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The stationary horizon (SH) is a stochastic process of coupled Brownian

motions indexed by their real-valued drifts. It was first introduced by the first

author as the diffusive scaling limit of the Busemann process of exponential

last-passage percolation. It was independently discovered as the Busemann

process of Brownian last-passage percolation by the second and third au-

thors. We show that SH is the unique invariant distribution and an attractor

of the KPZ fixed point under conditions on the asymptotic spatial slopes. It

follows that SH describes the Busemann process of the directed landscape.

This gives control of semi-infinite geodesics simultaneously across all initial

points and directions. The countable dense set � of directions of discontinu-

ity of the Busemann process is the set of directions in which not all geodesics

coalesce and in which there exist at least two distinct geodesics from each ini-

tial point. This creates two distinct families of coalescing geodesics in each �

direction. In � directions the Busemann difference profile is distributed like

Brownian local time. We describe the point process of directions ξ ∈ � and

spatial locations where the ξ± Busemann functions separate.
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1. Introduction.

1.1. KPZ fixed point and directed landscape. The study of the Kardar–Parisi–Zhang

(KPZ) class of 1+ 1 dimensional stochastic models of growth and interacting particles has

advanced to the point where the first conjectured universal scaling limits have been rigor-

ously constructed. These two interrelated objects are the KPZ fixed point, initially derived

as the limit of the totally asymmetric simple exclusion process (TASEP) [50], and the di-

rected landscape (DL), initially derived as the limit of Brownian last-passage percolation

(BLPP) [26]. The KPZ fixed point describes the height of a growing interface, while the di-

rected landscape describes the random environment through which growth propagates. These

two objects are related by a variational formula, recorded in (2.3) below. Evidence for the

universality claim comes from rigorous scaling limits of exactly solvable models [28, 53, 58,

66].

Our paper studies the global geometry of the directed landscape through the analytic and

probabilistic properties of its Busemann process. Our construction of the Busemann pro-

cess begins with the recent construction of individual Busemann functions by Rahman and

Virág [59]. The remainder of this Introduction describes the context and gives previews of

some results. The organization of the paper is in Section 1.6.

1.2. Semi-infinite geodesics and Busemann functions. In growth models of first- and last-

passage type, semi-infinite geodesics trace the paths of infection all the way to infinity and

hence are central to the large-scale structure of the evolution. Their study was initiated by

Licea and Newman in first-passage percolation in the 1990s [48, 52] with the first results

on existence, uniqueness and coalescence. Since the work of Hoffman [42, 43], Busemann

functions have been a key tool for studying semi-infinite geodesics (see, e.g., [22, 36, 38, 41,

59, 61, 63, 64], and Chapter 5 of [2]).

Closer to the present work, the study of semi-infinite geodesics began in directed last-

passage percolation with the application of the Licea–Newman techniques to the exactly

solvable exponential model by Ferrari and Pimentel [34]. Georgiou, Rassoul-Agha and the

second author [38, 39] showed the existence of semi-infinite geodesics in directed last-

passage percolation with general weights under mild moment conditions. Using this, Jan-

jigian, Rassoul-Agha and the second author [45] showed that geometric properties of the

semi-infinite geodesics can be found by studying analytic properties of the Busemann pro-

cess. In the special case of exponential weights, the distribution of the Busemann process

from [33] was used to show that all geodesics in a given direction coalesce if and only if that

direction is not a discontinuity of the Busemann process.
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In [64] the second and third author extended this work to the semidiscrete setting by deriv-

ing the distribution of the Busemann process and analogous results for semi-infinite geodesics

in BLPP. Again, all semi-infinite geodesics in a given direction coalesce if and only if that

direction is not a discontinuity of the Busemann process. In each direction of discontinuity,

there are two coalescing families of semi-infinite geodesics and from each initial point at

least two semi-infinite geodesics. Compared to LPP on the discrete lattice, the semidiscrete

setting of BLPP gives rise to additional nonuniqueness. In particular, [64] developed a new

coalescence proof to handle the nondiscrete setting.

In the directed landscape, Rahman and Virág [59] showed the existence of semi-infinite

geodesics, almost surely in a fixed direction across all initial points as well as almost surely

from a fixed initial point across all directions. Furthermore, all semi-infinite geodesics in

a fixed direction coalesce almost surely. This allowed [59] to construct a Busemann func-

tion for a fixed direction. After the first version of our present paper was posted, Ganguly

and Zhang [36] gave an independent construction of a Busemann function and semi-infinite

geodesics, again for a fixed direction. They defined a notion of “geodesic local time,” which

was key to understanding the global fractal geometry of geodesics in DL. Later in [37], the

same authors showed that the discrete analogue of geodesic local time in exponential LPP

converges to geodesic local time for the DL.

Starting from the definition in [59], we construct the full Busemann process across all di-

rections. Through the properties of this process, we establish a classification of uniqueness

and coalescence of semi-infinite geodesics in the directed landscape. Similar constructions

of the Busemann process and classifications for discrete and semidiscrete models have pre-

viously been achieved [44, 45, 60, 64], but the procedure in the directed landscape is more

delicate. One reason is that the space is fully continuous. Another difficulty is that Buse-

mann functions in DL possess monotonicity only in horizontal directions, while discrete and

semidiscrete models exhibit monotonicity in both horizontal and vertical directions. A new

perspective is needed to construct the Busemann process for arbitrary initial points.

The full Busemann process is necessary for a complete understanding of the geometry

of semi-infinite geodesics. In particular, countable dense sets of initial points or directions

cannot capture nonuniqueness of geodesics or the singularities of the Busemann process.

1.3. Stationary horizon as the Busemann process of the directed landscape. The station-

ary horizon (SH) is a cadlag process indexed by the real line whose states are Brownian

motions with drift (Definition D.1 in Appendix D). SH was first introduced by the first au-

thor [18] as the diffusive scaling limit of the Busemann process of exponential last-passage

percolation from [33] and was conjectured to be the universal scaling limit of the Busemann

process of models in the KPZ universality class. Shortly afterward, the paper [64] of the last

two authors was posted. To derive the aforementioned results about semi-infinite geodesics,

they constructed the Busemann process in BLPP and made several explicit distributional

calculations. Remarkably, after discussions with the first author, the second and third authors

discovered that the Busemann process of BLPP has the same distribution as the SH, restricted

to nonnegative drifts. Furthermore, due to a rescaling property of the stationary horizon, when

the direction is perturbed on order n−1/3 from the diagonal, this process also converges to the

SH, in the sense of finite-dimensional distributions. These results were added to the second

version of [64].

The convergence of the full Busemann process of exponential LPP to SH under the KPZ

scaling, proven in [18], is currently the only example of what we expect to be a universal

phenomenon: namely, that SH is the universal limit of the Busemann processes of models

in the KPZ class. The present paper takes a step toward this universality by establishing that

the stationary horizon is the Busemann process of the directed landscape, which itself is the
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conjectured universal scaling limit of metric-like objects in the KPZ class. This is the central

result that gives access to properties of the Busemann process. In addition to giving strong

evidence toward the universality of SH conjectured by [18], it provides us with computational

tools for studying the geometric features of DL.

The characterization of the Busemann process of DL comes from a combination of two

results: (i) The Busemann process evolves as a backward KPZ fixed point. (ii) The stationary

horizon is the unique invariant distribution of the KPZ fixed point, subject to an asymptotic

slope condition satisfied by the Busemann process (Theorem 2.1). Our invariance result is an

infinite-dimensional extension of the previously proved invariance of Brownian motion with

drift [50, 56, 57]. For the invariance of a single Brownian motion, we have a strengthened

uniqueness statement (Remark 2.4). Furthermore, under asymptotic slope conditions on the

initial data, the stationary horizon is an attractor. This is analogous to the results of [3–7] for

stationary solutions of the Burgers equation with random Poisson and kick forcing.

1.4. Nonuniqueness of geodesics and random fractals. Among the key questions is the

uniqueness of semi-infinite geodesics in the directed landscape. We show the existence of a

countably infinite, dense random set � of directions ξ such that, from each initial point in

R2, two semi-infinite geodesics in direction ξ emanate, separate immediately or after some

time and never return back together. It is interesting to relate this result and its proof to earlier

work on disjoint finite geodesics.

The set of exceptional pairs of points between which there is a nonunique geodesic in DL

was studied in [14]. Their approach relied on [11], which studied the random nondecreasing

function z �→ L(y, s; z, t) − L(x, s; z, t) for fixed x < y and s < t . This process is locally

constant, except on an exceptional set of Hausdorff dimension 1
2
. From here [14] showed

that, for fixed s < t and x < y, the set of z ∈ R such that there exist disjoint geodesics from

(x, s) to (z, t) and from (y, s) to (z, t) is exactly the set of local variation of the function

z �→ L(x, s; z, t) − L(y, s; z, t) and, therefore, has Hausdorff dimension 1
2
. Going further,

they showed that, for fixed s < t , the set of pairs (x, y) ∈R2 such that there exist two disjoint

geodesics from (x, s) to (y, t) also has Hausdorff dimension 1
2
, almost surely. Later, this

exceptional set in the time direction was studied in [36] and was shown to have Hausdorff

dimension 2/3. Across the entire plane, this set has Hausdorff dimension 5
3
. In a similar spirit,

Dauvergne [24] recently posted a paper detailing all the possible configurations of nonunique

point-to-point geodesics along with the Hausdorff dimensions—with respect to a particular

metric—of the sets of points with those configurations.

Our focus is on the limit of the measure studied in [11], namely, the nondecreasing function

ξ �→Wξ (y, s;x, s)= limt→∞[L(y, s; tξ, t)−L(x, s; tξ, t)], which is exactly the Busemann

function in direction ξ . The support of its Lebesgue–Stieltjes measure corresponds to the

existence of disjoint geodesics (Theorem 7.9), but in contrast to [14], the measure is supported

on a countable discrete set instead of on a set of Hausdorff dimension 1
2

(Theorem 5.5(iv) and

Remark 5.6).

We encounter a Hausdorff dimension 1
2

set if we look along a fixed time level s for those

space-time points (x, s) out of which there are disjoint semi-infinite geodesics in a random,

exceptional direction (Theorem 2.10(iii)). Up to the removal of an at-most countable set, this

Hausdorff dimension 1
2

set is the support of the random measure defined by the function

x �→ fs,ξ (x)=Wξ+(x, s;0, s)−Wξ−(x, s;0, s),

where Wξ± are the right- and left-continuous Busemann processes (Theorem 8.2). This is a

semi-infinite analogue of the result in [14].

The distribution of fs,ξ is delicate. The set of directions ξ such that Wξ− �=Wξ+ or, equiv-

alently, such that τξ = inf{x > 0 : fs,ξ (x) > 0} <∞ is the set � mentioned above. A fixed
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direction ξ lies in � with probability 0. Theorem 8.1 shows that the law of fs,ξ (τξ + ·) on

R≥0, conditioned on ξ ∈� in the appropriate Palm sense, is exactly that of the running max-

imum of a Brownian motion or, equivalently, that of Brownian local time. This complements

the fact that the function z �→ L(y, s; z, t)−L(x, s; z, t) is locally absolutely continuous with

respect to Brownian local time [35]. Furthermore, the point process {(τξ , ξ) : ξ ∈ �} has an

explicit mean measure (Lemma 8.6 in Section 8.1).

Since the first version of the present article has appeared, Bhatia [16, 17] has posted two

papers that use our results as inputs. The first, [16], studies the Hausdorff dimension of the

set of splitting points of geodesics along a geodesic itself. The second, [17], answers an open

problem presented in this paper. Namely, the sets NU
ξ �

0 and NU
ξ �

1 , defined in (6.1)–(6.2),

are almost surely equal, and for a fixed direction ξ , this set almost surely has Hausdorff

dimension 4
3

in the plane.

1.5. Inputs. We summarize the inputs to this paper, besides the basic [26, 50, 53]. Four

ingredients go into the invariance of SH under the KPZ fixed point: (i) The invariance of

the Busemann process of the exponential corner growth model under the LPP dynamics [33],

(ii) convergence of this Busemann process to SH [18] (Here the emergence of SH as a scaling

limit in the KPZ universality class plays a fundamental role.), (iii) exit point bounds for

stationary exponential LPP [9, 10, 31, 60, 62] and (iv) convergence of exponential LPP to DL

[28]. For the uniqueness we use Lemma B.4(iii), originally from [57].

To construct the global Busemann process, we start from the results in [59], summarized in

Section 4. After the first version of our paper appeared, [36] gave an independent construction

of the Busemann function in a fixed direction. Our results do not rely on [36]. After charac-

terizing the distribution of the Busemann process, we use the regularity of SH from [18, 64]

to prove results about the regularity of the Busemann process and semi-infinite geodesics.

To describe the size of the exceptional sets of points with nonunique geodesics (Theo-

rems 2.10 and 6.1(ii)), we use results about point-to-point geodesics from [14] and [27].

A result from [23] implies Lemma B.3 and the mixing in Theorem 5.3(ii).

Our techniques are probabilistic rather than integrable, but some results we use come from

integrable inputs. We use results of [18, 26, 28], which each utilized the continuous RSK

correspondence [54, 55]. We also use results on point-to-point geodesics in [14, 27] that rely

on [40], who studied the number of disjoint geodesics in BLPP using integrable inputs. For

more about the connections between RSK and the directed landscape, we refer the reader to

[25, 29].

1.6. Organization of the paper. Section 2 defines the models and states three results ac-

cessible without further definitions: Theorem 2.1 (proved in Section 3) on the unique in-

variance and attractiveness of SH under the KPZ fixed point, Theorem 2.5 (proved in Sec-

tion 7.2) on the global structure of semi-infinite geodesics in DL and Theorem 2.10 (proved

in Section 8.3) on the fractal properties of the set of initial points with disjoint semi-infinite

geodesics in the same direction. Section 3 proves Theorem 2.1. Section 4 summarizes the

results of [59] that we use as the starting point for constructing the Busemann process.

The remainder of the paper covers finer results on the Busemann process and semi-infinite

geodesics. Sections 5–8 each start with several theorems that are then proved later in the

paper. The theorems can be read independently of the proofs. Each section depends on the

sections that came before. Section 5 describes the construction of the Busemann process and

infinite geodesics in all directions. Section 6 gives a detailed discussion of nonuniqueness

of geodesics. Section 7 is concerned with coalescence and connects the regularity of the

Busemann process to the geometry of geodesics. This culminates in the proof of Theorem 2.5.

Section 8 develops the theory of random measures for the Busemann process, culminating
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in the proof of Theorem 2.10. Section 9 collects open problems. The Appendices contain

material from the literature. Details of the results in the Appendices and other routine proofs

appear in our arXiv version [20].

2. Model and main theorems.

2.1. Notation.

(i) Z, Q and R are restricted by subscripts, as in, for example, Z>0 = {1,2,3, . . .}.
(ii) e1 = (1,0) and e2 = (0,1) denote the standard basis vectors in R2.

(iii) Equality in distribution is
d= and convergence in distribution =⇒.

(iv) X ∼ Exp(ρ) means that P(X > t)= e−ρt for t > 0.

(v) The increments of a function f :R→R are denoted by f (x, y)= f (y)− f (x).

(vi) Increment ordering of f,g : R→ R: f ≤inc g means that f (x, y) ≤ g(x, y) for all

x < y.

(vii) For s ∈R, Hs = {(x, s) : x ∈R} is the set of space-time points at time level s.

(viii) A two-sided standard Brownian motion is a continuous random process {B(x) : x ∈
R} such that B(0) = 0 almost surely and {B(x) : x ≥ 0} and {B(−x) : x ≥ 0} are two inde-

pendent standard Brownian motions on [0,∞).

(ix) If B is a two-sided standard Brownian motion, then {cB(x)+μx : x ∈R} is a two-

sided Brownian motion with diffusivity c > 0 and drift μ ∈R.

(x) The parameter domain of the directed landscape is R4
↑

= {(x, s;y, t) ∈R4 : s < t}.
(xi) The Hausdorff dimension of a set A is denoted by dimH (A).

2.2. Geodesics in the directed landscape. The directed landscape, originally constructed

in [26], is a random continuous function L : R4
↑

→ R that arises as the scaling limit of a

large class of models in the KPZ universality class and is expected to be a universal limit of

such models. We cite the theorem for convergence of exponential last-passage percolation in

Theorem C.3 in Appendix C and summarize some key points from [26] here. The directed

landscape satisfies the metric composition law: for (x, s;y,u) ∈R4
↑

and t ∈ (s, u),

(2.1) L(x, s;y,u)= sup
z∈R

{
L(x, s; z, t)+L(z, t;y,u)

}
.

This implies the reverse triangle inequality: for s < t < u and (x, y, z) ∈ R3, L(x, s; z, t)+
L(z, t;y,u) ≤ L(x, s;y,u). Furthermore, over disjoint time intervals (si, ti), 1 ≤ i ≤ n, the

processes (x, y) �→ L(x, si;y, ti) are independent.

Under the directed landscape, the length of a continuous path g : [s, t]→R is

L(g)= inf
k∈Z>0

inf
s=t0<t1<···<tk=t

k∑

i=1

L
(
g(ti−1), ti−1;g(ti), ti

)
,

where the second infimum is over all partitions s = t0 < t1 < · · · < tk < t . By the reverse

triangle inequality, L(g) ≤ L(g(s), s;g(t), t). We call g a geodesic if equality holds. When

this occurs, every partition s = t0 < t1 < · · ·< tk = t satisfies

L
(
g(s), s;g(t), t

)
=

k∑

i=1

L
(
g(ti−1), ti−1;g(ti), ti

)
.

For fixed (x, s;y, t) ∈ R4
↑

, there exists almost surely a unique geodesic between (x, s) and

(y, t) [26], Sections 12–13. Across all points, there exist leftmost and rightmost geodesics.

The leftmost geodesic g is such that, for each u ∈ (t, s), g(u) is the leftmost maximizer of



STATIONARY HORIZON AND DIRECTED LANDSCAPE 7

L(x, s; z,u)+L(z, u;y, t) over z ∈R. The analogous fact holds for the rightmost geodesic.

Geodesics in the directed landscape have Hölder regularity 2
3
− ε but not 2

3
[26, 27].

A semi-infinite geodesic from (x, s) ∈ R2 is a continuous path g : [s,∞)→ R such that

g(s)= x and the restriction of g to each domain [s, t] ⊆ [s,∞) is a geodesic between (x, s)

and (g(t), t). Such an infinite path g has direction ξ ∈ R if limt→∞ g(t)/t = ξ . Two semi-

infinite geodesics g1 and g2 coalesce if there exists t such that g1(u)= g2(u) for all u≥ t . If t

is the minimal such time, then (g1(t), t) is the coalescence point. Two semi-infinite geodesics

g1, g2 : [s,∞)→ R are distinct if g1(t) �= g2(t) for at least some t ∈ (s,∞) and disjoint if

g1(t) �= g2(t) for all t ∈ (s,∞).

2.3. KPZ fixed point. The KPZ fixed point ht (·;h) started from initial state h is a Markov

process on the space of upper semicontinuous functions. More precisely, its state space is

defined as

(2.2)

UC=
{
upper semicontinuous functions h :R→R∪ {−∞} :

there exist a, b > 0 such that h(x)≤ a + b|x|, for all x ∈R,

and h(x) >−∞ for some x ∈R
}
.

The topology on this space is that of local Hausdorff convergence of hypographs. When

restricted to continuous functions, this convergence is equivalent to uniform convergence on

compact sets (Section 3.1 in [50]). This subspace of continuous functions is preserved under

the KPZ fixed point ([50], Lemma B.6). The process {ht (·;h)}t≥0 can be represented as [53]

(2.3) ht (y;h)= sup
x∈R

{
h(x)+L(x,0;y, t)

}
, y ∈R,

where L is the directed landscape. If h is a two-sided Brownian motion with diffusivity
√

2

and arbitrary drift, then ht (·;h)− ht (0;h) d= h(·) for each t > 0 [50, 56, 57].

2.4. Stationary horizon. The stationary horizon (SH) is a process G = {Gξ }ξ∈R with

values Gξ in the space C(R) of continuous R→ R functions. C(R) has its Polish topology

of uniform convergence on compact sets. The paths ξ �→ Gξ lie in the Skorokhod space

D(R,C(R)) of cadlag functions R→ C(R). This means that, for each ξ ∈R, limβ↘ξ Gβ =
Gξ , where convergence holds uniformly on compact sets. The limit limα↗Gα also exists in

the same sense but is not necessarily equal to Gξ . We use Gξ− to denote this limit. For each

ξ ∈R, Gξ is a two-sided Brownian motion with diffusivity
√

2 and drift 2ξ . The distribution

of a k-tuple (Gξ1
, . . . ,Gξk

) can be realized as an image of k independent Brownian motions

with drift, given in Definition D.1; see Appendix D for further properties of SH.

For a compact set K ⊆ R, the process ξ �→ Gξ |K of functions restricted to K is a jump

process. Figure 1 shows a simulation of Gξ . Each pair of trajectories remains together in a

neighborhood of the origin before separating for good, both forward and backward on R.

Our first result is the unique invariance and attractiveness of SH under the KPZ fixed point.

This generalizes the invariance of a single Brownian motion with drift and provides a new

uniqueness statement (Remark 2.4 below). Attractiveness is proved under these assumptions

on the asymptotic drift ξ ∈R of the initial function h ∈UC:

(2.4)

If ξ = 0, lim sup
x→+∞

h(x)

x
∈ [−∞,0] and lim inf

x→−∞
h(x)

x
∈ [0,+∞],

if ξ > 0, lim
x→+∞

h(x)

x
= 2ξ and lim inf

x→−∞
h(x)

x
∈
(
−2ξ,+∞],

and if ξ < 0, lim
x→−∞

h(x)

x
= 2ξ and lim sup

x→+∞

h(x)

x
∈ [−∞,−2ξ

)
.
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FIG. 1. The stationary horizon. Each color represents a different parameter ξ ∈ {0,±1,±2,±3,±5,±10}.

As spelled out in the theorem below, these conditions describe the basins of attraction for

the KPZ fixed point. When ξ > 0 and x > 0 is large, this condition forces h(x) to be ap-

proximated by 2ξx. The directed landscape L(x, s;y, t) can be approximated by − (x−y)2

t−s

(Lemma B.2) so that h(x) + L(x,0;y, t) ≈ 2ξx − (y−x)2

t
, which has its maximum at

x = y + ξ t . Once we can control the maximizers, Lemma B.4 allows us to compare the

KPZ fixed point from different initial conditions. This, of course, must be made precise. In

the ξ > 0 case of the proof of Lemma B.5 (contained in the arXiv version of the present

paper), the lim inf condition as x →−∞ forces the maximizer to be positive, and an analo-

gous statement holds for ξ < 0, although the condition is different. These drift conditions are

analogous to the conditions on the drift studied in [6] for stationary solutions of the Burgers

equation with random Poisson forcing.

THEOREM 2.1. Let (	,F,P) be a probability space on which the stationary hori-

zon G = {Gξ }ξ∈R and directed landscape L are defined and such that the processes

{L(x,0;y, t) : x, y ∈ R, t > 0} and G are independent. For each ξ ∈ R, let Gξ evolve un-

der the KPZ fixed point in the same environment L, that is, for each ξ ∈R,

ht (y;Gξ )= sup
x∈R

{
Gξ (x)+L(x,0;y, t)

}
for all y ∈R and t > 0.

(Invariance) For each t > 0, the equality in distribution {ht (·;Gξ )− ht (0;Gξ )}ξ∈R d=G

holds between random elements of D(R,C(R)).

(Attractiveness) Let k ∈ Z>0 and ξ1 < · · · < ξk in R. Let (h1, . . . ,hk) be a k-tuple of

functions in UC, coupled with (G,L) arbitrarily, and that almost surely satisfy (2.4) for

(h, ξ)= (hi, ξi) for each i ∈ {1, . . . , k}. Then if (h1, . . . ,hk) evolves in the same environment

L, for any a > 0,

lim
t→∞

P
{
ht

(
x;hi)− ht

(
0;hi)= ht (x;Gξi

)− ht (0;Gξi
) ∀x ∈ [−a, a],1≤ i ≤ k

}
= 1.

Consequently, as t →∞, the distributional limit
(
ht

(
·;h1)− ht

(
0;h1), . . . , ht

(
·;hk)− ht

(
0;hk)) =⇒

(
Gξ1

(·), . . . ,Gξk
(·)

)

holds in UCk (or in C(R)k if the hi are continuous).
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(Uniqueness) In particular, on the space UCk , (Gξ1
, . . . ,Gξk

) is the unique invariant dis-

tribution of the KPZ fixed point such that, for each i ∈ {1, . . . , k}, the condition (2.4) holds

for (h, ξ)= (hi, ξi) almost surely.

REMARK 2.2. Theorem 5.1(viii) in Section 5 states that the Busemann process is a

global attractor of the backward KPZ fixed point. Namely, start the KPZ fixed point at time t

with initial data h satisfying (2.4) and run it backward in time to a fixed final time s. Then in

a given a compact set, for large enough t the increments of the backward KPZ fixed point at

time s, started from initial data h at time t , match those of the Busemann function in direction

ξ . To prove Theorem 5.1(viii), we first independently prove the attractiveness (and, therefore,

uniqueness) of Theorem 2.1, then use this to characterize the Busemann process of the DL,

which gives its regularity. This regularity is used in the proof of Theorem 5.1(viii).

REMARK 2.3. The process t �→ {ht (·;hξ )−ht (0;hξ )}ξ∈R is a well-defined Markov pro-

cess on a state space, which is a Borel subset of D(R,C(R)) (Lemma 3.1). By the uniqueness

result for finite-dimensional distributions, G is the unique invariant distribution on this space

of C(R)-valued cadlag paths.

REMARK 2.4. In the above strength, the attractiveness result was previously unknown,

even in the case k = 1 (a single initial function). Pimentel [56, 57] proved attractiveness for

k = 1 and ξ = 0 under the following condition on the initial data h: there exist γ0 > 0 and

ψ(r) such that, for all γ > γ0 and r ≥ 1,

(2.5) P
(
γ−1h

(
γ 2x

)
≤ r|x|∀x ≥ 1

)
≥ 1−ψ(r) where lim

r→∞ψ(r)= 0.

2.5. Semi-infinite geodesics. A significant consequence of Theorem 2.1 is that the sta-

tionary horizon characterizes the distribution of the Busemann process of the directed land-

scape (Theorem 5.3). The Busemann process, in turn, is used to construct semi-infinite

geodesics, called Busemann geodesics, simultaneously from all initial points and in all di-

rections (Theorem 5.9). The definition of Busemann geodesics, along with a detailed study,

comes in Section 5.

The next theorem states our conclusions for general semi-infinite geodesics. The random

countably infinite dense set � of directions is later characterized in (5.1) as the discontinuity

set of the Busemann process, and its properties are stated in Theorem 5.5.

We assume the probability space (	,F,P) of the directed landscape L complete. All

statements about semi-infinite geodesics are with respect to L. Two geodesics are disjoint if

they do not share any space-time points, except possibly their common initial and/or final

point.

THEOREM 2.5. The following statements hold on a single event of full probability. There

exists a random countably infinite dense subset � of R such that parts (ii)–(iii) below hold:

(i) Every semi-infinite geodesic has a direction ξ ∈R. From each initial point p ∈R2 and

in each direction ξ ∈R, there exists at least one semi-infinite geodesic from p in direction ξ .

(ii) When ξ /∈ �, all semi-infinite geodesics in direction ξ coalesce. There exists a ran-

dom set of initial points, of zero planar Lebesgue measure, outside of which the semi-infinite

geodesic in each direction ξ /∈� is unique.

(iii) When ξ ∈ �, there exist at least two families of semi-infinite geodesics in direction

ξ , called the ξ− and ξ+ geodesics. From every initial point p ∈ R2, there exists both a ξ−
geodesic and a ξ+ geodesic which eventually separate and never come back together. All ξ−
geodesics coalesce, and all ξ+ geodesics coalesce.
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FIG. 2. On the left, a depiction of the nonuniqueness in Theorem 2.5(ii): Geodesics separate and
coalesce back together, forming a bubble. After the first version of the present article was posted,
Bhatia [17] and Dauvergne [24] independently proved that this is the only possible configuration for
this type of nonuniqueness, that is, geodesics which split and later coalesce can only split at the initial
point. On the right, ξ ∈�. The blue/thin paths depict the ξ− geodesics, while the red/thick paths depict
the ξ+ geodesics. From each point the ξ− and ξ+ geodesics separate at points of S. The ξ− and ξ+
families each have a coalescing structure.

REMARK 2.6 (Busemann geodesics and general geodesics). Theorem 2.5 is proved by

controlling all semi-infinite geodesics with Busemann geodesics. Namely, from each initial

point p and in each direction ξ , all semi-infinite geodesics lie between the leftmost and right-

most Busemann geodesics (Theorem 6.5(i)). Furthermore, for all p outside a random set of

Lebesgue measure zero and all ξ /∈ �, the two extreme Busemann geodesics coincide and

thereby imply the uniqueness of the semi-infinite geodesic from p in direction ξ (Theo-

rem 2.5(ii)). Even more generally, whenever ξ /∈�, all semi-infinite geodesics in direction ξ

are Busemann geodesics (Theorem 7.3(viii)). This is presently unknown for ξ ∈ � but may

be expected by virtue of what is known about exponential LPP [45].

Our work, therefore, gives a nearly complete description of the global behavior of semi-

infinite geodesics in the directed landscape. The conjecture that all semi-infinite geodesics

are Busemann geodesics is equivalent to the following statement: In Item (iii), for ξ ∈ �,

there are exactly two families of coalescing semi-infinite geodesics in direction ξ . That is,

each ξ -directed semi-infinite geodesic coalesces either with the ξ− or the ξ+ geodesics.

REMARK 2.7 (Nonuniqueness of geodesics). The nonuniqueness of geodesics from ini-

tial points in a Lebesgue null set in Theorem 2.5(ii) is temporary in the sense that these

geodesics eventually coalesce. This forms a “bubble.” The first point of intersection after

the split is the coalescence point (Theorem 7.1(ii)). Hence, these particular geodesics form at

most one bubble. This contrasts with the nonuniqueness of Theorem 2.5(iii), where geodesics

do not return together (Figure 2). Nonuniqueness is discussed in detail in Section 6.

REMARK 2.8. The authors of [59] alluded to nonuniqueness of geodesics. They showed

that for a fixed initial point, with probability one, there are at most countably many directions

with a nonunique geodesic. On page 23 of [59], they note that the set of directions with a

nonunique geodesic “should be dense over the real line.” Our result is that this set is dense,

and, furthermore, it is the set � of discontinuities of the Busemann process.

The last theorem of this section describes the set of initial points with disjoint geodesics

in the same direction. Let � be the random set from Theorem 2.5 (precisely characterized

in (5.1)). Define the following random sets of splitting points:

Ss,ξ :=
{
x ∈R : ∃ disjoint semi-infinite geodesics from (x, s) in direction ξ

}
,(2.6)

S :=
⋃

s∈R,ξ∈�

Ss,ξ × {s}.(2.7)
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REMARK 2.9. From Theorem 2.5(ii), Ss,ξ =∅ whenever ξ /∈�.

THEOREM 2.10. The following hold:

(i) On a single event of full probability, the set S is dense in R2.

(ii) For each fixed p ∈R2, P(p ∈S)= 0.

(iii) For each s ∈R, on an s-dependent full-probability event, for every ξ ∈�, the set Ss,ξ

has Hausdorff dimension 1
2
.

(iv) On a single event of full probability, simultaneously for every s ∈ R and ξ ∈ �, the

set Ss,ξ is nonempty and unbounded in both directions.

REMARK 2.11. For each s ∈ R and ξ ∈ �, the set Ss,ξ has an interpretation as the

support of a random measure, up to the removal of a countable set. Thus, since � is count-

able, for each s ∈ R, the set {x ∈ R : (x, s) ∈S} is the countable union of supports of ran-

dom measures, up to the removal of an at most countable set. By Item (iii) this set also has

Hausdorff dimension 1
2
. Conditioning in the appropriate Palm sense on ξ ∈ �, the random

measure, whose support is “almost” Ss,ξ , is equal to the local time of a Brownian motion

(Theorems 8.2, 8.1,and 8.13). We expect that, simultaneously for all s ∈ R, the set Ss,ξ has

Hausdorff dimension 1
2

but currently lack a global result stronger than Item (iv).

3. Invariance and uniqueness of the stationary horizon under the KPZ fixed point.

In this section we prove Theorem 2.1. Take {Gξ }ξ∈R as the initial data of the KPZ fixed point,

where G is the stationary horizon, independent of {L(x,0;y, t) : x, y ∈R, t > 0}. For ξ ∈R,

set

ht (y;Gξ )= sup
x∈R

{
Gξ (x)+L(x,0;y, t)

}
for all y ∈R and t > 0.

Define the following state space:

(3.1)

Y :=
{{
hξ }

ξ∈R ∈D
(
R,C(R)

)
: hξ1 ≤inc h

ξ2 for ξ1 < ξ2,

and for all ξ ∈R,hξ (0)= 0 and hξ satisfies condition (2.4)

with all lim sup and lim inf terms finite
}
.

LEMMA 3.1. The space Y , defined in (3.1), is a Borel subset of D(R,C(R)). Let L be

the directed landscape, {hξ }ξ∈R ∈ Y , h0(·;hξ )= hξ and

ht

(
y;hξ )= sup

x∈R

{
hξ (x)+L(x,0, y; t)

}
for t > 0, y ∈R and ξ ∈R.

Then t �→ {ht (·;hξ )− ht (0;hξ )}ξ∈R is a Markov process on Y . Specifically, on the event of

full probability from Lemma B.2, {ht (·;hξ )− ht (0;hξ )}ξ∈R ∈ Y for each t > 0.

PROOF. Borel measurability of Y is standard and left to the reader. We show that

{ht (·;h) − ht (0;hξ )}ξ∈R ∈ Y for all t > 0. Lemmas B.4(iii) shows the preservation of the

ordering of functions, Lemma B.7 shows the preservation of limits and Lemma B.6(i) shows

that ht (·;hξ ) ∈ C(R) for all ξ . It remains to show that {ht (·;hξ )}ξ∈R ∈D(R,C(R)) for each

t > 0. Since hξ1 ≤inc h
ξ2 , Lemma A.1 and the global bounds of Lemma B.2 imply that, for

each compact K ⊆R and ξ ∈R, there exists a random M =M(ξ, t,K) > 0 such that, for all

y ∈K , α ∈ (ξ − 1, ξ + 1),

sup
x∈R

{
hα(x)+L(x,0;y, t)

}
= sup

x∈[−M,M]

{
hα(x)+L(x,0;y, t)

}
.



12 O. BUSANI, T. SEPPÄLÄINEN AND E. SORENSEN

Then it follows that {ht (·;hξ )}ξ∈R, as an R→ C(R) function of ξ , is right-continuous with

left limits because this is true of {hξ }ξ∈R.

By the metric composition (2.1) of the directed landscape L, for 0 < s < t ,

ht

(
y;hξ )− ht

(
0;hξ )= sup

x∈R

{
hs

(
x;hξ )− hs

(
0;hξ )+L(x, s;y, t)

}

− sup
x∈R

{
hs

(
x;hξ )− hs

(
0;hξ )+L(x, s;0, t)

}
.

The process t �→ {ht (·;hξ )−ht (0;hξ )}ξ∈R is Markovian by the independent temporal incre-

ments of L. �

PROOF OF THEOREM 2.1. Invariance: For the invariance of SH G, it suffices to prove

the invariance of a finite-dimensional marginal (Gξ1
, . . . ,Gξk

) for given −∞ < ξ1 < · · · <
ξk <∞. So for

(3.2) ht (y;Gξi
)= sup

x∈R

{
Gξi

(x)+L(x,0;y, t)
}
, 1≤ i ≤ k,

the goal is to show that, for each t > 0,

(3.3)
(
ht (·;Gξ1

)− ht (0;Gξ1
), . . . , ht (·;Gξk

)− ht (0;Gξk
)
) d= (Gξ1

, . . . ,Gξk
).

We prove (3.3) via a limit using stability of discrete queues. For N ∈ Z>0 and 1 ≤ i ≤ k,

set ρi = 1
2
− 2−4/3ξiN

−1/3 and ρ
k = (ρ1, . . . , ρk). Let μρ

k
be the probability distribution on

(RZ
>0)

k defined in (C.8) in Appendix C.3. It is the joint distribution of k horizontal Busemann

functions of the exponential corner growth model by Theorem C.5. Let (IN,1, . . . , IN,k) be a

μρ
k
-distributed k-tuple of random, positive bi-infinite sequences IN,i = (I

N,i
j )j∈Z.

For 1≤ i ≤ k, let FN
i :R→R be the linear interpolation of the function defined by

FN
i (0)= 0 and FN

i (m)− FN
i (k)=

m∑

j=k+1

I
N,i
j for integers k < m.

Its scaled and centered version is defined by

(3.4) GN
i (x)= 2−4/3N−1/3[FN

i

(
25/3N2/3x

)
− 28/3N2/3x

]
for x ∈R.

Theorems C.5 and D.2 give the distributional limit

(3.5)
(
GN

1 , . . . ,GN
k

)
=⇒ (Gξ1

, . . . ,Gξk
),

on the space C(R,Rk), under the Polish topology of uniform convergence of functions on

compact sets.

For N ∈N sufficiently large and 1≤ i ≤ k, we consider discrete LPP with initial data FN
i

and exponential weights, as in (C.2) in Appendix C. For m ∈ Z and n ∈ Z>0, let

dN
i (m,n)= sup

�:�≤m

{
FN

i (�)+ d
(
(�,1), (m,n)

)}
.

The scaled and centered version is given by HN
i,0 =GN

i and for t > 0 by letting HN
i,t :R→R

be the linear interpolation of

(3.6) HN
i,t (y)= 2−4/3N−1/3[dN

i

(
tN + 25/3N2/3y, tN

)
− 4Nt − 28/3N2/3y

]
.

By Lemma C.1 and Theorem C.4, ∀N ∈ Z>0 and t > 0 such that tN ∈ Z,

(
HN

1,t (·)−HN
1,t (0), . . . ,HN

k,t (·)−HN
k,t (0)

) d=
(
GN

1 , . . . ,GN
k

)
.

Then, using (3.5), the proof of (3.3) is completed by the following lemma.
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LEMMA 3.2. Let (Gξ1
, . . . ,Gξk

) be independent of {L(x,0;y, t) : x, y ∈ R, t > 0} and

ht (y;Gξi
) defined by (3.2). Then for t > 0, as N →∞, in the topology of uniform conver-

gence on compact sets of functions R→Rk , we have the distributional limit

(3.7)
(
HN

1,t (·), . . . ,H
N
k,t (·)

)
=⇒

(
ht (·;Gξ1

), . . . , ht (·;Gξk
)
)
.

PROOF. Replace the integer � with a continuous variable x,

HN
i,t (y)= sup

−∞<�≤tN+25/3N2/3y

2−4/3N−1/3[FN
i (�)(3.8)

+ d
(
(�,1),

(
tN + 25/3N2/3y, tN

))
− 4Nt − 28/3N2/3y

]

= sup
−∞<25/3N2/3x≤tN+25/3N2/3y

2−4/3N−1/3[FN
i

(
25/3xN2/3)− 28/3N2/3x

+ d
((

25/3xN2/3,1
)
,
(
tN + 25/3N2/3y, tN

))
− 4Nt − 28/3N2/3(y − x)

]

= sup
x∈R

{
GN

i (x)+LN (x,0;y, t)
}
,(3.9)

where GN
i is defined in (3.4) and

LN (x,0;y, t)= d((25/3xN2/3,1), (tN + 25/3N2/3y, tN))− 4Nt − 28/3N2/3(y − x)

24/3N1/3

when x ≤ y + 2−5/3N1/3t and −∞ otherwise.

Let ZN
i (y) denote the largest maximizer of (3.8). It is precisely the exit point defined in

equation (C.6). These satisfy ZN
i (x) ≤ ZN

i (y) for x < y. If there exists some M > 0 such

that |ZN
i (y)| ≤M25/3N2/3, then

line (3.9)= sup
x∈[−M,M]

{
GN

i (x)+LN (x,0;y, t)
}
.

By the weak limit (3.5), Theorem C.3 and independence, Skorokhod representation ([30],

Theorem 11.7.2, [32], Theorem 3.1.8) gives a coupling of copies of {(GN
i )1≤i≤k,LN } and

{(Gξi
)1≤i≤k,L} such that GN

i → Gξi
for 1 ≤ i ≤ k and LN → L, almost surely and uni-

formly on compacts. Then for a < b, M > 0 and ε > 0, in this coupling we have

P̂
(

max
1≤i≤k

sup
y∈[a,b]

∣∣HN
i,t (y)− ht (y;Gξi

)
∣∣ > ε

)

≤ P̂
(

max
1≤i≤k

sup
y∈[a,b]

∣∣∣ sup
x∈[−M,M]

{
GN

i (x)+LN (x,0;y, t)
}

(3.10)

− sup
x∈[−M,M]

{
Gξi

(x)+L(x,0;y, t)
}∣∣∣ > ε

)

+ P̂
(

sup
x∈R

{
Gξi

(x)+L(x,0;a, t)
}
> sup

x∈[−M,M]

{
Gξi

(x)+L(x,0;a, t)
})

(3.11)

+ P̂
(

sup
x∈R

{
Gξi

(x)+L(x,0;b, t)
}
> sup

x∈[−M,M]

{
Gξi

(x)+L(x,0;b, t)
})

(3.12)

+
k∑

i=1

[
P̂
(
ZN

i (a) <−M25/3N2/3)+ P̂
(
ZN

i (b) > M25/3N2/3)].(3.13)

Above, (3.10) vanishes as N →∞ by the coupling. (3.11)–(3.12) vanish as M →∞ by

Lemma B.2 because Gξi
is a Brownian motion with drift, independent of {L(x,0;y, t) :
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x, y ∈R, t > 0}, which has leading order − (x−y)2

t
(Lemma B.2). Lemma C.2 controls (3.13).

This combination verifies the goal (3.7). �

Attractiveness and uniqueness: The proof idea is similar to that of Theorem 3.3 in [6]. Let

k ∈ N, and let ξ̄ = (ξ1, . . . , ξk) ∈ Rk be a strictly increasing vector. Let h̄ = (h1, . . . ,hk) ∈
UCk satisfy (2.4) with h= hi and ξ = ξi for 1≤ i ≤ k. Let ε > 0. By Theorem D.3(vi), there

exists δ > 0 such that

P
{
Gξi±δ(x)=Gξi

(x) ∀x ∈ [−a, a],1≤ i ≤ k
}
≥ 1− ε/2.

Then by invariance of the stationary horizon under the KPZ fixed point, for all t > 0,

(3.14)
P
{
ht (x;Gξi±δ)− ht (0;Gξi±δ)= ht (x;Gξi

)− ht (0;Gξi
)

∀x ∈ [−a, a],1≤ i ≤ k
}
≥ 1− ε/2.

Recall the sets Z
a,0,t
f of exit points from (B.2). Because Gξi±δ is a Brownian motion with

drift 2(ξi ± δ) (Theorem D.3(i)), it satisfies (2.4) with drift ξi ± δ. By the temporal reflection

symmetry of Lemma B.1, Lemma B.5 implies that, for all t sufficiently large,

(3.15) P
(
Z

a,0,t
Gξi−δ

≤Z
a,0,t

hi ≤Z
a,0,t
Gξi+δ

∀1≤ i ≤ k
)
> 1− ε/2,

where for A,B ⊆R we say A≤ B if supA≤ infB . By Lemma B.4(iii), on the event in (3.15)

the following holds for all x ∈ [0, a] and 1≤ i ≤ k:

(3.16) ht (x;Gξi−δ)− ht (0;Gξi−δ)≤ ht

(
x;hi)− ht

(
0;hi)≤ ht (x;Gξi+δ)− ht (0;Gξi+δ).

The reverse inequalities hold for x ∈ [−a,0].
Combining (3.14)–(3.16), we have that, for sufficiently large t ,

P
{
ht (x;Gξi

)− ht (0;Gξi
)= ht

(
x;hi)− ht

(
0;hi) ∀x ∈ [−a, a],1≤ i ≤ k

}
≥ 1− ε.

The proof of Theorem 2.1 is complete. �

4. Summary of the Rahman–Virág results. The paper [59] shows existence of the

Busemann function for a fixed direction. Below is a summary of their results that we use.

THEOREM 4.1 ([59]). The following hold:

(i) For fixed initial point p, there exist almost surely leftmost and rightmost semi-infinite

geodesics g
ξ,�
p and g

ξ,r
p from p in every direction ξ simultaneously. There are at most count-

ably many directions ξ such that g
ξ,�
p �= g

ξ,r
p .

(ii) For fixed direction ξ , there exist almost surely leftmost and rightmost geodesics g
ξ,�
p

and g
ξ,r
p in direction ξ from every initial point p.

(iii) For fixed p = (x, s) ∈R2 and ξ ∈R, g := g
ξ,�
p = g

ξ,r
p with probability one.

(iv) Given ξ ∈R, all semi-infinite geodesics in direction ξ coalesce with probability one.

REMARK 4.2. Article [59] used− and+ in place of the superscripts � and r used above.

We replaced −/+ with �/r to avoid confusion with our ± notation that links with the left-

and right-continuous Busemann processes. As demonstrated in Section 6, nonuniqueness of

geodesics is properly characterized by two parameters � ∈ {−,+} and S ∈ {L,R}.

For fixed direction ξ , [59] defines κξ (p, q) as the coalescence point of the rightmost

geodesics in direction ξ from initial points p and q . Then they define the Busemann function

(4.1) Wξ (p;q)= L
(
p;κξ (p, q)

)
−L

(
q;κξ (p, q)

)
.
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THEOREM 4.3 ([59], Corollary 3.3, Theorem 3.5, Remark 3.1).

(i) For each t ∈ R, the process x �→Wξ (x, t;0, t) is a two-sided Brownian motion with

diffusivity
√

2 and drift 2ξ .

Given a direction ξ , the following hold on a ξ -dependent event of probability one:

(ii) Additivity: Wξ (p;q)+Wξ (q; r)=Wξ (p; r) for all p,q, r ∈R2.

(iii) For all s < t and x, y ∈R,

Wξ (x, s;y, t)= sup
z∈R

{
L(x, s; z, t)+Wξ (z, t;y, t)

}
.

The supremum is attained exactly at those z such that (z, t) lies on a semi-infinite geodesic

from (x, s) in direction ξ :

(iv) The function Wξ :R4 →R is continuous.

Moreover:

(v) For a pair of fixed directions ξ1 < ξ2 with probability one, for every t ∈R and x < y,

Wξ1
(y, t;x, t)≤Wξ2

(y, t;x, t).

5. Busemann process and Busemann geodesics. With the intention of being accessible

to a large audience, in this section we first present a list of theorems regarding the Busemann

process in Section 5.1. Section 5.2 defines Busemann geodesics and states their main proper-

ties. The proofs are found in Section 5.3, except for the proofs of Theorem 5.1(vi)–(viii) and

the mixing in Theorem 5.3(ii), which are proved in Section 7.2, and Theorem 5.5(ii), which

is proved in Section 8.3.

5.1. The Busemann process. The Busemann process {Wξ �(p;q)} is indexed by points

p,q ∈ R2, a direction ξ ∈ R and a sign � ∈ {−,+}. The following theorems describe this

global process. The parameter � ∈ {−,+} denotes the left- and right-continuous versions of

this process as a function of ξ .

THEOREM 5.1. On (	,F,P), there exists a process

{
Wξ �(p;q) : ξ ∈R, � ∈ {−,+},p, q ∈R2}

satisfying the following properties. All the properties below hold on a single event of proba-

bility one, simultaneously for all directions ξ ∈ R, signs � ∈ {−,+}, and points p,q ∈ R2,

unless otherwise specified. Below, for p,q ∈R2, we define the sets

(5.1) �(p;q)=
{
ξ ∈R :Wξ−(p;q) �=Wξ+(p;q)

}
and �=

⋃

p,q∈R2

�(p;q) :

(i) (Continuity) As an R4 →R function, (x, s;y, t) �→Wξ �(x, s;y, t) is continuous.

(ii) (Additivity) For all p,q, r ∈R2, Wξ �(p;q)+Wξ �(q; r)=Wξ �(p; r). In particu-

lar, Wξ �(p;q)=−Wξ �(q;p), and Wξ �(p;p)= 0.

(iii) (Monotonicity along a horizontal line) Whenever ξ1 < ξ2, x < y and t ∈R,

Wξ1−(y, t;x, t)≤Wξ1+(y, t;x, t)≤Wξ2−(y, t;x, t)≤Wξ2+(y, t;x, t).

(iv) (Backward evolution as the KPZ fixed point) For all x, y ∈R and s < t ,

(5.2) Wξ �(x, s;y, t)= sup
z∈R

{
L(x, s; z, t)+Wξ �(z, t;y, t)

}
.
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(v) (Regularity in the direction parameter) The process ξ �→Wξ+ is right-continuous in

the sense of uniform convergence on compact sets of functions R4 → R, and ξ �→Wξ− is

left-continuous in the same sense. The restrictions to compact sets are locally constant in the

parameter ξ : for each ξ ∈R and compact set K ⊆R4, there exists a random ε = ε(ξ,K) > 0

such that, whenever ξ − ε < α < ξ < β < ξ + ε and � ∈ {−,+}, we have these equalities for

all (x, s;y, t) ∈K ,

(5.3) Wα�(x, s;y, t)=Wξ−(x, s;y, t) and Wβ�(x, s;y, t)=Wξ+(x, s;y, t).

(vi) (Busemann limits I) If ξ /∈ �, then, for any compact set K ⊆ R2 and any net rt =
(zt , ut )t∈R≥0

with ut →∞ and zt/ut → ξ as t →∞, there exists R ∈R>0 such that, for all

p,q ∈K and t ≥R,

Wξ (p;q)= L(p; rt )−L(q; rt ).

(vii) (Busemann limits II) For all ξ ∈ R, s ∈ R, x < y ∈ R and any net (zt , ut )t∈R≥0
in

R2 such that ut →∞ and zt/ut → ξ as t →∞,

Wξ−(y, s;x, s)≤ lim inf
t→∞

L(y, s; zt , ut )−L(x, s; zt , ut )

≤ lim sup
t→∞

L(y, s; zt , ut )−L(x, s; zt , ut )≤Wξ+(y, s;x, s).

(viii) (Global attractiveness) Assume that ξ /∈�, and let h ∈UC satisfy condition (2.4) for

the parameter ξ . For s < t , let

hs,t (x;h)= sup
z∈R

{
L(x, s; z, t)+ h(z)

}
.

Then, for any s ∈ R and a > 0, there exists a random t0 = t0(a, ξ, s) <∞ such that, for all

t > t0 and x ∈ [−a, a], hs,t (x;h)− hs,t (0;h)=Wξ (x, s;0, s).

REMARK 5.2. Item (vi) is novel in that it shows the limits simultaneously for all ξ /∈�,

uniformly over compact subsets of R2. The existence of Busemann limits in fixed directions

is shown in [59] and [36]. Item (viii) is analogous to Theorem 3.3 in [6] and Theorem 3.3

in [7] on the global solutions of the Burgers equation with random forcing. When comparing

with [6, 7], note that our geodesics travel north while theirs head south.

We describe the distribution of the Busemann process. The key to Item (iii) is Theorem 2.1.

THEOREM 5.3. The following hold:

(i) (Independence) For each T ∈R, these processes are independent,
{
Wξ �(x, s;y, t) : ξ ∈R, � ∈ {−,+}, x, y ∈R, s, t ≥ T

}
and

{
L(x, s;y, t) : x, y ∈R, s < t ≤ T

}
.

(ii) (Stationarity and mixing) The process

(5.4)
{
L(v),Wξ �(p;q) : v ∈R4

↑

,p, q ∈R2, ξ ∈R, � ∈ {−,+}
}

is stationary and mixing under shifts in any space-time direction. More precisely, let a, b ∈R

not both 0, and z > 0. Set rz = (az, bz). Then the process (5.4) is stationary and mixing (for

fixed a, b as z→+∞) under the transformation

{
L(v),Wξ �(p;q)

}
�→ Tz;a,b{L,W } :=

{
L
(
v + (rz; rz)

)
,Wξ �(p+ rz;q + rz)

}
,
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where, on each side, the process is understood as a function of (v, (p, q)) ∈R4
↑

×R4. Mixing

means that, for all k ∈ Z>0, ξ1, . . . , ξk ∈R, and Borel subsets A,B ⊆ C(R4
↑

,R)×C(R4,R)k ,

lim
z→∞P

(
{L,Wξ1:k } ∈A, {Tz;a,bL, Tz;a,bWξ1:k } ∈ B

)

= P
(
{L,Wξ1:k } ∈A

)
P
(
{L,Wξ1:k } ∈ B

)
.

Above, Wξ1:k = (Wξ1
, . . . ,Wξk

) ∈ C(R4,R)k .

(iii) (Distribution along a time level) For each t ∈R, the following equality in distribution

holds between random elements of the Skorokhod space D(R,C(R)):

{
Wξ+(·, t;0, t)

}
ξ∈R

d=
{
Gξ (·)

}
ξ∈R,

where G is the stationary horizon in Section 2.4, with diffusivity
√

2 and drifts 2ξ .

REMARK 5.4. Combining Items (i) and (iii) with Theorem 5.1(iv) gives a description of

the Busemann process on the full plane R2.

We describe the random sets of Busemann discontinuities defined in (5.1).

THEOREM 5.5. The following hold on a single event of probability one:

(i) For each t ∈R, the set �(x, t;−x, t) is nondecreasing as a function of x ∈R≥0.

(ii) For s, ξ ∈R, define the function

(5.5) x �→ fs,ξ (x) :=Wξ+(x, s;0, s)−Wξ−(x, s;0, s).

Then ξ ∈� if and only if, for all s ∈R,

(5.6) lim
x→±∞

fs,ξ (x)=±∞.

In particular, simultaneously for all s, x ∈R and all sequences |xk| →∞,

(5.7) �=
⋃

k

�(xk, s;x, s).

(iii) The set � is countably infinite and dense in R, while for each fixed ξ ∈R, P(ξ ∈�)=
0. In particular, the full-probability event of the theorem can be chosen so that � contains no

directions ξ ∈Q.

(iv) For each p �= q in R2, the set �(p;q) is discrete, that is, has no limit points in R. The

function ξ �→Wξ−(p;q)=Wξ+(p;q) is constant on each open interval I ⊆ (R \�(p;q)).

For t ∈ R, on a t-dependent full-probability event for all x < y, �(y, t;x, t) is infinite and

unbounded for both positive and negative ξ .

Furthermore:

(v) For x, y, t, ν ∈R and c > 0, the sets �(x, t;−x, t) satisfy the following distributional

invariances:

�(y, t;x, t)
d=�(y,0;x,0)

d=−�(−y,0;−x,0)
d= c−1�

(
c−2y,0; c−2x,0

)
− ν.

REMARK 5.6. Item (ii) states that all discontinuities of the Busemann process are present

on each horizontal ray. By Item (iv) ξ �→Wξ±(p;q) are the left- and right-continuous ver-

sions of a jump process. This function defines a random signed measure supported on a

discrete set. When p and q lie on the same horizontal line, this function is monotone (The-

orem 5.1(iii)), and the support of the measure is exactly the set of directions at which the
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properly chosen coalescence point of semi-infinite geodesics jumps (see Definition 7.7 and

Theorems 7.8–7.9).

The discreteness of Item (iv) allows us to view the sets �(y, t;x, t) as well-defined point

processes and gives the statements in Item (v) meaning. The set � itself is dense, and it is

not easy, a priori, to interpret as a random object. However, by Items (i) and (ii), � is the

increasing union of the sets �(xk,0;x,0), where xk is a monotone sequence converging to

+∞ or −∞.

5.2. Busemann geodesics. The study of Busemann geodesics starts with this definition.

DEFINITION 5.7. For ξ ∈ R, � ∈ {−,+}, (x, s) ∈ R2 and t ∈ (s,∞), let g
ξ �,L
(x,s) (t)

and g
ξ �,R
(x,s) (t) denote, respectively, the leftmost and rightmost maximizer of L(x, s;y, t)+

Wξ �(y, t;0, t) over y ∈R. For t = s, define g
ξ �,L/R
(x,s) (s)= x.

REMARK 5.8. The modulus of continuity bounds of the directed landscape, recorded in

Lemma B.2 along with continuity of Wξ �, imply that limt↘s g
ξ �,L/R
(x,s) (t)= x, so the defini-

tion g
ξ �,L/R
(x,s) (s)= x makes g

ξ �,L/R
(x,s) continuous at t = s. In fact, the path is continuous for all

t ∈ [s,∞) because it is the leftmost/rightmost geodesic between any pair of points along the

path (Theorem 5.9(iv)), and geodesics are continuous. As is seen in the proofs, we are relying

on the existence of leftmost and rightmost point-to-point geodesics from [26], Lemma 13.2.

As noted earlier, Rahman and Virág [59] showed the existence of semi-infinite geodesics,

almost surely for a fixed initial point across all directions and almost surely for a fixed di-

rection across all initial points. We extend this simultaneously across both all initial points

and directions. Theorem 4.3(iii), quoted from [59], states that for a fixed direction ξ , with

probability one at times t > s, the maximizers z of the function L(x, s; z, t)+Wξ (z, t;0, t)

are exactly the points on semi-infinite ξ -directed geodesics from (x, s). Theorem 5.9 clarifies

this on a global scale: across all directions, initial points and signs, one can construct semi-

infinite geodesics from the Busemann process. Furthermore, g
ξ �,L
(x,s) and g

ξ �,R
(x,s) both define

semi-infinite geodesics in direction ξ and give the leftmost (or rightmost) geodesic between

any two of their points. We use this heavily in the present paper.

THEOREM 5.9. The following hold on a single event of probability one across all initial

points (x, s) ∈R2, times t > s, directions ξ ∈R and signs � ∈ {−,+}:
(i) All maximizers of z �→ L(x, s; z, t)+Wξ �(z, t;0, t) are finite. Furthermore, as x, s, t

vary over a compact set K ⊆R with s ≤ t , the set of all maximizers is bounded.

(ii) Let s = t0 < t1 < t2 < · · · be an arbitrary increasing sequence with tn → ∞. Set

g(t0) = x, and for each i ≥ 1, let g(ti) be any maximizer of L(g(ti−1), ti−1; z, ti) +
Wξ �(z, ti;0, ti) over z ∈ R. Then, pick any geodesic of L from (g(ti−1), ti−1) to

(g(ti), ti), and for ti−1 < t < ti , let g(t) be the location of this geodesic at time t . Then,

regardless of the choices made at each step, the following hold:

(a) The path g : [s,∞)→R is a semi-infinite geodesic.

(b) For all t < u in [s,∞),

(5.8) L
(
g(t), t;g(u),u

)
=Wξ �

(
g(t), t;g(u),u

)
.

(c) For all t < u in [s,∞), g(u) maximizes L(g(t), t; z,u) +Wξ �(z, u;0, u) over

z ∈R.

(d) The geodesic g has direction ξ , that is, g(t)/t → ξ as t →∞.
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(iii) For S ∈ {L,R}, g
ξ �,S
(x,s) : [s,∞)→ R is a semi-infinite geodesic from (x, s) in direction

ξ . Moreover, for any s ≤ t < u, we have that

L
(
g

ξ �,S
(x,s) (t), t;gξ �,S

(x,s) (u), u
)
=Wξ �

(
g

ξ �,S
(x,s) (t), t;gξ �,S

(x,s) (u), u
)
,

and g
ξ �,S
(x,s) (u) is the leftmost/rightmost (depending on S) maximizer of L(g

ξ �,S
(x,s) (t), t;

z,u)+Wξ �(z, u;0, u) over z ∈R.

(iv) The path g
ξ �,L
(x,s) is the leftmost geodesic between any two of its points, and g

ξ �,R
(x,s) is the

rightmost geodesic between any two of its points.

DEFINITION 5.10. We refer to the geodesics constructed in Theorem 5.9(ii) as ξ � Buse-

mann geodesics or simply ξ � geodesics.

REMARK 5.11. The geodesics g
ξ �,L
(x,s) and g

ξ �,R
(x,s) are special Busemann geodesics.

By Theorem 5.9(iii)–(iv), for any sequence s = t0 < t1 < t2 < · · · with tn → ∞, the

path g = g
ξ �,L
(x,s) can be constructed by choosing g(ti) as the leftmost maximizer of

L(g(ti−1), ti−1; z, ti) +Wξ �(z, ti;0, ti) over z ∈ R, and for t ∈ (ti−1, ti), taking g(t) to be

the leftmost geodesic from (g(ti−1), ti−1) to (g(ti), ti). The analogous statement holds for L

replaced with R and “leftmost” replaced with “rightmost”.

5.3. Construction and proofs for the Busemann process and Busemann geodesics. This

section proves the results of Sections 5.1 and 5.2. The order in which the items are proved

is somewhat delicate, so we outline that here. After proving some lemmas, we prove The-

orem 5.1(i)–(iv) and Theorem 5.3. We then skip ahead to constructing the semi-infinite

geodesics, culminating in the proof of Theorem 5.9. Afterward, we turn to the proof of the

regularity in Theorem 5.1(v), then prove Theorem 5.5, except for Item (ii), which is proved

in Section 8.3.

We construct a full-probability event 	1 and later in (5.25) and (8.37) follow full-

probability events 	3 ⊆ 	2 ⊆ 	1. For the rest of the proofs, we work almost exclusively

on these events. Once the events are constructed and shown to have full probability, the re-

maining proofs are deterministic statements that hold on those events.

(5.9) We define 	1 ⊆	 to be the event of probability one on which the following hold:

(i) Simultaneously for all (x, s;y, t) ∈R4
↑

, there exist leftmost and rightmost geodesics

(possibly in agreement) between (x, s) and (y, t) (see Section 2.2).

(ii) For each rational direction ξ ∈ Q and each point p ∈ R2, there exist leftmost and

rightmost semi-infinite geodesics (possibly in agreement) from p in direction ξ , and all semi-

infinite geodesics in direction ξ coalesce (see Theorem 4.1, Items (ii) and (iv)).

(iii) For each rational direction ξ ∈ Q and each rational point p ∈ Q2, there is a unique

semi-infinite geodesic from p in direction ξ (see Theorem 4.1(iii)).

(iv) For each rational direction ξ ∈Q, the Busemann process, defined by (4.1), satisfies

conditions (ii)–(iv) of Theorem 4.3. For any pair ξ1 < ξ2 or rational directions, Item (v) of

Theorem 4.3 holds.

(v) For each (x, t, y, ξ) ∈Q4, limQ�α→ξ Wα(y, t;x, t)=Wξ (y, t;x, t).

(vi) For every rational time t ∈Q and rational direction ξ ∈Q,

(5.10) lim
x→±∞

x−1Wξ (x, t;0, t)= 2ξ.

This holds with probability one by properties of Brownian motion and Theorem 4.3(i).

(vii) The conclusions of Lemmas B.2, B.8 and B.9 hold for L. Note that then Lemma B.2

holds also for the reflected version {L(y;−t, x;−s) : (x, s;y, t) ∈R4
↑

}.
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To justify P(	1)= 1, it remains only to check Item (v). By Theorem 4.3(v), for y ≥ x,

(5.11) lim
Q�α↗ξ

Wα(y, t;x, t)≤Wξ (y, t;x, t)≤ lim
Q�α↘ξ

Wα(y, t;x, t).

By Theorem 4.3(i), Wα(y, t;x, t)∼N (2α(y− x),2(y− x)). Hence, all terms in (5.11) have

the same distribution and are almost surely equal.

Now, on the full-probability event 	1, we have defined the process

(5.12)
{
Wα(p;q) : p,q ∈R2, α ∈Q

}
.

On this event, for an arbitrary direction ξ and t, x, y ∈R, define

(5.13)

Wξ−(y, t;x, t)= lim
Q�α↗ξ

Wα(y, t;x, t) and

Wξ+(y, t;x, t)= lim
Q�α↘ξ

Wα(y, t;x, t).

By Theorem 4.3(v) these limits exist for all t ∈R. Complete the definition by setting,

(5.14)

for s < t, Wξ �(x, s;y, t)= sup
z∈R

{
L(x, s; z, t)+Wξ �(z, t;y, t)

}
,

and finally for s > t, Wξ �(x, s;y, t)=−Wξ �(y, t;x, s).

With this construction in place, we prove an intermediate lemma.

LEMMA 5.12. The following hold on the event 	1, across all points, directions and

signs:

(i) For all x, y, t ∈ R and ξ ∈ Q, Wξ−(y, t;x, t) = Wξ+(y, t;x, t) = Wξ (y, t;x, t),

where Wξ is the originally defined Busemann function from (5.12).

(ii) Horizontal Busemann functions are additive: ∀x, y, z, t ∈R, ξ ∈R, and � ∈ {−,+},
Wξ �(x, t;y, t)+Wξ �(y, t; z, t)=Wξ �(x, t; z, t).

(iii) For every t, ξ ∈R, the limits (5.13) hold uniformly over (x, y) on compact sets. Fur-

ther, for each t, ξ ∈R and � ∈ {−,+}, these limits hold in the same sense,

(5.15)

lim
α↗ξ

Wα�(y, t;x, t)=Wξ−(y, t;x, t) and

lim
α↘ξ

Wα�(y, t;x, t)=Wξ+(y, t;x, t).

(iv) For every ξ ∈R, � ∈ {−,+}, (p, q) �→Wξ �(p;q) is continuous, and for each t ∈R,

(5.16) lim
x→±∞

x−1Wξ �(x, t;0, t)= 2ξ.

PROOF. We prove Item (i) last.

Item (ii) follows from the same property in rational directions (Theorem 4.3(ii)).

Item (iii): The monotonicity of the horizontal Busemann process from Theorem 4.3(v)

extends to all directions by limits. That is, for any two rational directions ξ1 < ξ2 and any real

x < y, and t ,

(5.17) Wξ1−(y, t;x, t)≤Wξ1
(y, t;x, t)≤Wξ1+(y, t;x, t)≤Wξ2−(y, t;x, t),

and when ξ1 /∈ Q, the same monotonicity holds, removing the middle term that does not

distinguish between ±. Hence, the limits as α↗ ξ and α↘ ξ exist and agree with the limits

from rational directions (without the �). Without loss of generality, we take the compact set

to be [a, b]2. Then by (5.17) and Lemma A.2, for α < ξ , � ∈ {−,+}, and a ≤ x ≤ y ≤ b,

(5.18) 0≤Wξ−(y, t;x, t)−Wα�(y, t;x, t)≤Wξ−(b, t;a, t)−Wα�(b, t;a, t),
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and for general (x, y) ∈ [a, b]2,
∣∣Wξ−(y, t;x, t)−Wα�(y, t;x, t)

∣∣≤
∣∣Wξ−(b, t;a, t)−Wα�(b, t;a, t)

∣∣,

so the limit as α↗ ξ is uniform on compacts. An analogous argument applies to α↘ ξ .

Item (iv): For t, ξ ∈R and � ∈ {−,+}, the continuity of (x, y) �→Wξ �(y, t;x, t) follows

from Item (iii) and the continuity for rational ξ in Theorem 4.3(iv). Before showing the

general continuity, we show the limits (5.16). For ξ, t ∈Q, (5.10) holds by definition of 	1.

Keeping ξ ∈Q, let s ∈R, and let t > s be rational. By Theorem 4.3(ii)–(iii),

Wξ (x, s;0, s)=Wξ (x, s;0, t)+Wξ (0, t;0, s)

= sup
z∈R

{
L(x, s; z, t)+Wξ (z, t;0, t)

}
+Wξ (0, t;0, s).

Then by Lemma B.7 (for the temporally reflected L), limx→±∞ x−1Wξ (x, s;0, s) = 2ξ .

Now, let ξ ∈ R, � ∈ {−,+} and t ∈ R be arbitrary. Then the monotonicity of (5.17) implies

that, for α < ξ < β with α,β ∈Q,

α ≤ lim inf
x→∞ x−1Wξ �(x, t;0, t)≤ lim sup

x→∞
x−1Wξ �(x, t;0, t)≤ β.

Sending Q � α ↗ ξ and Q � β ↘ ξ implies (5.16) for +∞. The case x →−∞ follows a

symmetric argument.

Lastly, the continuity of (x, y) �→Wξ �(y, t;x, t) and (5.16) imply that Wξ �(x, t;0, t)≤
a + b|x| for some constants a, b. The general continuity follows from (5.14) and Lem-

ma B.6(i).

Item (i): The statement holds for all x, y, t, ξ ∈Q by Item (v) of 	1. The continuity proved

in Item (iv) extends this to all x, y, t ∈R. �

Recall Definition 5.7 of the extreme maximizers g
ξ �,L/R
(x,s) (t).

LEMMA 5.13. For each ω ∈	1, (x, s;y, t) ∈R4
↑

, ξ ∈R and � ∈ {−,+},
(5.19) lim

z→±∞
L(x, s; z, t)+Wξ �(z, t;y, t)=−∞

so that g
ξ �,L/R
(x,s) are well-defined. Let K ⊆R be a compact set, ξ ∈R and � ∈ {−,+}. Then

there exists a random Z = Z(ξ �,K) ∈ (0,∞) such that for all x, s, t ∈ K with s < t and

S ∈ {L,R}, |gξ �,S
(x,s) (t)| ≤ Z.

PROOF. By the continuity and asymptotics of Lemma 5.12(iv), ∀t ∈ R ∃a, b > 0 such

that |Wξ �(x, t;0, t)| ≤ a + b|x| ∀x ∈ R. Lemma B.2 implies L(x, s; z, t)∼− (z−x)2

t−s
, which

gives (5.19). Next, we observe that

(5.20)

inf
x,s,t∈K,s<t

sup
z∈R

{
L(x, s; z, t)+Wξ �(z, t;0, t)

}

≥ inf
x,s,t∈K,s<t

L(x, s;x, t)+Wξ �(x, t;0, t) >−∞.

The last inequality is justified as follows. Since Wξ �(x, t;0, t) evolves backward in time as

the KPZ fixed point (5.14), Lemma B.6(ii) implies that a and b can be chosen uniformly for

t ∈K . Lemma B.2 states that ∀x, s, t ∈R with s < t ; there is a constant C such that

L(x, s;x, t)≥−C(t − s)1/3 log2

(
2
√

2x2 + s2 + t2 + 4

(t − s)∧ 1

)
.

Taking the infimum over x, s, t ∈K with s < t yields the last inequality in (5.20).
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To contradict the last statement of the lemma, assume maximizers zn of L(xn, sn; z, tn)+
Wξ �(z, tn;0, tn) over z ∈R such that xn, sn, tn ∈K but |zn| →∞. Then by (5.20),

(5.21) lim inf
n→∞ L(xn, sn; zn, tn)+Wξ �(zn, tn;0, tn) >−∞,

but since zn →∞ and xn, sn, tn ∈K for all n, L(xn, sn; zn; tn)∼− (zn−xn)2

tn−sn
by Lemma B.2.

By the bound |Wξ �(x, t;0, t)| ≤ a + b|x| that holds uniformly for t ∈ K and x ∈ R, the

inequality (5.21) cannot hold. �

PROOF OF THEOREM 5.1, ITEMS (i)–(iv). The full-probability event of these items is

	1. The remaining items are proved later:

Item (i) (Continuity): This was proved in Lemma 5.12(iv).

Item (ii) (Additivity): First, we show that on 	1 for s < t , x ∈R, ξ1 < ξ2 and S ∈ {L,R},

(5.22) −∞< g
ξ1−,S
(x,s) (t)≤ g

ξ1+,S
(x,s) (t)≤ g

ξ2−,S
(x,s) (t)≤ g

ξ2+,S
(x,s) (t) <∞.

The finiteness of the maximizers comes from Lemma 5.13. The rest of (5.22) follows from

the monotonicity of (5.17) and Lemma A.1. Next, we show that, for (x, s;y, t) ∈ R4 and

ξ ∈ R, Wα(x, s;y, t) converges pointwise to Wξ−(x, s;y, t) as Q � α↗ ξ . The same holds

for limits from the right, with ξ− replaced by ξ+ (Later, we prove that the convergence

is locally uniform). By (5.14) it suffices to assume s < t . By (5.22) and the additivity of

Lemma 5.12(ii) when s = t , for all α ∈ [ξ − 1, ξ + 1] ∩Q and � ∈ {−,+},
Wα(x, s;y, t)= sup

z∈R

{
L(x, s; z, t)+Wα(z, t;y, t)

}

= sup
z∈R

{
L(x, s; z, t)+Wα(z, t;0, t)

}
+Wα(0, t;y, t)

= sup

z∈[g(ξ−1)−,L
(x,s) (t),g

(ξ+1)+,R
(x,s) (t)]

{
L(x, s; z, t)+Wα(z, t;0, t)

}
+Wα(0, t;y, t).

By Lemma 5.12(iii), Wα(z, t;y, t) converges uniformly on compact sets to Wξ−(x, t;y, t) as

Q � α↗ ξ and to Wξ+(x, t;y, t) as Q � α↘ ξ . This implies the desired pointwise conver-

gence. The additivity follows from the additivity for rational ξ (Theorem 4.3(ii)).

Item (iii) (Monotonicity along a horizontal line): This was previously proven as equa-

tion (5.17).

Item (iv) (Backward evolution as the KPZ fixed point): This follows directly from the

construction (5.14).

We postpone the proofs of Items (v)–(viii). Item (v) is proved after the proof of Theo-

rem 5.3, and Items (vii)–(viii) are proved after the proof of Theorem 7.3. No subsequent

results depend on Items (vii)–(viii), except the mixing in Theorem 5.3(ii), which is proven

later. �

PROOF OF THEOREM 5.3 (DISTRIBUTIONAL PROPERTIES OF BUSEMANN PROCESS).

Item (i) (Independence): We know that {L(x, s;y, t) : s, y ∈ R, s < t ≤ T } is independent of

{L(x, s;y, t) : s, y ∈ R, T ≤ s < t} for T ∈ R. From the definition of the Busemann process

from geodesics and the extension (5.13)–(5.14), the process
{
Wξ �(x, s;y, t) : ξ ∈R, � ∈ {−,+}, x, y ∈R, s, t ≥ T

}

is a function of {L(x, s;y, t) : s, y ∈R, T ≤ s < t}, and independence follows.

Item (ii) (Stationarity): Similarly as the previous item, the stationarity of the process fol-

lows from the stationarity of the directed landscape from Lemma B.1(i). The mixing proper-

ties will be proven in Section 7.2 along with Items (vii)–(viii) of Theorem 5.1.
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Item (iii) (Distribution along a time level): By the additivity of Theorem 5.1(ii) and the

variational definition (5.14), for x ∈ R, s < t and � ∈ {−,+} on the full-probability event

	1,

Wξ �(x, s;0, s)=Wξ �(x, s;0, t)−Wξ �(0, s;0, t)

= sup
y∈R

{
L(x, s;y, t)+Wξ �(y, t;0, t)

}

− sup
y∈R

{
L(0, s;y, t)+Wξ �(y, t;0, t)

}
.

By Item (i), Theorem 5.1(iii) and Items (iii) and (iv) of Lemma 5.12, {Wξ+(·, t;0, t) : ξ ∈
R}t∈R is a reverse-time Markov process that almost surely lies in the state space Y de-

fined in (3.1). By the stationarity of Item (ii), the law of {Wξ+(·, t;0, t) : ξ ∈ R} must be

invariant for this process. By the temporal reflection invariance of the directed landscape

(Lemma B.1(iii)), {Wξ+(·, t;0, t) : ξ ∈ R} is also invariant for the KPZ fixed point, forward

in time. The uniqueness part of Theorem 2.1 completes the proof. �

LEMMA 5.14. For every ω ∈ 	1 and (x, s;y, t) ∈ R4
↑

, L(x, s;y, t) ≤ Wξ �(x, s;y, t)

and equality occurs if and only if y maximizes L(x, s; z, t)+Wξ �(z, t;0, t) over z ∈R.

PROOF. For s < t , Theorem 5.1(ii), (iv) gives

Wξ �(x, s;y, t)= sup
z∈R

{
L(x, s; z, t)+Wξ �(z, t;y, t)

}

= sup
z∈R

{
L(x, s; z, t)+Wξ �(z, t;0, t)

}
+Wξ �(0, t;y, t).

(5.23)

Setting z= y on the right-hand side of (5.23), it follows that Wξ �(x, s;y, t)≥ L(x, s;y, t),

and equality holds if and only if y is a maximizer. �

PROOF OF THEOREM 5.9 (CONSTRUCTION OF THE BUSEMANN GEODESICS). The

full-probability event of this theorem is 	1 (5.9):

Item (i) (Finiteness of the maximizers): This follows immediately from Lemma 5.13.

We prove Items (ii)–(iv) together. By Lemma 5.14, for any such construction of a path

from the sequence of times s = t0 < t1 < · · · and any i ≥ 1,

L
(
g(ti−1), ti−1;g(ti), ti

)
=Wξ �

(
g(ti−1), ti−1;g(ti), ti

)
.

Furthermore, for any ti−1 ≤ t < u≤ ti , it must hold that

L
(
g(t), t;g(u),u

)
=Wξ �

(
g(t), t;g(u),u

)
,

for otherwise, by additivity of the Busemann functions (Theorem 5.1(ii)),

L
(
g(ti−1), ti−1;g(ti), ti

)

= L
(
g(ti−1), ti−1;g(t), t

)
+L

(
g(t), t;g(u),u

)
+L

(
g(u),u;g(ti), ti

)

< Wξ �

(
g(ti−1), ti−1;g(t), t

)
+Wξ �

(
g(t), t;g(u),u

)
+Wξ �

(
g(u),u;g(ti), ti

)

=Wξ �

(
g(ti−1), ti−1;g(ti), ti

)
,

a contradiction. Additivity extends (5.8) to all s ≤ t < u. Therefore, the path is a semi-infinite

geodesic because the weight of the path in between any two points is optimal by Lemma 5.14.

From the equality (5.8) and Lemma 5.14, for every t ≥ s, g(t) maximizes L(x, s; z, t) +
Wξ �(z, t;0, t) over z ∈R.
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FIG. 3. Illustration of the proof of Lemma 5.15. Here the red/thick path denotes the path γ̂ in the case
wt < g(t), which is to the right of the rightmost geodesic between (x, s) and (g(u),u), which passes
through (wt , t) by assumption. This gives the contradiction.

Before global directedness of all geodesics, we show that g
ξ �,S
(x,s) are semi-infinite geodesics

and the leftmost/rightmost geodesics between any two of their points. Take S = R, and the

result for S = L follows similarly. Omit x, s, ξ and � from the notation temporarily, and write

g(t)= g
ξ �,R
(x,s) (t). By what was just proved, it is sufficient to prove the following lemma.

LEMMA 5.15. Let g be as defined above. For s < t < u, let zu be the rightmost maxi-

mizer of L(g(t), t; z,u)+Wξ �(z, u;0, u) over z ∈R, and let wt be the rightmost maximizer

of L(x, s;w, t)+L(w, t;g(u),u) over w ∈ R (Equivalently, the proof of [26], Lemma 13.2,

shows that (wt , t) is the point at level t on the rightmost geodesic between (x, s) and

(g(u), u)). Then g(t)=wt and g(u)= zu.

PROOF. By Lemma 5.14 and Items (ii)(b)–(c), wt maximizes L(x, s; z, t)+Wξ �(z, t;
0, t) over z ∈ R, and zu maximizes L(x, s; z,u)+Wξ �(z, u;0, u) over z ∈ R. By definition

of g(u) and g(t) as the rightmost maximizers, we have wt ≤ g(t) and zu ≤ g(u) in general.

Assume, to the contrary, that g(t) �= wt or g(u) �= zu. We first prove a contradiction in the

case wt < g(t). For the proof, refer to Figure 3 for clarity. Let γ1 : [s, u]→R be the rightmost

geodesic from (x, s) to (g(u), u) (which passes through (wt , t)), and let γ2 be the concate-

nation of the rightmost geodesic from (x, s) to (g(t), t) followed by the rightmost geodesic

from (g(t), t) to (zu, u). By Item (ii)(b) for i = 1,2, the weight of the portion of any part

of γi is equal to the Busemann function between the points. Since wt < g(t) and zu ≤ g(u),

γ1 and γ2 must split before time t and then meet again before or at time u. Let (y, v) be a

crossing point, where t < v ≤ u. Let γ̂ : [s, u]→R be defined by γ̂ (r)= γ2(r) for r ∈ [s, v]
and γ̂ (r)= γ1(r) from (y, v) to (g(u), u). Then by the additivity of Busemann functions, the

weight L of any portion of the path γ̂ is equal to the Busemann function between the two

points. By Lemma 5.14, γ̂ is then a geodesic between (x, s) and (g(u), u), which is to the

right of γ1, which was defined to be the rightmost geodesic between the points, a contradic-

tion.

Now, we consider the case zu < g(u). Define γ1 and γ2 as in the previous case. Since

zu < g(u), there is some point (y, v) with t ≤ v < u such that γ1 splits from or crosses γ2 at

(y, v). Then, define γ̂ as in the previous case. Again, the weight L of any portion of the path γ̂

is equal to the Busemann function between the two points. Specifically, L(g(t), t;g(u),u)=
Wξ �(g(t), t;g(u),u), and by Item 5.14, g(u) maximizes L(g(t), t; z,u)+Wξ �(z, u;0, u)

over z ∈R. This contradicts the definition of zu as the rightmost such maximizer. �

Returning to the proof of Theorem 5.9, we show the global directedness of all Busemann

geodesics constructed in the manner described in Item (ii). By (5.22), for t ≥ s and α < ξ < β
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with α,β ∈Q,

(5.24) g
α,L
(x,s)(t)≤ g

ξ �,L
(x,s) (t)≤ g(t)≤ g

ξ �,R
(x,s) (t)≤ g

β,R
(x,s)(t).

Note that on 	1 the ± distinction is absent for α,β ∈Q (Lemma 5.12(i)). By definition (5.9)

of the event 	1 and Theorem 4.3(iii), ∀α ∈Q, the maximizers of L(x, s; z, t)+Wα(z, t;0, t)

over z ∈ R are exactly the locations z where an α-directed geodesic goes through (z, t).

Therefore, g
α,L
(x,s)(t)/t → α and g

β,R
(x,s)(t)/t → β when α,β ∈Q. By (5.24)

α ≤ lim inf
t→∞

t−1g(t)≤ lim sup
t→∞

t−1g(t)≤ β.

Sending Q � α↗ ξ and Q � β ↘ ξ completes the proof of Theorem 5.9. �

We now define the next full-probability event.

(5.25) Let 	2 be the subset of 	1 on which the following hold:

(i) For each integer T ∈ Z and each compact set K ⊆R2, there exists ε = ε(ξ, T ,K) > 0

such that, for ξ − ε < α < ξ < β < ξ + ε and (x, y) ∈K ,

(5.26) Wα�(y, T ;x,T )=Wξ−(y, T ;x,T ) and Wβ�(y, T ;x,T )=Wξ+(y, T ;x,T ).

(ii) For each integer T ∈ Z, the set

(5.27)
{
ξ ∈R :Wξ−(x, T ;0, T ) �=Wξ+(x, T ;0, T ) for some x ∈R

}

is countably infinite and dense in R.

(iii) For each s < t ∈R, x, ξ ∈R, � ∈ {−,+} and S ∈ {L,R},

(5.28) lim
ξ→±∞

g
ξ �,S
(x,s) (t)=±∞.

LEMMA 5.16. P(	2)= 1.

PROOF. The fact that (i) holds with probability one is a direct consequence of Theo-

rems 5.3(iii) and D.3(vi). The set (5.27) is countably infinite and dense for all T ∈ Z by

the distributional equality {Wξ+(·, T ;0, T )}ξ∈R d= {Gξ }ξ∈R from Theorem 5.3(iii) and the

properties of G from Theorem D.3(vi), (ix).

Now, we prove that (5.28) holds with probability one. By the monotonicity of (5.22), the

limits limξ→∞ g
ξ �,S
(x,s) (t) and limξ→−∞ g

ξ �,S
(x,s) (t) exist in R∪ {−∞,∞}. Furthermore, by this

monotonicity it is sufficient to show that

(5.29)

lim
ξ→∞

g
ξ−,L
(x,s) (t)= sup

ξ∈R
g

ξ−,L
(x,s) (t)=∞ and

lim
ξ→−∞

g
ξ+,R
(x,s) (t)= inf

ξ∈R
g

ξ+,R
(x,s) (t)=−∞.

First, we show that (5.29) holds with probability one for a fixed initial point (x, s) and fixed

t > s. It is, therefore, sufficient to take (x, s) = (0,0) and then t > 0. By the monotonicity

it suffices to take limits over ξ ∈Q so that, by Theorem 4.1(iii), the ± and L/R distinctions

are unnecessary. Wξ �(z, t;0, t) is a two-sided Brownian motion with drift 2ξ and diffusivity√
2, independent of the random function (x, y) �→ L(x,0;y, t) (Theorem 5.3(i)). Let B be

a standard Brownian motion, independent of L. Using skew stationarity with c =−ξ in the
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FIG. 4. The blue/thin path represents g
ξ−,L
(w,q1)

, and the red/thick path represents g.

third equality below and time stationarity in the fifth equality (Lemma B.1), we obtain, for

ξ ∈Q,

g
ξ
(x,s)(t)= arg max

z∈R

{
L(x, s; z, t)+Wξ (z, t;0, t)

}

d= arg max
z∈R

{
L(x, s; z, t)+

√
2B(z)+ 2ξz

}

d= arg max
z∈R

{
L(x − ξs, s; z− ξ t, t)+ 2ξ(x − z)+ (t − s)ξ2 +

√
2B(z)+ 2ξz

}

= arg max
z∈R

{
L(x − ξs, s; z− ξ t, t)+

√
2
(
B(z)−B

(
ξ(t − s)

))}

d= arg max
z∈R

{
L
(
x, s; z− ξ(t − s), t

)
+
√

2B
(
z− ξ(t − s)

)}

= arg max
z∈R

{
L(x, s; z, t)+

√
2B(z)

}
+ ξ(t − s)

d= g0
(x,s)(t)+ ξ(t − s).

Therefore, ∀ξ ∈Q, the distribution of g
ξ
(x,s)(t) is that of a fixed, almost surely finite, random

variable plus ξ(t − s). Since we know limQ�ξ→±∞ g
ξ
(x,s)(t) exists, the limit must be ±∞ a.s.

Now, consider the intersection of 	1 with event of probability one on which for each triple

(w,q1, q2) ∈Q3 with q1 < q2,

(5.30) lim
ξ→+∞

g
ξ−,L
(w,q1)

(q2)=+∞ and lim
ξ→−∞

g
ξ+,R
(w,q1)

(q2)=−∞.

On this event, let (x, s, t) ∈R3 with s < t be arbitrary. Assume, by way of contradiction, that

(5.31) z := sup
ξ∈R

g
ξ−,L
(x,s) (t) <∞,

and let g : [s, t] denote the leftmost geodesic from (x, s) to (z, t). For this proof, refer to

Figure 4 for clarity. By the assumption (5.31) and the fact that g
ξ−,L
(x,s) is the leftmost geodesic

between any two of its points (Theorem 5.9(iv)), g
ξ−,L
(x,s) (t) ≤ g(t) for all ξ ∈ R and t > s.

Let q1 ∈ (s, t) be rational. Choose w ∈ Q such that w < g(q1). By continuity of geodesics,

we may choose q2 ∈ (q1, t) ∩ Q to be sufficiently close to t so that |g(q2) − z| < 1. Next,

by (5.30) we may choose positive ξ sufficiently large so that

(5.32) g
ξ−,L
(w,q1)

(q2) > z+ 1 > g(q2)≥ g
ξ−,L
(x,s) (q2).
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Since w < g(q1), g
ξ−,L
(w,q1)

and g
ξ−,L
(x,s) cross at some (ẑ, t̂) with t̂ ∈ (q1, q2). By Theo-

rem 5.9(iii), both g
ξ−,L
(w,q1)

(q2) and g
ξ−,L
(x,s) (q2) are the leftmost maximizer of L(ẑ, t̂;y, q2) +

Wξ−(y, q2;0, q2) over y ∈ R. This contradicts (5.32). The proof for ξ →−∞ is analogous.

�

PROOF OF THEOREM 5.1(v) (Regularity of the Busemann process). By definition of the

event 	2 (5.25), for each ξ ∈R, each integer T and compact set K ⊆R2, there is a ε > 0 so

that (5.26) holds for all (x, y) ∈K .

Now, let ξ ∈ R, let K be a compact subset of R4 and let T be an integer greater than

sup{t ∨ s : (x, s;y, t) ∈K}. Let

A := inf
{
g

(ξ−1)−,L
(x,s) (T )∧ g

(ξ−1)−,L
(y,t) (T ) : (x, s;y, t) ∈K

}
and

B := sup
{
g

(ξ+1)+,R
(x,s) (T )∨ g

(ξ+1)+,R
(y,t) (T ) : (x, s;y, t) ∈K

}
.

By (5.22) and Lemma 5.13, −∞ < A < B < ∞. By (5.22) and the additivity of Theo-

rem 5.1(ii), for all (x, s;y, t) ∈K and α ∈ (ξ − 1, ξ + 1),

(5.33)

Wα�(x, s;y, t)=Wα�(x, s;0, T )−Wα�(y, t;0, T )

= sup
z∈R

{
L(x, s; z, T )+Wα�(z, T ;0, T )

}

− sup
z∈R

{
L(y, t; z, T )+Wα�(z, T ;0, T )

}

= sup
z∈[A,B]

{
L(x, s; z, T )+Wα�(z, T ;0, T )

}

− sup
z∈[A,B]

{
L(y, t; z, T )+Wα�(z, T ;0, T )

}
.

By (5.26), the conclusion follows. �

PROOF OF THEOREM 5.5 (DESCRIPTION OF THE DISCONTINUITY SET). The full prob-

ability event of this theorem is 	2, except for Item (ii) whose proof is postponed until Sec-

tion 8.3. Proofs of results that rely on Item (ii) come afterward:

Item (i) (Monotonicity): By the monotonicity of Theorem 5.1(v) and by Lemma A.2, for

a ≤ x ≤ y ≤ b,

(5.34) 0≤Wξ+(y, t;x, t)−Wξ−(y, t;x, t)≤Wξ+(b, t;a, t)−Wξ−(b, t;a, t).

Thus, discontinuities of ξ �→Wξ �(y, t;x, t) are also discontinuities for ξ �→Wξ �(b, t;a, t).

Item (iii) (� is a countable dense set): Similarly, as in (5.33), if (x, s;y, t) ∈ R4, then for

ξ ∈R, � ∈ {−,+} and any integer T > s ∨ t ,

(5.35)

Wξ �(x, s;y, t)= sup
z∈R

{
L(x, s; z, T )+Wξ �(z, T ;0, T )

}

− sup
z∈R

{
L(y, t; z, T )+Wξ �(z, T ;0, T )

}
.

So if Wξ−(z, T ;0, T )=Wξ+(z, T ;0, T )∀z ∈R, then Wξ−(x, s;y, t)=Wξ+(x, s;y, t), and

(5.36) �=
⋃

T∈Z

{
ξ ∈R :Wξ−(x, T ;0, T ) �=Wξ+(x, T ;0, T ) for some x ∈R

}
.

On 	2, � is countably infinite and dense by (5.25). Lemma 5.12(i) along with (5.36)

imply that � contains no rational directions ξ . For an arbitrary ξ ∈ R, Wξ−(·, T ;0, T )
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and Wξ+(·, T ;0, T ) are both Brownian motions with the same diffusivity and drift, and

Wξ−(y, T ;x,T )≤Wξ+(y, T ;x,T ) for x < y by Theorem 5.1(iii). By (5.36) and continuity,

P(ξ ∈�)≤
∑

T ∈Z,x∈Q
P
(
Wξ−(x, T ;0, T ) �=Wξ+(x, T ;0, T )

)
= 0,

where P(Wξ−(x, T ;0, T ) �= Wξ+(x, T ;0, T )) = 0 because the two random variables have

the same law and are ordered.

Item (iv) (�(p;q) is discrete): The discreteness is a direct consequence of the regularity

of the Busemann process from Theorem 5.1(v). By Theorem D.3(vii), on a t-dependent full

probability event, and for each x < y, Wξ �(y, t;x, t)→±∞ as ξ →±∞. Since the jumps

are discrete, �(y, t;x, t) is infinite and unbounded for both positive and negative ξ .

Item (v) (Distributional invariances of �:) The discreteness of Item (iv) allows us to view

the sets �(y, t;x, t) as well-defined point processes. We recall that ξ ∈ � if and only if

Wξ−(y, t;x, t) �=Wξ+(y, t;x, t). Start with the distributional equality {Wξ+(·, t;0, t)}ξ∈R d=
{Gξ }ξ∈R, which holds for all t (Theorem 5.3(iii)). Furthermore, the additivity of the Buse-

mann process (Theorem 5.1(ii)) implies
{
Wξ+(y, t;x, t) : x, y ∈R

}
ξ∈R

d=
{
Gξ (y)−Gξ (x) : x, y ∈R

}
ξ∈R.

This gives the first distributional equality �(y, t;x, t)
d= �(y,0;x,0). The invariance

�(y,0;x,0)
d= −�(−y,0;−x,0) follows from the reflection invariance of G (Corol-

lary D.4). The invariance �(y,0;x,0)
d= c−1�(c−2y,0; c−2x,0)− ν follows from the cor-

responding invariance for G in Theorem D.3(ii). �

6. Nonuniqueness of semi-infinite geodesics. Theorem 5.9 established global existence

of semi-infinite geodesics from each initial point and into each direction. We know from The-

orem 3.3 of [59], recorded earlier in Theorem 4.1(iii), that, for a fixed initial point and a fixed

direction, there almost surely is a unique semi-infinite geodesic. However, this uniqueness

does not extend globally to all initial points and directions simultaneously. In fact, two qual-

itatively different types of nonuniqueness of Busemann geodesics from a given point into a

given direction arise. One is denoted by the L/R distinction and the other by the ± distinc-

tion. All semi-infinite geodesics from p in direction ξ lie between the leftmost Busemann

geodesic g
ξ−,L
p and the rightmost Busemann geodesic g

ξ+,R
p ; see Theorem 6.5(i). We refer

the reader back to Figure 2 for the two types of nonuniqueness. The L/R uniqueness is de-

picted on the left, where geodesics split and return to coalesce, while the ± nonuniqueness is

depicted on the right in the figure, where geodesics split and stay apart, all the way to ∞.

The L/R nonuniqueness is a feature of continuous space. Only the ± nonuniqueness ap-

pears in the discrete corner growth model with exponential weights, while both L/R and ±
nonuniqueness are present in semidiscrete BLPP [63, 64].

To capture L/R nonuniqueness, we introduce the following random sets of initial points.

For ξ ∈ R and � ∈ {−,+}, let NU
ξ �

0 be the set of points p ∈ R2 such that the ξ � geodesic

from p is not unique. Let NU
ξ �

1 be the subset of NU
ξ �

0 of those initial points at which two

ξ � geodesics separate immediately. In notational terms

NU
ξ �

0 =
{
(x, s) ∈R2 : gξ �,L

(x,s) (t) < g
ξ �,R
(x,s) (t) for some t > s

}
and(6.1)

NU
ξ �

1 =
{
(x, s) ∈NU

ξ �

0 : ∃ε > 0 such that g
ξ �,L
(x,s) (t) < g

ξ �,R
(x,s) (t) ∀t ∈ (s, s + ε)

}
.(6.2)

For i = 0,1, let

(6.3) NUi =
⋃

ξ∈R,�∈{−,+}
NU

ξ �

i .

Figure 5 illustrates NU0 and NU1.
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FIG. 5. In this figure (x, s) ∈ NU0 \NU1 and (y, t) ∈ NU1 ⊆ NU0. It has since been shown by Bha-
tia [17] and Dauvergne [24] that no such points (x, s) exist.

Theorem 6.1(ii) establishes that, with probability one, for each ξ ∈ R and � ∈ {−,+},
the restriction of NU

ξ �

0 to each time level s is countably infinite. By Theorem 7.1(i), on a

single event of probability one, for each direction ξ and sign � ∈ {−,+}, all ξ � geodesics

coalesce. Therefore, from each p ∈ NU
ξ �

0 , two ξ � geodesics separate but eventually come

back together. In particular, the set of points (x, s) ∈ R2 such that g
ξ �,L
(x,s) (t) < g

ξ �,R
(x,s) (t) for

all t ∈ (s,∞) is empty and the ε > 0 in the definition (6.2) of NU
ξ �

1 is essential.

By definition NU
ξ �

1 ⊆NU
ξ �

0 . When this paper was first posted, we did not know whether

NU
ξ �

1 was a strict subset of NU
ξ �

0 . Afterward, Bhatia [17] and Dauvergne [24] each inde-

pendently proved that, in fact, NU
ξ �

0 =NU
ξ �

1 . In fact, something stronger is true: With prob-

ability one there are no pairs of points (x, s;y, t) ∈R4
↑

and pairs of distinct geodesics g1, g2

from (x, s) to (y, t) satisfying, for some ε > 0, g1(u)= g2(u) for all u ∈ (s, s+ ε)∪ (t− ε, t)

([17], Theorem 1, [24], Lemma 3.3). In BLPP the set NU1 plays a significant role as the set of

points from which the leftmost and rightmost competition interfaces have different directions

(Theorem 4.32(ii) in [64]). Presently, we do not have an analogous characterization in DL.

Since NU
ξ−
0 ∪NU

ξ+
0 captures only the L/R distinction and not the ± distinction, it does

not, in general, contain all the initial points from which the ξ -directed semi-infinite geodesic

is not unique. However, when the ξ± distinction is absent, Theorem 6.5(i) implies that NU
ξ
0 =

NU
ξ±
0 is exactly the set of points p ∈ R2 such that the semi-infinite geodesic from p in

direction ξ is not unique. This happens under two scenarios: when ξ /∈� and when we restrict

attention to the ξ -dependent event of full probability on which g
ξ−,S
p = g

ξ+,S
p for all p ∈R2

and S ∈ {L,R}.
The failure to capture the ± nonuniqueness is also evident from the size of NU0. When-

ever ξ ∈ �, there are at least two semi-infinite geodesics with direction ξ from every initial

point. But along a fixed time level, NU0 is countable and thereby a strict subset of R2 (The-

orem 6.1(ii) below).

Recall that Hs = {(x, s) : x ∈ R} is the set of space-time points at time level s. Theo-

rem 5.5(iii) states that, on a single event of full probability, �⊆R \Q, so for ξ ∈Q, we can

drop the ± distinction and write NU
ξ
i =NU

ξ−
i =NU

ξ+
i .
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THEOREM 6.1. On a single event of probability one, for i = 0,1, the set NUi satisfies

(6.4) NUi =
⋃

ξ∈Q
NU

ξ
i .

In particular, the following hold.

(i) For each p ∈ R2, P(p ∈ NU0) = 0 and the full-probability event of the theorem can

be chosen so that NU0 contains no points of Q2.

(ii) On a single event of full probability, simultaneously for every s ∈ R, ξ ∈ R and

� ∈ {−,+}, the set NU
ξ �

0 ∩Hs is countably infinite and unbounded in both directions.

Specifically, for each s ∈ R, there exist sequences xn → −∞ and yn → +∞ such that

(xn, s), (yn, s) ∈NU
ξ �

0 . By (6.4) NU0∩Hs is also countably infinite.

REMARK 6.2. By adjusting the full-probability event, the set Q can be replaced by any

countable dense subset of R. In all applications in this paper, we use the set Q.

The next theorem states properties of Busemann geodesics that involve the L/R and ±
distinctions.

THEOREM 6.3. The following hold on a single event of full probability:

(i) For s < t , x ∈R, ξ1 < ξ2 and S ∈ {L,R},

g
ξ1−,S
(x,s) (t)≤ g

ξ1+,S
(x,s) (t)≤ g

ξ2−,S
(x,s) (t)≤ g

ξ2+,S
(x,s) (t).

(ii) Let ξ ∈R, let K ⊆R be a compact set and let T > maxK . Then there exists a random

ε = ε(ξ, T ,K) > 0 such that, whenever ξ − ε < α < ξ < β < ξ + ε, � ∈ {−,+}, S ∈ {L,R}
and x, s ∈K ,

g
α�,S
(x,s) (t)= g

ξ−,S
(x,s) (t) and g

β�,S
(x,s) (t)= g

ξ+,S
(x,s) (t) for all t ∈ [s, T ].

(iii) For each (x, s) ∈R2, t > s, � ∈ {−,+} and S ∈ {L,R}, limξ→±∞ g
ξ �,S
(x,s) (t)=±∞.

(iv) For all ξ ∈R, � ∈ {−,+}, s < t and x < y, g
ξ �,R
(x,s) (t)≤ g

ξ �,L
(y,s) (t). More generally, if

x < y, s ∈ R, g1 is a ξ � geodesic from (x, s) and g2 is a ξ � geodesic from (y, s) such that

g1(t)= g2(t) for some t > s, then g1(u)= g2(u) for all u > t . In other words, if g1 and g2

intersect, they coalesce at their first point of intersection.

(v) For all ξ ∈R, � ∈ {−,+}, S ∈ {L,R}, x ∈R and s < t ,

(6.5) lim
w↗x

g
ξ �,S
(w,s) (t)= g

ξ �,L
(x,s) (t) and lim

y↘x
g

ξ �,S
(y,s) (t)= g

ξ �,R
(x,s) (t),

and if g
ξ �,L
(x,s) (t)= g

ξ �,R
(x,s) (t)=: gξ �

(x,s)(t), then for S ∈ {L,R},

(6.6) lim
(w,u)→(x,s)

g
ξ �,S
(w,u)(t)= g

ξ �

(x,s)(t).

Furthermore,

(6.7) lim
x→±∞

g
ξ �,S
(x,s) (t)=±∞.

REMARK 6.4. In general, Theorem 6.3(i) cannot be extended to mix L with R. Pick a

point (x, s) ∈ NU0, where NU0 is defined as in (6.3). Then on the full-probability event of

Theorem 6.1, there exists a rational direction ξ and t > s such that

g
ξ−,L
(x,s) (t)= g

ξ+,L
(x,s) (t) < g

ξ−,R
(x,s) (t)= g

ξ+,R
(x,s) (t).
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By Theorem 6.3(ii), we may choose ξ1 < ξ < ξ2 sufficiently close to ξ such that

g
ξ2−,L
(x,s) (t)= g

ξ2+,L
(x,s) (t)= g

ξ−,L
(x,s) (t) < g

ξ+,R
(x,s) (t)= g

ξ1−,R
(x,s) (t)= g

ξ1+,R
(x,s) (t).

Item (iv) is an extension of Item 2 of Theorem 3.4 in [59] to all directions and all pairs of

initial points on the same horizontal level. It is not true that for all ξ ∈ R, s < t and x < y,

g
ξ+,R
(x,s) (t)≤ g

ξ−,L
(y,s) (t). This is discussed further in Remark 7.4 below.

The next theorem controls all semi-infinite geodesics with Busemann geodesics.

THEOREM 6.5. The following hold on a single event of probability one. Let (xr , tr)r∈R≥0

be any net such that tr →∞ and xr/tr → ξ :

(i) Let (x, s) ∈R2 and ξ ∈R. For each r large enough so that tr > s, let gr : [s, tr ] →R

be a geodesic from (x, s) to (xr , tr). Then, for each t ≥ s,

(6.8) g
ξ−,L
(x,s) (t)≤ lim inf

r→∞ gr(t)≤ lim sup
r→∞

gr(t)≤ g
ξ+,R
(x,s) (t).

In particular, g
ξ−,L
(x,s) is the leftmost and g

ξ+,R
(x,s) the rightmost among all semi-infinite geodesics

from (x, s) in direction ξ .

(ii) Let K ⊆ R2 be compact. Suppose that there is a level t after which all semi-

infinite geodesics from (x, s) ∈ K in direction ξ have coalesced. For u ≥ t , let g(u) be this

geodesic. Then, given T > t , there exists R ∈ R>0 such that for r ≥ R and all (x, s) ∈K , if

gr : [s, tr ]→R is a geodesic from (x, s) to (xr , tr), then

gr(u)= g(u) for all u ∈ [t, T ].
In particular, suppose there is a unique semi-infinite geodesic from (x, s) in direction ξ ,

denoted by g
ξ
(x,s). Then, given T > s for sufficiently large r , we have

gr(u)= g
ξ
(x,s)(u) for all u ∈ [s, T ].

REMARK 6.6. Theorem 7.1(i) below states that the assumed coalescence in Item (ii)

occurs whenever ξ /∈ �. The second statement of Item (ii) is in Corollary 3.1 in [59]. We

provide a different proof that uses the regularity of the Busemann process.

6.1. Proofs. In this section we prove Theorems 6.1, 6.3 and 6.5. In each of these, the

full-probability event is 	2 (5.25). We start by proving parts of Theorem 6.3, then go to the

proof of Theorem 6.1.

PROOF OF THEOREM 6.3, ITEMS (i)–(iii). Item (i) (Monotonicity of geodesics in the

direction parameter) was already proven as Equation (5.22). In fact, this item holds on 	1.

Item (ii) (Geodesics agree locally for close directions): This follows a similar proof as the

proof of Theorem 5.1(v). Let K be a compact subset of R, and let T be an integer greater

than maxK . Set

A= inf
{
g

(ξ−1)−,L
(x,s) (T ) : x, s ∈K

}
and B = sup

{
g

(ξ+1)+,R
(x,s) (T ) : x, s ∈K

}
.

By Lemma 5.13 and Item (i), −∞< A < B <∞. Then for all 0 < ε < 1 sufficiently small,

all ξ − ε < α < ξ and all x, s ∈ K , the functions z �→ L(x, s; z, T )+Wα�(z, T ;0, T ) and

z �→ L(x, s; z, t)+Wξ−(z, T ;0, T ) agree on the set [A,B], which contains all maximizers.

Hence, for such α and � ∈ {−,+}, and S ∈ {L,R}, g
α�,S
(x,s) (T ) = g

ξ−,S
(x,s) (T ). Since g

α�,L
(x,s) :

[s,∞)→R and g
α�,R
(x,s) : [s,∞)→R define semi-infinite geodesics that are, respectively, the



32 O. BUSANI, T. SEPPÄLÄINEN AND E. SORENSEN

leftmost and rightmost geodesics between any of their points (Theorem 5.9(iii)–(iv)), it must

also hold that for S ∈ {L,R} and t ∈ [t, T ], g
α�,S
(x,s) (t) = g

ξ−,S
(x,s) (t). Otherwise, taking S = L

without loss of generality, there would exist two distinct leftmost geodesics from (x, s) to

(g
ξ−,L
(x,s) (T ), T ), a contradiction. The proof for the ξ+ geodesics, where β is sufficiently close

to ξ from the right, is analogous.

Item (iii) (Limit of geodesics as direction goes to ±∞): This holds on 	2 by defini-

tion (5.25).

We postpone the proofs of Items (iv) and (v) until after the following proof. �

PROOF OF THEOREM 6.1 (DESCRIPTION OF THE SETS NUi ). By Theorem 5.5(ii) on

the event 	2, α /∈ � for all α ∈ Q, so we omit the ± distinction in this case. We first

prove (6.4). If (x, s) ∈NU
ξ �

0 , then g
ξ �,L
(x,s) (t) < g

ξ �,R
(x,s) (t) for some t > s. By Theorem 6.3(ii),

there exists a rational direction α (greater than ξ if � = + and less than ξ if � = −) such

that

g
α,L
(x,s)(t)= g

ξ �,L
(x,s) (t) < g

ξ �,R
(x,s) (t)= g

α,R
(x,s)(t).

Hence, (x, s) ∈NUα
0 . An analogous proof shows that NU1 =

⋃
ξ∈Q NU

ξ
1 .

Item (i): By Theorem 4.1(iii), for fixed direction ξ and fixed initial point p, there is a unique

semi-infinite geodesic from p in direction ξ , implying (x, s) /∈NU
ξ
0 . The result now follows

directly from (6.4) and a union bound. In particular, by definition of the event 	1 ⊃	2 (5.9),

for each (q, r) ∈Q2 and ξ ∈Q, (q, r) /∈NU
ξ
0 . Then by (6.4) on the event 	2, NU0 ⊆R2 \Q2.

We postpone the proof of Item (ii) until the end of this subsection. �

REMAINING PROOFS OF THEOREM 6.3. Item (iv) (Spatial monotonicity of geodesics):

We first prove a weaker result. Namely, for s ∈R, x < y, ξ ∈R, � ∈ {−,+} and S ∈ {L,R},

(6.9) g
ξ �,S
(x,s) (t)≤ g

ξ �,S
(y,s) (t) for all t ≥ s.

By continuity of geodesics, it suffices to assume that z := g
ξ �,L
(x,s) (t) = g

ξ �,L
(y,s) (t), for some

t > s, and then show that g
ξ �,L
(x,s) (u) = g

ξ �,L
(y,s) (u) for all u > t . By Theorem 5.9(iii), if z :=

g
ξ �,S
(x,s) (t)= g

ξ �,S
(y,s) (t), then for u > t , both g

ξ �,L
(x,s) (u) and g

ξ �,L
(y,s) (u) are the leftmost maximizer

of L(z, t;w,u)+Wξ �(w,u;0, u) over w ∈R, so they are equal.

Now, to prove the stated result, we follow a similar argument as Item 2 of Theorem 3.4

in [59], adapted to give a global result across all direction, signs and pairs of points along

the same horizontal line. Let g1 be a ξ � geodesic from (x, s), let g2 be a ξ � geodesic from

(y, s) and assume that g1(t)= g2(t) for some t > s. By continuity of geodesics, we may take

t to be the minimal such time. Choose r ∈ (s, t)∩Q and then choose q ∈ (g1(r), g2(r))∩Q;

see Figure 6. By Theorem 6.1(i) on the event 	2, there is a unique ξ � Busemann geodesic

from (q, r), which we shall call g = g
ξ �,L
(q,r) = g

ξ �,R
(q,r) . For u≥ r ,

(6.10) g1(u)≤ g
ξ �,R
(x,s) (u)≤ g(u)≤ g

ξ �,L
(y,s) (u)≤ g2(u).

The two middle inequalities come from (6.9). The two outer inequalities come from the

definition of g
ξ �,L/R
(x,s) (u) as the left and rightmost maximizers.

By assumption and (6.10), z := g1(t) = g(t) = g2(t). By Theorem 5.9(ii)(c), for u > t ,

g1(u), g2(u) and g(u) are all maximizers of L(z, t;w,u) +Wξ �(w,u;0, u) over w ∈ R.

However, since there is a unique ξ � geodesic from (q, r), there can be only one such maxi-

mizer, so the inequalities in (6.10) are equalities for u≥ t .

Item (v) (Limits of geodesics in the spatial parameter): We start by proving (6.5). We

prove the statement for the limits as w↗ x, and the limits as w↘ x follow analogously. By
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FIG. 6. Choosing a point (q, r) ∈Q2 whose ξ � geodesic is unique.

Item (iv) z := limw↗x g
ξ �,S
(w,s) (t) exists and is less than or equal to g

ξ �,L
(x,s) (t). Further, by the

same monotonicity for all w ∈ [x − 1, x], all maximizers of L(w, s;y, t)+Wξ �(y, t;0, t)

over y ∈ R lie in the common compact set [gξ �,L
(x−1,s)(t), g

ξ �,R
(x,s) (t)]. By continuity of the di-

rected landscape (Lemma B.2), as w↗ x, the function y �→ L(w, s;y, t)+Wξ �(y, t;0, t)

converges uniformly on compact sets to the function y �→ L(x, s;y, t) + Wξ �(y, t;0, t).

Hence, Lemma A.3 implies that z is a maximizer of L(x, s;y, t)+Wξ �(y, t;0, t) over y ∈R.

Since z≤ g
ξ �,L
(x,s) (t) and g

ξ �,L
(x,s) (t) is the leftmost such maximizer, equality holds.

The proof of (6.6) is similar: in this case Lemma 5.13 implies that, for all (w,u) suffi-

ciently close to (x, s), the maximizers of y �→ L(w,u;y, t)+Wξ �(y, t;0, t) lie in a common

compact set. Then by Lemma A.3, every subsequential limit of g
ξ �,S
(w,u)(t) as (w,u)→ (x, s)

is a maximizer of y �→ L(x, s;y, t)+Wξ �(y, t;0, t). By assumption there is only one such

maximizer, so the desired convergence holds.

Lastly, to show (6.7), we recall that the Busemann process evolves as the KPZ fixed point

(Theorem 5.1(iv)). The Busemann functions are continuous and satisfy the asymptotics pre-

scribed in Lemma 5.12(iv). Therefore, for each t , ξ and �, there exists constants a, b > 0 so

that |Wξ �(x, t;0, t)| ≤ a + b|x|. Lemma B.6(iii) applied to the temporally reflected version

of L states that, for sufficiently large |x|, g
ξ �,S
(x,s) (t) ∈ (x − |x|2/3, x + |x|2/3). �

PROOF OF THEOREM 6.5. We remind the reader that this theorem controls arbitrary

geodesics via the Busemann geodesics:

Item (i): Let α < ξ < β . By directedness of Busemann geodesics (Theorem 5.9(iii)) and

the assumption xr/rr → ξ , for all sufficiently large r ,

g
α−,L
(x,s) (tr) < xr < g

β+,R
(x,s) (tr).

Since g
α−,L
(x,s) is the leftmost geodesic between any of its points and g

β+,R
(x,s) is the rightmost

(Theorem 5.9(iv)), it follows that, for u ∈ [s, tr ],

(6.11) g
α−,L
(x,s) (u)≤ gr(u)≤ g

β+,R
(x,s) (u).

Hence, for all t ≥ s,

g
α−,L
(x,s) (t)≤ lim inf

r→∞ gr(t)≤ lim sup
r→∞

gr(t)≤ g
β+,R
(x,s) (t).

By Theorem 6.3(ii), taking limits as α↗ ξ and β ↘ ξ completes the proof.

Item (ii): Assume that all geodesics in direction ξ , starting from a point in the compact set

K , have coalesced by time t , and for u ≥ t , let g(u) be the spatial location of this common
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geodesic. By Item (i), for all p ∈K and u≥ t ,

g(u)= gξ−,L
p (u)= gξ+,R

p (u).

Let T > t be arbitrary. By Theorem 6.3(ii), we may choose α < ξ < β such that, for all p ∈K

and u ∈ [t, T ],

(6.12) g
α−,L
(g(t),t)(u)= gα−,L

p (u)= g(u)= gβ+,R
p (u)= g

β+,R
(g(t),t)(u).

The outer equalities hold because the geodesics pass through (g(t), t). With this choice of

α, β , by the directedness of Theorem 5.9(iii) and since xr/tr → ξ , we may choose r large

enough so that tr ≥ T and g
α−,L
(g(t),t)(tr) < xr < g

β+,R
(g(t),t)(tr). Then, as in the proof of Item (i),

for all u ∈ [t, tr ],

g
α−,L
(g(t),t)(u)≤ gr(u)≤ g

β+,R
(g(t),t)(u).

Combining this with (6.12) completes the proof. �

It remains to prove Theorem 6.1(ii). We first prove a lemma.

LEMMA 6.7. Let ω ∈	2, ξ ∈R, � ∈ {−,+}, Q � s < t ∈R, and assume that there is a

nonempty interval I = (a, b)⊆ R such that, for all x ∈Q, g
ξ �

(x,s)(t) /∈ I (By Theorem 6.1(i),

we may ignore the L/R distinction when (x, s) ∈Q2). Then there exists x̂ ∈R such that

(6.13) g
ξ �,L

(x̂,s)
(t)≤ a < b ≤ g

ξ �,R

(x̂,s)
(t).

PROOF. Choose some y ∈ (a, b), and let

x̂ = sup
{
x ∈Q : gξ �

(x,s)(t) < y
}
.

By equation (6.7) of Theorem 6.3(v), x̂ ∈R. By the monotonicity of Theorem 6.3(iv), for all

Q � x < x̂, g
ξ �

(x,s)(t) < y, while for all Q � x > x̂, g
ξ �

(x,s)(t)≥ y. By assumption of the lemma,

this further implies that for Q � x < x̂, g
ξ �

(x,s)(t) ≤ a while for Q � x > x̂, g
ξ �

(x,s)(t) ≥ b. By

taking limits via equation (6.5) of Theorem 6.3(v), we obtain (6.13). �

PROOF OF THEOREM 6.1(ii) (NU
ξ �

0 ∩Hs IS COUNTABLY INFINITE AND UNBOUNDED).

We prove the statement in three steps. First, we show that on 	2, for all s ∈ Q, ξ ∈ R,

� ∈ {−,+}, the set NU
ξ �

0 ∩Hs is infinite and unbounded in both directions. Next, we show

that, on 	2, NU
ξ �

0 ∩Hs is, in fact, infinite and unbounded in both directions for all s ∈ R.

Lastly, we show that the set NU0∩Hs (the union over all directions and signs) is countable.

For the first step, Theorem 6.1(i) states that, on the event 	2, for each (x, s) ∈Q2, ξ ∈ R

and � ∈ {−,+}, there is a unique ξ � geodesic g
ξ �

(x,s), and, therefore, this geodesic is both

the leftmost and rightmost ξ � geodesic from (x, s). Since leftmost (resp., rightmost) Buse-

mann geodesics are leftmost (rightmost) geodesics between any two of their points (Theo-

rem 5.9(iv)), it follows that g
ξ �

(x,s), restricted to times t ∈ [s, s + 2], is the unique geodesic

from (x, s) to (g
ξ �

(x,s)(s + 2), s + 2). By Lemma 5.13 for each compact set K , the set

{
g

ξ �

(x,s)(s + 1) : x ∈Q∩K
}

is contained in some compact set K ′. Then we have the following inclusion of sets:

{
g

ξ �

(x,s)(s + 1) : x ∈Q∩K
}
⊆

⋃

g∈AK,K′

{
g(s + 1)

}
,(6.14)
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where

AK,K ′ =
{
g : g is the unique geodesic from (x, s) to (y, s + 2) for some x ∈K,y ∈K ′}.

By Lemma B.9 the set in the RHS of (6.14) is finite, so the set on the LHS is finite as well.

Therefore, the set

(6.15)
{
g

ξ �

(x,s)(s + 1) : x ∈Q
}
=

⋂

k∈Z>0

{
g

ξ �

(x,s)(s + 1) : x ∈Q∩ [−k, k]
}

is a union of finite nested sets. Further, by the ordering of geodesics from Theorem 6.3(iv)

for each k, the difference
{
g

ξ �

(x,s)(s + 1) : x ∈Q∩
[
−(k + 1), k+ 1

]}
\
{
g

ξ �

(x,s)(s + 1) : x ∈Q∩ [−k, k]
}

lies entirely in the union of intervals

(
−∞, inf

{
g

ξ �

(x,s)(s + 1) : x ∈Q∩ [−k, k]
}]
∪
[
sup

{
g

ξ �

(x,s)(s + 1) : x ∈Q∩ [−k, k]
}
,∞

)
.

Therefore, the set (6.15) has no limit points. Further, by equation (6.7) of Theorem 6.3(v), the

set (6.15) is unbounded in both directions. These two facts imply that there exist infinitely

many disjoint nonempty intervals whose intersection with the set (6.15) is empty, and the

set of endpoints of such intervals is unbounded. By Lemma 6.7 for each k > 0, there ex-

ists (x, s) ∈ NU
ξ �

0 such that g
ξ �,R
(x,s) (s + 1) ≥ k, and there exists (x, s) ∈ NU

ξ �

0 such that

g
ξ �,L
(x,s) (s + 1) ≤ −k. Next, assume, by way of contradiction, that the set {x ∈ R : (x,0) ∈

NU
ξ �

0 } has an upper bound b. Then by the monotonicity of Theorem 6.3(iv), for all x ∈ R

with (x, s) ∈ NU
ξ �

0 , g
ξ �,R
(x,s) (s + 1) ≤ g

ξ �,R
(b,s) (s + 1). But this contradicts the fact we showed

that {gξ �,R
(x,s) (s + 1) : x ∈ R} is not bounded above. Hence, there exists a sequence yn →∞

such that (yn, s) ∈NU
ξ �

0 for all n. By a similar argument, there exists a sequence xn→−∞
such that (xn, s) ∈NU

ξ �

0 for all n.

Now, for arbitrary s ∈R, pick a rational number T > s. Pick (z, T ) ∈NU
ξ �

0 , and let

x1 = sup
{
x ∈R : gξ �,L

(x,s) (T )≤ z
}

and x2 = inf
{
x ∈R : gξ �,R

(x,s) (T )≥ z
}
.

By the limits in equation (6.7) of Theorem 6.3(v), x1 and x2 lie in R.

We first show that x2 ≤ x1. If not, then choose x ∈ (x1, x2). Then g
ξ �,R
(x,s) (T ) < z <

g
ξ �,L
(x,s) (T ), contradicting the meaning of L and R. Hence, x2 ≤ x1. For any x > x2,

g
ξ �,R
(x,s) (T ) ≥ z and by the limit in equation (6.5) of Theorem 6.3(v), g

ξ �,R
(x2,s)

(T ) ≥ z as well.

By an analogous argument, for x < x1, g
ξ �,L
(x,s) (T )≤ z and the inequality g

ξ �,L
(x1,s)

(T )≤ z holds

by the same argument. Hence, for x ∈ [x2, x1],

g
ξ �,L
(x,s) (T )≤ z and g

ξ �,R
(x,s) (T )≥ z.

Then by the monotonicity of Theorem 6.3(iv), for t ≥ T ,

(6.16) g
ξ �,L
(x,s) (t)≤ g

ξ �,L
(z,T ) (t)≤ g

ξ �,R
(z,T ) (t)≤ g

ξ �,R
(x,s) (t).

By assumption that (z, T ) ∈ NU
ξ �

0 , there exists t > T such that the middle inequality

in (6.16) is strict, so (x, s) ∈ NU
ξ �

0 . Furthermore, by assumption the set {z ∈ R : (z, T ) ∈
NU0} has neither an upper or lower bound. Then by the t = T case of (6.16) and a similar

argument as for the s = 0 case, the set {x ∈ R : (x, s) ∈ NU0} also has neither an upper nor

lower bound.
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We lastly show countability of the sets. By (6.4) it suffices to show that, for each ξ ∈Q and

s ∈R, NU
ξ
0 ∩Hs is countable. The proof is that of Theorem 3.4, Item 3 in [59], adapted to all

horizontal lines simultaneously. For each (x, s) ∈NU
ξ
0 , there exists t > s such that g

ξ,L
(x,s)(t) <

g
ξ,R
(x,s)(t). By continuity of geodesics, the space between the two geodesics contains an open

subset of R2. By the monotonicity of Theorem 6.3(iv), for x < y, g
ξ,R
(x,s)(t)≤ g

ξ,L
(y,s)(t) for all

t ≥ s. Hence, for x < y, with (x, s), (y, s) ∈NU
ξ
0 , the associated open sets in R2 are disjoint,

and NU
ξ
0 ∩Hs is at most countably infinite. �

7. Coalescence and the global geometry of geodesics. We can now describe the global

structure of the semi-infinite geodesics, beginning with coalescence.

THEOREM 7.1. On a single event of full probability, the following hold across all direc-

tions ξ ∈R and signs � ∈ {−,+}:

(i) For all p,q ∈R2, if g1 and g2 are ξ � Busemann geodesics from p and q , respectively,

then g1 and g2 coalesce. If the first point of intersection of the two geodesics is not p or q ,

then the first point of intersection is the coalescence point of the two geodesics.

(ii) Let g1 and g2 be two distinct ξ � Busemann geodesics from an initial point (x, s) ∈
NU

ξ �

0 . Then the set {t > s : g1(t) �= g2(t)} is a bounded open interval. That is, after the

geodesics split, they coalesce exactly when they meet again.

(iii) For each compact set K ⊆R2, there exists a random T = T (K, ξ, �) <∞ such that

for any two ξ � geodesics g1 and g2 whose starting points lie in K , g1(t) = g2(t) for all

t ≥ T . That is, there is a time level T after which all semi-infinite geodesics started from

points in K have coalesced into a single path.

REMARK 7.2. Theorem 1 of [17] and, independently, Lemma 3.3 of [24] imply the fol-

lowing refinements of the results in this section. In Theorem 7.1(ii), {t > s : g1(t) �= g2(t)} =
(s, r) for some r ∈ (s,∞). Under Condition (i) of Theorem 7.3 below, the entire collection

of semi-infinite geodesics in direction ξ is a tree.

The following gives a full classification of the directions in which geodesics coalesce. We

refer the reader to Theorems 7.8 and 7.9 below for the connection between coalescence and

the regularity of the Busemann process.

THEOREM 7.3. On a single event of probability one, the following are equivalent:

(i) ξ /∈�.

(ii) g
ξ−,S
p = g

ξ+,S
p for all p ∈R2 and S ∈ {L,R}.

(iii) All semi-infinite geodesics in direction ξ coalesce (whether Busemann geodesics or

not).

(iv) For all p ∈R2 \NU0, there is a unique geodesic starting from p with direction ξ .

(v) There is a unique ξ -directed semi-infinite geodesic from some p ∈R2.

(vi) There exists p ∈R2 such that g
ξ−,L
p = g

ξ+,L
p .

(vii) There exists p ∈R2 such that g
ξ−,R
p = g

ξ+,R
p

Under these equivalent conditions, the following also holds:

(viii) From any p ∈R2, all semi-infinite geodesics in direction ξ are Busemann geodesics.
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REMARK 7.4. The equivalence (i)⇔(vi) implies that ∀ξ ∈ � and p ∈ R2, geodesics

g
ξ−,L
p and g

ξ+,L
p are distinct. The same is true when L is replaced with R. Since g

ξ−,L
p and

g
ξ+,L
p are both leftmost geodesics between any two of their points (Theorem 5.9(iv)) then

if ξ ∈ �, these two geodesics must separate at some time t ≥ s, and they cannot ever come

back together. For each ξ ∈ �, there are two coalescing families of geodesics, namely, the

ξ− and ξ+ geodesics. (See again Figure 2.) In particular, whenever ξ ∈�, s ∈R and x < y,

g
ξ+,L
(x,s) (t) > g

ξ−,R
(y,s) (t) for sufficiently large t , as alluded to in Remark 6.4.

7.1. Proofs. In each of these theorems, the full-probability event is 	2 (5.25). We start

by proving some lemmas that allow us to prove Theorem 7.1. The proof of Theorem 7.3

comes at the very end of this subsection. Section 7.2 proves Theorem 2.5 as well as lingering

results from Section 5.

LEMMA 7.5. Let ω ∈	1, s ∈ R and x < y ∈ R. Assume, for some α < ξ and �1, �2 ∈
{−,+}, that Wα�1

(y, s;x, s) = Wξ �2
(y, s;x, s). We also allow α = ξ if �1 = − and

�2 =+. If t > s and g
ξ �2,R
(x,s) (t)≤ g

α�1,L
(y,s) (t), then for all u ∈ [s, t],

(7.1) g
α�1,R
(x,s) (u)= g

ξ �2,R
(x,s) (u) and g

α�1,L
(y,s) (u)= g

ξ �2,L
(y,s) (u).

PROOF. By assumption, whenever w < z and t ∈R, Theorem 5.1(iii) gives

(7.2) Wα�1
(z, t;w, t)≤Wξ �2

(z, t;w, t).

For the rest of the proof, we suppress the �1, �2 notation. By Theorem 5.1(ii), (iv),

Wξ (y, s;x, s)=Wξ (y, s;0, t)−Wξ (x, s;0, t)

= sup
z∈R

{
L(y, s; z, t)+Wξ (z, t;0, t)

}

− sup
z∈R

{
L(x, s; z, t)+Wξ (z, t;0, t)

}
,

(7.3)

and the same with ξ replaced by α. Recall that g
ξ �,L
(x,s) (t) and g

ξ �,R
(x,s) (t) are, respectively, the

leftmost and rightmost maximizers of L(x, s; z, t)+Wξ �(z, t;0, t) over z ∈R. Understand-

ing that these quantities depend on s and t , we use the shorthand notation g
ξ,R
x = g

ξ �1,R
(x,s) (t)

and, similarly, with the other quantities. Then we have

L
(
x, s;gξ,R

x , t
)
+Wξ

(
gξ,R

x , t;0, t
)
−

(
L
(
x, s;gξ,R

x , t
)
+Wα

(
gξ,R

x , t;0, t
))

≥ sup
z∈R

{
L(x, s; z, t)+Wξ (z, t;0, t)

}
− sup

z∈R

{
L(x, s; z, t)+Wα(z, t;0, t)

}
(7.4)

= sup
z∈R

{
L(y, s; z, t)+Wξ (z, t;0, t)

}
− sup

z∈R

{
L(y, s; z, t)+Wα(z, t;0, t)

}

≥ L
(
y, s;gα,L

y , t
)
+Wξ

(
gα,L

y , t;0, t
)
−

(
L
(
y, s;gα,L

y , t
)
+Wα

(
gα,L

y , t;0, t
))

,(7.5)

where the middle equality came from the assumption that Wξ (y, s;x, s)=Wα(y, s;x, s) and

equation (7.3) applied to both ξ and α. Rearranging the first and last lines yields

Wξ

(
gα,L

y , t;gξ,R
x , t

)
≤Wα

(
gα,L

y , t;gξ,R
x , t

)
.

However, the assumption g
ξ,R
x ≤ gα,L

y , combined with (7.2), implies that this inequality is an

equality. Hence, inequalities (7.4) and (7.5) are also equalities. From the equality (7.4),

L
(
x, s;gξ,R

x , t
)
+Wα

(
gξ,R

x , t;0, t
)
= sup

z∈R

{
L(x, s; z, t)+Wα(z, t;0, t)

}
,
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so z= g
ξ,R
x is a maximizer of L(x, s; z, t)+Wα(z, t;0, t). By definition gα,R

x is the rightmost

maximizer, and by geodesic ordering (Theorem 6.3(i)), g
ξ,R
x ≥ gα,R

x , so g
ξ,R
x = gα,R

x . An

analogous argument applied to (7.5) implies gα,L
y = g

ξ,L
y . We have shown that

g
α�1,R
(x,s) (t)= g

ξ �2,R
(x,s) (t) and g

α�1,L
(y,s) (t)= g

ξ �2,L
(y,s) (t).

Since g
α�1,R
(x,s) and g

ξ �2,R
(x,s) are both the rightmost geodesics between any two of their points

and similarly with the leftmost geodesics from (y, s) (Theorem 5.9(iv)), equation (7.1) holds

for all u ∈ [s, t], as desired. �

LEMMA 7.6. Let ω ∈	2, s ∈ R and x < y. If, for some α < ξ and �1, �2 ∈ {−,+} we

have that Wα�1
(y, s;x, s) =Wξ �2

(y, s;x, s), then g
α�1,R
(x,s) coalesces with g

α�1,L
(y,s) , g

ξ �2,R
(x,s)

coalesces with g
ξ �2,L
(y,s) and the coalescence points of the two pairs of geodesics are the same.

PROOF. By Theorem 5.9(iii), g
ξ �2,R
(x,s) (t)/t → ξ while g

α�1,L
(y,s) (t)/t → α as t →∞. By

this and continuity of geodesics, there exists a minimal time t > s such that z := g
ξ �2,R
(x,s) (t)=

g
α�1,L
(y,s) (t). By Lemma 7.5

g
α�1,R
(x,s) (u)= g

ξ �2,R
(x,s) (u) and g

α�1,L
(y,s) (u)= g

ξ �2,L
(y,s) (u) for all u ∈ [s, t].

Since t was chosen to be minimal, Theorem 6.3(iv) implies that the pair g
α�1,R
(x,s) , g

α�1,L
(y,s) and

the pair g
ξ �2,R
(x,s) , g

ξ �2,L
(y,s) both coalesce at (z, t). �

PROOF OF THEOREM 7.1. Item (i) (Coalescence): Let g1 and g2 be ξ � Busemann

geodesics from (x, s) and (y, t), respectively, and take s ≤ t without loss of generality. Let

a = (g1(t)∧ y)− 1 and b= (g1(t)∨ y)+ 1. By Theorem 6.3(iv), for all u≥ t ,

(7.6) g
ξ �,R
(a,t) (u)≤ g1(u)∧ g2(u)≤ g1(u)∨ g2(u)≤ g

ξ �,L
(b,t) (u).

By Theorem 5.1(v), there exists α, sufficiently close to ξ , (from the left for � = − and

from the right for � =+) such that Wξ �(b, t;a, t)=Wα�(b, t;a, t). By Lemma 7.6, g
ξ �,R
(a,t)

coalesces with g
ξ �,L
(b,t) . Then for u large enough, all inequalities in (7.6) are equalities, and g1

and g2 coalesce.

If the first point of intersection is not (y, t), then g1(t) �= y, and the coalescence point of

g1 and g2 is the first point of intersection by Theorem 6.3(iv).

Item (ii) (Geodesics coalesce when they meet): Let (x, s) ∈ NU
ξ �

0 , and let g1 and g2 be

two distinct ξ � Busemann geodesics from (x, s). The set GNEQ := {t > s : g1(t) �= g2(t)} is,

therefore, nonempty and infinite by continuity of g1 and g2. Assume, by way of contradiction,

that GNEQ is not an open interval. By continuity of geodesics, GNEQ cannot be a closed or

half-closed interval, so GNEQ is not path connected. Thus, there exists t1 < t2 < t3 so that

g1(t1) �= g2(t1), g1(t2)= g2(t2) and g1(t3) �= g2(t3).

The geodesics g1|[t1,∞) and g2|[t1,∞), started from (g1(t1), t1) and (g2(t1), t1), respectively,

are both Busemann geodesics by their construction in Theorem 5.9. Since the geodesics

g1|[t1,∞) and g2|[t1,∞) start at different spatial locations (namely, g1(t1) and g2(t1)) along

the same time level t1, they cannot intersect at either of their starting points. By Item (i)

the two geodesics g1|[t1,∞) and g2|[t1,∞) must coalesce, and the first point of intersection is

the coalescence point. Since g1(t2) = g2(t2), this implies that g1(t) = g2(t) for all t > t2, a

contradiction to the existence of t3.
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Item (iii) (Uniformity of coalescence): Let ξ ∈ R, � ∈ {−,+}, and let the compact set K

be given. Let S be the smallest integer greater than max{s : (x, s) ∈K}. Set

A := inf
{
g

ξ �,L
(x,s) (S) : (x, s) ∈K

}
and B := sup

{
g

ξ �,R
(x,s) (S) : (x, s) ∈K

}
.

By Lemma 5.13,−∞< A≤ B <∞. Then by Theorem 6.3(iv), whenever g is a ξ � geodesic

starting from (x, s) ∈K ,

g
ξ �,L
(A,S)(t)≤ g(t)≤ g

ξ �,R
(B,S) (t) for all t ≥ S.

To complete the proof, let T be the time at which g
ξ �,L
(A,S) and g

ξ �,R
(B,S) coalesce, which is guar-

anteed to be finite by Item (i). �

For two initial points on a horizontal level, as ξ varies, a constant Busemann process

corresponds to a constant coalescence point of the geodesics. The nonuniqueness of geodesics

requires us to be careful about the choice of left and right geodesic.

DEFINITION 7.7. For s ∈ R and x < y, let zξ �(y, s;x, s) be the coalescence point of

g
ξ �,L
(y,s) and g

ξ �,R
(x,s) .

THEOREM 7.8. On a single event of probability one, for all reals α < β , s and x < y,

the following are equivalent:

(i) Wα+(y, s;x, s)=Wβ−(y, s;x, s).

(ii) zα+(y, s;x, s)= zβ−(y, s;x, s).

(iii) There exist t > s and z ∈ R such that there are paths g1 : [s, t] → R (connecting

(x, s) and (z, t)) and g2 : [s, t]→R (connecting (y, s) to (z, t)) such that, for all ξ ∈ (α,β),

� ∈ {−,+} and u ∈ [s, t),

(7.7)
g1(u)= g

ξ �,R
(x,s) (u)= g

α+,R
(x,s) (u)= g

β−,R
(x,s) (u)

< g2(u)= g
ξ �,L
(y,s) (u)= g

α+,L
(y,s) (u)= g

β−,L
(y,s) (u).

PROOF. (i)⇒(ii) follows from Lemma 7.6.

(ii)⇒(i): Assume (z, t) := zα+(y, s;x, s) = zβ−(y, s;x, s). By additivity (Theo-

rem 5.1(ii)) and Theorem 5.9(iii),

Wα+(y, s;x, s)=Wα+(y, s; z, t)−Wα+(x, s; z, t)
= L(y, s; z, t)−L(x, s; z, t)
=Wβ−(y, s; z, t)−Wβ−(x, s; z, t)=Wβ−(y, s;x, s).

(ii)⇒(iii): Let (z, t) be as in the proof of (ii)⇒(i). By Theorem 5.9(iv), the restriction

of g
α+,R
(x,s) and g

β−,R
(x,s) to the domain [s, t] are both rightmost geodesics between (x, s) and

(z, t), and, therefore, they agree on this restricted domain. Similarly, g
α+,L
(y,s) and g

β−,L
(y,s) agree

on the domain [s, t]. By the monotonicity of Theorem 6.3(i) and since (z, t) is the common

coalescence point, (7.7) holds for u ∈ [s, t), as desired.

(iii)⇒(ii) is immediate. �

THEOREM 7.9. On a single event of probability one, for all reals s, ξ ∈ R and x < y,

the following are equivalent:

(i) Wξ−(y, s;x, s)=Wξ+(y, s;x, s).
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(ii) zξ−(y, s;x, s)= zξ+(y, s;x, s).

(iii) g
ξ−,R
(x,s) (t)= g

ξ+,L
(y,s) (t) for some t > s, that is, the paths g

ξ−,R
(x,s) and g

ξ+,L
(y,s) intersect.

REMARK 7.10. In Item (iii), if ξ ∈�, then despite intersecting, the geodesics g
ξ−,R
(x,s) and

g
ξ+,L
(y,s) cannot coalesce. This follows from Theorem 7.3, which gives a full classification of

the directions in which all semi-infinite geodesics coalesce.

PROOF OF THEOREM 7.9. (i)⇒(ii): If Wξ−(y, s;x, s) = Wξ+(y, s;x, s), then Theo-

rem 5.1(v) implies that, for some α < ξ < β , Wα+(y, s;x, s) =Wβ−(y, s;x, s). Then, we

apply (i)⇒(iii) of Theorem 7.8 to conclude that for some t > s and z ∈R,

g
ξ−,R
(x,s) (u)= g

ξ+,R
(x,s) (u) < g

ξ−,L
(y,s) (u)= g

ξ+,L
(y,s) (u) for u ∈ [s, t),

whereas for u = t , all terms above equal some common value z. Therefore, (z, t) =
zξ−(y, s;x, s)= zξ+(y, s;x, s).

(ii)⇒(i): Similarly, as in the proof of (ii)⇒(i) of Theorem 7.8, if (z, t)= zξ−(y, s;x, s)=
zξ+(y, s;x, s), then Wξ−(y, s;x, s)= L(y, s; z, t)−L(x, s; z, t)=Wξ+(y, s;x, s).

(ii)⇒(iii): Assume (z, t) = zξ−(y, s;x, s) = zξ+(y, s;x, s). Then g
ξ−,R
(x,s) (t) = z =

g
ξ+,L
(y,s) (t).

(iii)⇒(ii): Assume that g
ξ−,R
(x,s) (t) = g

ξ+,L
(y,s) (t) for some t > s. Let t be the minimal such

time, and let (z, t) be the point where the geodesics first intersect. By Theorem 6.3, Items (i)

and (iv), for u > s,

(7.8) g
ξ−,R
(x,s) (u)≤ g

ξ+,R
(x,s) (u)∧ g

ξ−,L
(y,s) (u)≤ g

ξ+,R
(x,s) (u)∨ g

ξ−,L
(y,s) (u)≤ g

ξ+,L
(y,s) (u).

In particular, when u= t , all inequalities in (7.8) are equalities. Further, since g
ξ−,R
(x,s) , g

ξ+,R
(x,s)

are rightmost geodesics between (x, s) and (z, t) (Theorem 5.9(iv)), g
ξ−,R
(x,s) (u) = g

ξ+,R
(x,s) (u)

for u ∈ [s, t]. Similarly, g
ξ−,L
(y,s) (u) = g

ξ+,L
(y,s) (u) for u ∈ [s, t]. Since t was chosen minimally

for g
ξ−,R
(x,s) (t)= g

ξ+,L
(y,s) (t), we have (z, t)= zξ−(y, s;x, s)= zξ+(y, s;x, s). �

PROOF OF THEOREM 7.3 (CLASSIFICATION OF DIRECTIONS). (i)⇒(ii): If ξ /∈�, then

Wξ− =Wξ+, so (ii) follows by the construction of the Busemann geodesics from the Buse-

mann functions.

(ii)⇒(iii): Since a geodesic in direction ξ from (x, s) must pass through each horizontal

level t > s, it is sufficient to show that, for s ∈ R and x < y, whenever g1 is a semi-infinite

geodesic from (x, s) in direction ξ and g2 is a semi-infinite geodesic from (y, s) in direction

ξ , g1 and g2 coalesce. Assuming (ii) and using Theorem 6.5(i), for all t > s,

g
ξ+,L
(x,s) (t)= g

ξ−,L
(x,s) (t)≤ g1(t)∧ g2(t)≤ g1(t)∨ g2(t)≤ g

ξ+,R
(y,s) (t).

By Theorem 7.1(i), g
ξ+,L
(x,s) and g

ξ+,R
(y,s) coalesce, so all inequalities above are equalities for

large t , and g1 and g2 coalesce.

(iii)⇒(i): We prove the contrapositive. If ξ ∈�, then by Theorem 5.1(iii)–(iv), Wξ−(y, s;
x, s) < Wξ+(y, s;x, s) for some x < y and s ∈ R. By (i)⇔(iii) of Theorem 7.9, g

ξ−,R
(x,s) (t) <

g
ξ+,L
(y,s) (t) for all t > s. In particular, g

ξ−,R
(x,s) and g

ξ+,L
(y,s) do not coalesce.

(ii)⇒(iv): By definition of NU0, whenever p /∈ NU0, g
ξ �,L
p = g

ξ �,R
p for ξ ∈ R and � ∈

{−,+}. Hence, assuming p /∈NU0 and g
ξ−,R
p = g

ξ+,R
p , we also have g

ξ−,L
p = g

ξ+,R
p , so there

is a unique geodesic from p in direction ξ by Theorem 6.5(i).
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(iv)⇒(v): By Theorem 6.1(i) on the event 	2, NU0 contains no points of Q2, and, there-

fore, NU0 is not all of R2.

(v)⇒(vi) and (v)⇒(vii) are direct consequences of Theorem 6.5(i): If there is a unique

semi-infinite geodesic in direction ξ from a point p ∈ R2, then g
ξ−,L
p = g

ξ+,L
p = g

ξ−,R
p =

g
ξ+,R
p .

(vi)⇒(ii): Let p be a point from which g
ξ−,L
p = g

ξ+,L
p , and call this common geodesic g.

Let q be an arbitrary point in R2. By Theorem 7.1(i), g
ξ−,L
q , g

ξ+,L
q , g

ξ−,R
q and g

ξ+,R
q each

coalesce with g, so g
ξ−,L
q and g

ξ+,L
q coalesce. Since both geodesics are the leftmost geodesics

between their points by Theorem 5.9(iv), they must be the same. Similarly, g
ξ−,R
q = g

ξ+,R
q .

(vii)⇒(ii) follows by the same proof.

Item (viii): Let ξ ∈R\�, and let g be a semi-infinite geodesic in direction ξ , starting from

a point (x, s) ∈ R2. By Lemma 5.14 and Theorem 5.9(ii), it is sufficient to show that, for

sufficiently large t ,

(7.9) L
(
x, s;g(t), t

)
=Wξ

(
x, s;g(t), t

)

(we dropped the± distinction since Wξ− =Wξ+). By Item (iii), g coalesces with g
ξ,R
(x,s). Then

for sufficiently large t , g(t)= g
ξ,R
(x,s)(t) and by Theorem 5.9(iii), (7.9) holds. �

7.2. Remaining proofs from Section 5 and Proof of Theorem 2.5. We complete some

unfinished business.

PROOF OF ITEMS (vi)–(viii) OF THEOREM 5.1 AND MIXING IN THEOREM 5.3(ii). We

continue to work on the event 	2.

Item (vi) of Theorem 5.1 (Busemann limits I): By Theorem 7.3(viii), if ξ /∈�, all ξ -directed

semi-infinite geodesics are Busemann geodesics, and they all coalesce. By Theorem 7.1(iii),

there exists a level T such that all geodesics from points starting in the compact set K have

coalesced by time T . Let (Z,T ) denote the location of the point of the common geodesics at

time T . Let rt = (zt , ut )t∈R≥0
be any net with ut →∞ and zt/ut → ξ . By Theorem 6.5(ii),

for all sufficiently large t and p ∈K , all geodesics from p to rt pass through (Z,T ). Then

for p,q ∈K ,

L(p; rt )−L(q; rt )= L(p;Z,T )+L(Z,T ; rt )−
(
L(q;Z,T )+L(Z,T ; rt )

)
.

By Theorems 5.9(ii)(b) and 5.1(ii), the right-hand side is equal to

Wξ (p;Z,T )−Wξ (q;Z,T )=Wξ (p;q).

Item (vii) of Theorem 5.1 (Busemann limits II): By Theorem 5.5(iii) on the event 	2,

� contains no rational directions. Then for arbitrary ξ ∈ R, s ∈ R, x < y ∈ R, α,β ∈ Q

with α < ξ < β and a net (zr , ur) with ur →∞ and zr/ur → ξ , for sufficiently large r ,

αur < zr < βur . Theorem 5.1(vi) gives the existence of the limits in the first and last lines

below, while the monotonicity of Lemma B.4(i) justifies the first and last inequalities,

Wα(y, s;x, s)= lim
r→∞L(y, s;αur , ur)−L(x, s;αur , ur)

≤ lim inf
r→∞ L(y, s; zr , ur)−L(x, s; zr , ur)

≤ lim sup
r→∞

L(y, s; zr , ur)−L(x, s; zr , ur)

≤ lim
r→∞L(y, s;βur , ur)−L(x, s;βur , ur)=Wβ(y, s;x, s).

Sending Q � α↗ ξ and Q � β ↘ ξ and using Item (v) completes the proof.
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Item (viii) of Theorem 5.1 (Global attractiveness): We follow a similar proof to the at-

tractiveness in Theorem 2.1. Let ξ /∈�, and assume h ∈ UC is a function satisfying the drift

condition (2.4). Recall that we define

(7.10) hs,t (x)= sup
z∈R

{
L(x, s; z, t)+ h(z)

}
.

For a > 0 and s < t , Theorems 5.1(v) and 5.5(iii) allows us to choose ε = ε(ξ) > 0 small

enough so that ξ ± 2ε ∈Q (and thus ξ ± 2ε /∈�), and so for all x ∈ [−a, a],
(7.11) Wξ±2ε(x, s;0, s)=Wξ (x, s;0, s).

By Theorem 7.1(iii), there exists a random T = T (a, ξ ± ε) such that all ξ − 2ε Busemann

geodesics have coalesced by time T and all ξ + 2ε Busemann geodesics have coalesced

by time T . For t > T , let gξ±2ε(t) be locations of these two common geodesics at time t .

By Theorem 5.9(ii)(d), gξ±2ε(t)/t → ξ ± 2ε. By the reflected version of equation (B.4) in

Lemma B.5, there exists t0(a, ε(ξ), s) so that for t > t0, whenever x ∈ [−a, a] and z is a

maximizer in (7.10), gξ−2ε(t) < z < gξ+2ε(t). Then by Lemma B.4(iii), for such large t ,

Wξ−2ε(x, s;0, s)≤ hs,t (x)− hs,t (0)≤Wξ+2ε(x, s;0, s),

while for−a ≤ x ≤ 0, the equalities reverse. Combined with (7.11), this completes the proof.

Item (ii) of Theorem 5.3 (Mixing): This proof follows a similar idea as that in Lemma 7.5

of [6], and the key is that, within a compact set, the Busemann functions are equal to differ-

ences of the directed landscape for large enough t . Then we use Lemma B.3, which states that,

as a projection of {L,W }, the directed landscape L is mixing under the transformation Tz;a,b.

Set rz = (az, bz). By a standard π − λ argument, it suffices to show that, for ξ1, . . . ξk ∈ R

(ignoring the sign � since ξi /∈� a.s.), all compact sets K :=K1×Kk
2 ⊆R4

↑

× (R4)k and all

Borel sets A,B ∈ C(K,R),

lim
z→∞P

(
{L,Wξ1:k }|K ∈A, {Tz;a,bL, Tz;a,bWξ1:k }|K ∈ B

)

= P
(
{L,Wξ1:k }|K ∈A

)
P
(
{L,Wξ1:k }|K ∈ B

)
,

where we use the shorthand notation

{L,Wξ1:k }|K :=
{
L(v),Wξi

(p;q) : 1≤ i ≤ k, (v,p, q) ∈K
}
,

and Tz;a,b acts on L and W as projections of {L,W }. By Theorem 5.1(vi), we may choose

t > 0 sufficiently large so that

(7.12) P
(
Wξi

(p;q)= L
(
p; (tξ, t)

)
−L

(
q; (tξ, t)

)
∀(p, q) ∈K2,1≤ i ≤ k

)
≥ 1− ε.

By stationarity of the process under space-time shifts, we also have that, for such large t and

all z ∈R,

(7.13)
P
(
Tz;a,bWξi

(p;q)= Tz;a,b

[
L
(
p; (tξ, t)

)
−L

(
q; (tξ, t)

)]

∀(p, q) ∈K2,1≤ i ≤ k
)
≥ 1− ε.

Let Cz,t be the intersection of the events in (7.12) over 1≤ i ≤ k with the event (7.13). Then

for large enough t , P(Cz,t )≥ 1− 2ε and
∣∣P
(
{L,Wξ1:k }|K ∈A, {Tz;a,bL, Tz;a,bWξ1:k }|K ∈ B

)

− P
(
{L,Wξ1:k }|K ∈A

)
P
(
{L,Wξ1:k }|K ∈ B

)∣∣

≤
∣∣P
(
{L,Wξ1:k }|K ∈A, {Tz;a,bL, Tz;a,bWξ1:k }|K ∈ B,Cz,t

)

− P
(
{L,Wξ1:k }|K ∈A,Cz,t

)
P
(
{L,Wξ1:k }|K ∈ B,Cz,t

)∣∣+Cε
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=
∣∣P
({
L(v),L

(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)}
|K ∈A,

{
Tz;a,bL(v), Tz;a,b

[
L
(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)]}
|K ∈ B,Cz,t

)

− P
({
L(v),L

(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)}
|K ∈A,Cz,t

)

× P
({
L(v),L

(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)}
|K ∈ B,Cz,t

)∣∣+Cε

≤
∣∣P
({
L(v),L

(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)}
|K ∈A,

{
Tz;a,bL(v), Tz;a,b

[
L
(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)]}
|K ∈ B

)

− P
({
L(v),L

(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)}
|K ∈A

)

× P
({
L(v),L

(
p; (tξ1:k, t)

)
−L

(
q; (tξ1:k, t)

)}
|K ∈ B

)∣∣+C′ε,

where the constants C, C′ came as the cost of adding and removing the high-probability

event Cz,t . The proof is complete by sending z→∞ and using the mixing of L under the

shift Tz;a,b (Lemma B.3). �

PROOF OF THEOREM 2.5. Item (i) (All geodesics have a direction): First, we show that,

on 	2, if g is a semi-infinite geodesic starting from (x, s), then

(7.14) −∞< lim inf
t→∞

t−1g(t)≤ lim sup
t→∞

t−1g(t) <∞.

We show the rightmost inequality, the leftmost being analogous. Assume, by way of contra-

diction, that lim supt→∞ g(t)/t =∞. By the directedness of Theorem 5.9(iii), ∀ξ ∈ R there

exists an infinite sequence ti →∞ such that g(ti) > g
ξ+,L
(x,s) (ti) for all i. Since g

ξ+,L
(x,s) is the left-

most geodesic between any two of its points (Theorem 5.9(iv)), we must have g(t)≥ g
ξ+,L
(x,s) (t)

∀ξ ∈R and t ∈R. By Theorem 6.3(iii), g(t)=∞ ∀t > s, a contradiction.

Having established (7.14), assume by way of contradiction that

lim inf
t→∞

t−1g(t) < lim sup
t→∞

t−1g(t).

Choose some ξ strictly between the two values above. By the directedness of Theo-

rem 5.9(iii), there exists a sequence ti →∞ such that g
ξ+,R
(x,s) (ti) < g(ti) for i even and

g
ξ+,R
(x,s) (ti) > g(ti) for i odd. This cannot occur since g

ξ+,R
(x,s) is the rightmost geodesic between

any two of its points.

By Theorem 5.9(iii), for each ξ ∈R and (x, s) ∈R2, g
ξ+,R
(x,s) , for example, is a semi-infinite

geodesic from (x, s) in direction ξ , justifying the claim that there is at least one semi-infinite

geodesic from each point and in every direction.

Item (ii) (Coalescence): The first statement follows from the equivalences (i)⇔(iii)⇔(iv)

of Theorem 7.3. By Theorem 6.1(i), P(p ∈ NU0) = 0 ∀p ∈ R2. This and Fubini’s theorem

imply that the set NU0 almost surely has planar Lebesgue measure zero.

Item (iii) (Nonuniqueness in exceptional directions): This follows from Remark 7.4. �

8. Random measures and their supports. This section studies further the points with

disjoint geodesics in the same direction, discussed in Theorem 2.10 and Remark 2.11. Recall

the functions fs,ξ (x)=Wξ+(x, s;0, s)−Wξ−(x, s;0, s), defined in (5.5), and the sets Ss,ξ

from (2.6),

(8.1)

Ss,ξ :=
{
x ∈R : ∃ disjoint semi-infinite geodesics from (x, s) in direction ξ

}
,

S :=
⋃

s∈R,ξ∈�

Ss,ξ × {s}.
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FIG. 7. The Busemann difference profile fξ (x). The function vanishes in a nondegenerate random
neighborhood of x = 0 and evolves as two independent Brownian local times to the left and right
(Theorem 8.1).

Each ξ ∈R is a direction of discontinuity with probability zero. Conditioning on ξ ∈� is

done through the Palm kernel from the theory of random measures (see [46] for background).

The next theorem is proved in Section 8.1, together with a study of the random point process

{(τξ , ξ)}ξ∈�. The Palm conditioning is made precise in Theorems 8.8 and 8.13.

THEOREM 8.1. For ξ ∈R, consider the random function fξ := f0,ξ from (5.5). Let

τξ = inf
{
x > 0 : fξ (x) > 0

}
and ←−τξ = inf

{
x > 0 : −fξ (−x) > 0

}

denote the points to the right and left of the origin beyond which Wξ+(·,0;0,0) and

Wξ−(·,0;0,0) separate, if ever. Then, conditionally on ξ ∈� in the appropriate Palm sense,

the restarted functions

x �→ fξ (x + τξ )− fξ (τξ ) and x �→ −fξ (−x −←−τξ )+ fξ (−←−τξ ), x ∈R≥0,

are equal in distribution to two independent running maximums of Brownian motion with

diffusivity 2 and zero drift. In particular, they are equal in distribution to two independent

appropriately normalized versions of Brownian local time; see Figure 7.

As described in the next theorem, Ss,ξ is the support of a random measure, up to the

removal of an at most countable set.

THEOREM 8.2. On a single event of full probability, the function fs,ξ is nondecreasing

simultaneously for all s ∈R and ξ ∈�. Denote the set of local variation of fs,ξ by

(8.2) Ds,ξ =
{
x ∈R : fs,ξ (x − ε) < fs,ξ (x + ε) ∀ε > 0

}
.

Then on a single event of full probability, simultaneously for each s ∈R and ξ ∈�,

(8.3) Ds,ξ =SL
s,ξ ∪SR

s,ξ ⊆Ss,ξ ,

where for S ∈ {L,R},
(8.4) SS

s,ξ :=
{
x ∈R : gξ−,S

(x,s) and g
ξ+,S
(x,s) are disjoint

}
.

(Ss,ξ \Ds,ξ )× {s} is contained in the at most countable set NU
ξ−
1 ∩NU

ξ+
1 ∩Hs .
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REMARK 8.3. Presently, we do not know if Ds,ξ equals Ss,ξ . Since NU
ξ−
1 ∩NU

ξ+
1 ⊆

NU1 and NU1∩Hs is at most countable (Theorem 6.1(ii)), Ss,ξ and Ds,ξ have the same

Hausdorff dimension for all s ∈ R and ξ ∈ �. In Section 8.3 we prove that this Hausdorff

dimension is 1
2

on an s-dependent probability one event (as Theorem 2.10(iii)).

The remainder of this section develops the theory needed to prove Theorems 8.1 and 8.2

and ultimately Theorem 2.10. Sections 8.1 and 8.2 develop the Palm kernel theory necessary

for Theorem 8.1. The proofs of Theorems 8.1, 8.2, 2.10 are in Section 8.3 along with the

unfinished business of Theorem 5.5(ii).

8.1. Random measures and Palm kernels. To study Palm conditioning, we represent the

Busemann process {Wξ+(·,0,0,0)}ξ∈R by the stationary horizon {Gξ (·)}ξ∈R, as permitted

by Theorem 5.3(iii). Define the process of jumps

J := {Jξ }ξ∈R = {Gξ −Gξ−}ξ∈R,

where Gξ− = limα↗ξ Gα . Either Jξ vanishes identically or Jξ is a nondecreasing continu-

ous function that vanishes in a nondegenerate (random) neighborhood of the origin. By a

combination of Theorem D.3(ii)–(iii),

(8.5)
{
Jξ+η(y + x)− Jξ+η(y) : x ∈R

}
ξ∈R

d=
{
Jξ (x) : x ∈R

}
ξ∈R ∀y,η ∈R.

We study the functions Jξ (x) first for x ≥ 0. Approximate J by a process JN defined on

dyadic rational ξ . For N ∈ Z>0, let

(8.6) JN
ξi
=Gξi

−Gξi−1
for ξi = ξN

i = i2−N and i ∈ Z.

For i ∈ Z, let

(8.7) τN
ξi
= inf

{
x > 0 : JN

ξi
(x) > 0

}
.

Since the Gξi
have different drifts for different values of i, τN

ξi
<∞ almost surely. For f ∈

C(R) and τ ∈R, let [f ]τ ∈ C(R≥0) denote the restarted function

(8.8) [f ]τ (x)= f (τ + x)− f (τ) for x ∈ [0,∞).

Denote by Dα the distribution on C(R≥0) of the running maximum of a Brownian motion

with drift α ∈R and diffusivity 2. That is, if X denotes standard Brownian motion, then

Dα(A)= P
{[

sup
0≤u≤s

2X(u)+ αu
]
s∈[0,∞)

∈A
}

for Borel sets A⊂ C(R≥0). When the drift vanishes (α = 0), we abbreviate D =D0.

LEMMA 8.4. Let Bα = {Bα(x) : x ≥ 0} be a Brownian motion with drift α and diffusiv-

ity 2. Let W be an almost surely negative random variable independent of Bα . Let

θ = inf
{
x > 0 :W +Bα(x)≥ 0

}
.

Then for all x > 0,

(8.9) P
([

sup
0≤s≤θ+u

W +Bα(s)
]+
u∈[0,∞)

∈ ·

∣∣ θ = x
)
=Dα(·).

In particular,

(8.10) P
([

sup
0≤s≤θ+u

W +Bα(s)
]+
u∈[0,∞)

∈ ·

)
=Dα(·).
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PROOF. Let A ∈ B(C(R≥0)) and θ > 0. Below, notice that Bα(θ)=−W . Then, noting

that θ is a stopping time with respect to the filtration Fy = σ(W, {Bα(x)}x∈[0,y]), we use the

strong Markov property to restart at time θ ,

(8.11)

P
([

sup
0≤s≤θ+u

W +Bα(s)
]+
u∈[0,∞)

∈A
∣∣ θ = x

)

= P
([

sup
θ≤s≤θ+u

W +Bα(s)
]
u∈[0,∞)

∈A
∣∣ θ = x

)

= P
([

sup
0≤s≤u

Bα(θ + s)−Bα(θ)
]
u∈[0,∞)

∈A
∣∣ θ = x

)

= P
([

sup
0≤s≤u

Bα(s)
]
u∈[0,∞)

∈A
)
=Dα(A).

The claim of (8.9) has now been verified. Equation (8.10) follows. �

COROLLARY 8.5. Let αN = 2−N+1. Then for all i ∈ Z and x > 0,

(8.12) P
([

JN
ξi

]τN
ξi ∈ · | τN

ξi
= x

)
=DαN (·).

PROOF. From the definition of the stationary horizon (Definition D.1), one can deduce

that, for each i ∈ Z, the process JN
ξi

has the same distribution as the process

(8.13) J̃N (y)=
[

sup
0≤x≤y

W +BαN (x)
]+

,

where BαN is a Brownian motion with drift αN = 2−N+1 and diffusivity 2 and W is an almost

surely negative random variable independent of BαN . Define

(8.14) θN = inf
{
x > 0 : J̃N (x) > 0

}
= inf

{
x > 0 :W +BαN (x)≥ 0

}
.

Hence, now (JN
ξi

, τN
ξi

)
d= (J̃N , θN ), and the result follows from Lemma 8.4. �

For ξ ∈R, let

(8.15) τξ = inf
{
x ≥ 0 : Jξ (x) > 0

}
.

The connection with the discrete counterpart in (8.7) is

(8.16) τN
ξi
=min

{
τξ : ξ ∈ (ξi−1, ξi]

}
.

On the space R≥0 ×R, define the random point measure and its mean measure

(8.17) � =
∑

(τξ ,ξ):τξ<∞
δ(τξ ,ξ) and λ�(·) := E

[
�(·)

]
.

The point process � records the jump directions ξ and the points τξ where Gξ and Gξ−
separate on R≥0. Theorem D.3(vi) ensures that � and λ� are locally finite. It will cause no

confusion to use the same symbol � to denote the random set

� =
{
(τξ , ξ) : ξ ∈R, τξ <∞

}
.

Then also λ�(·) = E(|� ∩ ·|), where | · | denotes cardinality. The counterparts for the ap-

proximating process are

(8.18) �(N) =
{(

τN
ξi

, ξi

)
: i ∈ Z, τN

ξi
<∞

}
and λ

(N)
� (·) := E

(∣∣�(N) ∩ ·

∣∣).
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The dyadic partition in (8.6) imposes a certain monotonicity as N increases: τξ values

can be added but not removed. The ξ -coordinates that are not dyadic rationals move as the

partition refines. So we have

(8.19)
{
τN
ξi
:
(
τN
ξi

, ξi

)
∈ �(N)}⊂

{
τN+1
ξi

:
(
τN+1
ξi

, ξi

)
∈ �(N+1)}⊂

{
τξ : (τξ , ξ) ∈ �

}
.

LEMMA 8.6. The measure λ� and Lebesgue measure m are mutually absolutely contin-

uous on R>0 ×R. The Radon–Nikodym derivative is given by

(8.20)
dλ�

dm
(τ, ξ)=

√
2

πτ
for (τ, ξ) ∈R>0 ×R.

PROOF. From Theorem D.3(v), for ξ ∈R, τ > 0 and δ > 0,

λ�(
(
τ, τ + δ] × [ξ − δ, ξ + δ]

)
= 4

√
2

π
δ(
√

τ + δ −
√

τ)=
∫ ξ+δ

ξ−δ

∫ τ+δ

τ

√
2

πx
dx dα.

�

By (8.20) λ� does not have a finite marginal on the ξ -component, as expected, since the

jump directions are dense. Hence, below we do Palm conditioning on the pair (τξ , ξ) ∈R>0×
�G and not on the jump directions ξ ∈�G alone.

LEMMA 8.7. Let A⊆ C(R≥0) be a Borel set. Then for any open rectangle R = (a, b)×
(c, d)⊆R≥0 ×R,

(8.21) E

[ ∑

(τ,ξ)∈�

1A

(
[Jξ ]τ

)
1R(τ, ξ)

]
= λ�(R)D(A).

PROOF. It suffices to prove (8.21) for continuity sets A of the distribution D of the type

A = {f ∈ C(R≥0) : f |[0,k] ∈ Ak} for k > 0 and Borel Ak ⊆ C[0, k]. Such sets form a π -

system that generates the Borel σ -algebra of C(R≥0).

We prove (8.21) for JN . Below, the values ξi = i2−N are not random and hence can come

outside the expectation. Condition on τN
ξi

, and use (8.12),

(8.22)

E

( ∑

(τN
ξi

,ξi)∈R∩�(N)

1A

([
JN

ξi

]τN
ξi
))

= E

( ∑

ξi∈(c,d)

1A

([
JN

ξi

]τN
ξi
)
1(a,b)

(
τN
ξi

))

=
∑

ξi∈(c,d)

E
(
1(a,b)

(
τN
ξi

)
E
[
1A

([
JN

ξi

]τN
ξi
)
|τN

ξi

])

(8.12)=
∑

ξi∈(c,d)

P
(
τN
ξi
∈ (a, b)

)
DαN (A)=DαN (A)λ

(N)
� (R).

To conclude the proof, we check that (8.21) arises, as we let N →∞ in the first and last

member of the string of equalities above. DαN (A)→D(A) by the continuity of α �→Dα in

the weak topology and the assumption that A is a continuity set.

As an intermediate step, we verify that ∀k > 0, 1
U

k
N
→ 1 almost surely for the events

Uk
N =

{∣∣�(N) ∩R
∣∣= |� ∩R| and for every (τ, ξ) ∈ � ∩R there is a unique

(
τN
ξi

, ξi

)
∈ �(N) ∩R such that

[
JN

ξi

]τN
ξi |[0,k] = [Jξ ]τξ |[0,k]

}
.

(8.23)
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Almost surely, � ∩R is finite, and none of its points lie on the boundary of R. For any such

realization, the condition in braces holds when: (i) all points (τξ , ξ) ∈ � ∩ R lie in distinct

rectangles (a, b) × (ξi−1, ξi] ⊂ (a, b) × (c, d), (ii) when no point (τN
ξi

, ξi) ∈ �(N) ∩ R is

generated by a point (τξ , ξ) ∈ � outside R and (iii) when N is large enough so that for the

unique i with ξi < ξ ≤ ξi+1, Gξ−(x)=Gξi
(x) and Gξ+(x)=Gξi+1

(x) for all x ∈ [0, τξ +k].
By Theorem D.3(vi), this happens for all the finitely many (τ, ξ) ∈ �∩R when the mesh 2−N

is fine enough. Thus, for each k > 0, almost every realization lies eventually in Uk
N .

We prove that λ
(N)
� (R)→ λ�(R). The paragraph above gave |�(N)∩R| → |�∩R| almost

surely. We also have |�(N) ∩R| ≤ |� ∩ ((a, b)× (c− 1, d))| because (8.16) shows that each

point (τN
ξi

, ξi) that is not matched to a unique point (τξ , ξ) ∈ � ∩ R must be generated by

some point (τξ , ξ) ∈ � ∩ ((a, b)× (c− 1, d)). The limit λ
(N)
� (R)→ λ�(R) comes now from

dominated convergence.

It remains to show that

E

( ∑

(τN
ξi

,ξi)∈R∩�(N)

1A

([
JN

ξi

]τN
ξi
))
−→

N→∞
E

( ∑

(τξ ,ξ)∈R∩�

1A

(
[Jξ ]τξ

))
.

This follows by choosing k > 0 so that A depends only on the domain [0, k]. Then the differ-

ence in absolute values in the display below vanishes on Uk
N ,

lim
N→∞

E

[∣∣∣∣
∑

(τN
ξi

,ξi)∈R∩�(N)

1A

([
JN

ξi

]τN
ξi
)
−

∑

(τξ ,ξ)∈R∩�

1A

(
[Jξ ]τξ

)∣∣∣∣ · (1Uk
N
+ 1(Uk

N )c)

]

≤ lim
N→∞

2E
[∣∣� ∩

(
(a, b)× (c− 1, d)

)∣∣ · 1(Uk
N )c

]
= 0,

and the last equality follows by dominated convergence. �

To capture the distribution of [Jξ ]τξ , we augment the point measure � of (8.17) to a point

measure on the space R≥0 ×R×C(R≥0),

(8.24) �=
∑

(τξ ,ξ)∈�

δ(τξ ,ξ,[Jξ ]τξ ).

The Palm kernel of [Jξ ]τξ with respect to � is the stochastic kernel Q from R≥0 × R into

C(R≥0) that satisfies the following identity: for every bounded Borel function � on R≥0 ×
R×C(R≥0) that is supported on B ×C(R≥0) for some bounded Borel set B ⊂R≥0 ×R,

(8.25)

E
∑

(τξ ,ξ)∈B∩�

�
(
τξ , ξ, [Jξ ]τξ

)
= E

∫

R≥0×R×C(R≥0)
�(τ, ξ,h)�(dτ, dξ, dh)

=
∫

R≥0×R
λ�(dτ, dξ)

∫

C(R≥0)
Q(τ, ξ, dh)�(τ, ξ, h).

The first equality above is a restatement of the definition of � and included to make the next

proof transparent. The key result of this section is this characterization of Q.

THEOREM 8.8. For Lebesgue-almost every (τ, ξ), Q(τ, ξ, ·)=D(·), the distribution of

the running maximum of a Brownian motion with diffusivity 2.

PROOF. This comes from Lemma 8.7: take �(τ, ξ, h) = 1R(τ, ξ)1A(h) in (8.25), and

note that the left-hand side of (8.21) is exactly the left-hand side of (8.25). Lemma 8.6 turns

λ�-almost everywhere into Lebesgue-almost everywhere. �
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Denote the set of directions ξ for which Gξ and Gξ− separate on R≥0 by

(8.26) �G = {ξ ∈R : τξ <∞}.

THEOREM 8.9. Let A⊆C(R≥0) be a Borel set such that D(A)= 0. Then

(8.27) P
(
∃ξ ∈�G : [Jξ ]τξ ∈A

)
= 0.

PROOF. Let RN = (0,N)× (−N,N). Since ξ ∈�G means that τξ <∞, we have

P
(
∃ξ ∈�G : [Jξ ]τξ ∈A

)
= lim

N→∞
P
(
∃ξ ∈�G : (τξ , ξ) ∈RN , [Jξ ]τξ ∈A

)

≤ lim
N→∞

E
∑

(τ,ξ)∈�

1A

(
[Jξ ]τ

)
1RN

(τ, ξ)

(8.21)= lim
N→∞

λ�(RN )D(A)= 0.
�

We show that (8.26) captures all ξ at which a jump happens on the real line.

COROLLARY 8.10. With probability one, �G = {ξ ∈ R : Jξ (x) �= 0 for some x ∈ R}.
Furthermore, for each ξ ∈�G, limx→±∞ Jξ (x)=±∞.

PROOF. By Theorem 8.9 and the associated fact for the running max of a Brownian

motion,

(8.28) P
(
∀ξ ∈�G, lim

x→+∞
Jξ (x)=+∞

)
= 1.

By definition, �G = {ξ ∈R : Jξ (x) �= 0 for some x > 0}. Now, we show that if Jξ (x) �= 0 for

some x < 0, then Jξ (x) �= 0 for some x > 0. If not, then there exist ξ ∈R and m ∈ Z<0 such

that [Jξ ]m|[0,∞) �= 0, but [Jξ ]m|[−m,∞) is constant. In particular, [Jξ ]m|[0,∞) is bounded. Let

τm
ξ = inf{x > 0 : [Jξ ]m(x) > 0}. Then [Jξ ]m|[0,∞) �= 0 iff τm

ξ <∞, and we have

(8.29)

P
(
�G �=

{
ξ ∈R : Jξ (x) �= 0 for some x ∈R

})

≤
∑

m∈Z<0

P
(
∃ξ ∈R : τm

ξ <∞,but [Jξ ]m|[0,∞) is bounded
)
= 0.

The probability equals zero by (8.28) because by shift invariance (8.5), [J ]m d= J . To fin-

ish, (8.28) proves the limits for x →+∞. The limits as x →−∞ then follow from (8.28)

and the reflection invariance of Corollary D.4. �

Let νf denote the Lebesgue–Stieltjes measure of a nondecreasing function f on R. Denote

the support of νf by supp(νf ). The Hausdorff dimension of a set A is denoted by dimH (A).

COROLLARY 8.11. Consider the Lebesgue–Stieltjes measure νJξ for ξ ∈�G on the en-

tire real line. Then we have

(8.30) P
{
∀ξ ∈�G : dimH

(
supp(νJξ )

)
= 1/2

}
= 1.

PROOF. First, note that
{
∃ξ ∈�G : dimH

(
supp(νJξ )

)
�= 1

2

}
⊆

⋃

m∈Z≤0

{
∃ξ ∈�G : dimH

(
supp(νJξ )∩ [m,∞

)
) �= 1

2

}
.
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By (8.5) it is enough to take m= 0 and show that

P
(
∃ξ ∈�G : dimH

(
supp(νJξ )∩ [0,∞

))
�= 1/2)= 0.

This last claim follows from Theorem 8.9 because the event in question has zero probabil-

ity for the running maximum of Brownian motion ([65]; see also [51], Theorem 4.24 and

Exercise 4.12). �

REMARK 8.12. Representation of the difference of Busemann functions as the running

maximum of random walk goes back to [9]. It was used in [19] to capture the local uni-

versality of geodesics. The representation of the difference profile as the running maximum

of Brownian motion in the point-to-point setup emerges from the Pitman transform [23,

35]. Theorem 1 and Corollary 2 in [35] are point-to-point analogues of our Theorem 8.8

and Corollary 8.11. Their proof is different from ours. Although an analogue of the Pitman

transform exists in the stationary case [18], Section 3, comparing the running maximum of a

Brownian motion to the profile requires different tools in the two settings.

8.2. Decoupling. By Corollary 8.10, whenever ξ is a jump direction, the difference pro-

files for both positive and negative x are nontrivial. We extend Theorem 8.8 to show that

these two difference profiles are independent and equal in distribution. We spell out only the

modifications needed in the arguments of the previous section. For the difference profile on

the left, define for x ≥ 0

←−
J ξ (x) := −Jξ (−x) and ←−τξ := inf{x > 0 : ←−J ξ > 0}.

For N ∈ Z>0 and ξi , as in (8.6), the discrete approximations are

←−
J

N

ξi
(x) := −JN

ξi
(−x) and ←−τξi

N := inf
{
x > 0 : ←−J

N

ξi
(x) > 0

}
.

The measures
←−
� , λ←−

�
,
←−
�

(N)
and λ

(N)
←−
�

are defined as in (8.17) and (8.18) but now with

(←−τξ , ξ) and (←−τξi
, ξi). Extend the measure � of (8.24) with a component for the left profile,

�′ =
∑

(←−τξ ,ξ)∈←−�

δ
(←−τξ ,ξ,[Jξ ]τξ ,[←−J ξ ]

←−τ ξ )
.

Since τξ <∞ if and only if ←−τξ <∞ (Corollary 8.10), it is immaterial whether we sum over

(τξ , ξ) or (←−τξ , ξ). The latter is more convenient for the next calculations.

The Palm kernel of ([Jξ ]τξ , [←−J ξ ]
←−τξ ) with respect to

←−
� is the stochastic kernel Q2 from

R≥0×R into C(R≥0)×C(R≥0) that satisfies the following identity: for every bounded Borel

function � on R≥0 × R× C(R≥0)× C(R≥0) that is supported on B × C(R≥0)× C(R≥0)

for some bounded Borel set B ⊂R≥0 ×R,

(8.31)

E

[ ∑

(←−τξ ,ξ)∈B∩←−�

�
(←−τξ , ξ, [Jξ ]τξ , [←−J ξ ]

←−τξ
)]

=
∫

R≥0×R
λ←−

�
(d←−τ , dξ)

∫

C(R≥0)×C(R≥0)
Q2(←−τ , ξ, dh1, dh2)�

(←−τ , ξ, h1, h2).

THEOREM 8.13. For Lebesgue-almost every (τ, ξ), Q2(τ, ξ, ·)= (D⊗D)(·), the prod-

uct of the distribution of the running maximum of a Brownian motion with diffusivity 2. In

particular, for any Borel set A⊆ C(R≥0)×C(R≥0) such that (D⊗D)(A)= 0,

P
{
∃ξ ∈�G :

(
[Jξ ]τξ , [←−J ξ ]

←−τξ
)
∈A

}
= 0.
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PROOF. By definition of the stationary horizon (Definition D.1), as functions in C(R),

(8.32) JN
ξi

(y)
d= sup
−∞<x≤y

{
BαN (x)

}
− sup
−∞<x≤0

{
BαN (x)

}
,

where BαN is a two-sided Brownian motion with drift αN and diffusivity 2, with BαN (0)= 0.

By adjusting our probability space if needed, we will assume that such a process BαN exists

on our space and Jξi
is given as (8.32). Define two independent σ -algebras

F− = σ
(
BαN (x) : x ≤ 0

)
and F+ = σ

(
BαN (x) : x ≥ 0

)
.

When y > 0, we may write

(8.33) JN
ξi

(y)=
[
W + sup

0≤x≤y

BαN (x)
]+

,

where W = − sup−∞<x≤0{BαN (x)} ∈ F−, and sup0≤x≤y BαN (x) ∈ F+. Then, conditional

on F−, W is constant while the law of BαN (x) for x ≥ 0 is unchanged. Then by (8.33) and

equation (8.10) of Lemma 8.4 in the special case where W is constant (using the exact same

reasoning as in the proof of Corollary 8.5),

(8.34) P
([

JN
ξi

]τN
ξi ∈ · |F−

)
=DαN (·).

For a fixed i,
←−
J

N

ξi
and JN

ξi
have the same distribution as functions on R. This comes by

first applying Corollary D.4 and then (8.5), shifting the directions by ξi−1 + ξi ,

←−
J

N

ξi
(x)=−JN

ξi
(−x)=−Gξi

(−x)+Gξi−1
(−x)

d=−G−ξi
(x)+G−ξi−1

(x)

d=−Gξi−1
(x)+Gξi

(x)= JN
ξi

(x).

By (8.32), (
←−
J

N

ξi
,←−τ N

ξi
) ∈F−. We mimic the calculation in (8.22), for two Borel sets A1,A2 ⊆

C(R≥0) and an open rectangle R = (a, b)× (c, d)⊆R≥0 ×R,

E

( ∑

(←−τ N
ξi

,ξi)∈R∩←−�
(N)

1A1

([
JN

ξi

]τN
ξi
)
1A2

([←−
J

N

ξi

]←−τ N
ξi
))

=
∑

ξi∈(c,d)

E(1A2

([←−
J

N

ξi

]←−τ N
ξi
)
1(a,b)

(←−τ N
ξi

)
E
[(

1A1

([
JN

ξi

]τN
ξi
)
|F−

])

(8.34)=
∑

ξi∈(c,d)

E
(
E
[
1A2

([←−
J

N

ξi

]←−τ N
ξi
)
1(a,b)

(←−τ N
ξi

)
| ←−τ N

ξi

])
DαN (A1)

=
∑

ξi∈(c,d)

E
(
1(a,b)

(←−τ N
ξi

)
E
[
1A2

([←−
J

N

ξi

]←−τ N
ξi
)
| ←−τ N

ξi

])
DαN (A1)

(8.12)=
∑

ξi∈(c,d)

P
(←−τ N

ξi
∈ (a, b)

)
DαN (A1)D

αN (A2)

=DαN (A1)D
αN (A2)λ

(N)
←−
�

(R).

(8.35)

As in the proof of Lemma 8.7, we derive from the above that

(8.36) E

( ∑

(←−τ ξ ,ξ)∈R∩←−�

1A1

(
[Jξ ]τξ

)
1A2

(
[←−J ξ ]

←−τ ξ
))
=D(A1)D(A2)λ←−� (R)
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through the convergence of line (8.35) to the left-hand side of (8.36). Instead of the events

Uk
N in (8.23), consider

Ũk
N =

{∣∣←−�
(N)
∩R

∣∣= |←−� ∩R|, and ∀(←−τ , ξ) ∈←−� ∩R,∃ unique
(
τN
ξi

, ξi

)
∈←−�

(N)
∩R

such that
[
JN

ξi

]τN
ξi |[0,k] = [Jξ ]τξ |[0,k] and

[←−
J

N

ξi

]←−τ N
ξi |[0,k] = [

←−
J ξ ]

←−τ ξ |[0,k]
}
.

For each k > 0, 1
Ũ

k
N
→ 1 almost surely, as it did for (8.23). Indeed, there are finitely many

pairs (←−τ , ξ) ∈←−� ∩ R, and each has a finite forward splitting time τ . All these can be con-

fined in a common compact rectangle. From here the proof continues as for Lemma 8.7 and

Theorem 8.9. �

8.3. Remaining proofs. It remains to prove Theorems 5.5(ii), 8.1 and 2.10. Recall the

definition of the function from (5.5): fs,ξ (x)=Wξ+(x, s;0, s)−Wξ−(x, s;0, s).

(8.37)
Let 	3 be the subset of 	2 on which the following holds: for each T ∈ Z,

whenever ξ ∈R is such that fT ,ξ �= 0, then lim
x→±∞

fT ,ξ (x)=±∞.

By Theorem 5.3(iii) and Corollary 8.10, P(	3)= 1.

PROOF OF THEOREM 5.5(ii). We work on the full-probability event 	3. The statement

(5.6) to be proved is ξ ∈� ⇐⇒ ∀s ∈R : limx→±∞ fs,ξ (x)=±∞. If for any s, fs,ξ →±∞
as x →±∞, then Wξ−(x, s;0, s) �=Wξ+(x, s;0, s) for |x| sufficiently large, and ξ ∈ �. It

remains to prove the converse statement. From (5.36),

�=
⋃

T ∈Z

{
ξ ∈R :Wξ−(x, T ;0, T ) �=Wξ+(x, T ;0, T ) for some x ∈R

}
.

To finish the proof of (5.6), by definition of 	3, it suffices to show these two statements:

(i) If fs,ξ �= 0 for some s, ξ ∈R, then fT ,ξ �= 0 for all T > s.

(ii) For T ∈ Z, ξ ∈R, if fT ,ξ �= 0, then for all s < T , limx→±∞ fs,ξ (x)=±∞.

Part (i) follows from the equality below. By (5.35), for s < T ,

(8.38)

Wξ �(x, s;0, s)= sup
z∈R

{
L(x, s; z, T )+Wξ �(z, T ;0, T )

}

− sup
z∈R

{
L(0, s; z, T )+Wξ �(z, T ;0, T )

}
.

To prove (ii), we show the limits as x →+∞, and the limits as x →−∞ follow analo-

gously. Let T ∈ Z, ξ ∈R be such that fT ,ξ �= 0, and let R > 0. By definition of the event 	3,

we may choose Z > 0 sufficiently large so that infz≥Z{fT ,ξ (z)} ≥ R. Then by equation (6.7)

of Theorem 6.3(v), for all sufficiently large x and � ∈ {−,+},
sup
z∈R

{
L(x, s; z, T )+Wξ �(z, T ;0, T )

}
= sup

z≥Z

{
L(x, s; z, T )+Wξ �(z, T ;0, T )

}
.

Let

A := sup
z∈R

{
L(0, s; z, T )+Wξ+(z, T ;0, T )

}
− sup

z∈R

{
L(0, s; z, T )+Wξ−(z, T ;0, T )

}
,

and note that this does not depend on x. Then by (8.38),

−fs,ξ (x)= sup
z≥Z

{
L(x, s; z, T )+Wξ−(z, T ;0, T )

}

− sup
z≥Z

{
L(x, s; z, T )+Wξ+(z, T ;0, T )

}
+A
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≤ sup
z≥Z

{
Wξ−(z, T ;0, T )−Wξ+(z, T ;0, T )

}
+A

=− inf
z≥Z

{
fT ,ξ (z)

}
+A≤−R +A

so that fs,ξ (x)≥R−A. Since A is constant in x and R is arbitrary, the desired result follows.

Note that (5.6) immediately proves (5.7) in the case x = 0. The general case follows from

additivity of the Busemann functions (Theorem 5.1(ii)) and (5.6). �

PROOF OF THEOREM 8.1 (LOCAL TIME DESCRIPTION OF THE DIFFERENCE PROFILE).

This comes by Theorem 8.13 since {Wξ (·,0;0,0)}ξ∈R d= G (Theorem 5.3(iii)), with prob-

ability one ξ ∈ � iff τξ <∞ iff ←−τξ <∞ (Theorem 5.5(ii), Corollary 8.10) and the running

maximum process and the local time process of a Brownian motion are equal in distribution

(Lévy [47]). �

For the convenience of the reader, we repeat definitions (2.6)–(2.7) and (8.2), (8.4). As

before, S ∈ {L,R},

Ss,ξ =
{
x ∈R : there exist disjoint semi-infinite geodesics from (x, s) in direction ξ

}
,

S=
⋃

s∈R,ξ∈�

Ss,ξ × {s}, SS
s,ξ =

{
x ∈R : gξ−,S

(x,s) and g
ξ+,S
(x,s) are disjoint

}
,

SS =
⋃

ξ∈�,s∈R
SS

s,ξ × {s} and Ds,ξ =
{
x ∈R : fs,ξ (x − ε) < fs,ξ (x + ε) ∀ε > 0

}
.

REMARK 8.14. In contrast with S in (8.1), the sets SS are concerned only with leftmost

(S = L) and rightmost (S = R) Busemann geodesics. In BLPP the analogues of SL and SR

are both equal to the set of initial points from which some geodesic travels initially vertically

(Theorems 2.10 and 4.30 in [64]). Furthermore, in BLPP the analogue of this set contains

NU0. We do not presently know whether either is true in DL.

PROOF OF THEOREM 8.2. The full-probability event is 	2 in (5.25). The monotonicity

of the function fs,ξ follows from (5.34). We now prove that Ds,ξ = SL
s,ξ ∪SR

s,ξ . Assume

that y /∈ Ds,ξ . Then there exist a < y < b such that fs,ξ is constant on [a, b]. Hence, for

a ≤ x < y,

Wξ+(x, s;0, s)−Wξ−(x, s;0, s)=Wξ+(y, s;0, s)−Wξ−(y, s;0, s),

and by additivity (Theorem 5.1(ii)), Wξ−(y, s;x, s) =Wξ+(y, s;x, s). Choose t > s suffi-

ciently small so that g
ξ+,R
(x,s) (t) < g

ξ−,L
(y,s) (t). By Lemma 7.5, g

ξ−,L
(y,s) (u)= g

ξ+,L
(y,s) (u) for u ∈ [s, t].

By a symmetric argument, instead choosing a point x > y, g
ξ−,R
(y,s) and g

ξ+,R
(y,s) agree near the

starting point (y, s). Hence, y /∈SL
s,ξ ∪SR

s,ξ .

Next, assume that y ∈Ds,ξ . Then for all x < y < z,

Wξ+(x, s;0, s)−Wξ−(x, s;0, s) < Wξ+(z, s;0, s)−Wξ−(z, s;0, s),

and hence either: (i) Wξ−(y, s;x, s) < Wξ+(y, s;x, s) for all x < y or (ii) Wξ−(z, s;y, s) <

Wξ+(z, s;y, s) for all z > y.

We show that g
ξ−,L
(y,s) and g

ξ+,L
(y,s) are disjoint in the first case. A symmetric proof shows that

g
ξ−,R
(y,s) and g

ξ+,R
(y,s) are disjoint in the second case. So assume Wξ−(y, s;x, s) < Wξ+(y, s;x, s)

for all x < y. Sending x↗ y, g
ξ−,R
(x,s) converges to g

ξ−,L
(y,s) by Theorem 6.3(v). Assume, by way
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of contradiction, that g
ξ−,L
(y,s) (u) = g

ξ+,L
(y,s) (u) for some u > s. This implies then g

ξ−,L
(y,s) (t) =

g
ξ+,L
(y,s) (t) for all t ∈ [s, u] since both paths are the leftmost geodesic between any two of their

points (Theorem 5.9(iv)). For t ≥ s, the convergence g
ξ−,R
(x,s) (t)→ g

ξ−,L
(y,s) (t) is monotone by

Theorem 6.3(iv). Since geodesics are continuous paths, Dini’s theorem implies that, as x↗ y,

g
ξ−,R
(x,s) (t) converges to g

ξ−,L
(y,s) (t)= g

ξ+,L
(y,s) (t) uniformly in t ∈ [s, u]. Lemma B.8 implies that,

for sufficiently close x < y, g
ξ−,R
(x,s) and g

ξ+,L
(y,s) are not disjoint. This contradicts (i)⇔(iii) of

Theorem 7.9 since we assumed Wξ−(y, s;x, s) < Wξ+(y, s;x, s) for all x < y.

Lastly, we show that (Ss,ξ \Ds,ξ )× {s} ⊆ NU
ξ−
1 ∩NU

ξ+
1 ∩Hs . Let x ∈Ss,ξ \Ds,ξ . By

Theorem 6.5(i), g
ξ−,L
(x,s) is the leftmost ξ -directed geodesic from (x, s), and g

ξ+,R
(x,s) is the right-

most. Since x ∈Ss,ξ , these two geodesics must be disjoint. Since x /∈Ds,ξ , g
ξ−,L
(x,s) and g

ξ+,L
(x,s)

are not disjoint, and g
ξ−,R
(x,s) and g

ξ+,R
(x,s) are not disjoint. Since the leftmost/rightmost semi-

infinite geodesics are leftmost/rightmost geodesics between their points (Theorem 5.9(iv)),

there exists ε > 0 such that, for t ∈ (s, s + ε),

g
ξ−,L
(x,s) (t)= g

ξ+,L
(x,s) (t) < g

ξ−,R
(x,s) (t)= g

ξ+,R
(x,s) (t),

so recalling the definition (6.2), (x, s) ∈NU
ξ−
1 ∩NU

ξ+
1 ∩Hs . �

LEMMA 8.15. Given ω ∈ 	2 and (x, s;y,u) ∈ R4
↑

, let g : [s, u] → R be the leftmost

(resp., rightmost) geodesic between (x, s) and (y, u). Then (g(t), t) ∈ SL (resp., SR) for

some t ∈ [s, u). Furthermore, among the directions ξ for which g
ξ−,L
(x,s) and g

ξ+,L
(x,s) separate at

some t ∈ [s, u), there is a unique direction ξ̂ such that

g
ξ̂−,L
(x,s) (u)≤ y < g

ξ̂+,L
(x,s) (u).

The same holds with L replaced by R and the strict and weak inequalities swapped.

PROOF. We prove the statement for leftmost geodesics. The proof for rightmost

geodesics is analogous. Set

(8.39) ξ̂ := sup
{
ξ ∈R : gξ �,L

(x,s) (u)≤ y
}
= inf

{
ξ ∈R : gξ �,L

(x,s) (u) > y
}
.

The monotonicity of Theorem 6.3(i) guarantees that the second equality holds and that the

definition is independent of the choice of � ∈ {−,+}. Theorem 6.3(iii) guarantees that ξ̂ ∈R.

By definition of ξ̂ and the monotonicity of Theorem 6.3(i), g
α�,L
(x,s) (u)≤ y = g(u) < g

β�,L
(x,s) (u)

whenever α < ξ̂ < β and � ∈ {−,+}. But by Theorem 6.3(ii), the β� and ξ̂+ geodesics

agree locally when β is close enough to ξ̂ . We can conclude that

(8.40) g
ξ̂−,L
(x,s) (u)≤ y = g(u) < g

ξ̂+,L
(x,s) (u).

Since all three are leftmost geodesics (recall Theorem 5.9(iv) for the Busemann geodesics),

(8.41) g
ξ̂−,L
(x,s) (t)≤ g(t)≤ g

ξ̂+,L
(x,s) (t) for t ∈ [s, u].

By (8.40) the paths g
ξ̂−,L
(x,s) and g

ξ̂+,L
(x,s) must separate at some time t ∈ [s, u). Furthermore,

once g
ξ̂−,L
(x,s) splits from g

ξ̂+,L
(x,s) at a point (z1, t1), the geodesics must stay apart. Otherwise,

they would meet again at a point (z2, t2), and Theorem 5.9(iv) implies that both paths are the

leftmost geodesic between (z1, t1) and (z2, t2); see Figure 8. Set t̂ = inf{t > s : gξ̂−,L
(x,s) (t) <

g
ξ̂+,L
(x,s) (t)}. Then g

ξ̂−,L
(x,s) (t) < g

ξ̂+,L
(x,s) (t) for all t > t̂ . By (8.41) and continuity of geodesics,

g
ξ̂−,L
(x,s) (t)= g(t)= g

ξ̂+,L
(x,s) (t) for t ∈ [s, t̂], and so (g(t̂), t̂) ∈SL. �
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FIG. 8. The black/thin path is the path g. The red/thick paths are the semi-infinite geodesics g
ξ̂−,L
(x,s)

and g
ξ̂+,L
(x,s) after they split from g. Once the red paths split, they cannot return or else there would be

two leftmost geodesics from (g(t̂), t̂) to the point where they come back together.

PROOF OF THEOREM 2.10. Item (i) (S is dense): Work on the full-probability event 	2.

Since S⊇SL∪SR , it suffices to show that, for (x, s) ∈R2, there is a sequence (yn, tn) ∈SL

converging to (x, s). Let g be the leftmost geodesic from (x, s) to (x, s + 1). Then ∀n ≥ 1,

g|[s,s+n−1] is the leftmost geodesic from (x, s) to (x, s + n−1). By Lemma 8.15, ∀n ∈ Z>0

∃(xn, tn) ∈SL such that xn = g(tn) and s ≤ tn ≤ s+n−1. The proof is complete by continuity

of geodesics.

Item (ii) (P(p ∈S)= 0 for all p ∈R2): If there exist disjoint semi-infinite geodesics from

(x, s), then for each level t > s, there exist disjoint geodesics from (x, s) to some points

(y1, t), (y2, t). For each fixed (x, s), with probability one, this occurs for no such points

by [14], Remark 1.12.

Item (iii) (Hausdorff dimension of Ss,ξ ): Since s is fixed, it suffices to take s = 0. By

Theorem 5.3(iii), {Wξ+(·,0;0,0)} d=G, and by Theorem 5.5(ii), ξ ∈� if and only if f0,ξ �=
0. Therefore, Corollary 8.11 implies that, with probability one, dimH (D0,ξ )= 1

2
for all ξ ∈�.

By Remark 8.3, P(dimH (S0,ξ )= 1
2
∀ξ ∈�)= 1.

Item (iv) (Ss,ξ is nonempty and unbounded for all s): By Theorem 5.5(ii), on the event

	3, whenever ξ ∈ �, for all s ∈ R, fs,ξ (x)→±∞ as x →±∞. Since fs,ξ is continuous

(Theorem 5.1(i)), the set Ds,ξ is unbounded in both directions. The proof is complete since

Ds,ξ ⊆Ss,ξ by definition. �

9. Open problems. We enumerate open problems that arise from this paper and mention

solutions that have appeared since this paper was first posted:

(i) Prove convergence to SH for the Busemann process of some model other than ex-

ponential LPP [18] and BLPP [64] (For BLPP convergence has been shown only for finite-

dimensional distributions). In our work [21] that came after the first version of this paper, we

show convergence of the TASEP speed process from [1] to the SH. In this particle systems

context, there are no Busemann functions, but there is a notion of coupled invariant mea-

sures. In the long term, a true statement for KPZ universality should include convergence of

its coupled invariant measures to the stationary horizon.

(ii) Recall definitions (2.6)–(2.7) and Remark 2.11. Can one describe the size of the sets

Ss,ξ globally instead of just on a fixed horizontal line, as in Theorem 2.10? Does Ss,ξ have

Hausdorff dimension 1
2

simultaneously for all s ∈ R and ξ ∈ �? The support of the Airy

difference profile along a vertical line was recently studied in [36]. What properties does the

set S have along a vertical line?

(iii) Are all semi-infinite geodesics Busemann geodesics? (Theorem 7.3(viii) covers the

case ξ /∈�.) Equivalently, does every semi-infinite geodesic in direction ξ ∈� coalesce with

a ξ− or ξ+ geodesic?
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(iv) For ξ ∈ R and � ∈ {−,+}, is NU
ξ �

1 a strict subset of NU
ξ �

0 ? (Recall definitions

(6.1)- (6.2).) That is, are there ξ � geodesics that stick together for some time, separate, then

come back together, or must they separate immediately? See Figure 5. After the posting of

the first version of this paper, it was shown in two independent works [17, 24] that the two

sets are equal.

(v) The set NU0 is countably infinite on each horizontal line and hence globally un-

countable (Theorem 6.1). What is the Hausdorff dimension of NU0? It has since been shown

in [17] that for fixed direction ξ ∈ R, NU
ξ
0 almost surely has Hausdorff dimension 4

3
. By

Theorem 6.1 the full set NU0 also has Hausdorff dimension 4
3
.

(vi) In BLPP the analogue of the inclusion NU0 ⊆S holds [64]. The reason is that, in

BLPP, the analogue of the set S is the set of initial points from which some finite geodesic

begins with a vertical step. We do not have such a description in DL. Does the inclusion still

hold?

(vii) Are the sets SL and SR defined in (8.4) equal, as is the case for the analogous sets

in BLPP? See Remark 8.14.

APPENDIX A: MAXIMIZERS OF CONTINUOUS FUNCTIONS

Recall the definitions of f (x, y) and f ≤inc g from Section 2.1. The proofs of the next

elementary lemmas are in [20].

LEMMA A.1. Let f,g :R→R be continuous functions satisfying f (x)∨ g(x)→−∞,

as x →±∞ and f ≤inc g. Let xL
f and xR

f be the leftmost and rightmost maximizers of f

over R and similarly defined for g. Then xL
f ≤ xL

g and xR
f ≤ xR

g .

LEMMA A.2. Assume that f,g :R→R satisfy f ≤inc g. Then for a ≤ x ≤ y ≤ b,

0≤ g(x, y)− f (x, y)≤ g(a, b)− f (a, b).

LEMMA A.3. Let S ⊆ Rn, and let fn : S → R be continuous functions that converge

uniformly to f : S → R. Let cn be a maximizer of fn, and assume cn → c ∈ S. Then c is a

maximizer of f .

APPENDIX B: DIRECTED LANDSCAPE AND THE KPZ FIXED POINT

The next three results state basic useful properties of the directed landscape.

LEMMA B.1 ([26], Lemma 10.2 and [28], Proposition 1.23). As a random continuous

function of (x, s;y, t) ∈ R4
↑

, the directed landscape L satisfies the following distributional

symmetries, for all r, c ∈R and q > 0:

(i) (Space-time stationarity) L(x, s;y, t)
d= L(x + c, s + r;y + c, t + r).

(ii) (Skew stationarity) L(x, s;y, t)
d= L(x + cs, s;y + ct, t)− 2c(x − y)+ (t − s)c2.

(iii) (Spatial and temporal reflections) L(x, s;y, t)
d= L(−x, s;−y, t)

d= L(y,−t;x,−s).

(iv) (Rescaling) L(x, s;y, t)
d= qL(q−2x, q−3s;q−2y, q−3t).

LEMMA B.2 ([26], Corollary 10.7). There exists a random constant C such that, for all

v = (x, s;y, t) ∈R4
↑

, we have

∣∣∣∣L(x, s;y, t)+ (x − y)2

t − s

∣∣∣∣≤ C(t − s)1/3 log4/3

(
2(‖v‖ + 2)

t − s

)
log2/3(‖v‖ + 2

)
,

where ‖v‖ is the Euclidean norm.
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The following is a corollary of Proposition 2.6 in [23]. The derivation is in [20].

LEMMA B.3. For a, b ∈R, not both 0 and z > 0, consider the shift operator Tz;a,b acting

on the directed landscape L as

Tz;a,bL(x, s;y, t)= L(x + az, s + bz;y + az; t + bz),

where both sides are understood as a process on R4
↑

. Then L is mixing under this transfor-

mation. That is, for all Borel subsets A, B of the space C(R4
↑

,R),

P(L ∈A,Tz;a,bL ∈ B)
z→∞−→ P(L ∈A)P(L ∈ B).

Recall the definition of the state space UC (2.2) for the KPZ fixed point. Recall the vari-

ational representation (2.3) of the KPZ fixed point. This leads to a semigroup property: for

0 < s < t ,

ht (y;h)= sup
x∈R

{
hs(x;h)+L(x, s;y, t)

}
.

If we start at time s from initial function h so that

ht (y;h)= sup
x∈R

{
h(x)+L(x, s;y, t)

}
for t > s,

then we say that ht has initial data h sampled at time s < t .

LEMMA B.4 ([11, 26, 35, 57]). Let L : R4
↑

→ R be a continuous function satisfying the

metric composition law (2.1) and such that maximizers in (2.1) exist. Then:

(i) Whenever s < t , x1 < x2, y1 < y2,

L(x2, s;y1, t)−L(x1, s;y1, t)≤ L(x2, s;y2, t)−L(x1, s;y2, t).

Let h1,h2 ∈UC, and for i = 1,2 and t > 0, set

(B.1) ht

(
y;hi)= sup

x∈R

{
hi(x)+L(x,0;y, t)

}
.

Then, assuming that maximizers in (B.1) exist, the following hold:

(ii) If h1 ≤inc h
2, then ht (·;h1)≤inc ht (·;h2) for all t > 0.

(iii) For t > 0 and i = 1,2, set Zt (y;hi)=max arg maxz∈R{hi(z)+L(z,0;y, t)}. Then if

x < y and Zt (y;h1)≤Zt (x;h2), we have ht (y;h1)− ht (x;h1)≤ ht (y;h2)− ht (x;h2).

Next, we state three technical lemmas whose proofs can be found in [20].

LEMMA B.5. Fix ξ ∈R and a > 0. Consider the KPZ fixed point starting at time s from

a function h ∈UC. For t > s, let Z
a,s,t
h ∈R denote the set of exit points from the time horizon

Hs of the geodesics associated with h and that terminate in {t} × [−a, a]. That is,

(B.2) Z
a,s,t
h =

⋃

y∈[−a,a]
arg max

x∈R

{
h(x)+L(x, s;y, t)

}
.

Then on the full probability event of Lemma B.2, whenever h ∈ UC satisfies condition (2.4)

and when ε > 0, a > 0, and s ∈ R, there exists a random t0 = t0(ε, a, s) > s ∨ 0 such that,

for any t > t0,

(B.3) Z
a,s,t
h ⊂

[
(ξ − ε)t, (ξ + ε)t

]
.
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In particular, if h is a random function almost surely satisfying condition (2.4), then this

random t0 exists almost surely, and

lim
t→∞

P
(
Z

a,s,t
h ⊂

[
(ξ − ε)t, (ξ + ε)t

])
= 1.

Furthermore, an analogous statement holds on the same full-probability event if t is held

fixed and s →−∞. That is, there exists a random s0 = s0(ε, a, t) < t ∧ 0 such that, for any

s < s0,

(B.4) Z
a,s,t
h ⊂

[
−(ξ − ε)s,−(ξ + ε)s

]
.

LEMMA B.6. Let h ∈ UC be initial data for the KPZ fixed point sampled at time s ∈ R.

For all t > s and y ∈R, set

(B.5) ht (y;h)= sup
x∈R

{
h(x)+L(x, s;y, t)

}
.

Then on the full-probability event of Lemma B.2, the following hold:

(i) If h is continuous, then (t, y) �→ ht (y;h) is continuous on (s,∞)×R.

(ii) For each compact set K ⊆ R>s , there exist constants A = A(a, b,K) and B =
B(a, b,K) such that, for all t ∈ K and all y ∈ R, ht (y;h) ≤ A + B|y|. If we assume that

h(x) ≥ −a − b|x| for some constants a, b > 0, then we also obtain the bound ht (y;h) ≥
−A − B|y| for all t ∈ K and y ∈ R (the upper bound h(x) ≤ a + b|x| is assumed in the

definition of UC).

(iii) If there exists a, b > 0 so that |h(x)| ≤ a + b|x| for all x, then for any t > s, δ > 0,

there exists Y = Y(t, δ) > 0 so that when |y| ≥ Y , all maximizers of h(x)+L(x, s;y, t) over

x ∈R lie in the interval (y − |y|1/2+δ, y + |y|1/2+δ).

We believe Lemma B.6 is well-known, but we do not have a reference. In particular, [50]

states that the KPZ fixed point preserves the space of linearly bounded continuous functions

and gives regularity estimates for the KPZ fixed point.

LEMMA B.7. The following holds simultaneously for all initial data and all t > s on the

event of probability one from Lemma B.2. Let h ∈UC be initial data for the KPZ fixed point,

sampled at time s. For t > s, let ht be defined as in (B.5). Then, simultaneously for all t > s,

(B.6) lim inf
x→+∞

ht (x;h)
x

≥ lim inf
x→+∞

h(x)

x
and lim sup

x→−∞

ht (x;h)
x

≤ lim sup
x→−∞

h(x)

x
.

Furthermore, assuming that h :R→R is continuous and satisfies

(B.7) lim inf
x→±∞

h(x)

x
>−∞ and lim sup

x→±∞

h(x)

x
<+∞,

then also

(B.8) lim sup
x→+∞

ht (x;h)
x

≤ lim sup
x→+∞

h(x)

x
and lim inf

x→−∞
ht (x;h)

x
≥ lim inf

x→−∞
h(x)

x
.

In particular, for continuous initial data h satisfying (B.7), if either (or both) of the limits

limx→±∞
h(x)
x

exist (potentially with different limits on each side), then for t > s,

lim
x→±∞

ht (x;h)
x

= lim
x→±∞

h(x)

x
.

Geodesics in the directed landscape is the last topic of this section.
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LEMMA B.8 ([14], Theorem 1.18. See also [27], Lemmas 3.1 and 3.3). There exists a

single event of full probability on which, for any compact set K ⊆ R4
↑

, there is a random

ε > 0 such that the following holds. If v1 = (x, s;y,u) ∈K and v2 = (z, s;w,u) ∈K admit

geodesics γ1 and γ2 satisfying |γ1(t) − γ2(t)| ≤ ε for all t ∈ [s, u], then γ1(t) = γ2(t) for

some t ∈ [s, u].

LEMMA B.9. On a single event of full probability, the following holds. For all ordered

triples s < t < u and compact sets K ⊆R, the following set is finite:

(B.9)
{
g(t) : g is the unique geodesic between (x, s) and (y, u) for some x, y ∈K

}

Lemma B.9 is known. Its derivation from Lemma B.8 and some results of [27] are shown

in [20]. Lemma 3.12 in [36] (posted after our first version) provides a stronger quantitative

statement, but we do not need it for our purposes. This stronger estimate can be traced back

to the work of Basu, Hoffman, and Sly [12] using integrable methods in exponential LPP.

APPENDIX C: EXPONENTIAL LAST-PASSAGE PERCOLATION

C.1. LPP on the half-plane. Let {Yx}x∈Z2 be i.i.d. Exp(1) random variables on the ver-

tices of the planar integer lattice. For x≤ y ∈ Z2, define the last-passage value

(C.1) d(x,y)= sup
x
�
∈�x,y

|y−x|1∑

k=0

Yxk
,

where �x,y is the set of upright paths {xk}nk=0 that satisfy x0 = x, xn = y and xk − xk−1 ∈
{e1, e2}. A maximizing path is called a geodesic. This model is exponential last-passage per-

colation (LPP) or the exponential corner growth model (CGM).

We extend this bulk LPP to LPP in the upper half-plane. The boundary condition is a real

sequence h= (h(k))k∈Z. For m ∈ Z, let dh(m,0)= h(m), and for n > 0,

(C.2) dh(m,n)= sup
−∞<k≤m

{
h(k)+ d

(
(k,1), (m,n)

)}
.

We consider only h such that the supremum is achieved at some finite k.

This half-plane LPP has an alternative representation in terms of queuing mappings. Let

I = (Ik)k∈Z and ω= (ωk)k∈Z be nonnegative real sequences such that

lim
m→−∞

0∑

i=m

(ωi − Ii+1)=−∞.

Let F = (Fk)k∈Z be a sequence satisfying Ik = Fk − Fk−1, and define F̃ = (F̃�)�∈Z by

(C.3) F̃� = sup
−∞<k≤�

{
Fk +

�∑

i=k

ωi

}
, � ∈ Z.

Then define the sequences Ĩ = (Ĩ�)�∈Z and J = (Jk)k∈Z by

Ĩ� = F̃� − F̃�−1 and Jk = F̃k − Fk.

In queuing terms Ik is the time between the arrivals of customers k−1 and k, ωk is the service

time of customer k, Ĩ� is the interdeparture time between customers �− 1 and � and Jk is the

sojourn time of customer k. Let D and S denote the mappings

(C.4) Ĩ =D(ω, I) and J = S(ω, I).

The following lemma shows how to construct the half-plane LPP from the queuing map-

pings. The details are given in [20].
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LEMMA C.1. Let the weights {Yx}x∈Z2 and the boundary condition h be as above. For

n ≥ 1, let Y n = {Ym,n}m∈Z denote the weights along the horizontal level n. Define the se-

quence I 0 = (I 0
i )i∈Z by I 0

i = h(i)−h(i−1). For n > 1, define inductively In =D(Y n, In−1)

and J n = S(Y n, In−1). Then for each n≥ 1 and m ∈ Z,

(C.5) In
m = dh(m,n)− dh(m− 1, n) and J n

m = dh(m,n)− dh(m,n− 1).

For ρ ∈ (0,1), the stationary boundary condition hρ is defined so that hρ(0) = 0 and

{hρ(k) − hρ(k − 1)}k∈Z is a sequence of i.i.d. Exp(ρ) random variables, independent of

the i.i.d. Exp(1) bulk variables {Yx}x∈Z×Z>0
. Stationary boundary conditions describe the

distribution of Busemann functions to be discussed in Section C.3. With this initial data, we

write dρ = dhρ
.

C.2. KPZ scaling of the exponential CGM. The next lemma states that the exit point of

half-plane stationary LPP obeys the KPZ wandering exponent 2/3. The proof is given in [20],

Lemma C.5. The main idea is to use the exit point bounds for the stationary model in the

quadrant from [31] and then connect them to the upper-half plane case using ideas from [8]

and [60]. These bounds have also appeared in the literature using integrable methods, for

example, [15], Theorem 2.5, [13], Theorem 3, and in [49], Lemma 2.8.

LEMMA C.2. Fix c ∈ R. For large enough N ≥ 1, consider the stationary half-plane

LPP dρN defined above with parameter ρN = 1
2
+ cN−1/3 ∈ (0,1). Define the exit point by

(C.6) ZρN (m,n)=max
{
k ∈ Z : hρN (k)+ d

(
(k,1), (m,n)

)
= dρN (m,n)

}
.

Then for any y ∈ R and t > 0, there exist constants C1 = C1(c, y, t) > 0 and C2 =
C2(c, y, t) > 0 such that

lim sup
N→∞

P
{∣∣ZρN

(⌊
tN +N2/3y

⌋
, "tN#

)∣∣≥MN2/3}≤ C1e
−C2M

3

for all M > 0.

We cite the theorem on the DL limit of exponential LPP.

THEOREM C.3 ([28], Theorem 1.7). Let d denote last-passage percolation (C.1) with

i.i.d. Exp(1) weights. Then there exists a coupling of the directed landscape L and identically

distributed copies dN of d such that

dN

((
sN + 25/3xN2/3, sN

)
,
(
tN + 25/3yN2/3, tN

))

= 4N(t − s)+ 28/3N2/3(y − x)+ 24/3N1/3(L+ oN )(x, s;y, t).

Here dN is appropriately interpolated and oN : R4
↑

→ R is a random continuous function

such that, for every compact K ⊂R4
↑

, there exists a constant c > 0 such that

sup
K

|oN | → 0 almost surely and E
[
c sup

K

(
o−N

)3 +
(
o+N

)]
→ 1.

C.3. Busemann process. This section describes the distribution of the Busemann pro-

cess of the exponential CGM. The direction vectors u ∈]e2, e1[ are connected to the parameter

ρ ∈ (0,1) through this bijection,

u(ρ)=
(

ρ2

ρ2 + (1− ρ)2
,

(1− ρ)2

ρ2 + (1− ρ)2

)
.

Then for a fixed ρ ∈ (0,1) and x,y ∈ Z2, this almost sure Busemann limit holds,

(C.7) Bρ
x,y = Bρ(x,y)= lim

n→∞d
(
−nu(ρ),y

)
− d

(
−nu(ρ),x

)
.
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The Busemann functions extend to a process {Bρ�(x,y) : ρ ∈ (0,1), � ∈ {−,+},x,y ∈ Z2}
[45]. Note that, in (C.7), geodesics travel southwest. This convention is convenient for the

queuing representation.

Define the following state space Yn of n-tuples of bi-infinite nonnegative sequences:

{
(
I 1, . . . , In) ∈

(
RZ
≥0

)n : lim
m→−∞

1

m

0∑

i=m

I k
i < lim

m→∞
1

m

0∑

i=m

I k+1
i , for 1≤ k ≤ n− 1

}
.

The limits above are assumed to exist. Extend the mapping D of (C.4) to mappings D(k) :
Yk →RZ

≥0 of multiple input sequences: D(1)(I 1)= I 1 and inductively for k > 1,

D(k)(I 1, . . . , I k)=D
(
I 1,D(k−1)(I 2, I 3, . . . , I k)).

Combine these into a mapping D(n) = (D
(n)
i )ni=1 : Yn→ Yn between n-tuples of sequences,

D
(n)
i

(
I 1, . . . , In)=D(i)(I 1, . . . , I i) for i = 1, . . . , n.

For ρ
n = (ρ1, . . . , ρn) such that ρ1 > · · · > ρn > 0, define the probability measure νρ

n

on Yn as the distribution of (I 1, . . . , In) when I 1, . . . , In are independent and each I i is a

sequence of i.i.d. Exp(ρi) random variables. Then define the measure μρ
n

as

(C.8) μρ
n = νρ

n ◦
(
D(n))−1

.

The next two theorems explain the significance of μρ
n

for queues and LPP.

THEOREM C.4 ([33], Theorem 5.4). Let ρ
n = (ρ1, . . . , ρn) with 1 > ρ1 > · · ·> ρn > 0

and assume (I 1, . . . , In)∼ μρ
n
. Let I 0 be a sequence of i.i.d. exponential random variables

with rate 1, independent of (I 1, . . . , In). Then (D(I 0, I 1), . . . ,D(I 0, In))∼ μρ
n
.

THEOREM C.5 ([33], Theorem 3.2). For ρ ∈ (0,1), define the sequence Iρ as I
ρ
i =

B
ρ
(i−1)e1,ie1

. Let ρ
n = (ρ1, . . . , ρn) with 1 > ρ1 > · · ·> ρn > 0. Then (Iρ1, . . . , Iρn)∼ μρ

n
.

APPENDIX D: STATIONARY HORIZON

After [18], let Wy(f )= sup−∞<x≤y[f (y)−f (x)], and define � : C(R)×C(R)→C(R)

by

�(f,g)(y)=

⎧
⎪⎪⎨
⎪⎪⎩

f (y)+
[
W0(f − g)+ inf

0≤x≤y

(
f (x)− g(x)

)]−
, y ≥ 0,

f (y)−
[
Wy(f − g)+ inf

y<x≤0

(
f (x)− f (y)−

[
g(x)− g(y)

])]−
, y < 0.

We apply � only to functions for which the suprema are finite. By Lemma 9.2 in [64], when

f (0)= g(0)= 0,

(D.1) �(f,g)(y)= f (y)+ sup
−∞<x≤y

{
g(x)− f (x)

}
− sup
−∞<x≤0

{
g(x)− f (x)

}
.

Extend � to maps �k : C(R)k → C(R)k as follows. Abbreviate fm:n = (fm, . . . , fn):

1. �1(f1)(x)= f1(x).

2. �2(f1, f2)(x) = [�2
1(f1, f2)(x),�2

2(f1, f2)(x)] = [f1(x),�(f1, f2)(x)] and for k ≥
3,

3. �k(f1:k)(x)= [f1(x),�(f1,�
k−1
k−1(f2:k))(x), . . . ,�(f1,�

k−1
k−1(f2:k)])(x)].
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DEFINITION D.1. The stationary horizon {Gξ }ξ∈R is the C(R)-valued cadlag process

described in Section 2.4 whose distribution is characterized as follows: for ξ1 < · · · < ξk ,

(Gξ1
, . . . ,Gξk

)
d= �k(f1, . . . , fk), where f1, . . . , fk are independent two-sided Brownian

motions with diffusivity
√

2 and drifts 2ξ1, . . . ,2ξk (as defined in (ix) in Section 2.1).

The existence of the process G is nontrivial. It was achieved through the next theorem.

For N ∈ N and ξ ∈ R, let FN
ξ ∈ C(R) be the linear interpolation of the function Z � m �→

B( 1
2−2−4/3ξN−1/3)−(0,me1) from the Busemann process B of the exponential CGM. FN

·
is a

C(R)-valued cadlag process. Its suitably centered and scaled version is

(D.2) GN
ξ (x)= 2−4/3N−1/3[FN

ξ

(
25/3N2/3x

)
− 28/3N2/3x

]
.

THEOREM D.2 ([18], Theorem 1.1). As N →∞, GN converges in distribution to G

on the Skorokhod space D(R,C(R)). In particular, for ξ1, . . . , ξn ∈ R, (GN
ξ1

, . . . ,GN
ξn

) =⇒
(Gξ1

, . . . ,Gξn) in the topology of uniform convergence on compact subsets of R.

Note that the parameterizations in [18] and here differ: if G̃ denotes the SH in [18], then

Gξ (x)
d= G̃4ξ (x/2) as processes indexed by (ξ, x). The next theorem summarizes facts about

SH. By the cadlag paths, Gξ+ =Gξ and Gξ− = limα↗ξ Gα exist in C(R). Recall the notation

f (x, y)= f (y)− f (x) for a function f :R→R.

THEOREM D.3 ([18], Theorem 1.2; [64], Theorems 3.9, 3.11, 3.15, 7.20 and Lemma 3.6).

The following hold for the stationary horizon:

(i) For each ξ ∈R, with probability one, Gξ− =Gξ+, and Gξ is a two-sided Brownian

motion with diffusion coefficient
√

2 and drift 2ξ .

(ii) For c > 0 and ν ∈R, {cGc(ξ+ν)(c
−2x)− 2νx : x ∈R}ξ∈R d= {Gξ (x) : x ∈R}ξ∈R.

(iii) Spatial stationarity holds in the sense that, for y ∈R,

{
Gξ (x) : x ∈R

}
ξ∈R

d=
{
Gξ (y, x + y) : x ∈R

}
ξ∈R.

(iv) Fix x > 0, ξ0 ∈R, ξ > 0 and z≥ 0. Then

P
(

sup
a,b∈[−x,x]

∣∣Gξ0+ξ (a, b)−Gξ0
(a, b)

∣∣≤ z
)

= P
(
Gξ0+ξ (−x, x)−Gξ0

(−x, x)≤ z
)

=�

(
z− 4ξx

2
√

2x

)
+ eξz

((
1+ ξz+ 4ξ2x

)
�

(
−z+ 4ξx

2
√

2x

)
− 2ξ

√
x/πe

− (z+4ξx)2

8
√

x

)
,

where � is the standard normal distribution function.

(v) For x < y and α < β , with # denoting the cardinality,

E
[
#
{
ξ ∈ (α,β) :Gξ−(x, y) < Gξ+(x, y)

}]
= 2

√
2/π(β − α)

√
y − x.

Furthermore, the following hold on a single event of full probability:

(vi) For x0 > 0, define the process Gx0 ∈D(R,C[−x0, x0]) by restricting each function

Gξ to [−x0, x0]: G
x0
ξ =Gξ |[−x0,x0]. Then ξ �→G

x0
ξ is a C[−x0, x0]-valued jump process with

finitely many jumps in any compact interval but countably infinitely many jumps in R. The

number of jumps in a compact interval has finite expectation, given in item (v) above, and

each direction ξ is a jump direction with probability 0. In particular, for each ξ ∈ R and

compact set K , there exists a random ε = ε(ξ,K) > 0 such that for all ξ − ε < α < ξ < β <

ξ + ε, � ∈ {−,+}, and all x ∈K , Gξ−(x)=Gα(x) and Gξ+(x)=Gβ(x).
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(vii) For x1 < x2, ξ �→Gξ (x1, x2) is a nondecreasing jump process, converging to ±∞
as ξ →±∞.

(viii) Let α < β . The function x �→ Gβ(x) −Gα(x) is nondecreasing. There exist finite

S1 = S1(α,β) and S2 = S2(α,β) with S1 < 0 < S2 such that Gα(x)=Gβ(x) for x ∈ [S1, S2]
and Gα(x) �=Gβ(x) for x /∈ [S1, S2].

(ix) Let α < β , S1 = S1(α,β) and S2 = S2(α,β). Then ∃ζ, η ∈ [α,β] such that

Gζ−(x)=Gζ+(x) for x ∈ [−S1,0] and Gζ−(x) > Gζ+(x) for x < S1 and

Gη−(x)=Gη+(x) for x ∈ [0, S2] and Gη−(x) < Gη+(x) for x > S2.

In particular, the set {ξ ∈R :Gξ+ �=Gξ−} is dense in R.

Theorem 2.1 gives the following new property of SH.

COROLLARY D.4. SH satisfies this reflection: {G(−ξ)−(−·)}ξ∈R d= {Gξ (·)}ξ∈R.

PROOF. By the spatial reflection invariance of the directed landscape (Lemma B.1(iii)),

{G(−ξ)−(−·)}ξ∈R is an invariant distribution for the KPZ fixed point such that each marginal

satisfies (2.4). The result follows from the uniqueness part of Theorem 2.1. �
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