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In Brownian last-passage percolation (BLPP), the Busemann functions B
θ (x, y) are indexed by two points

x, y ∈ Z × R, and a direction parameter θ > 0. We derive the joint distribution of Busemann functions
across all directions. The set of directions where the Busemann process is discontinuous, denoted by 2,
provides detailed information about the uniqueness and coalescence of semi-infinite geodesics. The
uncountable set of initial points in BLPP gives rise to new phenomena not seen in discrete models. For
example, in every direction θ > 0, there exists a countably infinite set of initial points x such that there
exist two θ-directed geodesics that split but eventually coalesce. Further, we define the competition
interface in BLPP and show that the set of initial points whose competition interface is nontrivial has
Hausdorff dimension 1

2 . From each of these exceptional points, there exists a random direction θ ∈ 2

for which there exist two θ -directed semi-infinite geodesics that split immediately and never meet again.
Conversely, when θ ∈ 2, from every initial point x ∈ Z × R, there exist two θ-directed semi-infinite
geodesics that eventually separate. Whenever θ /∈ 2, all θ -directed semi-infinite geodesics coalesce.
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1. Introduction

1A. Broad goals of the project. This work is part of an effort to understand global geometric properties

of random growth of the first- and last-passage type. In these stochastic models, growth progresses in

space along paths called geodesics that optimize an energy functional. Of particular interest are the
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semi-infinite geodesics, their existence, uniqueness, multiplicity and coalescence, and the competition

interfaces that separate nonunique geodesics in a given direction. Semi-infinite geodesics are hard to

study because they look at the environment all the way to infinity.

The novelty of the present paper lies in its semi-discrete, or partial continuum, setting. In contrast

with lattice models, new features arise and new methods are needed. The main tool for accessing these

geometric properties is the Busemann process. We establish analytic and probabilistic properties of the

Busemann process and then use those to derive properties of the geodesics and the competition interfaces.

The specific model we work with is the Brownian last-passage percolation model (BLPP) that lives

in the space Z × R. BLPP arose in queuing theory in the 1980s and 1990s, in the work of Harrison

and Williams, and Glynn and Whitt [17; 22; 23; 24]. In the 2000s BLPP and its positive temperature

counterpart, the semi-discrete Brownian polymer or O’Connell–Yor polymer [28], occupied a place among

the exactly solvable models in which properties of the Kardar-Parisi-Zhang (KPZ) class can be fruitfully

studied. We refer the reader to the introduction of our previous paper [35] for more on the history and

context, and concentrate here on the new features and connections.

Beyond the present work, the next natural stages of this project involve studying geodesics in the

semi-discrete setting of the positive temperature Brownian polymer and in the full continuum settings of

the stochastic heat equation and the directed landscape. The novel methods developed in this paper are

applied to the directed landscape in [8], which appeared after the first version of the present paper.

1B. The third work of a series. Our paper is the third in a series on the Busemann functions and semi-

infinite geodesics of BLPP. While we rest on the foundation provided by the two earlier works, our

introduction and main results are presented in a self-contained manner.

In the first stage Alberts, Rassoul-Agha, and Simper [1] proved the almost sure existence of a Busemann

function in BLPP from a fixed pair of initial points into a fixed direction. This limit appears in (3-3). In [35],

we extended the individual Busemann functions to a full Busemann process B
θ�(x, y) in BLPP, indexed by

all initial points x, y∈Z×R, directions represented by positive reals θ , and signs �∈{−, +} that keep track

of discontinuities. From this construction, [35] derived the following results on semi-infinite geodesics:

(1) On a single event of probability one, every semi-infinite geodesic has an asymptotic direction, and

from every initial space-time point x and in every direction θ , there exists a semi-infinite geodesic.

(2) Given a direction θ , all θ -directed semi-infinite geodesics coalesce on a θ -dependent full-probability

event.

(3) Similarly, given a northeast and a southwest direction, there are almost surely no bi-infinite geodesics

in those directions.

The present paper takes [35] as a starting point to go deeper into the Busemann process and the

semi-infinite geodesics in BLPP. Next we go over some highlights and relate them to past literature. The

organization of the paper is explained in Section 1J.

1C. A jump process of coupled Brownian motions with drift. Among our main results and also our main

tool for studying geodesics is the joint distribution of the Busemann process across space and asymptotic
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directions. On a fixed level {m} × R of the space Z × R, the Busemann process {Bθ�((m, 0), (m, t)) :
t ∈ R, � ∈ {−, +}} appears as a coupled family of two-sided Brownian motions with drift. Here, the real

coordinate on the R component of Z × R plays the role of the time variable t of the Brownian motions.

Figure 8 (page 685) depicts a simulation restricted to the right half-line R≥0. The drift is determined by

the direction parameter θ . Any two trajectories coincide in a neighborhood of the origin and separate at

some point. As we move away from the origin, the trajectories move further away from each other. The

separation time is not memoryless, and hence the coupled processes are not jointly Markovian.

When the spatial location (time variable of the Brownian motions) is fixed, marginally in the direction

parameter θ , we see a monotone jump process with stationary but dependent increments. This corresponds

to jumping vertically from trajectory to trajectory in Figure 8. Explicit distributions of the increments and

expected numbers of jumps are given in Section 3B.

Busani [7] recently constructed what is termed the stationary horizon, as the scaling limit of the

Busemann process along a horizontal line in the exponential lattice corner growth model (CGM). This

object is a random collection of continuous functions {Gα}α∈R, where Gα is a two-sided variance 4

Brownian motion with drift α. A precise description is given in Definition 5.3. It is expected that the

stationary horizon is a universal object in the KPZ class. Our work in Section 5B gives additional evidence

for this claim. In Theorem 5.4, we show that, after a simple reflection, the horizontal Busemann process

for BLPP is equal in distribution to the stationary horizon, restricted to nonnegative drifts. Therefore,

the distributional calculations of Section 3B give additional quantitative information about the stationary

horizon, beyond what is given in [7]. Furthermore, we show in Theorem 5.7 that under KPZ scaling,

the BLPP Busemann process converges to the stationary horizon, in the sense of finite-dimensional

distributions.

1D. Non-uniqueness of semi-infinite geodesics. The Busemann process can be used to define a family

of semi-infinite geodesics that we then call Busemann geodesics. This construction from [35] is repeated

in Section 4A. Due to planar monotonicity, Busemann geodesics bound arbitrary semi-infinite geodesics.

Hence, uniqueness of Busemann geodesics in a given direction translates into uniqueness of all semi-

infinite geodesics in that direction.

BLPP has two sources of nonuniqueness of Busemann geodesics. A given Busemann function B
θ�

produces distinct leftmost and rightmost geodesics from a random countable set of initial points, denoted

by NUθ�

0 . The leftmost and rightmost geodesics are labeled by L and R. Additionally, if a direction θ

is a jump point of the Busemann process, there is nonuniqueness represented by a θ± distinction. The

random set 2 of Busemann function discontinuities is countably infinite and dense in the set of directions.

When θ /∈ 2, all θ-directed semi-infinite geodesics are Busemann geodesics, including the cases of

L/R nonuniqueness. It is an open question whether directions θ ∈ 2 have semi-infinite geodesics that are

not Busemann geodesics. Only in the exponential lattice CGM is it presently known that the Busemann

geodesics account for all semi-infinite geodesics [25, Section 3.2].

The L/R distinction is a continuum feature that is not present in the exponential lattice CGM, while

the θ± distinction is a similar phenomenon as on the lattice. The L/R distinction occurs only at a random

countable set of initial points x. It turns out that the L/R distinction is local in the sense that it disappears
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after a while. This is illustrated in Figure 10 (page 691) where multiple geodesics emanate from x,

but by location z they have rejoined into a single path. The nontrivial fact is that after z, they remain

together forever. This follows from the fact that after meeting at z these geodesics become portions of the

unique geodesic started from a point without the L/R distinction. See Theorem 4.11(ii) and the proof in

Section 8A.

1E. Coalescence of geodesics. For each direction θ in the discontinuity set 2, the θ+ geodesics from

all (uncountably many) initial points coalesce, and the same is true for θ−. If θ /∈ 2, there is no ±
distinction and again coalescence holds. We present a new coalescence proof that utilizes the regularity of

the Busemann process. This argument is in Section 8A where it culminates in the proof of Theorem 4.11.

Previously, two approaches to coalescence of planar geodesics were available. (i) A proof given by

Licea and Newman [26] used a modification argument followed by a Burton-Keane type lack-of-space

argument. (ii) In [33] the first author, developed a softer proof that utilized the tree of dual geodesics and

relied on properties of the stationary version of the growth process. This latter proof we applied to BLPP

in [35].

1F. Fractal sets. Finite geodesics from a given initial point x to all the points to its north and east begin

by either a horizontal or a vertical step. These two collections of finite geodesics are separated by an

infinite path that emanates from x, called the competition interface (see Figure 15 (page 696)). In the

lattice CGM, the competition interface has a random direction into the open quadrant from each lattice

point. By contrast, in BLPP, the typical competition interface is trivial in the sense that it is an infinite

vertical line. Geometrically, this means that all geodesics emanating from x start with a horizontal step.

However, there is a Hausdorff dimension 1
2 set of exceptional initial points, called CI, from which the

competition interface has a nontrivial limiting slope. Even though the set CI is uncountable, the set of

possible limiting slopes is countable. These limiting slopes are characterized by the Busemann process

(Theorem 4.36).

Random fractals related to geodesics appear in the KPZ fixed point and the directed landscape. The arti-

cle [4] studies the Airy difference profile, the scaling limit of the process z 7→ L(0,−n2/3),(z,n)−L(0,n2/3),(z,n),

where L denotes BLPP time (see Section 2B). The limiting object is a continuous nondecreasing process

that is locally constant, except on a set of Hausdorff dimension 1
2 . The result of [4] is applied to the

directed landscape in [6] and is used to study the set of pairs y such that there exist two geodesics between

(−1, 0) and (1, 0) whose only common points are the endpoints. This set is exactly the set of local

variation of the Airy difference profile and therefore has Hausdorff dimension 1
2 . See also [10; 16] for

further study of random fractal sets that appear in the continuum models of the KPZ class.

1G. Queues. Properties of the Brownian queue are central to our arguments. The spatial evolution

of the Busemann process implies that it obeys transformations that arise in the queuing context. Our

characterization of the distribution of the Busemann process relies on a uniqueness theorem of Cator,

López and Pimentel [9] for the invariant distribution of a particular queuing transformation, stated in the

present paper as Theorem 7.12.
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1H. Geodesics in the KPZ scaling. Hammond made a detailed study of point-to-point geodesics in BLPP

in the KPZ scaling regime, that is, geodesics between points
(
0, 2n2/3x

)
and (n, 2n2/3 y), where x, y ∈ R

and n is a large integer [18; 19; 20; 21]. This work has been valuable for understanding the directed

landscape. See, for example, [4; 6; 12; 16]. The setting of our work is different, since we study BLPP

globally instead of through a thin n × n2/3 scaling window. However, related themes arise. Theorem 1.1

in [21] gives explicit asymptotic bounds for the probability that there are k disjoint BLPP geodesics

between two intervals of size n2/3. Proposition 6.1 of [20] establishes that, with high probability, two

geodesics from two sufficiently close initial points (in scaled coordinates) to the same terminal point

coalesce well before the endpoint.

Very recently, Rahman and Virág [29] proved the existence of semi-infinite geodesics and Busemann

functions in the directed landscape, the continuum scaling limit of the KPZ universality class. They

first prove the existence of semi-infinite geodesics, then use the geodesics to define Busemann functions.

Conversely, in our work, we construct the semi-infinite geodesics from the Busemann functions. While

the models are different, there are some analogous results that appear. For example, Theorem 5 of [29]

states that, for a fixed direction and a fixed horizontal line, with probability one, there exists a random, at

most countable, set of points from which the geodesic in the fixed direction is not unique. However, all

geodesics in that fixed direction coalesce, so the splitting geodesics eventually come back together. This

is the same phenomenon we observe in BLPP, proved in [35, Theorem 3.1(iii), (vii)]. The present work

describes the geometry of all geodesics, simultaneously across all directions, whereas [29] focuses on a

single, fixed direction. For example, in the present paper, we show that this “bubble” phenomenon occurs

simultaneously in every direction (see Theorems 4.8 and 4.11).

In [8], together with Ofer Busani, we apply the techniques developed in this paper to derive corre-

sponding results for the directed landscape (DL). In particular, the new proof technique for coalescence is

crucial, and analogous results hold on nonuniqueness and random fractal sets.

1I. Relation to the lattice corner growth model. The results we prove, and our approach, are related

to the work on the lattice CGM in [14] and [25]. BLPP is technically more challenging than the lattice

situation, and the present work benefits greatly from the direction provided by the prior work on discrete

models. We discuss the relations between the two models in Section 5. Originally, Glynn and Whitt [17]

derived BLPP as a weak limit of the lattice CGM. We show that under this same scaling, for two fixed

directions, the Busemann process of the exponential CGM converges weakly to its BLPP counterpart.

However, we prove all our results for the Busemann process and semi-infinite geodesics directly from the

BLPP model, without importing results from the discrete model and appealing to the limit.

1J. Organization of the paper. Section 2 provides definitions and terminology and then states the main

theorems. Section 3 gives a detailed description of the distribution of the Busemann process. Section 4

describes the global structure of the semi-infinite geodesics and competition interfaces. Section 5 illustrates

connections to the corner growth model and the stationary horizon. In Section 6, we state several open

problems. The remainder of the paper is devoted to the proofs. The proofs of the results for the Busemann

process, including Theorem 2.5, are in Section 7. The proofs of the description of the geodesics and
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competition interfaces, along with the proofs of the Theorems 2.8 and 2.10, are contained in Section 8.

Section 9 proves the results of Section 5. The appendices contain some technical results and inputs from

the literature.

2. Definitions and main results

2A. Notation. The following notation and conventions are used throughout the paper.

(i) Z, Q and R are restricted by subscripts, as in for example Z>0 = {1, 2, 3, . . .}.

(ii) We use two orderings of space-time points. In the standard coordinatewise ordering, (m, s) ≤ (n, t)

means that m ≤ n ∈ Z and s ≤ t ∈ R. In the down-right, or southeast, ordering, (r, s) ≺ (m, t) means

that m ≤ r ∈ Z and s < t ∈ R, as in Figure 11 (page 691). The weak version (r, s) ≼ (m, t) means

that m ≤ r and s ≤ t .

(iii) X ∼ N(µ, σ 2) indicates that the random variable X has normal distribution with mean µ and

variance σ 2. For α > 0, X ∼ Exp(α) indicates that X has exponential distribution with rate α, or

equivalently, mean α−1.

(iv) Equality in distribution between random variables and processes is denoted by
d=.

(v) A two-sided Brownian motion is a continuous random process {B(t) : t ∈ R} such that B(0) = 0

almost surely and such that {B(t) : t ≥ 0} and {B(−t) : t ≥ 0} are two independent standard Brownian

motions on [0, ∞). For c > 0, we call {√cB(t) : t ∈ R} a Brownian motion of variance c.

(vi) For λ∈ R, {Y (t) : t ∈ R} is a two-sided Brownian motion with drift λ if the process {Y (t)−λt : t ∈ R}
is a two-sided Brownian motion.

(vii) The square � as a superscript represents a sign: − or +.

(viii) Increments of a function f are denoted by f (s, t) = f (t) − f (s).

(ix) Increment ordering of two functions Z , Z̃ : R → R is defined as follows: Z ≤inc Z̃ if Z(s, t)≤ Z̃(s, t)

whenever s < t .

(x) The space of continuous functions “pinned” at 0 is denoted by

Cpin(R) = { f ∈ C(R) : f (0) = 0}.

(xi) A stochastic process (X (t))t∈R indexed by the real line R is increment-stationary if, for each s ∈ R,

this process-level equality in distribution holds:

(X (0, t))t∈R

d= (X (s, t + s))t∈R.

A vector-valued process (X1, . . . , Xn) is jointly increment-stationary if, for each s ∈ R,

(X1(0, t), . . . , Xn(0, t))t∈R

d= (X1(s, t + s), . . . , Xn(s, t + s))t∈R.
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2B. Geodesics in Brownian last-passage percolation. The Brownian last-passage process is defined as

follows. On a probability space (�, F, P), let B = {Br }r∈Z be a field of independent, two-sided Brownian

motions. For (m, s) ≤ (n, t), define the set

5(m,s),(n,t) := {sm,n = (sm−1, sm, . . . , sn) ∈ R
n−m+2 : s = sm−1 ≤ sm ≤ · · · ≤ sn = t}.

Denote the energy of a sequence sm,n ∈ 5(m,s),(n,t) by

E(sm,n) =
n∑

r=m

Br (sr−1, sr ). (2-1)

Now, for x = (m, s) ≤ (n, t) = y, define the Brownian last-passage time as

L x, y = L x, y(B) = sup{E(sm,n) : sm,n ∈ 5x, y}. (2-2)

Each element sm,n ∈ 5(m,s),(n,t) represents a unique continuous path 0 in R2 from x to y as follows:

0 consists of horizontal segments {r} × [sr−1, sr ] on level r for r = m, . . . , n, connected by vertical

unit segments [r, r + 1] × {sr } for r = m, . . . , n − 1 (see Figure 1). Because of this bijection, we regard

5x, y equivalently as the space of such up-right paths from x to y. For (m, t) ∈ Z × R, we graphically

represent the t-coordinate as the horizontal coordinate (the time coordinate of the Brownian motions)

and the m-coordinate as the vertical coordinate (level) on the plane. This is a convention that is taken

from [1], although it disagrees with the standard x − y labeling of the coordinate axes. By continuity and

compactness, for all (m, s) = x ≤ y = (n, t) ∈ Z × R, there exists sm,n ∈ 5x, y such that E(sm,n) = L x, y.

We call a maximizer sm,n and its associated path a geodesic between x and y.

The following lemma establishes uniqueness of finite geodesics for a fixed initial and terminal point.

(0, s)

(4, t)

s0 s1 s2 s3

0
1
2
3
4

Figure 1. Example of a planar path from (0, s) to (4, t), represented by the sequence
(s = s−1, s0, s1, s2, s3, s4 = t) ∈ 5(0,s),(4,t).

s s0 s1 s2 s3 t
0
1
2
3
4

Figure 2. The Brownian increments Br (sr−1, sr ) for r = 0, . . . , 4 in (2-1) that make up the
energy of the path depicted in Figure 1.
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x

y

z

Figure 3. Coalescence of two up-right paths at z.

Lemma 2.1 [20, Theorem B.1]. Fix endpoints x ≤ y ∈ Z × R. Then, with probability one, there is a

unique path whose energy achieves L x, y(B).

However, it is also true that for each fixed initial point x ∈ Z × R, with probability one, there exist

points y ≥ x such that the geodesic between x and y is not unique. We show how to construct such

points in Lemma A.1 and derive a bound on the number of geodesics in Lemma A.2. The following

important lemma is a deterministic statement which holds for last-passage percolation across any field of

continuous functions, hence in particular for Brownian motions.

Lemma 2.2 [12, Lemma 3.5]. Between any two points (m, s) ≤ (n, t) ∈ Z × R, there is a rightmost and a

leftmost Brownian last-passage geodesic between the two points. That is, there exist sL
m,n, sR

m,n ∈5(m,s),(n,t),

that are maximal for E(sm,n), such that, for any other maximal sequence sm,n , sL
r ≤ sr ≤ s R

r for m ≤ r ≤ n.

To an infinite sequence s = sm−1 ≤ sm ≤ sm+1 ≤ · · · we similarly associate a semi-infinite path. It is

possible that sr = ∞ for some r ≥ m, in which case the last segment of the path is the ray {r}×[sr−1, ∞),

where r is the first index with sr = ∞. The infinite path has direction θ ∈ [0, ∞] if

lim
n→∞

sn

n
exists and equals θ.

We call an up-right semi-infinite path a semi-infinite geodesic if, for any two points x ≤ y ∈ Z × R that

lie on the path, the portion of the path between the two points is a geodesic.

For a semi-infinite, up-right path 0 starting from x ∈ Z × R, the coordinate-wise ordering ≤ is a

complete ordering of the set 0. This motivates the following definition.

Definition 2.3. Two semi-infinite, up-right paths 01 and 02 coalesce if there exists a point z ∈ 01 ∩02

such that for all w ≥ z, w ∈ 01 if and only if w ∈ 02. We call the minimal such z the coalescence point.

See Figure 3.

The following states the coalescence into a fixed direction proved in [35]. Theorem 4.11 of the present

paper extends this result to coalescence of all Busemann geodesics with the same direction θ > 0 and

sign � ∈ {−, +} (see Section 4C for the precise definitions).

Theorem 2.4 [35, Theorem 3.1(vii)]. Fix θ > 0. Then, with probability one, all θ-directed semi-infinite

geodesics coalesce.
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2C. Main theorems. The geometric properties of BLPP obtained in this paper rest on studying the

Busemann process {Bθ�(x, y) : x, y ∈ Z × R, θ > 0, � ∈ {−, +}}, defined for all points and directions

simultaneously. The � ∈ {−, +} distinction records the left- and right-continuous versions of the process

as a function of θ . Theorem 3.1 provides a detailed summary of the properties of this process. The

immediate connection between the Busemann process and the last-passage percolation process is the

following limit, stated in Theorem 3.1(vii): for a fixed direction θ > 0, with probability one, for all

x, y ∈ Z × R,

B
θ−(x, y) = B

θ+(x, y) = lim
n→∞

[L x,(n,nθ) − L y,(n,nθ)].

However, in general across all directions θ > 0, it does not hold that B
θ− = B

θ+ as functions

(Z × R)2 → R. The finer geometric properties of BLPP turn out to be intimately related to the random

set of discontinuities of the Busemann process, defined as

2x, y = {θ > 0 : B
θ−(x, y) ̸= B

θ+(x, y)} and 2 =
⋃

x, y∈Z×R

2x, y. (2-3)

As the discontinuity set of a function of locally bounded variation (see Remark 3.3), 2x, y is at most

countable. When it is understood that θ /∈ 2, we write B
θ without the ± distinction in the superscript.

Our first main result is a description of the random set of discontinuities of the Busemann process.

Theorem 2.5. For each fixed θ > 0, P(θ ∈ 2) = 0. Further, the following hold on a single event of

probability one.

(i) The set 2 is countably infinite and dense in R>0.

(ii) For each x ̸= y ∈Z×R, the set 2x, y is infinite and either has a single limit point at 0 or no limit points.

Furthermore, on each open interval I ⊆ (0, ∞) \ 2x, y, the function θ 7→ B
θ−(x, y) = B

θ+(x, y) is

constant on I .

(iii) For each m ∈ Z, the set 2(m,−t),(m,t) is nondecreasing in t ∈ R≥0. For any m ∈ Z and any sequence

tk → ∞,

2 =
⋃

k

2(m,−tk),(m,tk). (2-4)

Remark 2.6. Part (iii) says the entire set of discontinuities appears in the discontinuities of θ 7→
B

θ ((m, −t), (m, t)) for t outside any large bounded interval [−T, T ], on each horizontal level m of

the lattice.

Remark 2.7. Theorem 2.5(ii) states that θ 7→ B
θ±(x, y) are the right- and left-continuous versions of a

jump process. This condition implies strong results about the collection of semi-infinite geodesics. In

particular, the set 2 classifies directions in which the collection of semi-infinite geodesics in that direction

all coalesce. This is described in the next theorem.
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Theorem 2.8. The following hold on a single event of full probability.

(i) When θ /∈ 2, all θ-directed semi-infinite geodesics (from each initial point) coalesce. There is a

countably infinite random set of initial points, outside of which, the semi-infinite geodesic in each

direction θ /∈ 2 is unique.

(ii) When θ ∈ 2, there are at least two coalescing families of θ-directed semi-infinite geodesics, called

the θ− and θ+ geodesics. From each initial point x ∈ Z × R, there exists at least one θ− geodesic

and at least one θ+ geodesic, which separate at some point y ≥ x and never come back together.

Remark 2.9. There are two types of nonuniqueness present in Theorem 2.8. The type mentioned in

part (i) is temporary in the sense that geodesics must come back to coalesce. This type of nonuniqueness

occurs in every direction, but only from a countably infinite set of initial points. The second type of

nonuniqueness in part (ii) occurs from every initial point, but only in a countable dense set of directions.

Unlike the previous type, the geodesics that separate do not come back together. See Section 4B for

more discussion on nonuniqueness. In the case θ ∈ 2, we do not know whether there are more than two

coalescing of families of geodesics, but we expect that this is not the case. In exponential last-passage

percolation, it was shown in [25] that there can be no more than two such families, using machinery

from [11] that relies on the connection to TASEP. See Remark 4.23 for further discussion.

Due to the geometry of the space Z × R, when the splitting of geodesics described in Theorem 2.8(ii)

occurs at a point y, one geodesic must make an upward step from y while the other moves horizontally

from y. The competition interface from an initial point y in discrete lattice models separates points z ≥ y

depending on whether the geodesic from y to z makes an initial horizontal or vertical step. In BLPP, this

concept is much more delicate. This is because, for a fixed initial point (m, s) ∈ Z × R, with probability

one, for every point (n, t) with n ≥ m and t > s, all geodesics from (m, s) to (n, t) travel initially along

the horizontal line at level m. However, there is a random exceptional set of points at which this is not

the case, defined as follows (refer to Figure 4):

CI = {(m, s) ∈ Z × R : for some (n, t) with n ≥ m, t > s, there exists a

geodesic from (m, s) to (n, t) that makes an initial vertical step} (2-5)

The following theorem describes this exceptional set.

(m, s)

(n, t)

(k, u)

Figure 4. An example of a typical point (m, s) that is not in CI. However, the point (k, u) does

lie in CI since the geodesic from (k, u) to (n, t) makes an immediate vertical step.
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x

y

w

v

Figure 5. An illustration of the behavior of Theorem 2.8(ii) and Theorem 2.10. The red/thick
paths are the θ+ geodesics and the blue/thin paths are the θ− geodesics, for θ ∈ 2. The θ−
geodesics all coalesce, and the θ+ geodesics all coalesce. From every initial point, there are two
distinct semi-infinite geodesics in direction θ , but the geodesics can only split at points lying in
the Hausdorff dimension 1

2 set CI (in this example, the splitting points are v and w).

Theorem 2.10. With probability one, for each level m ∈ Z, the set CIm := {s ∈ R : (m, s) ∈ CI} has

Hausdorff dimension 1
2 and is dense in R. Hence, the set CI itself has Hausdorff dimension 1

2 . For each

y ∈ Z×R, P( y ∈ CI) = 0. The set CI also has an equivalent description as the set of x ∈ Z×R for which

there exists a random direction θ > 0 such that there are two semi-infinite geodesics from x in direction θ ,

whose only common point is the initial point x.

Remark 2.11. There are in fact many more equivalent ways to describe the set CI. These are detailed

in Theorem 4.30. Compare Theorem 2.8(ii) with Theorem 2.10. On one hand, when θ ∈ 2, from every

initial point x, there exist two semi-infinite geodesics in direction θ that eventually split. On the other

hand, for all x /∈ CI, the two geodesics do not split immediately. See Figure 5. This is in contrast to the

exponential corner growth model studied in [25], where every initial point has a random direction in

which there are two semi-infinite geodesics in that direction that split immediately.

3. The distribution of the Busemann process

As alluded to in the previous section, Busemann functions give the asymptotic difference of last-passage

times from all pairs of starting points to a common terminal point that travels to ∞ in a given direction.

The direction is indexed by a parameter θ > 0. See Figure 6 and Theorem 3.1(vii). Alberts, Rassoul-Agha,

and Simper [1] proved the existence of Busemann functions for fixed initial points and directions. In [35],

we extended this to the full Busemann process, indexed by all lattice pairs (x, y), directions θ > 0 and

signs ±, that records also the discontinuities in the direction parameter. This is our starting point. In order

to clearly indicate whether a probability one statement applies globally or to fixed parameters, we refer to

several full probability events that were constructed in [35], namely �2, �(θ), and �
(θ)
x .

Theorem 3.1 [35, Theorems 3.5 and 3.7]. On (�, F, P), there exists a process

{Bθ�(x, y) : θ > 0, � ∈ {−, +}, x, y ∈ Z × R}
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y

x

(n, nθ)
n

nθ

Figure 6. Geodesics from x and y to a common terminal point (n, nθ). The Busemann limit
sends n → ∞.

with the following properties. Below, vertical and horizontal Busemann increments are abbreviated by

vθ�

m (t) := B
θ�((m − 1, t), (m, t)), (3-1)

hθ�

m (t) := B
θ�((m, 0), (m, t)). (3-2)

(i) (additivity) On �2, whenever x, y, z ∈ (Z × R), θ > 0, and � ∈ {−, +},

B
θ�(x, y) + B

θ�( y, z) = B
θ�(x, z).

(ii) (monotonicity) On �2, whenever 0 < γ < θ < ∞, m ∈ Z, and t ∈ R,

0 ≤ vγ−
m (t) ≤ vγ+

m (t) ≤ vθ−
m (t) ≤ vθ+

m (t),

Bm ≤inc hθ+
m ≤inc hθ−

m ≤inc hγ+
m ≤inc hγ−

m .

(iii) (convergence) On �2, for every m ∈ Z, θ > 0 and � ∈ {−, +},
(a) as γ ↗ θ , B

γ �(x, y) converges, uniformly on compact subsets of (Z × R)2, to B
θ−(x, y).

(b) as δ ↘ θ , B
δ�(x, y) converges, uniformly on compact subsets of (Z × R)2, to B

θ+(x, y).

(c) as γ ↗ ∞, h
γ �

m converges, uniformly on compact subsets of R, to Bm .

(d) as δ ↘ 0, vδ�

m converges, uniformly on compact subsets of R, to 0.

(iv) (continuity) For all r, m ∈ Z, θ > 0, and � ∈ {−, +}, (s, t) 7→ B
θ�((m, s), (r, t)) is a continuous

function R2 → R.

(v) (limits) For each θ > 0 and � ∈ {−, +},

lim
s→±∞

[Bm(s) − hθ�

m+1(s)] = ∓∞.

(vi) (queuing relationships for Busemann functions) For all m ∈ Z, θ > 0, and signs � ∈ {−, +},

vθ�

m+1 = Q(hθ�

m+1, Bm) and hθ�

m = D(hθ�

m+1, Bm),

where Q and D are defined in (3-7)–(3-8).
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(vii) (Busemann limit in a fixed direction) Fix θ > 0. Then, on the event �(θ), for all x, y ∈ Z × R and all

sequences {tn} satisfying tn/n → θ as n → ∞,

B
θ−(x, y) = lim

n→∞
[L x,(n,tn) − L y,(n,tn)] = B

θ+(x, y). (3-3)

(viii) (independence) For any m ∈ Z,
{
hθ�

r : θ > 0, � ∈ {−, +}, r > m
}

is independent of {Br : r ≤ m}.

(ix) (marginal distributions) For each θ > 0, the process t 7→ hθ
m(t) is a two-sided Brownian motion with

drift 1/
√

θ . The process t 7→ vθ
m(t) is a stationary and reversible strong Markov process such that,

for each t ∈ R, vθ
m(t) ∼ Exp

(
1/

√
θ
)
.

(x) (shift invariance) For each z ∈ Z × R,

{
B

θ�(x, y) : x, y ∈ Z×R,θ > 0,� ∈ {−,+}
} d=

{
B

θ�(x+z, y+z) : x, y ∈ Z×R,θ > 0,� ∈ {−,+}
}
.

Remark 3.2. Since hθ�

m (0) = 0 for m ∈ Z, θ > 0, and � ∈ {−, +}, the monotonicity of part (ii) implies

that, for m ∈ Z, t > 0, and γ < θ < δ,

hδ−
m (t) ≤ hθ+

m (t) ≤ hθ−
m (t) ≤ hγ+

m (t), and for t < 0, all inequalities reverse. (3-4)

Note that part (ii) is much stronger than (3-4), as all increments of hθ−
m dominate those of hθ+

m . This

property is used often in the sequel.

Remark 3.3. Theorem 3.1(vii) implies that we can fix an arbitrary countable dense subset 3 of directions

in R>0 and then include in any full-probability event the condition that the limit (3-3) holds for all θ ∈ 3.

In particular, then B
θ−(x, y) = B

θ+(x, y) for all x, y ∈ Z × R and all θ ∈ 3. This and the left and right

limits in part (iii) then imply that θ 7→ B
θ−(x, y) and θ 7→ B

θ+(x, y) are the left- and right-continuous

versions of the same function of locally bounded variation, and a jump happens at any given θ with

probability zero.

When we prove our new results, we choose 3 = Q>0. This comes in the definition (8-1) of the

full-probability event �4 in the proofs section. As a result, rational directions θ will occupy a special role

in some statements.

A key point is the distinction between the global view and the view into a fixed direction θ . Only the

global view reveals the ± distinction. On the event �(θ) we do not see the ± distinction, and hence we

can drop the sign from the superscript and write B
θ , hθ

m , and vθ
m . Note also that the limit in (3-3) has not

been established simultaneously in all directions.

The term “Busemann increment” is justified by the fact that B
θ�(x, y) = B

θ�(0, y) − B
θ�(0, x).

The geometric properties of geodesics and competition interfaces explained in Section 4 are proved

from properties of the distribution of the Busemann process B
θ�(x, y), to which we now turn. Through

the queuing transformations (Theorem 3.1(vi)), additivity (Theorem 3.1(i)) and stationarity, in principle

we can understand the entire Busemann process by restricting our attention to the Busemann process on a

single horizontal level m: {hθ�

m (t) : θ > 0, � ∈ {−, +}, t ∈ R}.
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3A. Horizontal Busemann functions as transforms of Brownian motions with drift. The joint distribu-

tion of finitely many horizontal Busemann functions is constructed by applying queuing transformations

to independent Brownian motions with drift. We define first the path spaces, then the mappings, and

lastly the distributions. Recall the pinned function space Cpin(R) from Section 2A(x). Set

Yn :=
{

Z = (Z1, . . . , Zn) ∈ Cpin(R)n : for 1 ≤ i ≤ n, lim
t→∞

Z i (t)

t
exists and lies in R>0,

and for 2 ≤ i ≤ n, lim
t→∞

Z i (t)

t
> lim

t→∞
Z i−1(t)

t

}
, (3-5)

and

Xn :=
{
η = (η1, . . . , ηn) ∈ Cpin(R)n : ηi ≥inc ηi−1 for 2 ≤ i ≤ n, and lim inf

t→∞
η1(t)

t
> 0

}
. (3-6)

Two larger spaces Ŷn and X̂n are defined as above except that the lowest limits

lim
t→∞

t−1 Z1(t) and lim inf
t→∞

t−1η1(t)

are permitted to be 0 while the other inequalities are still required to be strict. These four spaces are Borel

subsets of the space C(R)n (see Section 7) and in particular separable metric spaces under the topology

of uniform convergence on compact subsets of R.

For two functions Z , B ∈ Cpin(R) satisfying lim supt→∞[B(t) − Z(t)] = −∞, define the mappings

Q(Z , B)(t) = sup
t≤s<∞

{B(t, s) − Z(t, s)}, (3-7)

D(Z , B)(t) = B(t) + sup
0≤s<∞

{B(s) − Z(s)} − sup
t≤s<∞

{B(s) − Z(s)}, (3-8)

R(Z , B)(t) = Z(t) + sup
t≤s<∞

{B(s) − Z(s)} − sup
0≤s<∞

{B(s) − Z(s)}. (3-9)

Equivalently,

D(Z , B)(t) = Z(t) + Q(Z , B)(0) − Q(Z , B)(t),

and
R(Z , B)(t) = B(t) + Q(Z , B)(t) − Q(Z , B)(0).

In queuing terms, the increments of Z denote the arrivals process to the queue, while the increments

of B denote the service process. For outputs, Q(Z , B) is the queue-length process, and the increments

of D(Z , B) form the departures process. See Section 5.3 and Appendix C of [35] for a more detailed

description of the connections to queuing theory. For 0 ≤ a < b and 0 ≤ c < d , the pair (D, R) is bijective

on the following space of functions, denoted Y
(a,b),(c,d)
2 :

{
(Z , B) ∈ Cpin(R)2 : lim

t→∞
B(t)

t
= a, lim

t→∞
Z(t)

t
= b, lim

t→−∞
B(t)

t
= c, lim

t→−∞
Z(t)

t
= d

}
.

This is presented as Theorem D.1 in [35], although some extra care is needed to show that (D, R) and its in-

verse preserve the space Y
(a,b),(c,d)
2 . We do not use the bijectivity of the map (D, R) in the present paper, so

we omit the full details. A proof that the map (D, R) preserves limits as t →∞ is presented as Lemma 7.3.
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We iterate the mapping D as follows: first, set D(1)(Z) = Z , and for n ≥ 2,

D(n)(Zn, Zn−1, . . . , Z1) = D(D(n−1)(Zn, . . . , Z2), Z1). (3-10)

Next define a transformation D
(n) that maps Yn into Xn and Ŷn into X̂n . For Z = (Z1, . . . , Zn) ∈ Ŷn , the

image D
(n)(Z) = η = (η1, . . . , ηn) ∈ X̂n is defined as

ηi = D(i)(Z i , . . . , Z1) for 1 ≤ i ≤ n. (3-11)

We used decreasing indexing in (3-10) to match the main definition (3-11).

As discussed above, these mappings have their origin in queuing theory. This goes back to the work of

Harrison and Williams [22; 23; 24], but the particular formulation of these mappings matches more closely

that in [28]. The iterated mapping D
(n) has analogues in discrete queuing systems. See Theorem 2.1

in [15] and equation (3-3) in [14].

Lemma 3.4. The mapping D
(n) satisfies the following properties:

(i) D
(n) maps Yn into Xn ∩ Yn and Ŷn into X̂n ∩ Ŷn .

(ii) If (Z1, . . . , Zn) ∈ Ŷn satisfies

lim
t→∞

Z i (t)

t
= ai for 1 ≤ i ≤ n,

then the image (η1, . . . , ηn) = D
(n)(Z1, . . . , Zn) also satisfies

lim
t→∞

ηi (t)

t
= ai for 1 ≤ i ≤ n.

Definition 3.5. Given λ = (λ1, . . . , λn) with 0 < λ1 < · · · < λn , define the probability measure νλ on Yn

as follows: the vector Z = (Z1, . . . , Zn) has distribution νλ if the components of Z are independent and

each Z i is a standard, two-sided Brownian motion with drift λi . The measure νλ is extended to Ŷn when

λ1 = 0. Define the measure µλ on Xn (or X̂n) as µλ = νλ ◦ (D(n))−1.

Lemma 3.6. The following properties of the measures µλ hold:

(i) (weak continuity) Let λ = (λ1, . . . , λn) with 0 ≤ λ1 < · · · < λn . For 1 ≤ i ≤ n, let λk
i ≥ 0 be sequences

satisfying limk→∞ λk
i = λi . Then, if λk = (λk

1, λ
k
2, . . . , λ

k
n), µλk → µλ weakly, as probability

measures on X̂n .

(ii) (consistency) If (η1, . . . , ηn) ∈ X̂n has distribution µ(λ1,...,λn) for 0 ≤ λ1 < · · · < λn , then any

subsequence (η j1, . . . , η jk ) has distribution µ(λ j1 ,...,λ jk
).

(iii) (scaling relations) Let 0 ≤ λ1 < · · · < λn and c > 0, ν ∈ R. If (η1, . . . , ηn) has distribution µ(λ1,...,λn)

and (η̃1, . . . , η̃n) has distribution µ(c(λ1+ν),...,c(λn+ν)), then

{(η1(t), . . . , ηn(t)) : t ∈ R} d=
{(

cη̃1(t/c2) − νt, . . . , cη̃n(t/c2) − νt
)
: t ∈ R

}
.

Now, we can give the following description of finitely many horizontal Busemann functions on a given

level. There is no θ± distinction in the statement because it involves only finitely many θ -values, and for

a given θ and m, the functions hθ−
m and hθ+

m almost surely coincide.
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λ

X (λ; t)

Figure 7. A graphical description of the process λ 7→ X (λ; t) for a fixed t > 0.

Theorem 3.7. Let θ1 > θ2 > · · · > θn > 0 and set λi = 1/
√

θ i for 1 ≤ i ≤ n. Then, for each level m ∈ Z,

the (n + 1)-tuple of functions (Bm, hθ1
m , . . . , h

θn
m ) lies almost surely in the space X̂n+1 ∩ Ŷn+1 and has

probability distribution µ(0,λ1,...,λn).

3B. Fixed time marginal process across directions. In this section we study the process hθ�

0 (t) for a

fixed t , as θ varies. While θ is the geometrically natural parameter because it represents the asymptotic

direction of semi-infinite geodesics, we will also find the parameter λ := 1/
√

θ useful. In particular,

for λ > 0, t 7→ h
1/λ2

0 (t) is a Brownian motion with drift λ. When λ is the index, it is convenient to have

the alternative notation

X (λ; t) := h
(1/λ2)−
0 (t) for λ > 0 and t ∈ R,

so that λ 7→ X (λ; t) is a cadlag process, and E[X (λ; t)] = λt . In light of Theorem 3.7, it makes sense to

extend the definition to λ = 0 by setting X (0; t) := B0(t). Next, we describe the behavior of the process

{X (λ; t) : λ ≥ 0} for fixed t ∈ R. Since the Busemann functions satisfy hθ
m(0) = 0 and hθ

m ≤inc h
γ
m for

θ > γ (Theorem 3.1), λ 7→ X (λ; t) is a nondecreasing process for each t > 0.

Remark 3.8. From hθ�

0 (t) = B
θ�((0, 0), (0, t)) and shift invariance (Theorem 3.1(x)), we have this

equality in distribution of λ-indexed processes, for each s ∈ R and t > 0:

{X (λ; t) : λ ≥ 0} d= {X (λ; t + s) − X (λ; s) : λ ≥ 0}. (3-12)

Hence, while we focus our attention on the distribution of the left-hand side of (3-12), our results apply

as well to the right. Results for negative t are obtained by noting that, with s = −t < 0, (3-12) gives the

distributional equality {X (λ; t) : λ ≥ 0} d= {−X (λ; −t) : λ ≥ 0}.

A nondecreasing process {Y (λ) : λ ∈ [0, ∞)} is a jump process if, with probability one, for every

interval [a, b] ⊆ [0, ∞), Y has finitely many points of increase in [a, b]. The process λ 7→ X (λ; t) is a

jump process, as described in Theorem 3.9 and illustrated in Figure 7.

Theorem 3.9. Fix t > 0. Then, {X (λ; t) : λ ≥ 0} is a nondecreasing real-valued process with stationary

increments. With probability one, the path of the process is a step function whose jump locations are a dis-

crete subset of [0, ∞), there exists ε >0 such that X (λ; t)= B0(t) for λ∈[0, ε), and limλ→∞ X (λ; t)=∞.
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The expected number of jumps in an interval [a, b] ⊆ [0, ∞) is given by

E
[
#{λ ∈ [a, b] : X (λ−; t) < X (λ+; t)}

]
= 2(b − a)

√
t/π.

Remark 3.10. In terms of jump directions of the Busemann process, the last statement of Theorem 3.9 is

equivalent to the following: for m ∈ Z, 0 < γ < δ ≤ ∞ and s < t ∈ R, the expected number of directions

θ ∈ (γ, δ) satisfying hθ+
m (s, t) < hθ−

m (s, t) is given by

E
[
#
(
2(m,s),(m,t) ∩ (γ, δ)

)]
= 2

√
t − s

π

(
1

√
γ

− 1√
δ

)
. (3-13)

Theorem 3.9 is proved by first showing increment-stationarity and then analyzing the distribution

of an increment of the process. By the increment-stationarity of Theorem 3.9, the distribution of

X (λ2; t) − X (λ1; t) is the same as the distribution of X (λ; t) − X (0; t), where λ = λ2 − λ1. Denote the

distribution function of this increment by

F(z; λ, t) = P(X (λ; t) − X (0; t) ≤ z) for z ≥ 0.

Theorem 3.11. For z ≥ 0, t > 0, and λ > 0,

F(z; λ, t) = 8

(
z − λt√

2t

)
+ eλz

(
(1 + λz + λ2t)8

(
− z + λt√

2t

)
− λ

√
t/π e− (z+λt)2

4t

)
. (3-14)

Remark 3.12. Using (3-14), the distribution of X (λ; t)−X (0; t) can be written as a mixture of probability

measures

pδ0 + (1 − p)π,

where δ0 is the point mass at the origin,

p = F(0; λ, t) = P(X (λ; t) − X (0; t) = 0) = (2 + λ2t)8
(
−λ

√
t/2

)
− λe− λ2t

4

√
t/π (3-15)

and π is a continuous probability measure supported on [0, ∞) with density

(1 − p)−1
[

∂

∂z
F(z; λ, t)

]
1(z > 0).

Since λ 7→ X (λ; t) is nondecreasing, (3-15) implies that λ 7→ F(0; λ, t) is nonincreasing. Further,

from (3-15), we can compute

∂

∂λ
F(0; λ, t) = 2λt8(−λ

√
t/2) − 2e− λ2t

4

√
t/π. (3-16)

By Theorem 1.2.6 in [13], for all y > 0,
∫ −y

−∞ e−x2/2 dx < y−1e−y2/2 (the theorem is stated with a weak

inequality, but the proof shows that the equality is strict). Applying this to (3-16), we see that for t > 0,

λ 7→ F(0; λ, t) is strictly decreasing. Hence, p = F(0; λ, t) > 0 for all λ > 0 and t > 0. From (3-15), for

each t > 0, limλ→∞ F(0; λ, t) = 0.
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The random variable X (λ; t)−X (0; t) has the following Laplace transform/moment generating function.

For α ∈ R ̸=λ,

E
[
exp

(
−α(X (λ; t) − X (0; t))

)]

= eα2t−αλt8

(
(λ − 2α)

√
t

2

)(
1 − α2

(λ − α)2

)

+ 8

(
−λ

√
t

2

)(
1 + αλ

(λ − α)2
− α(1 + λ2t)

λ − α

)
+ λα

(λ − α)

√
t

π
e−λ2t/4. (3-17)

This is computed in Section 7.5 of the arXiv version of this paper [34].

Recall that, for s < t , h
1/λ2

m (s, t) has the N(λ(t − s), t − s) distribution and hence, by the monotonicity

in Theorem 3.1(ii), h
1/λ2

m (s, t) → +∞ as λ → ∞. Corollary 3.13(i) refines this statement.

Corollary 3.13. The following hold.

(i) For fixed s < t ∈ R, as λ → ∞, h
1/λ2

m (s, t)− Bm(s, t)−λ(t −s) converges in distribution to a normal

random variable with mean zero and variance 2(t − s).

(ii) For t > 0 and 0 ≤ λ1 ≤ λ2, X (λ2; t) − X (λ1; t) is not independent of X (λ1; t). Furthermore, the

process λ 7→ X (λ; t) does not have independent increments.

Remark 3.14. In addition to Corollary 3.13, numerical calculations give more information about the

structure of this nonindependence. Specifically, it appears that for t > 0 and 0 < λ1 < λ2,

P
(
X (λ2; t) = X (λ1; t) | X (λ1; t) = X (0; t)

)
< P

(
X (λ2; t) = X (λ1; t)

)
.

In other words, conditioning on no jumps in the interval [0, λ1] increases the probability of a jump

in (λ1, λ2].

3C. Coupled Brownian motions with drift. On a fixed horizontal level m of Z × R, the Busemann

functions hθ�

m (t) form an infinite family of coupled Brownian motions with drift. This section describes

the structure of this family.

We return to the parameter θ = 1/λ2 of the direction of semi-infinite geodesics. Recall that t 7→ hθ
m(t)

is a Brownian motion with drift 1/
√

θ . It is convenient to extend the range of the parameter θ to infinity by

defining h∞
m = Bm . By stationarity it is enough to consider the level m = 0. As pointed out in Remark 3.8,

it is sufficient to restrict attention to nonnegative times t ≥ 0, and then Theorem 3.15 captures also the

properties of the restarted process t 7→ hθ�

m (t + s)− hθ�

m (s) for any fixed (m, s) ∈ Z × R. Recall that 2 is

the set of discontinuities of the Busemann process defined in (2-3).

Theorem 3.15. The following hold on a single event of probability one.

(i) For 0 <γ <δ ≤∞ and �1, �2 ∈ {−, +}, the difference h
γ �1

0 (t)−h
δ�2
0 (t) between the two trajectories

is nonnegative and nondecreasing as a function of t ≥ 0. For θ > 0, the same is true of the difference

hθ−
0 (t) − hθ+

0 (t) as a function of t ≥ 0.
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0.0 0.1 0.2 0.3 0.4 0.5

0
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6

hθ
m+1(t)

Busemann functions for various values of θ

t

Figure 8. A simulation of the branching structure of the Busemann functions. Higher trajectories
correspond to larger values of the drift λ > 0, or equivalently, to smaller values of the direction
parameter θ = λ−2 and thereby to geodesic directions approaching the vertical.

(ii) For 0 < γ < δ ≤ ∞ and �1, �2 ∈ {−, +}, there exists a random time S = S(γ �1, δ�2) > 0 such that

h
γ �1

0 (t) = h
δ�2
0 (t) for t ∈ [0, S], and h

γ �1

0 (t) > h
δ�2
0 (t) for t > S.

(iii) For every such value of S = S(γ �1, δ�2), there exists θ ∈ [γ, δ] ∩2 such that hθ−
0 (t) = hθ+

0 (t) for

t ∈ [0, S], and hθ−
0 (t) > hθ+

0 (t) for t > S.

(iv) For each T > 0, the set of distinct trajectories {t 7→ hθ�

m (t) : t ∈ [0, T ], θ ∈ (0, ∞], � ∈ {−, +}} is

countably infinite.

(v) At each fixed time T > 0, the set of values {hθ�

m (T ) : θ ∈ (0, ∞], � ∈ {−, +}} is a countably

infinite subset of R, bounded from below but unbounded from above, and has no limit points

in R. In particular, for every ε > 0, there exists η = η(ε) > 0 such that for all 0 < θ ≤ η,

hθ−
0 (ε) ≥ hθ+

0 (ε) > B0(ε).

Remark 3.16. For 0 < γ < δ ≤ ∞ the distribution of the separation time is given by

P[S(γ, δ) > t] = P[hγ

0 (t) = hδ
0(t)] = F(0; 1/

√
γ − 1/

√
δ, t) for t > 0,

where F(0; λ, t) is from (3-15). There is no ± distinction because for a fixed θ > 0, hθ+
m (t) = hθ−

m (t)

for all t ∈ R with probability one.

Remark 3.17. Figure 8 presents a simulation of the trajectories {hθ
0(t) : t ≥ 0} for various values of

the direction parameter θ = λ−2. We see a visual representation of the statements of Theorem 3.15.

The lowest (blue) trajectory is the Brownian motion h∞
0 = B0 with direction θ = ∞ and drift λ = 0.
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Trajectories move together from the origin and then split, and the distance between them is nondecreasing

(Theorem 3.15(i)–(ii)). Part (iii) implies that when two trajectories split, there exists θ ∈ 2 such that hθ−
0

follows the upper trajectory and hθ+
0 follows the lower trajectory. We expect that three distinct trajectories

do not split at the same time, but we do not have a proof and leave it as an open problem.

As one travels upward along the vertical line at T = 0.45 in the figure, one observes the process

λ 7→ h
(1/λ2)∓
0 (T ) = X (λ±; T ). Specifically, let 0 < λ1 < λ2 < · · · be the jump times of this process.

Then, for 0 ≤ λ < λ1, X (λ±; T ) is equal to the vertical coordinate of the bottom curve (blue). At λ = λ1,

X (λ1−; T ) is still equal to the vertical coordinate of the bottom curve (blue), but X (λ1+; T ) is equal

to the vertical coordinate of the second-lowest curve (red). For λ1 < λ < λ2, X (λ±; T ) is equal to the

vertical coordinate of the red curve, and so on. Lastly, in the figure, we see some trajectories splitting

from B0 very close to t = 0, as guaranteed by part (v).

Remark 3.18. Corollary 2 of Rogers and Pitman [31] describes another coupling of two Brownian

motions with drift such that they agree for a finite amount of time. Their result is related to our work

because it is used to show the stability of the Brownian queue (see, for example, page 289 in [28]).

However, the Rogers-Pitman coupling is different from ours, because, for example, theirs does not satisfy

the monotonicity of increments given in Theorem 3.15(i).

4. Global geometry of geodesics and the competition interfaces

4A. Busemann geodesics. In addition to Theorems 2.8 and 2.10, the results of this section characterize

uniqueness and coalescence of semi-infinite geodesics across all directions and initial points. These

geometric properties are accessed through analytic and probabilistic properties of the Busemann process.

As in [35], the following demonstrates how to construct semi-infinite geodesics from Busemann functions.

Definition 4.1. For each initial point (m, t) ∈ Z × R, direction θ > 0 and sign � ∈ {−, +}, let T θ�

(m,t)

denote the set of real sequences

t = τm−1 ≤ τm ≤ τm+1 ≤ · · · ≤ τr ≤ · · ·

that satisfy

Br (τr ) − hθ�

r+1(τr ) = sup
s∈[τr−1,∞)

{Br (s) − hθ�

r+1(s)} for each r ≥ m. (4-1)

Theorem 3.1(iv)–(v) guarantee that such sequences exist. Equality of two elements (τr )r≥m−1 and

(τ ′
r )r≥m−1 of T θ�

x means that τr = τ ′
r for all r ≥ m − 1. At each level r , there exist finite leftmost and

rightmost maximizers. Let

t = τ
θ�,L
(m,t),m−1 ≤ τ

θ�,L
(m,t),m ≤ · · · and t = τ

θ�,R
(m,t),m−1 ≤ τ

θ�,R
(m,t),m ≤ · · ·

denote the leftmost and rightmost sequences in T θ�

(m,t). Since an increasing sequence of jump times

determines an infinite planar path, as illustrated in Figure 9, we think of T θ�

x equivalently as the set of

semi-infinite paths determined by its elements. For S ∈ {L , R}, let 0
θ�,S
(m,t) be the continuous semi-infinite
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(m, t) τ θ
m τ θ

m+1 τ θ
m+2 · · ·

m
m + 1
m + 2

...

Figure 9. Example of an element of T θ
(m,t).

path on the plane defined by the jump times {τ θ�,S
(m,t),r }r≥m−1. Finally, let T θ

(m,t) := T θ+
(m,t) ∪ T θ−

(m,t) denote

the collection of all the sequences (or paths) associated to the direction parameter θ .

Remark 4.2. We make the observation that in Definition 4.1, if, at any step r , the function Br (u)−hθ�

r+1(u)

has more than one maximizer over u ∈ [τr−1, ∞), then any choice τr of maximizer continues the sequence

as an element of T θ�

x , regardless of the past steps. In terms of paths, if 0 ∈ T θ�

x , then for any point

y ∈ 0 ∩ (Z × R), the portion of 0 above and to the right of y is an element of T θ�

y .

It was proved in [35] that every element of T θ
(m,t) is a θ -directed semi-infinite geodesic out of x = (m, t).

We call these Busemann geodesics. In general, 0
θ−,L
(m,t) is the leftmost among all θ-directed semi-infinite

geodesics out of (m, t) and 0
θ+,R
(m,t) is the rightmost. These properties, along with other previously proved

facts, are recorded below.

Theorem 4.3 [35, Theorems 3.1(iv)–(v), 4.3 and 4.5(ii)]. The following hold on the full-probability

event �2, unless stated otherwise.

(i) (existence) For all x ∈ Z × R, θ > 0, and � ∈ {−, +}, every element of T θ�

x defines a semi-infinite

geodesic starting from x. More specifically, for any two points y ≤ z along a path in T θ�

x , the energy

of this path between y and z equals B
θ�( y, z), and this energy is maximal over all paths between y

and z.

(ii) (leftmost and rightmost finite geodesics along paths) If , for some θ > 0, � ∈ {−, +}, and x ∈ Z × R,

the points y ≤ z ∈ Z × R both lie on 0θ�,L
x , then the portion of 0θ�,L

x between y and z coincides

with the leftmost finite geodesic between these two points. Similarly, 0θ�,R
x is the rightmost geodesic

between any two of its points.

(iii) (monotonicity) The following inequalities hold.

(a) For all 0 < γ < θ , S ∈ {L , R}, (m, t) ∈ Z × R, and r ≥ m,

t ≤ τ
γ−,S

(m,t),r ≤ τ
γ+,S

(m,t),r ≤ τ
θ−,S
(m,t),r ≤ τ

θ+,S
(m,t),r .

(b) For all θ > 0, m ≤ r ∈ Z, s < t ∈ R, and � ∈ {−, +},

τ
θ�,L
(m,s),r ≤ τ

θ�,L
(m,t),r and τ

θ�,R
(m,s),r ≤ τ

θ�,R
(m,t),r .

(c) For θ > 0, on the θ-dependent full-probability event �(θ), for all pairs of initial points (m, s)

and (m, t) in Z × R that satisfy s < t , we have

τ
θ,R
(m,s),r ≤ τ

θ,L
(m,t),r for all r ≥ m.
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(iv) (convergence) For all (m, t) ∈ Z × R, r ≥ m, θ > 0, � ∈ {−, +}, and S ∈ {L , R}, the following

limits hold:

lim
γ↗θ

τ
γ �,L

(m,t),r = τ
θ−,L
(m,t),r and lim

δ↘θ
τ

δ�,R
(m,t),r = τ

θ+,R
(m,t),r , (4-2)

lim
θ↘0

τ
θ�,S
(m,t),r = t and lim

θ→∞
τ

θ�,S
(m,t),r = ∞, (4-3)

lim
s↗t

τ
θ�,L
(m,s),r = τ

θ�,L
(m,t),r and lim

u↘t
τ

θ�,R
(m,u),r = τ

θ�,R
(m,t),r . (4-4)

(v) (directedness) For all x ∈ Z × R, θ > 0, � ∈ {−, +}, and all {τr }r≥m ∈ T θ�

x ,

lim
n→∞

τn

n
= θ.

(vi) (general directedness) All semi-infinite geodesics, whether they are Busemann geodesics or not, are

θ-directed for some θ ∈ [0, ∞]. The only 0- or ∞-directed semi-infinite geodesics are vertical and

horizontal lines, respectively.

(vii) (control of semi-infinite geodesics) If , for some θ > 0 and (m, t) ∈ Z × R, any other geodesic

(constructed from the Busemann functions or not) is defined by the sequence t = tm−1 ≤ tm ≤ · · · ,

starts at (m, t), and has direction θ , then for all r ≥ m,

τ
θ−,L
(m,t),r ≤ tr ≤ τ

θ+,R
(m,t),r .

Remark 4.4. Theorem 4.5 and Remark 4.6 strengthen Theorem 4.3 in the following ways. Part (iii)(a) is

clarified to show that, in general, τ
γ �,R

(m,t) and τ
θ�,L
(m,t) are incomparable for γ < θ . Part (iii)(c) is strengthened

to an almost sure statement simultaneously over all directions. The limits in (4-2) are strengthened to

allow us to interchange L and R in both statements. The limits in (4-4) are strengthened to allow both

L and R in the converging jump time. This illustrates how knowledge of the joint distribution of the

Busemann process leads to almost sure structural results for geodesics.

The following result is new to the present paper and strengthens the regularity properties of the

geodesics as functions of the direction and the initial point.

Theorem 4.5. On a single event of full probability, the following hold.

(i) For each n ≥ m in Z, θ > 0, and compact subsets K ⊆ R, there exists a random ε = ε(m, n, K , θ)> 0

such that, whenever t ∈ K , θ − ε < γ < θ < δ < θ + ε, m ≤ r ≤ n, � ∈ {−, +}, and S ∈ {L , R},

τ
γ �,S

(m,t),r = τ
θ−,S
(m,t),r and τ

δ�,S
(m,t),r = τ

θ+,S
(m,t),r . (4-5)

(ii) For each θ > 0, � ∈ {−, +}, m ≤ r ∈ Z and s < t ∈ R,

τ
θ�,R
(m,s),r ≤ τ

θ�,L
(m,t),r .

(iii) For each θ > 0, � ∈ {−, +}, m ≤ r ∈ Z, s ∈ R, and S ∈ {L , R},

lim
u↗s

τ
θ�,S
(m,u),r = τ

θ�,L
(m,s),r , and lim

t↘s
τ

θ�,S
(m,t),r = τ

θ�,R
(m,s),r .
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Remark 4.6. In general, the inequalities of Theorem 4.3(iii)(a) and the equalities of (4-5) cannot be

extended to mix L with R. In fact, for every (m, t) ∈ NU1 (see (4-9)) and ε > 0 there exist θ − ε < γ < θ

such that

τ
θ−,L
(m,t),m = τ

θ+,L
(m,t),m < τ

γ−,R

(m,t),m = τ
γ+,R

(m,t),m . (4-6)

To show this, choose (m, t) ∈ NU1 and ε > 0. As noted in Remark 3.3, there exists an event of probability

one, on which, for all θ ∈ Q>0, the ± distinction is not present. By Theorem 4.8(ii), there exists

θ ∈ Q>0 such that τ
θ,L
(m,t),m < τ

θ,R
(m,t),m . By Theorem 4.5(i), there exists γ ∈ (θ − ε, θ) ∩ Q>0 such that

τ
γ,R

(m,t),m = τ
θ,R
(m,t),m , and (4-6) holds.

4B. Non-uniqueness and coalescence of geodesics. In contrast with lattice LPP with continuous weights,

in BLPP every direction has random exceptional initial points from which the directed geodesic is not

unique. Let NUθ�

0 be the set of space-time points from which emanate at least two semi-infinite Busemann

geodesics with the same direction θ and sign �. Let NUθ�

1 be the subset of NUθ�

0 of those points out of

which two θ� geodesics separate on the first level. Precisely,

NUθ�

0 = {(m, t) ∈ Z × R : τ θ�,L
(m,t),r < τ

θ�,R
(m,t),r for some r ≥ m}, (4-7)

NUθ�

1 = {(m, t) ∈ NUθ�

0 : τ θ�,L
(m,t),m < τ

θ�,R
(m,t),m}. (4-8)

Define their unions over directions and signs as

NU0 =
⋃

θ>0, �∈{−,+}
NUθ�

0 and NU1 =
⋃

θ>0, �∈{−,+}
NUθ�

1 . (4-9)

The reason for singling out the subset NU1 of NU0 becomes evident later in Theorem 4.32, where

membership in NU1 connects with the behavior of the competition interface.

Remark 4.7. The role of the sets NUθ�

0 in the nonuniqueness of θ -directed geodesics is somewhat subtle.

It depends on the direction θ and on whether we take the θ-specific view or the global view, that is, the

choice of the full-probability event on which we view the situation.

(a) The crudest situation is that we fix θ and work on the event �(θ) of Theorem 3.1(vii). On this event, the

± distinction is not visible, and we can drop the sign and write NUθ
0 = NUθ±

0 . Now, on the full probability

event �(θ) ∩ �2, the set NUθ
0 is exactly the set of initial points x ∈ Z × R out of which the θ-directed

geodesic is not unique. This follows because when there is no ± in Theorem 4.3(vii), nonuniqueness out

of x in direction θ happens if and only if the L and R geodesics in T θ
x do not agree.

(b) If we want a global view, that is, a consideration of all directions simultaneously on a single full-

probability event, then we must consider the random set 2 of Busemann function jump points, defined

in (2-3). The set 2 is countably infinite (Theorem 2.5(i)). If θ /∈ 2, then the ± distinction is not present

and the situation is as in point (a). However, if θ ∈ 2, then out of every x ∈ Z × R there is more than

one θ-directed semi-infinite geodesic. (See Theorem 4.21 and Remark 4.22.) Yet, the sets NUθ−
0 and

NUθ+
0 are only countably infinite (Theorem 4.8). Thus, for θ ∈ 2, the union NUθ−

0 ∪ NUθ+
0 dramatically

fails to catch all the initial points x out of which the θ -directed geodesic is not unique. The reason is that

NUθ−
0 ∪ NUθ+

0 accounts only for the L/R distinction of geodesics and not the ± distinction.
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The following theorem describes the sets NU0 and NU1. The countable unions in (4-10) are technically

crucial because they allow us to rule out left/right nonuniqueness from rational initial points x simulta-

neously in all directions without accumulating uncountably many zero-probability events. Recall that

NUθ�

1 ⊆ NUθ�

0 .

Theorem 4.8. The following hold on a single event of full probability:

(i) For every θ > 0 and � ∈ {−, +}, the sets NUθ�

0 and NUθ�

1 are both countably infinite.

(ii) The sets NU0 and NU1 are both countably infinite. Specifically,

NU0 =
⋃

θ∈Q>0

NUθ
0 and NU1 =

⋃

θ∈Q>0

NUθ
1 . (4-10)

(iii) For each x ∈ Z × R, P(x ∈ NU0) = 0: in particular, the full probability event of the theorem is

constructed so that, for all x ∈ Z × Q, x /∈ NU0, or in other words, T θ�

x contains a single sequence

for all θ > 0 and � ∈ {−, +}.
(iv) The sets NUθ�

0 and NUθ�

1 can be described as

NUθ�

0 = {(m, t) ∈ Z × R : t = τ
θ�,L
(m,t),r < τ

θ�,R
(m,t),r for some r ≥ m},

NUθ�

1 = {(m, t) ∈ NUθ�

0 : t = τ
θ�,L
(m,t),m < τ

θ�,R
(m,t),m}.

In other words, Busemann geodesics emanating from (m, t) can separate only along the upward

vertical ray from (m, t).

Remark 4.9. Theorems 4.32 and 4.36 give more details about the nature of the sets NU0 and NU1 and

relate them to the geometry of semi-infinite geodesics. Theorem 4.32(iii) gives some intuition into why

we can write NU1 as a union over just a dense set of directions: When (m, s) ∈ NU1, then (m, s) ∈ NUθ�

1

for all θ in a nonempty interval.

Remark 4.10. We spell out the geometric consequences of Theorem 4.8, combined with some other

facts. Refer to Figure 10. Consider the set T θ�

(m,t) of semi-infinite θ� Busemann geodesics out of the

point (m, t). Each of them is θ-directed by Theorem 4.3(v), and hence must eventually exit the vertical

ray {(x, t) : x ≥ m} that emanates from (m, t). In particular, this is true of the leftmost geodesic 0
θ�,L
(m,t)

and consequently there is a level r such that no θ� Busemann geodesic out of (m, t) goes through the

point (k, t) for k ≥ r .

By part (iii) of Theorem 4.8, there exists an event of full probability on which T θ�

(r,q) contains a single

element for each (r, q) ∈ Z×Q, θ > 0, and � ∈ {−, +}. On this event, for each r ≥ m, at most one T θ�

(m,t)

geodesic can move to the right from the point (r, t). Otherwise, two such geodesics pass through (r, q)

for some rational q > t and produce two geodesics in the set T θ�

(r,q), a contradiction. In other words, the

T θ�

(m,t) geodesics branch one by one from the upward vertical ray emanating from the initial point (m, t).

One conclusion of the above is that T θ�

(m,t) is a finite set. By Theorem 4.11(iii), from some point

onwards, all T θ�

(m,t) geodesics are back together.
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x

z

Figure 10. In this example, out of the point x, there are multiple elements of T θ�

x , i.e., multiple
Busemann geodesics from x with the same direction and sign. The geodesics all split from each
other at the vertical line containing the initial point. The point x lies in the set NU1 (and thus
also NU0) because there exist geodesics that split immediately at the initial point. Furthermore,
although there are multiple θ� geodesics from the same point, they eventually come back together
and agree from some point z onwards by Theorem 4.11(iii). We know that there exist points
x ∈ Z × R with two elements of T θ�

x , but whether there are points with more than two such
geodesics, as in the figure, is an open problem.

Three interrelated open problems are left in this situation: Do there exist initial points (m, t) with

more than two elements in T θ�

(m,t)? Is branching at the first level the only possibility when T θ�

(m,t) is not

a singleton? If the answer is negative, further questions arise. Is the difference NU0 \ NU1 empty, or

equivalently, does any branching from (m, t) imply branching already at level m, and if NU0 \ NU1 ̸= ∅,

how large is it?

The next theorem gives coalescence of all Busemann geodesics with the same direction θ > 0 and sign

� ∈ {−, +}. Recall the southeast ordering x ≽ y from Section 2A, referring to Figure 11.

Theorem 4.11. The following hold on a single event of full probability, simultaneously for all directions

θ > 0 and signs � ∈ {−, +}.

(i) Whenever x, y ∈ Z × R, any two geodesics 01 ∈ T θ�

x and 02 ∈ T θ�

y coalesce. If x ≻ y, then the

minimal point of intersection is the coalescence point.

y = (r, s) z = (r, t)

w = (m, s) x = (m, t)

s t

m

r

Figure 11. In this figure, we have y ≺ x, y ≺ z, and w ≺ x. We also have y ≼ w but y ̸≺ w

and z ≼ x but z ̸≺ x. The points w and z satisfy the coordinatewise ordering w ≤ z, but they are
incomparable under the ordering ≽.
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x

y

w

Figure 12. The red/thick path is 0θ�,L
x and the blue/thin path is 0θ�,R

y .

(ii) If 01, 02 ∈ T θ�

(m,t) are distinct, their coalescence point is the minimal point of the set (01 ∩ 02) \
{(x, t) : x ∈ [m, ∞)}. In other words, the coalescence point of 01 and 02 is the first point of

intersection after these geodesics split.

(iii) For each (m, t) ∈ Z × R, there exists a level r ≥ m and a sequence sr ≤ sr+1 ≤ · · · such that every

sequence {τk}∞k=m−1 ∈ T θ�

(m,t) satisfies τk = sk for k ≥ r . Equivalently, there exists a point z ≥ (m, t)

and a semi-infinite geodesic 00 ∈ T θ�

z such that all geodesics in T θ�

(m,t) agree with 00 above and to

the right of z. See Figure 10.

Remark 4.12. A consequence of Theorem 4.11 is that the nonuniqueness of semi-infinite geodesics

captured by the L/R distinction is temporary, and does not separate the geodesics all the way to ∞. That

is, while there may be two geodesics in T θ�

x that separate, they must come back together, as in Figure 10.

By contrast, in the ± distinction, geodesics with the same direction split and never come back together.

This is explained further in Remarks 4.22, 4.31, and 4.33.

Remark 4.13. In [35], we proved that, for a fixed direction θ > 0 with probability one, all θ-directed

geodesics (whether constructed by the Busemann functions or not) coalesce. This is recorded in the

current paper as Theorem 2.4. This theorem was proven by defining southwest semi-infinite geodesics

in a dual environment. It was shown that, if two geodesics with the same direction θ are disjoint, there

must exist a bi-infinite geodesic whose northwest and southeast directions are θ . Then, it was shown

that, for fixed northeast and southwest directions, there are almost surely no bi-infinite geodesics in those

directions (Theorem 3.1(vi) in [35]). Theorem 4.11(i) does not rely on the result from [35] and provides

a new method of proof. Theorem 4.21(viii) states that for all θ /∈ 2, all θ -directed semi-infinite geodesics

are Busemann geodesics, and Theorem 2.5 states that P(θ ∈ 2) = 0 for all θ > 0. Therefore, Theorem 2.4

follows as a special case of Theorem 4.11(i).

Remark 4.14. Without the strict ordering x ≻ y in Theorem 4.11(i), the intersection point of two geodesics

is not known to be the same as the coalescence point. Whether the following occurs with positive probability

for a random weakly ordered pair x = (m, s) ≽ y = (r, s) is left as an open problem: First, 0θ�,L
x moves

vertically from (m, s) to (r, s) and meets 0θ�,R
y . After that, if 0θ�,L

x makes a vertical step to (r + 1, s),

but 0θ�,R
y makes a horizontal step, then the geodesics become separated. In this case zθ�(x, y) = y is

the minimal point of intersection but not the coalescence point w, as illustrated in Figure 12.
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4C. Geodesics and the discontinuities of the Busemann process. Recall the discontinuity sets 2x, y and

2 defined in (2-3).

Suppose that, for some initial points x and y, signs �1, �2 ∈ {−, +}, and directions γ < θ , two

geodesics 01 ∈ T
γ �1
x and 02 ∈ T

γ �1
y coalesce at some point z, and two other geodesics 03 ∈ T θ�2

x

and 04 ∈ T θ�2
y also coalesce at that same point z. Then by additivity of the Busemann functions and

Theorem 4.3(i),

B
γ �1(x, y) = B

γ �1(x, z) − B
γ �1( y, z) = L x,z − L y,z = B

θ�2(x, y). (4-11)

In light of Theorem 2.5(ii), it is natural to ask whether the converse holds: that is, whether B
θ�2(x, y) =

B
γ �1(x, y) implies that the θ- and γ -directed geodesics out of x and y share a common coalescence

point. The answer is affirmative for lattice LPP with continuous weights (see Section 3 of [25]). We show

in Remark 8.3 that this does not hold in general for BLPP. However, such a statement does hold when

restricted to certain configurations of initial points and when the L/R type of the geodesics is specified

appropriately. This is manifested in the following definition.

Definition 4.15. For x ≽ y and θ > 0, we define zθ�(x, y) ∈ Z×R to be the minimal point of intersection

of the semi-infinite geodesics 0θ�,L
x and 0θ�,R

y .

Remark 4.16. By Theorem 4.11(i), zθ�(x, y) is well-defined, and if x and y satisfy the strict ordering

x ≻ y, then zθ�(x, y) is also the coalescence point of 0θ�,L
x and 0θ�,R

y . In the general case x ≽ y, the

definition of zθ�(x, y) as the minimal intersection point (instead of the coalescence point) is required for

the following theorems. Also, the condition x ≽ y and the L/R distinctions are essential.

Theorem 4.17. On a single event of probability one, whenever γ < δ, and x ≽ y ∈ Z × R, the following

are equivalent.

(i) B
γ+(x, y) = B

δ−(x, y).

(ii) zγ+(x, y) = zδ−(x, y).

(iii) There exists z ∈ Z × R and finite-length, upright paths 01 (connecting x and z) and 02 (connecting

y and z) such that for all θ ∈ (γ, δ) and � ∈ {−, +}, 01 agrees with 0θ�,L
x , 0

γ+,L
x and 0δ−,L

x from

x to z, and 02 agrees with 0θ�,R
y , 0

γ+,R
y , and 0δ−,R

y from y to z. The paths 01 and 02 are disjoint

before they reach the point z.

Remark 4.18. If we remove condition (iii) from Theorem 4.17, then we get a more general equivalence

where we do not need to assume the signs − and + for the δ and γ geodesics, respectively. See

Theorem 8.8.

Remark 4.19. Set x = (m, t), y = (r, s) and w = (r, t). The assumption x ≽ y requires r ≥ m and s ≤ t .

By the additivity of Theorem 3.1(i), we may write

B
θ�(x, y) = B

θ�(x, w) + B
θ�(w, y) =

r∑

k=m+1

vθ�

k (t) − hθ�

r (s, t). (4-12)
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By the monotonicity of Theorem 3.1(ii), the process θ 7→ B
θ�(x, y) is nondecreasing whenever x ≽ y.

Hence, condition (i) of Theorem 4.17 is equivalent to the stronger statement that, for θ ∈ (γ, δ) and

� ∈ {−, +},
B

θ�(x, y) = B
γ+(x, y) = B

δ−(x, y).

Theorem 4.20. On a single event of full probability, whenever θ > 0 and x ≽ y ∈ Z × R, the following

are equivalent.

(i) B
θ−(x, y) = B

θ+(x, y).

(ii) zθ−(x, y) = zθ+(x, y).

(iii) 0θ+,L
x ∩ 0θ−,R

y ̸= ∅.

We conclude this subsection with a theorem that characterizes the properties of θ -directed semi-infinite

geodesics depending on whether θ ∈ 2.

Theorem 4.21. On a single event of probability one, the following are equivalent.

(i) θ /∈ 2.

(ii) 0θ+,R
x = 0θ−,R

x and 0θ+,L
x = 0θ−,L

x for all x ∈ Z × R.

(iii) All θ -directed semi-infinite geodesics coalesce (whether they are Busemann geodesics or not).

(iv) For all x ∈ (Z × R) \ NU0, there exists a single θ -directed semi-infinite geodesic starting from x.

(v) There exists x ∈ Z × R such that there is exactly one θ-directed semi-infinite geodesic starting

from x.

(vi) There exists x ∈ Z × R such that 0θ+,R
x = 0θ−,R

x .

(vii) There exists x ∈ Z × R such that 0θ+,L
x = 0θ−,L

x .

Under these equivalent conditions, the following also holds.

(viii) For all x ∈ Z × R, all θ -directed semi-infinite geodesics starting from x are in the set T θ
x , i.e., they

are all Busemann geodesics.

Remark 4.22. By Theorem 4.3(ii), for each x ∈ Z × R, θ > 0, and � ∈ {−, +}, 0θ�,L
x is the leftmost

geodesic between any two of its points. Hence, by (vii)⇔(i) of Theorem 4.21, for each θ ∈ 2 and

x ∈ Z × R, there exists a point v ≥ x such that 0θ−,L
x and 0θ+,L

x split at v and never come back together.

The same is true with L replaced with R and “left” replaced with “right”. On the other hand, for a given

sign � ∈ {−, +}, all θ� geodesics coalesce. See Figure 13.

Remark 4.23. Theorem 4.21(viii) is proved by showing that if an arbitrary θ-directed semi-infinite

geodesic 0 coalesces with a Busemann geodesic, then 0 must also be a Busemann geodesic. The same

proof can be applied to show the following statement:

Let θ > 0 (possibly in 2), and assume 0 is an arbitrary θ -directed semi-infinite geodesic from x. Also,

assume that for some Busemann geodesic 0̂, there exists a sequence of points (mn, tn) ∈ 0 ∩ 0̂ with

mn, tn → ∞. Then, 0 is a Busemann geodesic.
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x

y

w

v

zθ−(x, y)

zθ+(x, y)

Figure 13. The red/thick paths are the θ+ geodesics and the blue/thin paths are the θ− geodesics.
In this figure, we consider the geodesics 0θ−,L

x and 0θ+,L
x out of x, and we consider the geodesics

0θ−,R
y and 0θ+,R

y out of y. The picture would be qualitatively the same if we changed the L/R

distinctions of the geodesics, as long as the choice of L/R is the same at each initial point. We
choose this particular configuration in the figure so that the coalescence points are zθ−(x, y) and
zθ+(x, y), as defined in Definition 4.15.

Therefore, by Theorems 4.3(vii) and 4.11(iii), if there exists some θ ∈ 2 and a θ -directed semi-infinite

geodesic 0 that is not a Busemann geodesic, then there exists a level r such that, above level r , 0θ�,L
x

agrees with 0θ�,R
x for � ∈ {−, +}, and 0 lies strictly between the θ− and θ+ Busemann geodesics.

See Figure 14. Whether such a geodesic 0 exists with positive probability for some random direction is

currently unknown and is left as an open problem.

4D. The competition interfaces. Loosely speaking, the competition interface from a given initial point

(m, s) ∈ Z × R separates the points (n, t) ≥ (m, s) into two sets, differentiated by whether the geodesic

between (m, s) and (n, t) passes through (m + 1, s). However, since point-to-point geodesics are not

x

Figure 14. The picture in the (unknown) case that there exists a semi-infinite geodesic 0 that is
not a Busemann geodesic. After a certain level, there is a single θ− geodesic and a single θ+
geodesic, and 0 (blue, middle) lies strictly between the θ− Busemann geodesic (red, left) and the
θ+ Busemann geodesic (red, right). The diagonal dots are used to indicate that initially, there
may be more than one θ� Busemann geodesic, but these all coalesce into a single geodesic at a

certain level.
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(m, s)

(n, t1)

(n, t2)
(n, σ(m,s),n)

Figure 15. The competition interface based at (m, s) (blue/thin path) separates points (n, t)

based on whether the geodesic (red/thick path) between (m, s) and (n, t) makes an initial vertical
or horizontal step. The solid horizontal lines mark levels in Z and the dotted lines mark levels in
Z − 1

2 . This figure ignores the distinction between left and right competition interface.

unique in general (see Lemma 2.2), we introduce separate left and right competition interfaces. For

(m, s) ≤ (n, t), let 0L
(m,s),(n,t) and 0R

(m,s),(n,t) denote, respectively, the leftmost and rightmost geodesics

from (m, s) to (n, t). For n > m, define

σ L
(m,s),n := sup{t ≥ s : 0L

(m,s),(n,t) passes through (m + 1, s)}

and

σ R
(m,s),n := sup{t ≥ s : 0R

(m,s),(n,t) passes through (m + 1, s)}.

Remark 4.24. We can represent the sequence s = σ L
(m,s),m ≤ σ L

(m,s),m+1 ≤ · · · as an infinite path on

the plane as follows (see Figure 15). For r ∈ Z, we let r⋆ = r − 1
2 . The path starts at ((m + 1)⋆, s),

and for each r > m, the path takes a horizontal segment from (r⋆, σ L
(m,s),r−1) to (r⋆, σ L

(m,s),r ) and then

a vertical segment from (r⋆, σ L
(m,s),r ) to ((r + 1)⋆, σ L

(m,s),r ). The same rule is applied to the sequence

s = σ R
(m,s),m ≤ σ R

(m,s),m+1 ≤ σ R
(m,s),m+2 ≤ · · ·.

Definition 4.25. The left competition interface from (m, s) is the path s = σ L
(m,s),m ≤ σ L

(m,s),m+1 ≤
σ L

(m,s),m+2 ≤ · · ·. The right competition interface is defined similarly, replacing L in all superscripts

with R. If σ L
(m,s),n = s for all n ≥ m, we say that (m, s) has trivial left competition interface. We say the

same with L replaced with R and “left” replaced with “right”. In this case, the associated path is the

upward vertical ray started at ((m + 1)⋆, s).

Example 4.26. In BLPP, it is fairly simple to construct a point (m, s) whose right and left competition

interfaces differ (refer to Figure 16). For each m ∈ Z, the proof of Lemma A.1(ii) constructs a random

pair s < t ∈ R such that there exist exactly three geodesics between (m, s) and (m +1, t): one that makes

an immediate vertical step, one that makes a horizontal step from (m, s) to (m, t) and then a vertical step

to (m + 1, t), and one geodesic that jumps to level m + 1 at an intermediate time u ∈ (s, t). Since

L(m,s),(m+1,t) = sup
v∈[s,t]

{Bm(s, v)+ Bm+1(v, t)},
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(m, s)

(m + 1, u) (m + 1, t)

Figure 16. The three geodesics (red/thick), the left competition interface (blue/dashed), and the
right competition interface (blue/thin).

the three geodesics correspond to the existence of exactly three maximizers of the function Bm(v)−Bm+1(v)

over v ∈ [s, t], namely v = s, v = u, and v = t . Thus, for v ∈ [s, u) there is a unique geodesic between

(m, s) and (m + 1, v), and this geodesic passes through (m + 1, s). For v ∈ [u, t) there are exactly two

geodesics between (m, s) and (m + 1, v), the left one jumps at s and the right one at u. For t̂ > t , no

geodesic between (m, s) and (m + 1, t̂) can pass through (m + 1, s). Otherwise, u and t would both be

maximizers of Bm(v) − Bm+1(v) over v ∈ [s, t̂] lying in the interior of the interval, a contradiction to

Corollary C.5. Therefore, u = σ R
(m,s),m+1 < σ L

(m,s),m+1 = t .

For S ∈ {L , R} and � ∈ {−, +}, set τ
0�,S
(m,s),m = s, and for (m, s) ∈ Z × R, define

θ L
(m,s) := sup{θ ≥ 0 : τ θ�,L

(m,s),m = s}, and θ R
(m,s) := sup{θ ≥ 0 : τ θ�,R

(m,s),m = s}. (4-13)

These quantities are the asymptotic directions of the competition interfaces, and they characterize points

with nontrivial competition interface, as will be seen in the theorems that follow. By the monotonicity and

limits of Theorem 4.3(iii)(a) and (4-2), θ R
(m,s) and θ L

(m,s) are independent of the choice of sign � ∈ {−, +}
used in the definition (4-13).

Remark 4.27. From the definition, it immediately follows that, for (m, s) ∈ Z × R and n > m,

s ≤ σ R
(m,s),n ≤ σ L

(m,s),n. (4-14)

From (4-13) and the monotonicity of Theorem 4.3(iii)(a),

0 ≤ θ R
(m,s) ≤ θ L

(m,s). (4-15)

At first glance, these inequalities may seem strange, but the left competition interface is to the right of

the right competition interface, because the modifiers “left” and “right” refer to the geodesics that are

separated.

Lemma 4.28. On a single event of probability one, for every (m, s) ∈ Z × R, σ L
(m,s),n and θ L

(m,s) are finite.

Now that we know all four quantities are finite, we can state the result for the asymptotic directions.

Theorem 4.29. On a single event of full probability, the following limits hold for each (m, s) ∈ Z × R:

θ L
(m,s) = lim

n→∞

σ L
(m,s),n

n
and θ R

(m,s) = lim
n→∞

σ R
(m,s),n

n
. (4-16)

The next theorem provides characterizations of nontrivial competition interfaces, simultaneously, for

all initial points. In particular, the equivalences imply a sharp geometric dichotomy: either a competition
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interface is trivial, or it has a strictly positive limiting slope in (4-16). The latter case is triggered by having

even one finite geodesic that starts with a vertical step before moving to the right, as in the definition of

the random set CI from (2-5).

Theorem 4.30. On a single event of full probability, for every (m, s) ∈ Z×R, the following are equivalent.

(i) (m, s) ∈ CI. That is, for some n > m and t > s, at least one geodesic between (m, s) and (n, t)

passes through (m + 1, s).

(ii) σ L
(m,s),n > s for some n > m, i.e., (m, s) has nontrivial left competition interface.

(iii) σ R
(m,s),n > s for some n > m, i.e., (m, s) has nontrivial right competition interface.

(iv) θ L
(m,s) > 0.

(v) θ R
(m,s) > 0.

(vi) There exists θ > 0 and � ∈ {−, +} such that τ
θ�,L
(m,s),m = s, i.e., 0

θ�,L
(m,s) makes an immediate vertical

step to (m + 1, s). In this case, θ ≤ θ L
(m,s), and the statement holds for all θ < θ L

(m,s).

(vii) There exists θ > 0 and � ∈ {−, +} such that τ
θ�,R
(m,s),m = s, i.e., 0

θ�,R
(m,s) makes an immediate vertical

step to (m + 1, s). In this case, θ ≤ θ R
(m,s), and the statement holds for all θ < θ R

(m,s).

(viii) There exists θ > 0 such that 0
θ−,L
(m,s) ∩ 0

θ+,L
(m,s) = {(m, s)}. In other words, there exists θ > 0 such that

0
θ−,L
(m,s) makes a vertical step to (m + 1, s), while 0

θ+,L
(m,s) makes an initial horizontal step, and the two

geodesics never meet again after the initial point. In this case,

• θ = θ L
(m,s),

• for γ < θ both 0
γ−,L

(m,s) and 0
γ+,L

(m,s) take an initial vertical step to (m + 1, s),

• for γ > θ both 0
γ−,L

(m,s) and 0
γ+,L

(m,s) take an initial horizontal step.

In other words, θ L
(m,s) is the unique direction γ such that 0

γ−,L

(m,s) ∩ 0
γ+,L

(m,s) is a finite subset of the

plane.

(ix) Condition (viii) with superscript L replaced with R.

(x) vθ�

m+1(s) = 0 for some θ > 0 and � ∈ {−, +}. In this case, θ ≤ θ L
(m,s), and vθ�

m+1(s) = 0 for all

θ < θ L
(m,s).

Remark 4.31. For the implication (v)⇒(ix), refer to Figure 17. By this result and (i)⇔(ii) of Theorem 4.21,

if θ R
(m,s) > 0, then θ R

(m,s) ∈2. The same is true if R is replaced with L in the superscript. For all other θ ∈2,

the θ+ and θ− geodesics from (m, s) eventually split by (vi)⇔(i) and (vii)⇔(i) of Theorem 4.21, but

they travel together for some time before splitting.

Recall the countable sets NU0 and NU1 of initial points of L/R nonuniqueness of Busemann geodesics

for a given θ�, defined in (4-9). The following relates these sets to the set of points with nontrivial

competition interface.

Theorem 4.32. The following hold on a single event of full probability.

(i) NU0 ⊆ CI.
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(ii) NU1 = {(m, s) ∈ Z × R : θ R
(m,s) ̸= θ L

(m,s)} = {(m, s) ∈ Z × R : 0 < θ R
(m,s) < θ L

(m,s)}.

(iii) The following classifies the directions and signs for which (m, s) ∈ NUθ�

1 (with the convention

that (a, a] = [a, a) = ∅ for a ∈ R).

(a) (m, s) ∈ NUθ−
1 if and only if θ ∈ (θ R

(m,s), θ
L
(m,s)].

(b) (m, s) ∈ NUθ+
1 if and only if θ ∈ [θ R

(m,s), θ
L
(m,s)).

(iv) The set NU1 is dense in itself. Specifically, for (m, s)∈NUθ�

1 and every ε>0, there exists t ∈ (s−ε, s)

such that (m, t)∈ NUθ�

1 . Further, if (m, s)∈ NU1, then for each θ <θ R
(m,s), �∈ {−, +} (or θ = θ R

(m,s)

and � = −) and ε > 0, there exists t ∈ (s, s + ε) such that (m, t) ∈ NUθ�

1 .

(v) For all (m, s) ∈ Z×R, there exists a random ε = ε(m, s) > 0 such that for all θ > θ R
(m,s), � ∈ {−, +},

and t ∈ (s, s + ε], (m, t) /∈ NUθ�

1 . The statement also holds for θ = θ R
(m,s) if � = +.

(vi) For all (m, s) ∈ CI and all ε > 0, there exists t ∈ (s, s + ε) such that θ R
(m,t) = θ R

(m,s) > 0.

Remark 4.33. The set CI \ NU0 has Hausdorff dimension 1
2 , since CI has Hausdorff dimension 1

2

(Theorem 2.10) and NU0 is countable (Theorem 4.8(ii)). For all x ∈ CI \ NU0, θ > 0 and � ∈ {−, +},
there is exactly one geodesic in T θ�

x . However, by (iv)⇒(viii) of Theorem 4.30, for θ̂ = θ L
x = θ R

x , the

θ̂− geodesic travels initially vertically while the θ̂+ geodesic travels initially horizontally, and the two

geodesics never meet again.

The final theorem of this section relates the directions of the competition interfaces to the exceptional

directions of the Busemann process and sharpens the weak inequalities 0≤ θ R
(m,s) ≤ θ L

(m,s) with a trichotomy.

Before stating the theorem, we introduce some notation and make some remarks. For each (m, s) ∈ Z×R,

define the following closed subset of R≥0:

S(m,s) :=
{
θ > 0 : vθ−

m+1(s) < vθ+
m+1(s), and hθ+

m (s, t) < hθ−
m (s, t) for all t > s

}
∪ A(m,s), (4-17)

where A(m,s) = {0} if vθ�

m+1(s) > 0 for all θ > 0 and � ∈ {−, +}, and A(m,s) = ∅ otherwise.

0
θ̂+,R
(m,s)

0
θ̂−,R
(m,s)

(m, s)

(m + 1, s)

Figure 17. When the competition interface direction θ̂ = θ R
(m,s) > 0, 0

θ̂−,R
(m,s) (upper red/thick

path) immediately splits from 0
θ̂+,R
(m,s) (lower red/thick path). These paths never touch after the

initial point, and the competition interface (blue/thin) lies between the paths.
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Remark 4.34. We note that the set of θ > 0 such that hθ+
m (s, t) < hθ−

m (s, t) is decreasing as t ↘ s. This

follows from the monotonicity of Theorem 3.1(ii), which implies that, for s < t < T ,

0 ≤ hθ−
m (s, t) − hθ+

m (s, t) ≤ hθ−
m (s, T ) − hθ+

m (s, T ).

The set S(m,s) describes the directions that are simultaneously jump points for the Busemann function of

the pair (m, s) and (m + 1, s) and all the pairs (m, s) and (m, t) for t > s. If vθ�

m+1(s) > 0 for all θ > 0

and � ∈ {−, +}, then we include 0 as a jump point because vθ�

m+1(s) ↘ 0 as θ ↘ 0 (Theorem 3.1(iii)(d)).

Additionally, by Theorem 7.19(viii), for all t > s, 0 is an accumulation point of the set of θ > 0 such that

hθ+
m (s, t) < hθ−

m (s, t).

Remark 4.35. The set S(m,s) can be described as an intersection of supports of Lebesgue–Stieltjes

measures on [0, ∞). By Theorem 2.5(ii), we have

S(m,s) = supp µ(m,s),(m+1,s) ∩
⋂

t :t>s

supp µ(m,t),(m,s), (4-18)

where, for x ≽ y, µx, y is the Lebesgue–Stieltjes measure of the nondecreasing function θ 7→ B
θ�(x, y)

(see Remark 4.19). While these functions are only defined for θ > 0, we extend the measures to [0, ∞)

simply by defining µx, y{0} = 0. Then, by the previous remark, 0 is a point on the right-hand side of (4-18)

if and only if A(m,s) = {0}. In this sense, the following theorem is the BLPP analogue of the corresponding

result for lattice LPP with continuous weights, given in Theorem 3.7 of [25]. The left/right distinction in

the following creates a new phenomenon not present in the lattice model with continuous weights.

Theorem 4.36. The following hold on a single event of probability one.

(i) Recall the set 2 of exceptional directions where Busemann functions jump, defined in (2-3). Then,

{θ L
(m,s)}(m,s)∈CI = {θ R

(m,s)}(m,s)∈CI = 2.

In particular, there are only countably infinitely many distinct asymptotic directions of the competition

interfaces across all initial points in Z × R.

(ii) For each (m, s) ∈ Z × R, S(m,s) = {θ R
(m,s)} ∩ {θ L

(m,s)}. Thus, by Theorems 4.30 and 4.32(ii), there are

three possibilities for S(m,s):

(a) (m, s) ∈ NU1, 0 < θ R
(m,s) < θ L

(m,s), and S(m,s) = ∅.

(b) (m, s) ∈ CI \ NU1, θ L
(m,s) = θ R

(m,s) > 0, and S(m,s) = {θ L
(m,s)} = {θ R

(m,s)}.
(c) (m, s) /∈ CI, θ L

(m,s) = θ R
(m,s) = 0, and S(m,s) = {0}.

Remark 4.37. Theorem 4.36(i) is particularly interesting because CI is uncountable (Theorem 2.10).

5. Connections to exponential last-passage percolation and the stationary horizon

5A. Busemann process in the exponential corner growth model. Fan and the first author [14] derived the

joint distribution of Busemann functions for the exponential corner growth model (CGM). In Section 5.2

of [35], we outlined the analogies between the construction of semi-infinite geodesics in the discrete case
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and that of BLPP. Here, we discuss connections between the joint distribution of the Busemann functions

and prove a weak convergence result from the exponential CGM to BLPP.

Let {Yx}x∈Z2 be a collection of nonnegative i.i.d random variables, each associated to a vertex on the

integer lattice. For x ≤ y ∈ Z × Z, define the last-passage time as

Gx, y = sup
x•∈5x, y

| y−x|1∑

k=0

Yxk
,

where 5x, y is the set of up-right paths {xk}n
k=0 that satisfy x0 = x, xn = y, and xk − xk−1 ∈ {e1, e2}. In

what follows, we will take Yx ∼ Exp(1) and refer to this model as the exponential CGM. In this case,

Busemann functions exist and are indexed by direction vectors ξ . It is convenient to index the direction

vectors as follows, in terms of a real parameter α ∈ (0, 1):

ξ(α) =
(

α2

α2 + (1 − α)2
,

(1 − α)2

α2 + (1 − α)2

)
.

Then for a fixed α ∈ (0, 1) we have the almost sure Busemann limit

Uα(x, y) = lim
n→∞

Gx,nξ(α) − G y,nξ(α).

Under the assumption that Y0 has finite second moment, Glynn and Whitt introduced BLPP as a

universal scaling limit of the discrete CGM [17, Theorem 3.1 and Corollary 3.1]. That is, the process

{L(m,s),(n,t) : (m, s) ≤ (n, t) ∈ Z × R}

is the functional limit in distribution, as k → ∞, of the properly interpolated version of the process
{

1√
k
(G(m,sk),(n,tk) − (t − s)k) : (m, s) ≤ (n, t) ∈ Z × R

}
.

Thus, it is reasonable to expect that the Busemann functions for BLPP can be obtained by a limit of the

Busemann functions in the exponential CGM. Heuristically, for λ > 0,

h
1/λ2

0 (t) = lim
n→∞

L(0,0),(n,n/λ2) − L(0,t),(n,n/λ2)

= lim
n→∞

lim
k→∞

1√
k
(G(0,0),(nk/λ2,n) − G(tk,0),(nk/λ2,n) − tk)

∗=∗ lim
k→∞

lim
n→∞

1√
k
(G(0,0),(nk/λ2,n) − G(tk,0),(nk/λ2,n) − tk)

= lim
k→∞

1√
k

(
U

√
k/(

√
k+λ)((0, 0), (tk, 0)) − tk

)
. (5-1)

The ∗=∗ notation is used to indicate that the order of the limits was changed without justification.

Similar to the construction in [35] for Busemann functions in BLPP, the Busemann functions for

exponential last-passage percolation can be extended simultaneously to all directions, either as a cadlag

or caglad version (see [32]).
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Theorem 5.1 [14, Theorem 3.4]. The process α 7→ Uα((0, 0), (0, 1)) is a jump process and can be

explicitly described as follows. Take an inhomogeneous Poisson point process (with a rate function not

specified here) that defines jump points for the process. Then, at each jump point, take an independent

exponential random variable (whose parameter depends on the location of the jump) to determine the size

of the jump. This process has independent, but not stationary, increments.

The BLPP Busemann jump process λ 7→ X (λ; t) described by Theorem 3.9 is more complicated than its

discrete analogue described in Theorem 5.1: in particular, the increments are not independent, as recorded

in Corollary 3.13(ii). However, the increments of λ 7→ X (λ; t) are stationary, in contrast with Theorem 5.1.

Furthermore, the set of jumps of λ 7→ X (λ; t) is not a Poisson point process. Indeed, if W is the location

of the first jump of the process λ 7→ X (λ; t), then P(W > λ) is given by (3-15), which is not exponential.

While this stark contrast may seem strange, it is in fact not natural to expect that all properties of the

process in Theorem 5.1 transfer to the BLPP setting. The process described in that theorem only considers

Busemann functions across a single horizontal edge. In the scaling between the discrete Busemann

functions and BLPP Busemann functions (5-1), one considers the Busemann function Uα across tk edges

for large k. One can show using tools from [14] that for an integer k > 1, the increments of the process

α 7→ Uα((0, 0), (k, 0)) are not independent. It remains an open problem to develop an explicit description

of the process λ 7→ X (λ; t) in the BLPP setting.

However, the finite-dimensional distributions of the Busemann functions between the two models have

a very similar structure, and in fact, the two-dimensional BLPP Busemann process can be obtained from a

limit of two-dimensional Busemann processes for the exponential CGM. The proof of the following result,

as well as a detailed description of the queuing setup for the discrete model, can be found in Section 9.

Theorem 5.2. Fix 0 ≤ λ1 ≤ λ2. As an appropriately interpolated sequence of continuous functions, the

process

1√
k

(
U

√
k√

k+λ1 ((0, 0), (•k, 0)) − •k, U

√
k√

k+λ2 ((0, 0), (•k, 0)) − •k
)
, (5-2)

converges in distribution to (h
1/λ2

1
0 (•), h

1/λ2
2

0 (•)), in the sense of uniform convergence on compact sets.

We expect that the full Busemann process of exponential last-passage percolation converges to the

Busemann process for BLPP. This would require more technical tightness results on a richer space. Such

a type of argument was recently achieved by Busani [7], who showed that under KPZ scaling, the entire

Busemann process for the exponential CGM has a limit, termed the stationary horizon. It is expected that

the stationary horizon is a universal object in the KPZ universality class. We explore this further in the

following section.

5B. The BLPP Busemann process and the stationary horizon. To describe the stationary horizon, we

introduce some notation from [7]. The map 8 : C(R) × C(R) → C(R) is defined as

8( f, g)(t) =
{

f (t) + [W0( f − g) + inf0≤s≤t( f (s) − g(s))]−, t ≥ 0,

f (t) − [Wt( f − g) + inft<s≤0( f (s) − f (t) − [g(s) − g(t)])]−, t < 0,
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where

Wt( f ) = sup
s≤t

[ f (t) − f (s)].

We note that the map 8 is well-defined only on the appropriate space of functions where the supremums

are all finite. This map extends to maps 8k : C(R)k → C(R)k as follows:

(1) 81( f1)(t) = f1(t).

(2) 82( f1, f2)(t) = [ f1(t), 8( f1, f2)(t)].
(3) 8k( f1,..., fk)(t)=

[
f1(t),8

(
f1,[8k−1( f2,..., fk)]1

)
(t),...,8

(
f1,[8k−1( f2,..., fk)]k−1

)
(t)

]
for k ≥ 3.

Definition 5.3. The stationary horizon {Gα : α ∈ R} is a process with state space C(R) and with paths

in the Skorokhod space D(R, C(R)) of right-continuous functions R → C(R) with left limits. C(R)

has the Polish topology of uniform convergence on compact sets. The law of the stationary horizon is

characterized as follows: for real numbers α1 < · · · < αk , the finite-dimensional vector (Gα1, . . . , Gαk
)

has the same law as 8k( f1, . . . , fk), where f1, . . . , fk are independent two-sided variance 4 Brownian

motions with drifts α1, . . . , αk .

We now present two theorems that relate the stationary horizon to the BLPP Busemann process. For

a function f : R → R, define f̃ : R → R by f̃ (t) = − f (−t). Define the map Rk : C(R)k → C(R)k by

Rk( f1, . . . , fk) = ( f̃1, . . . , f̃k). Recall the measures µλ from Definition 3.5.

Theorem 5.4. For α=(α1, . . . , αk) with −∞<α1 < · · ·<αk <∞, the k-tuple of functions (Gα1, . . . ,Gαk
)

has distribution µα ◦ R
−1
k . Furthermore, as random elements of the Skorokhod space D(R≥0, C(R)), the

following distributional equality holds:

{h̃(1/λ2)−
0 (4 •)}λ≥0

d= {G4λ(•)}λ≥0.

That is, the reflected and scaled horizontal BLPP Busemann process is equal in distribution to the

stationary horizon, restricted to nonnegative drifts λ.

Remark 5.5. The reflection Rk appears because in the present work geodesics travel northeast, while

the stationary horizon is constructed in [7] as the scaling limit of the Busemann process of [14] where

geodesics travel to the southwest. Using Theorem 5.4, the distributional information of the Busemann

process obtained in Section 3B applies as well to the stationary horizon. For each fixed t ∈ R, Theorem 5.4

and Remark 3.8 give the following distributional equality without the reflection:

{h(1/λ2)−
0 (4t)}λ≥0

d= {G4λ(t)}λ≥0.

Remark 5.6. To fit the space of Busemann functions in BLPP, the measures µα , defined in Definition 3.5

require the vector of drifts to be all nonnegative. However, we can still define the measures for all

sequences α1 < · · · < αk , as long as the inequalities are all strict. The extensions of Lemmas 3.4 and 3.6

to arbitrary real-valued sequences of drifts follow by the same proofs.

Theorem 5.7. Let α1 < · · · < αk be a sequence of real numbers. The process

−n−1/3
(
h

1−2n−1/3α1
0 (−4n2/3•) + n2/3•, . . . , h

1−2n−1/3αk

0 (−4n2/3•) + n2/3•
)

converges in distribution to (G4α1, . . . , G4αk
).
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Theorems 5.4 and 5.7 are proved by showing that the map 8 is a reflected version of the map D. The

details are in Section 9B. We believe that one should be able to show convergence in the Skorokhod space,

as was done for the exponential CGM in [7]. This requires some tightness arguments to guarantee that

jumps of the Busemann process do not happen too close together. We leave such details to future work.

6. Open problems

Before moving to the proofs, we state a list of open problems.

(i) Can Theorem 4.21(viii) be extended to show that all semi-infinite geodesics with direction θ ∈ 2 are

also Busemann geodesics? In the exponential CGM, Coupier [11] showed that, with probability one,

there is no direction with more than two semi-infinite geodesics from the same point. The proof of this

fact relied on the coupling with TASEP. In [25], this fact was used to give a complete description of

the number of geodesics in each direction. Because of the L/R distinction in BLPP, there are points

and directions with more than two geodesics. For example, by Theorems 4.30(viii) and 4.32(iii), if

(m, s) ∈ NU1 and θ = θ L
(m,s), then 0

θ−,L
(m,s) , 0

θ+,L
(m,s) , and 0

θ−,R
(m,s) are three distinct geodesics, but 0

θ−,L
(m,s)

and 0
θ−,R
(m,s) coalesce by Theorem 4.11(i). Perhaps something can be said about the maximal number

of noncoalescing geodesics.

(ii) With positive probability, is there some random initial point x ∈ Z × R such that T θ�

x contains more

than two sequences for some θ > 0 and � ∈ {−, +}? See Remark 4.10.

(iii) By Theorem 4.8, we know that the sets NU1 ⊆ NU0 are both countably infinite. The same is true if

we choose any θ > 0 and � ∈ {−, +} and consider the sets NUθ�

1 ⊆ NUθ�

0 . Theorem B.1(iii) shows

that for each θ > 0, the set NUθ
1 is neither discrete nor dense, and Theorem 4.32(iv) shows that

the set NU1 is dense in itself. However, presently we do not know whether the set NU0 \ NU1 is

nonempty. This raises several questions.

(a) Is NU0 \ NU1 nonempty?

(b) If the answer to the previous question is yes, is the set discrete?

(c) Are either of the sets NU0 or NU1 dense in Z × R?

We note that the existence of a point (m, s) ∈ NUθ�

0 \ NUθ�

1 implies that the phenomenon described

in Remark 4.14 occurs.

(iv) We know from Theorem 4.32(ii) that the countable set NU1 is exactly the set of initial points whose

left and right competition interfaces have different limiting directions. Are there random points

whose left and right competition interfaces are different, but have the same direction? If so, do they

coalesce?

(v) It is widely expected that for models in the KPZ universality class, there exist no bi-infinite geodesics

with probability one. This was proven for the exponential CGM using two different approaches [3; 5].

In [35], we proved that for fixed northwest and southeast directions, there are almost surely no

bi-infinite geodesics in BLPP. Can one show that there are almost surely no bi-infinite geodesics in

BLPP without the fixed directional constraint?
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(vi) Is there a sharper bound for the maximal number of finite geodesics in BLPP than that in Lemma A.2?

(vii) Theorem 5.1 records an explicit description of the Busemann process across a single horizontal

edge for the exponential CGM. In the BLPP setting, can one describe the process λ 7→ X (λ; t) in

Theorem 3.9 more explicitly?

(viii) Are independent Brownian motions with drift the unique invariant distribution of the multiline

process defined in Section 7B? See Theorem 7.9 for the invariance statement.

(ix) As discussed in Remark 3.17, can three or more distinct Busemann trajectories split at the same

time?

(x) In Theorem 5.7, we showed convergence of the horizontal BLPP Busemann process to the stationary

horizon, in the sense of finite-dimensional distributions. Show that the BLPP Busemann process

converges to the stationary horizon in the Skorokhod space D(R, C(R)).

7. Proof of results from Section 3 and Theorem 2.5

Theorem 2.5 is proved at the very end of this section.

Proof of Measurability of the state spaces Xn and Yn . We show that Xn, X̂n, Yn , and Ŷn are all Borel

subsets of C(R)n . For Yn , and Ŷn , it is sufficient to show that

lim inf
t→∞

Z i (t)

t
and lim sup

t→∞

Z i (t)

t

are both random variables. For a ∈ R,
{

lim inf
t→∞

Z i (t)

t
> a

}
=

⋃

k∈N

⋃

N∈N

⋂

t≥N

{
Z i (t)

t
≥ a + 1

k

}
.

By continuity of Z i , the intersection over t ≥ N can be changed to an intersection over t ∈ [t, ∞)∩ Q.

Hence, the set on the left is measurable. This also shows that lim supt→∞ Z i (t)/t is measurable. By

continuity, we may write Xn as

Xn = {η : ηi (0) = 0 for 2 ≤ i ≤ n} ∩
{
η : lim inf

t→∞
η1(t)

t
> 0

}
∩

n⋂

i=2

⋂

s<t,s,t∈Q

{ηi (s, t) ≥ ηi−1(s, t)},

which is measurable. By replacing the inequality in the middle event with a weak inequality, X̂n is also

measurable. □

7A. Lemmas and identities for queuing mappings. All results of this subsection are deterministic facts

related to the queuing mappings. Recall the notation that Z ≤inc Z̃ if Z(s, t) ≤ Z̃(s, t) whenever s ≤ t .

We say f ∈ Cpin(R) if f : R → R is continuous and f (0) = 0.

Lemma 7.1. Let Z = (Z1, . . . , Zn) ∈ Cpin(R)n . Define

AZ
n (t) = sup

t≤t1≤t2···≤tn−1<∞

n−1∑

i=1

(Z i (ti ) − Z i+1(ti ))
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and assume that AZ
n (t) is finite. Then, for n ≥ 2,

D(n)(Zn, Zn−1, . . . , Z1)(t) = Z1(t) + AZ
n (0) − AZ

n (t).

Proof. The case n = 2 is the definition of D. Now, assume that the statement holds for some n ≥ 2. Then,

we have that

D(n+1)(Zn+1, Zn, . . . , Z1)(t) = D(D(n)(Zn+1, Zn, . . . , Z2), Z1)(t)

= Z1(t)+ sup
0≤s<∞

{Z1(s)−D(n)(Zn+1, . . . , Z2)(s)}

− sup
t≤s<∞

{Z1(s)−D(n)(Zn+1, . . . , Z2)(s)}

= Z1(t)+ sup
0≤s<∞

{
Z1(s)−Z2(s)+ sup

s≤t2≤···≤tn<∞

n∑

i=2

(Z i (ti )−Z i+1(ti ))

}

− sup
t≤s<∞

{
Z1(s)−Z2(s)+ sup

s≤t2≤···≤tn<∞

n∑

i=2

(Z i (ti )−Z i+1(ti ))

}

= Z1(t)+AZ
n+1(0)−AZ

n+1(t). □

Lemma 7.2. Let 0 ≤ a < b, and let Zk, Bk ∈ Cpin(R) be sequences such that Zk → Z and Bk → B

uniformly on compact sets. Assume further that

lim sup
t→∞
k→∞

∣∣∣1
t

Zk(t) − b

∣∣∣ = 0 = lim sup
t→∞
k→∞

∣∣∣1
t

Bk(t) − a

∣∣∣. (7-1)

Then, Z ′ := D(Z , B), B ′ := R(Z , B), Z ′
k := D(Zk, Bk), and B ′

k := R(Zk, Bk) are well-defined for

sufficiently large k. Furthermore,

lim
k→∞

Z ′
k = Z ′ and lim

k→∞
B ′

k = B ′, (7-2)

in the sense of uniform convergence on compact subsets of R, and

lim sup
t→∞
k→∞

∣∣∣1
t

Z ′
k(t) − b

∣∣∣ = 0 = lim sup
t→∞
k→∞

∣∣∣1
t

B ′
k(t) − a

∣∣∣. (7-3)

Proof. The conditions (7-1) guarantee that for all k sufficiently large,

lim sup
t→∞

[Bk(t) − Zk(t)] = lim sup
t→∞

[B(t) − Z(t)] = −∞.

By definition of the maps D and R,

Z ′
k(t) = Bk(t) + sup

0≤s<∞
{Bk(s) − Zk(s)} − sup

t≤s<∞
{Bk(s) − Zk(s)},

B ′
k(t) = Zk(t) + sup

t≤s<∞
{Bk(s) − Zk(s)} − sup

0≤s<∞
{Bk(s) − Zk(s)}.
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It therefore suffices to show that supt≤s<∞{Bk(s)− Zk(s)} converges uniformly, on compact subsets of R,

to supt≤s<∞{B(s) − Z(s)}, and that

lim sup
t→∞
k→∞

∣∣∣1
t

sup
t≤s<∞

{Bk(s) − Zk(s)} − (a − b)

∣∣∣ = 0. (7-4)

We first prove pointwise convergence. Let st be a maximizer of B(s) − Z(s) over s ∈ [t, ∞). Then,

lim inf
k→∞

sup
t≤s<∞

{Bk(s) − Zk(s)} ≥ lim inf
k→∞

[Bk(st) − Zk(st)]

= B(st) − Z(st) = sup
t≤s<∞

{B(s) − Z(s)}.

For the converse, for k sufficiently large, let sk
t be a maximizer of Bk(s) − Zk(s) over s ∈ [t, ∞). If

lim sup
k→∞

sup
t≤s<∞

{Bk(s) − Zk(s)} > sup
t≤s<∞

{B(s) − Z(s)}, (7-5)

then by the uniform convergence of Bk to B and Zk to Z , it must be the case that s
k j

t → ∞ along some

subsequence k j . Then, by the assumption (7-1),

lim sup
j→∞

sup
t≤s<∞

{Bk j
(s) − Zk j

(s)} = lim sup
j→∞

[Bk j
(s

k j

t ) − Zk j
(s

k j

t )] = −∞,

a contradiction to (7-5). Therefore, sk
t is a bounded sequence and for each t ∈ R, there exists some Rt ∈ R

such that, for all k sufficiently large,

sup
t≤s<∞

{Bk(s) − Zk(s)} = sup
t≤s≤Rt

{Bk(s) − Zk(s)},

sup
t≤s<∞

{B(s) − Z(s)} = sup
t≤s≤Rt

{B(s) − Z(s)}.

The quantity supt≤s≤Rt
{Bk(s) − Zk(s)} converges to supt≤s<∞{B(s) − Z(s)} by the assumed uniform

convergence on compact subsets Zk → Z and Bk → B. The uniform convergence on compact subsets of

the function t 7→ supt≤s<∞{Bk(s) − Zk(s)} is as follows: for N ∈ R,

lim sup
k→∞

sup
t∈[−N ,N ]

| sup
t≤s<∞

{Bk(s) − Zk(s)} − sup
t≤s<∞

{B(s) − Z(s)}|

= lim sup
k→∞

sup
t∈[−N ,N ]

| sup
t≤s≤RN

{Bk(s) − Zk(s)} − sup
t≤s≤RN

{B(s) − Z(s)}| = 0.

It remains to prove (7-4). Let 0 < ε < b−a
2 . By (7-1), there exists K , T ≥ 0 such that for all k ≥ K , t ≥ T ,

Bk(t) ≤ (a + ε)t and Zk(t) ≥ (b − ε)t . Then, for such t, k,

sup
t≤s<∞

{Bk(s) − Zk(s)} ≤ sup
t≤s<∞

{(a + ε)s − (b − ε)s} = (a − b + 2ε)t.

For the reverse inequality, we simply apply the assumption (7-1) to

sup
t≤s<∞

{Bk(s) − Zk(s)} ≥ Bk(t) − Zk(t). □
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The following is a direct corollary of Lemma 7.2, setting Bk = B and Zk = Z for all k.

Lemma 7.3. Let (B, Z) ∈ Y2 satisfy the limits

lim
t→∞

Z(t)

t
= b and lim

t→∞
B(t)

t
= a,

with b > a. Then, the mappings D(Z , B) and R(Z , B) are well-defined, and

lim
t→∞

D(Z , B)(t)

t
= b and lim

t→∞
R(Z , B)(t)

t
= a.

Lemma 7.4. Assume that Z , B ∈ Cpin(R) are such that

b := lim inf
t→∞

Z(t)

t
> 0 and lim

t→∞
B(t)

t
= 0.

Then,

lim inf
t→∞

D(Z , B)(t)

t
≥ b.

Proof. Since

D(Z , B)(t) = B(t) + sup
0≤s<∞

{B(s) − Z(s)} − sup
t≤s<∞

{B(s) − Z(s)},

it is sufficient to prove that

lim sup
t→∞

supt≤s<∞{B(s) − Z(s)}
t

≤ −b.

For all ε > 0, there is T large enough so that for t ≥ T ,

Z(t) ≥ bt − εt and B(t) ≤ εt.

Then, for such t and 2ε < b,

sup
t≤s<∞

{B(s) − Z(s)} ≤ sup
t≤s<∞

{2εs − bs} = 2εt − bt. □

Lemma 7.5. Assume that Z , Z ′, B ∈ Cpin(R) satisfy Z ≤inc Z ′ and

lim sup
t→∞

B(t) − Z(t) = −∞.

Then B ≤inc D(Z , B) ≤inc D(Z ′, B).

Proof. By definition of D (3-8), for s ≤ t ,

D(Z , B)(s, t) = B(s, t) + sup
s≤u<∞

{B(u) − Z(u)} − sup
t≤u<∞

{B(u) − Z(u)}

= B(s, t) + ( sup
s≤u≤t

{B(u) − Z(u)} − sup
t≤u<∞

{B(u) − Z(u)})+

= B(s, t) + ( sup
s≤u≤t

{B(u) + Z(u, t)} − sup
t≤u<∞

{B(u) − Z(t, u)})+,

and both inequalities follow from the last line. □
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Proof of Lemma 3.4. Part (i): We prove D
(n) : Yn → Xn ∩Yn . By the same reasoning, D

(n) : Ŷn → X̂n ∩Ŷn .

Lemma 7.1 gives us that since Z1(0) = 0, we also have ηi (0) = D(i)(Z i , . . . , Z1)(0) = 0 for 1 ≤ i ≤ n.

Since η1 = Z1, the requirement that

lim inf
t→∞

η1(t)

t
> 0

is immediately satisfied. By Lemma 7.5, η2 = D(Z2, Z1) ≥inc Z1 = η1. Assume inductively that

ηi = D(i)(Z i , . . . , Z1) ≥inc D(i−1)(Z i−1, . . . , Z1) = ηi−1.

Then, after applying this assumption with Z2, . . . , Z i+1 in place of Z1, . . . , Z i and using Lemma 7.5,

we get that

ηi+1 = D(i+1)(Z i+1, . . . , Z1) = D(D(i)(Z i+1, . . . , Z2), Z1)

≥inc D(D(i−1)(Z i , . . . , Z2), Z1) = D(i)(Z i , . . . , Z1) = ηi .

The fact that D
(n) preserves Yn follows from part (ii).

Part (ii): This follows by definition of D
(n) and repeated application of Lemma 7.3. □

The following lemma has the most technical proof of the section, but is key to proving Theorem 3.7.

Lemma 7.6. Let (B1, Z1, Z2) ∈ Ŷ3 and set B2 = R(Z1, B1). Then,

D(D(Z2, B2), D(Z1, B1)) = D(D(Z2, Z1), B1).

Proof. We first note that by Lemma 7.1,

D(D(Z2, Z1), B1)(t) = D(3)(Z2, Z1, B1)(t)

= B1(t) + sup
0≤s≤u<∞

{B1(s) − Z1(s) + Z1(u) − Z2(u)}

− sup
t≤s≤u<∞

{B1(s) − Z1(s) + Z1(u) − Z2(u)}. (7-6)

On the other hand, by definitions of the mappings D and R,

D(D(Z2, B2), D(Z1, B1))(t)

= D(Z1, B1)(t)+ sup
0≤s<∞

{D(Z1, B1)(s)−D(Z2, B2)(s)}− sup
t≤s<∞

{D(Z1, B1)(s)−D(Z2, B2)(s)}

= B1(t)+ sup
0≤s<∞

{B1(s)−Z1(s)}− sup
t≤s<∞

{B1(s)−Z1(s)}

+ sup
0≤s<∞

[
B1(s)− sup

s≤u<∞
{B1(u)−Z1(u)}−B2(s)+ sup

s≤u<∞
{B2(u)−Z2(u)}

]

− sup
t≤s<∞

[
B1(s)− sup

s≤u<∞
{B1(u)−Z1(u)}−B2(s)+ sup

s≤u<∞
{B2(u)−Z2(u)}

]

= B1(t)+ sup
0≤s<∞

{B1(s)−Z1(s)}− sup
t≤s<∞

{B1(s)−Z1(s)}

+ sup
0≤s<∞

[
B1(s)−Z1(s)−2 sup

s≤u<∞
{B1(u)−Z1(u)}+ sup

s≤u≤v<∞
{B1(v)−Z1(v)+Z1(u)−Z2(u)}

]

− sup
t≤s<∞

[
B1(s)−Z1(s)−2 sup

s≤u<∞
{B1(u)−Z1(u)}+ sup

s≤u≤v<∞
{B1(v)−Z1(v)+Z1(u)−Z2(u)}

]
. (7-7)
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Comparing (7-6) with (7-7), it is sufficient to show that, for arbitrary t ∈ R,

sup
t≤s<∞

{B1(s) − Z1(s)} + sup
t≤s<∞

[
B1(s) − Z1(s) − 2 sup

s≤u<∞
{B1(u) − Z1(u)}

+ sup
s≤u≤v<∞

{Z1(u) − Z2(u) + B1(v) − Z1(v)}
]

(7-8)

= sup
t≤s≤u<∞

{B1(s) − Z1(s) + Z1(u) − Z2(u)}. (7-9)

We will first prove that (7-8) ≤ (7-9). We note that

(7-8) ≤ sup
t≤u<∞

{B1(u) − Z1(u)} + sup
t≤s<∞

[
B1(s) − Z1(s) − 2 sup

s≤u<∞
{B1(u) − Z1(u)}

+ sup
s≤u<∞

{Z1(u) − Z2(u)} + sup
s≤u<∞

{B1(u) − Z1(u)}
]

= sup
t≤u<∞

{B1(u) − Z1(u)} + sup
t≤s<∞

[
B1(s) − Z1(s)

− sup
s≤u<∞

{B1(u) − Z1(u)} + sup
s≤u<∞

{Z1(u) − Z2(u)}
]
. (7-10)

Now, we let s∗ ≥ t be a point such that

B1(s∗) − Z1(s∗) − sup
s∗≤u<∞

{B1(u) − Z1(u)} + sup
s∗≤u<∞

{Z1(u) − Z2(u)}

= sup
t≤s<∞

[
B1(s) − Z1(s) − sup

s≤u<∞
{B1(u) − Z1(u)} + sup

s≤u<∞
{Z1(u) − Z2(u)}

]
.

We consider two cases.

Case 1: sups∗≤u<∞{B1(u) − Z1(u)} = supt≤u<∞{B1(u) − Z1(u)}.

Then,

(7-8) ≤ (7-10) = sup
t≤u<∞

{B1(u) − Z1(u)} + B1(s∗) − Z1(s∗)

− sup
s∗≤u<∞

{B1(u) − Z1(u)} + sup
s∗≤u<∞

{Z1(u) − Z2(u)}

= B1(s∗) − Z1(s∗) + sup
s∗≤u<∞

{Z1(u) − Z2(u)}

≤ sup
t≤s≤u<∞

{B1(s) − Z1(s) + Z1(u) − Z2(u)} = (7-9).

Case 2: sups∗≤u<∞{B1(u) − Z1(u)} < supt≤u<∞{B1(u) − Z1(u)}.

Then, we have that

sup
t≤u<∞

{B1(u) − Z1(u)} = sup
t≤u≤s∗

{B1(u) − Z1(u)},
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so, noting that B1(s∗) − Z1(s∗) ≤ sups∗≤u<∞{B1(u) − Z1(u)},

(7-8) ≤ (7-10) = sup
t≤u≤s∗

{B1(u) − Z1(u)} + B1(s∗) − Z1(s∗)

− sup
s∗≤u<∞

{B1(u) − Z1(u)} + sup
s∗≤u<∞

{Z1(u) − Z2(u)}

≤ sup
t≤u≤s∗

{B1(u) − Z1(u)} + sup
s∗≤u<∞

{Z1(u) − Z2(u)}

= sup
t≤u≤s∗≤v<∞

{B1(u) − Z1(u) + Z1(v) − Z2(v)}

≤ sup
t≤u≤v<∞

{B1(u) − Z1(u) + Z1(v) − Z2(v)} = (7-9).

Now, we prove that (7-9) ≤ (7-8). Let t ≤ s∗ ≤ u∗ < ∞ be such that

B1(s∗) − Z1(s∗) + Z1(u∗) − Z2(u∗) = sup
t≤s≤u<∞

{B1(s) − Z1(s) + Z1(u) − Z2(u)}.

We consider two new cases.

Case 1:

sup
s∗≤v<∞

{B1(v) − Z1(v)} = sup
u∗≤v<∞

{B1(v) − Z1(v)}.

Then,

(7-9) = B1(s∗) − Z1(s∗) + Z1(u∗) − Z2(u∗) + sup
u∗≤v<∞

{B1(v) − Z1(v)} − sup
s∗≤v<∞

{B1(v) − Z1(v)}

≤ sup
t≤s<∞

[
B1(s) − Z1(s) − sup

s≤u<∞
{B1(u) − Z1(u)} + sup

s≤u≤v<∞
{Z1(u) − Z2(u) + B1(v) − Z1(v)}

]

≤ sup
t≤s<∞

{B1(s) − Z1(s)} + sup
t≤s<∞

[
B1(s) − Z1(s) − 2 sup

s≤u<∞
{B1(u) − Z1(u)}

+ sup
s≤u≤v<∞

{Z1(u) − Z2(u) + B1(v) − Z1(v)
]
,

and this equals (7-8).

Case 2: sup
s∗≤v<∞

{B1(v) − Z1(v)} > sup
u∗≤v<∞

{B1(v) − Z1(v)}.

Then, we have that

sup
s∗≤v<∞

{B1(v) − Z1(v)} = sup
s∗≤v≤u∗

{B1(v) − Z1(v)} > B1(u∗) − Z1(u∗).

In other words, there is a point v∗ ∈ [s∗, u∗) such that

B1(v∗) − Z1(v∗) = sup
s∗≤v<∞

{B1(v) − Z1(v)}.

Next, we define w⋆ ∈ (v⋆, u⋆] as

w∗ = sup{w ∈ (v∗, u∗] : B1(w) − Z1(w) = sup
u∗≤v<∞

{B1(v) − Z1(v)}}.
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v∗ w∗ u∗

Figure 18. Example graph of the function B1(w) − Z1(w). The upper (blue) line represents the
value of supu⋆≤v<∞{B1(v) − Z1(v)}.

To see that the set over which the supremum is taken is nonempty, note that

B1(v∗) − Z1(v∗) = sup
s∗≤v<∞

{B1(v) − Z1(v)} > sup
u∗≤v<∞

{B1(v) − Z1(v)} ≥ B1(u∗) − Z1(u∗),

and use the intermediate value theorem. By continuity, we observe that

B1(w∗) − Z1(w∗) = sup
u∗≤v<∞

{B1(v) − Z1(v)} = sup
w∗≤v<∞

{B1(v) − Z1(v)} (7-11)

(refer to Figure 18). Now, by (7-11), we have

(7-9) = B1(s∗) − Z1(s∗) + Z1(u∗) − Z2(u∗)

= B1(s∗) − Z1(s∗) + B1(w∗) − Z1(w∗) − 2 sup
w∗≤v<∞

{B1(v) − Z1(v)}

+ Z1(u∗) − Z2(u∗) + sup
u∗≤v<∞

{B1(v) − Z1(v)}

≤ sup
t≤s<∞

{B1(s) − Z1(s)} + sup
t≤w<∞

{B1(w) − Z1(w) − 2 sup
w≤v<∞

{B1(u) − Z1(u)}

+ sup
w≤u≤v<∞

{Z1(u) − Z2(u) + B1(v) − Z1(v)}} = (7-8).

This concludes all cases of the proof. □

Theorem 7.7. Let n ≥ 2, and assume (B1, Z1, Z2, . . . , Zn) ∈ Ŷn+1. For 2 ≤ j ≤ n define B j =
R(Z j−1, B j−1). Then, for 1 ≤ k ≤ n − 1,

D(n+1)(Zn, Zn−1, . . . , Z1, B1) = D(k+1)
(
D(n−k+1)(Zn, . . . , Z k+1, Bk+1), D(Z k, Bk), . . . , D(Z1, B1)

)
.

Proof. With Lemma 7.6 in place, we can now follow the argument of Theorem 4.5 in [14]. By Lemma 7.8,

all the given operations are well-defined. Lemma 7.6 gives us the statement for n = 2. Assume, by

induction, that the statement is true for some n −1 ≥ 2. We will show the statement is also true for n. We

first prove the case k = 1:

D(2)
(
D(n)(Zn, . . . , Z2, B2), D(Z1, B1)

)
= D

(
D(D(n−1)(Zn, . . . , Z2), B2), D(Z1, B1)

)

= D
(
D(D(n−1)(Zn, . . . , Z2), Z1), B1

)

= D
(
D(n)(Zn, . . . , Z1), B1

)

= D(n+1)(Zn, . . . , Z1, B1).
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The second equality above was a consequence of Lemma 7.6. Now, let 2 ≤ k ≤ n − 1. Then, applying the

definition of D(k+1) followed by the induction assumption,

D(k+1)
(
D(n−k+1)(Zn, . . . , Z k+1, Bk+1), D(Z k, Bk), . . . , D(Z1, B1)

)

= D
(
D(k)

(
D(n−k+1)(Zn, . . . , Z k+1, Bk+1), D(Z k, Bk), . . . , D(Z2, B2)

)
, D(Z1, B1)

)

= D
(
D(n)(Zn, . . . , Z2, B2), D(Z1, B1)

)
= D(2)

(
D(n)(Zn, . . . , Z2, B2), D(Z1, B1)

)
.

Hence, we have reduced this to the k = 1 case. □

We note that the case k = n − 1 of Theorem 7.7 gives us

D(n+1)(Zn, . . . , Z1, B1) = D(n)(D(Zn, Bn), . . . , D(Z1, B1)). (7-12)

7B. Multiline process. The multiline process is a discrete-time Markov chain on the state space Yn

of (3-5). The analogous process is defined in a discrete setting in [14]. The transition from the time m −1

state Zm−1 = Z = (Z1, Z2, . . . , Zn) ∈ Yn to the time m state

Zm = Z = (Z1, Z2, . . . , Zn) ∈ Yn

is defined as follows. The driving force is an auxiliary function B ∈ Cpin(R) that satisfies

lim
t→∞

t−1 B(t) = 0.

First, set B1 = B, and Z1 = D(Z1, B1). Then, iteratively for i = 2, 3, . . . , n,

Bi = R(Z i−1, Bi−1), and Z i = D(Z i , Bi ). (7-13)

Lemma 7.8. The multiline process (7-13) is well-defined on the state space Yn .

Proof. This follows from Lemma 7.3: Inductively, each Bi satisfies

lim
t→∞

Bi (t)

t
= 0,

so since Z ∈ Yn , we have that, for 1 ≤ i ≤ n,

lim sup
t→∞

Bi (t) − Z i (t) = −∞. □

Theorem 7.9. For each λ = (λ1, . . . , λn) ∈ R
n
>0 with 0 < λ1 < · · · < λn , the measure νλ on Yn is invariant

for the multiline process (7-13) if the driving function B at each step of the evolution is taken to be an

independent standard, two-sided Brownian motion.

Proof. Assume that Z= (Z1, . . . , Zn)∈Yn has distribution νλ. We will show that Z also has distribution νλ.

The assumption on Z means that Z1, . . . , Zn are independent two-sided Brownian motions with drift λi .

By Theorem C.2, Z1 = D(Z1, B1) is a two-sided Brownian motion with drift λ1, independent of

B2 = R(Z1, B1), which is a two-sided Brownian motion with zero drift. Hence, the random paths

Z1, B2, Z2, . . . , Zn are mutually independent. We iterate this process as follows: Assume, for some

2 ≤ k ≤ n − 1, that the random paths Z1, . . . , Z k−1, Bk, Z k, . . . , Zn are mutually independent, where
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for 1 ≤ i ≤ k − 1, Z i is a Brownian motion with drift λi . Then, by another application of Theorem C.2,

Z k = D(Z k, Bk) is a two-sided Brownian motion with drift λk , independent of Bk+1 = R(Z k, Bk), which

is a two-sided Brownian motion with zero drift. Since (Z k, Bk+1) is a function of (Bk, Z k), we have that

Z1, . . . , Z k, Bk+1, Z k+1, . . . , Zn are mutually independent, completing the proof. □

Remark 7.10. Presently, it is open whether νλ is the unique invariant measure with asymptotic limits

(λ1, . . . , λn). Later, we establish uniqueness of the invariant distributions for the Markov chain that

describes the Busemann functions.

7C. Busemann Markov chain. We now define a Markov chain η := (ηm)m∈Z≥0 = ((η1
m, . . . , ηn

m))m∈Z≥0

with state space Xn . It is essential that the state space is Xn and not X̂n so that the evolution of this chain

is well-defined. Henceforth, F = {Fm}m≥1 denotes an i.i.d. sequence of two-sided Brownian motions with

zero drift, independent of the initial configuration η0 ∈ Xn . At each discrete time step m ≥ 1, set Fm to be

the driving Brownian motion. Given the time m − 1 state ηm−1, define the time m state of the chain as

ηm =
(
D(η1

m−1, Fm), D(η2
m−1, Fm), . . . , D(ηn

m−1, Fm)
)
. (7-14)

Lemmas 7.4 and 7.5 imply that if ηm−1 ∈ Xn , then ηm ∈ Xn as well.

Theorem 7.11. The measure µλ of Definition 3.5 is invariant for the Markov chain (7-14).

Proof. This follows by an intertwining argument originating for particle systems in [15] and carried out

for exponential last-passage percolation in [14]. Assume η has distribution µλ, the distribution of D
(n)(Z).

Without loss of generality, we assume η = D
(n)(Z). For Brownian motion B, let S

B denote the mapping

of a single evolution step of Z according to the multiline process (7-13) and T
B denote the mapping of a

single evolution step of η according to the Markov chain (7-14). Using the definition of D(k) and (7-12),

T
B
k (η) = D(ηk, B) = D(D(k)(Z k, . . . , Z1), B1) = D(k+1)(Z k, . . . , Z1, B1)

= D(k)
(
D(Z k, Bk), D(Z k−1, Bk−1), . . . , D(Z1, B1)

)

= D(k)
(
S

B
k (Z), S

B
k−1(Z), . . . , S

B
1 (Z)

)
= D

(n)
k (SB(Z)).

Hence, T
B(η) = D

(n)(SB(Z)). Since η = D
(n)(Z),

T
B(D(n)(Z)) = D

(n)(SB(Z)).

By Theorem 7.9, S
B(Z)

d= Z ∼ νλ. Therefore, T
B(η)

d= D
(n)(Z) ∼ µλ. □

7D. Uniqueness of the invariant measure. The existence of an invariant measure for the Markov

chain (7-14) in the case n = 1 is recorded in Theorem C.2, and is originally due to Harrison and

Williams [23]. In words, if Z is a two-sided Brownian motion with drift λ > 0, and B is an independent

two-sided Brownian motion, then D(Z , B) is also a two-sided Brownian motion with drift λ. However, it

was not until 2019 that Cator, Lopez, and Pimentel [9] proved the uniqueness of this invariant measure.

The proof comes from constructing a coupling (ηm, η̃m)m≥0 of the Markov chain (7-14) started from two

different initial inputs but with the same driving Brownian motions. Below is the main theorem of [9]. We

note that there is a typographical error in the statement of the theorem in [9] which has been confirmed to
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us by the authors. The corrected version is stated below. The version we state also reflects the fact that

the queuing mappings we work with are the reverse-time versions of those given in [9].

Theorem 7.12 [9, Theorem 3]. Let λ ∈ (0, ∞) and let X ∈ Cpin(R) be a random process such that, with

probability one,

lim sup
t→−∞

X (t)

t
≤ λ and lim inf

t→∞
X (t)

t
≥ λ. (7-15)

Let (X, Z) be a coupling of X and Z where Z is a Brownian motion with drift λ, and (X, Z) is independent

of the field of independent two-sided Brownian motions F = {Fm : m ≥ 1}. Consider the coupling

(ηX
m , ηZ

m)m≥0 defined by initial conditions ηX
0 = X and ηZ

0 = Z , where the evolution of the process is

defined by ηX
m = D(ηX

m−1, Fm), and ηZ
m = D(ηZ

m−1, Fm). Then, for all compact K ⊆ R and ε > 0,

lim
m→∞

P
(
sup
t∈K

|ηX
m (−t − λ−2m, −λ−2m) − ηZ

m(−t − λ−2m, −λ−2m)| > ε
)
= 0.

Remark 7.13. The theorem holds true for any initial condition ηX
0 satisfying the given conditions, but in

general, the conclusion only holds for the increments of the processes in the interval (−t −λ−2m, −λ−2m).

However, the queuing mappings preserve increment-stationarity, so if the initial condition is increment-

stationary, the conclusion holds for an arbitrary increment.

A straightforward generalization of this proves distributional convergence of the Markov chain (7-14)

from an appropriate initial condition to the measure µλ:

Corollary 7.14. Let λ = (λ1, . . . , λn) ∈ Rn be such that 0 < λ1 < · · · < λn . Let X = (X1, . . . , Xn) be a

random function in Xn such that, for 1 ≤ i ≤ n, X i is increment-stationary with

lim sup
t→−∞

X i (t)

t
≤ λi and lim inf

t→∞
X i (t)

t
≥ λi . (7-16)

Let (X, Z) be a coupling of X and Z where Z = (Z1, . . . , Zn) ∼ µλ, and, for 1 ≤ i ≤ n, (X i , Z i ) is

jointly increment-stationary. Consider the coupling

(ηX
m , ηZ

m)m≥0 = (ηX,1
m , . . . , ηX,n

m , ηZ,1
m , . . . , ηZ,n

m )m≥0,

where ηX
0 = X and ηZ

0 = Z and the evolution of the processes is given by the Markov chain (7-14), run

simultaneously with the same driving Brownian motions F = {Fm}m≥1, independent of (X, Z). Then, for

all compact K ⊆ Rn and ε > 0,

lim sup
m→∞

P(sup
t∈K

|ηX
m (t) − ηZ

m(t)|1 > ε) = 0,

where | · |1 is the ℓ1 norm on Rn .

Proof. First, we note that since (X i , Z i ) is jointly increment-stationary and F1 is an independent Brownian

motion (and therefore increment stationary), then the process (X i , Z i , F1) is jointly increment-stationary.

Then, as a translation respecting mapping of (X i , Z i , F1) (Lemma C.3), (η
X,i
1 , η

Z,i
1 ) is jointly increment

stationary. By induction, (ηX,i
m , ηZ,i

m ) is jointly increment-stationary for each m. The desired conclusion

then follows by applying Theorem 7.12 separately to each of the n components of ηX
m (t) − ηZ

m(t). □
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We now use Corollary 7.14 to prove the following precursor to Theorem 3.7.

Theorem 7.15. If θ1 > θ2 > · · · > θn > 0, then for each m ∈ Z, the vector

(hθ1
m , hθ2

m , . . . , hθn
m ) (7-17)

almost surely lies in the space Xn ∩ Yn and has distribution µλ with λi = 1/
√

θ i for 1 ≤ i ≤ n.

Proof. In Corollary 7.14, we can choose Z ∼ µλ to satisfy the joint increment-stationarity of (X i , Z i ),

for example, by taking Z independent of X . By the invariance of the measure µλ (Theorem 7.11),

Corollary 7.14 implies that, under the given assumptions on X , ηX
m converges in distribution to µλ, in

the sense of uniform convergence on compact sets. Thus, µλ is the unique such invariant measure of

the Markov chain (7-14) among distributions whose marginal distributions are increment-stationary and

satisfy (7-15).

By parts (ii) and (ix) of Theorem 3.1, for m ∈ Z and θ1 > θ2 > · · · > θn > 0, h
θi
m ≤inc h

θi+1
m for

1 ≤ i ≤ n − 1, and each h
θi
m is a two-sided Brownian motion with drift 1/

√
θi . Thus, for 1 ≤ i ≤ n,

lim
t→±∞

h
θi
m(t)

t
= 1√

θ i

, a.s., (7-18)

and so (hθ1
m , hθ2

m , . . . , h
θn
m ) ∈ Xn ∩ Yn with probability one. By Theorem 3.1(vi), for 1 ≤ i ≤ n, h

θi
m =

D(h
θi

m+1, Bm) almost surely. Furthermore, by Theorem 3.1(vii), with probability one, for each 1 ≤ i ≤ n

and t ∈ R,

hθ
m(t) = lim

n→∞
[L(m,0),(n,nθ)(B) − L(m,t),(n,nθ)(B)]

= lim
n→∞

[L(m,0),(n+m,(n+m)θ)(B) − L(m,t),(n+m,(n+m)θ)(B)],

and since the environment of i.i.d. Brownian motions {Br }r∈Z has the same distribution as the environment

{Br+k}r∈Z for each k ∈ Z, the distribution of (hθ1
m , . . . , h

θn
m ) is independent of m. Therefore, (hθ1

m , . . . , h
θn
m )

must be distributed as the unique invariant distribution of the Markov chain (7-14), under the limit

condition (7-18). By Corollary 7.14, this distribution is µ(λ1,...,λn), where λi = 1/
√

θ i for 1 ≤ i ≤ n. □

Proof of Lemma 3.6. Part (i): We show the existence of ηk ∼ µλk

and η ∼ µλ such that, for 1 ≤ i ≤ n,

ηi
k → ηi , uniformly on compact sets, almost surely. Let Z = (Z1, Z2, . . . , Zn) ∼ νλ and define Z i

k(t) =
Z i (t)+ (λk

i −λi )t . Then, (Z1
k , Z2

k , . . . , Zn
k ) ∼ νλk

. Set η = D
(n)(Z) and ηk = D

(n)(Zk). By construction,

for 1 ≤ i ≤ n, Z i
k → Z i uniformly on compact sets, and

lim sup
t→∞
k→∞

∣∣∣∣
1

t
Z i

k(t) − λi

∣∣∣∣ = 0.

Thus, the convergence of η1
k → η1 is immediate. By Lemma 7.2, η2

k = D(Z2
k , Z1

k ) converges to η2 =
D(Z2, Z1) uniformly on compact sets, and

lim sup
t→∞
k→∞

∣∣∣∣
1

t
η2

k(t) − λ2

∣∣∣∣ = 0.
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Now, assume by induction that for i ≥ 2, ηi
k = D(i)(Z i

k, . . . , Z1
k ) converges uniformly on compact sets to

ηi and that

lim sup
t→∞
k→∞

∣∣∣∣
1

t
ηi

k(t) − λi

∣∣∣∣ = 0.

Then, by shifting indices and setting η̃i
k = D(i)(Z i+1

k , . . . , Z2
k ) and η̃i = D(i)(Z i+1, . . . , Z2), it also holds

that η̃i
k converges uniformly on compact sets to η̃i , and

lim sup
t→∞
k→∞

∣∣∣∣
1

t
η̃i

k(t) − λi

∣∣∣∣ = 0.

By definition of D(i+1) (3-10) and the i = 2 case,

ηi+1
k = D(i+1)(Z i+1

k , . . . , Z1
k ) = D(η̃i

k, Z1
k ) → D(η̃i , Z1) = D(i+1)(Z i+1, . . . , Z1) = ηi+1,

where the convergence is almost sure, uniformly on compact sets. Furthermore, the i = 2 case also

guarantees

lim sup
t→∞
k→∞

∣∣∣∣
1

t
ηi+1

k (t) − λi+1

∣∣∣∣ = 0.

Part (ii): It suffices to show that if (η1, . . . , ηn) ∈ X̂n has distribution µλ1,...,λn , then

(η1, . . . , ηi−1, ηi+1, . . . , ηn) ∼ µλ1,...,λi−1,λi+1,...,λn .

Recall that µλ is the distribution of D
(n)(Z1, . . . , Zn), where Z i are independent Brownian motions with

drifts λi , and the j-th component of D
(n)(Z1, . . . , Zn) is D( j)(Z j , . . . , Z1) (3-11).

For i = n, the statement is immediate from the definition of the map D
(n). Next, we show the case

i = 1. For 2 ≤ j ≤ n, we use (7-12) to write

D( j)(Z j , . . . , Z1) = D( j−1)
(
D(Z j , Z̃ j−1), . . . , D(Z3, Z̃2), D(Z2, Z̃1)

)
,

where Z̃1 = Z1, and for i > 1, Z̃ i = R(Z i , Z̃ i−1). Then (η2, . . . , ηn) = D
(n−1)(Ẑ2, . . . , Ẑn), where

Ẑ i = D(Z i , Z̃ i−1) for 2 ≤ i ≤ n. By Theorem 7.9, Ẑ2, . . . , Ẑn are independent, so this completes the

proof of the i = 1 case. By definition of D( j), for i < j ≤ n,

D( j)(Z j , . . . , Z1) = D
(
D(· · · D(D( j−i+1)(Z j , . . . , Z i ), Z i−1), . . . , Z2), Z1

)
. (7-19)

Similarly as in the i = 1 case, we apply (7-12) to get that

D( j−i+1)(Z j , . . . , Z i ) = D( j−i)
(
D(Z j , Z̃ j−1), . . . , D(Z i+1, Z̃ i )

)
= D( j−i)(Ẑ j , . . . , Ẑ i+1), (7-20)

where, Z̃ i = Z i , and for j > i , Z̃ j = R(Z j , Z̃ j−1). For j > i , we define Ẑ j = D(Z j , Z̃ j−1). Then,

by (7-19) and (7-20), for i < j ≤ n,

D( j)(Z j , . . . , Z1) = D( j−1)(Ẑ j , . . . , Ẑ i+1, Z i−1, . . . , Z1),
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and so

(η1, . . . , ηi−1, ηi+1, . . . , ηn) = D
(n−1)(Z1, . . . , Z i−1, Ẑ i+1, . . . , Ẑn). (7-21)

By Theorem 7.9, Ẑ i+1, . . . , Ẑn are independent Brownian motions with drifts λi+1, . . . , λn . Since these

are functions of Z i , . . . , Zn , the functions Z1, . . . , Z i−1, Ẑ i+1, . . . , Ẑ j are independent as well, and

by (7-21),

(η1, . . . , ηi−1, ηi+1, . . . , ηn) ∼ µ(λ1,...,λi−1,λi+1,...,λn).

Part (iii): We note that if Z1, . . . , Zn are independent Brownian motions with drifts λ1, . . . , λn and

Z̃1, . . . , Z̃n are independent Brownian motions with drifts c(λ1 + ν), . . . , c(λn + ν), then

{Z1(t), . . . , Zn(t) : t ∈ R} d= {cZ̃1(t/c2) − νt, . . . , cZ̃n(t/c2) − νt : t ∈ R}. (7-22)

Let (η1, . . . , ηn) = D
(n)(Z1, . . . , Z2) and (η̃1, . . . , η̃n) = D

(n)(Z̃1, . . . , Z̃n). By Lemma 7.1,

(cη̃k(t/c2) − νt/c : t ∈ R)1≤k≤n

= (cZ̃ k(t/c2) − νt + c sup
0≤t1≤t2···≤tn−1<∞

k−1∑

i=1

(Z̃ i (ti ) − Z̃ i+1(ti ))

−c sup
t/c2≤t1≤t2···≤tn−1<∞

k−1∑

i=1

(Z̃ i (ti ) − Z̃ i+1(ti )) : t ∈ R)1≤k≤n.

= (cZ̃ k(t/c2) − νt

+ sup
0≤t1/c2≤···≤tn−1/c2<∞

k−1∑

i=1

(cZ̃ i (ti/c2) − νti − cZ̃ i+1(ti/c2) + νti )

− sup
t/c2≤t1/c2≤···≤tn−1/c2<∞

k−1∑

i=1

(cZ̃ i (ti/c2) − νti − cZ̃ i+1(ti/c2) + νti ) : t ∈ R)1≤k≤n

d= (Z k(t) + sup
0≤t1≤t2···≤tn−1<∞

k−1∑

i=1

(Z i (ti ) − Z i+1(ti ))

− sup
t≤t1≤t2···≤tn−1<∞

k−1∑

i=1

(Z i (ti ) − Z i+1(ti )) : t ∈ R)1≤k≤n

= (ηk(t) : t ∈ R)1≤k≤n,

where in the second-to-last equality, we used the distributional equality (7-22). □

Proof of Theorem 3.7. By Theorem 3.1(iii)(c), for each fixed m ∈ Z, as θ → ∞, hθ
m converges uniformly

on compact sets to Bm . The theorem then follows from Theorem 7.15 and Lemma 3.6(i). □

7E. Proofs of results stated in Section 3B. We first prove Theorem 3.11 and then handle the remaining

results from Section 3B.
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Proof of Theorem 3.11. Set (η1, η2) = D
(2)(Z1, Z2) = (Z1, D(Z2, Z1)) where (Z1, Z2) ∼ ν0,λ, with

λ > 0. Recall that this means that Z1 and Z2 are independent Brownian motions with drifts 0 and λ,

respectively. Theorem 3.7 gives the first equality in distribution below:

X (λ; t) − X (0; t)
d= η2(t) − η1(t) = D(Z2, Z1)(t) − Z1(t)

= sup
0≤s<∞

{Z1(s) − Z2(s)} − sup
t≤s<∞

{Z1(s) − Z2(s)}.

Since Z1 and Z2 are independent, the statement now follows from a direct application of Theorem B.4. □

Theorem 3.9 is proved by applying the following theorem, which gives a condition for a general

increment-stationary process to be a jump process.

Theorem 7.16. On a probability space (�, F, P), let Y = {Y (t) : t ≥ 0} be a nondecreasing, increment-

stationary process such that the following three conditions hold:

(i) I := E[Y (1) − Y (0)] < ∞.

(ii) P[Y (t) = Y (0)] ∈ (0, 1) for sufficiently small t > 0.

(iii) c := lim inft↘0 E[Y (t) − Y (0)|Y (t) > Y (0)] > 0.

Then, with probability one, the paths of t 7→ Y (t) are step functions with finitely many jumps in each

bounded interval. For each t ≥ 0, there is a jump at t with probability 0. For a < b, the expected number

of jump points in the interval [a, b] equals

(b − a)I

c
= E[Y (b) − Y (a)]

lim inft↘0 E[Y (t) − Y (0)|Y (t) > Y (0)] .

Remark 7.17. The claim that (b−a)I = E[Y (b)−Y (a)] follows from increment-stationarity and the fact

that Y is nondecreasing, as follows. By increment-stationarity, it suffices to show that E[Y (t)−Y (0)] = t I

for all t > 0. Since Y is nondecreasing, t 7→ E[Y (t) − Y (0)] is nondecreasing, so it further suffices to

show that E[Y (t) − Y (0)] = t I just for rational t > 0. For any integer k,

E[Y (k) − Y (0)] =
k∑

i=1

E[Y (i) − Y (i − 1)] = kE[Y (1) − Y (0)] = k I.

Then for positive integers r and k,

r I = E[Y (r) − Y (0)] =
k∑

i=1

E[Y (ri/k) − Y (r(i − 1)/k)] = kE[Y (r/k) − Y (0)],

and E[Y (r/k) − Y (0)] = r
k

I .

Remark 7.18. Heuristically, we can think of condition (iii) in the following way: on average, the size of

the jumps are bounded away from 0, and therefore the jumps cannot accumulate because an increment of

the process itself has finite expectation by condition (i).
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Proof of Theorem 7.16. We show there are finitely many jumps in the interval [a, b] = [0, 1], and the

general case follows by increment-stationarity. Consider discrete versions of the process Y as follows.

For n ∈ Z>0, let Dn =
{

j/2n : j ∈ Z, 0 ≤ j ≤ 2n
}
, and consider the process Yn := {Y (t) : t ∈ Dn}. Let Jn

be the number of jumps of Yn , i.e.,

Jn =
2n∑

j=1

1

(
Y

(
j

2n

)
> Y

(
j − 1

2n

))
.

Then, Jn is nondecreasing in n, so it has a limit, denoted as the random variable J∞. Let K ∈
{0, 1, 2, . . .} ∪ {∞} be the number of points of increase of Y on the interval [0, 1]. Specifically, a

point t ∈ (0, 1) is a point of increase if Y (t + ε) > Y (t − ε) for all ε > 0. We say 0 is a point of increase

if Y (t) > Y (0) for all t > 0, and we likewise say that 1 is a point of increase if Y (t) < Y (1) for all t < 1.

We now show that K ≤ J∞. If K < ∞, let k = K , and otherwise, let k be an arbitrary positive integer. It

suffices to show that J∞ ≥ k. By definition of k, we may choose k points of increase t1 < · · · < tk . First,

we handle the case where ti ∈ (0, 1) for all i . Then, for all sufficiently large n, there exist n-dependent

positive integers 0 < j1 < · · · < jk < 2n so that for each i , ji+1 > ji + 2, and

ji − 1

2n
< ti <

ji + 1

2n
. (7-23)

Since ti is a point of increase and Y is nondecreasing, Y (( ji + 1)/2n) > Y (( ji − 1)/2n). Therefore,

Y (( ji +1)/2n) > Y ( ji/2n) or Y ( ji/2n) > Y (( ji −1)/2n). By assumption that ji+1 > ji +2, the intervals

[( ji − 1)/2n, ( ji + 1)/2n] are mutually disjoint, so Jn ≥ k and therefore J∞ ≥ k. The case where t1 = 0

or tk = 1 is handled similarly.

Now, we show that P(J∞ < ∞) = 1. Let

cn = E[Y (2−n) − Y (0)|Y (2−n) > Y (0)].

Then, using increment-stationarity,

E[Y (1) − Y (0)] =
2n∑

j=1

E

[
Y

(
j

2n

)
− Y

(
j −1
2n

)]

=
2n∑

j=1

E

[
Y

(
j

2n

)
− Y

(
j −1
2n

) ∣∣∣ Y
(

j

2n

)
> Y

(
j −1
2n

)]
P

(
Y

(
j

2n

)
> Y

(
j −1
2n

))

= cn

2n∑

j=1

P

(
Y

(
j

2n

)
> Y

(
j −1
2n

))
= cnE[Jn].

By assumptions (i) and (iii) and the monotone convergence theorem,

E[J∞] = lim
n→∞

E[Jn] = lim
n→∞

E[Y (1) − Y (0)]
cn

< ∞. (7-24)

Therefore, P(J∞ < ∞) = 1. Since K ≤ J∞, with probability one, Y has only finitely many points of

increase on [0, 1]. Therefore, with probability one, Y : [0, 1] → R is locally constant except at the finitely



GEODESICS AND COMPETITION INTERFACES IN BLPP 721

many jump points. Hence, for each t ∈ (0, 1), the left and right limits of Y at t, Y (t±) exist. The limits

Y (0+) and Y (1−) exist as well. Since Y is increasing, for each t ∈ (0, 1) and ε > 0, we can apply

Remark 7.17 and (i) to get

E[Y (t+) − Y (t−)] ≤ E[Y (t + ε) − Y (t − ε)] = 2εE[Y (1) − Y (0)] < ∞.

Sending ε ↘ 0, the left-hand side is 0 and therefore, a jump occurs at time t with probability 0. Similar

arguments apply to t = 0 and t = 1. Therefore, there exists an event of probability one, �Q2 on which Y

has no jumps at points of the form j/2n for positive integers j and n.

To compute the mean number of jumps, we show that J∞ = K on the event �Q2 . We already showed

that K ≤ J∞, so it remains to show J∞ ≤ K .

We start by showing that if Y (b) > Y (a) for some a < b, there must be some point of increase in the

interval [a, b]. We prove this as follows: let c be the midpoint of a and b. Then, since Y is nondecreasing,

either Y (b) > Y (c) or Y (c) > Y (a). If, without loss of generality, Y (b) > Y (c), then we can bisect

the interval again with midpoint d and get that Y (b) > Y (d) or Y (d) > Y (c), where d is the midpoint

of a and b. Inductively, this constructs a sequence of nested intervals [an, bn] ⊆ [an−1, bn−1] ⊆ [a, b],
where [an, bn] is either the left or right half of the previous interval. Then, an is nondecreasing and bn is

nonincreasing and bn −an → 0. Then, set t = limn→∞ an = limn→∞ bn , and we have that t ∈ [an, bn] for

all n. If t ∈ (0, 1), then for all ε > 0, we may choose n large enough so that, because Y is nondecreasing,

Y (t + ε) − Y (t − ε) ≥ Y (bn) − Y (an) > 0.

Hence, t is a point of increase. The case where t = 0 or 1 is handled similarly.

Now, we show that on �Q2 , Jn ≤ K for all n. By definition, Jn is the number of integers 0 < j ≤ 2n

such that Y ( j2−n) > Y (( j − 1)2−n). For each such j , we just showed that there must be a point of

increase in [( j − 1)2−n, j2−n], and on the event �Q2 , that point of increase must lie in the interior of the

interval. Thus, Jn ≤ K , and J∞ ≤ K , so J∞ = K on �Q2 . Equation (7-24) computes the mean number

of jump points. □

Proof of Theorem 3.9. By Theorem 3.7 we can realize the distribution of the process as a function of

independent Brownian motions Z1, . . . , Zn with respective drifts λ1, . . . , λn:

(X (λ1; t), . . . , X (λn; t))
d= (η1(t), . . . , ηn(t)) = D

(n)(Z1, . . . , Zn)(t).

From this, η1(t) = Z1(t), and by Lemma 7.1, for 2 ≤ k ≤ n,

ηk(t) = Z1(t) + sup
0≤t1≤t2···≤tn−1<∞

k−1∑

i=1

(Z i (ti ) − Z i+1(ti )) − sup
t≤t1≤t2···≤tn−1<∞

k−1∑

i=1

(Z i (ti ) − Z i+1(ti )).

Hence, the Z1(t) terms in ηk+1(1) − ηk(t) cancel out. With independent, standard Brownian motions

W 1, . . . , W n , we can write

Z i (ti ) − Z i+1(ti ) = W i (ti ) − W i+1(ti ) − (λi+1 − λi )ti .



722 TIMO SEPPÄLÄINEN AND EVAN SORENSEN

Hence the distribution of the vector of increments

(
X (λ2; t) − X (λ1; t), X (λ3; t) − X (λ2; t), . . . , X (λn; t) − X (λn−1; t)

)

depends only on the differences λ2 − λ1, . . . , λn − λn−1 and not on the individual values λi . This shows

increment-stationarity of the process. To complete the proof, we show that E[X (λ; t)− X (0; t)] = λt and

that

lim inf
λ↘0

E[X (λ; t) − X (0; t)|X (λ; t) > X (0; t)] =
√

π t

2
, (7-25)

allowing us to invoke Theorem 7.16. The fact that E[X (λ; t) − X (0; t)] = λt follows since h
1/λ2

m (t) is a

Brownian motion with drift λ and t 7→ X (0; t) is a Brownian motion with zero drift. Since X (λ; t)−X (0; t)

is nonnegative,

E[X (λ; t) − X (0; t)|X (λ; t) > X (0; t)] = E[X (λ; t) − X (0; t)]
P(X (λ; t) > X (0; t))

= λt

P(X (λ; t) > X (0; t))
.

By (3-14), for t, λ > 0,

P(X (λ; t) > X (0; t)) = 1 − (2 + λ2t)8
(
−λ

√
t/2

)
+ λe− λ2t

4

√
t/π .

Substitute this in the denominator above and apply L’Hôpital’s rule to deduce (7-25). Hence, we may

apply Theorem 7.16. By Remark 3.8, for 0 < γ ≤ ∞, the mean number of directions θ satisfying

hθ+
m (s, t) < hθ−

m (s, t) is distributed as the number of jumps of λ 7→ X (λ; s + (t − s)) − X (λ; s) in the

interval λ ∈
[
1/

√
δ, 1/

√
γ
]
, which has mean

(
1

√
γ

− 1√
δ

)
λ(t − s)

(√
π(t − s)

2

)−1

= 2

√
t − s

π

(
1

√
γ

− 1√
δ

)
.

The almost sure existence of ε > 0 such that X (λ; t) = X (0; t) = B0(t) for λ ∈ [0, ε) follows be-

cause Theorem 7.16 states that 0 is a jump point of λ 7→ X (λ; t) with zero probability. The limit

limλ→∞ X (λ; t) = ∞ follows by monotonicity and because X (λ; t) = h
1/λ2

0 (t) ∼ N(tλ, t). □

Proof of Corollary 3.13. Part (i): In (3-14), set y = z + λt and send λ → ∞. The limit is 8
(
y/

√
2t

)
.

Part (ii): For λ2 > λ1 > 0,

X (λ2; t) = X (λ2; t) − X (λ1; t) + X (λ1; t). (7-26)

Recall that X (λ; t) = h
(1/λ2)−
m (t), and for each fixed λ, h

1/λ2

m (t) is a two-sided Brownian motion with

drift λ by Theorem 3.1(ix). Then, the left-hand side of (7-26) has variance t . If, by way of contradic-

tion, X (λ1; t) is independent of X (λ2; t) − X (λ1; t), then the right-hand side of (7-26) has variance

Var(X (λ2; t) − X (λ1; t)) + t , implying that Var(X (λ2; t) − X (λ1; t)) = 0 and X (λ2; t) = X (λ1; t)

is zero, almost surely. This cannot be true because X (λ1; t) and X (λ2; t) have different distributions:

X (λi ; t) is normal with mean λi t for i = 1, 2.
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For the second statement, by monotonicity, X (λ2; t)−X (0; t)= 0 if and only if X (λ2; t)−X (λ1; t)= 0

and X (λ1; t)− X (0; t) = 0. Then, if by contradiction, λ 7→ X (λ; t) has independent increments, then for

0 < λ1 < λ2,

P
(
X (λ2; 0) − X (0; t) = 0

)
= P

(
X (λ2; t) − X (λ1; t) = 0

)
P

(
X (λ1; t) − X (0; t) = 0

)
,

or equivalently,

P
(
X (λ2; 0) − X (0; t) = 0|X (λ1; t) − X (0; t) = 0

)
= P

(
X (λ2; t) − X (λ1; t) = 0

)
. (7-27)

If we let T (t) be the time of the first jump of the process λ 7→ X (λ; t), then by the increment-stationarity

of Theorem 3.9, (7-27) is equivalent to

P(T (t) > λ2|T (t) > λ1) = P(T (t) > λ2 − λ1). (7-28)

Note that P(T (t) > λ) = F(0, λ, t), which, by (3-15), is not an exponential distribution and therefore not

a memoryless distribution. Thus, (7-28) fails. □

7F. Proof of Theorems 3.15 and 2.5. We first prove a rather technical seeming theorem, but many

of whose statements have natural geometric meaning. For example, part (iii) says that uniformly for

directions sufficiently close to horizontal, the rightmost geodesic must travel horizontally to some distance

bounded away from 0, and thereby the horizontal Busemann process coincides with the environment

of Brownian motions, throughout a given interval (see Lemma B.3). Part (vi) gives a dual statement:

uniformly for directions bounded away from the vertical, the horizontal Busemann process coincides with

the environment of Brownian motions at least for some nondegenerate interval.

Theorem 7.19. There exists an event of full probability, on which the following hold.

(i) For all S < T ∈ R and θ > 0, if hθ+
m (s, t) < hθ−

m (s, t) for some s < t ∈ [S, T ], then hθ+
m (S, T ) <

hθ−
m (S, T ).

(ii) In particular, for every m ∈ Z and s < t ∈ R, the paths of the process θ 7→ hθ±
m (s, t) are the right

and left continuous versions of a nonincreasing step function with discrete jumps. If , for some s < t ,

θ⋆ is a jump point for θ 7→ hθ±
m (s, t), then for all S < s and T > t , θ⋆ is also a jump point for the

process θ 7→ hθ±
m (S, T ).

(iii) For each m ∈ Z and each compact set K ⊆ R, there exists a random η = η(m, K ) > 0 such that for

all θ > η and s, t ∈ K , hθ+
m (s, t) = hθ−

m (s, t) = Bm(s, t).

(iv) For all θ > 0, m ∈ Z and compact K ⊆ R, there exists a random ε = ε(θ, K , m) > 0 such that

whenever θ − ε < γ < θ < δ < θ + ε, � ∈ {−, +}, and s < t ∈ K , h
γ �

m (s, t) = hθ−
m (s, t) and

hδ�

m (s, t) = hθ+
m (s, t).

(v) More generally, for each compact set K ⊆ Z × R and θ > 0, there exists a random ε = ε(K , θ) > 0

such that whenever x, y ∈ K , θ − ε < γ < θ < δ < θ + ε, and � ∈ {−, +},

B
γ �(x, y) = B

θ−(x, y) and B
δ�(x, y) = B

θ+(x, y).
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(vi) For all η > 0 and m ∈ Z, there exists a random ε = ε(m, η) > 0 such that, for all |t | ≤ ε and θ > η,

hθ+
m (t) = hθ−

m (t) = Bm(t).

(vii) For all m ∈ Z, � ∈ {−, +}, and s < t ∈ R,

lim
θ↘0

hθ�

m (s, t) = +∞ and lim
θ→∞

vθ�

m (t) = +∞.

(viii) For each m ∈ Z and s < t ∈ R, the process {hθ�

m (s, t) : θ > 0} has infinitely many points of decrease,

whose unique accumulation point is θ = 0.

Proof. Part (i) holds on the event �2 as follows. Theorem 3.1(ii) implies that for S ≤ s ≤ t ≤ T ,

0 ≤ θ ≤ δ ≤ ∞, and �1, �2 ∈ {−, +} (if θ = δ, we require �1 = − and �2 = +),

hδ�2
m (S, s) + hδ�2

m (t, T ) ≤ hθ�1
m (S, s) + hθ�1

m (t, T ).

Here, we define h∞
m (s, t) = Bm(s, t). This inequality can be rearranged to get

0 ≤ hθ�1
m (s, t) − hδ�2

m (s, t) ≤ hθ�1
m (S, T ) − hδ�2

m (S, T ). (7-29)

The case θ = δ and �1 = −, �2 = + proves (i).

For the remaining parts, let �3 be the subset of �2 on which the following hold:

(1) The paths of θ 7→ hθ±
m (S, T ) are step functions with discrete jumps for all m, S < T ∈ Z. For such

m, S, T , there exists η = η(S, T ) > 0 such that for θ > η and � ∈ {−, +}, hθ�

m (S, T ) = Bm(S, T ).

(2) For each θ ∈ Q>0 and m ∈ Z, there exists N ∈ Z>0 such that hθ
m(±N−1) = Bm(±N−1).

(3) For each m ∈ Z, s < t ∈ R, and � ∈ {−, +}, limθ↘0 hθ�

m (s, t) = +∞.

(4) For every m ∈ Z, θ > 0, and � ∈ {−, +}, limt→∞(hθ�

m (t))/t = 1/
√

θ .

(5) For every m ∈ Z,

sup
0≤s<∞

{Bm−1(s) − Bm(s)} = +∞. (7-30)

We first show that �3 has probability one, and then show that the remaining parts of the theorem

hold on this event. By Theorem 3.9, condition (1) holds with probability one. Next, rearranging

Bm(s, t) ≤ hθ�

m (s, t) for s < t gives, for a < t < b,

hθ�

m (a) − Bm(a) ≤ hθ�

m (t) − Bm(t) ≤ hθ�

m (b) − Bm(b). (7-31)

Thus, for θ ∈Q>0, if hθ
m(±N−1)= Bm(±N−1), then also hθ

m(±(N +1)−1)= Bm(±(N +1)−1). Therefore,

P

( ⋃

N∈Z>0

{
hθ

m(±N−1) = Bm(±N−1)
})

= lim
N→∞

P
(
hθ

m(±N−1) = Bm(±N−1)
)
= 1,

where the last equality follows from Theorem 3.7 and (3-15) with t ↘ 0. Therefore, condition (2) holds

with probability one. Next, we show that condition (3) holds with probability one. For all m ∈ Z and a

countable dense set of pairs s < t , this follows from Theorem 3.9 and Remark 3.8. The monotonicity of

(7-29) with θ ↘ 0 and δ fixed extends condition (3) to all S < T ∈ R on a single event of probability one.
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Condition (4) holds with probability one for all θ ∈ Q>0, since each hθ
m is a Brownian motion

with drift 1/
√

θ (Theorem 3.1(ix)). The monotonicity of (3-4) extends this to all θ > 0 and � ∈
{−, +}. Since Bm−1 and Bm are independent, Bm−1 − Bm is a variance 2 Brownian motion. Hence,

condition (5) holds with probability one, and P(�3) = 1, as desired. We now prove the remaining parts

of the theorem.

Part (ii): This now follows from condition (1) of the event �3 and part (i).

Part (iii): Let m ∈ Z, S, T ∈ Z>0, and, without loss of generality, let K = [S, T ]. By condition (2)

and the δ = ∞ case of (7-29), there exists η = η(m, K ) > 0 such that, when θ > η, � ∈ {−, +}, and

s < t ∈ K ,

0 ≤ hθ�

m (s, t) − Bm(s, t) ≤ hθ�

m (S, T ) − Bm(S, T ) = 0.

Part (iv): This is similar to the proof of part (iii): By condition (1) and (7-29), when m, S, T ∈Z with S < T

and θ > 0, setting K = [S, T ], there exists ε = ε(θ, m, K ) > 0 such that, when θ −ε < γ < θ < δ < θ +ε

and � ∈ {−, +},

0 = hθ+
m (s, t) − hδ�

m (s, t) = hθ+
m (S, T ) − hδ�

m (S, T ),

0 = hγ �

m (s, t) − hθ−
m (s, t) = hγ �

m (S, T ) − hθ−
m (S, T ).

Part (v): By part (iv) and the additivity of Theorem 3.1(i), it is sufficient to prove that for each m ∈ Z,

compact K ⊆ R and θ > 0, there exists ε = ε(m, K , θ) such that v
γ �

m+1(t)= vθ−
m+1(t) and vδ�

m+1(t)= vθ+
m+1(t)

whenever t ∈ K and θ − ε < γ < θ < δ < θ + ε. By Theorem 3.1(vi) and Theorem 4.3(iii)(a), for

δ < θ + 1,

vδ�

m+1(t) = sup
t≤s<∞

{Bm(t, s) − hδ�

m+1(t, s)}

= sup
t≤s≤τ

(θ+1)+,R
(m,t),m

{Bm(t, s) − hδ�

m+1(t, s)}. (7-32)

By part (iv), there exists ε > 0, such that, for δ ∈ (θ, θ + ε), the right-hand side of (7-32) is equal to

sup
t≤s≤τ

(θ+1)+,R
(m,T ),m

{Bm(t, s) − hθ+
m+1(t, s)} = vθ+

m+1(t),

where T = sup K . The result for γ < θ is proved similarly.

Part (vi): Let m ∈ Z, η > 0 and let η1 < η be rational. By condition (2) of �3 and (7-31), there exists

ε = ε(m, η1) such that Bm(t) = h
η1
m (t) for all |t | ≤ ε. Then, by the monotonicity of Theorem 3.1(ii), for

all θ > η > η1, � ∈ {−, +}, and |t | ≤ ε, Bm(t) = hθ�

m (t) as well.

Part (vii): The first limit is exactly condition (3) of the event �3. For the second limit, we use the

representation of Theorem 3.1(vi) to get

vθ�

m (t) = sup
t≤s<∞

{Bm−1(t, s) − hθ�

m (t, s)}.
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By Theorem 3.1(iii)(c), hθ�

m converges to Bm uniformly on compact sets as θ → ∞. Therefore, for

any T ≥ t ,

lim inf
θ→∞

vθ�

m (t) = lim inf
θ→∞

sup
t≤s<∞

{Bm−1(t, s) − hθ�

m (t, s)}

≥ lim inf
θ→∞

[hθ�

m (t) − Bm−1(t) + sup
t≤s≤T

{Bm−1(s) − hθ�

m (s)}]

= Bm(t) − Bm−1(t) + sup
t≤s≤T

{Bm−1(s) − Bm(s)}.

Since this holds for all T ≥ t , the limit is +∞ by condition (5) of the event �3 (page 724).

Part (viii): This follows directly from parts (ii) and (vii). □

Proof of Theorem 3.15. The full probability event of this theorem is �3.

Part (i): The monotonicity of Theorem 3.1(ii) implies that for 0 < t < T ,

0 = h
γ �1

0 (0) − h
δ�2
0 (0) ≤ h

γ �1

0 (t) − h
δ�2
0 (t) ≤ h

γ �1

0 (T ) − h
δ�2
0 (T ).

Part (ii): Let γ < θ and �1, �2 ∈ {−, +}. By Theorem 7.19(vi), there exists ε > 0 small enough so that

Bm(t) = h
γ �1
m (t) = hθ�2

m (t) for 0 ≤ t ≤ ε. On the other hand, by definition of the event �3,

lim
t→∞

h
γ �1

0 (t)

t
= 1

√
γ

>
1√
θ

= lim
t→∞

h
θ�2
0 (t)

t
.

Hence h
γ �1

0 (t) > h
θ�2
0 (t) for sufficiently large t . By the monotonicity of increments from part (i), and

continuity of Theorem 3.1(iv), separation happens at a unique time S ≥ ε.

Part (iii): Let S = S(γ �1, δ�2). We first consider the case �1 = + and �2 = −. Then, the assumption is

that h
γ+
0 (t) = hδ−

0 (t) for 0 ≤ t ≤ S and h
γ+
0 (t) > hδ−

0 (t) for t > S. Then, the jump process θ 7→ hθ±
0 (S)

has no jumps in the interval (γ, δ), but for each ε > 0, the process θ 7→ hθ±
0 (S + ε) has a nonzero finite

number of jumps in the open interval (γ, δ). Furthermore, by Theorem 7.19(ii), jumps are only added as

ε increases. Hence, there must exist some θ⋆ ∈ (γ, δ) such that, for every ε > 0, θ⋆ is a jump point of

the process θ 7→ hθ±
0 (S + ε), i.e., hθ⋆−

0 (S + ε) > hθ⋆+
0 (S + ε) for all ε > 0. But since h

γ+
0 (S) = hδ−

0 (S),

the monotonicity of (3-4) requires hθ⋆−
0 (S) = hθ∗+

0 (S). Hence, θ⋆ has the desired property and lies in 2

by definition (2-3).

Next, we prove the statement in the case �1 = �2 = +. The remaining cases follow similarly. The

assumption is now that h
γ+
0 (t) = hδ+

0 (t) for 0 ≤ t ≤ S and h
γ+
0 (t) > hδ+

0 (t) for t > S. By (3-4), this

implies that h
γ+
0 (t) = hδ−

0 (t) = hδ+
0 (t) for 0 ≤ t ≤ S. We may write

h
γ+
0 (t) − hδ+

0 (t) = h
γ+
0 (t) − hδ−

0 (t) + hδ−
0 (t) − hδ+

0 (t),

and therefore, by part (i), either h
γ+
0 (t) > hδ−

0 (t) for t > S (allowing us to apply the previous case) or

hδ−
0 (t) > hδ+

0 (t) for t > S, in which case θ = δ satisfies the desired property.

Parts (iv)–(v): By Theorem 7.19 (ii) and (vii), for each T > 0, the path θ 7→ hθ±
0 (T ) is a nonincreasing step

function with discrete jump locations that tends to ∞ as θ ↘ 0, so the set {hθ�

0 (T ) : θ > 0, � ∈ {−, +}}
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is discrete and infinite. Since distances between the Busemann trajectories are nondecreasing by part (i),

each of these discrete values corresponds to a single trajectory from time 0 up to time T . □

Proof of Theorem 2.5. The fact that P(θ ∈ 2) for each fixed θ > 0 is a direct consequence of

Theorem 3.1(vii). We now prove the various parts of the theorem. The full probability event of the

theorem is �3, as constructed on page 724.

Part (i): The density of 2 is a direct consequence of Theorem 3.15(iii). Now, set

Hm = {θ > 0 : hθ+
m (t) ̸= hθ−

m (t) for some t ∈ R}.

By the additivity of Theorem 3.1(i) and the relations of Theorem 3.1(vi), the entire Busemann process

can be obtained by a deterministic function of the process {hθ�

m (t) : m ∈ Z, t ∈ R, θ > 0, � ∈ {−, +}}.
Hence, 2 =

⋃
m∈Z

Hm . It then suffices to prove that each Hm is countably infinite. By Theorem 7.19(i),

Hm =
∞⋃

T =1

{θ > 0 : hθ−
m (t) ̸= hθ+

m (t) for some t ∈ [−T, T ]}

=
⋃

T ∈Z

{θ > 0 : hθ−
m (T ) ̸= hθ+

m (T )}. (7-33)

For each T ∈ Z, θ 7→ hθ�

m (T ) is monotone, so there are only countably many values of θ > 0 such that

hθ−
m (T ) ̸= hθ+

m (T ). Hence, Hm is countable as well.

Part (ii): By Theorem 7.19(v), for every θ > 0, there exists a random ε = ε(θ, x, y) such that for

θ − ε < γ < θ < δ < θ + ε and � ∈ {−, +}, B
θ−(x, y) = B

γ �(x, y) and B
θ+(x, y) = B

δ�(x, y).

Hence, there are no points of 2x, y in (θ − ε, θ + ε) \ {θ}, and so 2x, y has no nonzero limit points. As

a result, the notion of two successive points of 2x, y is well-defined. Furthermore, if θ /∈ 2x, y, then

B
θ−(x, y) = B

θ+(x, y), so there exists a random ε = ε(x, y) > 0 such that θ 7→ B
θ±(x, y) is constant

in the interval (θ − ε, θ + ε). Hence, if γ < δ are any two successive points of 2x, y, the function

θ 7→ B
θ±(x, y) is continuous and is everywhere locally constant on (γ, δ). Thus, θ 7→ B

θ±(x, y) must

be constant on the entire interval (γ, δ).

Lastly, set x = (m, t), y = (r, s) and w = (r, t). Without loss of generality, assume r ≥ m. By (4-12),

B
θ�(x, y) = B

θ�(x, w) + B
θ�(w, y) =

r∑

k=m+1

vθ�

k (t) − hθ�

r (s, t).

By Theorem 7.19(vii) and Theorem 3.1(iii)(c)–(d), for each k ∈ Z and s < t ∈ R,

lim
θ→∞

hθ�

k (s, t) = Bk(s, t), lim
θ↘0

hθ�

k (s, t) = +∞,

lim
θ→∞

vθ�

k (t) = +∞, lim
θ↘0

vθ�

k (t) = 0.

Since x ̸= y, r > m or s ̸= t (or both). Hence, B
θ�(x, y) converges to +∞ or −∞ either as θ → ∞ or

θ ↘ 0, and since θ 7→ B
θ�(x, y) is constant on every open interval in (0, ∞) \ 2x, y, the set 2x, y must

be infinite.
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Part (iii): The fact that 2(m,−t),(m,t) is nondecreasing follows by Theorem 7.19(i). We prove the equal-

ity (2-4) by proving Hm = Hm+1, i.e., that hθ+
m (t) = hθ−

m (t) for all t ∈ R if and only if hθ+
m+1(s) = hθ−

m+1(s)

for all s ∈ R. The “if” part is immediate from hθ�

m = D(hθ�

m+1, Bm) (Theorem 3.1(vi)).

Next, for ω ∈ �4, assume that hθ+
m+1(s) ̸= hθ−

m+1(s) for some s ∈ R. Assume, by way of contradiction,

that hθ+
m (t) = hθ−

m (t) for all t . By Theorem 3.1(vi),

hθ�

m (t) = Bm(t) + sup
0≤u<∞

{Bm(u) − hθ�

m+1(u)} − sup
t≤u<∞

{Bm(u) − hθ�

m+1(u)},

so the function

t 7→ f (t) := sup
t≤u<∞

{Bm(u) − hθ+
m+1(u)} − sup

t≤u<∞
{Bm(u) − hθ−

m+1(u)}

is constant. First, consider the case s > 0. By Theorem 3.1(ii), hθ+
m+1 ≤inc hθ−

m+1, so for u ≥ s,

hθ−
m+1(u) − hθ+

m+1(u) ≥ hθ−
m+1(s) − hθ+

m+1(s) > 0.

Then, f (s) > 0. On the other hand, by Theorem 3.1(v),

lim
t→∓∞

Bm(t) − hθ�

m+1(t) = ±∞, (7-34)

so we may choose s0 < 0 to be sufficiently negative so that

sup
s0≤u<∞

{Bm(u) − hθ�

m+1(u)} = sup
s0≤u≤0

{Bm(u) − hθ�

m+1(u)}

for � ∈ {−, +}. By (3-4), hθ+
m+1(u) ≥ hθ−

m+1(u) for u ≤ 0. Thus, f (s0) ≤ 0, a contradiction to the finding

that f (s) > 0 and f is constant.

Now, consider the case s < 0. Using hθ+
m+1 ≤inc hθ−

m+1, as in the s > 0 case, hθ+
m+1(u) > hθ−

m+1(u) for all

u < s. By (7-34), we can choose s0 to be sufficiently negative so that, for � ∈ {−, +},

sup
s0≤u<∞

{Bm(u) − hθ�

m+1(u)} = sup
s0≤u≤s

{Bm(u) − hθ�

m+1(u)},

and hence f (s0) < 0. On the other hand, by (3-4), hθ−
m+1(u) ≥ hθ+

m+1(u) for u > 0, so f (0) ≥ 0, giving a

similar contradiction. □

8. Proofs of the results from Section 4 and Theorems 2.8 and 2.10

We start by proving the results of Section 4, and the proofs of Theorems 2.8 and 2.10 are presented at the

very end of this section. The full probability event of the results in Section 4 is denoted as �4, which we

now define. Recall the discussion of the events �2, �(θ), and �
(θ)
x immediately before Theorem 3.1. Let

�3 ⊆ �2 be the full probability event of Theorem 7.19. Let �̃ be the full probability event of Lemma A.2.

For each m ∈ Z and γ > 0, the function s 7→ Bm(s) − h
γ

m+1(s) is a variance 2 Brownian motion with

negative drift by Theorem 3.1(ix) and 3.1(viii). Let Cm,γ be the full probability event on which the

conclusions of Theorem C.8 hold, applied to s 7→ Bm(s) − h
γ

m+1(s). For r ∈ Z, let Ar be the event on
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which the set

{s ∈ R : Br−1(s) − Br (s) = sup
s≤u≤t

{Br−1(u) − Br (u)} for some t > s}

has Hausdorff dimension 1
2 . Since Br and Br−1 are independent, Br − Br−1 is a variance 2 Brownian

motion, and Corollary C.7 implies that P(Ar ) = 1.

The full-probability event �4 is defined to be

�4 := �2 ∩ �3 ∩ �̃ ∩
⋂

θ∈Q>0

�(θ) ∩
⋂

θ∈Q>0,x∈Z×Q

�(θ)
x ∩

⋂

m∈Z,γ∈Q>0

Cm,γ ∩
⋂

r∈Z

Ar . (8-1)

For the sake of reference, the following properties hold on this event.

(i) For θ ∈ Q>0 and x, y ∈ Z × R, B
θ−(x, y) = B

θ+(x, y) (Theorem 3.1(vii)).

(ii) For each x ∈ Z × Q and θ ∈ Q>0, x /∈ NUθ
0 . In other words, for θ ∈ Q>0 and x ∈ Z × Q, there is a

unique θ -directed semi-infinite geodesic out of x. (See Theorem B.1(i) and Remark 4.7(a)).

(iii) For each θ ∈ Q>0, the sets NUθ
0 and NUθ

1 are countably infinite. (Theorem B.1(ii)).

(iv) The conclusions of Theorem 7.19 hold.

(v) For every (m, q1) ≤ (r, q2) with q1, q2 ∈ Q>0, there exists a unique geodesic between (m, q1)

and (r, q2). That unique geodesic does not pass through (k, q1) for k > m or (n, q2) for n < r

(Lemma A.2(i)).

(vi) For every pair of points (m, s) ≤ (n, t), there are finitely many geodesics between the two points

(Lemma A.2(ii)).

With this event in place, we have the following result.

Lemma 8.1. On the event �4, the following hold for all θ > 0 and � ∈ {−, +}.
(i) For each compact set K , there exists γ ∈ Q>0 such that, for each t ∈ K , the functions s 7→

Bm(s) − hθ�

m+1(s) and s 7→ Bm(s) − h
γ

m+1(s) agree on the common compact set containing all

maximizers of the functions over s ∈ [t, ∞).

(ii) There exist no points t ∈ R such that the function s 7→ Bm(s) − hθ�

m+1(s) has three maximizers over

s ∈ [t, ∞). If the function has two maximizers over s ∈ [t, ∞), one of them is s = t .

(iii) The function s 7→ Bm(s) − hθ�

m+1(s) is not monotone on any nonempty interval.

(iv) If , for some s ∈ R, τ
θ�,R
(m,s),m = s, then for every ε > 0, there exists t ∈ (s, s+ε) such that (m, t)∈ NUθ�

1 .

(v) If (m, s) ∈ NUθ�

1 , there exists t ∈ (s − ε, s) such that τ
θ�,R
(m,t),m = t .

(vi) For all (m, s) ∈ NUθ�

1 , there exists δ > 0 such that NUθ�

1 ∩({m} × (s, s + δ)) = ∅.

Proof. Part (i): Let t0 = min K and t1 = max K . By Theorem 7.19(iv), for θ > 0 and � ∈ {−, +},
we may choose γ ∈ Q>0 to be sufficiently close to θ (from the right for � = + and from the left for

� = −) so that hθ�

m+1(s) = h
γ

m+1(s) for all s ∈ [t0, τ (θ+1)+,R
(m,t1),m

]. Since τ
θ�,R
(m,t),m is the right-most maximizer

of Bm(s) − hθ�

m+1(s) over s ∈ [t, ∞), by monotonicity of Theorem 4.3(iii)(a)–(b), for all t ∈ K , the set

[t0, τ (θ+1)+,R
(m,t1),m

] contains all maximizers of Bm(s) − hθ�

m+1(s) and Bm(s) − h
γ

m+1(s) over s ∈ [t, ∞).
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Part (ii): If, by contradiction, for some t ∈ R, Bm(s) − hθ�

m+1(s) has two maximizers over s ∈ [t, ∞) that

are both strictly greater than t , then by part (i), the same holds for Bm(s) − h
γ

m+1(s), where γ is some

rational direction. This contradicts the definition of �4 that the conclusion of Theorem C.8(ii) holds for

the function s 7→ Bm(s) − h
γ

m+1(s).

Part (iii): Assume by way of contradiction that s 7→ Bm(s) − hθ�

m+1(s) is monotone on some compact inter-

val I . By Theorem 7.19(iv), there exists a rational γ ∈ Q>0 such that Bm(s)−h
γ

m+1(s)= Bm(s)−hθ�

m+1(s)

for s ∈ I . Then, s 7→ Bm(s) − h
γ

m+1(s) is monotone on I , contradicting the definition of the event

�4 ⊆ Cm,γ (8-1) and Theorem C.8(iii).

Part (iv): Assume that τ
θ�,R
(m,s),m = s and let ε > 0. By definition of right-most maximizers, u = s is

the unique maximizer of Bm(u) − hθ�

m+1(u) over u ∈ [s, ∞). Let K = [s, s + ε]. Then, by part (i),

there exists a rational γ > 0 such that Bm(u) − hθ�

m+1(u) = Bm(u) − h
γ

m+1(u) for all u in a common

compact set containing all maximizers of both functions over u ∈ [t, ∞), for each t ∈ K . By definition

of �4 ⊆ Cm,γ and Theorem C.8(v), there exists t ∈ (s, s + ε) such that Bm(u) − h
γ

m+1(u) (and therefore

also Bm(u) − hθ�

m+1(u)) has two maximizers over u ∈ [t, ∞). Thus, (m, t) ∈ NUθ�

1 .

Parts (v)–(vi): These follow by a proof analogous to part (iv), using part (i), the definition of �4 ⊆ Cm,γ ,

and Theorem C.8, parts (v)–(vi). □

Proof of Theorem 4.5. Part (i): We prove the statement for limits from the right, and the other statement

follows analogously. Without loss of generality, set K = [t0, t1] for t0 < t1. By Lemma B.2(iii), for each

t ∈ K , n ≥ m, and δ > 0, the sequences t = τ
δ�,S
(m,t),m−1 ≤ τ

δ�,S
(m,t),m ≤ · · · ≤ τ

δ�,S
(m,t),n for S ∈ {L , R} are the

leftmost and rightmost maximizers of

n∑

r=m

Br (sr−1, sr ) − hδ�

n+1(sn) (8-2)

over all sequences t = sm−1 ≤ sm ≤ · · · ≤ sn < ∞. By Theorem 4.3(iii)(a)–(b), for all δ ∈ [θ, θ + 1],
(m, t) ∈ Z × R, � ∈ {−, +}, S ∈ {L , R}, and r ≥ m,

τ
δ�,S
(m,t),r ≤ τ

(θ+1)+,R
(m,t1),r

. (8-3)

Hence, for all t ∈ K , δ ∈ [θ, θ + 1] and � ∈ {−, +}, the maximizers of (8-2) remain the same when the

maximum is restricted to sequences t = sm−1 ≤ sm ≤ · · · ≤ sn ≤ τ
(θ+1)+,R
(m,t1),n

.

By Theorem 7.19(iv) and the monotonicity of Theorem 4.3(iii)(a)–(b), for each n, there exists a random

ε > 0 such that for t ∈ K , θ < δ < θ + ε, and � ∈ {−, +}, hδ�

n+1(sn) = hθ+
n+1(sn) for t0 ≤ sn ≤ τ

(θ+1)+,R
(m,t1),n

(recall that hδ�

n+1(sn) = hδ�

n+1(0, sn)). Hence, for θ < δ < θ + ε and each t = sm−1 ∈ K , the functions

n∑

r=m

Br (sr−1, sr ) − hδ�

n+1(sn) and
n∑

r=m

Br (sr−1, sr ) − hθ+
n+1(sn)

are equal on the common compact set of sequences t = sn−1 ≤ · · · ≤ sn ≤ τ
(θ+1)+,R
(m,t1),n

which contains all

their maximizers. In particular, their left- and right-most maximizers coincide, and therefore τ
δ�,S
(m,t),r =

τ
θ+,S
(m,t),r for S ∈ {L , R} and m ≤ r ≤ n by Lemma B.2(iii).
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Part (ii). Assume, by way of contradiction, that there exists ω∈�4 such that, for some s < t ∈ R, m ≤ r ∈ Z,

θ > 0, and � ∈ {−, +}, τ
θ�,R
(m,s),r > τ

θ�,L
(m,t),r . Without loss of generality, take � = +. Then, by part (i), for

sufficiently close rational δ > θ ,

τ
δ,R
(m,s),r = τ

θ+,R
(m,s),r > τ

θ+,L
(m,t),r = τ

δ,L
(m,t),r . (8-4)

By Theorem 4.3(iii)(c), τ
δ,R
(m,s),r ≤ τ

δ,L
(m,t),r on the event �(δ), which contains �4 because δ is rational. This

is a contradiction to (8-4).

Part (iii): By the monotonicity of Theorem 4.3(iii)(b), the limits τr := limu↗s τ
θ�,S
(m,u),r exist for r ≥ m, and

by part (ii), τr ≤ τ
θ�,L
(m,s),r . By Lemma B.2(i), for r ≥ m, τ

θ�,S
(m,u),m, . . . , τ

θ�,S
(m,u),n is a maximizing sequence

for

sup

{ n∑

r=m

Br (sr−1, sr ) − hθ�

n+1(sn) : u = sm−1 ≤ sm ≤ · · · ≤ sn < ∞
}
. (8-5)

By Lemma C.1, τm, . . . , τn is a maximizing sequence for (8-5), replacing u with s. By Lemma B.2(iii),

τ
θ�,L
(m,s),m, . . . , τ

θ�,L
(m,s),n is the leftmost such maximizing sequence. Since τr ≤ τ

θ�,L
(m,s),r , we must have that

τr = τ
θ�,L
(m,s),r for m ≤ r ≤ n. The proof for limits as t ↘ s is analogous. □

8A. Proof of the results from Section 4B.

Proof of Theorem 4.8. We prove part (i) last.

Part (ii): To establish (4-10), we show that, for i = 0, 1, if (m, t) ∈ NUθ�

i , then (m, t) ∈ NUγ

i for

some γ ∈ Q>0. This follows from Theorem 4.5(i), by which on the event �4, if τ
θ�,L
(m,t),r < τ

θ�,R
(m,t),r , then

τ
γ,L

(m,t),r < τ
γ,R

(m,t),r for all rational γ sufficiently close to θ on the appropriate side (greater than θ for � = +
and less than θ for � = −). With (4-10) established, item (iii) on page 729 implies that, on �4, NU0 and

NU1 are both countably infinite.

Part (iii): This follows from part (ii) and Theorem B.1(i) since P(x ∈ NUθ
0) = 0 for any θ ∈ Q>0.

Equation (4-10) and item (ii) on page 729 imply that, on �4, NU0 contains no points of Z × Q.

Part (iv): Let (m, t) be such that τ
θ�,L
(m,t),r < τ

θ�,R
(m,t),r for some r ≥ m, and take r to be the minimal such

index. We show that τ
θ�,L
(m,t),r = t . By Theorem 4.5(i), there exists rational γ > 0 sufficiently close to θ

from the appropriate side such that τ
θ�,S
(m,t),k = τ

γ,S

(m,t),k for m ≤ k ≤ r and S ∈ {L , R}. Then, τ
γ,L

(m,t),r < τ
γ,R

(m,t),r

and τ
γ,L

(m,t),k = τ
γ,R

(m,t),k for m ≤ k < r . Since γ is rational, �4 ⊆ �(γ ) by (8-1). Then, by Theorem B.1(ii),

t = τ
γ,L

(m,t),r = τ
θ�,L
(m,t),r .

Part (i): Since NUθ�

1 ⊆ NUθ�

0 ⊆ NU0, and NU0 is countably infinite by part (ii), it suffices to show that

for every θ > 0 and � ∈ {−, +}, NUθ�

1 is infinite. We start by showing that NUθ�

1 is nonempty. To do

this, we first show the existence of a point (m, t) ∈ Z × R such that τ
θ�,L
(m,t),m > t . If such a point does not

exist, then for each m ∈ Z, the function Bm(s) − hθ�

m+1(s) over s ∈ [t, ∞) is maximized at s = t for each

t ∈ R. But then, Bm(s) − hθ�

m+1(s) is a nonincreasing function on R, contradicting Lemma 8.1(iii).
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x = (m, t)

y = (r, s)

z = (k, τ(m,t),k−1)

(k, u)

(k, τ(r,s),k−1)

(k, τ(m,t),k)

01

02

Figure 19. Coalescence of geodesics.

Since τ
θ�,L
(m,t),m > t , all maximizers of the function Bm(s) − hθ�

m+1(s) over s ∈ [t, ∞) are greater than t .

In other words, letting

M := sup
t≤s<∞

{Bm(s) − hθ�

m+1(s)},

we have Bm(t)−hθ�

m+1(t) < M . By Theorem 3.1(iv)–(v), s 7→ Bm(s)−hθ�

m+1(s) is continuous and satisfies

lim
s→±∞

Bm(s) − hθ�

m+1(s) = ∓∞.

Therefore, the quantity

T := sup{s < t : Bm(s) − hθ�

m+1(s) = M} is well-defined and finite.

In words, we go backwards from t until we reach the first point T where Bm(T ) − hθ�

m+1(T ) = M . Then,

sup
s≥T

{Bm(s) − hθ�

m+1(s)} = M,

and the maximum is achieved at two locations in [T, ∞), namely T and τ
θ�,L
(m,t),m . Therefore, T =

τ
θ�,L
(m,T ),m < τ

θ�,R
(m,T ),m , and (m, T ) ∈ NUθ�

1 .

Lastly, we show that NUθ�

1 is infinite by showing that for (m, s) ∈ NUθ�

1 and ε > 0, there exists

t ∈ (s −ε, s) such that (m, t) ∈ NUθ�

1 . By Lemma 8.1(v), there exists t⋆ ∈ (s −ε, s) such that τ
θ�,R
(m,t⋆),m = t⋆.

Then, by Lemma 8.1(iv), there exists t ∈ (t⋆, s) such that (m, t) ∈ NUθ�

1 . □

We begin now to work towards the coalescence claims of Theorem 4.11. First, we present a technical

lemma.

Lemma 8.2. Let ω ∈ �4, x ≻ y, θ > 0, and � ∈ {−, +}. Then, if 01 ∈ T θ�

x and 02 ∈ T θ�

y are such that

01 ∩02 ̸= ∅, then 01 and 02 coalesce, and the minimal point of intersection is the coalescence point of

the two geodesics.

Proof. For this proof, refer to Figure 19. Set x = (m, t) and y = (r, s). Let t = τ(m,t),m−1 ≤ τ(m,t),m ≤ · · ·
denote the jump times for 01, and let s = τ(r,s),r−1 ≤ τ(r,s),r ≤ · · · denote the jump times for 02. Assume

01 ∩02 ̸= ∅, and let z = (k, v) be the minimal point of intersection of the two geodesics. Since x ≻ y,
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the geometry of BLPP paths requires that the first intersection occurs when 01 makes an upward step to

hit 02. In terms of jump times, this means

τ(r,s),k−1 < v = τ(m,t),k−1 ≤ τ(m,t),k ∧ τ(r,s),k . (8-6)

Let u ∈ [τ(r,s),k−1, τ(m,t),k−1] be rational. Then, by (8-6) and construction of the semi-infinite geodesics in

terms of maximizers (see Definition 4.1), both τ(m,t),k and τ(r,s),k maximize the function Bk(w)−hθ�

k+1(w)

over w ∈ [u, ∞). Inductively, the successive jump times τ(m,t),n and τ(r,s),n for n > k maximize the

function Bn(w) − hθ�

n+1(w) over w ∈ [τ(m,t),n−1, ∞) and w ∈ [τ(r,s),n−1, ∞), respectively. Therefore, the

sequences

u ≤ τ(m,t),k ≤ τ(m,t),k+1 ≤ · · · and u ≤ τ(r,s),k ≤ τ(r,s),k+1 ≤ · · ·

both define semi-infinite geodesics in T θ�

(k,u). By Theorem 4.8(iii), because (k, u) ∈ Z × Q, there is only

one element in T θ�

(k,u). Thus, τ(m,t),n = τ(r,s),n for n ≥ k, completing the proof. □

The following remark underscores the importance of the configuration and choice of L/R geodesics in

the lemmas and theorems that follow.

Remark 8.3. Let s < t and m ∈ Z. Consider the two initial points (m, s) and (m, t) which lie along the

same horizontal line. The geodesics 0
θ�,L
(m,s) and 0

θ�,L
(m,t) , which start from (m, s) and (m, t), respectively,

coalesce at the point (m, t) if and only if τ
θ�,L
(m,s),m ≥ t . However, by Theorem 3.1(vi), for all θ > 0 and

� ∈ {−, +},

hθ�

m (s, t) = Bm(s, t) + sup
s≤u<∞

{Bm(u) − hθ�

m+1(u)} − sup
t≤u<∞

{Bm(u) − hθ�

m+1(u)},

and therefore, hθ�

m (s, t) = Bm(s, t) if and only if τ
θ�,R
(m,s),m (the rightmost maximizer of Bm(u)− hθ�

m+1(u)

over u ∈ [s, ∞)) is greater than or equal to t .

Now, choose an arbitrary θ ∈ (0, ∞) \ 2. We choose (m, s) ∈ NUθ
1 and t > s to be such that

s = τ
θ,L
(m,s),m < t < τ

θ,R
(m,s),m . (8-7)

By (4-3), for δ > θ large enough,

τ
δ�,L
(m,s),m > t. (8-8)

By Theorem 4.5(i), for γ sufficiently close to θ and � ∈ {−, +},

s = τ
γ �,L

(m,s),m < t < τ
γ �,R

(m,s),m . (8-9)

Hence, there exists γ < θ such that, for all η ∈ (γ, ∞), τ
η�,R

(m,s),m > t and therefore h
η�

m (s, t) = Bm(s, t).

Furthermore, by (8-8), 0
η�,L

(m,s) and 0
η�,L

(m,t) coalesce at (m, t) for all η sufficiently large, but by (8-9), 0
η�,L

(m,s)

and 0
η�,L

(m,t) do not coalesce at (m, t) for η ∈ (γ, θ). In other words, if η1 ∈ (γ, θ) and η2 is large enough,

then B
η1�1((m, s), (m, t)) = B

η2�2((m, s), (m, t)) for �1, �2 ∈ {−, +}, but 0
η1�1,L

(m,s) and 0
η1�1,L

(m,t) do not

coalesce at the same place as 0
η2�2,L

(m,s) and 0
η2�2,L

(m,t) . Hence, when (m, s) ∈ NU1, the L/R distinction is

essential in our statements about the connection between equality of Busemann functions and common

coalesce points.
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Lemma 8.4. Let ω ∈ �2, s < t ∈ R, m ∈ Z, 0 < γ ≤ θ , and �1, �2 ∈ {−, +}. If γ = θ , we require

�1 = − and �2 = +. Then, hθ�2
m (s, t) = h

γ �1
m (s, t) if and only if one of the following two conditions hold:

(i) hθ�2
m (s, t) = h

γ �1
m (s, t) = Bm(s, t), and τ

θ�2,R
(m,s),m ≥ τ

γ �1,R

(m,s),m ≥ t .

(ii) hθ�2
m (s, t) = h

γ �1
m (s, t) > Bm(s, t), and

s ′ := τ
θ�2,R
(m,s),m = τ

γ �1,R

(m,s),m < t ≤ τ
θ�2,L
(m,t),m = τ

γ �1,L

(m,t),m =: t ′ and h
θ�2
m+1(s

′, t ′) = h
γ �1

m+1(s
′, t ′).

Proof. The keys to this proof are the monotonicity of the Busemann functions and semi-infinite geodesics

from Theorems 3.1(ii) and 4.3(iii)(a). For simplicity of notation, we suppress the �1 and �2 notation in

the superscripts, noting that Theorems 3.1(ii) and 4.3(iii)(a) still hold when we place �1 next to γ and �2

next to θ .

By Lemma B.3, hθ
m(s, t) = Bm(s, t) if and only if τ

θ,R
(m,s),m ≥ t , which covers the first of the two possible

conditions (the inequality τ
θ,R
(m,s),m ≥ τ

γ,R

(m,s),m follows by Theorem 4.3(iii)(a)). By Theorem 3.1(vi),

hθ
m(s, t) = Bm(s, t) + sup

s≤u<∞
{Bm(u) − hθ

m+1(u)} − sup
t≤u<∞

{Bm(u) − hθ
m+1(u)}. (8-10)

Therefore, hθ
m(s, t) = h

γ
m(s, t) > Bm(s, t) if and only if two conditions hold. The first is

sup
s≤u<∞

{Bm(u) − hθ
m+1(u)} − sup

s≤u<∞
{Bm(u) − h

γ

m+1(u)}

= sup
t≤u<∞

{Bm(u) − hθ
m+1(u)} − sup

t≤u<∞
{Bm(u) − h

γ

m+1(u)},

which comes from applying (8-10) for both θ and γ . By the previous case and the monotonicity of

Theorem 4.3(iii)(a), the second condition is

τ
γ,R

(m,s),m ≤ τ
θ,R
(m,s),m < t ≤ τ

γ,L

(m,t),m ≤ τ
θ,L
(m,t),m . (8-11)

Then,

Bm(τ
θ,R
(m,s),m) − hθ

m+1(τ
θ,R
(m,s),m) − (Bm(τ

θ,R
(m,s),m) − h

γ

m+1(τ
θ,R
(m,s),m))

≥ sup
s≤u<∞

{Bm(u) − hθ
m+1(u)} − sup

s≤u<∞
{Bm(u) − h

γ

m+1(u)} (8-12)

= sup
t≤u<∞

{Bm(u) − hθ
m+1(u)} − sup

t≤u<∞
{Bm(u) − h

γ

m+1(u)}

≥ Bm(τ
γ,L

(m,t),m) − hθ
m+1(τ

γ,L

(m,t),m) − (Bm(τ
γ,L

(m,t),m) − h
γ

m+1(τ
γ,L

(m,t),m)). (8-13)

Comparing the first and last lines above yields

hθ
m+1(τ

θ,R
(m,s),m, τ

γ,L

(m,t),m) ≥ h
γ

m+1(τ
θ,R
(m,s),m, τ

γ,L

(m,t),m). (8-14)

Theorem 3.1(ii) and (8-11) imply that (8-14) is an equality. Thus, inequality (8-12) is an equality,

implying that

Bm(τ
θ,R
(m,s),m) − h

γ

m+1(τ
θ,R
(m,s),m) = sup

s≤u<∞
{Bm(u) − h

γ

m+1(u)}.
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Therefore, τ
θ,R
(m,s),m is a maximizer of Bm(u) − h

γ

m+1(u) over u ∈ [s, ∞). By definition, τ
γ,R

(m,s),m is the

rightmost such maximizer, so τ
θ,R
(m,s),m ≤ τ

γ,R

(m,s),m . However, by the first inequality of (8-11), τ
γ,R

(m,s),m =
τ

θ,R
(m,s),m . An analogous argument using the equality in (8-13) shows that τ

γ,L

(m,t),m = τ
θ,L
(m,t),m . The equality

hθ
m+1(s

′, t ′) = h
γ

m+1(s
′, t ′) follows since (8-14) is an equality. □

Lemma 8.5. On the full-probability event �2, for all m < r ∈ Z, t ∈ R, θ > 0, and � ∈ {−, +},

B
θ�((m, t), (r, t)) = sup

{ r−1∑

k=m

Bk(tk−1, tk) − hθ�

r (t, tr−1) : t = tm−1 ≤ tm ≤ · · · ≤ tr−1 < ∞
}
. (8-15)

Proof. We proceed by induction. The case r = m +1 is another way of stating vθ�

m+1(t) = Q(hθ�

m+1, Bm)(t),

which is Theorem 3.1(vi). Assume that (8-15) holds for some r > m. By additivity and Theorem 3.1(vi),

hθ�

r (t, tr−1) = hθ�

r+1(t, tr−1) + vθ�

r+1(t) − vθ�

r+1(tr−1)

= hθ�

r+1(t, tr−1) + vθ�

r+1(t) − sup
tr−1≤tr <∞

{Br (tr−1, tr ) − hθ�

r+1(tr−1, tr )}

= vθ�

r+1(t) − sup
tr−1≤tr <∞

{Br (tr−1, tr ) − hθ�

r+1(t, tr )}.

Insert this into (8-15) as follows.

sup
t=tm−1≤···≤tr <∞

{ r∑

k=m

Bk(tk−1, tk)− hθ�

r+1(t, tr )

}
= B

θ�((m, t), (r, t))+ vθ�

r+1(t) = B
θ�((m, t), (r + 1, t)),

where the last equality above follows by additivity. □

Lemma 8.6. Let ω ∈ �2, m < r ∈ Z and t ∈ R. Assume for some 0 < γ ≤ θ and �1, �2 ∈ {−, +},
B

θ�2((m, t), (r, t)) = B
γ �1((m, t), (r, t)). Then, tk := τ

θ�2,L
(m,t),k = τ

γ �1,L

(m,t),k for m ≤ k ≤ r − 1, and

hθ�2
r (t, tr−1) = h

γ �1
r (t, tr−1).

Proof Lemma 8.6. If γ = θ , without loss of generality, we may assume that �1 = − and �2 = +. As in

the proof of Lemma 8.4, we suppress the �1 and �2 in the proof. By Lemmas B.2(i) and 8.5,

r−1∑

k=m

Bk(τ
γ,L

(m,t),k−1, τ
γ,L

(m,t),k)−hγ
r (t, τ

γ,L

(m,t),r−1)= sup
t=tm−1≤tm≤···≤tr−1<∞

{r−1∑

k=m

Bk(tk−1, tk) − hγ
r (t, tr−1)

}
(8-16)

=B
γ ((m, t), (r, t)) = B

θ ((m, t), (r, t))

= sup
t=tm−1≤tm≤···≤tr−1<∞

{r−1∑

k=m

Bk(tk−1, tk) − hθ
r (t, tr−1)

}
(8-17)

≥
r−1∑

k=m

Bk(τ
γ,L

(m,t),k−1, τ
γ,L

(m,t),k) − hθ
r (t, τ

γ,L

(m,t),r−1). (8-18)

Comparing hθ
r and h

γ
r and using Theorem 3.1(ii), the inequality (8-16) ≥ (8-18) must be an equality.

Therefore, t = τ
γ,L

(m,t),m−1 ≤ τ
γ,L

(m,t),m ≤ · · · ≤ τ
γ,L

(m,t),r−1 is maximal for the supremum in (8-17). Since
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τ
γ,L

(m,t),k ≤ τ
θ,L
(m,t),k for all k ≥ m (Theorem 4.3(iii)(a)) and τ

θ,L
(m,t),k is the leftmost such maximizing se-

quence, τ
θ,L
(m,t),k = τ

γ,L

(m,t),k for m ≤ k ≤ r − 1, as desired. The equality hθ
r (t, tr−1) = h

γ
r (t, tr−1) then

follows from the equality (8-16) = (8-18). □

The previous lemma generalizes to points subject to southeast ordering.

Lemma 8.7. Let ω ∈�2 and (m, t)= x ≽ y = (r, s). Assume that for some 0 <γ ≤ θ and �1, �2 ∈ {−, +}
that B

θ�2(x, y) = B
γ �1(x, y). Then, tk := τ

θ�2,L
(m,t),k = τ

γ �1,L

(m,t),k for m ≤ k ≤ r − 1, and hθ�2
r (s, tr−1) =

h
γ �1
r (s, tr−1).

Proof. If γ = θ , without loss of generality, we may assume that �1 = − and �2 = +. As in the proofs of

Lemmas 8.4 and 8.6, we suppress the �1 and �2 in the proof. By additivity, B
θ (x, y) = B

γ (x, y) gives

r∑

k=m+1

vθ
k (t) − hθ

r (s, t) =
r∑

k=m+1

v
γ

k (t) − hγ
r (s, t). (8-19)

By Theorem 3.1(ii), vθ
k ≥ v

γ

k and hθ
m ≤inc h

γ
m . Hence, equality in (8-19) forces vθ

k (t) = v
γ

k (t) for m + 1 ≤
k ≤ r and hθ

r (s, t) = h
γ
r (s, t). Then, by Lemma 8.6, tk := τ

θ,L
(m,t),k = τ

γ,L

(m,t),k for m ≤ k ≤ r − 1 and

hθ
r (t, tr−1) = h

γ
r (t, tr−1). Combining this equality with the equality hθ

r (s, t) = h
γ
r (s, t) completes the

proof. □

The next theorem contains the final step needed before we tackle the proof of Theorem 4.11. Recall

the point zθ�(x, y) described in Definition 4.15. We have not yet shown that this quantity is well-defined.

If, a priori, 0θ�,L
x and 0θ�,R

y do not intersect, we set zθ�(x, y) = ∞, interpreted as the point at ∞ in

the one-point compactification of R2. Under this definition, zθ�(x, y) ∈ Z × R if and only if 0θ�,L
x and

0θ�,R
y intersect.

Theorem 8.8. Let ω ∈ �2, γ < θ , �1, �2 ∈ {−, +}, and x ≽ y. Then, B
γ �1(x, y) = B

θ�2(x, y) if and

only if zγ �1(x, y) = zθ�2(x, y) ∈ Z × R.

Remark 8.9. The statement of this theorem is somewhat subtle. The “only if” implication says two

things: if there exists γ < θ such that B
γ �1(x, y) = B

θ�2(x, y), then zγ �1(x, y) and zθ�2(x, y) are both

in Z × R, and they are equal.

Proof of Theorem 8.8. Set x = (m, t) and y = (r, s). The condition x ≽ y gives m ≤ r and t ≥ s. Again,

we suppress the �1 and �2 in the proofs. Assume first B
γ (x, y) = B

θ (x, y). By Lemma 8.7, 0θ,L
x and

0
γ,L
x agree up to level r , and hθ

r (s, tr−1) = h
γ
r (s, tr−1). Therefore, by restarting the geodesics from level r ,

it suffices to assume r = m so that y = (r, s) and x = (r, t) for some r ∈ Z and s ≤ t . If s = t , there is

nothing to show, so we assume s < t .

Now apply Lemma 8.4 whose two cases are illustrated in Figure 20. In case (i), τ
θ,R
(r,s),r and τ

γ,R

(r,s),r are

both greater than or equal to t . Therefore, for η = θ, γ , the first point of intersection of 0
η,R

(r,s) and 0
η,L

(r,t) is

(r, t). This precisely means that zθ (x, y) = zγ (x, y) = (r, t).

In case (ii), the paths 0
θ,L
(r,t) and 0

γ,L

(r,t) both jump at time t ′ to level r + 1, while 0
θ,R
(r,s) and 0

γ,R

(r,s) both

jump at time s ′ < t to level r + 1. Furthermore, hθ
r+1(s

′, t ′) = h
γ

r+1(s
′, t ′), so we may inductively repeat

this procedure. By Theorem 4.3(v), 0
θ,L
(r,t) and 0

θ,R
(r,s) are θ-directed while 0

γ,L

(r,t) and 0
γ,R

(r,s) are γ -directed.
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(r, s) (r, t) (r, s) (r, t)

(r + 1, s ′) (r + 1, t ′)

Figure 20. θ -directed geodesics are depicted in red/thick and γ -directed geodesics are depicted
in blue/thin. The picture on the left depicts the case hθ

r (s, t)=h
γ
r (s, t)= Br (s, t) and the geodesics

coalesce immediately at (r, t). On the right, hθ
r (s, t) = h

γ
r (s, t) > Br (s, t). The geodesics from

(r, s) and (r, t) make the same jumps to the next level, hθ
r+1(s

′, t ′)= h
γ

r+1(s
′, t ′), and the induction

continues.

Hence, 0
θ,L
(r,t) and 0

γ,L

(r,t) must separate eventually, and similarly for 0
θ,R
(r,s) and 0

γ,R

(r,s). Thus, this inductive

procedure must terminate on some level at case (i) of Lemma 8.4 and then zθ (x, y) = zγ (x, y) ∈ Z × R.

For the converse claim of the theorem, if z := zγ (x, y) = zθ (x, y) ∈ Z×R, then by (4-11), B
γ (x, y) =

L x,z − L y,z = B
θ (x, y). □

Proof of Theorem 4.11. Part (i): First, we assume x ≻ y and show coalescence of the geodesics 0θ+,L
x and

0θ+,R
y . By Theorem 7.19(v), B

θ+(x, y)=B
δ�(x, y) for all δ >θ sufficiently close. Then, by Theorem 8.8,

zθ+(x, y) ∈ Z × R, meaning that 0θ+,L
x and 0θ+,R

y intersect. By Lemma 8.2, the coalescence point is

zθ+(x, y). A symmetric argument applies to the geodesics 0θ−,L
x and 0θ−,R

y in the case x ≻ y.

Now, let x, y ∈ Z × R be arbitrary and let 01 ∈ T θ�

x and 02 ∈ T θ�

y . Since 01 and 02 are infinite paths

with direction θ > 0, there exists m ∈ Z such that (m, s) ∈ 01 and (m, t) ∈ 02 for some s, t ∈ R. Assume,

without loss of generality, that s ≤ t . Let s = sm−1 ≤ sm ≤ · · · and t = tm−1 ≤ tm ≤ · · · denote the

jump times from level m of the semi-infinite geodesics 01 and 02, respectively. Then, for r ≥ m, by

Theorem 4.5(ii),

τ
θ�,R
(m,s−1),r ≤ τ

θ�,L
(m,s),r ≤ sr , tr ≤ τ

θ�,R
(m,t),r ≤ τ

θ�,L
(m,t+1),r .

By the x ≻ y case, 0
θ�,R
(m,s−1) and 0

θ�,L
(m,t+1) coalesce. Therefore, for all sufficiently large r , τ

θ�,R
(m,s−1),r =

τ
θ�,L
(m,t+1),r , so the above inequalities are all equalities for large r , and 01 and 02 indeed coalesce. The

statement that the coalescence point is the first point of intersection in the case x ≻ y is then a direct

consequence of Lemma 8.2.

Part (ii): By Theorem 4.8(iv) and Remark 4.10, for any two distinct geodesics 01, 02 ∈ T θ�

x , 01 and

02 exit the vertical line containing the point x on different levels. Precisely, without loss of generality,

there exists a level r ≥ m on which 01 makes a vertical step from (r, t) to (r + 1, t), while 02 makes a

horizontal step to (r, t + ε) for some ε > 0. Then, (r, t + ε) ≻ (r + 1, t), and so by part (i), the minimal

point of intersection of two θ� geodesics from (r + 1, t) and (r, t + ε) is the coalescence point.

Part (iii): This follows because all geodesics in T θ�

x lie between 0θ�,L
x and 0θ�,R

x , which must coalesce

by part (i). □

8B. Proof the results from Section 4C.

Proof of Theorem 4.17. (i)⇔(ii): This is a direct application of Theorem 8.8.
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x

y)

z = zθ+(x, y) = zθ−(x, y)

0θ+,L
x , 0θ−,L

x

0θ+,R
y , 0θ−,R

y

Figure 21. Common coalescence.

(ii)⇒(iii): If z := zγ+(x, y) = zδ−(x, y), then between x and z, the portions of the paths 0
γ+,L
x and

0δ−,L
x are both leftmost geodesics between x and z by Theorem 4.3(ii). Hence, 0

γ+,L
x and 0δ−,L

x agree

up to the point z. Let 01 be this finite-length path from x to z. Analogously, 0
γ+,R
y and 0δ−,R

y agree up

to the point z. Let 02 be the finite-length path from x to z. By the monotonicity of Theorem 4.3(iii)(a),

for θ ∈ (γ, δ) and � ∈ {−, +}, 0θ�,L
x lies between 0

γ+,L
x and 0δ−,L

x , so it must agree with 01 between

the two points. Similarly, 0θ�,R
y must agree with 02 between x and z. The point z is the first point of

intersection of 01 and 02 by definition. This is exactly (iii).

(iii)⇒(i): If (iii) holds, then by (4-11),

B
γ+(x, y) = L x,z − L y,z = B

δ−(x, y). □

Proof of Theorem 4.20. (i)⇒(ii): If B
θ−(x, y) = B

θ+(x, y), then Theorem 7.19(v) implies that for some

γ < θ < δ, B
γ+(x, y) = B

δ−(x, y). Then, (i)⇒(iii) of Theorem 4.17 implies the existence of z ∈ Z×R

and disjoint paths 01 (from x to z) and 02 (from y to z) such that for η ∈ (γ, δ) and � ∈ {−, +}, 0
η�,L
x

agrees with 01 up to the point z, and 0
η�,R
y agrees with 02 up to the point z. Applying this twice–both

times with η = θ , but once with � = + and once with � = −, implies that z = zθ−(x, y) = zθ+(x, y).

(ii)⇒(i): If z := zθ−(x, y) = zθ+(x, y), then by (4-11),

B
θ−(x, y) = L x,z − L y,z = B

θ+(x, y).

(ii)⇒(iii) Assume that z := zθ−(x, y) = zθ+(x, y). Since leftmost Busemann geodesics are leftmost

geodesics between their points and the same for rightmost (Theorem 4.3(ii)), 0θ+,R
y agrees with 0θ−,R

y

up to z, and 0θ−,L
x agrees with 0θ+,L

x up to z, as in Figure 21. Therefore, 0θ+,L
x and 0θ−,R

y both contain

the common point z.

(iii)⇒(ii): Assume that z ∈ 0θ+,L
x ∩ 0θ−,R

y for some z ∈ Z × R. Take z to be the minimal point of

intersection. In the degenerate case where x lies directly below y, it is possible that 0θ+,L
x moves directly

from x to y, in which case 0θ−,L
x also moves directly up to y, so y = zθ−(x, y) = zθ+(x, y). Otherwise,

using monotonicity of the geodesics (Theorems 4.3(iii)(a) and 4.5(ii)) the semi-infinite geodesics 0θ−,L
x
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x

y

z

Figure 22. The red/thick paths are 0θ+,L
x and 0θ−,R

y , and the blue/thin paths are 0θ−,L
x and 0θ+,R

y .

and 0θ+,R
y both lie in between 0θ+,L

x and 0θ−,R
y . See Figure 22. Thus, z ∈ 0θ+,L

x ∩0θ−,R
y ∩0θ−,L

x ∩0θ+,R
y .

Since 0θ+,L
x and 0θ−,L

x are both leftmost geodesics between x and z (Theorem 4.3(ii)), they agree up to

the point z. The same holds for rightmost geodesics between y and z. Hence, the picture is given as in

Figure 21, not as in Figure 22, and z = zθ+(x, y) = zθ−(x, y). □

Proof of Theorem 4.21. (i)⇒(ii): If θ /∈ 2, then hθ+
m (t) = hθ−

m (t) for all m ∈ Z and t ∈ R, so (ii) follows

by the construction of semi-infinite geodesics from Busemann functions.

(ii)⇒(iii): Assuming that (ii) holds, we can dispense with the ± distinction. It suffices to show that for

m ∈ Z and s ≤ t ∈ R , any θ-directed semi-infinite geodesic, 01, starting from (m, s), coalesces with

any θ -directed semi-infinite geodesic 02, starting from (m, t). By Theorem 4.3(iii) and (vii), 01 and 02

lie between 0
θ,L
(m,s) and 0

θ,R
(m,t). Then, by Theorem 4.11(i), 0

θ,L
(m,s) and 0

θ,R
(m,t) coalesce, so 01 and 02 also

coalesce.

(iii)⇒(i): We prove the contrapositive. If θ ∈ 2, then by Theorem 2.5(iii), hθ+
0 (s, t) < hθ−

0 (s, t) for some

s < t . By (iii)⇔(i) of Theorem 4.20, 0
θ+,L
(0,t) ∩ 0

θ−,R
(0,s) = ∅, and these two θ-directed geodesics do not

coalesce.

(ii)⇒(iv): By definition (4-9), for all x ∈ (Z × R) \ NU0, θ > 0, and � = {−, +}, 0θ�,R
x = 0θ�,L

x . By

assumption, we also have 0θ−,R
x = 0θ+,R

x . Therefore 0θ−,L
x = 0θ+,R

x , and the result then follows from

Theorem 4.3(vii).

(iv)⇒(v): This is immediate since NU0 is countable by Theorem 4.8(ii) and therefore not all of Z × R.

(v)⇒(vi) and (v) ⇒ (vii) follow immediately by Theorem 4.3(vii).

(vi)⇒(ii): Assume that 0θ+,R
x = 0θ−,R

x for some x ∈ Z × R. Let y ∈ Z × R. By Theorem 4.11(i),

0θ−,L
y , 0θ+,L

y , 0θ−,R
y , and 0θ+,R

y all coalesce with 0θ+,R
x = 0θ−,R

x . Hence, 0θ−,R
y and 0θ+,R

y coalesce.

Let z be the coalescence point. By uniqueness of rightmost geodesics, 0θ−,R
y and 0θ+,R

y agree from y

to z, so z = y, and 0θ−,R
y = 0θ+,R

y . By a similar argument, 0θ−,L
y = 0θ+,L

y .

(vii)⇒(ii): This follows analogously as for (vi)⇒(ii).

Part (viii): Let θ ∈ (0, ∞) \2 and let t = tm−1 ≤ tm ≤ · · · be the jump times of a θ -directed geodesic 0

started from x = (m, t) ∈ Z×R. By the implication (i)⇒(iii), 0 coalesces with 0θ,R
x . By Theorem 4.3(ii),

for any point z = (n, u) ∈ 0∩0θ,R
x , the energy of a geodesic between x and z is given by B

θ (x, z). Then,
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by the additivity of Theorem 3.1(i),

n−1∑

r=m

Br (tr−1, tr ) + Bn(tn−1, u) = L x,z

= B
θ (x, z) =

n−1∑

r=m

[
hθ

r (tr−1, tr ) + vθ
r+1(tr )

]
+ hθ

n(tn−1, u).

By the monotonicity of Theorem 3.1(ii), Br (tr−1, tr ) = hθ
r (tr−1, tr ) and vθ

r+1(tr ) = 0 for m ≤ r ≤ n − 1.

Combine this with the following consequences of Theorem 3.1(vi):

hθ
r (tr−1, tr ) = Bm(tr−1, tr ) + sup

tr−1≤u<∞
{Br (u) − hθ

r+1(u)} − sup
tr ≤u<∞

{Br (u) − hθ
r+1(u)},

vθ
r+1(tr ) = sup

tr ≤u<∞
{Br (tr , u) − hθ

r+1(tr , u)}.

From this,

sup
tr−1≤u<∞

{Br (u) − hθ
r+1(u)} = sup

tr ≤u<∞
{Br (u) − hθ

r+1(u)} = Br (tr ) − hθ
r+1(tr ),

where the first equality comes from hθ
r (tr−1, tr ) = Br (tr−1, tr ), and the second inequality comes from

vθ
r+1(tr ) = 0. Hence, tr maximizes Br (u)−hθ

r+1(u) over u ∈ [tr−1, ∞) for m ≤ r ≤ n −1. Letting n → ∞
completes the proof. □

8C. Proofs of results from Section 4D. For n > m, we recall the definitions

σ L
(m,s),n := sup{t ≥ s : 0L

(m,s),(n,t) passes through (m + 1, s)} (8-20)

and

σ R
(m,s),n := sup{t ≥ s : 0R

(m,s),(n,t) passes through (m + 1, s)}. (8-21)

We now restate the definition of θ L
(m,s) and θ R

(m,s) given in Section 4D for convenience of the reader:

θ L
(m,s) := sup{θ ≥ 0 : τ θ�,L

(m,s),m = s} and θ R
(m,s) := sup{θ ≥ 0 : τ θ�,R

(m,s),m = s}. (8-22)

Proof of Lemma 4.28. By (4-3), limθ→∞ τ
θ�,L
(m,s),m =∞ for all (m, s)∈ Z×R, so τ

θ�,L
(m,s),m > s for sufficiently

large θ > 0. Hence, θ L
(m,s) < ∞. Further, by Theorem 4.3(ii), the portion of the semi-infinite geodesic

0
θ−,L
(m,s) between the points (m, s) and (n, τ

θ−,L
(m,s),n) is the leftmost geodesic between these two points. Hence,

by (8-20) and planarity, for such sufficiently large θ , σ L
(m,s),n < τ

θ�,L
(m,s),n < ∞. □

We first prove Theorem 4.30 before moving on to the proof of Theorem 4.29.

Proof of Theorem 4.30. (i)⇒(ii): If, for some n > m and t > s, one geodesic between (m, s) and (n, t)

passes through (m + 1, s), then the leftmost geodesic passes through (m + 1, s), and σ L
(m,s),n ≥ t > s.

(ii)⇒(i): If σ L
(m,s),n > s for some n > m, then by definition (8-20), when t ∈ [s, σ L

(m,s),n], the leftmost

geodesic between (m, s) and (n, t) passes through (m + 1, s).
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(m, s)

(n − 1, s)

(n, s)
(n, t)

Figure 23. Example of a nontrivial competition interface (blue/thin) that is vertical for the first
three steps. The red/thick path gives the geodesic between (m, s) and (n, t).

(ii)⇒(iii): Assume that (m, s) ∈ Z×R has trivial left competition interface, and let n > m be the minimal

index such that σ L
(m,s),n > s. We show that σ R

(m,s),n > s.

Under this assumption, by (4-14), σ R
(m,s),r = σ L

(m,s),r = s for m ≤ r < n. By definition, there exists some

t > s such that the leftmost geodesic between (m, s) and (n, t) passes through (m +1, s). Because of this

and the assumption that σ L
(m,s),n−1 = s, this geodesic cannot pass through (n −1, u) for any u > s. Hence,

the left-most geodesic passes through (n, s), as in Figure 23. Recall that the jump times for geodesics

between (m, s) and (n, t) are defined as maximizers of the function

Bm(s, sm) + Bm+1(sm, sm+1) + · · · + Bn−1(sn−2, sn−1) + Bn(sn−1, t)

over all sequences s ≤ sm ≤ · · · ≤ sn−1 ≤ t . Equivalently, they are maximizers of the function

Bm(sm) + Bm+1(sm, sm+1) + · · · + Bn−1(sn−2, sn−1) − Bn(sn−1), (8-23)

over the same set of sequences. Since the left-most geodesic between (m, s) and (n, t) passes through (n, s),

this means that the sequence s = sm = sm+1 = · · · = sn−1 is a maximizing sequence for (8-23) over all

sequences s ≤ sm ≤ · · · ≤ sn−1 ≤ t . By item (vi) on page 729 there are only finitely many maximizers.

Choose t̂ > s such that

t̂ < t ∧ min{sn−1 > s : s = sm−1 ≤ · · · ≤ sn−1 ≤ t is a maximizing sequence for (8-23)},

where we define the minimum of the empty set to be ∞. Then, s = sm−1 = · · · = sn−1 is the unique

maximizing sequence of (8-23) over all sequences s = sm−1 ≤ · · · ≤ sn−1 ≤ t̂ , so there is a unique geodesic

between (m, s) and (n, t̂), and it passes through (m + 1, s). Hence, σ R
(m,s),n > s, as desired.

(iii)⇒(ii): This is immediate from (4-14).

(ii)⇔(iv) and (iii)⇔(v): We prove (iii)⇔(v), and (ii)⇔(iv) is analogous. For this, we choose an arbitrary

point (m, s) and use the shorthand notation θ̂ = θ R
(m,s).
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0
θ̂+,R
(m,s)

0
θ̂−,R
(m,s)

(m, s)

(m + 1, s)

Figure 24. When the competition interface direction θ̂ = θ R
(m,s) > 0, 0

θ̂−,R
(m,s) (upper red/thick

path) immediately splits from 0
θ̂+,R
(m,s) (lower red/thick path). These paths never touch after the

initial point, and the competition interface (blue/thin) lies between the paths.

If θ̂ = 0, then by the definition (8-22), τ
θ�,R
(m,s),m > s for all θ > 0 and � ∈ {−, +}. Then, for all

θ > 0 and � ∈ {−, +}, 0
θ�,R
(m,s) does not pass through (m + 1, s). For n > m, (n, τ

θ�,R
(m,s),n) ∈ 0

θ�,R
(m,s), so

σ R
(m,s),n ≤ τ

θ�,R
(m,s),n for all θ > 0 and � ∈ {−, +}. By (4-3), limθ↘0 τ

θ�,R
(m,s),n = s, so σ R

(m,s),n = s for all n > m.

Now, assume σ R
(m,s),n = s for all n > m. Then, by (8-21), for all n > m and t > s, the rightmost

geodesic between (m, s) and (n, t) passes through (m, s + ε) for some ε > 0. By Theorem 4.3(v), for

each θ > 0 and � ∈ {−, +}, we may choose n large enough so that τ
θ�,R
(m,s),n > s. Then, the rightmost

geodesic between (m, s) and (n, τ
θ�,R
(m,s),n) passes through (m, s + ε) for some ε > 0. By Theorem 4.3(ii),

this rightmost geodesic agrees with the portion of 0
θ�,R
(m,s) from (m, s) to (n, τ

θ�,R
(m,s),n). Thus, for all θ > 0

and � ∈ {−, +}, 0
θ�,R
(m,s) passes through (m, s + ε) for some ε > 0, and τ

θ�,R
(m,s),m > s. By (8-22), θ̂ = 0.

(iv)⇔(vi) and (v)⇔(vii): These are immediate from the definitions (8-22). The clarifications for parts (vi)

and (vii) are outlined in the proof of the next implications.

(iv)⇒(viii) and (v)⇒(ix). We prove (v)⇒(ix), and (iv)⇒(viii) is analogous. Again, we use the shorthand

notation θ̂ = θ R
(m,s) and assume θ̂ > 0. By definition (8-22) and the monotonicity of Theorem 4.3(iii)(a), for

γ < θ̂ , and � ∈ {−, +}, τ
γ �,R

(m,s),m = s, while for δ > θ̂ and � ∈ {−, +}, τ
δ�,R
(m,s),m > s. By Theorem 4.5(i),

for γ < θ̂ < δ sufficiently close to θ̂ , and � ∈ {−, +},

τ
γ �,R

(m,s),m = τ
θ̂−,R
(m,s),m and τ

δ�,R
(m,s),m = τ

θ̂+,R
(m,s),m .

Therefore, τ
θ̂−,R
(m,s),m = s and τ

θ̂+,R
(m,s),m > s. In other words, 0

θ̂−,R
(m,s) makes a vertical step to (m + 1, s) while

0
θ̂+,R
(m,s) moves horizontally to (m, s + ε) for some ε > 0. By Theorem 4.3(ii), 0

θ̂−,R
(m,s) and 0

θ̂+,R
(m,s) are both

the rightmost geodesic between any two of their points. Thus, 0
θ̂−,R
(m,s) and 0

θ̂+,R
(m,s) cannot meet again after

the initial point (m, s), or else there would be two rightmost geodesics between (m, s) and some point

(n, t) ≥ (m, s). Refer to Figure 24 for clarity. Hence, 0
θ̂−,R
(m,s) ∩ 0

θ̂+,R
(m,s) = {(m, s)}. By the monotonicity of

Theorem 4.3(iii)(a), for γ < θ̂ , 0
γ+,R

(m,s) and 0
γ−,R

(m,s) both travel to (m + 1, s) and therefore contain (x, s)

for x ∈ [m, m + 1], and for γ > θ̂ , 0
γ+,R

(m,s) and 0
γ−,R

(m,s) both travel to (m, s + ε) for some ε > 0 and thus

contain (m, x) for x ∈ [s, s + ε]. Therefore, θ̂ is indeed the unique direction γ such that 0
γ−,R

(m,s) ∩ 0
γ+,R

(m,s)

is a finite set.
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In summary, for S ∈ {L , R}, τ
θ�,S
(m,s),m = s for θ < θ S

(m,s), while τ
θ�,S
(m,s),m for θ > θ S

(m,s),m . Furthermore,

τ
θ S
(m,s)−,S

(m,s),m = s < τ
θ S
(m,s)+,S

(m,s),m .

This proves the clarifications stated in parts (vi) and (vii).

(viii)⇒(vi) and (ix)⇒(vii): If 0
θ−,L
(m,s) ∩0

θ+,L
(m,s) = {(m, s)}, then 0

θ−,L
(m,s) must make an initial vertical step to

(m + 1, s). The same is true for L ′ replaced with R′.

(vi)⇔(x): By Theorem 3.1(vi), vθ�

m+1(s) = sups≤u<∞{Bm(s, u) − hθ�

m+1(s, u)}, so

vθ�

m+1(s) = 0 ⇔ s maximizes Bm(u) − hθ�

m+1(u) over u ∈ [s, ∞) ⇔ τ
θ�,L
(m,s),m = s, (8-24)

thus completing the proof. □

Proof of Theorem 4.29. We prove the limit for θ̂ := θ R
(m,s), and the other limit follows analogously. We

consider two cases: θ̂ = 0 and θ̂ > 0. If θ̂ = 0, then by (iii)⇔(v) of Theorem 4.30, σ R
(m,s),n = s for all

n > m, and limn→∞ σ R
(m,s),n/n = 0.

Now, assume θ̂ > 0. By (v)⇒(ix) of Theorem 4.30, 0θ̂−,R
(m,s) makes an immediate vertical step to (m+1, s),

while 0
θ̂+,R
(m,s) makes an immediate horizontal step. By Theorem 4.3(ii), 0

θ̂−,R
(m,s) and 0

θ̂+,R
(m,s) are rightmost

geodesics between any of their points. In particular, (n, τ
θ̂�,R
(m,s),n) lies on 0

θ̂�,R
(m,s) for � ∈ {−, +}, so

by definition (8-21), for each n > m,

τ
θ̂−,R
(m,s),n ≤ σ R

(m,s),n ≤ τ
θ̂+,R
(m,s),n.

The result now follows by Theorem 4.3(v). □

Proof of Theorem 4.32. Part (i): By Theorem 4.8(iv), if (m, s) ∈ NU0, then τ
θ�,L
(m,s),r = s for some θ > 0,

� ∈ {−, +}, and r ≥ m. By definition,

s = τ
θ�,L
(m,s),m−1 ≤ τ

θ�,L
(m,s),m ≤ · · · ,

so τ
θ�,L
(m,s),m = s, and (m, s) ∈ CI by condition (vi) of Theorem 4.30.

Part (ii): The equality

{(m, s) ∈ Z × R : θ R
(m,s) ̸= θ L

(m,s)} = {(m, s) ∈ Z × R : 0 < θ R
(m,s) < θ L

(m,s)}

follows by (4-15) and (iv)⇒(v) of Theorem 4.30. Let ω ∈ �4 and (m, s) ∈ NU1. By Theorem 4.8(ii)–(iv),

there exists some rational δ > 0 such that s = τ
δ,L
(m,s),m < τ

δ,R
(m,s),m . By (8-22), θ L

(m,s) ≥ δ. Since δ is rational,

and we are working on the event �4, there is no ± distinction for direction δ (see item (i) on page 729).

Then, by Theorem 4.5(i), for all ε sufficiently small and � ∈ {−, +}, τ
(δ−ε)�,R
(m,s),m = τ

δ,R
(m,s),m > s. Hence,

by (8-22), θ R
(m,s) < δ ≤ θ L

(m,s). Next, assume (m, s) /∈ NU1. By definition (4-9), τ
θ�,L
(m,s),m = τ

θ�,R
(m,s),m for all

θ > 0 and � ∈ {−, +}. The definition (8-22) implies that θ R
(m,s) = θ L

(m,s).

Part (iii): We assume that (m, s) ∈ NU1 so that 0 < θ R
(m,s) < θ L

(m,s). Otherwise, by part (ii), the statement

is vacuously true.
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x

v

Figure 25. The red/thick path is the θ+ geodesic and the blue/thin path is the θ− geodesic.

By Theorem 4.30(viii), τ
θ�,L
(m,s),m = s if and only if either θ = θ L

(m,s) and � = − or θ < θ L
(m,s). By

Theorem 4.30(ix), τ
θ�,R
(m,s),m > s if and only if either θ = θ R

(m,s) and � = + or θ > θ R
(m,s). Therefore, using

Theorem 4.8(iv),

(m, s) ∈ NUθ−
1 ⇐⇒ τ

θ−,L
(m,s),m = s < τ

θ−,R
(m,s),m ⇐⇒ θ ∈

(
θ R
(m,s), θ

L
(m,s)

]
,

(m, s) ∈ NUθ+
1 ⇐⇒ τ

θ+,L
(m,s),m = s < τ

θ+,R
(m,s),m ⇐⇒ θ ∈

[
θ R
(m,s), θ

L
(m,s)

)
.

Part (iv): Let (m, s) ∈ NUθ�

1 . By Lemma 8.1(v), there exists t⋆ ∈ (s − ε, s) such that τ
θ�,R
(m,t⋆),m = t⋆. Then,

by Lemma 8.1(iv), there exists t ∈ (t⋆, s) such that (m, t) ∈ NUθ�

1 .

Next, for (m, s) ∈ NU1, θ R
(m,s) > 0 by part (ii), and by Theorem 4.30(ix), when θ < θ R

(m,s) and

� ∈ {−, +} (or θ = θ R
(m,s) and � = −), τ

θ�,R
(m,s),m = s. By Lemma 8.1(iv), there exists t ∈ (s, s + ε) such

that (m, t) ∈ NUθ�

1 .

Part (v): Choose θ ≥ θ R
(m,s) and �∈{−, +} or θ = θ R

(m,s) and �=+. Set ε = τ
θ̂+,R
(m,s),m − s, where θ̂ = θ R

(m,s).

By Theorem 4.30(ix), ε > 0. By the monotonicity of Theorem 4.3(iii)(a), τ
θ�,R
(m,s),m ≥ τ

θ̂+,R
(m,s),m > s. By

Lemma 8.1(ii), for all t ∈ (s, s +ε], τ
θ�,R
(m,s),m is the unique maximizer of Bm(u)−hθ�

m+1(u) over u ∈ [t, ∞),

and (m, t) /∈ NUθ�

1 .

Part (vi): Let (m, s) ∈ CI and set θ̂ = θ R
(m,s). By Theorem 4.30(ix), τ

θ̂−,R
(m,s),m = s < τ

θ̂+,R
(m,s),m . By

Lemma 8.1(iv), for ε > 0, there exists t̂ ∈ (s, (s + ε) ∧ τ
θ̂+,R
(m,s),m) such that (m, t̂) ∈ NUθ̂−

1 . Further, by

Lemma 8.1(v), we know that there exists t ∈ (s, t̂) such that τ
θ̂−,R
(m,t),m = t . On the other hand, since

s < t < τ
θ̂+,R
(m,s),m , and since τ

θ̂+,R
(m,s),m is the rightmost maximizer of Bm(u)− h θ̂+

m+1(u) over u ∈ [s, ∞), we

also have that τ
θ̂+,R
(m,t),m = τ

θ̂+,R
(m,s),m > t . In summary,

τ
θ̂−,R
(m,t),m = t < τ

θ̂+,R
(m,t),m,

so by Theorem 4.30(ix), θ R
(m,t) = θ̂ = θ R

(m,s). □

Proof of Theorem 4.36. Part (i): We show that {θ R
(m,s)}(m,s)∈CI = 2. The statement for the collection

{θ L
(m,s)}(m,s)∈CI has an analogous proof. First, let (m, s) ∈ CI and set θ̂ = θ R

(m,s). Then, by parts (v) and (ix)

of Theorem 4.30, θ̂ > 0 and 0
θ̂−,R
(m,s) ̸= 0

θ̂+,R
(m,s) . By (i)⇔(ii) of Theorem 4.21, θ̂ ∈ 2.

Now, assume that θ ∈ 2. By (vi)⇔(i) of Theorem 4.21, for all x ∈ Z × R, 0θ+,R
x ̸= 0θ−,R

x . Since

both 0θ+,R
x and 0θ−,R

x are rightmost geodesics between any two of their points (Theorem 4.3(ii)), the

two geodesics must split at some point v ≥ x and never come back together. See Figure 25. Then,

0θ−,R
v ∩ 0θ+,R

v = {v}, and by Theorem 4.30(ix), θ = θ R
v .
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Part (ii): First, we show that for (m, s) ∈ Z × R, and t > s,
{
θ >0 :vθ−

m+1(s)<vθ+
m+1(s)

}
⊆[θ L

(m,s), ∞) and
⋂

t :t>s

{θ >0 :hθ+
m (s, t)<hθ−

m (s, t)}⊆[0, θ R
(m,s)]. (8-25)

If θ L
(m,s) = 0, there is nothing to show for the first inclusion, so we assume that θ L

(m,s) > 0. If θ < θ L
(m,s), then

by (8-22), τ
θ�,L
(m,s),m = s for � ∈ {−, +}. Thus, by (8-24), vθ�

m+1(s) = 0 for θ ∈ [0, θ
θ,L
(m,s),m), and therefore,

{θ > 0 : vθ−
m+1(s) < vθ+

m+1(s)} ⊆ [θ L
(m,s), ∞).

Now, for the second statement, we note by the last statement of Lemma B.3 that Bm(s, t) = hθ�

m (s, t)

if and only if τ
θ�,R
(m,s),m ≥ t . Hence, θ 7→ hθ�

m (s, t) is constant in the interval (θ R
(m,s),t , ∞), where

θ R
(m,s),t = inf{θ > 0 : τ θ�,R

(m,s),m ≥ t}.

Therefore, for any t > s,
⋂

u:u>s

{θ > 0 : hθ+
m (s, u) < hθ−

m (s, u)} ⊆ [0, θ(m,s),t ].

The proof of the claim is complete once we show that

θ R
(m,s),t ↘ θ R

(m,s) as t ↘ s. (8-26)

First, by definition (8-22) and monotonicity (Theorem 4.3(iii)(a)), θ R
(m,s) is equivalently defined as

inf{θ > 0 : τ θ�,R
(m,s),m > s},

so θ R
(m,s) ≤ θ R

(m,s),t for all s < t . However, setting θ̂ = θ R
(m,s), monotonicity and the definition (8-22) imply

that s < τ
θ̂+,R
(m,s),m ≤ τ

θ�,R
(m,s),m for θ > θ̂ . Hence, θ R

(m,s),t = θ R
(m,s) for all t ∈ (s, τ

θ�,R
(m,s),m]. Specifically, (8-26)

holds, as desired.

Since θ R
(m,s) ≤ θ L

(m,s), the inclusions of (8-25) guarantee that

S(m,s) ⊆ {θ R
(m,s)} ∩ {θ L

(m,s)}. (8-27)

Hence, if θ R
(m,s) < θ L

(m,s), S(m,s) = ∅. In the case that θ R
(m,s) = θ L

(m,s), we show that θ R
(m,s) ∈ S(m,s). We

break this into two cases, one where θ R
(m,s) = 0 and the other where θ R

(m,s) > 0.

Case 1: θ R
(m,s) = 0 : By (8-27), we just need to show that 0 ∈ S(m,s), which by definition holds if and only

if vθ�

m+1(s) > 0 for all θ > 0 and � ∈ {−, +}; (x)⇔(v) of Theorem 4.30 completes the proof of this case.

Case 2: θ R
(m,s) > 0: In this proof, refer to Figure 26. Setting θ̂ = θ R

(m,s) = θ L
(m,s), (v)⇒(ix) and (iv)⇒(viii)

of Theorem 4.30 imply that 0
θ̂−,R
(m,s) and 0

θ̂−,L
(m,s) make immediate vertical steps, while 0

θ̂+,R
(m,s) and 0

θ̂+,L
(m,s)

make immediate horizontal steps (see also Remark 4.31). Hence, both 0
θ̂+,R
(m,s) and 0

θ̂+,L
(m,s) pass through some

(m, u)∈ Z×Q>s . By Theorem 4.8(iii), on �4, (m, u) /∈ NU0, and there is a single θ� Busemann geodesic

starting from (m, u). Since 0
θ̂+,L
(m,s) and 0

θ̂+,R
(m,s) both pass through (m, u), it follows that 0

θ̂+,L
(m,s) = 0

θ̂+,R
(m,s) . The

implication (v)⇒(ix) of Theorem 4.30 also implies that the only common point between 0
θ̂+,L
(m,s) = 0

θ̂+,R
(m,s)

and 0
θ̂−,R
(m,s) is (m, s). Therefore, 0θ̂+,L

(m,s) ∩ 0
θ̂−,R
(m+1,s) = ∅, and for all t > s, 0

θ̂+,L
(m,t) ∩ 0

θ̂−,R
(m,s) = ∅. By (i)⇔(iii)

of Theorem 4.20, θ̂ ∈ S(m,s), as desired. □
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0
θ̂+,R
(m,s) = 0

θ̂+,L
(m,s)

0
θ̂−,R
(m,s)

(m, s)

(m + 1, s)

(m, u)

Figure 26. 0
θ̂−,R
(m,s) (upper red/thick path) travels to (m + 1, s), while 0

θ̂+,R
(m,s) and 0

θ̂+,R
(m,s) (lower

red/thick path) both pass through (m, u) for some rational u > s.

8D. Proofs of Theorems 2.8 and 2.10.

Proof of Theorem 2.8. Part (i) follows from the equivalences (i)⇔(iii)⇔(iv) of Theorem 4.21. Part (ii)

follows from Remark 4.22. □

Proof of Theorem 2.10. Recall that the last-passage time between (m, s) and (m + 1, t) is

sup
s≤u≤t

{Bm(s, u) + Bm+1(u, t)} = Bm+1(t) − Bm(s) + sup
s≤u≤t

{Bm(u) − Bm+1(u)}, (8-28)

and the maximizer u gives the location of the jump from level m to level m + 1. For r ∈ Z, define the

random sets LeftMaxr as

{s ∈ R : Br−1(s) − Br (s) = sup
s≤u≤t

{Br−1(u) − Br (u)} for some t > s}. (8-29)

As in the proof of (ii)⇒(iii) of Theorem 4.30, if σ L
(m,s),n > s for some n > m, then letting n be the

smallest such integer, there exists t > s such that the leftmost geodesic between (m, s) and (n, t) passes

through (n, s). Again, refer to Figure 23. Therefore,

LeftMaxm+1 ⊆ {s ∈ R : σ L
(m,s),n > s for some n > m} ⊆

⋃

n>m

LeftMaxn . (8-30)

On the event �4 ⊆ Ar (8-1), LeftMaxr has Hausdorff dimension 1
2 for each r ∈ Z. Using condition (ii) of

Theorem 4.30, the set

{s ∈ R : σ L
(m,s),n > s for some n > m} = {s ∈ R : (m, s) ∈ CI}

also has Hausdorff dimension 1
2 . By (8-30) and Corollary C.7(i), each point s ∈ R lies in the set CIm with

probability 0.

Next, we show the density of the sets CIm . On the event �4 (see item (v) on page 729) for each m ∈ Z

and rational q1 < q2, there is a unique geodesic between (m, q1) and (m +1, q2) that jumps to level m +1

at a time u ∈ (q1, q2). Then, (m, u) ∈ CI by condition (i) of Theorem 4.30.
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Lastly, we show that CI is exactly the set of points x ∈ Z × R such that there exist two semi-infinite

geodesics in the same direction, whose only common point is the initial point. If such a pair of geodesics

exists, then one of the geodesics must travel vertically, so x ∈ CI by definition (2-5). The reverse

implication follows from (i)⇒(viii) of Theorem 4.30. □

9. Proofs of the results in Section 5

9A. Discrete queues and the proof of Theorem 5.2. We discuss the queuing setting from [14] that will

allow us to prove Theorem 5.2. We note that in [14], the Busemann functions were constructed from

limits of geodesics traveling to the southwest, so the notation is changed to reflect northeast geodesics.

Let I = (Ik)k∈Z and ω = (ωk)k∈Z be sequences that satisfy

lim
m→∞

m∑

i=0

(ωi+1 − Ii ) = −∞.

The sequence I gives the inter-arrival times between customers in the queue, and ω gives the service times.

Let Hk be the sequence satisfying H0 = 0 and Hk+1 − Hk = Ik , and let Sk be the sequence satisfying

S0 = 0 and Sk − Sk−1 = ωk . We define the sequence Ĩ = ( Ĩk)k∈Z by

Ĩk = ωk + sup
m:m≥k

[Sm − Hm] − sup
m:m≥k+1

[Sm − Hm]. (9-1)

In queuing terms, Ĩ is the process of departures from the queue. We encode the mapping (I, ω) → Ĩ

as the function Ĩ = Dd(I, ω), with subscript d for discrete. Similar to the spaces Xn, Yn defined in (3-5)

and (3-6), the following sequence spaces are defined in [14] for the Busemann functions. Fix n, and define

Y
d
n =

{
I = (I 1, . . . , I n) ∈ (RZ

≥0)
n : for 2 ≤ i ≤ n, lim

m→∞
1

m

m∑

k=1

I i
k > lim

m→∞
1

m

m∑

k=1

I i−1
k > 0

}
,

X
d
n =

{
η = (η1, . . . , ηn) ∈ (RZ

≥0)
n : for 2 ≤ i ≤ n, ηi ≥ ηi−1, and lim inf

m→∞
1

m

m∑

k=1

η1
k > 0

}
.

Above, each component I i and ηi is a nonnegative sequence indexed by Z, and ηi ≥ ηi−1 means

coordinatewise ordering: ηi
k ≥ ηi−1

k for all k ∈ Z. Similarly as in Section 3A, we iterate this map as

D
(1)
d (I ) = D(I, 0) = I,

D
(n)
d (I n, I n−1, . . . , I 1) = Dd(D

(n−1)
d (I n, . . . , I 2), I 1) for n ≥ 2.

We now define the map D
(n)
d :Y

d
n →X

d
n as follows: for I = (I 1, . . . , I n)∈Y

d
n , the image η= (η1, . . . , ηn)=

D
(n)
d (I ) is defined by

ηi = D
(i)
d (I i , I i−1, . . . , I 1) for i = 1, . . . , n.

Let α = (α1, . . . , αn) be such that α1 > · · · > αn > 0. On the space Y
d
n , we define the measure να

d such

that (I 1, . . . , I n) ∼ να
d if all coordinates I i

k are independent and I i
k ∼ Exp(αi ) for k ∈ Z and 1 ≤ i ≤ n.

On the space X
d
n , we define the measure µα

d = να
d ◦ (D

(n)
d )−1.
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For each level m ∈ Z, define the level-m sequence of weights Y m = (Y(k,m))k∈Z, and for given α > 0, we

denote the Busemann functions at level m by Uα,e1
m = (Uα((k − 1, m), (k, m))k∈Z. The joint distribution

of Busemann functions along a horizontal edge is then described as follows.

Theorem 9.1 [14, Theorem 3.2]. Let 1 > α1 > α2 > · · · > αn > 0. For each level m ∈ Z, the (n +1)-tuple

of sequences (Y m, Uα1,e1
m , . . . , U

αn,e1
m ) has distribution µ(1,α1,...,αn).

The input sequences I and ω can be encoded by the sequences H and S used in the definition of

Dd (9-2), where Hk+1 − Hk = Ik and Sk − Sk−1 = ωk . For these sequences, we can define continuous

functions H, S ∈ Cpin(R) to be the piecewise linear interpolations such that S(k) = Sk and H(k) = Hk for

k ∈ Z. In this setting, Y
d
n and X

d
n can be viewed as subspaces of Yn and Xn as defined in (3-5) and (3-6).

Furthermore, the operators D
(i)
d and D

(n)
d can likewise be viewed as operators on spaces of functions. We

define an output sequence H̃ = (H̃k)k∈Z by H̃0 = 0 and H̃k+1 − H̃k = Ĩk . From this point of view, (9-1)

implies that for t ∈ Z,

H̃t = Dd(S, H)t = S(−1, t − 1) + sup
0≤u<∞

{S(u) − H(u)} − sup
t≤u<∞

{S(u) − H(u)}. (9-2)

The supremum over the integers can be replaced with the supremum over the reals because S and H are

linear interpolations. Then, extend H̃(t) to all t ∈ R by (9-2), which is a continuous, piecewise linear

interpolation of the sequence H̃ . Note that (9-2) nearly matches the operator D (3-8):

D(Z , B)(t) = B(t) + sup
0≤u<∞

{B(u) − Z(u)} − sup
t≤u<∞

{B(u) − Z(u)}. (9-3)

The only difference is that the term B(t) has been replaced with S(−1, t − 1). However, when these

random walks are appropriately scaled, this discrepancy is eliminated. This is made precise in the

following proof.

Proof of Theorem 5.2. This follows by Donsker’s theorem, with some extra care. We show that distri-

butional convergence is preserved under the queuing map. A similar proof is given for the Brownian

queue in [23], although the queues in that setting are only infinite in the positive direction. We appeal to

tightness to prove the result in the bi-infinite setting. We start by showing that for fixed T ∈ Z,

1/
√

k (U

√
k√

k+λ1 ((0, 0), (tk, 0)) − tk, U

√
k√

k+λ2 ((0, 0), (tk, 0)) − tk)t∈(−∞,T ]
k→∞H⇒ (h

1/λ2
1

0 (t), h
1/λ2

2
0 (t))t∈(−∞,T ], (9-4)

and then the extension of the convergence to all t ∈ R follows by tightness, as discussed below. We may

take T > 0 since the statement holds for any T ≤ 0 as long as it holds for some T > 0. For j ∈ Z, and

i = 1, 2, let X i
j ∼ Exp(1) be mutually independent random variables. For k ∈ Z>0, set Z1

k (0) = Z2
k (0) = 0,

and for tk ∈ Z>0, set

Z1
k (tk) = 1√

k

tk∑

j=1

(√
k + λi√

k
X i

j − 1

)
and Z1

k (−tk) = − 1√
k

0∑

j=−tk+1

(√
k + λi√

k
X i

j − 1

)
. (9-5)
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For general t ∈ R, let Z i
k(tk) be the linear interpolation of the above. Equivalently, for tk ∈ Z>0,

Z i
k(tk) =

(√
k + λi√

k

)
1√
k

tk∑

j=1

(X i
j − 1) + λi t (9-6)

and

Z i
k(−tk) = −

((√
k + λi√

k

)
1√
k

0∑

j=−tk+1

(X i
j − 1) + λi t

)
.

Since X i
j has mean and variance 1, this representation allows us to apply Donsker’s theorem and conclude

that, in the sense of uniform convergence on compact sets,

(Z1
k (tk), Z2

k (tk))t∈R

k→∞H⇒ (Z1(t), Z2(t)), (9-7)

where Z1 and Z2 are independent two-sided Brownian motions with drift λ1 and λ2, respectively. By (9-2),

for t ≤ T with tk ∈ Z,

Dd(Z2
k , Z1

k )(tk) = Z1
k (−1, tk − 1) + sup

0≤u<∞
{Z1

k (u) − Z2
k (u)} − sup

tk≤u<∞
{Z1

k (u) − Z2
k (u)}

= Z1
k (−1, tk − 1) + sup

0≤u≤T k

{Z1
k (u) − Z2

k (u)} ∨ sup
T k≤u<∞

{Z1
k (u) − Z2

k (u)}

− sup
tk≤u≤T k

{Z1
k (u) − Z2

k (u)} ∨ sup
T k≤u<∞

{Z1
k (u) − Z2

k (u)}

= Z1
k (−1, tk − 1)

+ sup
0≤u≤T k

{Z1
k (T k, u) − Z2

k (T k, u)} ∨ sup
T k≤u<∞

{Z1
k (T k, u) − Z2

k (T k, u)}

− sup
t≤u≤T k

{Z1
k (T k, u) − Z2

k (T k, u)} ∨ sup
T k≤u<∞

{Z1
k (T k, u) − Z2

k (T k, u)}

= Z1
k (−1, tk − 1)

+ sup
0≤u≤T

{Z1
k (T k, uk) − Z2

k (T k, uk)} ∨ sup
T ≤u<∞

{Z1
k (T k, uk) − Z2

k (T k, uk)}

− sup
t≤u≤T

{Z1
k (T k, uk) − Z2

k (T k, uk)} ∨ sup
T ≤u<∞

{Z1
k (T k, uk) − Z2

k (T k, uk)},

while by a similar computation, for t ≤ T ,

D(Z2, Z1)(t) = Z1(t) + sup
0≤u≤T

{Z1(T, u) − Z2(T, u)} ∨ sup
T ≤u<∞

{Z1(T, u) − Z2(T, u)}

− sup
t≤u≤T

{Z1(T, u) − Z2(T, u)} ∨ sup
T ≤u<∞

{Z1(T, u) − Z2(T, u)}.

With Dd and D represented this way, to prove (9-4), it is sufficient to show the following.

(i) The following distributional equality holds:

1/
√

k (U

√
k√

k+λ1 ((0, 0), (tk, 0)) − tk, U

√
k√

k+λ2 ((0, 0), (tk, 0)) − tk)t∈R

d= (Z1
k (tk), Dd(Z2

k , Z1
k )(tk))t∈R.
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(ii) The following distributional convergence holds in the topology of uniform convergence on compact

sets:
(
Z1

k (−1, tk − 1), sup
t≤u≤T

{Z1
k (T k, uk) − Z2

k (T k, uk)}
)

t≤T

k→∞H⇒
(
Z1

k (t), sup
t≤u≤T

{Z1
k (T, u) − Z2

k (T, u)}
)

t≤T
.

(iii) The following distributional convergence holds:

sup
T ≤u<∞

{Z1
k (T k, uk) − Z2

k (T k, uk)} k→∞H⇒ sup
T ≤u<∞

{Z1(T, u) − Z2(T, u)}.

(iv) The process

(Z1
k (−1, tk − 1), sup

t≤u≤T

{Z1
k (T k, uk) − Z2

k (T k, uk)})t≤T

is independent of supT ≤u<∞{Z1
k (T k, uk) − Z2

k (T k, uk)}, while the process

(Z1
k (t), sup

t≤u≤T

{Z1
k (T, u) − Z2

k (T, u)})t≤T

is independent of supT ≤u<∞{Z1(T, u) − Z2(T, u)}.
Then, (5-2) follows from (9-4) by showing that

(v) The sequence

{
1/

√
k (U

√
k√

k+λ1 ((0, 0), (tk, 0)) − tk, U

√
k√

k+λ2 ((0, 0), (tk, 0)) − tk)t∈R

}
k≥1

is tight in C(R → R2).

Item (i): This follows by Theorem 9.1 and the representation (9-5) because (
√

k + λi )/
√

k times an

Exp(1) random variable has distribution Exp(
√

k/(
√

k + λi )).

Item (ii): Note that Z1
k (−1) → 0 since it is O(k−1/2). The rest follows by the uniform convergence on

compact sets of (Z1
k (tk), Z2

k (tk))t∈R to (Z1(t), Z2(t))t∈R.

Item (iii): By the Markov property, supT ≤u<∞{Z1
k (T k, uk) − Z2

k (T k, uk)} has the same distribution as

sup0≤u<∞{Z1
k (u) − Z2

k (u)}, and supT ≤u<∞{Z1(T, u) − Z2(T, u)} has the same distribution as

sup
0≤u<∞

{Z1(u) − Z2(u)}.

Since Z1 and Z2 are independent Brownian motions with drift λ1 < λ2, Z1 − Z2 is a variance 2 Brownian

motion with negative drift. Then, the weak convergence

sup
0≤u<∞

{Z1
k (u) − Z2

k (u)} H⇒ sup
0≤u<∞

{Z1(u) − Z2(u)}

follows by Proposition 6.9.4 in [30] (see also Chapter VIII, Section 6 in [2]).

Item (iv): This follows from independence of increments of random walks and Brownian motion.

Item (v): It is sufficient to show that each of the components is tight in C(R → R). Each component is a

scaled random walk converging to Brownian motion by Donsker’s theorem, so tightness follows. □
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9B. The stationary horizon and proof of Theorems 5.4 and 5.7. The following lemmas relate the

mappings 8 and 8k to the mappings D, D(k), and D
(k).

Lemma 9.2. If f (0) = g(0) = 0, then for all t ∈ R,

8( f, g)(t) = f (t) + sup
−∞<s≤t

[g(s) − f (s)] − sup
−∞<s≤0

[g(s) − f (s)].

Proof. We prove the statement for t ≥ 0, and the statement for t < 0 follows similarly. We have

8( f, g)(t) = f (t) + [sup
s≤0

[ f (0) − g(0) − f (s) + g(s)] + inf
0≤s≤t

[ f (s) − g(s)]]−

= f (t) + [sup
s≤0

[g(s) − f (s)] − sup
0≤s≤t

[g(s) − f (s)]]−

= f (t) + sup
−∞<s≤t

[g(s) − f (s)] − sup
−∞<s≤0

[g(s) − f (s)]. □

Lemma 9.3. Define the mappings 9k : C(R)k → C(R) as

91( f1) = f1 and 9k( f1, . . . , fk) = 8( f1, 9
k−1( f2, . . . , fk)).

Let f1, f2, . . . be an infinite sequence of continuous functions such that each of the operations below is

well-defined. Let (g1, . . . , gk) = 8k( f1, . . . , fk). Then, for 1 ≤ i ≤ k,

gi = 9 i ( f1, . . . , fi ).

Proof. The statements for k = 1, 2 follow immediately from the definition. Assume the statement is true

for some k − 1. For i = 1, g1 = f1 = 91( f1). For 2 ≤ i ≤ k,

gi = 8( f1, [8k−1( f2, . . . , fk)]i−1) = 8( f1, 9
i−1( f2, . . . , fi )) = 9 i ( f1, . . . , fi ). □

Using these representations of the map 8 and 8k , we have the following lemma from [35].

Lemma 9.4 [35, Lemma D.2]. Let Z , B : R → R be continuous functions satisfying Z(0) = B(0) = 0 and

lim
t→±∞

(B(t) − Z(t)) = ∓∞.

Then, for all t ∈ R,

−D(Z , B)(−t) = 8(B̃, Z̃).

We are now ready to prove Theorems 5.4 and 5.7.

Proof of Theorem 5.4. Let f1, . . . , fk be independent variance 4 Brownian motions with drifts 4α1, . . . , 4αk .

For 1 ≤ i ≤ k, let Z i = f̃i , and note (Z1, . . . , Z k)
d= ( f1, . . . , fk). Set (g1, . . . , gk)=8k( f1, . . . , fk), and

(η1, . . . ,ηk)=D
(k)(Z1, . . . , Z k) (recall (3-11)). Since (Gα1, . . . ,Gαk

)
d=(g1, . . . ,gk) and (η1, . . . , ηk)∼µα

by Definition 3.5, it suffices to show that, for 1 ≤ i ≤ k, ηi = g̃i . For i = 1, this is immediate because

g1 = f1 and η1 = Z1. The i = 2 case is Lemma 9.4. Now, assume the statement holds for some i < k.



752 TIMO SEPPÄLÄINEN AND EVAN SORENSEN

By definition and Lemma 9.3, this means that for t ∈ R, −D(i)(Z i , . . . , Z1)(−t) = 9 i ( f1, . . . , fi )(t).

Then, applying this assumption along with (3-10) and Lemmas 9.3 and 9.4,

gi+1(t) = 8( f1, 9
i ( f2, . . . , fi+1))(t) = −D(D(i)(Z i+1, . . . , Z2), Z1)(−t) = −ηi+1(−t).

For the second statement, Theorem 3.7 implies equality of the finite-dimensional distributions. By

Theorem 3.1(iii) we know the process {h̃(1/λ2)−
0 (4•) : λ ≥ 0} is right-continuous with left limits, in the

sense of uniform convergence on compact sets. Thus, the process {h̃(1/λ2)−
0 (4•)}λ≥0 also lies in the

Skorokhod space D(R, C(R)). □

Proof of Theorem 5.7. Theorem 3.7 and the scaling relations of Lemma 3.6(iii) imply that the vector

n−1/3(h
1−2n−1/3α1
0 (n2/3•) − n2/3•, . . . , h

1−2n−1/3αk

0 (n2/3•) − n2/3•)

has distribution µαk

, where, for 1 ≤ i ≤ k,

αk
i =

√
n

n1/3 − 2αi

− n1/3.

Noting that
√

n

n1/3 − 2αi

− n1/3 = 2αi n
2/3

(n1/3 − 2αi )
(√

n
n1/3−2αi

+ n1/3
)

= 2αi

(1 − 2αi n−1/3)
(√

n1/3

n1/3−2αi
+ 1

) n→∞−→ αi ,

the continuity of the measures µλ from Lemma 3.6(i) completes the proof, via Theorem 5.4. We scale by

a factor of four to match Definition 5.3. □

Appendix A: Finite geodesics in BLPP

Recall the uniqueness of geodesics for fixed initial and terminal point from Lemma 2.1. The following

shows how to find random points in BLPP such that multiple geodesics exist.

Lemma A.1. (i) Fix an initial point (m, s) ∈ Z × R. With probability one, there exist random points

(m + 1, t) ≥ (m, s) such that there exist exactly two geodesics between (m, s) and (m + 1, t).

(ii) With probability one, there exist random pairs of points (m, s) ≤ (m +1, t) such that there are exactly

three geodesics between (m, s) and (m + 1, t).

Proof. Part (i): For fixed (m, s) ∈ Z×R, consider points of the form (m +1, t) for t > s. The last passage

time is

Bm+1(t) − Bm(s) + sup
s≤u≤t

{Bm(u) − Bm+1(u)}.

Note that Bm − Bm+1 is a variance 2 Brownian motion. By Lemma 2.1, there is almost surely a unique

maximizer of Bm(u)− Bm+1(u) over u ∈ [s, s+1], and that maximizer u⋆ is an element of (s, s+1). Since
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Brownian motion is recurrent, there exists v > s + 1 such that Bm(v) − Bm+1(v) = Bm(u⋆) − Bm+1(u
⋆).

Letting

t = inf{v > s + 1 : Bm(v) − Bm+1(v) = Bm(u⋆) − Bm+1(u
⋆)},

there exist two geodesics between (m, s) and (m + 1, t): one that jumps to level m + 1 at u⋆ and another

that jumps at the right endpoint t .

Part (ii): Similarly, start with fixed (m, s) and define t as in the previous case, but then set

s ′ = sup{v < s : Bm(v) − Bm+1(v) = Bm(u⋆) − Bm+1(u
⋆)}.

Then, there are three geodesics between (m, s ′) and (m + 1, t): one that jumps at s ′, another that jumps

at u⋆, and another that jumps at t . □

The following gives a crude bound on the maximum number of geodesics that grows as the vertical

distance between the two points increases. By Lemma A.1(ii), the bound is sharp for n = m + 1, but

we do not know if the bound is sharp for n > m + 1, or even whether there exist random points with an

arbitrarily large number of geodesics between them. For the present paper, we need only the fact that,

between any two points, there are only finitely many geodesics.

Lemma A.2. There exists an event �̃ of full probability, on which the following hold:

(i) Between any two points (m, a) ≤ (n, b), both in Z × Q, there is a unique geodesic between the two

points. That unique geodesic does not pass through (k, a) for k > m or (r, b) for r < n.

(ii) There exist no pairs (m, s) ≤ (n, t) ∈ Z × R, with more than

1 + 2(n − m) + (n − m − 1)(n − m)

2
(A-1)

geodesics between the two points.

Proof. Part (i): Lemma 2.1 guarantees that on an event of probability one, there exists a unique geodesic

between any two points (m, a) ≤ (n, b), both in Z × Q. Let �̃ be the intersection of this event with

the event on which, for each rational pair q1 < q2 and k ∈ Z, the maximum of Bk(s) − Bk+1(s) over

s ∈ [q1, q2] is uniquely achieved at a point in the interior of the interval. By Lemma C.4, P(�̃) = 1.

We show that on �̃, for (m, a) ≤ (n, b) ∈ Z × Q, the unique geodesic does not pass through (k, a)

or (r, b) for any k > m or r < n. If, by contradiction, the converse fails, then the geodesic makes an

upward step from (m, a) to (k, a) or from (r, b) to (n, b), or both. We show that the first case cannot

(m, a)

(k, a) (k, q)

(n, b)

Figure 27. Geodesic that passes through (k, a) on the way to (n, b).
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(m, s) (m, a)

(n, b) (n, t)

sm sm+1 · · · sn−1

m

n

Figure 28. Example of geodesics between (m, s) and (n, t) with sm > s and sn−1 < t .

hold on �̃, and the second case follows analogously. Let k > m be the maximal index such that (k, a)

lies on the geodesic. Then, the geodesic passes through (k − 1, a), (k, a), and (k, q) for some rational

q > a. See Figure 27. The portion of the geodesic between (k − 1, a) and (k, q) is also a geodesic, and

the last passage time between the two points is

sup
s∈[a,q]

{Bk−1(s, a) + Bk(a, q)} = Bk(q) − Bk−1(a) + sup
s∈[a,q]

{Bk−1(s) − Bk(a)}.

Since the geodesic passes through (k, a), the maximum is achieved at s = q . This contradicts the definition

of �̃.

Part (ii): Let s = sm−1 ≤ · · · ≤ sn−1 ≤ sn = t denote the jump times of an arbitrary geodesic between

(m, s) and (n, t). We prove the following:

(a) There is at most one geodesic satisfying sm > s and sn−1 < t .

(b) There are at most n − m geodesics satisfying sm > s and sn−1 = t .

(c) There are at most n − m geodesics satisfying sm = s and sn−1 < t .

(d) There are at most 1
2(n − m)(n − m − 1) geodesics satisfying sm = s and sn−1 = t .

Part (a): If two geodesics 01 and 02 both satisfy sm > s and sn−1 < t , then 01 and 02 are also geodesics

between (m, a) and (n, b) for some rational a, b ∈ Q, so 01 = 02. See Figure 28.

Part (b): For a geodesic 0 satisfying sm > s and sn−1 = t , let r be the smallest index such that sr = t .

Geometrically, r is the level at which the geodesic enters the right boundary, and the geodesic passes

through (r, t). See Figure 29. For each such r ∈ {m, . . . , n − 1}, there is at most one geodesic satisfying

sm > s and sr−1 < sr = t , by the previous case, giving at most n − m geodesics of this type.

(m, s)

(r, t)

(n, t)

sm sr−1

m

n

r

Figure 29. Example of a geodesic between (m, s) and (n, t) with sm > s and sn−1 = t . The
level r is denoted in the right.
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(m, s)

(k, s)
(r, t)

(n, t)

sk sr−1

m

n

r

k

Figure 30. Example of a geodesic between (m, s) and (n, t) with sm = s and sn−1 = t . The
level k is denoted in the left and the level r is denoted on the right.

Part (c): The proof is analogous to part (b).

Part (d): For a geodesic satisfying sm = s and sn−1 = t , we let k be the smallest index such that sk > s

and r ≥ k be the smallest index such that sr = t . Then, the geodesic passes through both (k, s) and (r, t).

Geometrically, k is the level at which the geodesic exits the left boundary, and r is the level at which the

geodesic enters the right boundary. See Figure 30. By part (a), for each pair (k, r) with m < k ≤ r ≤ n −1,

there is at most one geodesic that exits the left boundary at level k and enters the right boundary at level r .

There are 1
2(n − m)(n − m − 1) of these pairs (k, r). □

Appendix B: Prior results on Busemann functions and semi-infinite geodesics

In addition to the results stated in Section 2, we use several other results about Busemann functions

and semi-infinite geodesics that were proven in [35]. Recall the definition of the mappings Q and D

from (3-7) and (3-8). Also, recall the discussion above Theorem 3.1 regarding different full-probability

events.

In the following theorem, recall the definitions of NUθ�

0 and NUθ�

1 from (4-7)–(4-8). Also, recall

Remark 4.7, which states that when working on the event �(θ), there is no ± distinction, and we write

NUθ
i = NUθ±

i for i = 0, 1.

Theorem B.1 [35, Theorem 3.1(iii) and 4.7]. Fix θ > 0. Then, the following hold.

(i) For each fixed x ∈ Z × R, on the full probability event �
(θ)
x , we have x /∈ NUθ

0.

(ii) On the event �(θ), the sets NUθ
0 and NUθ

1 are countably infinite and can be written as

NUθ
0 = {(m, t) ∈ Z × R : t = τ

θ,L
(m,t),r < τ

θ,R
(m,t),r for some r ≥ m},

NUθ
1 = {(m, t) ∈ Z × R : t = τ

θ,L
(m,t),m < τ

θ,R
(m,t),m}.

In other words, Busemann geodesics emanating from (m, t) and in a fixed direction θ can separate

only along the upward vertical ray from (m, t).

(iii) On the event �(θ), the set NUθ
1 is neither discrete nor dense in Z × R. More specifically, for each

point (m, t) ∈ NUθ
1 and every ε > 0, there exists s ∈ (t − ε, t) such that (m, s) ∈ NUθ

1. For each

(m, t) ∈ NUθ
1, there exists δ > 0 such that (m, s) /∈ NUθ

0 for all s ∈ (t, t + δ).
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The following lemmas provide useful characterizations of the Busemann geodesics. The first one

utilizes point-to-line last-passage problems.

Lemma B.2 [35, Lemma 7.3]. Let ω ∈ �2, (m, t) ∈ Z × R and θ > 0, � ∈ {−, +}. Then:

(i) Let {τr }∞r=m−1 be any sequence in T θ�

(m,t). Then, for each n ≥m, the jump times t =τm−1 ≤τm ≤· · ·≤τn

are a maximizing sequence for

sup

{ n∑

r=m

Br (sr−1, sr ) − hθ�

n+1(sn) : t = sm−1 ≤ sm ≤ · · · ≤ sn < ∞
}
. (B-1)

(ii) Conversely, for each n ≥ m, whenever t = tm−1 ≤ tm ≤ · · · ≤ tn is a maximizing sequence for (B-1),

there exists {τr }∞r=m−1 ∈ T θ�

(m,t) such that tr = τr for m ≤ r ≤ n.

(iii) For each n ≥ m, the sequences t = τ
θ�,L
(m,t),m−1 ≤ · · · ≤ τ

θ�,L
(m,t),n and t = τ

θ�,R
(m,t),m−1 ≤ · · · ≤ τ

θ�,R
(m,t),n are,

respectively, the leftmost and rightmost maximizing sequences for (B-1).

The next lemma indicates how the L/R distinction of geodesics can be characterized by the Busemann

functions.

Lemma B.3 [35, Lemma 7.4]. Let ω ∈ �2, (m, t) ∈ Z × R, θ > 0, � ∈ {−, +}, and {τr }r≥m−1 ∈ T θ�

(m,t).

Then, for all r ≥ m,

vθ�

r+1(τr ) = 0 and hθ�

r (u, v) = Br (u, v) for all u, v ∈ [τr−1, τr ].

Furthermore, the following identities hold for r ≥ m.

τ
θ�,L
(m,t),r = inf{u ≥ τ

θ�,L
(m,t),r−1 : vθ�

r+1(u) = 0}, (B-2)

τ
θ�,R
(m,t),r = sup{u ≥ τ

θ�,R
(m,t),r−1 : hθ�

r (τ
θ�,R
(m,t),r−1, u) = Br (τ

θ�,R
(m,t),r−1, u)} (B-3)

More specifically, if u ≥ τ
θ�,R
(m,t),r−1, then hθ�

r (τ
θ�,R
(m,t),r−1, u) = Br (τ

θ�,R
(m,t),r−1, u) if and only if u ≤ τ

θ�,R
(m,t),r .

As the last of the results from [35] we cite a Brownian calculation.

Theorem B.4 (arXiv version of [35, Theorem B.2]). Let B be a standard Brownian motion, and for

t > 0, let

D(t) = sup
0≤s<∞

{
√

2B(s) − λs} − sup
t≤s<∞

{
√

2B(s) − λs}.

Then, for all z ≥ 0,

P(D(t) ≤ z) = 8

(
z − λt√

2t

)
+ eλz

(
(1 + λz + λ2t)8(− z + λt√

2t
) − λ

√
t

π
e− (z+λt)2

4t

)
.

Appendix C: Auxiliary technical inputs

Lemma C.1. Let Sn for n ≥ 0 be subsets of some set S̃ ⊆ Rn , on which the function f : S̃ → R is

continuous. Assume that each point x ∈ S0 is the limit of a sequence {xn}, where xn ∈ Sn for each n.

Assume that {cn} is a sequence of maximizers of f over Sn . Assume further that cn converges to some

c ∈ S0. Then, c is a maximizer of f over S0.
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Proof. For each x0 ∈ S0, write x0 = limn→∞ xn , where xn ∈ Sn for each n. Then, f (cn) ≥ f (xn) for all

n ≥ 1, and the result follows by taking limits. □

Theorem C.2 ([28, Theorem 4], this formulation found in [35, Theorem C.2 and Lemma D.2]). Let

Z be a two-sided Brownian motion with drift λ > 0, independent of the two-sided Brownian motion B

(with no drift). Then, D(Z , B) is a two-sided Brownian motion with drift λ, independent of the two-sided

Brownian motion R(Z , B). Furthermore, for all s ∈ R, {(D(Z , B)(s, t), R(Z , B)(s, t)) : s ≤ t < ∞} is

independent of {Q(Z , B)(u) : u ≤ t}.

Lemma C.3. Let Z , B ∈ Cpin(R) be such that

lim sup
t→∞

Z(t) − B(t) = −∞.

For s ∈ R, denote by Z s the shifted process

(Z(s, t + s))t∈R.

Then, we have

D(Z s, Bs) = D(Z , B)s . (C-1)

Proof. This is a straightforward verification, using the definition of D (3-8). □

Lemma C.4 [27, Theorem 2.11]. Let B be a standard Brownian motion on [0, 1]. With probability one,

B has a unique maximizer, and the maximizer lies in (0, 1).

We use Lemma C.4 to derive the following corollary.

Corollary C.5. Let B be a Brownian motion (could be one or two-sided). Then, there exists a full event

of probability one, on which, for all s < t , at most one maximizer of B over [s, t] lies in (s, t).

Proof. Take the full probability event on which B has a unique maximizer over [a, b] for all rational

endpoints a < b. □

Lemma C.6 [36, page 270]. See also [27, Theorem 4.24]. Let B : [0, ∞) → R be a standard Brownian

motion. Then, with probability one, the following sets have Hausdorff dimension 1
2 . Furthermore, for each

fixed t ∈ [0, ∞), t lies in either of the following sets with probability zero:

(i) {t ∈ [0, ∞) : B(t) = 0}.
(ii) {t ∈ [0, ∞) : B(t) = sup0≤s≤t B(s)}.

Corollary C.7. Let B : R → R be a standard, two-sided Brownian motion. Then, the following sets are

equal. These sets almost surely have Hausdorff dimension 1
2 , and for any fixed s ∈ R, the point s lies in

either set with probability zero:

(i) {s ∈ R : B(s) = sups≤u≤t B(u) for some t > s}.
(ii) {s ∈ R : for some t > s, B(s) > B(u) for all u ∈ (s, t]}.
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Proof. First, we show the sets are equal. The inclusion (ii) ⊆ (i) is immediate. Now, assume s ∈ (i), and

let t be such that B(s) = sups≤u≤t B(u). By Corollary C.5, B has at most one maximizer, ŝ, in the interior

of [s, t]. If no such maximizer exists, set ŝ = t . Choose t̂ ∈ (s, ŝ). Then, B(s) > B(u) for all u ∈ (s, t̂ ],
and s ∈ (ii). Hence, (i) = (ii). Next, for a two-sided Brownian motion B and any point t ∈ R, the process

{B̃t(u) := B(t − u) − B(t) : u ≥ 0}

is a standard Brownian motion. Observe that

(i) =
⋃

q∈Q

{s < q : B(s) = sup
s≤u≤q

B(u)}

=
⋃

q∈Q

{s < q : B(q − (q − s)) − B(q) = sup
0≤u≤q−s

[B(q − u) − B(q)]}.

Since Hausdorff dimension is preserved under countable unions, translations, and reflections, Lemma C.6

completes the proof. □

Theorem C.8 ([35, Lemma B.4] (Lemma B.5 in the arXiv version)). Let X be a two-sided Brownian

motion with strictly negative drift. Let

M = {t ∈ R : X (t) = sup
t≤s<∞

X (s)}.

Furthermore, let
MU = {t ∈ M : X (t) > X (s) for all s > t}

be the set of points t ∈ M that are unique maximizers of X (s) over s ∈ [t, ∞). Define M N = M \ MU to

be the set of t ∈ M that are nonunique maximizers of X (s) over s ∈ [t, ∞). Then, there exists an event of

probability one, on which the following hold:

(i) M is a closed set.

(ii) There exists no points t ∈ R such that X (s) has three maximizers over s ∈ [t, ∞). If there exist two

maximizers over s ∈ [t, ∞), one of them is s = t .

(iii) The function s 7→ X (s) is not monotone on any nonempty interval.

(iv) M N is a countably infinite set.

(v) For all t̂ ∈ MU and ε > 0, there exists t ∈ M N satisfying t̂ < t < t̂ + ε. For all t ∈ M N and ε > 0,

there exists t̂ ∈ MU satisfying t − ε < t̂ < t .

(vi) For all t ∈ M N and ε > 0, there exists t⋆ ∈ M N with t − ε < t⋆ < t . For each t ∈ M N , there exists

δ > 0 such that M ∩ (t, t + δ) = ∅.

Remark C.9. Parts (ii) and (iii) are not stated as a part of the theorem in [35]. However, the proof of

part (ii) is fairly simple and is contained in [35]: if, for some, t ∈ R there are two maximizers of X (s)

over s ∈ [t, ∞) which are strictly greater than t , then for some rational q > t , there are two maximizers

of X (s) over s ∈ [q, ∞). The proof is complete by showing that there exists a full probability event on

which, for every q ∈ Q, there is a unique maximizer of X (s) over s ∈ [q, ∞). Part (iii) is an immediate

fact about Brownian motion with drift.
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