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In Brownian last-passage percolation (BLPP), the Busemann functions %° (x, y) are indexed by two points
x,y €Z x R, and a direction parameter 6 > (0. We derive the joint distribution of Busemann functions
across all directions. The set of directions where the Busemann process is discontinuous, denoted by ©®,
provides detailed information about the uniqueness and coalescence of semi-infinite geodesics. The
uncountable set of initial points in BLPP gives rise to new phenomena not seen in discrete models. For
example, in every direction 6 > 0, there exists a countably infinite set of initial points x such that there
exist two @-directed geodesics that split but eventually coalesce. Further, we define the competition
interface in BLPP and show that the set of initial points whose competition interface is nontrivial has
Hausdorff dimension % From each of these exceptional points, there exists a random direction 6 € ®
for which there exist two §-directed semi-infinite geodesics that split immediately and never meet again.
Conversely, when 6 € ©, from every initial point x € Z x R, there exist two 6-directed semi-infinite
geodesics that eventually separate. Whenever 6 ¢ ©, all 6-directed semi-infinite geodesics coalesce.
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1. Introduction

1A. Broad goals of the project. This work is part of an effort to understand global geometric properties
of random growth of the first- and last-passage type. In these stochastic models, growth progresses in
space along paths called geodesics that optimize an energy functional. Of particular interest are the
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semi-infinite geodesics, their existence, uniqueness, multiplicity and coalescence, and the competition
interfaces that separate nonunique geodesics in a given direction. Semi-infinite geodesics are hard to
study because they look at the environment all the way to infinity.

The novelty of the present paper lies in its semi-discrete, or partial continuum, setting. In contrast
with lattice models, new features arise and new methods are needed. The main tool for accessing these
geometric properties is the Busemann process. We establish analytic and probabilistic properties of the
Busemann process and then use those to derive properties of the geodesics and the competition interfaces.

The specific model we work with is the Brownian last-passage percolation model (BLPP) that lives
in the space Z x R. BLPP arose in queuing theory in the 1980s and 1990s, in the work of Harrison
and Williams, and Glynn and Whitt [17; 22; 23; 24]. In the 2000s BLPP and its positive temperature
counterpart, the semi-discrete Brownian polymer or O’ Connell-Yor polymer [28], occupied a place among
the exactly solvable models in which properties of the Kardar-Parisi-Zhang (KPZ) class can be fruitfully
studied. We refer the reader to the introduction of our previous paper [35] for more on the history and
context, and concentrate here on the new features and connections.

Beyond the present work, the next natural stages of this project involve studying geodesics in the
semi-discrete setting of the positive temperature Brownian polymer and in the full continuum settings of
the stochastic heat equation and the directed landscape. The novel methods developed in this paper are
applied to the directed landscape in [8], which appeared after the first version of the present paper.

1B. The third work of a series. Our paper is the third in a series on the Busemann functions and semi-
infinite geodesics of BLPP. While we rest on the foundation provided by the two earlier works, our
introduction and main results are presented in a self-contained manner.

In the first stage Alberts, Rassoul-Agha, and Simper [1] proved the almost sure existence of a Busemann
function in BLPP from a fixed pair of initial points into a fixed direction. This limit appears in (3-3). In [35],
we extended the individual Busemann functions to a full Busemann process 32 (x, y) in BLPP, indexed by
all initial points x, y € Z xR, directions represented by positive reals 6, and signs 0 € {—, +} that keep track
of discontinuities. From this construction, [35] derived the following results on semi-infinite geodesics:

(1) On a single event of probability one, every semi-infinite geodesic has an asymptotic direction, and
from every initial space-time point x and in every direction 6, there exists a semi-infinite geodesic.

(2) Given a direction 6, all #-directed semi-infinite geodesics coalesce on a 6-dependent full-probability
event.

(3) Similarly, given a northeast and a southwest direction, there are almost surely no bi-infinite geodesics
in those directions.

The present paper takes [35] as a starting point to go deeper into the Busemann process and the
semi-infinite geodesics in BLPP. Next we go over some highlights and relate them to past literature. The
organization of the paper is explained in Section 1J.

1C. A jump process of coupled Brownian motions with drift. Among our main results and also our main
tool for studying geodesics is the joint distribution of the Busemann process across space and asymptotic
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directions. On a fixed level {m} x R of the space Z x R, the Busemann process (B ((m, 0), (m, 1)) :
t €R, O e {—, +}} appears as a coupled family of two-sided Brownian motions with drift. Here, the real
coordinate on the R component of Z x R plays the role of the time variable ¢ of the Brownian motions.
Figure 8 (page 685) depicts a simulation restricted to the right half-line Rx. The drift is determined by
the direction parameter 6. Any two trajectories coincide in a neighborhood of the origin and separate at
some point. As we move away from the origin, the trajectories move further away from each other. The
separation time is not memoryless, and hence the coupled processes are not jointly Markovian.

When the spatial location (time variable of the Brownian motions) is fixed, marginally in the direction
parameter 6, we see a monotone jump process with stationary but dependent increments. This corresponds
to jumping vertically from trajectory to trajectory in Figure 8. Explicit distributions of the increments and
expected numbers of jumps are given in Section 3B.

Busani [7] recently constructed what is termed the stationary horizon, as the scaling limit of the
Busemann process along a horizontal line in the exponential lattice corner growth model (CGM). This
object is a random collection of continuous functions {G,}yer, Where G, is a two-sided variance 4
Brownian motion with drift . A precise description is given in Definition 5.3. It is expected that the
stationary horizon is a universal object in the KPZ class. Our work in Section 5B gives additional evidence
for this claim. In Theorem 5.4, we show that, after a simple reflection, the horizontal Busemann process
for BLPP is equal in distribution to the stationary horizon, restricted to nonnegative drifts. Therefore,
the distributional calculations of Section 3B give additional quantitative information about the stationary
horizon, beyond what is given in [7]. Furthermore, we show in Theorem 5.7 that under KPZ scaling,
the BLPP Busemann process converges to the stationary horizon, in the sense of finite-dimensional
distributions.

1D. Non-uniqueness of semi-infinite geodesics. The Busemann process can be used to define a family
of semi-infinite geodesics that we then call Busemann geodesics. This construction from [35] is repeated
in Section 4A. Due to planar monotonicity, Busemann geodesics bound arbitrary semi-infinite geodesics.
Hence, uniqueness of Busemann geodesics in a given direction translates into uniqueness of all semi-
infinite geodesics in that direction.

BLPP has two sources of nonuniqueness of Busemann geodesics. A given Busemann function %7
produces distinct leftmost and rightmost geodesics from a random countable set of initial points, denoted
by NUgD. The leftmost and rightmost geodesics are labeled by L and R. Additionally, if a direction 6
is a jump point of the Busemann process, there is nonuniqueness represented by a 6+ distinction. The
random set ® of Busemann function discontinuities is countably infinite and dense in the set of directions.

When 6 ¢ 0, all f-directed semi-infinite geodesics are Busemann geodesics, including the cases of
L /R nonuniqueness. It is an open question whether directions 8 € ® have semi-infinite geodesics that are
not Busemann geodesics. Only in the exponential lattice CGM is it presently known that the Busemann
geodesics account for all semi-infinite geodesics [25, Section 3.2].

The L/R distinction is a continuum feature that is not present in the exponential lattice CGM, while
the 6+ distinction is a similar phenomenon as on the lattice. The L/R distinction occurs only at a random
countable set of initial points x. It turns out that the L /R distinction is local in the sense that it disappears
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after a while. This is illustrated in Figure 10 (page 691) where multiple geodesics emanate from x,
but by location z they have rejoined into a single path. The nontrivial fact is that after z, they remain
together forever. This follows from the fact that after meeting at z these geodesics become portions of the
unique geodesic started from a point without the L/R distinction. See Theorem 4.11(ii) and the proof in
Section 8A.

1E. Coalescence of geodesics. For each direction 6 in the discontinuity set ®, the 6+ geodesics from
all (uncountably many) initial points coalesce, and the same is true for 6—. If 8 ¢ O, there is no +
distinction and again coalescence holds. We present a new coalescence proof that utilizes the regularity of
the Busemann process. This argument is in Section 8A where it culminates in the proof of Theorem 4.11.

Previously, two approaches to coalescence of planar geodesics were available. (i) A proof given by
Licea and Newman [26] used a modification argument followed by a Burton-Keane type lack-of-space
argument. (ii) In [33] the first author, developed a softer proof that utilized the tree of dual geodesics and
relied on properties of the stationary version of the growth process. This latter proof we applied to BLPP
in [35].

1F. Fractal sets. Finite geodesics from a given initial point x to all the points to its north and east begin
by either a horizontal or a vertical step. These two collections of finite geodesics are separated by an
infinite path that emanates from x, called the competition interface (see Figure 15 (page 696)). In the
lattice CGM, the competition interface has a random direction into the open quadrant from each lattice
point. By contrast, in BLPP, the typical competition interface is trivial in the sense that it is an infinite
vertical line. Geometrically, this means that all geodesics emanating from x start with a horizontal step.

However, there is a Hausdorff dimension % set of exceptional initial points, called CI, from which the
competition interface has a nontrivial limiting slope. Even though the set CI is uncountable, the set of
possible limiting slopes is countable. These limiting slopes are characterized by the Busemann process
(Theorem 4.36).

Random fractals related to geodesics appear in the KPZ fixed point and the directed landscape. The arti-
cle [4] studies the Airy difference profile, the scaling limit of the process z > L _,2/3y (z.n) — L(0.n2/3).(z.n)»
where L denotes BLPP time (see Section 2B). The limiting object is a continuous nondecreasing process
that is locally constant, except on a set of Hausdorff dimension % The result of [4] is applied to the
directed landscape in [6] and is used to study the set of pairs y such that there exist two geodesics between
(—=1,0) and (1, 0) whose only common points are the endpoints. This set is exactly the set of local
variation of the Airy difference profile and therefore has Hausdorff dimension % See also [10; 16] for
further study of random fractal sets that appear in the continuum models of the KPZ class.

1G. Queues. Properties of the Brownian queue are central to our arguments. The spatial evolution
of the Busemann process implies that it obeys transformations that arise in the queuing context. Our
characterization of the distribution of the Busemann process relies on a uniqueness theorem of Cator,
Lépez and Pimentel [9] for the invariant distribution of a particular queuing transformation, stated in the
present paper as Theorem 7.12.
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1H. Geodesics in the KPZ scaling. Hammond made a detailed study of point-to-point geodesics in BLPP
in the KPZ scaling regime, that is, geodesics between points (O, 2n? 3x) and (n, 2n*3y), where x, y € R
and n is a large integer [18; 19; 20; 21]. This work has been valuable for understanding the directed
landscape. See, for example, [4; 6; 12; 16]. The setting of our work is different, since we study BLPP

2/3 scaling window. However, related themes arise. Theorem 1.1

globally instead of through a thin n x n
in [21] gives explicit asymptotic bounds for the probability that there are k disjoint BLPP geodesics
between two intervals of size n*/3. Proposition 6.1 of [20] establishes that, with high probability, two
geodesics from two sufficiently close initial points (in scaled coordinates) to the same terminal point
coalesce well before the endpoint.

Very recently, Rahman and Virdg [29] proved the existence of semi-infinite geodesics and Busemann
functions in the directed landscape, the continuum scaling limit of the KPZ universality class. They
first prove the existence of semi-infinite geodesics, then use the geodesics to define Busemann functions.
Conversely, in our work, we construct the semi-infinite geodesics from the Busemann functions. While
the models are different, there are some analogous results that appear. For example, Theorem 5 of [29]
states that, for a fixed direction and a fixed horizontal line, with probability one, there exists a random, at
most countable, set of points from which the geodesic in the fixed direction is not unique. However, all
geodesics in that fixed direction coalesce, so the splitting geodesics eventually come back together. This
is the same phenomenon we observe in BLPP, proved in [35, Theorem 3.1(iii), (vii)]. The present work
describes the geometry of all geodesics, simultaneously across all directions, whereas [29] focuses on a
single, fixed direction. For example, in the present paper, we show that this “bubble” phenomenon occurs
simultaneously in every direction (see Theorems 4.8 and 4.11).

In [8], together with Ofer Busani, we apply the techniques developed in this paper to derive corre-
sponding results for the directed landscape (DL). In particular, the new proof technique for coalescence is
crucial, and analogous results hold on nonuniqueness and random fractal sets.

11. Relation to the lattice corner growth model. The results we prove, and our approach, are related
to the work on the lattice CGM in [14] and [25]. BLPP is technically more challenging than the lattice
situation, and the present work benefits greatly from the direction provided by the prior work on discrete
models. We discuss the relations between the two models in Section 5. Originally, Glynn and Whitt [17]
derived BLPP as a weak limit of the lattice CGM. We show that under this same scaling, for two fixed
directions, the Busemann process of the exponential CGM converges weakly to its BLPP counterpart.
However, we prove all our results for the Busemann process and semi-infinite geodesics directly from the
BLPP model, without importing results from the discrete model and appealing to the limit.

1J. Organization of the paper. Section 2 provides definitions and terminology and then states the main
theorems. Section 3 gives a detailed description of the distribution of the Busemann process. Section 4
describes the global structure of the semi-infinite geodesics and competition interfaces. Section 5 illustrates
connections to the corner growth model and the stationary horizon. In Section 6, we state several open
problems. The remainder of the paper is devoted to the proofs. The proofs of the results for the Busemann
process, including Theorem 2.5, are in Section 7. The proofs of the description of the geodesics and
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competition interfaces, along with the proofs of the Theorems 2.8 and 2.10, are contained in Section 8.
Section 9 proves the results of Section 5. The appendices contain some technical results and inputs from
the literature.

2. Definitions and main results

2A. Notation. The following notation and conventions are used throughout the paper.

(i) Z, Q@ and R are restricted by subscripts, as in for example Z.o = {1, 2, 3, ...}.

(i) We use two orderings of space-time points. In the standard coordinatewise ordering, (m, s) < (n, t)
means that m <n € Z and s <t € R. In the down-right, or southeast, ordering, (r, s) < (m, t) means
thatm <r eZand s <t € R, as in Figure 11 (page 691). The weak version (r, s) < (m, t) means
thatm <r and s <t.

(iii) X ~ N(u, o?) indicates that the random variable X has normal distribution with mean p and

variance 2. For « > 0, X ~ Exp(«) indicates that X has exponential distribution with rate «, or

equivalently, mean o',

. o . . d
(iv) Equality in distribution between random variables and processes is denoted by =.

(v) A two-sided Brownian motion is a continuous random process {B(?) : t € R} such that B(0) =0
almost surely and such that {B(t) : t > 0} and { B(—¢) : t > 0} are two independent standard Brownian
motions on [0, c0). For ¢ > 0, we call {{/cB(¢) : t € R} a Brownian motion of variance c.

(vi) For L e R, {Y(¢):t € R} is a two-sided Brownian motion with drift A if the process {Y (r) — At : t € R}
is a two-sided Brownian motion.

(vii) The square O as a superscript represents a sign: — or +.
(viii) Increments of a function f are denoted by f(s,t) = f(t) — f(s).

(ix) Increment ordering of two functions Z, Z :R — Ris defined as follows: Z <inc Zif Z(s,t) < 4 (s, 1)

whenever s < t.

(x) The space of continuous functions “pinned” at O is denoted by
Coin(R) = {f € C(R) : f(0) =0}.

(xi) A stochastic process (X (t));cr indexed by the real line R is increment-stationary if, for each s € R,
this process-level equality in distribution holds:

(X0, ))rer 2 (X (5.t +5))rcn-

A vector-valued process (X!, ..., X") is jointly increment-stationary if, for each s € R,

(X1, 0), oo X0, ) rer (X (5,1 +5), o, X5, 1+ 5))scr.
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2B. Geodesics in Brownian last-passage percolation. The Brownian last-passage process is defined as
follows. On a probability space (€2, &, P), let B = {B, },cz be a field of independent, two-sided Brownian
motions. For (m, s) < (n, t), define the set

. —m+2 .
H(m,S),(n,t) = {sm,n = (Sm—1, Sms--->5n) € R" mt S=S—1 Sy < =8y =t}-

Denote the energy of a sequence s, , € [(y.5),(n.r) BY

Esmn) =) _ Brlsr—1,8). @-1)

r=m

Now, for x = (m, s) < (n,t) =y, define the Brownian last-passage time as
Lx,y = Lx,y(B) = SUP{%(Sm,n) Smoan € 1_[x,y}- (2-2)

Each element s, , € I1(y.5).(n.r) represents a unique continuous path I' in R? from x to y as follows:
I" consists of horizontal segments {r} x [s,_1, s,] on level r for r = m, ..., n, connected by vertical
unit segments [r, r + 1] x {s,} forr =m, ..., n — 1 (see Figure 1). Because of this bijection, we regard
I1y,, equivalently as the space of such up-right paths from x to y. For (m, 1) € Z x R, we graphically
represent the ¢-coordinate as the horizontal coordinate (the time coordinate of the Brownian motions)
and the m-coordinate as the vertical coordinate (level) on the plane. This is a convention that is taken
from [1], although it disagrees with the standard x — y labeling of the coordinate axes. By continuity and
compactness, for all (m,s) =x <y =(n, 1) € Z xR, there exists s,, , € I, y such that €(s;, ,) = Ly y.
We call a maximizer s, , and its associated path a geodesic between x and y.

The following lemma establishes uniqueness of finite geodesics for a fixed initial and terminal point.

4, 1)

=N WA

O, s) S0 S1 YY) s3

Figure 1. Example of a planar path from (0, s) to (4, t), represented by the sequence
(s =S_1, 50, 51, 82, 83, 54 = 1) € [L(0.5),¢4.1)-

4 \\/\\/\/’
3
2 //\ /N /
1 A '\1/\\/ \/ v
0 \//\v/\ f\ A\/ \/
K vV S0 S1 52 §3 t
Figure 2. The Brownian increments B, (s,_1, s,) forr =0, ..., 4 in (2-1) that make up the

energy of the path depicted in Figure 1.
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X

Figure 3. Coalescence of two up-right paths at z.

Lemma 2.1 [20, Theorem B.1]. Fix endpoints x <y € Z x R. Then, with probability one, there is a
unique path whose energy achieves Ly y(B).

However, it is also true that for each fixed initial point x € Z x R, with probability one, there exist
points y > x such that the geodesic between x and y is not unique. We show how to construct such
points in Lemma A.1 and derive a bound on the number of geodesics in Lemma A.2. The following
important lemma is a deterministic statement which holds for last-passage percolation across any field of
continuous functions, hence in particular for Brownian motions.

Lemma 2.2 [12, Lemma 3.5]. Between any two points (m, s) < (n,t) € Z X R, there is a rightmost and a
leftmost Brownian last-passage geodesic between the two points. That is, there exist sﬁ’ > snlf’n €on.s).(n.0)s
that are maximal for € (s, n), such that, for any other maximal sequence Sy, y, srL <s < srR form <r <n.

To an infinite sequence s = §;,;,—1 < i < Spu+1 < --- we similarly associate a semi-infinite path. It is
possible that s, = co for some r > m, in which case the last segment of the path is the ray {r} x [s,_, 00),
where r is the first index with s, = co. The infinite path has direction 6 € [0, oo] if

lim on exists and equals 6.

n—-oo n
We call an up-right semi-infinite path a semi-infinite geodesic if, for any two points x < y € Z x R that
lie on the path, the portion of the path between the two points is a geodesic.

For a semi-infinite, up-right path I" starting from x € Z x R, the coordinate-wise ordering < is a
complete ordering of the set I'. This motivates the following definition.

Definition 2.3. Two semi-infinite, up-right paths I'y and I'; coalesce if there exists a point z € ' N T'y
such that for all w > z, w € I'; if and only if w € I',. We call the minimal such z the coalescence point.
See Figure 3.

The following states the coalescence into a fixed direction proved in [35]. Theorem 4.11 of the present
paper extends this result to coalescence of all Busemann geodesics with the same direction 6 > 0 and
sign O € {—, +} (see Section 4C for the precise definitions).

Theorem 2.4 [35, Theorem 3.1(vii)]. Fix 6 > 0. Then, with probability one, all 6-directed semi-infinite
geodesics coalesce.



GEODESICS AND COMPETITION INTERFACES IN BLPP 675

2C. Main theorems. The geometric properties of BLPP obtained in this paper rest on studying the
Busemann process (BO(x,y):x,yeZ xR, >0, 0e{—,+}}, defined for all points and directions
simultaneously. The O € {—, +} distinction records the left- and right-continuous versions of the process
as a function of 6. Theorem 3.1 provides a detailed summary of the properties of this process. The
immediate connection between the Busemann process and the last-passage percolation process is the
following limit, stated in Theorem 3.1(vii): for a fixed direction 6 > 0, with probability one, for all
x,yeZ xR,

B (x, y) =BT (x, y) = lim [Ly (1.06) — Ly, (u.n0))-
n—oo

However, in general across all directions 8 > 0, it does not hold that B~ = Bt as functions
(Z x R)> — R. The finer geometric properties of BLPP turn out to be intimately related to the random
set of discontinuities of the Busemann process, defined as

Ory={0>0:R""(x, ) #R x,y)} ad ©= [J O (2-3)
x,yeZxR

As the discontinuity set of a function of locally bounded variation (see Remark 3.3), © , is at most
countable. When it is understood that 6 ¢ ©, we write B¢ without the & distinction in the superscript.
Our first main result is a description of the random set of discontinuities of the Busemann process.

Theorem 2.5. For each fixed 6 > 0, P(0 € ®) = 0. Further, the following hold on a single event of
probability one.

(1) The set © is countably infinite and dense in R .

(i1) Foreachx #y € Z xR, the set Oy y is infinite and either has a single limit point at O or no limit points.
Furthermore, on each open interval I C (0, 00) \ Oy y, the function 6 — 9736_(x, y) = %9+(x, y) is
constant on 1.

(iii) For eachm € Z, the set Oy, 1), (m.1) IS nondecreasing in t € Rxo. For any m € Z and any sequence
ty — 00,

0= U O (m, 1), 0m11) - (2-4)
k

Remark 2.6. Part (iii) says the entire set of discontinuities appears in the discontinuities of 8 +—
B ((m, —t), (m, 1)) for ¢t outside any large bounded interval [—7, T'], on each horizontal level m of
the lattice.

Remark 2.7. Theorem 2.5(ii) states that 6 — B* (x, y) are the right- and left-continuous versions of a
jump process. This condition implies strong results about the collection of semi-infinite geodesics. In
particular, the set ® classifies directions in which the collection of semi-infinite geodesics in that direction
all coalesce. This is described in the next theorem.
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Theorem 2.8. The following hold on a single event of full probability.

(1) When 6 ¢ ©, all 6-directed semi-infinite geodesics (from each initial point) coalesce. There is a
countably infinite random set of initial points, outside of which, the semi-infinite geodesic in each
direction 0 ¢ © is unique.

(i) When 6 € O, there are at least two coalescing families of 0-directed semi-infinite geodesics, called
the 6 — and 6+ geodesics. From each initial point x € Z x R, there exists at least one 6 — geodesic
and at least one 0+ geodesic, which separate at some point y > x and never come back together.

Remark 2.9. There are two types of nonuniqueness present in Theorem 2.8. The type mentioned in
part (i) is temporary in the sense that geodesics must come back to coalesce. This type of nonuniqueness
occurs in every direction, but only from a countably infinite set of initial points. The second type of
nonuniqueness in part (ii) occurs from every initial point, but only in a countable dense set of directions.
Unlike the previous type, the geodesics that separate do not come back together. See Section 4B for
more discussion on nonuniqueness. In the case 8 € ®, we do not know whether there are more than two
coalescing of families of geodesics, but we expect that this is not the case. In exponential last-passage
percolation, it was shown in [25] that there can be no more than two such families, using machinery
from [11] that relies on the connection to TASEP. See Remark 4.23 for further discussion.

Due to the geometry of the space Z x R, when the splitting of geodesics described in Theorem 2.8(ii)
occurs at a point y, one geodesic must make an upward step from y while the other moves horizontally
from y. The competition interface from an initial point y in discrete lattice models separates points z > y
depending on whether the geodesic from y to z makes an initial horizontal or vertical step. In BLPP, this
concept is much more delicate. This is because, for a fixed initial point (m, s) € Z x R, with probability
one, for every point (n, t) with n > m and ¢ > s, all geodesics from (m, s) to (n, t) travel initially along
the horizontal line at level m. However, there is a random exceptional set of points at which this is not
the case, defined as follows (refer to Figure 4):

Cl={(m,s) e ZxR: for some (n,t) withn >m,t > s, there exists a
geodesic from (m, s) to (n, t) that makes an initial vertical step} (2-5)

The following theorem describes this exceptional set.

(n, 1)

(k, u)

(m,s)

Figure 4. An example of a typical point (m, s) that is not in CI. However, the point (k, u) does
lie in CI since the geodesic from (k, u) to (n, t) makes an immediate vertical step.
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0

L 2

G ————
X

Figure 5. An illustration of the behavior of Theorem 2.8(ii) and Theorem 2.10. The red/thick
paths are the -+ geodesics and the blue/thin paths are the 6 — geodesics, for § € ®. The 6—
geodesics all coalesce, and the 6+ geodesics all coalesce. From every initial point, there are two
distinct semi-infinite geodesics in direction 6, but the geodesics can only split at points lying in
the Hausdorff dimension % set CI (in this example, the splitting points are v and w).

Theorem 2.10. With probability one, for each level m € Z, the set Cl, :={s € R: (m, s) € CI} has
Hausdorff dimension % and is dense in R. Hence, the set Cl itself has Hausdorff dimension % For each
yeZxR, P(y e Cl) =0. The set Cl also has an equivalent description as the set of x € Z x R for which
there exists a random direction 6 > 0 such that there are two semi-infinite geodesics from x in direction 0,
whose only common point is the initial point x.

Remark 2.11. There are in fact many more equivalent ways to describe the set CI. These are detailed
in Theorem 4.30. Compare Theorem 2.8(ii) with Theorem 2.10. On one hand, when 6 € ®, from every
initial point x, there exist two semi-infinite geodesics in direction 6 that eventually split. On the other
hand, for all x ¢ CI, the two geodesics do not split immediately. See Figure 5. This is in contrast to the
exponential corner growth model studied in [25], where every initial point has a random direction in
which there are two semi-infinite geodesics in that direction that split immediately.

3. The distribution of the Busemann process

As alluded to in the previous section, Busemann functions give the asymptotic difference of last-passage
times from all pairs of starting points to a common terminal point that travels to oo in a given direction.
The direction is indexed by a parameter 6 > 0. See Figure 6 and Theorem 3.1(vii). Alberts, Rassoul-Agha,
and Simper [1] proved the existence of Busemann functions for fixed initial points and directions. In [35],
we extended this to the full Busemann process, indexed by all lattice pairs (x, y), directions 6 > 0 and
signs =+, that records also the discontinuities in the direction parameter. This is our starting point. In order
to clearly indicate whether a probability one statement applies globally or to fixed parameters, we refer to
several full probability events that were constructed in [35], namely Q,, Q©, and Q,(f) .

Theorem 3.1 [35, Theorems 3.5 and 3.7]. On (2, &, P), there exists a process

(B (x,y):0>0,0€{—, +},x,yeZ xR}
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Figure 6. Geodesics from x and y to a common terminal point (n, n6). The Busemann limit

sends n — 00.

with the following properties. Below, vertical and horizontal Busemann increments are abbreviated by

V() ;=B ((m — 1, 1), (m, 1)), (3-1)
RO () := BP9 ((m, 0), (m, 1)). (3-2)

(1) (additivity) On Q2,, whenever x,y,z € (Z xR), 0 >0,and O € {—, +},
B (x, y) + B2y, 2) =B (x, 2).
(i) (monotonicity) On Q,, whenever 0 <y < <00, me€ Z,andt € R,

0 <l () < vl () <l (1) <viTO,

0+ 0— + -
Bm <inc hm <inc hm <inc h,):, <inc h% .

(i) (convergence) On 2, for everym € Z, 6 > 0 and O € {—, +},

@) asy /6, B (x, y) converges, uniformly on compact subsets of (Z x R)2, to B~ (x, y).
(b) as 8\ 0, B (x, y) converges, uniformly on compact subsets of (Z x R)2, to B* (x, y).
(c) asy /oo, hly’ converges, uniformly on compact subsets of R, to By,

(d) as § \( O, vﬁF converges, uniformly on compact subsets of R, to 0.

(iv) (continuity) Forallr,m € Z, § > 0,and 0 € {—, +}, (s,1) — BT ((m, s), (r, 1)) is a continuous

function R* - R.
(V) (limits) For each 6 > 0 and O € {—, +},
Slillloo[Bm (S) - thH(s)] = F00.
(vi) (queuing relationships for Busemann functions) For allm € Z, 6 > 0, and signs O € {—, +},
U = QUi Bu) and by = D7, Bu),

where Q and D are defined in (3-7)—(3-8).
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(vil) (Busemann limit in a fixed direction) Fix 0 > 0. Then, on the event Q© forall x, y € 7 x R and all
sequences {t,} satisfying t,/n — 0 as n — oo,

BT (x, y) = lim [Ly sy — Ly.osn] =B (x, ). (3-3)
(viii) (independence) For any m € Z,
{th :0>0,0€e{—,+},r> m} is independent of {B, : r < m}.

(ix) (marginal distributions) For each 6 > 0, the process t — h?n (1) is a two-sided Brownian motion with
drift 1/+/6. The process t —> 9 (t) is a stationary and reversible strong Markov process such that,
foreacht € R, 5 (t) ~ Exp(1/+/0).

(x) (shift invariance) For eachz € Z x R,
{%em(x,y) :x,yeZxR,0>0,0¢ {—,—I—}} 4 {%95(x+z,y+z) x,yeZxR,0>0,0¢€ {—,+}}.

Remark 3.2. Since h%%(0) =0 form € Z, 6 > 0, and O € {—, +}, the monotonicity of part (ii) implies
that,forme Z, t >0,and y <6 <4,

R~ (1) < hOF (1) < h~(t) < 7T (1), and for t < 0, all inequalities reverse. (3-4)

Note that part (ii) is much stronger than (3-4), as all increments of h‘gm_ dominate those of hgf. This
property is used often in the sequel.

Remark 3.3. Theorem 3.1(vii) implies that we can fix an arbitrary countable dense subset A of directions
in R- ¢ and then include in any full-probability event the condition that the limit (3-3) holds for all 6 € A.
In particular, then B°~(x, y) = B*(x, y) forall x, y € Z x R and all § € A. This and the left and right
limits in part (iii) then imply that 6 > B%~(x, y) and 6 > B (x, y) are the left- and right-continuous
versions of the same function of locally bounded variation, and a jump happens at any given 6 with
probability zero.

When we prove our new results, we choose A = Q.. This comes in the definition (8-1) of the
full-probability event 24 in the proofs section. As a result, rational directions 6 will occupy a special role
in some statements.

A key point is the distinction between the global view and the view into a fixed direction 6. Only the
global view reveals the + distinction. On the event Q) we do not see the + distinction, and hence we
can drop the sign from the superscript and write %7, 4 , and v’ . Note also that the limit in (3-3) has not

m?
been established simultaneously in all directions.

The term “Busemann increment” is justified by the fact that RO (x, y) = R90(0, y)— R99(0, x).

The geometric properties of geodesics and competition interfaces explained in Section 4 are proved
from properties of the distribution of the Busemann process %% (x, y), to which we now turn. Through
the queuing transformations (Theorem 3.1(vi)), additivity (Theorem 3.1(i)) and stationarity, in principle
we can understand the entire Busemann process by restricting our attention to the Busemann process on a
single horizontal level m: {h%°(t) : 0 > 0,0 € {—, +},t € R}.
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3A. Horizontal Busemann functions as transforms of Brownian motions with drift. The joint distribu-
tion of finitely many horizontal Busemann functions is constructed by applying queuing transformations
to independent Brownian motions with drift. We define first the path spaces, then the mappings, and
lastly the distributions. Recall the pinned function space Cpin(R) from Section 2A(x). Set

i
Yy, = {Z = (Zl, o ZM) e Coin(R)": for 1 <i <mn, llim exists and lies in R.g,
—> 0
Zi@t AR(;
and for 2 <i <n, lim L > lim A ,
t—00 t t—00 t (3-5)
and
1 i i—1 N RO)
X, = in =m,....,n") € Cpin(R)" : 0" =jnc n'™ for2 <i <n, and htmlnf > 0}. (3-6)
—00

Two larger spaces @n and @En are defined as above except that the lowest limits
lim t~'Z'(¢) and liminf~'n'(¢)
=00 =00

are permitted to be 0 while the other inequalities are still required to be strict. These four spaces are Borel
subsets of the space C(R)”" (see Section 7) and in particular separable metric spaces under the topology
of uniform convergence on compact subsets of R.

For two functions Z, B € Cpin(R) satisfying limsup,_, . [B(f) — Z(t)] = —00, define the mappings

0(Z, B)(1) :zj;lfoo{B(t’S) —Z(t,s)}, (3-7)
D(Z, B)(t) = I;(I) +0<S;1<poo{B(S) —Z(s)} — ISS;lfoo{B(S) —Z()} (3-8)
R(Z, B)(t) = Z(1) +t§SSu<poo{B(S) —Z()}— Of;lfoo{B(S) —Z()} (3-9)
Equivalently, _
D(Z, B)(t) = Z(1) + Q(Z, B)(0) — Q(Z, B)(1),
and

R(Z, B)(1) = B(t) + Q(Z, B)(1) — Q(Z, B)(0).

In queuing terms, the increments of Z denote the arrivals process to the queue, while the increments
of B denote the service process. For outputs, Q(Z, B) is the queue-length process, and the increments
of D(Z, B) form the departures process. See Section 5.3 and Appendix C of [35] for a more detailed
description of the connections to queuing theory. For 0 <a < b and 0 < ¢ < d, the pair (D, R) is bijective

on the following space of functions, denoted Oygl’b)’(c’d):
B(t Z(t B(t Z(t
{(z, B) € Cpin(R)? : lim 30 =a, lim 0 _ b, lim 30 _ ¢, lim 0 :d}.
t—oo f t—oo f t——00 t——00 f

This is presented as Theorem D.1 in [35], although some extra care is needed to show that (D, R) and its in-
verse preserve the space Oyga’b)’(c’d). We do not use the bijectivity of the map (D, R) in the present paper, so
we omit the full details. A proof that the map (D, R) preserves limits as t — oo is presented as Lemma 7.3.
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We iterate the mapping D as follows: first, set D(])(Z) = Z, and for n > 2,

D™z, z'71, ..., zZY=DmD" V(z",....72%,7"). (3-10)

Next define a transformation % that maps %,, into %,, and @n into @C?n. ForZ=(Z',...,Z" ¢ @n, the
image 9™(Z)=n= (', ..., n") € %, is defined as

=Dz, ...,Z") forl<i<n. (3-11)

We used decreasing indexing in (3-10) to match the main definition (3-11).

As discussed above, these mappings have their origin in queuing theory. This goes back to the work of
Harrison and Williams [22; 23; 24], but the particular formulation of these mappings matches more closely
that in [28]. The iterated mapping @ has analogues in discrete queuing systems. See Theorem 2.1
in [15] and equation (3-3) in [14].

Lemma 3.4. The mapping 9™ satisfies the following properties:
i) 9™ maps Y, into X, NY,, and @n into @n N @n.
Gi) If (ZY, ..., Z") €M, satisfies

Zit
limJ:ai for1 <i<n,
t—00 t

then the image (n', ..., n") =9 (Z', ..., Z") also satisfies

. ')
Iim — =

a; forl <i<n.
t—oo t

Definition 3.5. Given A = (A, ..., A,) with0 < X; < --- < A,, define the probability measure v* on W,
as follows: the vector Z = (Z!, ..., Z") has distribution v* if the components of Z are independent and

A

each Z' is a standard, two-sided Brownian motion with drift A;. The measure v* is extended to @n when

A1 = 0. Define the measure u* on %, (or @n) as u* =v’o (@mH)~1,
Lemma 3.6. The following properties of the measures u hold:

(1) (weak continuity) Let A = (A1, ..., Ay) WithO<A| <--- <X, For1 <i <n, let )\f.‘ > 0 be sequences
satisfying limg_, oo )\f = Ai. Then, if A = (AX, )\5, e )JZ), ,u)‘k — u* weakly, as probability
measures on %,,.

(i) (consistency) If (', ..., n") € @n has distribution p?1*) for 0 < Ay < -+ < Ay, then any
subsequence (n’', ..., n/) has distribution ®i-*i.

(iii) (scaling relations) Let 0 <Xij <---<A,andc>0,veR If(n', ..., n") has distribution £*1>-*n)
and (7', ..., ") has distribution @ €*1F2)CGntv) - ghop

('), ..., 0" (D) 1 e R} £ {(cq'@t/c?) —vt, ... ci"(t/c?) —vt) : t € R},

Now, we can give the following description of finitely many horizontal Busemann functions on a given
level. There is no 6+ distinction in the statement because it involves only finitely many 6-values, and for
a given 6 and m, the functions 4%~ and h%* almost surely coincide.
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Figure 7. A graphical description of the process A > X (A; ) for a fixed ¢ > 0.

Theorem 3.7. Let6) >0y > --- >0, > 0 and set \; = 1/«/5,- for 1 <i <n. Then, for each level m € Z,
the (n + 1)-tuple of functions (B, h%, R h,e,',’) lies almost surely in the space @C?,,H N @n-i-l and has
probability distribution p©-*1-*),

3B. Fixed time marginal process across directions. In this section we study the process hgm(z‘) for a
fixed ¢, as 6 varies. While 6 is the geometrically natural parameter because it represents the asymptotic
direction of semi-infinite geodesics, we will also find the parameter A := 1/4/0 useful. In particular,
for A >0, t+— h(l)/ ’\z(t) is a Brownian motion with drift A. When X is the index, it is convenient to have
the alternative notation

X\ 1) = h(()l/kz)_(t) for A >0andt eR,

so that A — X (A; ¢t) is a cadlag process, and E[X (A; t)] = Af. In light of Theorem 3.7, it makes sense to
extend the definition to A = 0 by setting X (0; ) := Bo(¢). Next, we describe the behavior of the process
{X(A; 1) : L > 0} for fixed ¢ € R. Since the Busemann functions satisfy hgl (0) =0 and hﬁz <inc A}, for
6 > y (Theorem 3.1), A — X (X; t) is a nondecreasing process for each ¢ > 0.

Remark 3.8. From th(t) = B9((0, 0), (0, ¢)) and shift invariance (Theorem 3.1(x)), we have this
equality in distribution of A-indexed processes, for each s € R and 7 > 0:

(X0 :a>0 L (X0st+s5)— X (A s):a>0) (3-12)

Hence, while we focus our attention on the distribution of the left-hand side of (3-12), our results apply
as well to the right. Results for negative ¢ are obtained by noting that, with s = —¢ < 0, (3-12) gives the
distributional equality {X (&; ) : A > 0} 4 {—=XO; —=1t):A=>0}.

A nondecreasing process {Y (1) : A € [0, 00)} is a jump process if, with probability one, for every
interval [a, b] C [0, 0co), Y has finitely many points of increase in [a, b]. The process A — X (A;¢t) is a
jump process, as described in Theorem 3.9 and illustrated in Figure 7.

Theorem 3.9. Fixt > 0. Then, {X (X; t) : A > 0} is a nondecreasing real-valued process with stationary
increments. With probability one, the path of the process is a step function whose jump locations are a dis-
crete subset of [0, 00), there exists &€ > 0 such that X (\; t) = By(t) for A €[0, &), and limy_, oo X (X; t) = 00.



GEODESICS AND COMPETITION INTERFACES IN BLPP 683
The expected number of jumps in an interval [a, b] C [0, 00) is given by
E[#{r € [a,b]: X(A—; 1) < X(A+; D}] =2(b — @)/t /7.

Remark 3.10. In terms of jump directions of the Busemann process, the last statement of Theorem 3.9 is
equivalent to the following: form € Z, 0 <y <§ < oo and s <t € R, the expected number of directions
0 € (y, §) satisfying hfj(s, 1) < hﬁq_ (s, t) is given by

—s/1 1
E[#(O(n.s).0m.0) N (v, 8))] =2 ! - : <ﬁ — %). (3-13)

Theorem 3.9 is proved by first showing increment-stationarity and then analyzing the distribution
of an increment of the process. By the increment-stationarity of Theorem 3.9, the distribution of
X (Ao; 1) — X(Aq; t) 1s the same as the distribution of X (A; t) — X (0; t), where A = Ay — A;. Denote the
distribution function of this increment by

Fz; o, ) =P(X(A;t)—X(0;1) <2z) for z > 0.

Theorem 3.11. Forz >0, t >0, and A > 0,

7— At 7+ At (4102
F(Z;)»,t)=q)( )+e“<(1+)»z+)\2t)<1><— )—)u t/me & ) (3-14)
2t 2t /

Remark 3.12. Using (3-14), the distribution of X (1; ) — X (0; ¢) can be written as a mixture of probability
measures

pdo+ (1 — p)m,
where g is the point mass at the origin,
p=FO; 0, 1)=P(XA1)—X(0;1) =0)= 2+ P(—ry/1/2) — re 5 t)m (3-15)
and 7 is a continuous probability measure supported on [0, co) with density
(1—-p)! [a%F(z; A, t)]]l(z > 0).

Since A +— X (A;t) is nondecreasing, (3-15) implies that A — F(0; X, t) is nonincreasing. Further,
from (3-15), we can compute

9 2,
SO0 — At D(—Ay/1/2) — 2T 1/ (3-16)

By Theorem 1.2.6 in [13], for all y > 0, f__oyo e 12 dx < y‘le_yz/2 (the theorem is stated with a weak
inequality, but the proof shows that the equality is strict). Applying this to (3-16), we see that for ¢ > 0,
A= F(0; A, 1) is strictly decreasing. Hence, p = F(0; A, ¢) > O for all > > 0 and ¢ > 0. From (3-15), for
eachr > 0, lim; .., F(O; A, 1) =0.
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The random variable X (A; t) — X (0; ¢) has the following Laplace transform/moment generating function.
For a € Ry,

E[exp(—a (X (A; 1) — X (0;1)))]

ozttx)»lq)(()\, 20:)\/»)( G O{)2)
A 1+ 22 A >

This is computed in Section 7.5 of the arXiv version of this paper [34].

Recall that, for s < ¢, hl/ »” (s, t) has the N(A(¢ —s), t — ) distribution and hence, by the monotonicity

in Theorem 3.1(ii), hl/ »” (s, t) — +00 as A — o0. Corollary 3.13(i) refines this statement.

Corollary 3.13. The following hold.

(i) Forfixeds <t R, as A — 00, hm (s, t)— By (s, t) — A(t —s) converges in distribution to a normal

random variable with mean zero and variance 2(t — s).

(i) Fort >0and 0 < X; < Ay, X(Ap;t) — X (A5 1) is not independent of X (A1; t). Furthermore, the
process . +— X (A; t) does not have independent increments.

Remark 3.14. In addition to Corollary 3.13, numerical calculations give more information about the
structure of this nonindependence. Specifically, it appears that for t > 0 and 0 < A < Ao,

P(X(h2; ) =X (hi;0) | X (s 1) = X(0; 1)) < P(X (Ag; 1) = X (13 1)).

In other words, conditioning on no jumps in the interval [0, A;] increases the probability of a jump
in (A1, A2].

3C. Coupled Brownian motions with drift. On a fixed horizontal level m of Z x R, the Busemann
functions h%°(¢) form an infinite family of coupled Brownian motions with drift. This section describes
the structure of this family.

We return to the parameter 6 = 1/A2 of the direction of semi-infinite geodesics. Recall that # > h% (¢)
is a Brownian motion with drift 1/+/6. It is convenient to extend the range of the parameter @ to infinity by
defining A’ = B,,. By stationarity it is enough to consider the level m = 0. As pointed out in Remark 3.8,
it is sufficient to restrict attention to nonnegative times ¢ > 0, and then Theorem 3.15 captures also the
properties of the restarted process ¢ — h%%(t +s) — h’9(s) for any fixed (m, s) € Z x R. Recall that © is
the set of discontinuities of the Busemann process defined in (2-3).

Theorem 3.15. The following hold on a single event of probability one.

(i) ForO0<y <é<ooand Oy, Oy € {—, +}, the difference th‘ (1) —hggz (t) between the two trajectories
is nonnegative and nondecreasing as a function of t > 0. For 6 > 0, the same is true of the difference
hg_(t) — h8+ (t) as a function of t = 0.
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Busemann functions for various values of
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t

Figure 8. A simulation of the branching structure of the Busemann functions. Higher trajectories
correspond to larger values of the drift A > 0, or equivalently, to smaller values of the direction
parameter & = A ~2 and thereby to geodesic directions approaching the vertical.

(i) For0 <y < é <ooand Oy, Oy € {—, +}, there exists a random time S = S(y 01, §07) > 0 such that
RPN (6) = WP (¢) for 1 € [0, S1, and k™' (1) > ho™ (1) for t > .

(ili) For every such value of S = S(y 01, 802), there exists 6 € [y, 810 © such that h~(t) = hi* (t) for
t €10, SI,and h™ (1) > hi™ (1) fort > S.

(iv) For each T > 0, the set of distinct trajectories {t — hfnm(t) :tel0,T], 0 e(0,00], 0e{—, +}}is
countably infinite.

(v) At each fixed time T > 0, the set of values {han(T) 10 € (0,00],0 € {—, +}} is a countably
infinite subset of R, bounded from below but unbounded from above, and has no limit points

in R. In particular, for every ¢ > 0, there exists n = n(e) > 0 such that for all 0 < 6 < n,
RS~ (e) > hiT(e) > Bo(e).

Remark 3.16. For 0 < y < § < oo the distribution of the separation time is given by
PIS(y,8) > t] =P[h} (1) = hg(t)] =F(0;1/Jy — 1/v/8,1) fort >0,

where F(0; A, t) is from (3-15). There is no = distinction because for a fixed 6 > 0, h%*(¢) = h% (1)
for all t € R with probability one.

Remark 3.17. Figure 8 presents a simulation of the trajectories {hg (t) : t = 0} for various values of
the direction parameter # = A~2. We see a visual representation of the statements of Theorem 3.15.
The lowest (blue) trajectory is the Brownian motion hg° = By with direction 6 = oo and drift A = 0.
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Trajectories move together from the origin and then split, and the distance between them is nondecreasing
(Theorem 3.15(i)—(ii)). Part (iii) implies that when two trajectories split, there exists 8 € ® such that hg_
follows the upper trajectory and hg+ follows the lower trajectory. We expect that three distinct trajectories
do not split at the same time, but we do not have a proof and leave it as an open problem.

As one travels upward along the vertical line at 7 = 0.45 in the figure, one observes the process
A h(()l/’\z);(T) = X(A£; T). Specifically, let 0 < A; < A, < --- be the jump times of this process.
Then, for 0 <A < Ay, X(AE; T) is equal to the vertical coordinate of the bottom curve (blue). At A = Ay,
X (A1—; T) is still equal to the vertical coordinate of the bottom curve (blue), but X (1;+; T) is equal
to the vertical coordinate of the second-lowest curve (red). For A} <A < Xy, X(A£; T) is equal to the
vertical coordinate of the red curve, and so on. Lastly, in the figure, we see some trajectories splitting
from By very close to t = 0, as guaranteed by part (v).

Remark 3.18. Corollary 2 of Rogers and Pitman [31] describes another coupling of two Brownian
motions with drift such that they agree for a finite amount of time. Their result is related to our work
because it is used to show the stability of the Brownian queue (see, for example, page 289 in [28]).
However, the Rogers-Pitman coupling is different from ours, because, for example, theirs does not satisfy
the monotonicity of increments given in Theorem 3.15(i).

4. Global geometry of geodesics and the competition interfaces

4A. Busemann geodesics. In addition to Theorems 2.8 and 2.10, the results of this section characterize
uniqueness and coalescence of semi-infinite geodesics across all directions and initial points. These
geometric properties are accessed through analytic and probabilistic properties of the Busemann process.
As in [35], the following demonstrates how to construct semi-infinite geodesics from Busemann functions.

Definition 4.1. For each initial point (m,t) € Z x R, direction 6 > 0 and sign 0 € {—, +}, let T, (fnm’t)

denote the set of real sequences
=Ty 1 ST STyl =" ST < -

that satisfy
B () —h)7 (x)= sup {B.(s)—h7(s)}  foreachr >m. 4-1)
s€[t,-1,00)
Theorem 3.1(iv)—(v) guarantee that such sequences exist. Equality of two elements (z,);>,—1 and
(t))rsm—1 of TYY means that 7, = 7/ for all » > m — 1. At each level r, there exist finite leftmost and
rightmost maximizers. Let

___6o,L 6o,L
U= T ym=1 = Ym,ym ="

__ _60,R 6o,R
and =740 1 S T ym S0

denote the leftmost and rightmost sequences in T(fnmt). Since an increasing sequence of jump times
determines an infinite planar path, as illustrated in Figure 9, we think of T?" equivalently as the set of

semi-infinite paths determined by its elements. For S € {L, R}, let F?ﬂ?’g be the continuous semi-infinite
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Figure 9. Example of an element of T/ .t

path on the plane defined by the jump times {‘L’ }r>m—1. Finally, let T(?n’ . =T%" UT?  denote

(m, ;) r (m,t) (m,t)
the collection of all the sequences (or paths) associated to the direction parameter 6.

Remark 4.2. We make the observation that in Definition 4.1, if, at any step r, the function B, (u) — h 1(u)
has more than one maximizer over u € [t,_, 00), then any choice 7, of maximizer continues the sequence
as an element of Tx@ O, regardless of the past steps. In terms of paths, if I' € T, xe H, then for any point
y € I'N(Z x R), the portion of I above and to the right of y is an element of T y" o,

It was proved in [35] that every element of T(m )
We call these Busemann geodeszcs In general, F tﬁ is the leftmost among all 6-directed semi-infinite
geodesics out of (m, t) and F R is the rlghtmost These properties, along with other previously proved

facts, are recorded below.

Theorem 4.3 [35, Theorems 3.1(iv)—(v), 4.3 and 4.5(ii)]. The following hold on the full-probability
event 22, unless stated otherwise.

is a 0-directed semi-infinite geodesic out of x = (m, t).

(1) (existence) Forallx e Z xR, 6 >0, and O € {—, +}, every element of TxeD defines a semi-infinite
geodesic starting from x. More specifically, for any two points y < z along a path in T x9 O, the energy
of this path between y and z equals B2 (y, z), and this energy is maximal over all paths between y
and z.

(i1) (leftmost and rightmost finite geodesics along paths) If, for some 0 >0, O € {—, +},andx € Z x R,
the points y < z € Z x R both lie on T9%L | then the portion of T97-L between y and z coincides
with the leftmost finite geodesic between these two points. Similarly, FgD’R is the rightmost geodesic
between any two of its points.

(iii) (monotonicity) The following inequalities hold.
(a) ForallO0<y <60, Se{L,R}, (m,t)eZxR,andr >m,

y—,S y+,S 0—,S 9+ S
1=7 (m t),r = T(m t),r = T(m,t),r =T (m,t),r-

(b) Forall >0, m<reZ, s<teR,ando e {—, +},

9[] 6o,L

(m s),r = 7'—(m,t),r

60,R 60,R
and T(m,s),r = T(m,t),r‘

(c) For 6 > 0, on the 8-dependent full-probability event QY| for all pairs of initial points (m, s)
and (m,t) in Z X R that satisfy s < t, we have

GR 9L

Tonsyr = oy, Jorallr =m.
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(iv) (convergence) For all (im,t) e Z xR, r >m, 0 >0, 0 € {—, 4}, and S € {L, R}, the following

limits hold.:
. yo,L _ _6-,L . S0,R _ _6+.R )
)11/1‘116 t(m t),r T(m,t),r and ;l\ﬂ; T(m,t) r t(m,t),r’ (4 2)
. 0o,S . 0o,S _
él\l"r(l) Tonp)r =1 and 9151010 Tonty.r = O (4-3)
. 6o, L __ _6o,L . fo,R __ _60o,R
il/r,r,l Toms)r = Tm,),r and ,141{2 Tonauy,r = Tomo),re 4-4)

(v) (directedness) Forallx e Z xR, 0 >0, 0e{—, +}, and all {7, };>m € Tf‘:',

. Tn
lim — =6.
n—-oo n

(vi) (general directedness) All semi-infinite geodesics, whether they are Busemann geodesics or not, are
0-directed for some 0 € [0, o0]. The only 0- or co-directed semi-infinite geodesics are vertical and
horizontal lines, respectively.

(vii) (control of semi-infinite geodesics) If, for some 6 > 0 and (m,t) € Z x R, any other geodesic
(constructed from the Busemann functions or not) is defined by the sequence t =t <ty <---,
starts at (m, t), and has direction 0, then for all r > m,

0—,L
(m,t),r

0+.R

K =1 = Tn .

Remark 4.4. Theorem 4.5 and Remark 4.6 strengthen Theorem 4.3 in the following ways. Part (iii)(a) is
clarified to show that, in general, t(’;nm’;
to an almost sure statement simultaneously over all directions. The limits in (4-2) are strengthened to
allow us to interchange L and R in both statements. The limits in (4-4) are strengthened to allow both

L and R in the converging jump time. This illustrates how knowledge of the joint distribution of the

f and ‘L'(9 mm,g are incomparable for < 6. Part (iii)(c) is strengthened

Busemann process leads to almost sure structural results for geodesics.

The following result is new to the present paper and strengthens the regularity properties of the
geodesics as functions of the direction and the initial point.

Theorem 4.5. On a single event of full probability, the following hold.

(1) Foreachn>minZ, 6 >0, and compact subsets K C R, there exists a random e =e(m,n, K,6) >0
such that, whenevert € K, 0 —e <y < <d<6+e, m<r<n, 0€{—,+},and S € {L, R},

yo,S 0—,S

= Tonyr and T

T

yo.s 80,8 0+.8 (4-5)

(m,t),r = t(m,t),r .

(i) Foreach0 >0, oe{—,+}, m<reZands <t eR,

60,R 6o,L

= Tom),re

Tims),r =

(iii) Foreach® >0, oe{—,+}, m<reZ, seR,and S € {L, R},

00,8 00,L . 00,8 00,R
T and limt’% o,

lim 7 (m,s),r’ NS (m,t),r = t(m,s),r'

u s (m,u),r
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Remark 4.6. In general, the inequalities of Theorem 4.3(iii)(a) and the equalities of (4-5) cannot be
extended to mix L with R. In fact, for every (m, t) € NU; (see (4-9)) and ¢ > O there exist0 —e <y <0

such that

9 L 9+ y—R __ _y+.R
Tm,tyom = Tmtyom < Tom,tyom = Tom,tym (4-6)

To show this, choose (m, t) € NU; and ¢ > 0. As noted in Remark 3.3, there exists an event of probability
one, on which, for all 0 € Q.¢, the £ distinction is not present. By Theorem 4.8(ii), there exists
6 € ¢ such that ‘L'(m < t(en’lli) - BY Theorem 4.5(i), there exists y € (6 — ¢, 6) N Q- such that

7R %R and (4-6) holds.

(m,t),m (m,t),m’>

4B. Non-uniqueness and coalescence of geodesics. In contrast with lattice LPP with continuous weights,
in BLPP every direction has random exceptional initial points from which the directed geodesic is not
unique. Let NUgD be the set of space-time points from which emanate at least two semi-infinite Busemann
geodesics with the same direction 6 and sign 0. Let NU‘fD be the subset of NUgD of those points out of
which two 60 geodesics separate on the first level. Precisely,

NUG” = {(m,1) € Z x R: r(m N < TR for some r > m}, (4-7)
NU® = (0n. 1) € NUG 2,5, < T (4-8)

Define their unions over directions and signs as

NUo= [ J NUP” and NU;= [ J NUP". (4-9)
0>0, 0e{—,+} 6>0, De{—,+}
The reason for singling out the subset NU; of NUjy becomes evident later in Theorem 4.32, where
membership in NU; connects with the behavior of the competition interface.

Remark 4.7. The role of the sets NUgEI in the nonuniqueness of #-directed geodesics is somewhat subtle.
It depends on the direction € and on whether we take the 6-specific view or the global view, that is, the
choice of the full-probability event on which we view the situation.

(a) The crudest situation is that we fix # and work on the event 2 of Theorem 3.1(vii). On this event, the
+ distinction is not visible, and we can drop the sign and write NUY = NUgi. Now, on the full probability
event Q@ N Q,, the set NUg is exactly the set of initial points x € Z x R out of which the 6-directed
geodesic is not unique. This follows because when there is no & in Theorem 4.3(vii), nonuniqueness out
of x in direction & happens if and only if the L and R geodesics in T do not agree.

(b) If we want a global view, that is, a consideration of all directions simultaneously on a single full-
probability event, then we must consider the random set ® of Busemann function jump points, defined
in (2-3). The set ® is countably infinite (Theorem 2.5(i)). If 6 ¢ ®, then the £ distinction is not present
and the situation is as in point (a). However, if 6 € ®, then out of every x € Z x R there is more than
one 6-directed semi-infinite geodesic. (See Theorem 4.21 and Remark 4.22.) Yet, the sets NUg_ and
NUgJr are only countably infinite (Theorem 4.8). Thus, for 6 € ®, the union NUg* U NUgjL dramatically
fails to catch all the initial points x out of which the #-directed geodesic is not unique. The reason is that
NUg_ U NUSJr accounts only for the L/R distinction of geodesics and not the & distinction.
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The following theorem describes the sets NUy and NU;. The countable unions in (4-10) are technically
crucial because they allow us to rule out left/right nonuniqueness from rational initial points x simulta-
neously in all directions without accumulating uncountably many zero-probability events. Recall that
NU?® € NUS".

Theorem 4.8. The following hold on a single event of full probability:

(1) Forevery 9 > 0 and O € {—, +}, the sets NUgD and NU?D are both countably infinite.
(i1) The sets NUgy and NU| are both countably infinite. Specifically,

NUo= [ J NUj and  NU = | J NUJ. (4-10)
0eQ- 0eQ-
(i) For each x € Z x R, P(x € NUy) = 0: in particular, the full probability event of the theorem is

constructed so that, for all x € Z x Q, x ¢ NUy, or in other words, Tf U contains a single sequence
forall® >0and O € {—, +}.

(iv) The sets NUgD and NU?EJ can be described as

0 . 6o,L 6o,R
NU)" ={(m, 1) eZxR:t= Tomtyr < Tomp).r JOr somer >m},

o0 _ 60 . _ 6a,L 60,R
NU] = {(mv 1) e NUO = T(m,t),m < T(m,t),m}'

In other words, Busemann geodesics emanating from (m,t) can separate only along the upward
vertical ray from (m, t).

Remark 4.9. Theorems 4.32 and 4.36 give more details about the nature of the sets NUg and NU; and
relate them to the geometry of semi-infinite geodesics. Theorem 4.32(iii) gives some intuition into why
we can write NU; as a union over just a dense set of directions: When (m, s) € NU, then (m, s) € NU?D
for all 6 in a nonempty interval.

Remark 4.10. We spell out the geometric consequences of Theorem 4.8, combined with some other
facts. Refer to Figure 10. Consider the set T, (?nDt) of semi-infinite 600 Busemann geodesics out of the

point (m, t). Each of them is 8-directed by Theorem 4.3(v), and hence must eventually exit the vertical
o
and consequently there is a level r such that no 600 Busemann geodesic out of (m, t) goes through the
point (k, t) for k > r.

By part (iii) of Theorem 4.8, there exists an event of full probability on which T(ffl) contains a single
element for each (r, g) € Z x Q, 8 > 0, and O € {—, +}. On this event, for each r > m, at most one Tgnm’t)
geodesic can move to the right from the point (r, t). Otherwise, two such geodesics pass through (r, g)

ray {(x, t) : x > m} that emanates from (m, t). In particular, this is true of the leftmost geodesic I'

for some rational ¢ > ¢ and produce two geodesics in the set 7T, (Gruq), a contradiction. In other words, the
T (i?z) geodesics branch one by one from the upward vertical ray emanating from the initial point (m, t).
One conclusion of the above is that T&Dt) is a finite set. By Theorem 4.11(iii), from some point

onwards, all T (fn‘jt) geodesics are back together.
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0 2

X

Figure 10. In this example, out of the point x, there are multiple elements of 75, i.e., multiple
Busemann geodesics from x with the same direction and sign. The geodesics all split from each
other at the vertical line containing the initial point. The point x lies in the set NU; (and thus
also NUj) because there exist geodesics that split immediately at the initial point. Furthermore,
although there are multiple 60 geodesics from the same point, they eventually come back together
and agree from some point z onwards by Theorem 4.11(iii). We know that there exist points
x € Z x R with two elements of Txg U, but whether there are points with more than two such
geodesics, as in the figure, is an open problem.

Three interrelated open problems are left in this situation: Do there exist initial points (m, t) with
more than two elements in T(?n?t)? Is branching at the first level the only possibility when Tgrf"t) is not
a singleton? If the answer is negative, further questions arise. Is the difference NUp \ NU; empty, or
equivalently, does any branching from (i, ¢) imply branching already at level m, and if NUp \ NU; # &,

how large is it?

The next theorem gives coalescence of all Busemann geodesics with the same direction 6 > 0 and sign
O € {—, +}. Recall the southeast ordering x = y from Section 2A, referring to Figure 11.

Theorem 4.11. The following hold on a single event of full probability, simultaneously for all directions
0 > 0 and signs O € {—, +}.

(i) Whenever x,y € Z x R, any two geodesics I'| € TfD and I'r € Ty9D coalesce. If x >y, then the
minimal point of intersection is the coalescence point.

r oy=(r,s) ez=(r1)
m ew=(m,s)ex =(m,t)
K I3

Figure 11. In this figure, we have y < x, y <z, and w < x. We alsohave y x wbut y A w
and z < x but z 4 x. The points w and z satisfy the coordinatewise ordering w < z, but they are
incomparable under the ordering =.
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Figure 12. The red/thick path is T'{"-* and the blue/thin path is T'}5-%.

@) IfI', T eT &En are distinct, their coalescence point is the minimal point of the set (I't N 1) \
{(x,1) : x € [m,00)}. In other words, the coalescence point of I'y and T"y is the first point of

intersection after these geodesics split.

(ii1) For each (m,t) € Z x R, there exists a level r > m and a sequence s, < s,+1 < --- such that every
sequence {T;}72 | € T&DI) satisfies 1, = sy for k > r. Equivalently, there exists a point 7 > (m, t)
and a semi-infinite geodesic I'y € T, ZGD such that all geodesics in T, o0 ) agree with I’y above and to

(m,t
the right of z. See Figure 10.

Remark 4.12. A consequence of Theorem 4.11 is that the nonuniqueness of semi-infinite geodesics
captured by the L /R distinction is temporary, and does not separate the geodesics all the way to co. That
is, while there may be two geodesics in 79" that separate, they must come back together, as in Figure 10.
By contrast, in the + distinction, geodesics with the same direction split and never come back together.
This is explained further in Remarks 4.22, 4.31, and 4.33.

Remark 4.13. In [35], we proved that, for a fixed direction 8 > 0 with probability one, all 8-directed
geodesics (whether constructed by the Busemann functions or not) coalesce. This is recorded in the
current paper as Theorem 2.4. This theorem was proven by defining southwest semi-infinite geodesics
in a dual environment. It was shown that, if two geodesics with the same direction 6 are disjoint, there
must exist a bi-infinite geodesic whose northwest and southeast directions are 8. Then, it was shown
that, for fixed northeast and southwest directions, there are almost surely no bi-infinite geodesics in those
directions (Theorem 3.1(vi) in [35]). Theorem 4.11(i) does not rely on the result from [35] and provides
a new method of proof. Theorem 4.21(viii) states that for all 6 ¢ ®, all -directed semi-infinite geodesics
are Busemann geodesics, and Theorem 2.5 states that P(6 € ®) =0 for all 6 > 0. Therefore, Theorem 2.4
follows as a special case of Theorem 4.11(1).

Remark 4.14. Without the strict ordering x > y in Theorem 4.11(i), the intersection point of two geodesics
is not known to be the same as the coalescence point. Whether the following occurs with positive probability
for a random weakly ordered pair x = (m, s) = y = (r, s) is left as an open problem: First, FﬁD’L moves
vertically from (m, 5) to (r, s) and meets ['y7. After that, if [{%> makes a vertical step to (r + 1, s),
but FgD’R makes a horizontal step, then the geodesics become separated. In this case z/7(x, y) = y is
the minimal point of intersection but not the coalescence point w, as illustrated in Figure 12.
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4C. Geodesics and the discontinuities of the Busemann process. Recall the discontinuity sets ®y y and
©® defined in (2-3).

Suppose that, for some initial points x and y, signs O, Oy € {—, +}, and directions y < 6, two
geodesics I' € T, Yo and T, € T nyl coalesce at some point z, and two other geodesics '3 € T, )f 02
and I'4 € Ty9 02 also coalesce at that same point z. Then by additivity of the Busemann functions and
Theorem 4.3(i),

BV (x, y) =B (x,2) =B (y,2) = Ly — Ly =B (x, y). (4-11)

In light of Theorem 2.5(ii), it is natural to ask whether the converse holds: that is, whether B722(x, y) =
RYP1(x, y) implies that the #- and y-directed geodesics out of x and y share a common coalescence
point. The answer is affirmative for lattice LPP with continuous weights (see Section 3 of [25]). We show
in Remark 8.3 that this does not hold in general for BLPP. However, such a statement does hold when
restricted to certain configurations of initial points and when the L/R type of the geodesics is specified
appropriately. This is manifested in the following definition.

Definition 4.15. For x = y and 6 > 0, we define z°°(x, y) € Z x R to be the minimal point of intersection
of the semi-infinite geodesics ['{" and I'j™-K.

Remark 4.16. By Theorem 4.11(i), z/Z(x, y) is well-defined, and if x and y satisfy the strict ordering
x >y, then z%7(x, y) is also the coalescence point of ['Y™L and FiD’R. In the general case x = y, the
definition of z%2(x, y) as the minimal intersection point (instead of the coalescence point) is required for
the following theorems. Also, the condition x > y and the L/R distinctions are essential.

Theorem 4.17. On a single event of probability one, whenever y < §,and x =y € Z x R, the following
are equivalent.

(i) BT (x,y) =B (x, y).
(i) 27T (x, y) =2°"(x, y).
(iii) There exists 7 € Z X R and finite-length, upright paths I'| (connecting x and z) and " (connecting
y and z) such that for all 6 € (v, 8) and O € {—, +}, 'y agrees with FﬁD’L, F,}C’JF’L and F,‘z*’Lfrom

x to z, and 'y agrees with FiD’R, F;JF’R, and Ff,_’Rfrom y to z. The paths ' and T"; are disjoint
before they reach the point z.

Remark 4.18. If we remove condition (iii) from Theorem 4.17, then we get a more general equivalence
where we do not need to assume the signs — and + for the § and y geodesics, respectively. See
Theorem 8.8.

Remark 4.19. Set x = (m, t), y = (r,s) and w = (r, t). The assumption x > y requires » > m and s < 1.
By the additivity of Theorem 3.1(i), we may write
p
B0, ) =B, w) +Bw = Y 0~k 0). (4-12)
k=m-+1
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By the monotonicity of Theorem 3.1(ii), the process 6 — B2 (x, y) is nondecreasing whenever x = y.
Hence, condition (i) of Theorem 4.17 is equivalent to the stronger statement that, for 6 € (y, §) and
oe{—, +}

B0 (x, y) =B (x, y) =B (x, y).

Theorem 4.20. On a single event of full probability, whenever 6 > 0 and x = y € Z x R, the following
are equivalent.
(i) B~ (x, y) =B (x, y).
(i) 2/~ (x, y) =2 (x, ).
(i) T¢HENTY R £ 2.
We conclude this subsection with a theorem that characterizes the properties of 8-directed semi-infinite
geodesics depending on whether 6 € ©.
Theorem 4.21. On a single event of probability one, the following are equivalent.
1) 0 ¢ 6.
(i) TR =19 R and 1L =T9~L forallx € Z x R.
(iii) All 6-directed semi-infinite geodesics coalesce (whether they are Busemann geodesics or not).
(iv) For all x € (Z x R) \ NUy, there exists a single 0-directed semi-infinite geodesic starting from x.

(v) There exists x € Z x R such that there is exactly one 0-directed semi-infinite geodesic starting
from x.

(vi) There exists x € Z x R such that T¢tR = 9=k,
(vii) There exists x € Z x R such that 791 =19~L,
Under these equivalent conditions, the following also holds.

(viii) Forall x € Z x R, all 0-directed semi-infinite geodesics starting from x are in the set Tf, i.e., they
are all Busemann geodesics.

Remark 4.22. By Theorem 4.3(ii), foreachx € Z xR, 6 > 0, and O € {—, +}, FgD’L is the leftmost
geodesic between any two of its points. Hence, by (vii)<>(i) of Theorem 4.21, for each 8 € ® and
x € Z x R, there exists a point v > x such that T9=L and T split at v and never come back together.
The same is true with L replaced with R and “left” replaced with “right”. On the other hand, for a given
sign O € {—, +}, all 60 geodesics coalesce. See Figure 13.

Remark 4.23. Theorem 4.21(viii) is proved by showing that if an arbitrary 0-directed semi-infinite
geodesic I" coalesces with a Busemann geodesic, then I' must also be a Busemann geodesic. The same
proof can be applied to show the following statement:

Let 6 > 0 (possibly in ®), and assume I" is an arbitrary 6-directed semi-infinite geodesic from x. Also,
assume that for some Busemann geodesic F, there exists a sequence of points (m,,t,) € I' N T with
my, t, = oo. Then, I" is a Busemann geodesic.
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2 (x. )1

2T (x,y)

L 2

G ————
X

Figure 13. The red/thick paths are the 8+ geodesics and the blue/thin paths are the 6 — geodesics.
In this figure, we consider the geodesics 'L and I'{**Z out of x, and we consider the geodesics
Fi”R and Fi*'R out of y. The picture would be qualitatively the same if we changed the L/R
distinctions of the geodesics, as long as the choice of L/R is the same at each initial point. We
choose this particular configuration in the figure so that the coalescence points are z~ (x, y) and
7% (x, y), as defined in Definition 4.15.

Therefore, by Theorems 4.3(vii) and 4.11(iii), if there exists some 8 € ® and a 6-directed semi-infinite
geodesic I" that is not a Busemann geodesic, then there exists a level r such that, above level r, Fg‘:"L
agrees with T'Y%® for 0 € {—, +}, and T lies strictly between the §— and 6+ Busemann geodesics.
See Figure 14. Whether such a geodesic I" exists with positive probability for some random direction is
currently unknown and is left as an open problem.

4D. The competition interfaces. Loosely speaking, the competition interface from a given initial point
(m, s) € Z x R separates the points (1, t) > (m, s) into two sets, differentiated by whether the geodesic
between (m, s) and (n, t) passes through (m + 1, s). However, since point-to-point geodesics are not

|

l

—

[ ]

x
Figure 14. The picture in the (unknown) case that there exists a semi-infinite geodesic I' that is
not a Busemann geodesic. After a certain level, there is a single 6 — geodesic and a single 6+
geodesic, and I' (blue, middle) lies strictly between the 6 — Busemann geodesic (red, left) and the
6+ Busemann geodesic (red, right). The diagonal dots are used to indicate that initially, there
may be more than one 80 Busemann geodesic, but these all coalesce into a single geodesic at a
certain level.
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(n, 11)

(I’L, U(m,s),n)

(m, s)

Figure 15. The competition interface based at (m, s) (blue/thin path) separates points (n, t)
based on whether the geodesic (red/thick path) between (m, s) and (n, t) makes an initial vertical
or horizontal step. The solid horizontal lines mark levels in Z and the dotted lines mark levels in
7 — % This figure ignores the distinction between left and right competition interface.

unique in general (see Lemma 2.2), we introduce separate left and right competition interfaces. For
(m,s) <(n,t),let F(Lm $.01.0) and F(Ifn 9.01.0) denote, respectively, the leftmost and rightmost geodesics
from (m, s) to (n, t). For n > m, define

a(fn,s)’n i=sup{t >s: F&’S)’(n’t) passes through (m + 1, 5)}

and
o*(lfn’s)yn =sup{t >s: F(Ifn,s),(n,t) passes through (m + 1, 5)}.

Remark 4.24. We can represent the sequence s = a(fn S = (m S) ] =
the plane as follows (see Figure 15). For r € Z, we let r* =r — 2. The path starts at ((m+ 1D)*,s),
(m 5. ) and then

). The same rule is applied to the sequence

- as an infinite path on

and for each r > m, the path takes a horizontal segment from (r*, or(fn’ S)’r_l) to (r*, o
Yto (r+1* o
s=of

R
(m,s),m — (m s), m+l (m,s),m+2 ="

a vertical segment from (r

(ms)r (ms)r

Definition 4.25. The left competition interface from (m, s) is the path s = a(m S = (m il =

(fn sym+2 = -+~ The right competition interface is defined similarly, replacing L in all superscripts

with R. If a(m S
same with L replaced with R and “left” replaced with “right”. In this case, the associated path is the

= s for all n > m, we say that (m, s) has trivial left competition interface. We say the

upward vertical ray started at ((m + 1)*, s).

Example 4.26. In BLPP, it is fairly simple to construct a point (m, s) whose right and left competition

interfaces differ (refer to Figure 16). For each m € Z, the proof of Lemma A.1(ii) constructs a random

pair s < t € R such that there exist exactly three geodesics between (m, s) and (m + 1, ¢): one that makes

an immediate vertical step, one that makes a horizontal step from (m, s) to (m, t) and then a vertical step

to (m + 1, t), and one geodesic that jumps to level m + 1 at an intermediate time u € (s, t). Since
Ln,s),om+1,0) = sup {Bu (s, v) + Bny1(v, 1)},

veE(s,t]
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(m—+1,1)

,,,,,,,,,,,,,,,,,,,,,,,

(m,s)

Figure 16. The three geodesics (red/thick), the left competition interface (blue/dashed), and the
right competition interface (blue/thin).

the three geodesics correspond to the existence of exactly three maximizers of the function B,,,(v)— B, 11 (v)
over v € [s, t], namely v =5, v =u, and v =¢. Thus, for v € [s, u) there is a unique geodesic between
(m,s) and (m + 1, v), and this geodesic passes through (m + 1, s). For v € [u, t) there are exactly two
geodesics between (m, s) and (m + 1, v), the left one jumps at s and the right one at u. For f > ¢, no
geodesic between (m, s) and (m + 1, f) can pass through (m + 1, s). Otherwise, u and ¢t would both be
maximizers of B,,(v) — B,,11(v) over v € [s, ] lying in the interior of the interval, a contradiction to

Corollary C.5. Therefore, u = o*(Rm’s)’m+1 <0 | =1

L
(m,s),m+

For Se{L, R} and O € {—, +}, set r(()”?”sb;’m =ys, and for (m, s) € Z x R, define
9(%1”) :=sup{f >0: t(en'f[’SL)’m =s}, and 9(5“) :=sup{6 >0: tfn'f[’xlf’m =s)}. (4-13)

These quantities are the asymptotic directions of the competition interfaces, and they characterize points
with nontrivial competition interface, as will be seen in the theorems that follow. By the monotonicity and
limits of Theorem 4.3(iii)(a) and (4-2), 68 . and 6%

(1.5) (m.s) are independent of the choice of sign 0 € {—, +}
used in the definition (4-13).

Remark 4.27. From the definition, it immediately follows that, for (m, s) € Z x R and n > m,
S <0 o <Ol (4-14)
From (4-13) and the monotonicity of Theorem 4.3(iii)(a),
0<608 5 <05 (4-15)

At first glance, these inequalities may seem strange, but the left competition interface is to the right of
the right competition interface, because the modifiers “left” and “right” refer to the geodesics that are
separated.

Lemma 4.28. On a single event of probability one, for every (m, s) € Z x R, ok and O

m.s)n (m.5) are finite.

Now that we know all four quantities are finite, we can state the result for the asymptotic directions.

Theorem 4.29. On a single event of full probability, the following limits hold for each (m, s) € Z x R:

L R

o o
L T (m,s),n R _ 1 (m,s),n
Om.s) = ,}H{; n and 0, ;) = ,,hj{}o n

(4-16)

The next theorem provides characterizations of nontrivial competition interfaces, simultaneously, for
all initial points. In particular, the equivalences imply a sharp geometric dichotomy: either a competition
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interface is trivial, or it has a strictly positive limiting slope in (4-16). The latter case is triggered by having
even one finite geodesic that starts with a vertical step before moving to the right, as in the definition of
the random set CI from (2-5).

Theorem 4.30. On a single event of full probability, for every (m, s) € Z x R, the following are equivalent.

(1) (m,s) € CL. That is, for some n > m and t > s, at least one geodesic between (m, s) and (n, t)
passes through (m + 1, s).

(i1) o(fn sy > S for some n > m, i.e., (m, s) has nontrivial left competition interface.

ces R
(iii) sy
@iv) 6L . >0.
(V) O(m 5 > > 0.

(vi) There exists 0 > 0 and O € {—, +} such that ¢
step to (m + 1, s). In this case, 6 < 6t

> s for some n > m, i.e., (m, s) has nontrivial right competition interface.

(m.s) =

6o,L

(m A) =5, Le., F(m’ N makes an immediate vertical

(m.5)? and the statement holds for all® < 6k

(vii) There exists @ > 0 and 00 € {—, +} such that t°
step to (m + 1, s). In this case, 0 < 9

(m,s)*

=5, le., 99k akes an immediate vertical

(m s) (m, s)

(m.5)* and the statement holds for all 0 < OR

9m L FferSI; = {(m s)} In other words, there exists 6 > 0 such that

(m,s)*

(viii) There exists 6 > 0 such that T’

F(Gm £ makes a vertical step to (in + 1, s), while F(m 5 L makes an initial horizontal step, and the two

geodesics never meet again after the initial point. In this case,
« =0,

(m,s)’

o fory <0 both T
e fory > 0 both F(m 5 L and TV "% take an initial horizontal step.

(m,s)

F”

L and (m S) take an initial vertical step to (m + 1, s),

(m s)

nryHk

In other words, O(m’ s) is the unique direction y such that rr—k (m.5)

(m,s)

is a finite subset of the
plane.

(ix) Condition (viii) with superscript L replaced with R.

(%) va(s) = 0 for some 6 > 0 and O € {—, +}. In this case, 0 < oL

L
0<9(m§)

Remark 4.31. For the implication (v)=>(ix), refer to Figure 17. By this result and (i)<>(ii) of Theorem 4.21,
if Q(Ifn 5) >0, then 9(’; 5) € ©. The same is true if R is replaced with L in the superscript. For all other 6 € ©,
the 6+ and 6— geodesics from (m, s) eventually split by (vi)<>(i) and (vii)<>(i) of Theorem 4.21, but

they travel together for some time before splitting.

and vm+1(s) = 0 for all

(m,s)?

Recall the countable sets NUj and NU of initial points of L /R nonuniqueness of Busemann geodesics
for a given 60, defined in (4-9). The following relates these sets to the set of points with nontrivial
competition interface.

Theorem 4.32. The following hold on a single event of full probability.
(1) NUy € CL
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(i) NU; ={(m,s) e Z xR G(m 5 7 O(m ot ={(m,s) eZxR:0< Q(m 5 < (%n,s)}'

(iii) The following classifies the directions and signs for which (m, s) € NU?D (with the convention
that (a,a) = [a, a) = D for a € R).
(@) (m,s) € NU{™ ifand only if 0 € (e(m o (m ol
(b) (m,s) e NU9+ ifand only if6 € [6F, . 6L ).

(iv) The set NU| is dense in itself. Specifically, for (m, s) € NUQD and every € > 0, there existst € (s—¢, )

such that (m,t) € NU9D Further, if (m, s) € NUy, then for each 6 < Q(m 5 O€ {—, +} (or6 =0F
and O = —) and ¢ > 0, there exists r € (s, s + ¢) such that (m, 1) € NUGD.

(m,s)

(v) Forall (m, s) € Z x R, there exists a random & = £(m, s) > 0 such that for all 6 > 9(m 5 OE€ {—, +1},
andr € (s,s+¢], (m,t) ¢ NUGD. The statement also holds for 6 = (m 5) ifO=+.

(vi) For all (m, s) € CI and all ¢ > 0, there exists t € (s, s + &) such that 0 mt) = =0k >0.

(m,s)

Remark 4.33. The set CI\ NU, has Hausdorff dimension 2 3» since CI has Hausdorff dimension %
(Theorem 2.10) and NUj is countable (Theorem 4.8(ii)). For all x € CI\ NUgy, 6 >0 and O € {—, +},
there is exactly one geodesic in 7, x@ B, However, by (iv)=-(viii) of Theorem 4.30, for 0= GxL = Gf, the
o— geodesic travels initially vertically while the o+ geodesic travels initially horizontally, and the two

geodesics never meet again.

The final theorem of this section relates the directions of the competition interfaces to the exceptional

directions of the Busemann process and sharpens the weak inequalities 0 < 0(15” 9= 6L with a trichotomy.

(m,s)
Before stating the theorem, we introduce some notation and make some remarks. For each (m, s) € Z x R,

define the following closed subset of Rxo:

Somsy =10 >0:007 () <Vt (), and A& (s, 1) < hfy (s, 1) forall t > s} UAguy),  (4-17)

m+1

where A, 5y = {0} if vm+1(s) >0 forall  >0and O € {—, +}, and A, ) = D otherwise.

(m4+1,s)

(m,s)

Figure 17. When the competltlon interface direction 6 = G(m 5 >0, ro- (m.5) ® (upper red/thick
path) immediately splits from ro+ (m.5) ® (lower red/thick path). These paths never touch after the
initial point, and the competition interface (blue/thin) lies between the paths.
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Remark 4.34. We note that the set of 8 > 0 such that hfj (s,1) < hﬁ[ (s, t) is decreasing as ¢ N\ s. This
follows from the monotonicity of Theorem 3.1(ii), which implies that, for s <t < T,

0<h0=(s,t) —hoT (s, 1) <h’~ (s, T) — hOF (s, T).

m m

The set S ) describes the directions that are simultaneously jump points for the Busemann function of
the pair (m, s) and (m 4+ 1, s) and all the pairs (m, s) and (m, t) for t > s. If v;ﬁl(s) >0 foralld >0
and O € {—, +}, then we include 0 as a jump point because vf;il (s) \( 0 as 6 \ 0 (Theorem 3.1(iii)(d)).
Additionally, by Theorem 7.19(viii), for all # > s, 0 is an accumulation point of the set of 6 > 0 such that
hot(s, 1) <h9 (s, 1).

Remark 4.35. The set S, ) can be described as an intersection of supports of Lebesgue—Stieltjes
measures on [0, o). By Theorem 2.5(ii), we have

S(m,s) = SUPP L(m,s),(m+1,5) N ﬂ SUPP U (m,1),(m,s)>» (4-18)
rit>s

where, for x = y, 1y, is the Lebesgue—Stieltjes measure of the nondecreasing function 6 — RO (x, y)
(see Remark 4.19). While these functions are only defined for 8 > 0, we extend the measures to [0, co0)
simply by defining iy y{0} = 0. Then, by the previous remark, 0 is a point on the right-hand side of (4-18)
if and only if A, sy = {0}. In this sense, the following theorem is the BLPP analogue of the corresponding
result for lattice LPP with continuous weights, given in Theorem 3.7 of [25]. The left/right distinction in
the following creates a new phenomenon not present in the lattice model with continuous weights.

Theorem 4.36. The following hold on a single event of probability one.

(i) Recall the set © of exceptional directions where Busemann functions jump, defined in (2-3). Then,

{G(I;nys)}(m,s)ECI = {Q(Ifn,s)}(m,s)eCI =0.

In particular, there are only countably infinitely many distinct asymptotic directions of the competition
interfaces across all initial points in Z x R.

(i1) Foreach (m,s) € Z xR, S5 = {9(15,1’3)} N {9511,5)}' Thus, by Theorems 4.30 and 4.32(ii), there are
three possibilities for Sy,

(@) (m,s) eNUy, 0<6R <6l  and Sy = .

(m,s) (m,s)’
(b) (m,s) e CI\NU;, e(fm) =08, >0,and S 5) = {95,“) )= {9{;,3) .

(c) (m,s)¢CIL 6L = e(lfn’s) =0, and Sgn.5) = {0}.

(m,s)

Remark 4.37. Theorem 4.36(i) is particularly interesting because CI is uncountable (Theorem 2.10).

5. Connections to exponential last-passage percolation and the stationary horizon

5A. Busemann process in the exponential corner growth model. Fan and the first author [14] derived the
joint distribution of Busemann functions for the exponential corner growth model (CGM). In Section 5.2
of [35], we outlined the analogies between the construction of semi-infinite geodesics in the discrete case
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and that of BLPP. Here, we discuss connections between the joint distribution of the Busemann functions
and prove a weak convergence result from the exponential CGM to BLPP.

Let {Y,},c7 be a collection of nonnegative i.i.d random variables, each associated to a vertex on the
integer lattice. For x < y € Z x Z, define the last-passage time as

ly—xi
Gy,y= sup E Yy,
Xo€lly y k=0

where Iy y is the set of up-right paths {x;};_,, that satisfy xo = x, x, = y, and x; — x;_; € {e}, e2}. In
what follows, we will take Y, ~ Exp(1) and refer to this model as the exponential CGM. In this case,
Busemann functions exist and are indexed by direction vectors €. It is convenient to index the direction
vectors as follows, in terms of a real parameter o € (0, 1):

B o? (1—a)?
sle)= (oe2+(1 o) a2+ (1 —a)2)‘

Then for a fixed o € (0, 1) we have the almost sure Busemann limit

U(x, y) = lim Gy e~ Gy

Under the assumption that Yy has finite second moment, Glynn and Whitt introduced BLPP as a
universal scaling limit of the discrete CGM [17, Theorem 3.1 and Corollary 3.1]. That is, the process

{Lin,s),(n,py : (m,5) < (n,t) € Z xR}

is the functional limit in distribution, as k — oo, of the properly interpolated version of the process

{%(G(m,sk),(n,tk) — (@ —s)k):(m,s) <(n,1)eZx R}-

Thus, it is reasonable to expect that the Busemann functions for BLPP can be obtained by a limit of the
Busemann functions in the exponential CGM. Heuristically, for A > 0,

A2, 1
hy™ ()= Hm L o),m.n2) ~ Lou.mnn

S
= lim tm E(G(O,O),(nk/kz,n) = G (1k,0), (nk/32,m) — 1K)

1
x_ % 1: :
=" lim lim E(G(O,O),(nk/kz,n) = G (1k,0), (nk/32,m) — k)

N TN
= lim — (UYMWED (0, 0), (tk, 0)) — tk). 5-1
Jm ﬁ( ((0, 0), (tk, 0)) — k) (5-1
The *=* notation is used to indicate that the order of the limits was changed without justification.

Similar to the construction in [35] for Busemann functions in BLPP, the Busemann functions for
exponential last-passage percolation can be extended simultaneously to all directions, either as a cadlag
or caglad version (see [32]).
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Theorem 5.1 [14, Theorem 3.4]. The process o — U*((0, 0), (0, 1)) is a jump process and can be
explicitly described as follows. Take an inhomogeneous Poisson point process (with a rate function not
specified here) that defines jump points for the process. Then, at each jump point, take an independent
exponential random variable (whose parameter depends on the location of the jump) to determine the size
of the jump. This process has independent, but not stationary, increments.

The BLPP Busemann jump process A — X (A; t) described by Theorem 3.9 is more complicated than its
discrete analogue described in Theorem 5.1: in particular, the increments are not independent, as recorded
in Corollary 3.13(ii). However, the increments of A +— X (A; ) are stationary, in contrast with Theorem 5.1.
Furthermore, the set of jumps of A = X (A; ¢) is not a Poisson point process. Indeed, if W is the location
of the first jump of the process A — X (4; t), then P(W > 1) is given by (3-15), which is not exponential.

While this stark contrast may seem strange, it is in fact not natural to expect that all properties of the
process in Theorem 5.1 transfer to the BLPP setting. The process described in that theorem only considers
Busemann functions across a single horizontal edge. In the scaling between the discrete Busemann
functions and BLPP Busemann functions (5-1), one considers the Busemann function U* across tk edges
for large k. One can show using tools from [14] that for an integer k > 1, the increments of the process
at— U%((0,0), (k, 0)) are not independent. It remains an open problem to develop an explicit description
of the process A — X (A; t) in the BLPP setting.

However, the finite-dimensional distributions of the Busemann functions between the two models have
a very similar structure, and in fact, the two-dimensional BLPP Busemann process can be obtained from a
limit of two-dimensional Busemann processes for the exponential CGM. The proof of the following result,
as well as a detailed description of the queuing setup for the discrete model, can be found in Section 9.

Theorem 5.2. Fix 0 < \; < \y. As an appropriately interpolated sequence of continuous functions, the

process
1 JE JE
E(U Ve ((0, 0), (+k, 0)) — <k, U Y¥+2((0, 0), (+k, 0)) — -k), (5-2)
1/x2

e 1/3 . .
converges in distribution to (ho/ '(*), hy 2(*)), in the sense of uniform convergence on compact sets.

We expect that the full Busemann process of exponential last-passage percolation converges to the
Busemann process for BLPP. This would require more technical tightness results on a richer space. Such
a type of argument was recently achieved by Busani [7], who showed that under KPZ scaling, the entire
Busemann process for the exponential CGM has a limit, termed the stationary horizon. It is expected that
the stationary horizon is a universal object in the KPZ universality class. We explore this further in the
following section.

5B. The BLPP Busemann process and the stationary horizon. To describe the stationary horizon, we
introduce some notation from [7]. The map & : C(R) x C(R) — C(R) is defined as

J @) +[Wo(f —8)+infocs< (f(s) — &)1, 1>0,

O(f, 9)1) =
) J@) =W (f —g) +infis<0(f(s) — f(1) —[g(s) —g(®OD]™, <0,
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where

Wi (f) = sup[f (1) — f($)].

s<t
We note that the map @ is well-defined only on the appropriate space of functions where the supremums
are all finite. This map extends to maps ®* : C(R)¥ — C(R)* as follows:

() @' ()@ = fi@).

2) @2 (f1, () =1f1(1), @(f1, L)D)].

3) D (f1,es OO =[AO, P (f1.[P T (frreoes SO 1) @)oo @(f1. [P fas oo, fiO Tk—1) (1) ] fOT Kk > 3.
Definition 5.3. The stationary horizon {G,, : « € R} is a process with state space C(R) and with paths

in the Skorokhod space D (R, C(R)) of right-continuous functions R — C(R) with left limits. C(R)
has the Polish topology of uniform convergence on compact sets. The law of the stationary horizon is

characterized as follows: for real numbers o < - - - < a, the finite-dimensional vector (G, ..., Gy,)
has the same law as ®*(fi, ..., fi), where fi, ..., fi are independent two-sided variance 4 Brownian
motions with drifts a1, ..., o.

We now present two theorems that relate the stationary horizon to the BLPP Busemann process. For
a function f : R — R, define f : R — R by (1) = — f (—t). Define the map % : C(R)* — C(R)* by
Re(f1s .5 fr) = (f], - fk). Recall the measures u” from Definition 3.5.
Theorem 5.4. Fora=(ai, ..., o) with —00 < <- - - <oy <00, the k-tuple of functions (G, ..., Gg,)
has distribution u* o QRk_l. Furthermore, as random elements of the Skorokhod space D(R>q, C(R)), the
following distributional equality holds:

~(1/22)— d
tho"™~ (49 h20 = {Gar(hizo.
That is, the reflected and scaled horizontal BLPP Busemann process is equal in distribution to the
stationary horizon, restricted to nonnegative drifts .

Remark 5.5. The reflection R appears because in the present work geodesics travel northeast, while
the stationary horizon is constructed in [7] as the scaling limit of the Busemann process of [14] where
geodesics travel to the southwest. Using Theorem 5.4, the distributional information of the Busemann
process obtained in Section 3B applies as well to the stationary horizon. For each fixed ¢ € R, Theorem 5.4
and Remark 3.8 give the following distributional equality without the reflection:

(05" @0 hz0 £ {Ga (D z0.
Remark 5.6. To fit the space of Busemann functions in BLPP, the measures %, defined in Definition 3.5
require the vector of drifts to be all nonnegative. However, we can still define the measures for all
sequences o] < --- < o, as long as the inequalities are all strict. The extensions of Lemmas 3.4 and 3.6
to arbitrary real-valued sequences of drifts follow by the same proofs.

Theorem 5.7. Let o) < --- < oy be a sequence of real numbers. The process
EESVE (h(l)onfl/S(xl (—an3sy 402 . hé_2”71/3°"‘(—4n2/3-) +n?/3)

converges in distribution t0 (G4q,, - . ., Gag,)-
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Theorems 5.4 and 5.7 are proved by showing that the map & is a reflected version of the map D. The
details are in Section 9B. We believe that one should be able to show convergence in the Skorokhod space,
as was done for the exponential CGM in [7]. This requires some tightness arguments to guarantee that
jumps of the Busemann process do not happen too close together. We leave such details to future work.

6. Open problems
Before moving to the proofs, we state a list of open problems.

(i) Can Theorem 4.21(viii) be extended to show that all semi-infinite geodesics with direction 6 € ® are
also Busemann geodesics? In the exponential CGM, Coupier [11] showed that, with probability one,
there is no direction with more than two semi-infinite geodesics from the same point. The proof of this
fact relied on the coupling with TASEP. In [25], this fact was used to give a complete description of
the number of geodesics in each direction. Because of the L/R distinction in BLPP, there are points
and directions with more than two geodesics. For example, by Theorems 4.30(viii) and 4.32(iii), if
(m,s) e NU; and 6 = Q(fm), then F?};ﬁ, F(gnt ’SL), and F(@n;’sl)e are three distinct geodesics, but F(@n;’é
and F(GWZ ’SI)Q coalesce by Theorem 4.11(i). Perhaps something can be said about the maximal number
of noncoalescing geodesics.

(ii) With positive probability, is there some random initial point x € Z x R such that T" contains more
than two sequences for some 6 > 0 and O € {—, +}? See Remark 4.10.

(iii)) By Theorem 4.8, we know that the sets NU; € NUj are both countably infinite. The same is true if
we choose any 6 > 0 and O € {—, +} and consider the sets NU?D c NUgD. Theorem B.1(iii) shows
that for each 6 > 0, the set NU? is neither discrete nor dense, and Theorem 4.32(iv) shows that
the set NU; is dense in itself. However, presently we do not know whether the set NUy \ NU; is
nonempty. This raises several questions.

(a) Is NUp \ NU; nonempty?
(b) If the answer to the previous question is yes, is the set discrete?
(c) Are either of the sets NUjy or NU; dense in Z x R?

We note that the existence of a point (m, s) € NUgD \NU?D implies that the phenomenon described
in Remark 4.14 occurs.

(iv) We know from Theorem 4.32(ii) that the countable set NU; is exactly the set of initial points whose
left and right competition interfaces have different limiting directions. Are there random points
whose left and right competition interfaces are different, but have the same direction? If so, do they
coalesce?

(v) Itis widely expected that for models in the KPZ universality class, there exist no bi-infinite geodesics
with probability one. This was proven for the exponential CGM using two different approaches [3; 5].
In [35], we proved that for fixed northwest and southeast directions, there are almost surely no
bi-infinite geodesics in BLPP. Can one show that there are almost surely no bi-infinite geodesics in
BLPP without the fixed directional constraint?
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(vi) Is there a sharper bound for the maximal number of finite geodesics in BLPP than that in Lemma A.2?

(vii) Theorem 5.1 records an explicit description of the Busemann process across a single horizontal
edge for the exponential CGM. In the BLPP setting, can one describe the process A = X (A; t) in
Theorem 3.9 more explicitly?

(viii) Are independent Brownian motions with drift the unique invariant distribution of the multiline
process defined in Section 7B? See Theorem 7.9 for the invariance statement.
(ix) As discussed in Remark 3.17, can three or more distinct Busemann trajectories split at the same
time?
(x) In Theorem 5.7, we showed convergence of the horizontal BLPP Busemann process to the stationary

horizon, in the sense of finite-dimensional distributions. Show that the BLPP Busemann process
converges to the stationary horizon in the Skorokhod space D(R, C(R)).

7. Proof of results from Section 3 and Theorem 2.5

Theorem 2.5 is proved at the very end of this section.

Proof of Measurability of the state spaces X, and %Y,. We show that %,,, @C?n, Y, and @n are all Borel
subsets of C(R)”". For %,,, and @n, it is sufficient to show that
Z'(1) Z'(1)

lim inf and limsup
t—00 t =00

are both random variables. For a € R,

{litrgiongit(t) >a} - U U ﬂ{ZT(t) Za+%}.

keN NeN >N

By continuity of 7!, the intersection over ¢ > N can be changed to an intersection over ¢ € [t, 00) N Q.
Hence, the set on the left is measurable. This also shows that lim sup,_, ., Z'(t)/t is measurable. By
continuity, we may write &, as

. e " ) .
% ={n:n’(0)=0for25i5n}m{n:hminf” ® >0}mﬂ () We.o=n"60l
e t i=2 s<t,s,teQ

-~

which is measurable. By replacing the inequality in the middle event with a weak inequality, &, is also
measurable. O

7A. Lemmas and identities for queuing mappings. All results of this subsection are deterministic facts
related to the queuing mappings. Recall the notation that Z <j,. Zifz (s,1) < Z(s, t) whenever s <t.
We say f € Cpin(R) if f: R — R is continuous and f(0) =0.

Lemma7.l. Let Z=(Z',...,Z") € Cpin(R)". Define

n—

1
AZ() = sup (Z' (1) — 2 (1))
1

=N =t =lp—1 <0 i
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and assume that Af () is finite. Then, forn > 2,
D™ (z", 2771 ZN @) = 2 () + AZ(0) — AZ ().

Proof. The case n = 2 is the definition of D. Now, assume that the statement holds for some n > 2. Then,
we have that

DDzt zn L zZNh@)=D(D™W (2", z", ..., Z%), ZYH )
=Z ')+ sup {Z'(s)—-D™(Z", ..., ZP)(s)}

0<s<o0
— sup {Z'(s)=D™W(Z"*, ..., ZH)(s)}

t<s<00

=Z'()+ sup {Zl<s>—z2<s>+ sup Z(Z"(m—zf“(z,-))}

0<s<o0 SSt2§~~-an<OOi_2

n
— sup { Z'(s)=Z*(s)+  sup Z(Z%n)—zf*‘(n))}
1<s<00 S<h<<ty <005

=Z () +AL  (0)—AL (). O
Lemma 7.2. Let 0 < a < b, and let Z;, By € Cpin(R) be sequences such that Z;, — Z and By — B
uniformly on compact sets. Assume further that

lim sup le(t)—b‘=0=limsup lBk(t)—a‘. (7-1)
t—oo I t—>oo I T
k— 00 k—00

Then, Z' :== D(Z, B), B’ := R(Z, B), Z; := D(Zy, By), and B} := R(Zy, By) are well-defined for
sufficiently large k. Furthermore,

lim Z;=2' and lim B =B’ (7-2)
—00

k— 00

in the sense of uniform convergence on compact subsets of R, and

Tim sup 12,;@)—19] — 0 = lim sup 1B,Q(t)—a‘. (7-3)
t—oo I t—oo I
k—o00 k—o00

Proof. The conditions (7-1) guarantee that for all k sufficiently large,
lim sup[ By (t) — Zx(t)] = lim sup[B(t) — Z(t)] = —oo0.
t—00 t—>00
By definition of the maps D and R,
Zp () = Bi(t) + sup {Bi(s) — Zx(s)} — sup {By(s) — Zi(s)},

0<s<oo 1<s<00

Bi(t) = Zi(t) + sup {Bi(s) — Zi(s)} — sup {Bi(s) — Zx(s)}.

1<s<00 0<s<oo
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It therefore suffices to show that sup, ;. {Bx(s) — Z(s)} converges uniformly, on compact subsets of R,
to sup,—; _o{B(s) — Z(s)}, and that

lim sup 1 sup {Br(s) — Zy(s)} —(a—b)| =0. (7-4)
lt(:))gg 1<s<00

We first prove pointwise convergence. Let s; be a maximizer of B(s) — Z(s) over s € [t, 00). Then,

liminf sup {Bi(s) — Zi(s)} > likminf[Bk(s,) — Zi(sp)]

k—00 t<s<00

= B(s;) = Z(s)) = sup {B(s) — Z(s)}.

t<s<00

For the converse, for k sufficiently large, let s," be a maximizer of By (s) — Zi(s) over s € [t, 00). If

limsup sup {Bi(s) — Zi(s)} > sup {B(s) — Z(s)}, (7-5)

k—o00 1=<s<00 1<s<00

then by the uniform convergence of By to B and Z; to Z, it must be the case that s,k 7 — o0 along some
subsequence k;. Then, by the assumption (7-1),

. . kj kj
limsup sup {Bi,(s) — Z, (s)} = lim sup[ By, (s") — Z, (s, )] = —o0,

j—o00 1=<s<00 J—00

a contradiction to (7-5). Therefore, sf is a bounded sequence and for each ¢ € R, there exists some R, € R
such that, for all k£ sufficiently large,

sup {Bi(s) — Zi(s)} = sup {Bi(s) = Zk(s)},

I<s<00 t<s<R,
sup {B(s)— Z(s)} = sup {B(s)— Z(s)}.
1<s<o0 1<s<R,;

The quantity sup, ;g {Br(s) — Zx(s)} converges to sup,,_,.{B(s) — Z(s)} by the assumed uniform
convergence on compact subsets Z; — Z and By — B. The uniform convergence on compact subsets of
the function 7 > sup,_; _ o {Br(s) — Z(s)} is as follows: for N € R,

limsup sup | sup {Bi(s) — Zi(s)} — sup {B(s) — Z(s)}|

k—oo te[-N,N] t=<s<oo 1<s<00
=limsup sup | sup {Bi(s)—Zi(s)} — sup {B(s) —Z(s)}|=0.
k—oo te[-N,N] t<s<Ry t<s<Ry

It remains to prove (7-4). Let 0 < ¢ < b%“. By (7-1), there exists K, T > O such that forall k > K, > T,
B (t) < (a+e¢e)t and Z,(t) > (b — &)t. Then, for such ¢, k,

sup {Bi(s) —Zi(s)} < sup {(a+¢e)s—(b—¢)s}=(a—b+2e)t.

t<s<00 t<s<00

For the reverse inequality, we simply apply the assumption (7-1) to

sup {Bi(s) — Z(s)} = By (1) — Zi(1). O

<5 <00
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The following is a direct corollary of Lemma 7.2, setting By = B and Z; = Z for all k.

Lemma 7.3. Let (B, Z) € Y, satisfy the limits

Z(t B(t
lim L =b and lim Q =a,
t—oo t t—>oo f

with b > a. Then, the mappings D(Z, B) and R(Z, B) are well-defined, and
D(Z, B)(t R(Z, B)(t
lim M=b and lim M=a

t— 00 t 1—00 1t
Lemma 7.4. Assume that Z, B € Cpin(R) are such that

Z(t B(t
b:=liminf£ >0 and lim ﬁ =0.
t—00 t t—oo

Then,

D(Z, B)(t
liminf—( )@ > b.
t—00 t

Proof. Since

D(Z, B)(t) = B(1) + sup {B(s) —Z(s)} — sup {B(s) — Z(s)},

0<s<oo 1<s<00

it is sufficient to prove that
) SUP, <5 oo B(s) — Z(5)}
lim sup <

t—>00 t

—b.

For all ¢ > 0, there is T large enough so that for r > T,
Z({t)>=bt—et and B(t) <et.
Then, for such ¢ and 2¢ < b,

sup {B(s) —Z(s)} < sup {2es —bs} =2et — bt.

1<s <00 1<s <00

Lemma 7.5. Assume that Z, Z', B € Cpin(R) satisfy Z <inc Z' and

limsup B(t) — Z(t) = —o0.

—00
Then B <iy. D(Z, B) <inc D(Z', B).
Proof. By definition of D (3-8), for s <t,

D(Z, B)(s,1) = B(s, 1) + sup {B(u)—Z(u)}— sup {B(u)—Z(u)}

= B(s, 1)+ ( sup {B(u) — Z(u)} — t<SuP {Bw)—Zw)p™
=B(s,t)+ (sup {B(u)+ Z(u,t)} — sup {B(u)— Z(t, u)})Jr

and both inequalities follow from the last line.
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Proof of Lemma 3.4. Part (i): We prove g .y, - %,N%Y,. By the same reasoning, g OF @n — ?9?,, ﬂ@n.

Lemma 7.1 gives us that since Z'(0) = 0, we also have ' (0) = DV (Z!, ..., Z)(0)=0for 1 <i <n.

Since n' = Z!, the requirement that |
()
lim inf

t—00 t

>0
is immediately satisfied. By Lemma 7.5, n> = D(Z2, Z') >inc Z' = n'. Assume inductively that
n'=D(Z',...,Z") 2 DV, 2 =0

Then, after applying this assumption with Z2, ..., Z'*! in place of Z', ..., Z and using Lemma 7.5,
we get that
77l'+1 — D(i+l)(zi+l’ o Zl) — D(D(i)(zi+1’ e ZZ), Zl)
Zine D(ID"(Z',... 2%, 2 =DV(Z, ... Z) =",

The fact that 9™ preserves ¥,, follows from part (ii).
Part (ii): This follows by definition of @ and repeated application of Lemma 7.3. U
The following lemma has the most technical proof of the section, but is key to proving Theorem 3.7.

Lemma 7.6. Let (B!, Z!, Z%) € W5 and set B> = R(Z', B'). Then,
D(D(Z?, B%, D(Z', B") = D(D(Z*, "), BY).
Proof. We first note that by Lemma 7.1,
D(D(Z?, 2", BH(t) =D (Zz2, ', BH(1)
=B'")+ sup {B'(s)—Z'(s)+Z'w) — Z*u)}

0<s<u<oo

— sup {B'(s)—Z'(s)+Z'w) - Z*w)}. (7-6)

1<s<u<oo

On the other hand, by definitions of the mappings D and R,
D(D(Z*, B*),D(Z", BY) (1)
=D(Z", BYY(®)+ sup {D(Z', BY)(s)—D(Z* B*)(s)}— sup {D(Z', B")(s)—D(Z>, B?)(s)}

0<s<oo t<s5<00

=B'()+ sup {B'(s)—Z'(s)}— sup {B'(s)—Z'(5)}

0<s<oo t<§<00

+ sup [B'(s)— sup {B'(u)—Z'(w)}—B*(s)+ sup {B*w)—Z*(u)}]

0<s<oo S<uU<0o S<uU<0o

— sup [B'(s)— sup {B'(u)—Z'w)}—B*(s)+ sup {B*w)—Z*(u)}]

1<§<00 S<uU<oo S<uU<oo

=B'(")+ sup {B'(s)—Z'(s)}— sup {B'(s)—Z'(5)}

0<s<oo t<5<00

+ sup [B'()=Z'(s)-2 sup {B'w)—Z'w)}+ sup {B'(v)-Z'W)+Z'(u)-Z*w)}]

0<s<o0 s<u<0oo s<u<v<0o

— sup [B'(9)—=Z'(9)—2 sup {B'w)—Z'@}+ sup {B'()-Z'W)+Z'w)-Z*w)}]. (7-7)

<5 <00 S<u<oo S<u<v<oo
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Comparing (7-6) with (7-7), it is sufficient to show that, for arbitrary 7 € R,

sup {B'(s)—Z'()}+ sup [B'(s)—Z'(s)—2 sup {B'(u)—Z'()}

+ sup {Z'(w)—Z*w)+B'(v) — Z' (v)}] (7-8)
= sup {B'(s)—Z'(s)+Z'(w)— Z*u)}. (7-9)
1<s<u<oo

We will first prove that (7-8) < (7-9). We note that

(7-8) < sup {B'(w)—Z'w)}+ sup [B'(s)—Z'(s)—2 sup {B'(w)—Z'(w)}

t<u<oo t<s<00 s<u<0oo

+ sup {Z'(w)—Z*w)}+ sup {B'(w)—Z'w)}]

S<U<o0 S<u<oo

= sup {B'w)—Z'w)}+ sup [B'(s)—Z'(s)
o T wp Bl -Z'wy+ swp (Z'w—-Z2w)]. (7-10)

S<u<0oo s<u<oo

Now, we let s* > ¢ be a point such that

B'(s")—Z'(s*)— sup {B'(w)—Z'w)}+ sup {Z'(u)—Z*(w))

s*<u<oo s*<u<oo

= sup [B'(s)—Z'(s)— sup {B'(w)—Z'w)}+ sup {Z'(w)—Z*w)}].

1<s<00 S<U<o0 S<u<oo

We consider two cases.
Case 1: SUPys <y ool B' () = Z' ()} = sup, , .oo{B' () = Z' ()}

Then,

(7-8) < (7-10) = sup {B'(u) — Z'(w)} + B'(s*) — Z' (s*)
ST ap Bl -z i+ sup (2w — 22 w)

s*<u<oo s*<u<oo

=B'(s") = Z'"+ sup {Z'w)— Z:(w))

s*<u<oo

< sup {B'(s)—Z'(s)+ Z'(w) — Z*(w)} = (7-9).

t<s<u<oo
Case 2: SUPgr <y <oo{ B () — Z' ()} < sup,_, oo{B' () — Z' (w)}.
Then, we have that

sup {B'(u)—Z'(w)} = sup {B'w)—Z' ()},

t<u<oo t<u<s*
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so, noting that B'(s*) — Z'(s*) < supg.—, _oo{B' (1) — Z' ()},

(7-8) < (7-10)= sup {B'(u) — Z'w)} + B'(s*) — Z'(s*)

t<u<s*

— sup {B'w)—Z'w)}+ sup {Z'(u)—Z*w)}

s*<u<oo s*<u<oo

< sup (B'(w)—Z'w)}+ sup {Z'(w)—Z*(w))

t<u<s* s*<u<oo

= sup (B'w—-Z'w)+Z'(v)-Z*(v)}

t<u<s*<v<oo

< sup {B'w)—Z'(w)+Z'(v)—Z* )} = (7-9).

<u<v<oo

Now, we prove that (7-9) < (7-8). Let t < s* < u™ < oo be such that

B'(s)—Z" (s +Z'w)—Z°w) = sup {B'(s)—Z'(5)+Z'(w)—Z°w)}.

t1<s<u<oo

We consider two new cases.

Case 1:
sup {B'(v)—Z'(w)}= sup {B'(v)-Z'(v)}.
Then,
(7-9) = B'(s*) — Z'(s") + Z' (u*) — Z*w*) + sup {B'(v)—Z'(v)}— sup {B'(v)—Z'(v)}

u*<v<oo s*<v<oo

< sup [B'(s)=Z'(s)— sup {B'w)—~Z'w}+ sup {Z'(w)—Z’w)+B'(v)~Z'(v)}]

1<s<00 s<u<oo s<u<v<00o

< sup {B'(s) = Z'()}+ sup [B'(s) = Z'(s)—2 sup {B'(u)—Z'(u))

1<§<00 1<s<00 S<u<oo

+ sup {Z'(w)—Z*w)+ B'(v) - Z'(v)],

s<u<v<0o

and this equals (7-8).
Case 2: sup {B'(v)—Z'(v)} > sup {B'(v)—Z'(v)}.

s*¥*<v<oo u*<v<oo

Then, we have that

sup {B'(v)—Z'(wv)}= sup {B'(v)—Z'(v)} > B'(w*) — Z'(u").

s*<v<oo s*<v<u*
In other words, there is a point v* € [s*, u™) such that

B'w") - Z'w" = sup {B'(v)-Z'(v)}

s*<v<oo
Next, we define w* € (v*, u*] as

w* = sup{w € v*, u*]: B'(w)— Z'(w)= sup {B'(v)—Z'(v)}}.

u*<v<oo
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v* w* u*

Figure 18. Example graph of the function B'(w) — Z'(w). The upper (blue) line represents the
value of sup,.., _..{B'(v) — Z' (v)}.

To see that the set over which the supremum is taken is nonempty, note that

B'wH—Z'w) = sup {B'(v)—Z'(v)}> sup {B'(v)—Z'(v)}>B'W*) —z' ",

s*<v<oo u*<v<oo

and use the intermediate value theorem. By continuity, we observe that

B'w"—Z'w)= sup {B'(w)—Z'(w)}= sup {B'(v)—Z'(v)} (7-11)

u*<v<oo w*<v<oo
(refer to Figure 18). Now, by (7-11), we have
(7-9)= B'(s*) — Z'(s") + 2" w*) — Z*(u*)
=B'(s")—-Z' "+ B wH-Z'wH -2 sup (B'(v)-Z'())
w*<v<oo

+Z'w*) - Z*w*) + sup {B'(v)—Z'(v)}

u*<v<oo

< sup {B'(s)=Z'(s)}+ sup {B'(w)—Z'(w)—2 sup {B'(w)—Z'(u)}

t<s<00 t<w<oo w<v<00

+ sup {Z'(w)—Z*w)+ B'(v) — Z'(v)}} = (7-8).

wW=<u<v<oo

This concludes all cases of the proof. U

Theorem 7.7. Let n > 2, and assume (B',Z',72,...,7Z") € @n+1. For 2 < j < n define B/ =
R(Z/=', BI=Y). Then, for 1 <k <n—1,

DYz, z Y, Lzt BYy = D®D (DR (zn L 2K BMY D(ZF, BY, ..., D(Z', BY)).

Proof. With Lemma 7.6 in place, we can now follow the argument of Theorem 4.5 in [14]. By Lemma 7.8,
all the given operations are well-defined. Lemma 7.6 gives us the statement for n = 2. Assume, by
induction, that the statement is true for some n — 1 > 2. We will show the statement is also true for n. We
first prove the case k = 1:

D@ (D"™(z",...,z2* B*,D(Z', B"Y) = D(D(D" V(z",..., 2%, B*, D(Z', B"))

(

D(D(D" V(z",...,Z2%,Z", B")
(

D

p"(z",...,z", B")
LA VAR AN : )
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The second equality above was a consequence of Lemma 7.6. Now, let 2 < k <n — 1. Then, applying the
definition of D**+D followed by the induction assumption,

D(k—}—l)(D(n—k-i-l)(Zn"”’Zk—i-l’ B, D(Z*, BY, ..., D(Z", Bl))
=D(D® (D" Dz ...z B, D(ZF, BY), ..., D(Z*, B%), D(Z', BY))
=D(D"(z",...,2* B*,D(z',B")) =D® (D™ (z",..., 2%, B*), D(Z', BY)).
Hence, we have reduced this to the kK = 1 case. ]
We note that the case k =n — 1 of Theorem 7.7 gives us
putbzr . z' BYY=D"(D(z", B"),...,D(Z', BY)). (7-12)
7B. Multiline process. The multiline process is a discrete-time Markov chain on the state space Y,

of (3-5). The analogous process is defined in a discrete setting in [14]. The transition from the time m — 1
state Z,,_1 = Z = (Z', Z2, ..., Z") € %Y, to the time m state

Zn=2=(Z"7%....Z" e,
is defined as follows. The driving force is an auxiliary function B € Cpi;(R) that satisfies
tl_i)r(r)lot_lB(t) =0.
First, set B! = B, and Z! = D(Z', B!). Then, iteratively fori =2,3,...,n,
B'=RZ'", B, and Z'=D(Z',B). (7-13)
Lemma 7.8. The multiline process (7-13) is well-defined on the state space %,,.

Proof. This follows from Lemma 7.3: Inductively, each B’ satisfies

Bi(t
lim L =0,
t—>o0 t

so since Z € %,,, we have that, for 1 <i <n,

limsup B’ (t) — Z' (1) = —oo. O
—0o0
Theorem 7.9. For each .. = (A1, ..., ) €ERLywithO <Ay <--- <Ay, the measure v* on'%,, is invariant

for the multiline process (7-13) if the driving function B at each step of the evolution is taken to be an
independent standard, two-sided Brownian motion.

Proof. Assume that Z=(Z 1 ..., Z") e, has distribution v*. We will show that Z also has distribution v*.
The assumption on Z means that Z', ..., Z" are independent two-sided Brownian motions with drift A;.
By Theorem C.2, Z! = D(Z', B') is a two-sided Brownian motion with drift A;, independent of
B? = R(Z', B'), which is a two-sided Brownian motion with zero drift. Hence, the random paths
Z' B2, 7%, ..., Z" are mutually independent. We iterate this process as follows: Assume, for some
2 <k < n — 1, that the random paths ZY, ..., 7z Bk zk .. Z" are mutually independent, where
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for1 <i <k—1, Z'isa Brownian motion with drift ;. Then, by another application of Theorem C.2,
Z* = D(Z*, B¥) is a two-sided Brownian motion with drift A, independent of B**! = R(Z*, B¥), which
is a two-sided Brownian motion with zero drift. Since (Z¥, B¥*1) is a function of (B¥, Z¥), we have that
ZY, ..., zZk Bkl zktl 77 are mutually independent, completing the proof. O

Remark 7.10. Presently, it is open whether v* is the unique invariant measure with asymptotic limits
(A1, ..., Ay). Later, we establish uniqueness of the invariant distributions for the Markov chain that
describes the Busemann functions.

7C. Busemann Markov chain. We now define a Markov chain 1 := () mez., = ((n,ln, e M) meZog
with state space &,,. It is essential that the state space is &,, and not @n so that the evolution of this chain
is well-defined. Henceforth, FF = {F}, },,>1 denotes an i.i.d. sequence of two-sided Brownian motions with
zero drift, independent of the initial configuration ng € &,. At each discrete time step m > 1, set F;,, to be
the driving Brownian motion. Given the time m — 1 state 1,1, define the time m state of the chain as

N = (D15 Fn)s Dy F)s - DUy F))- (7-14)
Lemmas 7.4 and 7.5 imply that if n,,_; € &, then n,, € &, as well.
Theorem 7.11. The measure u* of Definition 3.5 is invariant for the Markov chain (7-14).

Proof. This follows by an intertwining argument originating for particle systems in [15] and carried out
for exponential last-passage percolation in [14]. Assume 7 has distribution u*, the distribution of @™ (Z).
Without loss of generality, we assume 1 = % (Z). For Brownian motion B, let 2 denote the mapping
of a single evolution step of Z according to the multiline process (7-13) and J2 denote the mapping of a
single evolution step of 1 according to the Markov chain (7-14). Using the definition of D® and (7-12),

J8(m)=Dn*, B)=D((D®(Z*, ..., 2", By = D%V (ZF ... Z' B')
=D®(D(z*, BY, D(z*', B*"), ..., D(Z", BY))
=DNO(FB(2), 98 1 (2), ..., 98 (2)) =3" (5 (Z)).
Hence, 78 () = 3™ (¥B(Z)). Since n =" (Z),
7% (@™ (2)) =2 (S (2)).
By Theorem 7.9, $8(Z) 4 Z ~ v*. Therefore, 78 (n) 4 PI(Z) ~ ut. ]

7D. Uniqueness of the invariant measure. The existence of an invariant measure for the Markov
chain (7-14) in the case n = 1 is recorded in Theorem C.2, and is originally due to Harrison and
Williams [23]. In words, if Z is a two-sided Brownian motion with drift A > 0, and B is an independent
two-sided Brownian motion, then D(Z, B) is also a two-sided Brownian motion with drift A. However, it
was not until 2019 that Cator, Lopez, and Pimentel [9] proved the uniqueness of this invariant measure.
The proof comes from constructing a coupling (1, m)m=>0 of the Markov chain (7-14) started from two
different initial inputs but with the same driving Brownian motions. Below is the main theorem of [9]. We
note that there is a typographical error in the statement of the theorem in [9] which has been confirmed to
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us by the authors. The corrected version is stated below. The version we state also reflects the fact that
the queuing mappings we work with are the reverse-time versions of those given in [9].

Theorem 7.12 [9, Theorem 3]. Let A € (0, 00) and let X € Cpin(R) be a random process such that, with

probability one,

X(t
lim sup <X and liminf @) > A (7-15)

t——00 1—00

Let (X, Z) be a coupling of X and Z where Z is a Brownian motion with drift A, and (X, Z) is independent
of the field of independent two-sided Brownian motions F = {F,, : m > 1}. Consider the coupling
(X, nZ)m=0 defined by initial conditions 77())( = X and ng = Z, where the evolution of the process is
defined by nz = D(ni_l, F.), and ni = D(n’i_l, Fy,). Then, for all compact K € R and ¢ > 0,
lim P(sup |nfnf(—t — 2" %m, —X_zm) — n,ﬁ(—t — 2" %m, —k_zm)| > 8) =0.
m—00 ek

Remark 7.13. The theorem holds true for any initial condition né( satisfying the given conditions, but in
general, the conclusion only holds for the increments of the processes in the interval (—t —A~2m, —A"2m).
However, the queuing mappings preserve increment-stationarity, so if the initial condition is increment-
stationary, the conclusion holds for an arbitrary increment.

A straightforward generalization of this proves distributional convergence of the Markov chain (7-14)
from an appropriate initial condition to the measure u*:

Corollary 7.14. Let . = (A1, ..., Ay) € R" be suchthat0 < Ay < --- <X, Let X = (X', ..., X") be a
random function in &, such that, for 1 <i <n, X s increment-stationary with
Xi(t Xi(t
lim sup @) <A; and liminf @) > A (7-16)
t—>—00 =00 t

Let (X, Z) be a coupling of X and Z where Z = (Z', ..., 7" ~ ut, and, for 1 <i <n, (X', Z") is

Jjointly increment-stationary. Consider the coupling

X . Z X,1 X, Z,1 Z,
(nm’ nm)mZ(): (nm EEEIEIENEY 77m ns nm 9 e ey r]m n)mZO,

where né( =X and ng = Z and the evolution of the processes is given by the Markov chain (7-14), run
simultaneously with the same driving Brownian motions F = {F,,};,>1, independent of (X, Z). Then, for
all compact K C R" and ¢ > 0,
limsup P (sup |, (1) — 0 (D)1 > &) =0,
rek

m—o0
where | - |1 is the £' norm on R".

Proof. First, we note that since (X*, Z') is jointly increment-stationary and F| is an independent Brownian
motion (and therefore increment stationary), then the process (X', Z', F) is jointly increment-stationary.

Then, as a translation respecting mapping of (X', Z!, Fy) (Lemma C.3), (n}"*, n?') is jointly increment

X

X.i 'nZ7y is jointly increment-stationary for each m. The desired conclusion

stationary. By induction, (n
then follows by applying Theorem 7.12 separately to each of the n components of nX (t) —nZ(t). O
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We now use Corollary 7.14 to prove the following precursor to Theorem 3.7.

Theorem 7.15. If0; > 0, > --- > 6, > 0, then for each m € Z, the vector

(WO, m%, . RO (7-17)

m
almost surely lies in the space %, N %, and has distribution * with »; = 1/5/0; for 1 <i <n.

Proof. In Corollary 7.14, we can choose Z ~ u* to satisfy the joint increment-stationarity of (X, Z),
for example, by taking Z independent of X. By the invariance of the measure u* (Theorem 7.11),
Corollary 7.14 implies that, under the given assumptions on X, nn}f converges in distribution to u*, in
the sense of uniform convergence on compact sets. Thus, u* is the unique such invariant measure of
the Markov chain (7-14) among distributions whose marginal distributions are increment-stationary and
satisfy (7-15).
By parts (ii) and (ix) of Theorem 3.1, form € Z and 6 > 6, > --- > 0, > 0, hg;' <inc h,g,i“ for
1<i<n-—1,andeach hgi is a two-sided Brownian motion with drift 1/4/6;. Thus, for 1 <i <n,
6i
lim ) _ L, a.s., (7-18)
t—+o00 t \/51.
and so (A, h®%, ... h") € %, N%, with probability one. By Theorem 3.1(vi), for 1 <i <n, hl =
D(he" B,,;) almost surely. Furthermore, by Theorem 3.1(vii), with probability one, for each 1 <i <n

m+1°
and t € R,

ho (1) = nli)nolo[L(m,O),(n,nQ)(B) — Ln.1),(n,n6)(B)]
= nli)n;O[L(m,O),(n+m,(n+m)€)(B) — Ln.1),(n+m, (n+m)6) (B)1,

and since the environment of i.i.d. Brownian motions { B, }, <7 has the same distribution as the environment
{B,+1}rez for each k € Z, the distribution of (/1,211 e h,e,?) is independent of m. Therefore, (hfn1 e h,e,f)
must be distributed as the unique invariant distribution of the Markov chain (7-14), under the limit
condition (7-18). By Corollary 7.14, this distribution is u®t+>*) where A; = 1/4/6; for 1 <i <n. O

Proof of Lemma 3.6. Part (i): We show the existence of n; ~ ;ﬁk and n ~ w” such that, for 1 <i <n,
77;{ — ni, uniformly on compact sets, almost surely. Let Z = (Zl, zZ2 ..., Z™) ~ v* and define Z,i ()=
Zit) + (WF =)t Then, (Z), Z2, ..., ZI') ~v*. Set n = D™ (Z) and n = D™ (Z;). By construction,
for 1 <i <n, Z} — Z' uniformly on compact sets, and

lim sup =0.

t—00
k— 00

1_;
;Zk(f) — A

Thus, the convergence of n,i — 5! is immediate. By Lemma 7.2, n,% = D(Z?, Z,l) converges to 1> =
D(Z?, Z") uniformly on compact sets, and

lim sup =0.
—00

k— 00

1 2
;Uk(f) — A2
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Now, assume by induction that for i > 2, n,i = D(i)(Zi oo Z ,1) converges uniformly on compact sets to
n' and that
1 .
limsup| -7, () — ;| =0.
t—oo |1
k—00

Then, by shifting indices and setting ﬁf{ = D(i)(Z,i+1, el Z,%) and ﬁi = D(”(ZHI, R Zz), it also holds
that ﬁ}; converges uniformly on compact sets to 7', and

1 _.
lim sup| -7, (1) — 1;| = 0.
t—oo |

k—o00

By definition of DU*D (3-10) and the i = 2 case,
n;;—i—l — D(H—l)(zi—i-l’ o le) — D(ﬁ;ca le) N D(ﬁi, Zl) — D(H—l)(zi—FI’ o Zl) — 77[+1’

where the convergence is almost sure, uniformly on compact sets. Furthermore, the i = 2 case also

guarantees
lim sup =0.

11— 00
k— 00

1.
;ﬂfjl(l) — iyl

Part (ii): It suffices to show that if (', ..., n") € %, has distribution z*1*~+*, then

1 i—1 i+l

n S DT IR Y R B ¥
M, ....n' ™, ") ~ i A e e

Recall that p* is the distribution of 9 (Z!, ..., Z"), where Z' are independent Brownian motions with
drifts A;, and the j-th component of @ (Z', ..., z") is DY (Z/, ..., Z") (3-11).

For i = n, the statement is immediate from the definition of the map g™ Next, we show the case
i=1.For2<j<n,weuse (7-12) to write

DWV(z/,...,.z" =DV (D(z!, Z/™"), ..., D(Z*, Z%), D(Z*, Z")),

where Z! = Z!, and fori > 1, Z' = R(Z!, ZI™1). Then (0%, ..., n") = 3"=D(Z2, ... Z"), where
7i = D(Z', ii_l) for 2 <i < n. By Theorem 7.9, 22, R 7" are independent, so this completes the
proof of the i = 1 case. By definition of DY fori < j <n,

DYz, ...,z =D(D(--- DYz, ..., 2D, 27N, ...,z Z"). (7-19)
Similarly as in the i = 1 case, we apply (7-12) to get that
DUzl . 7y =DV (D(z/, 7/, ..., D(Z'*, ZH) = DU(Z, ..., ZFY), (7-20)

where, 7Zi = Z!, and for j > i, 7 = R(Z/, Zj_l). For j > i, we define A D(Z/, 2j_1). Then,
by (7-19) and (7-20), fori < j <n,

D(])(ij e eey Zl) - D(]_l)(zjv cery Zi"l‘l, Zi_l’ MR Zl)’
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and so
't gty =9tz Lz 2 7). (7-21)
By Theorem 7.9, 7 oo, 7" are independent Brownian motions with drifts A; 41, ..., A,. Since these
are functions of Z', ..., Z", the functions Z', ..., Z'=', Zi*! ... ZJ are independent as well, and
by (7-21),
(nl’ e ni—l’ ni+1’ e nn) ~ M()\.l,...,)\,ifl,)\,ll*,l,...,)\.n).
Part (iii): We note that if Z!, ..., Z" are independent Brownian motions with drifts Aj, ..., A, and
Z', ..., Z" are independent Brownian motions with drifts c(A; +v), ..., c(A, +v), then
(ZY@D), ..., Z2"0) 1 e Ry L (e ZV(t)c?) —vt, ..., cZ"(t)c?) — vt it €R). (7-22)
Let (', ....,n") =9™(Z', ..., Z% and (7',...,7") =2™(Z',..., Z"). By Lemma 7.1,
(i’ (t/c®) —vijc: 1 € R)1<k=n
k—1
=(cZ'e/H) —vite  sup Y (Z'w)—ZM ()
0<t1<tp-<ty—1<00 i=1
k—1
—c sup Y (ZH ) —Z 1)) t € R)1<kzn
1/c2<t) <ty <ty_1 <00 i=1
= (cZ¥(t/c?) — vt
k—1
+ sup D (eZiti )P — vt — cZH (1) + viy)
0<t1/c2<+<ty_1/c?<00 ;1
k—1
-~ sup D €Z (ti)c*) = vty = cZH (1 /7Y + vty) 1 € R) 1<k
1/2<ty[c? < <ty_1/c? <00 ;1
. k—1
SZ'o+  oswp Y (Za) -7 @)
0<t1<tp--<tp—1 <00 i=1
k—1
- sup Y (Z) -2 W) it € R)1kza
<1 <tp-- <11 <00 i=1
=0 () 11 € R)1<k=ns
where in the second-to-last equality, we used the distributional equality (7-22). ([l

Proof of Theorem 3.7. By Theorem 3.1(iii)(c), for each fixed m € Z, as 6 — oo, hﬁl converges uniformly

on compact sets to B,,. The theorem then follows from Theorem 7.15 and Lemma 3.6(i).

O

TE. Proofs of results stated in Section 3B. We first prove Theorem 3.11 and then handle the remaining

results from Section 3B.
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Proof of Theorem 3.11. Set (n', n*) = 2@ (Z', 2% = (Z', D(Z?, Z")) where (Z', Z%) ~ v**, with
A > 0. Recall that this means that Z' and Z? are independent Brownian motions with drifts 0 and A,
respectively. Theorem 3.7 gives the first equality in distribution below:
X0 = X0 Z 52 () —n' (1) = D(Z%, Z)@) - Z' (1)
= sup {Z'(9) = Z2 ()} = sup {Z'(s) = Z°()).

0<s<oo I=5<00
Since Z' and Z? are independent, the statement now follows from a direct application of Theorem B.4. (]

Theorem 3.9 is proved by applying the following theorem, which gives a condition for a general
increment-stationary process to be a jump process.

Theorem 7.16. On a probability space (2, F, P), let Y = {Y (¢) : t > 0} be a nondecreasing, increment-
stationary process such that the following three conditions hold:

1) I1:=EYQA)—-Y(0)] < oo.
@11) PIY () =Y (0)] € (0, 1) for sufficiently small t > 0.
(iii) ¢ :=liminf\ o E[Y (z) =Y (0)|Y () > Y (0)] > 0.
Then, with probability one, the paths of t — Y (t) are step functions with finitely many jumps in each

bounded interval. For eacht > 0, there is a jump at t with probability 0. For a < b, the expected number
of jump points in the interval [a, b] equals

b—a)l _ E[Y (D) —Y(a)]
¢ liminfroE[Y () =Y (0)|Y (1) > Y(0)]

Remark 7.17. The claim that (b —a)l = E[Y (b) — Y (a)] follows from increment-stationarity and the fact
that Y is nondecreasing, as follows. By increment-stationarity, it suffices to show that E[Y (r) — Y (0)] =¢1
for all + > 0. Since Y is nondecreasing, t — E[Y (#) — Y (0)] is nondecreasing, so it further suffices to
show that E[Y (t) — Y (0)] = ¢1 just for rational ¢ > 0. For any integer &,

k
E[Y (k) —Y(0)] = Z E[Y(@)—=Y(@—1D]=kE[Y(1) =Y (0)] =kI.
i=1

Then for positive integers r and &,

k
rI =E[Y(r) = YO)]= Y E[Y(ri/k) = Y (r(i — 1)/ k)] = kE[Y (r/ k) — Y (0)],
i=1

and E[Y (r/k) — Y (0)] = 1.

Remark 7.18. Heuristically, we can think of condition (iii) in the following way: on average, the size of
the jumps are bounded away from 0, and therefore the jumps cannot accumulate because an increment of
the process itself has finite expectation by condition (i).
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Proof of Theorem 7.16. We show there are finitely many jumps in the interval [a, b] = [0, 1], and the
general case follows by increment-stationarity. Consider discrete versions of the process Y as follows.
Forn € Z.o,let D, ={j/2":j€Z,0< j<2"}, and consider the process Y, := {Y (t) : € D,}. Let J,

be the number of jumps of Y,,, i.e.,
2”

- E0(2) 1 (5)

j=1

Then, J, is nondecreasing in n, so it has a limit, denoted as the random variable Jo. Let K €
{0,1,2,...} U {oc} be the number of points of increase of ¥ on the interval [0, 1]. Specifically, a
point ¢ € (0, 1) is a point of increase if Y (t +¢&) > Y (t —¢) for all € > 0. We say 0 is a point of increase
if Y(¢) > Y (0) for all + > 0, and we likewise say that 1 is a point of increase if Y () < Y (1) forall t < 1.
We now show that K < J. If K < oo, let k = K, and otherwise, let k be an arbitrary positive integer. It
suffices to show that Jo, > k. By definition of k, we may choose k points of increase t; < - - - < t;. First,
we handle the case where #; € (0, 1) for all i. Then, for all sufficiently large n, there exist n-dependent
positive integers 0 < j; < --- < ji < 2" so that for each i, j;+1 > j; +2, and
Ji—1 Ji+1
on <t < n .
Since ¢; is a point of increase and Y is nondecreasing, Y ((j; + 1)/2") > Y ((j; — 1)/2"). Therefore,
Y((ji +1)/2") > Y (ji/2") or Y (j; /2") > Y ((j; —1)/2"). By assumption that j; > j; + 2, the intervals
[(ji —1)/2"%, (j; + 1)/2"] are mutually disjoint, so J, > k and therefore J, > k. The case where t; =0
or ty = 1 is handled similarly.
Now, we show that P(J,, < o0) = 1. Let

(7-23)

c =EYQR™ =YO)|YQ2™) > Y ()]

Then, using increment-stationarity,

E[Y (1) — Y (0)] = i [E[Y<2]—;1) - Y(Z;l)]
S ) RO -5
— Z P(v(L) > v(50)) = bl

Jj=1

By assumptions (i) and (iii) and the monotone convergence theorem,

EY()-Y©OI _

Cn

E[J/x] = lim E[J,]= lim (7-24)
n— 00 n—00

Therefore, P(Jo < 00) = 1. Since K < J, with probability one, Y has only finitely many points of
increase on [0, 1]. Therefore, with probability one, Y : [0, 1] — R is locally constant except at the finitely
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many jump points. Hence, for each t € (0, 1), the left and right limits of Y at ¢, Y (%) exist. The limits
Y (0+) and Y (1—) exist as well. Since Y is increasing, for each ¢t € (0, 1) and ¢ > 0, we can apply
Remark 7.17 and (i) to get

E[Yt+)—Y()]<EY(@+e)—Y(E—e)]=2eE[Y(1)—-Y(0)] < o0.

Sending ¢ \ 0, the left-hand side is 0 and therefore, a jump occurs at time ¢ with probability 0. Similar
arguments apply to # = 0 and r = 1. Therefore, there exists an event of probability one, 2g, on which ¥
has no jumps at points of the form j/2" for positive integers j and n.

To compute the mean number of jumps, we show that Jo, = K on the event Q2g,. We already showed
that K < J, so it remains to show Jo, < K.

We start by showing that if Y (b) > Y (a) for some a < b, there must be some point of increase in the
interval [a, b]. We prove this as follows: let ¢ be the midpoint of a and b. Then, since Y is nondecreasing,
either Y (b) > Y(c) or Y(c) > Y(a). If, without loss of generality, Y (b) > Y (c), then we can bisect
the interval again with midpoint d and get that Y (b) > Y (d) or Y(d) > Y (c), where d is the midpoint
of a and b. Inductively, this constructs a sequence of nested intervals [a,, b,] C [a,—1, bu—1] < [a, b],
where [a,, b,] is either the left or right half of the previous interval. Then, a, is nondecreasing and b,, is
nonincreasing and b, —a, — 0. Then, set t = lim,,_, o, a, = lim,,_, o b,,, and we have that ¢ € [a,, b,] for
all n. If ¢ € (0, 1), then for all € > 0, we may choose n large enough so that, because Y is nondecreasing,

Y(t+e)—Y(t—e)>Y(by) —Y(ay) > 0.

Hence, ¢ is a point of increase. The case where ¢ = 0 or 1 is handled similarly.

Now, we show that on Qq,, J, < K for all n. By definition, J, is the number of integers 0 < j <2"
such that Y (j2™") > Y((j — 1)27"). For each such j, we just showed that there must be a point of
increase in [(j — 1)27", j27"], and on the event Qg,, that point of increase must lie in the interior of the
interval. Thus, J, < K, and Jo, < K, s0 Jc = K on Qgq,. Equation (7-24) computes the mean number
of jump points. O

Proof of Theorem 3.9. By Theorem 3.7 we can realize the distribution of the process as a function of
independent Brownian motions Z'. ..., Z" with respective drifts Ay, ..., A,:

X0 X0 ) 2 0 0), . () = D™ (ZY, ..., ZM)(1).

From this, n'(r) = Z'(¢), and by Lemma 7.1, for 2 <k <n,

k—1 k—1
foy=z'0+  sup Y (Z@) -z @) - sup D (ZHe) = Z ).
0<t1<tr---<t,_1 <00 i=1 I<t1 =<t =lp—1 <00 i=1

Hence, the Z'(z) terms in n**!(1) — n*(¢) cancel out. With independent, standard Brownian motions
Wl ..., W" we can write

ZHt) — 2 ) = W) — W) — g — At
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Hence the distribution of the vector of increments
(X2 ) =X (i3 0), X 0) = X Aoz 1)y oo s X (s 1) = X (M3 1))

depends only on the differences A — A, ..., A, — A,—1 and not on the individual values %;. This shows
increment-stationarity of the process. To complete the proof, we show that E[ X (A; t) — X (0; r)] = At and
that

liminf E[X G 1) = X (05 DX (4 1) > X (0; )] = @ (7-25)

allowing us to invoke Theorem 7.16. The fact that E[X (X; ) — X (0; ¢)] = At follows since h% »” (t)isa
Brownian motion with drift A and ¢ +— X (0; ¢) is a Brownian motion with zero drift. Since X (A; t)— X (0; 1)
is nonnegative,

E[X(X; 1) — X (0;1)] At

HXG:0) = XODIX A0 > XODI= 5 5 X 0y~ PO = X©0:1)°

By (3-14), for ¢, A > 0,
2/
PXXt)>X0;8)=1— (2+)»2t)<1>(—)» t/2) +)»eJT t/m.

Substitute this in the denominator above and apply L’Hopital’s rule to deduce (7-25). Hence, we may
apply Theorem 7.16. By Remark 3.8, for 0 < y < oo, the mean number of directions 6 satisfying
hf,f(s, 1) < hfif (s, t) is distributed as the number of jumps of A — X (A; s + (f —s)) — X (&; s) in the
interval A € [1/\/3, l/ﬁ], which has mean

1 1 Vri—9\"" i—s( 1 1
— —— A=) —— =2 ———).
NS 2 T \J7 V8
The almost sure existence of ¢ > 0 such that X (A; 1) = X(0;¢) = By(t) for A € [0, &) follows be-
cause Theorem 7.16 states that O is a jump point of A +— X (A;t) with zero probability. The limit

lim)_, oo X (1; t) = oo follows by monotonicity and because X (A; f) = hé/kz ) ~N@A, 1). O

Proof of Corollary 3.13. Part (i): In (3-14), set y = z + At and send A — o0. The limit is CD(y/«/Z).
Part (ii): For A, > A1 > 0,

X(A2; ) =X 25 1) — X(A1; 1) + X (Ay; 1), (7-26)

Recall that X (A; t) = hf,:/ A2)_(t), and for each fixed A, h,% a (¢) 1s a two-sided Brownian motion with
drift A by Theorem 3.1(ix). Then, the left-hand side of (7-26) has variance t. If, by way of contradic-
tion, X (A1; t) is independent of X (Ap; ) — X (XA1; t), then the right-hand side of (7-26) has variance
Var (X (Ap; t) — X (A1; 1)) + ¢, implying that Var(X(Ao; 1) — X(A1; 1)) =0 and X (A5 1) = X(Aq3 1)
is zero, almost surely. This cannot be true because X (A1; t) and X (A;; ) have different distributions:
X (A;; t) is normal with mean A;f fori =1, 2.



GEODESICS AND COMPETITION INTERFACES IN BLPP 723

For the second statement, by monotonicity, X (Ao; 1) — X (0; t) =0 if and only if X (Ap; 1) — X (A1; 1) =0
and X (A1; 1) — X (0; ) = 0. Then, if by contradiction, A — X (; t) has independent increments, then for
0< )\.1 < )\.2,

P(X(A2;0) — X(0; 1) =0) =P(X (h2: 1) — X (A1; 1) = O)P(X (A15 1) — X (0; 1) =0),
or equivalently,
P(X (A2 0) — X(0; 1) =0|X (15 1) — X(0; 1) =0) = P(X (A2; 1) — X (A5 1) =0). (7-27)

If we let T'(¢) be the time of the first jump of the process A — X (A; t), then by the increment-stationarity
of Theorem 3.9, (7-27) is equivalent to

P(T(t) > 2|T () > k1) = P(T(t) > ko — Ay). (7-28)

Note that P(T (¢) > 1) = F(0, A, t), which, by (3-15), is not an exponential distribution and therefore not
a memoryless distribution. Thus, (7-28) fails. O

7K. Proof of Theorems 3.15 and 2.5. We first prove a rather technical seeming theorem, but many
of whose statements have natural geometric meaning. For example, part (iii) says that uniformly for
directions sufficiently close to horizontal, the rightmost geodesic must travel horizontally to some distance
bounded away from 0, and thereby the horizontal Busemann process coincides with the environment
of Brownian motions, throughout a given interval (see Lemma B.3). Part (vi) gives a dual statement:
uniformly for directions bounded away from the vertical, the horizontal Busemann process coincides with
the environment of Brownian motions at least for some nondegenerate interval.

Theorem 7.19. There exists an event of full probability, on which the following hold.
(i) Forall S <T eRand 6 > 0, if ko (s, 1) < h9(s, 1) for some s <t €[S, T, then h%+ (S, T) <
ho=(S, T).

(i1) In particular, for everym € Z and s < t € R, the paths of the process 6 +— hgf (s, t) are the right
and left continuous versions of a nonincreasing step function with discrete jumps. If, for some s < t,
0* is a jump point for 6 +— hfni (s,t), thenforall S <sand T >t, 6% is also a jump point for the
process 6 — hﬁli(S, T).

(iii) For each m € Z and each compact set K C R, there exists a random n = n(m, K) > 0 such that for
all® > nands,t € K, h%F(s,t) =hl " (s,1) = Bu(s, 1).

(iv) Forall 8 > 0,m € Z and compact K C R, there exists a random ¢ = (0, K, m) > 0 such that
whenever 0 —e <y <0 <d<0+¢, De{—,+},ands <t € K, hhP(s, 1) = hgf(s,t) and
R39(s, t) = h0* (s, 1).

(V) More generally, for each compact set K € 7 x R and 6 > 0, there exists a random ¢ = ¢(K, 0) > 0
such that wheneverx,ye K, 0 —e <y <0 <§<6-+¢,andO e {—, +},

BC(x,y) =B (x,y) and B°(x,y) =R (x,y).
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(vi) Foralln > 0 and m € Z, there exists a random ¢ = e(m, n) > 0 such that, for all |t| < e and 0 > n,
Ryt (1) = iy (1) = B (0).
(vil) ForallmeZ, oe{—,+},ands <t eR,
: 0 : 0
gl\l% h, (s, 1) = 400 and ell)ngo v, (t) = +00.

(viii) Foreachm € Z and s < t € R, the process {h%D (s, t) : 0 > 0} has infinitely many points of decrease,
whose unique accumulation point is 6 = 0.

Proof. Part (i) holds on the event 2, as follows. Theorem 3.1(ii) implies that for § <s <t < T,
0<6<§<o0,and Oy, Oy € {—, +} (if 6 =45, we require O] = — and O, = +),

h3D2(S, 8) + heP2 (2, T) < W07 (S, s) + hO71 (2, T).

Here, we define A} (s, t) = B,, (s, t). This inequality can be rearranged to get
0 < hSP'(s, 1) — h™2 (s, 1) < hOP1(S, T) — h3™2(S, T). (7-29)
The case 6 =6 and O; = —, Oy = + proves (i).

For the remaining parts, let 23 be the subset of €2, on which the following hold:

(1) The paths of @ = h%%(S, T) are step functions with discrete jumps for all m, S < T € Z. For such
m, S, T, there exists n = n(S, T) > 0 such that for 0 > nand O € {—, +}, han(S, T)=B,(S,T).

(2) For each 6 € Q. and m € Z, there exists N € Z. such that hfn(j:N_l) = B, (£Nh.

(3) Foreachm e Z, s <t € R, and O € {—, +}, limg\o hf9(s, t) = +o00.

m

(4) Foreverym e Z, 6 >0, and O € {—, +}, limtﬁoo(hfnm(t))/t = 1/\/5.

(5) Foreverym € Z,
SUp {By—1(s) — Bu(s)} = +00. (7-30)

0<s<oo
We first show that 23 has probability one, and then show that the remaining parts of the theorem

hold on this event. By Theorem 3.9, condition (1) holds with probability one. Next, rearranging
B, (s, 1) < hﬁf(s, t) for s <t gives, fora <t < b,

h99(a) — By (a) < hO°(t) — By (t) < h95(b) — B,y (b). (7-31)

Thus, for 6 € Q~, if 1% (EN 1) = B, (£N~1), then also 2 (£(N+1)"1) = B, (£(N+1)~"). Therefore,

0 -1 -1 . 0 -1 -1
IP(NE_Z{O{hm(:I:N )= Bn(£N )}) = lim P (hy (N =By (£N"H) =1,
where the last equality follows from Theorem 3.7 and (3-15) with ¢ N\ 0. Therefore, condition (2) holds
with probability one. Next, we show that condition (3) holds with probability one. For all m € Z and a
countable dense set of pairs s < ¢, this follows from Theorem 3.9 and Remark 3.8. The monotonicity of
(7-29) with 6 N\ 0 and § fixed extends condition (3) to all S < T € R on a single event of probability one.
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Condition (4) holds with probability one for all & € Q., since each h® is a Brownian motion
with drift 1/4/6 (Theorem 3.1(ix)). The monotonicity of (3-4) extends this to all > 0 and O €
{—,+}. Since B,,—; and B,, are independent, B,,_; — B,, is a variance 2 Brownian motion. Hence,
condition (5) holds with probability one, and P(€23) = 1, as desired. We now prove the remaining parts
of the theorem.

Part (ii): This now follows from condition (1) of the event €23 and part (i).

Part (iii): Let m € Z, S, T € Z-, and, without loss of generality, let K = [§, T]. By condition (2)
and the § = oo case of (7-29), there exists n = n(m, K) > 0 such that, when 6 > n, O € {—, +}, and
s<tek,

0 < hy(s. 1) — Bu(s, 1) < hy(S. T) — By (S, T) = 0.

Part (iv): This is similar to the proof of part (iii): By condition (1) and (7-29), whenm, S, T € Zwith S < T
and 6 > 0, setting K =[S, T'], there exists € =¢(8, m, K) > 0 such that, when 6 —e <y <0 <5 <0+¢
and O € {—, 4},

0="ho"(s,t) —h(s, 1) = hOT(S, T) — h’7(S, T),
0=h!"(s,t) —ho= (s, ) = h’7(S, T) —h’~(S, T).

Part (v): By part (iv) and the additivity of Theorem 3.1(i), it is sufficient to prove that for each m € Z,
compact K C R and 6 > 0, there exists € = e(m, K, 6) such that vzﬁl (1) = vﬁ;l (t) and vfn‘ﬂrl ()= vfnil(t)
whenever r € K and 0 —¢ <y <6 <6 < 8+ ¢. By Theorem 3.1(vi) and Theorem 4.3(iii)(a), for

5§ <0+1,
vl (1) = sup {By(t,s)—h)2 (1. 5)}

1<s§<00

7-32
= sup {But,5) — 5,1, 9)), (732)
ISSSI(9+1)+,R

(m,t),m

By part (iv), there exists ¢ > 0, such that, for § € (6, 0 + ¢), the right-hand side of (7-32) is equal to

sup  {Bu(t,s) —hET (1, 5)} =00 (o),

O+D+.R

IS8T ) m

where T = sup K. The result for y < 6 is proved similarly.

Part (vi): Let m € Z, n > 0 and let n; < n be rational. By condition (2) of 23 and (7-31), there exists
e = &(m, n1) such that B,,(t) = h,! (¢) for all |t| < . Then, by the monotonicity of Theorem 3.1(ii), for
all® >n>n, O€{—, +},and |t| <&, B,(t)=h(t) as well.

Part (vii): The first limit is exactly condition (3) of the event 23. For the second limit, we use the

representation of Theorem 3.1(vi) to get

v9(t) = sup {Bu_1(t,s) —ho7(t, 5)}.

<5 <00
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By Theorem 3.1(iii)(c), %7 converges to B,, uniformly on compact sets as § — o0o. Therefore, for
any T > t,

liminfv??(t) = liminf sup {B,_i(t,s) —h’C(z, s)}
60— o0 0—>00 <s5<00

> liminfl/, () = Bu1 () + sup {B1(s) = 1, (5)}]

t<s<T

= By (t) — Bu—1(t) + sup {Bu_1(s) — Bu(s)}.

t<s<T
Since this holds for all T > ¢, the limit is 400 by condition (5) of the event 23 (page 724).
Part (viii): This follows directly from parts (ii) and (vii). O
Proof of Theorem 3.15. The full probability event of this theorem is €23.

Part (i): The monotonicity of Theorem 3.1(ii) implies that for 0 <¢ < T,
0= hy"1(0) — o™ (0) < K7 (1) — h)™> (1) < h}™' (T) — h)™(T).

Part (ii): Let y <6 and Oy, Oy € {—, +}. By Theorem 7.19(vi), there exists € > 0 small enough so that
By (t) = hjy ' (1) = h™2(¢) for 0 <t < &. On the other hand, by definition of the event Q3,

lim hgml(t) _ : lim hgm(t).

= —> — =
t—00 t ﬁ \/5 t—00 t

Hence hg MOE hgmz(t) for sufficiently large ¢. By the monotonicity of increments from part (i), and

continuity of Theorem 3.1(iv), separation happens at a unique time S > ¢.

Part (iii): Let S = S(y Oy, §07). We first consider the case 0; = + and 0Oy = —. Then, the assumption is
that hgﬁ(r) =h) (1) for0<t < S and hg+(t) > o~ () for t > S. Then, the jump process 6 > h™(S)
has no jumps in the interval (y, §), but for each ¢ > 0, the process 6 +— hgi (S + ¢€) has a nonzero finite
number of jumps in the open interval (y, §). Furthermore, by Theorem 7.19(ii), jumps are only added as
¢ increases. Hence, there must exist some 6* € (y, §) such that, for every ¢ > 0, 6* is a jump point of
the process 6 - hi=(S +¢), i.e., b (S+¢) > hY T (S +¢) for all & > 0. But since 1} *(S) = h)~(S),
the monotonicity of (3-4) requires hg*_ )= h8*+(S ). Hence, 6* has the desired property and lies in ®
by definition (2-3).

Next, we prove the statement in the case 0; = O = +. The remaining cases follow similarly. The
assumption is now that hg+(t) = thr(t) for0 <t < S and h(’)’+(t) > hg+(t) for t > S. By (3-4), this
implies that i)y " (1) = hl~ (1) = hi T (¢) for 0 < ¢ < S. We may write

RYT(6) — WP () = R (6) — W)™ () + RS (1) — h)T (1),

and therefore, by part (i), either hg +(t) > hgf (t) for t > S (allowing us to apply the previous case) or
hg_ (t) > thr (t) for t > S, in which case 6 = § satisfies the desired property.

Parts (iv)—(v): By Theorem 7.19 (ii) and (vii), for each 7" > 0, the path 6 — hgi(T) is a nonincreasing step
function with discrete jump locations that tends to oo as 6 N\ 0, so the set {th(T) :0>0,0e{—, +}}
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is discrete and infinite. Since distances between the Busemann trajectories are nondecreasing by part (i),
each of these discrete values corresponds to a single trajectory from time O up to time 7. (I

Proof of Theorem 2.5. The fact that P(0 € ®) for each fixed # > 0 is a direct consequence of
Theorem 3.1(vii). We now prove the various parts of the theorem. The full probability event of the
theorem is €23, as constructed on page 724.

Part (i): The density of ® is a direct consequence of Theorem 3.15(iii). Now, set
Hy = {0 >0:h%(t) #h% (t) for some t € R}.

By the additivity of Theorem 3.1(i) and the relations of Theorem 3.1(vi), the entire Busemann process
can be obtained by a deterministic function of the process {hfn‘:' t)y:meZ,teR,0>0,0¢€{—,+}}.
Hence, © = J,, <7 Hp. 1t then suffices to prove that each H,, is countably infinite. By Theorem 7.19(1),

Hy = | J{6 > 0:hi () # hi}(¢) for some t € [-T, T}
T=1
= (J10 > 0: ni (1) £ H5H(T)). (7-33)
TeZ

For each T € Z, 6 +— hY%(T) is monotone, so there are only countably many values of 6 > 0 such that
hfn_(T) % hﬁf(T). Hence, H,, is countable as well.

Part (ii): By Theorem 7.19(v), for every 6 > 0, there exists a random ¢ = ¢(6, x, y) such that for
0—e<y<BO<8<BO+candOe{— +}, B (x,y) = B"?(x, y) and B (x, y) = B°(x, y).
Hence, there are no points of ®, , in (8 —¢, 60 +¢) \ {#}, and so O y has no nonzero limit points. As
a result, the notion of two successive points of ©, , is well-defined. Furthermore, if 6 ¢ O ,, then
R~ (x, y) = B*(x, y), so there exists a random & = &(x, y) > 0 such that § — B+ (x, y) is constant
in the interval (6 —¢,0 + ¢). Hence, if y < § are any two successive points of ®, ,, the function
0 — B*(x, y) is continuous and is everywhere locally constant on (y, 8). Thus, 6 > B*(x, y) must
be constant on the entire interval (y, §).

Lastly, set x = (m, t), y = (r,s) and w = (r, t). Without loss of generality, assume r > m. By (4-12),

B(x, y) =B, w)+BOw, y) = > vf7(@) —hs. ).
k=m+1

By Theorem 7.19(vii) and Theorem 3.1(iii)(c)—(d), foreach k € Z and s <t € R,

lim h9%(s, 1) = Bi(s, 1), lim hi%s, 1) = 400,
60— 00 N0

lim v{°(t) = +o0, lim v{7(t) = 0.

60— 00 N0

Since x # y, r > m or s #t (or both). Hence, B2 (x, y) converges to 400 or —oo either as § — oo or
6 \{ 0, and since 6 +— RO (x, y) is constant on every open interval in (0, 00) \ Oy ,, the set ®, , must
be infinite.
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Part (iii): The fact that ©,, ;) on,r) 1s nondecreasing follows by Theorem 7.19(i). We prove the equal-

ity (2-4) by proving Hy, = Hy41, i.e., that h(t) = h% (1) for all # € R if and only if A% | (s) = h% 7 (s)

for all s € R. The “if” part is imme@diate from hi‘j = D(hzﬂrl, B,,) (Theorem 3.1(vi)).
+

Next, for w € €24, assume that &, T (s) # hfnjrl (s) for some s € R. Assume, by way of contradiction,
that h%*(t) = h%~(¢) for all ¢. By Theorem 3.1(vi),

h9(t) = By(t)+ sup {By(u) —h% )} — sup {By,(u) —hi% )},

0<u<oo t<u<oo
so the function

te> f(t):= sup {Buu)—h0" )} — sup {Buu)—hl )

<u<oo <u<oo

is constant. First, consider the case s > 0. By Theorem 3.1(ii), Wt <. hY so for u > s,

m+1 —=inc oy p o

i () = Bt ) 2 B2 (8) = (5) > 0.
Then, f(s) > 0. On the other hand, by Theorem 3.1(v),
lim B, (1) —hi% (1) = +oo, (7-34)

t—Foo

so we may choose 5o < 0 to be sufficiently negative so that

sup { By (u) —hyry ()} = sup {By(u) —hy (w)
So<u<00 so<u=<0
for O € {—, +}. By (3-4), hg;jrl(u) > hfnjrl(u) for u < 0. Thus, f(sg) <0, a contradiction to the finding
that f(s) > 0 and f is constant.
Now, consider the case s < 0. Using hfnil <inc hfnjrl,
u < s. By (7-34), we can choose sq to be sufficiently negative so that, for O € {—, +},

as in the s > O case, hﬁ:rl (u) > hfnjrl (u) for all

sup (B (u) — )% )} = sup (B (u) —h)5, ()},
So<u<oo SQ=<u=<s
and hence f(sp) < 0. On the other hand, by (3-4), hg;l(u) > hz:H(u) for u > 0, so f(0) >0, giving a
similar contradiction. U

8. Proofs of the results from Section 4 and Theorems 2.8 and 2.10

We start by proving the results of Section 4, and the proofs of Theorems 2.8 and 2.10 are presented at the
very end of this section. The full probability event of the results in Section 4 is denoted as €24, which we
now define. Recall the discussion of the events Q,, ), and Q,(ce) immediately before Theorem 3.1. Let
Q3 C Q; be the full probability event of Theorem 7.19. Let €2 be the full probability event of Lemma A.2.
For each m € Z and y > 0, the function s — B, (s) — h,’; +1(s) is a variance 2 Brownian motion with
negative drift by Theorem 3.1(ix) and 3.1(viii). Let C,, , be the full probability event on which the
conclusions of Theorem C.8 hold, applied to s — B, (s) — hfn 4+1(s). Forr € Z, let A, be the event on
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which the set
{seR:B,_1(s) — By(s) = sup {B,—1(#) — B,(u)} for some t > s}

S<u<t

has Hausdorff dimension % Since B, and B,_; are independent, B, — B,_; is a variance 2 Brownian
motion, and Corollary C.7 implies that P(A,) = 1.
The full-probability event €24 is defined to be

Q:=@neunan () 20 (N QPN () Cuyn[)A- (8-1)
0eQ-0 0€Q-0,xeZxQ meZ,y €. rez
For the sake of reference, the following properties hold on this event.
(i) For e Q.gandx,y € Z xR, B~ (x, y) = B*(x, y) (Theorem 3.1(vii)).
(ii) Foreachx €e Zx Qand 0 € Q~p, x ¢ NUg. In other words, for 6 € Q. and x € Z x Q, there is a
unique 6-directed semi-infinite geodesic out of x. (See Theorem B.1(i) and Remark 4.7(a)).
(iii) For each 6 € Q-, the sets NUj and NU{ are countably infinite. (Theorem B.1(ii)).
(iv) The conclusions of Theorem 7.19 hold.

(v) For every (m, q1) < (r, q2) with g1, g2 € Q-¢, there exists a unique geodesic between (m, g1)
and (r, g»). That unique geodesic does not pass through (k, g;) for k > m or (n,qy) forn < r
(Lemma A.2(1)).

(vi) For every pair of points (m, s) < (n, t), there are finitely many geodesics between the two points
(Lemma A.2(i1)).

With this event in place, we have the following result.

Lemma 8.1. On the event Qq, the following hold for all 6 > 0 and O € {—, +}.

(i) For each compact set K, there exists y € Q¢ such that, for each t € K, the functions s +—
B, (s) — han_H (s) and s — By (s) — hr’:l +1(s) agree on the common compact set containing all
maximizers of the functions over s € [t, 00).

(i) There exist no points t € R such that the function s — By, (s) — han_H (s) has three maximizers over

s € [t, 00). If the function has two maximizers over s € [t, 00), one of them is s = t.

(iii) The function s — By, (s) — han ,(8) is not monotone on any nonempty interval.

+
60,R
(m,s),m

v) If m,s) € NUYT, there exists t € (s — ¢, ) such that T

@{v) If,forsomes eR, t =, then for every € > 0, there exists t € (s, s+¢&) such that (m,t) € NU?D.

0o,R
(m,t),m

=1.
(vi) Forall (m,s) € NU?D, there exists § > 0 such that NU?D N({m} x (s, s +8)) = 2.

Proof. Part (i): Let tp = min K and f; = max K. By Theorem 7.19(iv), for 6 > 0 and O € {—, +},

we may choose y € (D~ to be sufficiently close to 6 (from the right for O = + and from the left for
0 = —) so that K% (s) = h!/ | (s) for all s € [10. Ty 71y . Since (",
of B, (s) — hﬁil(s) over s € [¢, 00), by monotonicity of Theorem 4.3(iii)(a)—(b), for all € K, the set
O+1)+,R 4
[70, (m,t1),m m+1

is the right-most maximizer

] contains all maximizers of B,,(s) — thH (s) and B,,,(s) —h’ . ,(s) over s € [t, 00).
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Part (ii): If, by contradiction, for some t € R, B, (s) — hzl‘j_H

are both strictly greater than ¢, then by part (i), the same holds for B, (s) — h,}; +1(5), where y is some

(s) has two maximizers over s € [f, co) that

rational direction. This contradicts the definition of 4 that the conclusion of Theorem C.8(ii) holds for
the function s —> By, (s) — ), (s).

Part (iii): Assume by way of contradiction that s — B, (s) — hgﬂl (s) is monotone on some compact inter-
val I. By Theorem 7.19(iv), there exists a rational y € Q¢ such that B,,(s) —h};H (8) =B, (s)— hgf_H (s)
for s € I. Then, s — B,,(s) — h; Q) is monotone on I, contradicting the definition of the event
Q4 € Cyp,y (8-1) and Theorem C.8(iii).

f0O,R
(m,s),m

the unique maximizer of B, (u) — hfnil(u) over u € [s,00). Let K = [s,s + €]. Then, by part (i),

Part (iv): Assume that T, =ys and let ¢ > 0. By definition of right-most maximizers, u = s is
there exists a rational y > 0 such that B, (u) — hfnil(u) = B, (u) — hz;ﬂ(u) for all # in a common
compact set containing all maximizers of both functions over u € [, 00), for each ¢t € K. By definition
of Q4 € Cy;,, and Theorem C.8(v), there exists 7 € (s, s +¢) such that By, (u) — h}; +1(u) (and therefore
also B, (1) — hfnﬂl(u)) has two maximizers over u € [t, 00). Thus, (m,t) € NU?D.

Parts (v)—(vi): These follow by a proof analogous to part (iv), using part (i), the definition of Q4 C Cp, ,,

and Theorem C.38, parts (v)—(vi). O

Proof of Theorem 4.5. Part (i): We prove the statement for limits from the right, and the other statement
follows analogously. Without loss of generality, set K = [fg, #1] for #y < t;. By Lemma B.2(iii), for each

te€ K, n>m,and§ > 0, the sequences t = T(Sn?,}s),mq < ‘L'(‘Sw'f’”g’m <...< ‘c(‘if”g’n for S € {L, R} are the
leftmost and rightmost maximizers of
n
8
D Br(sr—1.0) —h) (sn) (8-2)
=m

over all sequences t = s, < s, <--- <5, < 00. By Theorem 4.3(iii)(a)—(b), for all § € [0, 6 + 1],
m,t)eZxR, oe{—,+}, Se{L, R}, andr > m,

50,8 @+1)+,R
Tom,ty,r = Tomty),r (8-3)

Hence, forallt € K, 6§ € [#,0 + 1] and O € {—, +}, the maximizers of (8-2) remain the same when the
@+1)+.R
(m,t1),n

By Theorem 7.19(iv) and the monotonicity of Theorem 4.3(iii)(a)—(b), for each n, there exists a random
e >0suchthatforre K, 6 <8 <0 +¢,and O € {—, +}, hflil(s,,) = th(sn) fortg <s, < f((ztll));’R
(recall that thrl(s,,) = hiil(O, s»)). Hence, for 6 <8 < 6 + ¢ and each t = 5,,_1 € K, the functions

maximum is restricted to sequences t = 5,1 <S8, <--- <5, <T

n n
Y B(sr—1.5) —h)T () and Y Be(sy—1. ) — hiL (sa)
r=m

r=m

0+1)+R ;. .
are equal on the common compact set of sequences t =s,_] <--- <s§, < t((mtl)) ; which contains all
L 50,8

their maximizers. In particular, their left- and right-most maximizers coincide, and therefore t =

(m,t),r
05 for S e {L, R} and m <r <n by Lemma B.2(iii).

Tomt)r
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Part (ii). Assume, by way of contradiction that there exists w € €24 such that, forsome s <t eR,m <reZ,
6 >0,and O € {—, +}, r(m o.R Without loss of generality, take 00 = +-. Then, by part (i), for

s),r (m t) re
sufficiently close rational § > 0,

8.R 0+.R 0+.L 8L (8-4)

T(m,s),r = T(m,s),r > T(m t),r = T(m t),r°

By Theorem 4.3(iii)(c), r(m o S r(amLt) . on the event (), which contains €4 because § is rational. This

is a contradiction to (8-4).
Part (iii): By the monotonicity of Theorem 4.3(iii)(b), the limits 7, :=lim, », T exist for r > m, and

m,u),r
60,8 60,8 ( )

by part (i1), 7, < r(m Y) - By Lemma B.2(i), for r = m, 7., .. ..., T, , 1S @ Maximizing sequence
for
n
SUP{ Z By (sr—1, 5/) —hﬁil(sn) U=Sp_1 SSp < <8y < 00}. (8-5)
r=m

By Lemma C.1, 7, ..., 7, is a maximizing sequence for (8-5), replacing # with s. By Lemma B.2(iii),
tgf’sL) e r(en'f”f)’n is the leftmost such maximizing sequence. Since 7, < tgrf’f)’r, we must have that
Ty = T(y.y) ., f0r m <r < n. The proof for limits as 7 ™\ s is analogous. O

8A. Proof of the results from Section 4B.

Proof of Theorem 4.8. We prove part (i) last.

Part (ii): To establish (4-10), we show that, for i = 0, 1, if (m,t) € NU9D then (m t) € NUE/ for

some y € ®>0 This follows from Theorem 4.5(i), by which on the event €24, if 0 90k then

(m t) r (m,t),r’
(),/nL[) P < rg: .1, for all rational y sufficiently close to 6 on the appropriate side (greater than ¢ for 0 = +
and less than 6 for O = —). With (4-10) established, item (iii) on page 729 implies that, on €24, NUg and

NU, are both countably infinite.

<T

Part (iii): This follows from part (ii) and Theorem B.1(i) since P(x € NU? o) = 0 for any 6 € Q..
Equation (4-10) and item (ii) on page 729 imply that, on €24, NUj contains no points of Z x Q.

00,R
(m t) r (m,t),r

=t. By Theorem 4 5(i), there exists rational y > 0 sufficiently close to 6

(m t) r
from the approprlate side such that rgnD g 0= ‘E(m . form <k <rand S €{L, R}. Then, t(mLt) , < rgnli) .

Part (iv): Let (m, ) be such that 77 for some r > m, and take r to be the minimal such

index. We show that 7’

<T

and t(mL,) L= ‘[(m 1.« form <k <r. Since y is rational, Q4 C Q) by (8-1). Then, by Theorem B.1(ii),

v,L oo, L

1= T(m,t),r T(m t),r-

Part (i): Since NU?D - NUgD € NUy, and NUy is countably infinite by part (ii), it suffices to show that

for every 6 > 0 and O € {—, +}, NUGD is infinite. We start by showing that NU?D is nonempty. To do

o.L
(m t),m
exist, then for each m € Z, the function B, (s) — h,, +1 (s) over s € [t, 00) is maximized at s = ¢ for each

this, we first show the existence of a point (m, t) e Z x R such that t° > t. If such a point does not

t € R. But then, B,,(s) — hiﬂl (s) is a nonincreasing function on R, contradicting Lemma 8.1(iii).
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)

k, T k=1) 2= (k, Ton,n,k=1)

r, (k. u) (k. Ton..0)

y=(-s)

Iy

x = (m,t)

Figure 19. Coalescence of geodesics.

fn?”tﬁm > t, all maximizers of the function B,,(s) — hfnal(s) over s € [t, o0) are greater than ¢.

In other words, letting

Since T

M := sup {Bm(S)—hiil(S)},

1<s<00

we have B,, (1) — hfnil (t) < M. By Theorem 3.1(iv)—(v), s — B, (s) — hiﬂl (s) is continuous and satisfies

lim By, (s) = ki (5) = Foo.
Therefore, the quantity
T :=sup{s <t:B,(s)— hﬁfﬂ(s) = M} is well-defined and finite.

In words, we go backwards from ¢ until we reach the first point 7 where B,,(T) — hﬁF_H (T) =M. Then,

sup{By (s) — hi ()} = M,
s>T

60,L

and the maximum is achieved at two locations in [T, 00), namely 7 and Ton.ty.m-

Therefore, T =

rgi’TL)ym < r(e”‘i’%m, and (m, T) € NU?".

Lastly, we show that NU?D is infinite by showing that for (m, s) € NU?D and ¢ > 0, there exists
te(s—e,s)suchthat (m,1t) e NU?D. By Lemma 8.1(v), there exists t* € (s —&, s) such that r(en'f,’,{e)’m =t
Then, by Lemma 8.1(iv), there exists ¢ € (t*, s) such that (m, t) € NU?D. O

We begin now to work towards the coalescence claims of Theorem 4.11. First, we present a technical
lemma.

Lemma 8.2. Letwe 24, x =y, 0 >0,and 0 € {—, +}. Then, ifI'; € TxeD and 'y € Ty9D are such that
'y # 9, then Iy and Ty coalesce, and the minimal point of intersection is the coalescence point of
the two geodesics.

Proof. For this proof, refer to Figure 19. Set x = (m, t) and y = (r, s). Let t = tn,1)m—1 < T, )ym < -+~
denote the jump times for I'y, and let s = 7 5),r—1 < T(r5),r < - - denote the jump times for I';. Assume
I''NTy # &, and let z = (k, v) be the minimal point of intersection of the two geodesics. Since x > y,
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the geometry of BLPP paths requires that the first intersection occurs when I'; makes an upward step to
hit I'>. In terms of jump times, this means

Trs) k=1 < V= Tom,0) k=1 = Tom, 1),k A T(r,s5) k- (8-6)

Let u € [T(r.5),k—1, T(m,r),k—1] be rational. Then, by (8-6) and construction of the semi-infinite geodesics in
terms of maximizers (see Definition 4.1), both 7, ;) x and 7, 5) x maximize the function By (w) — hz_‘i 1 (w)
over w € [u, 00). Inductively, the successive jump times 7y ), and 7¢.5),, for n > k maximize the
function B, (w) — hZil (w) over w € [T, 1),n—1, 00) and w € [T(y5),n—1, 00), respectively. Therefore, the
sequences

US Tk < Tkl <+ and  u < Tk < Ters)h+l <

both define semi-infinite geodesics in T, (imu). By Theorem 4.8(iii), because (k, u) € Z x Q, there is only
one element in Tgfu). Thus, T(n,1),n = T(r5),n for n > k, completing the proof. |

The following remark underscores the importance of the configuration and choice of L/R geodesics in
the lemmas and theorems that follow.

Remark 8.3. Let s < ¢t and m € Z. Consider the two initial points (m, s) and (m, t) which lie along the

same horizontal line. The geodesics F(QIE’SL) and anf’tL) , which start from (m, s) and (m, t), respectively,
~_6o,L ’

coalesce at the point (m, ¢) if and only if t > t. However, by Theorem 3.1(vi), for all 6 > 0 and

(m,s),m
oef{—, +}
hoP(s, 1) = Bu(s. )+ sup {Bu(u) — k% ()} — sup {By(u) —hi%, ()},
s<u<oo t<u<oo
and therefore, hfnm (s, t) = By, (s, t) if and only if rgf’;]im (the rightmost maximizer of B, (u#) — han_H (u)

over u € [s, 00)) is greater than or equal to 7.
Now, choose an arbitrary 6 € (0, co) \ ®. We choose (m, s) € NU? and r > s to be such that

§= ff,,;ﬁ),m <t< ffifg,m- (8-7)
By (4-3), for § > 6 large enough,
T(Sn?:sls,m > 1. (8-8)

By Theorem 4.5(i), for y sufficiently close to 6 and O € {—, +},

_ vol yO.R
5= t(m,S),m <r< Tim,s),m- (8-9)

Hence, there exists y < 6 such that, for all n € (y, 00), r('f”;im > t and therefore A, (s, t) = By, (s, 1).

Furthermore, by (8-8), %L and FZS,}L) coalesce at (m, t) for all n sufficiently large, but by (8-9), rne-k

(m,s) (m,s)
and FZE}L) do not coalesce at (m, t) for n € (y, ). In other words, if ; € (y, 8) and 7, is large enough,

then BMO1 ((m, ), (m, 1)) = B2 ((m, 5), (m, 1)) for Oy, 0y € {—, +}, but T{2"4" and {17 " do not

coalesce at the same place as F?fsz)’L and F?;th)’L. Hence, when (m, s) € NU;, the L/R distinction is

essential in our statements about the connection between equality of Busemann functions and common
coalesce points.
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Lemma 84. Letwe ), s<teR, meZ, O0<y <6,and 01,0, € {—,+}. If y =0, we require
01 = — and Oy = +. Then, heDz (s,1) = h} " (s, 1) if and only if one of the following two conditions hold:

(@) 522 (s, 1) = R ' (5. 0) = Bu(s, 1), and 70n2" = 108 > 1,
(i) h2 (s, 1) = hyp ' (s, 1) > By(s, 1), and

’ 607, R yOnL R

. GD L yoi,L Y 6o }/D /o
S =Ty = Tmsm <t = Tonpym =T nm =2t and b2 (" 1)y =h) (s ).

— (m t),m (m,t),m m—+1

Proof. The keys to this proof are the monotonicity of the Busemann functions and semi-infinite geodesics
from Theorems 3.1(ii) and 4.3(iii)(a). For simplicity of notation, we suppress the 00; and [, notation in
the superscripts, noting that Theorems 3.1(ii) and 4.3(iii)(a) still hold when we place O; next to y and 0>
next to 6.

By Lemma B.3, 1% (s, t) = B, (s, t) 1f and only if 7’ > t, which covers the first of the two possible

(m .S) m —

conditions (the inequality f(mRs) m > r(m s)m follows by Theorem 4.3(iii)(a)). By Theorem 3.1(vi),
hyy (s, 1) = B (s, 1) + sup (Bu(w) - hpy iy ()} — Sup {B(u) — Ry ()}, (8-10)

Therefore, hi(s, 1) =hh(s,1) > B,(s, 1) if and only if two conditions hold. The first is

sup {By(u) —h, W)} — sup {Bn(u)—hl )}

s<u<00o s<u<00o

= sup {By(u)—h,  w)}— sup {B,(u)—h)  w)}

1<u<oo 1<u<oo

which comes from applying (8-10) for both 6 and y. By the previous case and the monotonicity of
Theorem 4.3(iii)(a), the second condition is

A I o (8-11)

(m,s),m — “(m,s),m — (mt)m— (m,t),m*

Then,

0 0,R y 0,R
B (T(m s), m) hm+1(T(m,s),m) (B (T(m s), m) hm+1 (T(m,s),m))

> sup {By(u)—hyy ()} — Sup {Bun(u) =}, (w)) (8-12)
=, Sup {By (1) — hjy ()} — Sup (B (u) —hyy, y ()}

= Bn (T(m D)~ +1 (T(m o) — (B (T(m Y +1(T(m )+ (8-13)

Comparing the first and last lines above yields

L L
+1(r(m s),m’ 'L'():n 1), m) = +1(t(m s),m’ T():n 1), m) (8-14)
Theorem 3.1(ii) and (8-11) imply that (8-14) is an equality. Thus, inequality (8-12) is an equality,
implying that

Bu(l R )=l @R Y= sup {Bu(u)— Kl ().

S<u<oo
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Therefore, r(emRs) n 18 @ maximizer of By, (u) — 1(u) over u € [s, o0). By definition, r(’;nR) 18 the

rightmost such maximizer, so r(emRS) m r(mli) m- However by the first inequality of (8-11), r(mli ym =

t(emRS) - An analogous argument using the equality in (8-13) shows that r(mLt) = r(gmLt) - The equality
hfn_H(s ) = h’};ﬂ(s , t') follows since (8-14) is an equality. O

Lemma 8.5. On the full-probability event Q,, forallm <r e€Z, t eR, 6 >0,and 0 € {—, +},

r—1
BO((m, 1), (r, 1)) = sup{z Bi(ti 1, 10) — ROt t ) it =ty <ty < - <t < oo}. (8-15)
k=m
Proof. We proceed by induction. The case r =m + 1 is another way of stating vm ()= Q(hzl‘il, B,,) (1),
which is Theorem 3.1(vi). Assume that (8-15) holds for some r > m. By additivity and Theorem 3.1(vi),

ROt tr—y) = RISt tem) + 002 () — 007, (821)

=0 )+ 0 (O = sup (B (o1, 1) = B (1, 1))

t—1 <1, <00

=2 )= sup  (Br(t—1.t) —hiS (1, 1,)).

ty_1 <t, <00

Insert this into (8-15) as follows.

sup { > Biltior, i) — R (2, rr)} RO((m, 1), (r, 1) 007, () =BT (m, 1), (r +1,1)),

t=ty—1=---=1, <00 k=m
where the last equality above follows by additivity. U

Lemma 8.6. Let w € 2y, m <r € Z and t € R. Assume for some 0 <y <6 and Oy, 03 € {—, +},
B2 ((m, 1), (r, 1)) = B ((m, 1), (1)) Then, 4 = 1% = 0700 form <k <r — 1, and
hO%2(t, 1) = h/™ (t ).

Proof Lemma 8.6. If y = 6, without loss of generality, we may assume that 0; = — and 0, = +. As in
the proof of Lemma 8.4, we suppress the 0; and 0O, in the proof. By Lemmas B.2(i) and 8.5,

r—1 r—1

y,L
S Bt T —hl Tl = L ]W{ZBk(zk_l,rk)—hr(r,tr_1>} (8-16)
=m —m—_m_ =lr— k=

=B ((m, 1), (r, 1)) =B ((m, 1), (r, 1))
r—1

= sup {ZBk<rk_1, t) — h(t, rr_o} (8-17)

t=ty—1 =<ty <=1, —1 <00 k

0
>ZBk(f(mz>k 10 (mt)k) h (t’r(mt)r 1 (8-18)

Comparing h? and h} and using Theorem 3. l(ii) the inequality (8-16) > (8-18) must be an equality.

L L
Therefore, t =t Y

(m,t),m—1 — (mt)mS <T

(m. t) 1 1s maximal for the supremum in (8-17). Since
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yL

Tk = r(m ok for all kK > m (Theorem 4.3(iii)(a)) and 7 ¢ 18 the leftmost such maximizing se-

(m t)
quence, T, ) ; = gn Dk for m < k <r — 1, as desired. The equality h (t,t,—1) =hl(t,t,_) then

follows from the equality (8-16) = (8-18). O
The previous lemma generalizes to points subject to southeast ordering.

Lemma8.7. Letw e Q2 and (m,t)=x >y =(r,s). Assume thatfor some(0 <y <0OandOy, Oy € {—, +}

that B2 (x, y) = BYD(x, y). Then, t; = t(mDZI)Lk = ‘[(J:n t') Jorm <k <r—1,and ho™ (s, t_y) =
hY™ (s, tro).

Proof. If y = 0, without loss of generality, we may assume that 0; = — and 0O, = +. As in the proofs of
Lemmas 8.4 and 8.6, we suppress the 0; and O, in the proof. By additivity, B% (x, y) = B (x, y) gives

Yol —hls.= > vl ) —hl(s.1). (8-19)
k=m+1 k=m+1

By Theorem 3.1(ii), vk > vk and h9 <inc hln. Hence, equality i 1n (8 19) forces vy (1) = vZ () form+1<
k <r and hf(s, t) = h! (s, t). Then, by Lemma 8.6, #; := (m’[)’k = (m,L[)’k form <k <r—1and
ho(t, t.—1) = h (t, t.—1). Combining this equality with the equality h?(s, t) = h (s, t) completes the
proof. (Il

The next theorem contains the final step needed before we tackle the proof of Theorem 4.11. Recall
the point z°7(x, y) described in Definition 4.15. We have not yet shown that this quantity is well-defined.
If, a priori, FzD’L and FgD’R do not intersect, we set z7°(x, y) = 0o, interpreted as the point at co in
the one-point compactification of R?. Under this definition, z%7(x, y) € Z x R if and only if T9%-L and
99 intersect.

Theorem 8.8. Let w € Q, y <0, 01, 0 € {—, +}, and x = y. Then, BY7 (x, y) = B2 (x, y) if and
only if V2 (x, y) =222 (x, y) € Z x R.

Remark 8.9. The statement of this theorem is somewhat subtle. The “only if” implication says two
things: if there exists ¥ < 6 such that B2 (x, y) = B2 (x, y), then 277! (x, y) and z™2(x, y) are both
in Z x R, and they are equal.

Proof of Theorem 8.8. Set x = (m, t) and y = (r, s). The condition x > y gives m <r and ¢ > 5. Again,
we suppress the 00j and (I, in the proofs. Assume first BY (x, y) = B%(x, y). By Lemma 8.7, 'YL and
ry L agree up to level r, and hf (s, t—1) = hY (s, t,_1). Therefore, by restarting the geodesics from level r,
it suffices to assume » =m so that y = (r, s) and x = (r, t) for some r € Z and s < ¢t. If s = ¢, there is
nothing to show, so we assume s < t.

Now apply Lemma 8.4 whose two cases are illustrated in Figure 20. In case (1), T(rf) ,and 7;’ SR) ,
both greater than or equal to ¢. Therefore, for n = 6, y, the first point of intersection of F n.R 5 and F'7 L
(r, t). This precisely means that z% (x, y) =zV(x,y)=(r1).

In case (ii), the paths (erf) and Fz/r , both jump at time ¢’ to level r + 1, while F and re f) both
jump at time s” < ¢ to level r + 1. Furthermore h? 1 (', 1"y =h +1 (s',1), so we may 1nduct1vely repeat

are

this procedure. By Theorem 4.3(v), F [) and F(r 5) are 0-directed while F and Fglr 5) are y-directed.
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r+1,s) @¢+1,1)

(r,s) (r,1) (r, ) (r, 1)

Figure 20. 0-directed geodesics are depicted in red/thick and y-directed geodesics are depicted
in blue/thin. The picture on the left depicts the case hf (s,t)=hY (s, t)=B.(s, t) and the geodesics

coalesce immediately at (7, #). On the right, hf(s, t) =h!(s,t) > B,(s, t). The geodesics from
(r, s) and (r, t) make the same jumps to the next level, th (s, )= hryJrl (s’, t), and the induction

continues.

Hence, F?r’f) and Fg/”L) must separate eventually, and similarly for F(er’yf) and Fg’rf) Thus, this inductive
procedure must terminate on some level at case (i) of Lemma 8.4 and then z%(x, y) =z"(x, y) € Z x R.

For the converse claim of the theorem, if z :=z” (x, y) =z%(x, y) € Z xR, then by (4-11), B” (x, y) =
Lx,z_Ly,z:%e(x,Y)- O

Proof of Theorem 4.11. Part (i): First, we assume x > y and show coalescence of the geodesics Fﬁ*’L and
9k By Theorem 7.19(v), B°F (x, y) = RO (x, y) for all 8 > 0 sufficiently close. Then, by Theorem 8.8,
Z2’T(x, y) € Z x R, meaning that 'YL and F§+*R intersect. By Lemma 8.2, the coalescence point is
z%*(x, y). A symmetric argument applies to the geodesics T'9~ and Fg_’R in the case x > y.

Now, let x, y € Z x R be arbitrary and let '] € T, x@ Dand I'; € Ty" O, Since I'; and I'; are infinite paths
with direction 6 > 0, there exists m € Z such that (m, s) € I'; and (m, t) € I', for some s, t € R. Assume,
without loss of generality, that s <¢. Lets =s,—) <s,, <--- and t =1, < t, < --- denote the
jump times from level m of the semi-infinite geodesics I'y and 'y, respectively. Then, for r > m, by

Theorem 4.5(ii),
0o,R 0o,L

00, R 00,1
om0 = Tomi41),r

T(m,sfl),r — r(m,s),r =S80 =T

By the x > y case, F?}S”f_l) and F?nf"’tL 1y coalesce. Therefore, for all sufficiently large r, rfn'itvli s =
T(err?}il) .» 50 the above inequalities are all equalities for large r, and I'; and I'; indeed coalesce. The
statement that the coalescence point is the first point of intersection in the case x > y is then a direct

consequence of Lemma 8.2.

Part (ii): By Theorem 4.8(iv) and Remark 4.10, for any two distinct geodesics I'1, I'; € T, x@ B, I'; and
I'; exit the vertical line containing the point x on different levels. Precisely, without loss of generality,
there exists a level r > m on which I'} makes a vertical step from (r, ¢) to (r + 1, ¢), while ', makes a
horizontal step to (r, t + ¢) for some ¢ > 0. Then, (r,t +¢) > (r + 1, t), and so by part (i), the minimal
point of intersection of two 60 geodesics from (r 4 1, t) and (r,  + ¢) is the coalescence point.

Part (iii): This follows because all geodesics in T¢® lie between ['Y%L and T9%R | which must coalesce
by part (i). O

8B. Proof the results from Section 4C.
Proof of Theorem 4.17. (1)<>(ii): This is a direct application of Theorem 8.8.
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=2 (x,y)=z2""(x,y)

0+.R 6-.R
| IS B¢

y)

0+.L o—.L
r.== Iy

Figure 21. Common coalescence.

L
F;/Jr and

(i))=(iii): If z := 27T (x, y) = z°~(x, y), then between x and z, the portions of the paths
Fﬁ_’L are both leftmost geodesics between x and z by Theorem 4.3(ii). Hence, '} L and ch_’L agree
up to the point z. Let I'; be this finite-length path from x to z. Analogously, F)y”r’R and Fi_*R agree up
to the point z. Let ['; be the finite-length path from x to z. By the monotonicity of Theorem 4.3(iii)(a),
for0 € (y,8) and O € {—, +}, FgD’L lies between F;JF’L and Fi_’L, so it must agree with I'| between
the two points. Similarly, FgD’R must agree with I'; between x and z. The point z is the first point of

intersection of I'; and I', by definition. This is exactly (iii).

(iii)=>(i): If (iii) holds, then by (4-11),
BT (x, ¥)=Lyz— Ly, =B (x,y). O

Proof of Theorem 4.20. (i)=>(ii): If B~ (x, y) = B+ (x, y), then Theorem 7.19(v) implies that for some
y <0 <8, B'T(x,y) =B (x,y). Then, (i)=>(iii) of Theorem 4.17 implies the existence of z € Z x R
and disjoint paths I'; (from x to z) and I'» (from y to z) such that for n € (y, ) and O € {—, +}, [77F
agrees with I'; up to the point z, and FQD’R agrees with [, up to the point z. Applying this twice—both
times with = 6, but once with 0 = + and once with 0 = —, implies that z = zg_(x, y) = 2t (x, y).

(i)=(@): If z := 277 (x, y) =z’ (x, y), then by (4-11),
B (x,y)=Ly;— Ly, =%""(x, ).

(i))=(iii) Assume that z := z~(x, y) = z°*(x, y). Since leftmost Busemann geodesics are leftmost
geodesics between their points and the same for rightmost (Theorem 4.3(ii)), F§+’R agrees with Fg_’R
up to z, and Fg_’L agrees with FgJﬁL up to z, as in Figure 21. Therefore, FfzJ“L and Fg_’R both contain
the common point z.

(iii)=>(ii): Assume that z € T9+L N Ff,_’R for some z € Z x R. Take z to be the minimal point of
intersection. In the degenerate case where x lies directly below y, it is possible that ['Y*L moves directly
from x to y, in which case T'% =L also moves directly up to y, so y =z~ (x, y) = z/*(x, y). Otherwise,
using monotonicity of the geodesics (Theorems 4.3(iii)(a) and 4.5(ii)) the semi-infinite geodesics Fﬁ_’L
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TZ

X

Figure 22. The red/thick paths are I'y*+* and I') ¥, and the blue/thin paths are [} ™% and T’}

and FgJ“R both lie in between I'{ "L and Fg_’R. See Figure 22. Thus, z € [9+L ﬂFg_’R nré—L ﬂFgJ“R.
Since rﬁ“ and ng—’L are both leftmost geodesics between x and z (Theorem 4.3(ii)), they agree up to
the point z. The same holds for rightmost geodesics between y and z. Hence, the picture is given as in
Figure 21, not as in Figure 22, and z = 2t x, ) =2""(x, y). O

Proof of Theorem 4.21. (i)=(ii): If 0 ¢ ©, then hgj (1) = hfn_ (t) forallm € Z and t € R, so (ii) follows
by the construction of semi-infinite geodesics from Busemann functions.

(ii)=-(iii): Assuming that (ii) holds, we can dispense with the &+ distinction. It suffices to show that for
meZands <t € R, any 6-directed semi-infinite geodesic, I'(, starting from (m, s), coalesces with
any 6-directed semi inﬁnite geodesic I'p, starting from (m, t) By Theorem 4.3(iii) and (vii), 'y and I"
lie between I‘ and F . Then, by Theorem 4.11(), F and F t) coalesce, so I'y and I'; also
coalesce.

(iii)=>(i): We prove the contrapositive. If 6 € ®, then by Theorem 2.5(iii), he+ (s, 1) < hg_(s t) for some
s < t. By (iii)<>(i) of Theorem 4.20, I‘?OJF t)L N F(o ) = o, and these two 6-directed geodesics do not
coalesce.

(ii)=>(iv): By definition (4-9), for all x € (Z x R) \NUp, 6 > 0, and 0 = {—, +}, 9>k =1¢o.L By
assumption, we also have Fg_’R = FgJ“R . Therefore Fﬁ_’L = FgJ“R, and the result then follows from
Theorem 4.3(vii).

(iv)=-(v): This is immediate since NUj is countable by Theorem 4.8(ii) and therefore not all of Z x R.

(v)=(vi) and (v) = (vii) follow immediately by Theorem 4.3(vii).

(vi)=>(ii): Assume that T9"® = %=k for some x € Z x R. Let y € Z x R. By Theorem 4.11(i),
o=k 4tk ik, and I“‘)+ R all coalesce with Ty™® =T'9~R. Hence, '} and T'{™* coalesce.
Let z be the coalescence p01nt. By uniqueness of rightmost geodesics, Ff, R and I‘f,* K agree from y
to z, so z =y, and Fg_’R = F§+’R. By a similar argument, Fg_’L = F§+’L.

(vii)=(ii): This follows analogously as for (vi)=-(ii).

Part (viii): Let 6 € (0,00)\ ® and lett =t,,_1 <t,, <--- be the jump times of a #-directed geodesic I"
started from x = (m, t) € Z x R. By the implication (i)=(iii), I" coalesces with Fg’R. By Theorem 4.3(ii),
for any point z = (n,u) e I'N Fg’R , the energy of a geodesic between x and z is given by %% (x, z). Then,
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by the additivity of Theorem 3.1(i),

n—1
Z Br(tr—la tr) + B, (tn—lv u) = Lx,z
r=m n—1
=B, 2) =D [ (tro1, 1) + 0] ()] + B (b1, ).
r=m

By the monotonicity of Theorem 3.1(i), B, (t,—1, ) = hf (t,_1,t,) and fo (t,)=0form <r<n-—1.
Combine this with the following consequences of Theorem 3.1(vi):

R (1, t;) = Bu(tr1, t,) +  sup  {By(u) — Y (w)} — sup {B.(u)—h"  (u)},

t_1<U<00 t, <u<oo

vl (6) = sup {By(tr,u) —hy, (tr, u)}.

1 <u<oo

From this,

sup {B,(w)—h?, W)} = sup {B,(u)—he (w)}=Bt)—hi &),

L1 <Uu<oo 1 <u<oo

where the first equality comes from h(’ (tr—1,t) = B.(t,—1, t;), and the second inequality comes from

rH(tr) =0. Hence, t, maximizes B, (u) —h®_ _ (u) over u € [t,_1, 00) form <r <n—1. Letting n — oo

r+1
completes the proof. ]

8C. Proofs of results from Section 4D. For n > m, we recall the definitions
a(fn’s)’n i=sup{t >s: F(Lm’s)’(n,,) passes through (m + 1, s)} (8-20)

and

G(Iren,s),n i=sup{t>s: F@J)’(n’t) passes through (m + 1, 5)}. (8-21)

We now restate the definition of 95“ 5) and 9(51 5) given in Section 4D for convenience of the reader:

o,R
(m s)m

G(m 5 =sup{f > 0: 7’ =s} and O(m s =sup{f > 0: ! =s}. (8-22)

(m S‘) m

Proof of Lemma 4.28. By (4-3), limg_, o T'7% =00 forall (m, s) € Zx R, so t’>% > s for sufficiently

(m v) m (m,s),m
large 6 > 0. Hence, G(m 5) < oo. Further, by Theorem 4.3(ii), the portion of the semi-infinite geodesic

F(em 9 between the points (m, s) and (n, r(m 5, n) is the leftmost geodesic between these two points. Hence,
by (8-20) and planarity, for such sufficiently large 9, cr(m Sy < rfn'isﬁ’n < 00. (Il

We first prove Theorem 4.30 before moving on to the proof of Theorem 4.29.

Proof of Theorem 4.30. (1)=>(ii): If, for some n > m and ¢ > s, one geodesic between (m, s) and (n, t)

passes through (m + 1, s), then the leftmost geodesic passes through (m + 1, s), and o % >t>5.

()=@): If o(m S
geodesic between (m, s) and (n, t) passes through (m + 1, s).

(m,s),n —

> s for some n > m, then by definition (8-20), when ¢ € [s, ok ], the leftmost

(m,s),n



GEODESICS AND COMPETITION INTERFACES IN BLPP 741

(n, s)

(n—1,s)

(m,s)

Figure 23. Example of a nontrivial competition interface (blue/thin) that is vertical for the first
three steps. The red/thick path gives the geodesic between (m, s) and (n, t).

(i)=(iii): Assume that (m, s) € Z x R has trivial left competition interface, and let n > m be the minimal

> 5. We show that a(ﬁ’s)’n

R _ L
(m,s),r — G(m,x),r

t > s such that the leftmost geodesic between (m, s) and (n, t) passes through (m + 1, s). Because of this

index such that o(fm)’n

Under this assumption, by (4-14), o

> 5.
=s for m <r < n. By definition, there exists some

and the assumption that o*(fn s).n—1 =S, this geodesic cannot pass through (n — 1, u) for any u > s. Hence,
the left-most geodesic passes through (n, s), as in Figure 23. Recall that the jump times for geodesics
between (m, s) and (n, t) are defined as maximizers of the function

By (s, sm) + Bm+1(Sle sm+1) 4+ 4+ Bu_1(Sp—2, Sn—1) + By (sp—1, 1)
over all sequences s <s,, <--- <s,_1 <t. Equivalently, they are maximizers of the function
Bm (Sm) + Bm-H (sm» Sm+1) +--- Bn—l (sn—Za sn—l) - Bn (Sn—l)a (8'23)

over the same set of sequences. Since the left-most geodesic between (m, s) and (n, t) passes through (n, s),
this means that the sequence s = s,,;, = s;+1 = - - - = Sy—1 1S @ maximizing sequence for (8-23) over all
sequences § < s, <--- <s,_1 <t. By item (vi) on page 729 there are only finitely many maximizers.
Choose 7 > s such that

f<tAmin{s,_| >5:S=8y_1 <---<s,_1 <tisa maximizing sequence for (8-23)},

where we define the minimum of the empty set to be co. Then, s = s, = - - - = s, is the unique
maximizing sequence of (8-23) over all sequences s =s,,_1 < - -- <s,_1 <1, so there is a unique geodesic
between (m, s) and (n, 7), and it passes through (m + 1, 5). Hence, a(lfn sy > 5> a8 desired.

(ii1))=-(ii1): This is immediate from (4-14).
(i)<>(iv) and (iii)<(v): We prove (iii)<>(v), and (ii)<>(iv) is analogous. For this, we choose an arbitrary

point (m, s) and use the shorthand notation 0= Q(Ij’n’ 5
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(m+1,s)

(m, s)
Figure 24. When the competition interface direction 6=0R >0, F?A,;’SI)? (upper red/thick

path) immediately splits from Ff;{ ff (lower red/thick path). These paths never touch after the

initial point, and the competition interface (blue/thin) lies between the paths.

(m,s)

If & = 0, then by the deﬁnition (8-22), ('}, > s for all @ > 0 and 0 € {—, +}. Then, for all
0 >0and O € {—, +}, F(m 5 does not pass through (m + 1, s). For n > m, (n, r(ew‘l:";l;n) € F?”Dlslg,
R 7I0-R forall @ >0and O € {—, +}. By (4-3), llmg\of =g forall n > m.

(ms)nS (m,s),n

R
Now, assume O lm.s)n

geodesic between (m, s) and (n, t) passes through (m, s + ¢) for some £ > 0. By Theorem 4.3(v), for

o,R R
(m, s) n—=5,80 G(m,s),n

=s for all n > m. Then, by (8-21), for all » > m and ¢t > s, the rightmost

each 6 > 0and O € {—, +}, we may choose n large enough so that r( ) > 5. Then, the rightmost
) passes through (m, s + ¢) for some 8 > 0. By Theorem 4.3(ii),
(m . n) Thus, for all 6 > 0
> 5. By (8-22), 6=0.

geodesic between (m, s) and (n, r(m S) "

this rightmost geodesw agrees with the portion of F(m 5) R from (m, s) to (n, !

and O € {—, +}, roo passes through (m, s 4 ¢€) for some ¢ > 0, and 0

(m, S) (m s) m

(iv)<>(vi) and (v)<>(vii): These are immediate from the definitions (8-22). The clarifications for parts (vi)
and (vii) are outlined in the proof of the next implications.

(iV)=>(Viii) and (v)=(ix). We prove (v)=(ix), and (iv)=>(viii) is analogous. Again, we use the shorthand
notation 0 = 9( m.s) and assume 0 > 0. By definition (8 22) and the monotonicity of Theorem 4.3(iii)(a), for
y < 9 and o e {—, +}, 7/ R = s, while for § > fand O e {—, +}, OOk By Theorem 4.5(1),

(m,s),m — (m,s),m

for y < < § sufficiently close to 8, and O € {—, +},

So.R  _ _O+.R

yl:l R 9 ,R
(m,s),m = Cm,s),m"

(m s),m — (m A) m and

Therefore, 19 — s and 7’

R

G (m, A) m (m s) m S "
F(m+ SI; moves horizontally to (m, s + ¢) for some ¢ > 0. By Theorem 4. 3(ii) F(m SI; and F(”_: s'; are both
the rightmost geodesic between any two of their points. Thus, F(m 9 R and F (m.s R cannot meet again after
the initial point (m, s), or else there would be two rightmost geodesics between (m, s) and some point
(n,t) > (m,s). Refer to Flgure 24 fochlarlty Hence, F?m s’; N F?;{ sl)e
Theorem 4.3(iii)(a), for y <8, TVT% and I % both travel to (m + 1, s) and therefore contain (x, s)

~ (m, S) (m,s)
for x € [m, m + 1], and for y > 9 7 "R and T7 7 both travel to (m, s + ¢) for some & > O and thus
R A pr+R

(m s) (m,s)
(m Y) (m,s)

> s. In other words, F(@,; ’Sl; makes a vertical step to (m + 1, s) while

{(m, s5)}. By the monotonicity of

contain (m, x) for x € [s, s + €]. Therefore, 9 is indeed the unique direction y such that r’
is a finite set.
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In summary, for S € {L, R}, T(en?,’ss),m =g for 6 < G(S , while r , for 0 > 9 - Furthermore,
e(fn,s)_’s e(m.x)+’S
(m,s),m =s5< T(m,s),m :

This proves the clarifications stated in parts (vi) and (vii).

(viii)=(vi) and (ix)=(vii): If ré=Lnapftl — {(m, s)}, then F must make an initial vertical step to

(m, S) (m,s) —

(m + 1, s). The same is true for L’ replaced with R'.

(vi)&(x): By Theorem 3.1(vi), 002 | (s) = SUP,—, oo { B (s, u) — h%7 (s, 1)}, s0

erl(s) 0 < s maximizes B, (u) — +1(u) over u € [s, 00) & t(m gm =y, (8-24)

thus completing the proof. U

Proof of Theorem 4.29. We prove the limit for § := 9 s)» and the other limit follows analogously We
consider two cases: § = 0 and 9 > 0. If & = 0, then by (iii)<(v) of Theorem 4.30, o X
n > m, and 11m,1_,Oo a(m 5. LN =

Now, assume 6> 0. By (V):>(1X) of Theorem 4.30, F(m 9
while F9+ S’; makes an immediate horizontal step. By Theorem 4 3(ii), F(m R 5 and I'/ 6k m.s) are rightmost

msyn =73 for all

R makes an 1mmed1ate vertical step to (m+1, s),

geodes1cs between any of their points. In particular, (7, r(m ) ) lies on FG R for o e {—,+}, so
by definition (8-21), for each n > m,

= 9+ R
r(m,S),ﬂ = O'(m,S)Jl — t(m s),n°

The result now follows by Theorem 4.3(v). ]

Proof of Theorem 4.32. Part (i): By Theorem 4.8(iv), if (m, s) € NUp, then r(nf’ SL) , = s for some 6 > 0,
O € {—, +}, and r > m. By definition,

GEI,L GD,L
§= T(m,s),m_1 =< T(m,s),m <.,
so 705 =, and (m, s) € CI by condition (vi) of Theorem 4.30.

Part (ii): The equality
() €ZxR:08 [ #60L V=(m,s)eZxR:0<0F <6k )

follows by (4-15) and (iv)=>(v) of Theorem 4.30. Let w € 94 and (m, s) € NU1 By Theorem 4.8(i1)—(iv),
o.L . By (8-22), 6 (m 5 = 8. Since § is rational,

(m,s),m (m s),m"*
and we are working on the event €24, there is no + distinction for direction § (see item (i) on page 729).
(8 &)O,R §,R

there exists some rational § > O such that s =t <7

Then, by Theorem 4.5(i), for all ¢ sufficiently small and O € {—, +}, 7(,, . = Tim.5).m > 5- Hence,
by (8-22), 9(m 5 < § < Q(fn 5 Next, assume (m, s) ¢ NU;. By definition (4-9), ‘L’(m S m= r(gn'i":im for all
6 > 0 and O € {—, +}. The definition (8-22) implies that 9 05,1 5"

Part (iii): We assume that (m, s) € NU; so that 0 < 9( ) < 9
is vacuously true.

Otherwise, by part (ii), the statement

(m,s)*
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X

Figure 25. The red/thick path is the 6+ geodesic and the blue/thin path is the 6 — geodesic.

By Theorem 4. 30(v111) r(m s) n =S if and only if either 6 = oL

)andD——or9<9L
Theorem 4.30(ix), /OR - sifand only if either = R

(m,s)* By
Therefore, using

(m,s

andO =+ or6 > 6~k

(m s),m (m,s) (m,s)*
Theorem 4.8(iv),
6— 6—.L 60—
(m,s) eNU” =100 =s <), <=0eOf .05 ]
0+ 0+.L 0-+,R
(mv S) € NU1 — T(m,s),m =S5 < T(m,s),m e [Q(M,S)’ e(m,s))'
Part (iv): Let (m, s) € NU?D. By Lemma 8.1(v), there exists t* € (s — ¢, s) such that tfn'f’f) n = 1" Then,

by Lemma 8.1(iv), there exists ¢ € (¢*, s) such that (m, 1) € NUGD

Next, for (m,s) € NUj, Q(Ifny 5 > 0 by part (i1), and by Theorem 4.30(ix), when 6 < 0 (m.s) and
oe{—,+} (or6 = G(m s) and O = —), r(m S) n =S. By Lemma 8.1(iv), there exists € (s, s + ¢) such

that (m, 1) € NU9".
Part (v): Choose 0 > 6f andOe{—, +}or0 =6  ando=+. Sete = t(enjxfm — s, where 0= 08, 5
By Theorem 4.30(ix), ¢ > 0. By the monotonicity of Theorem 4.3(iii)(a), ¢ > IR By

(m v)m — “(m,s),m
Lemma 8.1(i1), for all £ € (s, s +¢], gf;; 1 18 the unique maximizer of By, (u) — hoo ma1 () over u € [t, 00),
and (m, 1) ¢ NU?",

Part (vi): Let (m,s) € CI and set 0 = 6R By Theorem 4.30(ix), R < rg+ R By

(m,s)" (m, s) m (m,s),m"

Lemma 8.1(iv), for & > 0, there exists 7 € (s, (s + &) A r9+ R ) such that (m, f) e NU . Further, by

(m,s),m
Lemma 8.1(v), we know that there exists 7 € (s, f) such that ‘E(em If =t. On the other hand, since
s<t< r(eervI;m, and since r(9+ fm is the rightmost maximizer of B, (u) — hﬁ;l(u) over u € [s, 00), we
0+,R 0+,R
also have that 7, )" =7, 1y, > . In summary,
o—,R _ 6+,R
T(m,t),m =1< T(m,t),m’

so by Theorem 4.30(ix), 0F | =0 =6F O

(m,s)"

Proof of Theorem 4.36. Part (i): We show that {Q(m s)}(m syect = ©. The statement for the collection

(0L . y)}(m syect has an analogous proof. First, let (m, s) € CI and set 0= Oﬁ sy Then, by parts (v) and (ix)
of Theorem 4.30, & > 0 and F(gm s’; * F(er:s])e By (i)« (ii) of Theorem 4.21, 0eo.

Now, assume that 6 € ©. By (vi)< (i) of Theorem 4.21, for all x € Z x R, T9R £ 19k Since
both I'%"R and T'9~R are rightmost geodesics between any two of their points (Theorem 4.3(ii)), the
two geodesics must split at some point v > x and never come back together. See Figure 25. Then,

r9=RN 1o+ R = (v}, and by Theorem 4.30(ix), § = K.
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Part (ii): First, we show that for (m,s) € Z xR, and t > s,

[0>0:007 () <Vt ()} S04, 00) and ﬂ{9>o:hfn+(s,t)<h§;(s, NYCI0, 68, 1. (8-25)

tit>s

If 9&1 5 = 0, there is nothing to show for the first inclusion, so we assume that G(m 5 >0.1If6 < 9(6,1 5) then

by (8-22), Tp’l = for 0 € {—, +}. Thus, by (8-24), v (s) =0 for 6 € [0, 6., ), and therefore,

P (m,s),m — ot > Y (m,s),m’>
{6 >0: vm+1(s)<vm+1(s)}C (mé),oo).

Now, for the second statement, we note by the last statement of Lemma B.3 that B, (s, t) = th (s, 1)
60,R

if and only if Tomsym = 1 Hence, 6 — heD(s t) is constant in the interval (H(m e 00), where
O, o =inf(0 > 0: 705 > 1},
Therefore, for any ¢ > s,
()10 >0: k(s u) < hfy (s, )} S [0, O.s) 1.
uu>s

The proof of the claim is complete once we show that

9(51,S),t N 9(Ifn,s) ast\(s. (8-26)
First, by definition (8-22) and monotonicity (Theorem 4.3(iii)(a)), 6, (m 5) is equivalently defined as

inf{6 > 0: r(m s) m >S5t

<oR ;). forall s <. However, setting 0= 9 m.s)> DONOtoNIcity and the definition (8-22) imply

SO Q(m D R ok
thats <t <t/™ for6 > 0. Hence, 67 = 9(’; s) for all ¢ € (s, 0 1. Specifically, (8-26)

(m,s),m — “(m,s),m (m,s),t
holds, as desired.

(m s)m

Since Q(m 5 = Q(m 5> the inclusions of (8-25) guarantee that
Sims) S {e(m,s)} N {O(m’s)}. (8-27)
Hence, if 0 <6f, s Sem.s) = @. In the case that 6%, | = 0(6,1’S), we show that 6, ) € Siu.s). We

break this into two cases, one where 9( m.s) = = 0 and the other where 0( ms) > 0.

Case 1: 9(15,133,) =0: By (8-27), we just need to show that 0 € S, ), which by definition holds if and only
if varl (s) >0forall® >0and O € {—, +}; (x)<(v) of Theorem 4.30 completes the proof of this case.

Case 2: 9(’;’ 5 > 0: In this proof refer to Flgure 26. Setting 9 =0R (m 5 (v)=(ix) and (iv)=(viii)
0+.R and F0+ L

of Theorem 4.30 imply that I"(m 5) R and F(m 5 (m.s) (m.s)
make immediate horizontal steps (see also Remark 4.31). Hence, both Fer: R and F9+ ;) pass through some
(m, u) € Zx Q. By Theorem 4.8(iii), on 24, (m, u) ¢ NUy, and there is a single 9D Busemann geodesic
starting from (m, u). Since F(e,: SL) and F(e,: SI; both pass through (m, u), it follows that F?nj sﬁ = l"z;r slf The
implication (v)=(ix) of Theorem 4 30 also 1mphes that the only common point between T’ O+.L 1"9+ R

(m,s) — © (m,s)
and F?m YI; is (m, s) Therefore, F (m. ﬂ ro- y =9, and forall ¢ > s, F9+ Ln Fe I; = . By (1)< (iii)

(m+1 s (m,t) (m,s
of Theorem 4.20, 8 € S(m,s)» aS desned U

(m,s) —
L make immediate vertical steps, while I'
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L 2

+,R _ —0+,L
F(m,S) - r‘(m,S)

(m+1,s)

(m,s) (m,u)

Figure 26. Fg_‘R (upper red/thick path) travels to (m + 1, s), while Fm’k and F§+’R (lower

(m,s) (m,s) (m,s)
red/thick path) both pass through (m, 1) for some rational u > s.

8D. Proofs of Theorems 2.8 and 2.10.

Proof of Theorem 2.8. Part (i) follows from the equivalences (i)< (iii)<>(iv) of Theorem 4.21. Part (ii)
follows from Remark 4.22. U

Proof of Theorem 2.10. Recall that the last-passage time between (m, s) and (m + 1, t) is

sup {By (s, u) + Byi1(u, 1)} = By 1 (1) — By (s) + sup (B, (u) — By11(u)}, (8-28)

S<u<t S<u<t

and the maximizer u gives the location of the jump from level m to level m + 1. For r € Z, define the
random sets LeftMax, as

{seR:B,_1(s) — By(s) = sup {B,—1(u) — B,(u)} for some t > s}. (8-29)
S<u<t
As in the proof of (ii)=(iii) of Theorem 4.30, if a(fn’s),n > s for some n > m, then letting n be the

smallest such integer, there exists ¢ > s such that the leftmost geodesic between (m, s) and (n, ¢) passes
through (n, s). Again, refer to Figure 23. Therefore,

LeftMax, 1 C {s € R:0f;, ), > s for some n > m} € | J LeftMax, . (8-30)

n>m

On the event Q4 C A, (8-1), LeftMax, has Hausdorff dimension % for each r € Z. Using condition (ii) of
Theorem 4.30, the set

{s e R:a(ﬁm)’n > s for some n >m}={s e R: (m,s) € Cl}

also has Hausdorff dimension % By (8-30) and Corollary C.7(i), each point s € R lies in the set CI,,, with
probability 0.

Next, we show the density of the sets CI,,,. On the event 24 (see item (v) on page 729) for each m € Z
and rational g; < ¢», there is a unique geodesic between (m, ;) and (m + 1, ¢») that jumps to level m 41
at a time u € (q1, q2). Then, (m, u) € CI by condition (i) of Theorem 4.30.
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Lastly, we show that CI is exactly the set of points x € Z x R such that there exist two semi-infinite
geodesics in the same direction, whose only common point is the initial point. If such a pair of geodesics
exists, then one of the geodesics must travel vertically, so x € CI by definition (2-5). The reverse
implication follows from (i)=>(viii) of Theorem 4.30. O

9. Proofs of the results in Section 5

9A. Discrete queues and the proof of Theorem 5.2. We discuss the queuing setting from [14] that will

allow us to prove Theorem 5.2. We note that in [14], the Busemann functions were constructed from

limits of geodesics traveling to the southwest, so the notation is changed to reflect northeast geodesics.
Let I = (Ix)kez and w = (wy)recz be sequences that satisfy

m
n}gnoo Z(;(CUH-I —I;) = —o0.
1=

The sequence I gives the inter-arrival times between customers in the queue, and w gives the service times.
Let Hy be the sequence satisfying Hy = 0 and Hj4; — Hy = I, and let S be the sequence satisfying
So =0 and S; — Sx—1 = w. We define the sequence I= (E{)kez by

e =wc+ sup [Sy— Hpl— sup [Sy— Hyl. ©-1)

m:m>k m:m=>k+1

In queuing terms, T is the process of departures from the queue. We encode the mapping (I, w) — T
as the function I = Dy(1, w), with subscript d for discrete. Similar to the spaces &,,, %,, defined in (3-5)
and (3-6), the following sequence spaces are defined in [14] for the Busemann functions. Fix n, and define

1 o 1 o
d Z . . . i . —1
Oyn:{I:([l’...,]")e([RZO)n.for2§z§n, l1m—§ Ik>mllr)rgogz I >O},
k=1

. . 1 &
xd = :nz(nl,...,n”)e(Rio)”: for2<i<n, ' >n'"', and 1iminf—zn,1>o}.
k=1

m—oo m

Above, each component I’ and 1’ is a nonnegative sequence indexed by Z, and ' > n'~! means

coordinatewise ordering: n}; > n};_l for all k£ € Z. Similarly as in Section 3A, we iterate this map as
D (H=D(1,0)=1,
par, = Y =Dyupyar, . 1), 1Y) forn=2.
We now define the map ng’) :@Z — 963 as follows: for I = (Il, oI e“y‘,f, the image n = (nl, 0=

%V (I) is defined by
=DV 1Y fori=1,...,n

Leto = («y, ..., o) be such that &y > - - - > «;, > 0. On the space Gyff, we define the measure vj such
that (11, ..., 1") ~ vy if all coordinates I,é are independent and I,é ~Exp(e;) forke Zand 1 <i <n.
On the space %g, we define the measure u§ = vj o (ng’))_].
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For each level m € Z, define the level-m sequence of weights Y= (k.m))kez, and for given o > 0, we
denote the Busemann functions at level m by U e = (U*((k —1,m), (k, m))rez. The joint distribution
of Busemann functions along a horizontal edge is then described as follows.

Theorem 9.1 [14, Theorem 3.2]. Let 1 > oy > oy > --- > oy, > 0. For each level m € 7, the (n + 1)-tuple
of sequences Y (7::11,81’ ., Uy has distribution (@),

The input sequences I and w can be encoded by the sequences H and S used in the definition of
Dy (9-2), where Hyy) — Hy = I and Sy — Sx—1 = wy. For these sequences, we can define continuous
functions H, § € Cpin(R) to be the piecewise linear interpolations such that S(k) = S and H (k) = H for
k € Z. In this setting, Oyd and %d can be viewed as subspaces of ¥,, and &, as defined in (3-5) and (3-6).
Furthermore, the operators Dfi) and QD; ") can likewise be viewed as operators on spaces of functions. We
define an output sequence H= (Hk)keZ by Ho =0 and Hk+1 Hk = Ik From this point of view, (9-1)
implies that for t € Z,

H, = Da(S, H); = S(—1,t =)+ sup {Su)— Hw)}— sup {S(u)— Hw)}. (9-2)
0<u<oo t<u<oo
The supremum over the integers can be replaced with the supremum over the reals because S and H are
linear interpolations. Then, extend H (t) to all ¥ € R by (9-2), which is a continuous, piecewise linear
interpolation of the sequence H. Note that (9-2) nearly matches the operator D (3-8):
D(Z, B)(t) = B(t) + sup {B(u)—Z(u)}— sup {B(u)—Z(u)}. (9-3)
0<u<oo t<u<oo
The only difference is that the term B(¢) has been replaced with S(—1, ¢t — 1). However, when these
random walks are appropriately scaled, this discrepancy is eliminated. This is made precise in the
following proof.

Proof of Theorem 5.2. This follows by Donsker’s theorem, with some extra care. We show that distri-
butional convergence is preserved under the queuing map. A similar proof is given for the Brownian
queue in [23], although the queues in that setting are only infinite in the positive direction. We appeal to
tightness to prove the result in the bi-infinite setting. We start by showing that for fixed T € Z,

NG NG
1/\/% (U Vi ((07 O)’ (tk’ 0)) - tk? UﬁJr)\z ((05 O)’ (tk’ 0)) - tk)te(—oo T]

k—oo ., 1/32

2 00 Oenorr (9-4)

and then the extension of the convergence to all ¢ € R follows by tightness, as discussed below. We may
take T > 0 since the statement holds for any 7 < 0 as long as it holds for some 7" > 0. For j € Z, and
i=1,2,letX l/ ~ Exp(1) be mutually independent random variables. For k € Z. ¢, set Z ,1 0)= Z,E 0) =
and for tk € 7., set

tk 0

1 VA 1 Vhk+r

Zl(tk):—E:( lX’A—l) d Z'(—th)y=—— §: ( ’X’.—1>. (9-5)
¢ N =AY e N




GEODESICS AND COMPETITION INTERFACES IN BLPP 749

For general t € R, let Z ,‘( (tk) be the linear interpolation of the above. Equivalently, for tk € Z.,

tk

; Vk4+1\ 1 :
Z,(tk) = (—)— (XL — 1)+ At (9-6)
k A=
and
. «/%-i—)u, 1 0 .
Zi(~th) = —<(—>— (X —1) +x,-z>.
vk vk j=—2ﬂ;+1 ’

Since X ; has mean and variance 1, this representation allows us to apply Donsker’s theorem and conclude
that, in the sense of uniform convergence on compact sets,

k— 00

(ZL(th), Z}(th))er = (Z1 (1), Z*(1)), (9-7)

where Z' and Z? are independent two-sided Brownian motions with drift A; and A5, respectively. By (9-2),
fort <T withtk € Z,

Dy(Z7, ZH)(th) = Z} (=1, tk — 1)+ sup {Z}(u) — Z}(w)} — sup {Z}(u)— Z;(u))

0<u<oo th<u<oo
=Zl(=1,tk—=1)+ sup {Z () —Ziw)}Vv sup {(Z}(u)—Z}(u)}
0<u<Tk Tk<u<oo
— sup {Zj(w)— ZZw)}V sup {Zi(u) — Z;(u))
thk<u<Tk Tk<u<oo
=Z(—1,tk—1)
+ sup {Z}(Tk,u)— Z{(Tk,u)}v sup {Z (Tk,u)— Z{(Tk,u)}
0<u<Tk Tk<u<oo
— sup {Z{(Tk,u)— ZZ(Tk,u)}yv sup {Z(Tk,u)— Z;(Tk,u)}
t<u<Tk Tk<u<oo
=Z} (—1,tk—1)
+ sup {Z}(Tk,uk) — Z}(Tk,uk)yv sup {Z}(Tk,uk) — Z(Tk, uk)}
0<u<T T<u<oo
— sup {(Z\(Tk,uk) — Z;(Tk, uk)}v sup {Z}(Tk,uk) — Z}(Tk, uk)},
t<u<T T <u<oo

while by a similar computation, for t < T,

D(Z%, ZY®) =Z' @)+ sup {ZNT,u)— ZX(T,u)}v sup {Z'(T,u)— Z*(T,u)}

0<u<T T<u<oo

— sup {ZW(T, u) — ZX(T,w)}v sup {ZY(T,u)— Z*(T, u)}.

t<u<T T <u<oo
With D, and D represented this way, to prove (9-4), it is sufficient to show the following.

(i) The following distributional equality holds:

ik Vi

1/3k (U1 ((0, 0), (tk, 0)) — th, U V52 ((0, 0), (tk, 0)) — th)rer = (Z}(tk), Da(Z2, Z)(th))ren.
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(i1) The following distributional convergence holds in the topology of uniform convergence on compact

sets:
k—
(Zi(=1,tk—1), sup {Z}(Tk,uk) — ZZ(Tk,uk)}), ., = (Z;(t), sup {Z}(T,u)— Z{(T, w)}), ;.
t<u<T - t<u<T -
(iii) The following distributional convergence holds:
sup (Z)(Tk, uk) — Z2(Tk, uk)}'=3 sup {Z'(T,u) — Z(T, w)}.
T <u<oo T <u<oo

(iv) The process
(ZH(=1,tk—1), sup {Z}(Tk, uk) — Z}(Tk, uk)});<r

t<u<T

is independent of supTSLKOO{Z,l(Tk, uk) — Z,%(Tk, uk)}, while the process

(Zi(0), sup {Z}(T,u) — ZX(T, u)})i<r

t<u<T
is independent of SupT§u<oo{Zl (T, u)— Z*(T, u)}.
Then, (5-2) follows from (9-4) by showing that

(v) The sequence

vk NG
{1/Vk (U1 ((0,0), (tk, 0)) — tk, U V&2 ((0, 0), (tk, 0)) — th);er )

k>1

is tight in C(R — R?).
Item (i): This follows by Theorem 9.1 and the representation (9-5) because («/E + )/ Vk times an
Exp(1) random variable has distribution Exp(\/E / Wk +1)).

Item (ii): Note that Z ,1(—1) — 0 since it is O (k~!/2). The rest follows by the uniform convergence on
compact sets of (Z} (tk), ZZ(tk))er to (Z1(t), Z*())ser-

Item (iii): By the Markov property, supy -, _.,{Z ,l(Tk, uk) — Z,%(Tk, uk)} has the same distribution as
supOSIKOO{Z,l (u) — Z,%(u)}, and SupT§u<oo{Zl (T, u) — Z*(T, u)} has the same distribution as

sup {Z'(w) — Z%w)}.

0<u<oo
Since Z! and Z? are independent Brownian motions with drift ; < A,, Z!— Z?2 is a variance 2 Brownian
P

motion with negative drift. Then, the weak convergence

sup {Z\(u) — Z; ()} = sup {Z'(u) — Z*(u)}

0<u<oo 0<u<oo
follows by Proposition 6.9.4 in [30] (see also Chapter VIII, Section 6 in [2]).
Item (iv): This follows from independence of increments of random walks and Brownian motion.

Item (v): It is sufficient to show that each of the components is tight in C(R — R). Each component is a
scaled random walk converging to Brownian motion by Donsker’s theorem, so tightness follows. U
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9B. The stationary horizon and proof of Theorems 5.4 and 5.7. The following lemmas relate the
mappings ® and ®* to the mappings D, D®, and 3K,

Lemma 9.2. If f(0) = g(0) =0, then forall t € R,

O(f.e)0)=f)+ sup [g(s)— f(s)]— sup [g(s)— f(s)].

—00<s<t —00<s<0

Proof. We prove the statement for ¢ > 0, and the statement for ¢ < O follows similarly. We have
Q(f, 8)1) = f(t)+ [Sulg[f(O) —80) = f()+ 8]+ inf [f(s) =g
= f (1) +[suplg(s) — f(s)] — sup [g(s) — f()]]™

§<0 0<s<t
=f)+ B Sup<t[g(S) — f(s)]— sup O[g(S) — f ()] U

Lemma 9.3. Define the mappings W* : C(R)* — C(R) as

V()= and VE(fi, ..., )=, YN B fO).

Let fi1, fa, ... be an infinite sequence of continuous functions such that each of the operations below is
well-defined. Let (g1, ..., &) = CDk(fl, weus f¥). Then, for 1 <i <k,

g =V (fi,. .., f)

Proof. The statements for k = 1, 2 follow immediately from the definition. Assume the statement is true
forsome k—1.Fori=1, g1 = fi =\Ill(f1). For2 <i <k,

g = @(fi. [® 7 (foroos filic) = QALY T (oo D) =V (i fi). O
Using these representations of the map ® and ®F, we have the following lemma from [35].

Lemma 9.4 [35, Lemma D.2]. Let Z, B : R — R be continuous functions satisfying Z(0) = B(0) =0 and
lim (B(t) — Z(t)) = Foo.
t—+oo

Then, forall t € R,
—D(Z, B)(—t) = (B, Z).

We are now ready to prove Theorems 5.4 and 5.7.

Proof of Theorem 5.4. Let f1, ..., fx beindependent variance 4 Brownian motions with drifts 4oy, . . ., 4.
Forl<i <k, letZ = f,,andnote (Z', ..., Z5 L (fi, ..., fi). Set (g1, ..., g) =D*(f1, ..., fr), and
', ....n") =30 (Z!, ..., Z%) (recall (3-11)). Since (Ga,. ..., Ga)Z(g1, ..., g) and (', ..., 1*) ~ u®
by Definition 3.5, it suffices to show that, for 1 <i <k, ni = g;. For i = 1, this is immediate because
g1 = fi and n' = Z'. The i =2 case is Lemma 9.4. Now, assume the statement holds for some i < k.
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By definition and Lemma 9.3, this means that for t € R, —DO(Z!, ..., Z)(—=t) = Vi(f1, ..., f)().
Then, applying this assumption along with (3-10) and Lemmas 9.3 and 9.4,

g1 () =D(f1, Y (fo, ..., fir)&) =—DDD(ZT, ... 2%, 2 (~t) = —n' T (—1).

For the second statement, Theorem 3.7 1rnp11es equality of the finite-dimensional distributions. By
Theorem 3.1(iii) we know the process {h( /A= (4+) : A > 0} is right-continuous with left limits, in the
sense of uniform convergence on compact sets. Thus, the process {h(l/ )= (4+)},>0 also lies in the
Skorokhod space D(R, C(R)). [l

Proof of Theorem 5.7. Theorem 3.7 and the scaling relations of Lemma 3.6(iii) imply that the vector

_9,—1/3 _9,—1/3
n—1/3(h(1) 2n al(n2/3°)—n2/3 hl 2n ak(n2/3')—l’l2/3')

yees Mg

has distribution ,u“k, where, for 1 <i <k,

n
nl/3 —2u;

Noting that

the continuity of the measures p* from Lemma 3.6(i) completes the proof, via Theorem 5.4. We scale by
a factor of four to match Definition 5.3. (I

Appendix A: Finite geodesics in BLPP

Recall the uniqueness of geodesics for fixed initial and terminal point from Lemma 2.1. The following
shows how to find random points in BLPP such that multiple geodesics exist.

Lemma A.1. (i) Fix an initial point (m, s) € Z x R. With probability one, there exist random points
(m+1,1t) > (m, s) such that there exist exactly two geodesics between (m, s) and (m + 1, t).

(i1) With probability one, there exist random pairs of points (m, s) < (m + 1, t) such that there are exactly
three geodesics between (m, s) and (m + 1, 1).

Proof. Part (i): For fixed (m, s) € Z x R, consider points of the form (m + 1, ) for ¢ > 5. The last passage
time is
Byy1(t) — By (s) + sup {By (1) — Bpy1(u)}.

S<u<t

Note that B,, — B,, 41 is a variance 2 Brownian motion. By Lemma 2.1, there is almost surely a unique
maximizer of B, (u) — B, +1(u) over u € [s, s+ 1], and that maximizer u* is an element of (s, s+1). Since
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Brownian motion is recurrent, there exists v > s 4 1 such that B, (v) — B,+-1(v) = B,,,(u*) — By1(u*).
Letting

t=inf{v > s+ 1: By(v) — Byy1(v) = By (") — By (u™)},
there exist two geodesics between (m, s) and (m + 1, t): one that jumps to level m + 1 at u* and another
that jumps at the right endpoint ¢.

Part (ii): Similarly, start with fixed (m, s) and define ¢ as in the previous case, but then set
s’ = sup{v < s : By (v) — By41(v) = By, (u*) — Bm—i—l(u*)}-

Then, there are three geodesics between (m, s”) and (m + 1, ¢): one that jumps at s’, another that jumps
at u*, and another that jumps at ¢. (I

The following gives a crude bound on the maximum number of geodesics that grows as the vertical
distance between the two points increases. By Lemma A.1(ii), the bound is sharp for n =m + 1, but
we do not know if the bound is sharp for n > m + 1, or even whether there exist random points with an
arbitrarily large number of geodesics between them. For the present paper, we need only the fact that,
between any two points, there are only finitely many geodesics.

Lemma A.2. There exists an event Q of full probability, on which the following hold:

(i) Between any two points (m, a) < (n, b), both in Z x Q, there is a unique geodesic between the two
points. That unique geodesic does not pass through (k, a) for k > m or (r, b) for r <n.
(i1) There exist no pairs (m, s) < (n,t) € Z x R, with more than
n—m-—1)(n—m)

1+2(n—m)+ 5 (A-1)

geodesics between the two points.

Proof. Part (i): Lemma 2.1 guarantees that on an event of probability one, there exists a unique geodesic
between any two points (m, a) < (n, b), both in Z x Q. Let ) be the intersection of this event with
the event on which, for each rational pair g; < ¢» and k € Z, the maximum of By (s) — By+1(s) over
s € [q1, g2] is uniquely achieved at a point in the interior of the interval. By Lemma C.4, [P’(S~2) =1.
We show that on SNZ, for (m, a) < (n, b) € Z x Q, the unique geodesic does not pass through (k, a)
or (r, b) for any k > m or r < n. If, by contradiction, the converse fails, then the geodesic makes an
upward step from (m, a) to (k, a) or from (r, b) to (n, b), or both. We show that the first case cannot

(n, b)

|

. a) *. ) |

(m,a)

Figure 27. Geodesic that passes through (k, a) on the way to (n, b).
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(n,b) (n, 1)

Sm Sm+1 to Sn—1

(m,s) (m,a)

Figure 28. Example of geodesics between (m, s) and (n, t) with s,, > s and s, < 1.

hold on S~2, and the second case follows analogously. Let k > m be the maximal index such that (k, a)
lies on the geodesic. Then, the geodesic passes through (k — 1, a), (k, a), and (k, g) for some rational
q > a. See Figure 27. The portion of the geodesic between (k — 1, a) and (k, g) is also a geodesic, and
the last passage time between the two points is
sup {Bi—1(s,a)+ Bi(a, q)} = Bi(q) — Bx—1(a) + sup {By—1(s) — Bx(a)}.
s€la,q] s€la,q]

Since the geodesic passes through (k, a), the maximum is achieved at s = g. This contradicts the definition
of .
Part (ii): Let s = 5,1 < --- <s,_1 <, =t denote the jump times of an arbitrary geodesic between
(m,s) and (n, t). We prove the following:

(a) There is at most one geodesic satisfying s,, > s and s, <.

(b) There are at most n — m geodesics satisfying s,, > s and s, =1¢.

(c) There are at most n — m geodesics satisfying s,, = s and s, < t.

(d) There are at most %(n —m)(n —m — 1) geodesics satisfying s, = s and s, = 1.

Part (a): If two geodesics I'y and I'; both satisty s, > s and s,—; < t, then I'; and ', are also geodesics
between (m, a) and (n, b) for some rational a, b € Q, so I'} = I',. See Figure 28.

Part (b): For a geodesic I" satisfying s,, > s and s,_; = ¢, let r be the smallest index such that s, = ¢.
Geometrically, r is the level at which the geodesic enters the right boundary, and the geodesic passes
through (r, t). See Figure 29. For each such r € {m, ..., n — 1}, there is at most one geodesic satisfying
sm > s and s,_1 < s, =t, by the previous case, giving at most n — m geodesics of this type.

(n,1)
n
I (r. 1)
- |
(m’ S) Sm Sr—1
Figure 29. Example of a geodesic between (m, s) and (n, t) with s,, > s and s,_; = ¢. The

level r is denoted in the right.
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(n,1)
" ]
I (r.1)
(k. s) I
1l
m ®
(mv S) Sk Sr—1
Figure 30. Example of a geodesic between (m, s) and (n, 1) with s, = s and s,_; = 7. The

level k is denoted in the left and the level r is denoted on the right.

Part (c): The proof is analogous to part (b).

Part (d): For a geodesic satisfying s,, = s and s,_; = ¢, we let k be the smallest index such that s; > s
and r > k be the smallest index such that s, = ¢. Then, the geodesic passes through both (k, s) and (r, t).
Geometrically, k is the level at which the geodesic exits the left boundary, and r is the level at which the
geodesic enters the right boundary. See Figure 30. By part (a), for each pair (k, r) withm <k <r <n—1,
there is at most one geodesic that exits the left boundary at level k and enters the right boundary at level r.
There are %(n —m)(n —m — 1) of these pairs (k, r). U

Appendix B: Prior results on Busemann functions and semi-infinite geodesics

In addition to the results stated in Section 2, we use several other results about Busemann functions
and semi-infinite geodesics that were proven in [35]. Recall the definition of the mappings Q and D
from (3-7) and (3-8). Also, recall the discussion above Theorem 3.1 regarding different full-probability
events.

In the following theorem, recall the definitions of NUgD and NU?D from (4-7)—(4-8). Also, recall
Remark 4.7, which states that when working on the event Q® | there is no =+ distinction, and we write
NU? = NUY fori =0, 1.

Theorem B.1 [35, Theorem 3.1(iii) and 4.7]. Fix 6 > 0. Then, the following hold.

(i) For each fixed x € Z x R, on the full probability event Qf), we have x ¢ NU?.
0

(ii) On the event Q©), the sets NU(@) and NUﬁ) are countably infinite and can be written as

0 . 6.L 0.R
NUy={m,t)eZxR:t= Tontyr < r(m’t)’rfor some r > m},

NU| = (m.)eZxR:t =<0l <ok

(m,t),m (m,t),m

In other words, Busemann geodesics emanating from (m, t) and in a fixed direction 6 can separate
only along the upward vertical ray from (m, t).

(iii) On the event Q)| the set NU? is neither discrete nor dense in Z x R. More specifically, for each
point (m,t) € NU? and every € > 0, there exists s € (t — &, t) such that (m, s) € NU?. For each
(m,t) € NU?, there exists § > 0 such that (m, s) ¢ NUgfor all s € (t,t+96).
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The following lemmas provide useful characterizations of the Busemann geodesics. The first one
utilizes point-to-line last-passage problems.

Lemma B.2 [35, Lemma 7.3]. Letw € Q,, (m,t) € ZxRand 06 >0, o e {—, +}. Then:
(i) Let{z,}°

are a mLZXZlell’lg sequencefor

oo a1 be any sequence in T&EZ). Then, for eachn >m, the jump timest =Ty, <T, <---<T,

n
6 .
mm{}jBA»h»>—m£4%yt=sm15sm5-~ssn<aﬁ. (B-1)
r=m
(i) Conversely, for each n > m, whenevert =ty <t < --- <t, is a maximizing sequence for (B-1),
. 0
there exists {t,};2, | € T(mm’t) such that t, = t, form <r <n.

6o,L 6o,L 00,R
(m,t),m—1 (m,t),n (m,t),m—1 —

respectively, the leftmost and rightmost maximizing sequences for (B-1).

0o,R

= <T(mt)n

(ii1) For each n > m, the sequencest =t <...<rt andt =Tt are,

The next lemma indicates how the L/R distinction of geodesics can be characterized by the Busemann
functions.

Lemma B.3 [35, Lemma 7.4]. Letw € Q, (m,t) e ZxR, 6 >0, Oe{—,+},and {t-}r>m—1 € T&DZ)
Then, for all r > m,

,+1(Tr)—0 and heD(u v) = B, (u,v) forallu,vel[t,_1, 1]

Furthermore, the following identities hold for r > m.

6o, L . 6o,L ]
Ty, = iflu > 70,70y cv () =0}, (B-2)
6o0,R _ 60,R 4]
%mr—wN“Z%mn1 B Ty 1 0 = Br(Ty, 1 0) (B-3)
More specifically, if u > ‘E(m t) ,_1» then hem(r(m -1 u) = Br(ffni}[)ir—l’ u) ifand only if u < rIoR

(m t) re
As the last of the results from [35] we cite a Brownian calculation.
Theorem B.4 (arXiv version of [35, Theorem B.2]). Let B be a standard Brownian motion, and for
t >0, let
D)= sup {v2B(s)—As}— sup {v2B(s)— As}.

0<s<o0 1<s§<00

Then, for all 7 > 0,

<

P(D(t)fz)=<l>< \;2_);t>+e“<(l+)nz+)»2t)cb(— j_'\t)— \/;e—”ﬂz>

Appendix C: Auxiliary technical inputs

Lemma C.1. Let S, for n > 0 be subsets of some set S € R", on which the function f : S— Ris
continuous. Assume that each point x € Sy is the limit of a sequence {x,}, where x, € S, for each n.
Assume that {c,} is a sequence of maximizers of f over S,. Assume further that c, converges to some
¢ € So. Then, c is a maximizer of f over Sy.
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Proof. For each xo € Sy, write xg = lim,,_, ~ X, Where x, € S, for each n. Then, f(c,) > f(x,) for all
n > 1, and the result follows by taking limits. (I

Theorem C.2 ([28, Theorem 4], this formulation found in [35, Theorem C.2 and Lemma D.2]). Let
Z be a two-sided Brownian motion with drift ). > 0, independent of the two-sided Brownian motion B
(with no drift). Then, D(Z, B) is a two-sided Brownian motion with drift A, independent of the two-sided
Brownian motion R(Z, B). Furthermore, for all s € R, {(D(Z, B)(s,t), R(Z, B)(s, 1)) : s <t < 00} is
independent of {Q(Z, B)(u) : u <t}.

Lemma C.3. Let Z, B € Cp,in(R) be such that

limsup Z(t) — B(t) = —oo0.

—00

For s € R, denote by Z* the shifted process
(Z(s,t+5))tcRr-
Then, we have
D(Z*, B®) = D(Z, B)". (C-1)
Proof. This is a straightforward verification, using the definition of D (3-8). [l

Lemma C.4 [27, Theorem 2.11]. Let B be a standard Brownian motion on [0, 1]. With probability one,
B has a unique maximizer, and the maximizer lies in (0, 1).

We use Lemma C.4 to derive the following corollary.

Corollary C.5. Let B be a Brownian motion (could be one or two-sided). Then, there exists a full event
of probability one, on which, for all s < t, at most one maximizer of B over [s, t] lies in (s, t).

Proof. Take the full probability event on which B has a unique maximizer over [a, b] for all rational
endpoints a < b. U

Lemma C.6 [36, page 270]. See also [27, Theorem 4.24]. Let B : [0, 0c0) — R be a standard Brownian
motion. Then, with probability one, the following sets have Hausdorff dimension % Furthermore, for each
fixed t € [0, 00), t lies in either of the following sets with probability zero:

(i) {t €0, 00) : B(t) =0}.
(i) {r €[0,00): B(t) = supy~;<, B(s)}.

Corollary C.7. Let B : R — R be a standard, two-sided Brownian motion. Then, the following sets are
equal. These sets almost surely have Hausdorff dimension %, and for any fixed s € R, the point s lies in
either set with probability zero:

(i) {s € R: B(s) =sup,,, B(u) for some t > s}.

(i) {s e R: for somet > s, B(s) > B(u) forallu € (s, t]}.
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Proof. First, we show the sets are equal. The inclusion (ii) € (i) is immediate. Now, assume s € (i), and
let ¢ be such that B(s) =sup,_,, B(u). By Corollary C.5, B has at most one maximizer, §, in the interior
of [s, t]. If no such maximizer exists, set § = ¢. Choose 7 € (s, §). Then, B(s) > B(u) for all u € (s, 7],
and s € (ii). Hence, (i) = (ii). Next, for a two-sided Brownian motion B and any point ¢ € R, the process

{B;(u):=B(t —u)— B@):u>0)
is a standard Brownian motion. Observe that

()=|J{s <q:B(s)= sup Bw)

4e0 s<u<q
= Jts<q:Blg—(q—9)—Blg) = Jsup [Blg—u)=B@)]).
qe <u<q-—s

Since Hausdorff dimension is preserved under countable unions, translations, and reflections, Lemma C.6
completes the proof. (I

Theorem C.8 ([35, Lemma B.4] (Lemma B.5 in the arXiv version)). Let X be a two-sided Brownian
motion with strictly negative drift. Let

M={teR:X(@)= sup X(s)}.

t<s5<00
Furthermore, let
MY={(teM:X@) > X (s) forall s > t}
be the set of points t € M that are unique maximizers of X (s) over s € [t, o). Define MN = M\ MY to
be the set of t € M that are nonunique maximizers of X (s) over s € [t, 00). Then, there exists an event of
probability one, on which the following hold:

(1) M is a closed set.

(ii) There exists no points t € R such that X (s) has three maximizers over s € [t, 00). If there exist two
maximizers over s € [t, 00), one of them is s = t.

(ii1) The function s — X (s) is not monotone on any nonempty interval.
(iv) MY is a countably infinite set.
(v) Forallt € MY and & > 0, there exists t € MV satisfyingt <t <i+¢. Forallt e MN and ¢ > 0,
there exists t € MY satisfyingt —e <f <.

(vi) Forallt € MN and & > 0, there exists t* € MY witht —e < t* < t. Foreacht € MV, there exists
6> 0suchthat MN(t,t+8)=2.

Remark C.9. Parts (ii) and (iii) are not stated as a part of the theorem in [35]. However, the proof of
part (ii) is fairly simple and is contained in [35]: if, for some, ¢ € R there are two maximizers of X (s)
over s € [t, oo) which are strictly greater than ¢, then for some rational g > ¢, there are two maximizers
of X (s) over s € [g, 00). The proof is complete by showing that there exists a full probability event on
which, for every ¢ € (), there is a unique maximizer of X (s) over s € [¢, 00). Part (iii) is an immediate
fact about Brownian motion with drift.
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