,

Yo W) < Y. W(F). (A-4)
s€[L(m)] se[L(m)]

Since 7 is a w-geodesic, the strict inequality in (A-4) is possible only if (p,ng) € w and (p,ng) € 7
due to the structure of the w-weights. Since also w1 = 71 = (mog, no) € L, necessarily p > mg and

Zn,L < Zz . Thus, m; comes strictly earlier than J?i in the sequence L. o
Now because L and v are both down-right, = and 7 are both up-right, k > [ and k > [, it follows from
the orderings of the exit points above that 7, = 7y for some indices r e ZN (I, k] and 7 € ZN a, IE] See
Figure 11. Let p € H%;fno denote the up-right path obtained from 7 by replacing the segment {75 : s €
[£(7)] ~ [F — 1]} with the segment {75 : s € [£(7)] ~ [r — 1]} of 7. Being disjoint from L, the preceding
segments are both w-geodesics. Hence, p is a w-geodesic. Furthermore by the construction, Z,, = Zx,,
since r < k. Then Z:rl Jo (m n)>[Zpy—bl" =[Zz,—b]"t = (m, n) contradicting (A-3). The
claimed monotonicity of Z '

L'l()j

v.iojo (m, n) follows as a consequence.

The second statement in (a), and part (b) are obtained similarly. O

A2. Crossing (comparison) lemma. The next lemma states a well-known monotonicity for the increments
of planar first- and last-passage percolation. Different proofs can be found in [92, Lemma 6.2] and [97,
Lemma 4.6].
Lemma A.2. For the LPP values in (A-1), the following inequalities hold for i, j,m,n € Z withi <m
and j <n:
Gi,j(m+1,n)=Giy1,j(m+1,n) <G, j(m,n)—Giy1,;(m,n)
< Gi,j(m,n +1)— Gi+1,j(m,n +1);
Gi,jm,n+1)=G; j+1(m,n+1) < G; j(m,n) =G j+1(m,n)
<G, jm+1,n)—Gjjy1(m+1n).
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Figure 11. Illustrates the argument by contradiction in the proof of Lemma A.1. Assump-
tion (A-3) implies that the exit points (black dots) of the maximal (rightmost) w-geodesic
7 (dashed black) and w-geodesic 7 (dashed gray) from the downright paths v (gray)
and L (light gray) are positioned as displayed. Therefore, & and 7 intersect at a vertex
7, = 7y after both exiting L but before exiting v. Then the path p consisting of the
segment of 7 until 7, and the segment of 7 after 7, is also a 7-geodesic. Then p exits

v at the same vertex as  contradicting (A-3).

A3. Induced path-to-point LPP and exit points. Resume with the setting in Section Al. The weights
and LPP values in (A-1) together with the path v induce new weights w = {w(i, j) : i, j € Z} on Z?
defined as follows. If (i, j) = vi for some k € [£(v)] then

w(i, ) = Lie>p3Gmo,no Vk) — Gmono (Vk—1)} + Lk <631 Gmo,no (Vk) — Gmong(Vk+1)} (A-5)

In particular, w(ig, jo) = w(vp) = 0. If (i, j) € Z*> ~ v then w(i, j) = w(i, j). The weights in (A-5) are
well defined and finite due to the choice of v, and satisfy the identity

k b
Gmono(Vk) = Gmonolio. jo) = Ligspy Y w(vr) + Ligapy Y w(vy) for k € [LW)].  (A-6)
r=b r=k

Write G, 4(m, n) for the last-passage time from (p,q) € Z? to (m,n) € Z* computed from the
w-weights as in (A-1). Using the notation from (2-11), also define
Gy, (m,n) = max Z w(i,j) for (m,n) € Z?and k € [L(v)], (A-7)
—U.}( (i,j)en
where the admissible paths are given by

{relly" 1vp+(1,0)en} ifk>bandk € Dy,

O = {m ey v+ (0. 1) en} ifk<bandk € R,, (A-8)
HL’;{’" otherwise.

The second conditions in the first and second cases of (A-8) mean that vi + (0, 1) € v and v + (1,0) € v,
respectively.



EXIT POINT BOUNDS IN EXPONENTIAL LAST-PASSAGE PERCOLATION VIA COUPLING 653

Let us refer to any maximizing path in (A-7) as a restricted geodesic (w-geodesic).
Now define the path-to-point last-passage time G, by

k—1

Gu(m, n)—kn[léa(x)]{ﬂ{bb}Zw(vr)+ﬂ{k<b} Z w(vy) + G, (m.n)
r=k+1
:kg[lea(x)]{Gmo no(‘)k)+_vk(m n) —w(r)} — Gmg,ne (0, jo) (A-9)

for (m,n) € Z2. The second equality above comes from (A-6).

Example A.3. In the case of L-shaped path v = L io vJO since the first two cases in (A-8) never occur,

(A-7) is the same as the unrestricted version G, (m,n), and (A-9) is precisely the LPP in [97, (A.2)].

Furthermore, k is a maximizer in (A-9) if and only if vy € 7 for some w-geodesic 7 € 17" io, ]0

As is clear from definition (A-9), G (m, n) is finite if and only if G} _(m, n) is finite for some k € [£(v)].
The latter is equivalent to the condition (2-7). On V,,, the LPP values in (A-1) and (A-9) are further
related through the following lemma.

Lemma A.4. For the path-to-point LPP in (A-9), the following statements hold for each (m,n) € Vy,:
(a) Qv(m’ ”) = Gmo,no (m, n)— Gmo,no (iO, ]0)
(b) If w € My, is a w-geodesic then Zy.,, € [£(v)] is @ maximizer in (A-9).

(¢) If k € [L(v)] is a maximizer in (A-9) and 7 € HT,{" is a restricted w-geodesic then there exists a
w-geodesic w € H%(’fno such that Zy = Zx v.

Remark A.5. The case v = L:-‘O’Ujo of Lemma A.4 has the same content as [97, Lemma A.1] in view of
the characterization of the maximizers in Example A.3.

Proof of Lemma A.4. Let (m,n) € V,,. Consider a w-geodesic € Iy, Leti € [£(r)] denote the
unique index such that 7r; = v, where z = Z ,,. Then, starting from (A-9), one obtains the lower bound
Qv(m, n) + Gmo,no(i07 JO) > Gmo,no(Vz) + sz (l’l’l, ”) - LL)(VZ)

> Gmo,no(vz) + Z w(m;)

JjEell(mI~i]
= Gmo,no(Vz) + Z w(r;)
JjelbmI~li]
= Gmo,no(Vz) + Gy, (m,n) —w(vz)
= Gmo,no(m, n). (A-10)

The second inequality in (A-10) holds by definitions (A 7) (A-8) and the fact that if i < £(;r) then
mi+1 & v and consequently {7 : j € [£(7)]~[i —1]} € I}'5". The first equality in (A-10) follows because
w- and w-weights coincide on Z2 ~ v. The subsequent equahtles are due to the assumption that 7 is a
w-geodesic.

To proceed in the converse direction let k € [£(v)] be a maximizer in (A-9). Then ILIL"kn # &. Pick a
restricted w-geodesic & € H . Write z = Z5 , € [€(v)], and i € [€(zx)] for the unique index such that
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;i = vz. Then develop the upper bound

Gy(m,n)+ Gmo,no (i0, jo) = Gmo,n() (vk) + sz (m,n) —w(vg)
=Gmonov)+ Y. w(m))

Jelt@mI~1
=Gmonoe)+ Y w@)+ > wlm))
jelil~ Jeltm)I~Lil
=GmomoWi) + Y wl@p+ > wlm))
Jelil~1 jeltmI~Li]
=Gmono(vz)+ Y wixm))
eI~
=< Gmo,no(vg) + Gv; (m’ n) - w(‘)g)
< Gmo,no(m,n). (A-11)

The first two equalities in (A-11) use that k and & are maximizers in (A-9) and (A-7), respectively. The
fourth equality holds because 7; € Z? ~ v for j € [£(z)] ~ [i]. To justify the last equality in (A-11),
consider the case k > b first. Then the restrictions in (A-8) imply that 7; = vg4 ;_; for j € [i], and
z =k +1i—1. Consequently and by virtue of (A-6),

Y w@= Y wOr) = Gmeno(Vz) = Gmoumo (V). (A-12)
Jel]~{1} refz]~[k]

A symmetric argument also gives (A-12) in the case k < b. Consider now the situation k = b. If i =1
then z = k and (A-12) holds trivially. If i > 1 then the two possibilities z > b and z < b are handled
similarly to the cases k > b and k < b, respectively. Finally, the last two inequalities in (A-11) come
from definition (A-1).

Combining (A-10) and (A-11) yields (a). Moreover, all inequalities in (A-10) and (A-11) are in fact
equalities. Therefore, z is a maximizer in (A-9), and the vertices {z; : j € [€(x)] ~ [i — 1]} extend to a
w-geodesic 7’ € Hmo,no that exits v at Z5/, = z. Hence, (b) and (c). O

Ad. An identity for the exit points. Define the exit points associated to (A-9) by

(m,n) = max{[k — b]E| k is a maximizer in (A-9)} for each O € {+, —}. (A-13)

—V 5105J0

The following lemma connects the notions in (A-2) and (A-13). A similar statement can be found in [87,
Example 2].

Lemma A.6. The exit points in (A-2) and (A-13) satisfy the relation

(m,n) = ,,,0 jo(m.n)  foreach (m,n) €V, and O € {+,—}.

—V 5(05J0

Proof. The claim is a consequence of Lemma A.4(b)—(c), and definitions (A-2) and (A-13). O
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Figure 12. Illustrates the assignment of the weights according to (B-2) to the vertices
along a down-right path v (gray). The choice of the base vertex vy, is indicated (white dot)
where the weight is zero. The remaining vertices along v (marked with triangles) receive
independent weights with the marginals chosen as follows: Horizontal and vertical
triangles correspond to Exp[z] and Exp[l — z]-distributed weights in absolute value,
respectively. Black and gray triangles correspond to positive and negative weights,
respectively.

Appendix B: Exit point bounds for path-to-point exponential LPP

We now set out to reformulate Theorems 3.1 and 3.6 in terms of increment-stationary down-right-path-to-
point exponential LPP. One benefit of this undertaking is to be able to connect the present work with the
exit point bounds in recent articles [53; 86].

B1. Increment-stationary path-to-point exponential LPP. To introduce the path-to-point model, let
u,v € Z>¢ and v be a down-right path such that vy, € {u} x Z>¢ and v1 € Z>¢ x {v}. Fix a parameter
z € (0, 1) and a base vertex vy = (ig, jo) for some b € [£(v)]. Then using the i.i.d. Exp(1)-distributed
n-variables, define the weights w? = {@0*(i, j): (i, j) € Zio} as

(i, j)=mnG.j) if (.j)¢v. (B-1)

Otherwise, (i, j) = vg for some unique k € [{(v)]. Then, recalling (2-11), set

62(1’,])=7)(i,j)-(§[]l{k>b,k—l € Ry} —1{k <b,k € R,}]
+ [k <bk+1eDy}—1{k>b.k e Dv}]). (B-2)

By definition, the weights @? are independent, marginally Exp(1)-distributed on Zio ~v, and ®?(vp) =0.
The rule (B-2) for the remaining marginals along v can be informally described as follows. As v is
traversed from v, to vy(,), each vertex encountered after v, receives an Exp(z) weight if preceded by a
horizontal step and a —Exp(1 — z) weight otherwise. The same also holds as v is traversed from v to vg
except that the signs are now flipped. See Figure 12.

Example B.1. Consider the case (ig, jo) = (0, 0). Necessarily, v = L = Lg:g, the L-shaped path from
(0,v) to (u,0). Then comparing definitions (B-1)—(B-2) with (2-2) shows that

@°(i,j)=&%G,j) for (i,])€V,. (B-3)
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Let us next relate the w?-weights to the induced weights w? = {w?(i, j): (i, j) € ZZZO} obtained from
the ®*-weights in the manner described around (A-5). More precisely,

@7 (i, j) = L=y {G* () — GZ (V= 1)} + Lgge<p} {GZ (i) — G (Ve 41)} (B-4)

if (i, j) = v for some k € [£(v)], and w? = &* (i, j) otherwise. The following lemma records that w?
and w? are identical in distribution on V},.

Lemma B.2. (@7(i.j): (1. j) € o} B0 (. j) : (. j) € Vi),

Proof. From definition (B-4) and by virtue of the Burke property (2-12), the weights {w? (vr) : k € [€(v)]}
are independent with w*(vp) = 0 and the remaining are marginals given by

Exp(z) ifk>bandk —1¢€R,,
z _J-Exp(l—z) ifk>bandk € D,,
@ (V) ~ ) _gxp(z) if k <band k € Ry,

Exp(1-z) ifk<bandk+1€D,.

(B-5)

Furthermore, the weights
{0, j): (@, j)eVi~vy={0*(, j): (i, )) € Vu~v} (B-6)

are independent, and marginally Exp(1)-distributed by (2-1) because the set V;, ~ v does not intersect the
axes. Finally, since the weights in (B-6) do not enter definition (B-4), the collection {w? (i, j): (i, j) € V}}
is also independent. This completes the proof in view of the discussion following (B-2) where the joint
distribution of {@*(i, j) : (i, j) € V} ~ v} is described. O

Using w? as the weights, let GIZ,’ 4(m, n) denote the last-passage time from (p, q) € Z;O to(m,n) € Zéo
computed via (A-1), and write (_}ﬁ,’: (m, n) for the restricted last-passage times computed according to
(A-7) for each k € [£(v)]. (Recall that (_},Z,,’(O (m, n) need not agree with (_}ﬁk (m,n) due to the additional
restrictions on the admissible paths in (A-7)). Now define the path-to-point last-passage time from v to
(m, n) (with the base vertex (ip, jo)) by

k—1 b
(_}f,,l-o,jo(m, n) = max {Jl{k>b} . Z o? (vr) + Lk<py - Z @’ (vr) + (_}ﬁl’:(m, n)g. (B-7)
€ft()]
r=b r=k+1
The right-hand side is the same as that of the first line in (A-9) except that the underlying weights are
now <.
As explained in the next example and later in Examples B.9-B.10 below, (B-7) simultaneously
generalizes the Gz—process from Section 2C and some line-to-point LPP models considered in recent
literature.

Example B.3. When (ig, jo) = (0,0) v =L = Lg:g ), it follows from (B-3) and definitions (2-3) and
(B-7) that (_}i 0.0m,n) = Gz(m, n) for (m,n) € Vi, = (Ju] U {0}) x ([v] U {0}).

In the general situation, (B-7) enjoys a simple relation to the G* -process on V), through the following
distributional identity.
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Proposition B.4. For the path-to-point LPP in (B-7),

(m,n) : (m,n) € Vy} B AG* (m, n) — G (ig, jo) : (m,n) € Vy}.

VlO Jo

Proof. Consider the path-to-point LPP given by

Qi,io,jo(m,n)=kg[léa(§)]{11{k>b}zw (vr) + Lk <py Z *(v;) +G;°(m, n) (B-8)
r=k+1

for (m,n) € ZZZO. The two maps that compute the LPP values in (B-8) from the w*-weights and the LPP
values in (B-7) from the w?-weights are identical. Hence, by Lemma B.2,

dist.

{GZ, o jom,n) i (m,n) € Vy} = {GJio. jo(m,n):(m,n) € Vy}. (B-9)
Appealing to Lemma A.4(a), the terms on the right-hand side of (B-9) can be written as

G?. . (m,n)=G?(m,n)—G(ig, jo) for (m,n)eV,. O

=V,i0,j0

As a consequence of Proposition B.4, the Gi io,jo - PrOCESS inherits the Burke property (2-12).

B2. Distributional identities for the exit points. Introduce the exit points associated with the path-to-point
LPP (B-7) by
z=8 (m,n) = max{[k — b]" : k is a maximizer in (B-7)} for each O € {+,—}. (B-10)

V,10,J0

These recover (2-10) in the case ig = jo = 0; see Examples B.1 and B.3. Moreover, one has the following
key distributional connection to the exit points in (2-8).

Proposition B.5. The exit points in (B-10) satisfy the distributional identity

dist.

(m,n):(m,n)eV,,0e{+, -} =1{Z>" . (m,n): (m,n)eV,,0e{+,-}}.

iz v lo Jo v lo Jo
Proof. Consider the exit points given by

z,0
ZV,io,jo

(m,n) = max{[k — b]" : k is a maximizer in (B-8)} for each O € {+,—}. (B-11)

Definitions (B-10) and (B-11) are the same except that they input w? and w?, respectively, as the weights.
Hence, by virtue of Lemma B.2,

dist.

Zh. jo(m n):(m.n) eV, O€{+ -} = {Z5 o joMsm) s (m,n) € V,,, 0 € {4+, —}}.
On the other hand,
.0
Zyi o mon) =75 Jo(m n) for each (m,n) € Vy, and O € {+, —},

by Lemma A.6 and definitions (2-8) and (A-2). O
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B3. Right-tail bounds for the exit points restated. The next pair of propositions bounds the right tail of the
exit points in (B-10). These statements are in fact equivalent to Theorems 3.1 and 3.6, respectively, by virtue
of Proposition B.5 and Lemma A.1. It is worth emphasis that the main text does not rely on the present
section. In particular, the following propositions should be viewed as applications of our main results.

Proposition B.6. Fix § > 0. There exist finite positive constants co = co(8), €9 = €9(8) and No = No(6)

such that
z,0
v,i0,J0

P{z (m+iop,n+ jo) > s(m+ n)2/3} < exp{—co min{s>, m +n}}

whenever € {+,—}, (m,n) € SsNZ2 \ s> (m+n)"2/3,2€(0,1) with |z (m, n)| <eos(m+n)~'/3,
(io, jo) € Z>0, and v is a down-right path on 72 So with (io, jo) € v and (m +ig,n + jo) € V.

Proof. The result follows from Proposition B.5 and Theorem 3.1. O

Proposition B.7. Fix § > 0, € > 0 and K > 0. There exist finite positive constants co = co(6§, K),
Co =Co(8,¢,K) and No = No(6, €, K) such that

P{Z i (m+io.n + jo) > s(m +n)*/>} = exp{—Cos?}

Vl() Jo

when O € {+, =}, (m,n) € SsNZ2 ., s €[e, co(m+n)1/3], z € (0, 1) with |z—t(m, n)| < Ks(m+n)~1/3,
(io, jo) € Z>0, and v is a down-right path on Z o with (ig, jo) € v and (m +ig,n + jo) € Vy.

Proof. Combine Proposition B.5 and Theorem 3.6. O

B4. Some line-to-point LPP as special cases. Our aim in this part is to demonstrate that the increment-
stationary line-to-point LPP processes introduced in [53; 86] arise from (B-7) as special cases. To this
end, it is convenient to first develop formula (B-7) into an alternative form as follows.

Introduce another collection o’ = {w’(i, j) : (i, j) € Z> So) of weights by

o'(i, ) =144, jygvy -1, J). (B-12)

Let G;,,q (m, n) denote the last-passage time from (p, q) € Z;O and (m,n) € Zéo computed with the
’-weights as in (A-1). Then define a new path-to-point LPP by

G2, jo(m.m) =ké%]{ﬂ{k>b} Zw (vr) + Lgk<b Zw (vr) + Gl (m. n) (B-13)
r=k

for (m,n) € Zzzo. This process a.s. coincides on V;, with the LPP given by (B-7) as the next lemma shows.

Lemma B.8. For each (m,n) € V,, G? .

V,i0, ]O(m ) = VlO ]O(m n)

Proof. Let (im,n) € V,,, k € [{(v)] and 7 € H . Let i € [£()] denote the unique index such that
i = vz where Z = Z ,,. Note from deﬁmtlon (A 8)that Z >k ifk >b,and Z <k if k <b. (When
k =b,both Z > b and Z < b are possible.) Using these implications with the fact that w?(vp) = 0, the
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agreement of the ®” and " weights on V;, ~ v, and definition (B-13), one obtains that

k-1 b
Lespy 0 () +Lgeapy . & () + Y & ()
r=b r=k+1 s€[l(m)]
z b
= (Lksby + Lk=b,zzpy) * D 0° () + (Qgkwpy + Likmp,z<py) - Yy @° () + Y &°(my)
= =2 selt(mI=li]
z b
=Tyzspy ) 0 () +lzapy- D 0 )+ Y ()
r=b r=2 selt(m)I~li]
B2 (m,n)
viio,Jo T
In view of definition (B-7), maximizing the first line above yields GZ , . (m,n) < (m,n).

v,i0,J0 V l0 Jo
To obtain the converse inequality, assume that k& is maximizer in (B-13) and pick a w’-geodesic

n' e TIy".

Claim: ' € I1,,  (m, n) a.s. To verify this, consider the case k > b and k € D,,. Then @” (v ) ~ —Exp[1—z]
by definition (B-2). Restrict to the a.s. event that w*(vg) < 0. For a contradiction, suppose that
75 = vk + (0, 1). Then, using the preceding inequality and also that 75 = vx_; and &’(vg) = 0 yields

k 11648
D@ (vy) + G, (m.n) = Zw (vr) + Z o' ()
= é(zr’) () k—1
= Za) )+ Y o' (m)) < ZwZ(U,)Jr Y ') <> @ () + G, (m.n),
r=b §=2 =b s=2 r=b

which contradicts the choices of k and 7’. (The strict inequality above comes from dropping the negative
weight w? (vg)). The verification of the claim is similar in the case k < b and k € R, and is trivial in the
remaining case.

Write i’ € [€(r’)] for the unique index such that 7/, = vz, where Z' = Z ,,. It follows from the
claim above that, a.s., Z' > k if k > b and Z’ < k if k < b. Furthermore, definition (B-2) implies that
@*(vy) ~ Exp(z) when k < r < Z’, and @*(v;) ~ Exp(1 —z) when Z’ < r < k (including the case
k = b). In particular, these weights are all a.s. positive. This together with the fact that the w’-weights
vanish on v justifies the first inequality below. The subsequent step uses that the @ and o’ weights agree
on V,, ~v, and ®” (vp) = 0. The final inequality comes from definition (B-7). We have

GyZ o (m,n) = lgepy Zw (Vr)+]l{k<b}za) )+ > o)

r=b r=k se[l(n’)]

Z/
< Lizispy & (v) +Liz'<p) Z 2’0+ Y. o(n)

r=b r=2' sell()I~i"]

z'—1 b
=Lzspy D O )+ Lz Y. B (v)+ > o* (mrg)

. r=b r=272'+1 se[l(n’)]N[i’—1]

fGi’iO’JO(m,n). a
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Let us now discuss two special cases of (B-7).

Example B.9. Let z € (0,1) and n € Z~¢. Consider the down-right path v of length £(v) = 2n 4+ 1
given by v = ([(k—1)/2],n— |k/2]) for k € [2n + 1]. In other words, v consists of the vertices on
the antidiagonals {(i,n —i) :i € [n]U{0}} and {(i — 1,n —i) :i € [n]}. Choose the base vertex on v as
vp = (ig, jo) where jo =n —ig and b = 2ig + 1 for some iy € [n].

It follows from Lemma B.8 and the structure of v that

k b
G i jo(n-m) = max {1{k>b} > @ () +Lgeapy Y B (v) + G, (n,n)}
r=b r=k

ke[2n+1]
k is odd 2it1 2iot1
(0]
= _max {1{,~>,-0}- D )+ Ly ) o—f(vr)+G;2[+l(n,n>}. (B-14)
1€ln]ui0} r=2io+1 r=2i+1

To justify dropping the terms with even k € [2n + 1] from the maximum above, consider the case k > b
for example. Then since @? (vgy1) > 0> w*(v) and 0’ (vg) =0,

k k
Z @*(vy) + Gy, (n,n) = Z o (vy) +max{G, _ (n,n), G:)k—i-l (n,n)}
r=b

r=b k+1
S maX{ Z EZ(Vr) + G;k—l (n7 I’l), Z EZ(Vr) + G:)k-‘rl (n’ I’l) .
r=b r=b

A similar reasoning also holds for the case k < b. Hence, the first step in (B-14) is justified.
The first two terms within the last maximum in (B-14) can be written as
i io
SF = 1Lgi>ip} Z {©% (v25) + @7 (Vs 1)} + Lii<ip} Z {©% (v25) + @° (V25—1)} (B-15)
s=ip+1 s=i+1

for each i € [n]. In view of definition (B-2), S7 is a sum of |i —io] i.i.d. terms with marginal distributions
Exp[z] —Exp[l —z] when i > iy and Exp[l —z] —Exp[z] when i <ip. Returning to the last line in (B-14),
one has

V,i0,j0

G:. . (n,n)=E {2%{55 + Gl iy (n,m)}. (B-16)

Up to the irrelevant shift by (o, jo), the right-hand side of (B-16) coincides with the type of line-to-point
LPP with stationary initial data considered in [86, Section 1.1].

Example B.10. Let us generalize Example B.9 to down-right paths with an arbitrary negative slope. Let
z€(0,1), peRcp,n€Z50and jo € [n]U{0}. Putip =—|u(n—jo)] €Z>p and m =io+ |—pjo| € Z>o.
Consider a down-right path v that contains the vertices {(io + [ 1(j — jo)], j): j € [n]U{0}} C Z%,,. For
each j € [n]U{0}, let p; € [€(v)] denote the unique index such that vp, = (i + [u(n — j —jo)J,_n 7).
Assume further that po =1, D, ={p;j+1:j € [n—1]U{0}} and p, =£(v). Then v is determined uniquely
as the down-right path that starts from vy = (0,7), ends at vy(,) = (m,0) and, for each k € [£(v) — 1],
leaves vertex vx via a down-step if and only if k = p; for some j € [n — 1] U {0}. Choose the base vertex
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on v as vy = (io, jo) Where b = p,_j,. Note that the case u = —1 of the preceding setup corresponds
exactly to Example B.9.
Restrict to the case u € [—1,0). Then

k b
G i jo (M) = o) { Lespy Y 0" (vr) + Lig<py Y & (vr) + G, (m. n)%
kéR‘: ] r=b ) r=k

Dj b
= max {]]'{j>n—j()}'ZC_()Z(UT)+]]'{j<n—jO}' Z cT)Z(vr)—i-G;p,(m,n)}, (B-17)
jelmlUto) =~ = g

where the first equality is by virtue of Lemma B.8 and the choice of v. The justification for dropping
the terms k € R, from the maximum is similar® to the one given after (B-14) and omitted. The second
equality holds since [£(v)] ~ R, = {p; : j € [n] U{0}}. Generalizing (B-15), introduce the sum

Pn—j b
SJZ-’M ::U-{j<j0}' Z Ez(vr)+]]-{j>j0}' Z az(vr) (B_IS)
r=b I'=Pn—j

for each j € [n] U {0}. Using (B-18) in (B-17) yields

= as. Z,1 ’
o, o) = max S, + G 1 —jop 1, ) (13- (B-19)

The right-hand side of (B-19) can be recognized as the LPP defined in [53, (3.40)] up to the shift of the
origin to (ig, jo).
Appendix C: Auxiliary estimates

Lemma C.1. Let § > 0. The following statements hold:

(@ x+y<y(x,y)<2(x+y)forx,y>0.
(b) &(x,y) € (e,1—¢€) for (x,y) € S5 where € = \/§/2.
© (x+ '3 <o(x.y) <2573 (x4 )3 for (x,y) € Ss.

Proof. The claims are elementary consequences of definitions (2-15), (2-16) and (5-2). O
Next is an estimate of the mean function in (2-14).

Lemma C.2. Let x,y € Rg and z € (0, 1). Abbreviate y = y(x,y),{ =¢(x,y) and o =o(x, y). Fix
8 > 0 and € > 0. Then there exists a constant Co = Cq(6, €) > 0 such that

IM?(x, y) =y —0°(z=0)?| < Cox + y)[z—¢? for (x,y) € Ssand z € (e,1—¢).

5The assumption p > —1 comes in crucially here by ensuring that v does not take consecutive right steps. Consequently,
each vertex v with k € Ry lies between two vertices of the form v, and vp; . for some j € [n — 1] U {0}.
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Proof. From definitions (2-14), (2-15) and (2-16), and the identity x/(£2) = y/((1=0)?) =y,

=(z Z)( é' gz + 1-21-¢) @ _g-)z)

2 y . (Z—f)z)/
”_Z)( z a—¢x1—02)‘ SRR

Recalling the definition of o from (5-2), one obtains that

1 1 3 (+z-1
- = (-0 -
z(l-z) ¢(1-9 z(I-2)¢(1-90)
The result follows from bounding the last expression above using Lemma C.1(a)—(b) and the assumption
z€(e,1—¢). O

M (x,y) =y =03 (z=0)? = (z=0)%y-
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