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The stationary horizon (SH) is a stochastic process of coupled Brownian
motions indexed by their real-valued drifts. It was first introduced by the first
author as the diffusive scaling limit of the Busemann process of exponential
last-passage percolation. It was independently discovered as the Busemann
process of Brownian last-passage percolation by the second and third au-
thors. We show that SH is the unique invariant distribution and an attractor
of the KPZ fixed point under conditions on the asymptotic spatial slopes. It
follows that SH describes the Busemann process of the directed landscape.
This gives control of semi-infinite geodesics simultaneously across all initial
points and directions. The countable dense set E of directions of discontinu-
ity of the Busemann process is the set of directions in which not all geodesics
coalesce and in which there exist at least two distinct geodesics from each ini-
tial point. This creates two distinct families of coalescing geodesics in each E
direction. In E directions the Busemann difference profile is distributed like
Brownian local time. We describe the point process of directions £ € & and
spatial locations where the £ - Busemann functions separate.

CONTENTS
Introduction ... 2
1.1. KPZ fixed point and directed landscape . . . . . . . . . ... . Lo 2
1.2. Semi-infinite geodesics and Busemann functions . . . . . ... ... Lo L L L L. 2
1.3. Stationary horizon as the Busemann process of the directed landscape . . . . . ... ... ... .. 3
1.4. Nonuniqueness of geodesics and random fractals . . . ... .. ... ... ... .......... 4
LS. Inputs . . . . o 5
1.6. Organization of the paper . . . . . . . . . . . . i e 5
. Model and main theorems . . . . . . . . . .. L e e 6
2.1 NOtation . . . . . . oo 6
2.2. Geodesics in the directed landscape . . . . . . . . ... Lo L 6
23. KPZfixed point . . . . . . o oo e 7
2.4. Stationary horizon . . . . . . ... 7
2.5. Semi-infinite E0deSICS . . . . . . . ... e e e e 9
. Invariance and uniqueness of the stationary horizon under the KPZ fixed point . . . .. ... ... ... 11
. Summary of the Rahman—Virdgresults . . . . . ... ... ... ... . ... 14
. Busemann process and Busemann geodesics . . . . . .. ... ... L L oo 15
5.1. The BUSemMann ProCess . . . . . .« v v v v vt vt it e e e e e e e e e e 15
5.2, Busemann geodesiCs . . . . .. .. e e e e e 18
5.3. Construction and proofs for the Busemann process and Busemann geodesics . . . . . ... .. .. 19
. Nonuniqueness of semi-infinite geodesics . . . . . . . . . . .. .. L e 28
6.1. Proofs . . . . .. 31
. Coalescence and the global geometry of geodesics . . . . . . . ... .. ... . . L. 36
7.1 Proofs . .. 37
7.2. Remaining proofs from Section 5 and Proof of Theorem2.5 . . . ... ... ... ... ... ... 41

Received August 2022; revised July 2023.

MSC2020 subject classifications. 60K35, 60K37.
Key words and phrases. Attractor, Brownian motion, Busemann function, coalescence, directed landscape,

geodesic, Hausdorff dimension, KPZ fixed point, Palm kernel, semi-infinite geodesic, stationary horizon.

1



2 0. BUSANI, T. SEPPALAINEN AND E. SORENSEN

8. Random measures and their SUppoOrts . . . . . . . . . . . . L 43
8.1. Random measures and Palmkernels . . . . . ... ... ... oL L oL L L L 45
8.2. Decoupling . . . . . . . . e 50
8.3. Remaining proofs . . . . . . . . e 52

9. Open problems . . . . . . . .. e e e 55

Appendix A: Maximizers of continuous functions . . . . . ... ... L L L Lo 56

Appendix B: Directed landscape and the KPZ fixedpoint . . . . . .. ... ... ... ... ... ... 56

Appendix C: Exponential last-passage percolation. . . . . . ... .. ... ... ... .. .. .. ... . 59
C.1. LPPonthe half-plane . . . . . . . . . . . . e 59
C.2. KPZ scaling of the exponential CGM . . . . . . . .. ... . . 60
C.3. BUSemann ProCess . . . . . . .t vttt e e e e e e e e e e 60

Appendix D: Stationary horizon . . . . . . . .. L L e 61

Acknowledgments . . . . . ... e e e 63

Funding . . . . . . 63

References . . . . . . . . . L 63

1. Introduction.

1.1. KPZ fixed point and directed landscape. The study of the Kardar—Parisi—Zhang
(KPZ) class of 1 + 1 dimensional stochastic models of growth and interacting particles has
advanced to the point where the first conjectured universal scaling limits have been rigor-
ously constructed. These two interrelated objects are the KPZ fixed point, initially derived
as the limit of the totally asymmetric simple exclusion process (TASEP) [50], and the di-
rected landscape (DL), initially derived as the limit of Brownian last-passage percolation
(BLPP) [26]. The KPZ fixed point describes the height of a growing interface, while the di-
rected landscape describes the random environment through which growth propagates. These
two objects are related by a variational formula, recorded in (2.3) below. Evidence for the
universality claim comes from rigorous scaling limits of exactly solvable models [28, 53, 58,
66].

Our paper studies the global geometry of the directed landscape through the analytic and
probabilistic properties of its Busemann process. Our construction of the Busemann pro-
cess begins with the recent construction of individual Busemann functions by Rahman and
Virdg [59]. The remainder of this Introduction describes the context and gives previews of
some results. The organization of the paper is in Section 1.6.

1.2. Semi-infinite geodesics and Busemann functions. In growth models of first- and last-
passage type, semi-infinite geodesics trace the paths of infection all the way to infinity and
hence are central to the large-scale structure of the evolution. Their study was initiated by
Licea and Newman in first-passage percolation in the 1990s [48, 52] with the first results
on existence, uniqueness and coalescence. Since the work of Hoffman [42, 43], Busemann
functions have been a key tool for studying semi-infinite geodesics (see, e.g., [22, 36, 38, 41,
59, 61, 63, 64], and Chapter 5 of [2]).

Closer to the present work, the study of semi-infinite geodesics began in directed last-
passage percolation with the application of the Licea—Newman techniques to the exactly
solvable exponential model by Ferrari and Pimentel [34]. Georgiou, Rassoul-Agha and the
second author [38, 39] showed the existence of semi-infinite geodesics in directed last-
passage percolation with general weights under mild moment conditions. Using this, Jan-
jigian, Rassoul-Agha and the second author [45] showed that geometric properties of the
semi-infinite geodesics can be found by studying analytic properties of the Busemann pro-
cess. In the special case of exponential weights, the distribution of the Busemann process
from [33] was used to show that all geodesics in a given direction coalesce if and only if that
direction is not a discontinuity of the Busemann process.
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In [64] the second and third author extended this work to the semidiscrete setting by deriv-
ing the distribution of the Busemann process and analogous results for semi-infinite geodesics
in BLPP. Again, all semi-infinite geodesics in a given direction coalesce if and only if that
direction is not a discontinuity of the Busemann process. In each direction of discontinuity,
there are two coalescing families of semi-infinite geodesics and from each initial point at
least two semi-infinite geodesics. Compared to LPP on the discrete lattice, the semidiscrete
setting of BLPP gives rise to additional nonuniqueness. In particular, [64] developed a new
coalescence proof to handle the nondiscrete setting.

In the directed landscape, Rahman and Virdg [59] showed the existence of semi-infinite
geodesics, almost surely in a fixed direction across all initial points as well as almost surely
from a fixed initial point across all directions. Furthermore, all semi-infinite geodesics in
a fixed direction coalesce almost surely. This allowed [59] to construct a Busemann func-
tion for a fixed direction. After the first version of our present paper was posted, Ganguly
and Zhang [36] gave an independent construction of a Busemann function and semi-infinite
geodesics, again for a fixed direction. They defined a notion of “geodesic local time,” which
was key to understanding the global fractal geometry of geodesics in DL. Later in [37], the
same authors showed that the discrete analogue of geodesic local time in exponential LPP
converges to geodesic local time for the DL.

Starting from the definition in [59], we construct the full Busemann process across all di-
rections. Through the properties of this process, we establish a classification of uniqueness
and coalescence of semi-infinite geodesics in the directed landscape. Similar constructions
of the Busemann process and classifications for discrete and semidiscrete models have pre-
viously been achieved [44, 45, 60, 64], but the procedure in the directed landscape is more
delicate. One reason is that the space is fully continuous. Another difficulty is that Buse-
mann functions in DL possess monotonicity only in horizontal directions, while discrete and
semidiscrete models exhibit monotonicity in both horizontal and vertical directions. A new
perspective is needed to construct the Busemann process for arbitrary initial points.

The full Busemann process is necessary for a complete understanding of the geometry
of semi-infinite geodesics. In particular, countable dense sets of initial points or directions
cannot capture nonuniqueness of geodesics or the singularities of the Busemann process.

1.3. Stationary horizon as the Busemann process of the directed landscape. The station-
ary horizon (SH) is a cadlag process indexed by the real line whose states are Brownian
motions with drift (Definition D.1 in Appendix D). SH was first introduced by the first au-
thor [18] as the diffusive scaling limit of the Busemann process of exponential last-passage
percolation from [33] and was conjectured to be the universal scaling limit of the Busemann
process of models in the KPZ universality class. Shortly afterward, the paper [64] of the last
two authors was posted. To derive the aforementioned results about semi-infinite geodesics,
they constructed the Busemann process in BLPP and made several explicit distributional
calculations. Remarkably, after discussions with the first author, the second and third authors
discovered that the Busemann process of BLPP has the same distribution as the SH, restricted
to nonnegative drifts. Furthermore, due to a rescaling property of the stationary horizon, when
the direction is perturbed on order n~!/3 from the diagonal, this process also converges to the
SH, in the sense of finite-dimensional distributions. These results were added to the second
version of [64].

The convergence of the full Busemann process of exponential LPP to SH under the KPZ
scaling, proven in [18], is currently the only example of what we expect to be a universal
phenomenon: namely, that SH is the universal limit of the Busemann processes of models
in the KPZ class. The present paper takes a step toward this universality by establishing that
the stationary horizon is the Busemann process of the directed landscape, which itself is the
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conjectured universal scaling limit of metric-like objects in the KPZ class. This is the central
result that gives access to properties of the Busemann process. In addition to giving strong
evidence toward the universality of SH conjectured by [18], it provides us with computational
tools for studying the geometric features of DL.

The characterization of the Busemann process of DL comes from a combination of two
results: (i) The Busemann process evolves as a backward KPZ fixed point. (ii) The stationary
horizon is the unique invariant distribution of the KPZ fixed point, subject to an asymptotic
slope condition satisfied by the Busemann process (Theorem 2.1). Our invariance result is an
infinite-dimensional extension of the previously proved invariance of Brownian motion with
drift [50, 56, 57]. For the invariance of a single Brownian motion, we have a strengthened
uniqueness statement (Remark 2.4). Furthermore, under asymptotic slope conditions on the
initial data, the stationary horizon is an attractor. This is analogous to the results of [3—7] for
stationary solutions of the Burgers equation with random Poisson and kick forcing.

1.4. Nonuniqueness of geodesics and random fractals. Among the key questions is the
uniqueness of semi-infinite geodesics in the directed landscape. We show the existence of a
countably infinite, dense random set E of directions & such that, from each initial point in
R?, two semi-infinite geodesics in direction £ emanate, separate immediately or after some
time and never return back together. It is interesting to relate this result and its proof to earlier
work on disjoint finite geodesics.

The set of exceptional pairs of points between which there is a nonunique geodesic in DL
was studied in [14]. Their approach relied on [11], which studied the random nondecreasing
function z — L(y, s; z,t) — L(x,s; z,t) for fixed x < y and s < t. This process is locally
constant, except on an exceptional set of Hausdorff dimension % From here [14] showed
that, for fixed s <t and x < y, the set of z € R such that there exist disjoint geodesics from
(x,s) to (z,t) and from (y, s) to (z,t) is exactly the set of local variation of the function
7z L(x,s;2z,t) — L(y,s;z,t) and, therefore, has Hausdorff dimension % Going further,
they showed that, for fixed s < , the set of pairs (x, y) € R? such that there exist two disjoint
geodesics from (x,s) to (y,t) also has Hausdorff dimension % almost surely. Later, this
exceptional set in the time direction was studied in [36] and was shown to have Hausdorff
dimension 2/3. Across the entire plane, this set has Hausdorff dimension % In a similar spirit,
Dauvergne [24] recently posted a paper detailing all the possible configurations of nonunique
point-to-point geodesics along with the Hausdorff dimensions—with respect to a particular
metric—of the sets of points with those configurations.

Our focus is on the limit of the measure studied in [11], namely, the nondecreasing function
Er> We(y,s;x,8) =limyo0o[L(y, s; &, 1) — L(x, s; t§, )], which is exactly the Busemann
function in direction &. The support of its Lebesgue—Stieltjes measure corresponds to the
existence of disjoint geodesics (Theorem 7.9), but in contrast to [14], the measure is supported
on a countable discrete set instead of on a set of Hausdorff dimension % (Theorem 5.5(iv) and
Remark 5.6).

We encounter a Hausdorff dimension % set if we look along a fixed time level s for those
space-time points (x, s) out of which there are disjoint semi-infinite geodesics in a random,
exceptional direction (Theorem 2.10(iii)). Up to the removal of an at-most countable set, this

Hausdorff dimension % set is the support of the random measure defined by the function

x> foe(x) = Weyi(x,s5;0,5) — We_(x,s5;0,5),

where We. are the right- and left-continuous Busemann processes (Theorem 8.2). This is a
semi-infinite analogue of the result in [14].

The distribution of f; ¢ is delicate. The set of directions & such that W _ # W or, equiv-
alently, such that 7z = inf{x > 0: f; ¢(x) > 0} < o0 is the set E mentioned above. A fixed
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direction & lies in E with probability 0. Theorem 8.1 shows that the law of f ¢(te + ) on
R0, conditioned on & € & in the appropriate Palm sense, is exactly that of the running max-
imum of a Brownian motion or, equivalently, that of Brownian local time. This complements
the fact that the function z — L(y, s; z,t) — L(x, s; z, t) is locally absolutely continuous with
respect to Brownian local time [35]. Furthermore, the point process {(z¢,§) : § € E} has an
explicit mean measure (Lemma 8.6 in Section 8.1).

Since the first version of the present article has appeared, Bhatia [16, 17] has posted two
papers that use our results as inputs. The first, [16], studies the Hausdorff dimension of the
set of splitting points of geodesics along a geodesic itself. The second, [17], answers an open
problem presented in this paper. Namely, the sets NU(S)D and NU?D, defined in (6.1)—(6.2),
are almost surely equal, and for a fixed direction &, this set almost surely has Hausdorff
dimension ‘31 in the plane.

1.5. Inputs. We summarize the inputs to this paper, besides the basic [26, 50, 53]. Four
ingredients go into the invariance of SH under the KPZ fixed point: (i) The invariance of
the Busemann process of the exponential corner growth model under the LPP dynamics [33],
(ii) convergence of this Busemann process to SH [18] (Here the emergence of SH as a scaling
limit in the KPZ universality class plays a fundamental role.), (iii) exit point bounds for
stationary exponential LPP [9, 10, 31, 60, 62] and (iv) convergence of exponential LPP to DL
[28]. For the uniqueness we use Lemma B.4(iii), originally from [57].

To construct the global Busemann process, we start from the results in [59], summarized in
Section 4. After the first version of our paper appeared, [36] gave an independent construction
of the Busemann function in a fixed direction. Our results do not rely on [36]. After charac-
terizing the distribution of the Busemann process, we use the regularity of SH from [18, 64]
to prove results about the regularity of the Busemann process and semi-infinite geodesics.

To describe the size of the exceptional sets of points with nonunique geodesics (Theo-
rems 2.10 and 6.1(ii)), we use results about point-to-point geodesics from [14] and [27].
A result from [23] implies Lemma B.3 and the mixing in Theorem 5.3(ii).

Our techniques are probabilistic rather than integrable, but some results we use come from
integrable inputs. We use results of [18, 26, 28], which each utilized the continuous RSK
correspondence [54, 55]. We also use results on point-to-point geodesics in [14, 27] that rely
on [40], who studied the number of disjoint geodesics in BLPP using integrable inputs. For
more about the connections between RSK and the directed landscape, we refer the reader to
[25, 29].

1.6. Organization of the paper. Section 2 defines the models and states three results ac-
cessible without further definitions: Theorem 2.1 (proved in Section 3) on the unique in-
variance and attractiveness of SH under the KPZ fixed point, Theorem 2.5 (proved in Sec-
tion 7.2) on the global structure of semi-infinite geodesics in DL and Theorem 2.10 (proved
in Section 8.3) on the fractal properties of the set of initial points with disjoint semi-infinite
geodesics in the same direction. Section 3 proves Theorem 2.1. Section 4 summarizes the
results of [59] that we use as the starting point for constructing the Busemann process.

The remainder of the paper covers finer results on the Busemann process and semi-infinite
geodesics. Sections 5—8 each start with several theorems that are then proved later in the
paper. The theorems can be read independently of the proofs. Each section depends on the
sections that came before. Section 5 describes the construction of the Busemann process and
infinite geodesics in all directions. Section 6 gives a detailed discussion of nonuniqueness
of geodesics. Section 7 is concerned with coalescence and connects the regularity of the
Busemann process to the geometry of geodesics. This culminates in the proof of Theorem 2.5.
Section 8 develops the theory of random measures for the Busemann process, culminating
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in the proof of Theorem 2.10. Section 9 collects open problems. The Appendices contain
material from the literature. Details of the results in the Appendices and other routine proofs
appear in our arXiv version [20].

2. Model and main theorems.

2.1. Notation.

(1) Z,Q and R are restricted by subscripts, as in, for example, Z.o = {1, 2,3, ...}.
(ii) e; = (1,0) and e> = (0, 1) denote the standard basis vectors in R?.
(iii) Equality in distribution is 2 and convergence in distribution =—.
(iv) X ~Exp(p) means that P(X > ) =e "' for t > 0.
(v) The increments of a function f : R — R are denoted by f(x,y) = f(y) — f(x).
(vi) Increment ordering of f, g : R — R: f <j,c g means that f(x, y) < g(x,y) for all
X <y.
(vii) For s € R, Hs; = {(x, s) : x € R} is the set of space-time points at time level s.

(viii) A two-sided standard Brownian motion is a continuous random process {B(x) : x €
R} such that B(0) = 0 almost surely and {B(x) : x > 0} and {B(—x) : x > 0} are two inde-
pendent standard Brownian motions on [0, c0).

(ix) If B is a two-sided standard Brownian motion, then {cB(x) + ux : x € R} is a two-
sided Brownian motion with diffusivity ¢ > 0 and drift © € R.

(x) The parameter domain of the directed landscape is R* = {(x, s; y,t) € R*: s < t).

(xi) The Hausdorff dimension of a set A is denoted by dimg (A).

2.2. Geodesics in the directed landscape. The directed landscape, originally constructed
in [26], is a random continuous function £ : R* — R that arises as the scaling limit of a
large class of models in the KPZ universality class and is expected to be a universal limit of
such models. We cite the theorem for convergence of exponential last-passage percolation in
Theorem C.3 in Appendix C and summarize some key points from [26] here. The directed
landscape satisfies the metric composition law: for (x, s; y, u) € R* and 7 € (s, u),

2.1) L(x,s5y,u)=sup{L(x,s;z,1)+ L(z,t; y,u)}.
zeR

This implies the reverse triangle inequality: for s <t < u and (x, y,z) € R3, L(x,s;72,1)+
L(z,t;y,u) < L(x,s;y,u). Furthermore, over disjoint time intervals (s;, #;), 1 <i <n, the
processes (x, y) — L(x, s;; y, t;) are independent.

Under the directed landscape, the length of a continuous path g : [s, ] — R is

k
L(g) = inf s:t0<tllr<1f“<tk:t;E(g(ti—l), ti-13 8 (1), 1i),
where the second infimum is over all partitions s =y <t < --- < t; < t. By the reverse
triangle inequality, £(g) < L(g(s), s; g(t),t). We call g a geodesic if equality holds. When
this occurs, every partition s =1y < t; < --- < fy =t satisfies

k

L(g(s),s:8(0). 1) =Y L(g(ti—1). ti—1: g(t:). 1;).

i=1

For fixed (x,s; y,t) € R4, there exists almost surely a unique geodesic between (x,s) and
(v, 1) [26], Sections 12-13. Across all points, there exist leftmost and rightmost geodesics.
The leftmost geodesic g is such that, for each u € (¢, s), g(u) is the leftmost maximizer of
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L(x,s;z,u)+ L(z,u; y,t) over z € R. The analogous fact holds for the rightmost geodesic.
Geodesics in the directed landscape have Holder regularity % — ¢ but not % [26, 27].

A semi-infinite geodesic from (x, s) € R? is a continuous path g : [s, o0) — R such that
g(s) = x and the restriction of g to each domain [s, ] C [s, 00) is a geodesic between (x, s)
and (g(¢), t). Such an infinite path g has direction § € R if lim;_, o, g(¢)/t = &. Two semi-
infinite geodesics g1 and g» coalesce if there exists ¢ such that g;(u) = go(u) forall u > ¢. If ¢
is the minimal such time, then (g1(#), t) is the coalescence point. Two semi-infinite geodesics
g1, 82 s, 00) — R are distinct if g1(t) # go(t) for at least some ¢ € (s, 00) and disjoint if
g1(t) # g2(¢) for all £ € (s, 00).

2.3. KPZ fixed point. The KPZ fixed point h;(-; bh) started from initial state f is a Markov
process on the space of upper semicontinuous functions. More precisely, its state space is
defined as

UC = {upper semicontinuous functions h : R — R U {—o0} :
(2.2) there exist a, b > 0 such that h(x) < a + b|x|, for all x € R,
and h(x) > —oo for some x € R}.

The topology on this space is that of local Hausdorff convergence of hypographs. When
restricted to continuous functions, this convergence is equivalent to uniform convergence on
compact sets (Section 3.1 in [50]). This subspace of continuous functions is preserved under
the KPZ fixed point ([50], Lemma B.6). The process {/;(-; h)};>0 can be represented as [53]

(2.3) hi(y; h) = suﬁ{h(x) +L(x,0;y,0)}, yeR,

where L is the directed landscape. If b is a two-sided Brownian motion with diffusivity /2
and arbitrary drift, then 4, (+; h) — h;(0; ) 4 h(-) for each ¢ > 0 [50, 56, 57].

2.4. Stationary horizon. The stationary horizon (SH) is a process G = {G¢}gecr With
values G¢ in the space C(R) of continuous R — R functions. C(R) has its Polish topology
of uniform convergence on compact sets. The paths & — G¢ lie in the Skorokhod space
D(R, C(R)) of cadlag functions R — C(RR). This means that, for each § € R, limg\ ¢ Gg =
G¢, where convergence holds uniformly on compact sets. The limit limy » G also exists in
the same sense but is not necessarily equal to G¢. We use G¢_ to denote this limit. For each
& € R, G¢ is a two-sided Brownian motion with diffusivity /2 and drift 2¢. The distribution
of a k-tuple (Gg,, ..., Gg,) can be realized as an image of k independent Brownian motions
with drift, given in Definition D.1; see Appendix D for further properties of SH.

For a compact set K C R, the process & > Gg¢|g of functions restricted to K is a jump
process. Figure 1 shows a simulation of G¢. Each pair of trajectories remains together in a
neighborhood of the origin before separating for good, both forward and backward on R.

Our first result is the unique invariance and attractiveness of SH under the KPZ fixed point.
This generalizes the invariance of a single Brownian motion with drift and provides a new
uniqueness statement (Remark 2.4 below). Attractiveness is proved under these assumptions
on the asymptotic drift £ € R of the initial function § € UC:

If£=0, limsup@ €[—o00,0] and liminf@ € [0, +o0],
x—>+o0 X X—>—=00 X
2.4) if & >0, lim @ =2& and lim inf@ € (—25, +o00],
xX—>+00 X X—>—00 X
andif £ <0, lim @ =2& and limsup M € [—oo, —2.5).
X—>—00 X x—4o00 X
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Gy
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-0.4 -0.2 0.0 0.2 0.4

X

FI1G. 1. The stationary horizon. Each color represents a different parameter & € {0, £1, £2, £3, £5, +10}.

As spelled out in the theorem below, these conditions describe the basins of attraction for
the KPZ fixed point. When & > 0 and x > O is large, this condition forces h(x) to be ap-

2
proximated by 2¢£x. The directed landscape L(x, s; y, ) can be approximated by —(xt%v)

(Lemma B.2) so that h(x) + L(x,0;y,t) ~ 2&x — @, which has its maximum at
x =y + &t. Once we can control the maximizers, Lemma B.4 allows us to compare the
KPZ fixed point from different initial conditions. This, of course, must be made precise. In
the & > 0 case of the proof of Lemma B.5 (contained in the arXiv version of the present
paper), the liminf condition as x — —oo forces the maximizer to be positive, and an analo-
gous statement holds for £ < 0, although the condition is different. These drift conditions are
analogous to the conditions on the drift studied in [6] for stationary solutions of the Burgers

equation with random Poisson forcing.

THEOREM 2.1. Let (2, F,P) be a probability space on which the stationary hori-
zon G = {Gg¢leer and directed landscape L are defined and such that the processes
{L(x,0;y,1):x,y e R, t >0} and G are independent. For each & € R, let G¢ evolve un-
der the KPZ fixed point in the same environment L, that is, for each & € R,

he(y; Gg) = sup{Ge (x) + L(x,0; y, 1)} forally eRandt > 0.
xeR

(Invariance) For each t > 0, the equality in distribution {h;(-; G¢) — h;(0; G¢)}eer 4 G
holds between random elements of D(R, C(R)).

(Attractiveness) Let k € Z~g and & < --- < & in R. Let (hl, e hk) be a k-tuple of
Sfunctions in UC, coupled with (G, L) arbitrarily, and that almost surely satisfy (2.4) for
(h, &) = (v, &) foreachie{l,...,k}. Then if(f)l, e, f)k) evolves in the same environment
L, for any a > 0,

Jim P{y (x; b') — he(0; ') = hy(x; Gg) — hi(0; Gg,) Vx € [—a,al, 1 <i <k} =1.
Consequently, as t — 00, the distributional limit
(he(+:5Y) = R0 0Y), . e (5 65) = B (05 6F) = (G (), ..., Gg ()
holds in UCK (or in C(R)¥ if the hi are continuous).
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(Uniqueness) In particular, on the space UC", (Gg,, ..., Gg) is the unique invariant dis-
tribution of the KPZ fixed point such that, for each i € {1, ..., k}, the condition (2.4) holds

for (h, &) = (b', &) almost surely.

REMARK 2.2. Theorem 5.1(viii) in Section 5 states that the Busemann process is a
global attractor of the backward KPZ fixed point. Namely, start the KPZ fixed point at time ¢
with initial data h satisfying (2.4) and run it backward in time to a fixed final time s. Then in
a given a compact set, for large enough ¢ the increments of the backward KPZ fixed point at
time s, started from initial data b at time ¢, match those of the Busemann function in direction
&. To prove Theorem 5.1(viii), we first independently prove the attractiveness (and, therefore,
uniqueness) of Theorem 2.1, then use this to characterize the Busemann process of the DL,
which gives its regularity. This regularity is used in the proof of Theorem 5.1(viii).

REMARK 2.3. The process ¢ — {h(-; hs) —h(0; hé)}geR is a well-defined Markov pro-
cess on a state space, which is a Borel subset of D(R, C(R)) (Lemma 3.1). By the uniqueness
result for finite-dimensional distributions, G is the unique invariant distribution on this space
of C(R)-valued cadlag paths.

REMARK 2.4. In the above strength, the attractiveness result was previously unknown,
even in the case k = 1 (a single initial function). Pimentel [56, 57] proved attractiveness for
k =1 and £ = 0 under the following condition on the initial data h: there exist 39 > 0 and
¥ (r) such that, forall y > ypand r > 1,

(2.5) P(y_lh(yzx) <rlx|Vx>1)>1—v(r) where rl_l)rgo Y(@r)=0.

2.5. Semi-infinite geodesics. A significant consequence of Theorem 2.1 is that the sta-
tionary horizon characterizes the distribution of the Busemann process of the directed land-
scape (Theorem 5.3). The Busemann process, in turn, is used to construct semi-infinite
geodesics, called Busemann geodesics, simultaneously from all initial points and in all di-
rections (Theorem 5.9). The definition of Busemann geodesics, along with a detailed study,
comes in Section 5.

The next theorem states our conclusions for general semi-infinite geodesics. The random
countably infinite dense set E of directions is later characterized in (5.1) as the discontinuity
set of the Busemann process, and its properties are stated in Theorem 5.5.

We assume the probability space (€2, F,P) of the directed landscape £ complete. All
statements about semi-infinite geodesics are with respect to £. Two geodesics are disjoint if
they do not share any space-time points, except possibly their common initial and/or final
point.

THEOREM 2.5. The following statements hold on a single event of full probability. There
exists a random countably infinite dense subset E of R such that parts (ii)—(iii) below hold:

(i) Every semi-infinite geodesic has a direction & € R. From each initial point p € R? and
in each direction & € R, there exists at least one semi-infinite geodesic from p in direction &.
(i) When & ¢ B, all semi-infinite geodesics in direction & coalesce. There exists a ran-
dom set of initial points, of zero planar Lebesgue measure, outside of which the semi-infinite
geodesic in each direction & ¢ E is unique.
(iii)) When & € E, there exist at least two families of semi-infinite geodesics in direction
g, called the £ — and £+ geodesics. From every initial point p € R, there exists both a & —
geodesic and a £+ geodesic which eventually separate and never come back together. All £ —
geodesics coalesce, and all £+ geodesics coalesce.
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Ly

FIG. 2. On the left, a depiction of the nonuniqueness in Theorem 2.5(i1): Geodesics separate and
coalesce back together, forming a bubble. After the first version of the present article was posted,
Bhatia [17] and Dauvergne [24] independently proved that this is the only possible configuration for
this type of nonuniqueness, that is, geodesics which split and later coalesce can only split at the initial
point. On the right, & € E. The blue/thin paths depict the & — geodesics, while the red/thick paths depict
the £+ geodesics. From each point the £ — and &+ geodesics separate at points of G. The £ — and &+
families each have a coalescing structure.

REMARK 2.6 (Busemann geodesics and general geodesics). Theorem 2.5 is proved by
controlling all semi-infinite geodesics with Busemann geodesics. Namely, from each initial
point p and in each direction &, all semi-infinite geodesics lie between the leftmost and right-
most Busemann geodesics (Theorem 6.5(i)). Furthermore, for all p outside a random set of
Lebesgue measure zero and all £ ¢ E, the two extreme Busemann geodesics coincide and
thereby imply the uniqueness of the semi-infinite geodesic from p in direction & (Theo-
rem 2.5(ii)). Even more generally, whenever & ¢ E, all semi-infinite geodesics in direction &
are Busemann geodesics (Theorem 7.3(viii)). This is presently unknown for £ € E but may
be expected by virtue of what is known about exponential LPP [45].

Our work, therefore, gives a nearly complete description of the global behavior of semi-
infinite geodesics in the directed landscape. The conjecture that all semi-infinite geodesics
are Busemann geodesics is equivalent to the following statement: In Item (iii), for £ € E,
there are exactly two families of coalescing semi-infinite geodesics in direction £. That is,
each &-directed semi-infinite geodesic coalesces either with the £— or the £+ geodesics.

REMARK 2.7 (Nonuniqueness of geodesics). The nonuniqueness of geodesics from ini-
tial points in a Lebesgue null set in Theorem 2.5(ii) is temporary in the sense that these
geodesics eventually coalesce. This forms a “bubble.” The first point of intersection after
the split is the coalescence point (Theorem 7.1(ii)). Hence, these particular geodesics form at
most one bubble. This contrasts with the nonuniqueness of Theorem 2.5(iii), where geodesics
do not return together (Figure 2). Nonuniqueness is discussed in detail in Section 6.

REMARK 2.8. The authors of [59] alluded to nonuniqueness of geodesics. They showed
that for a fixed initial point, with probability one, there are at most countably many directions
with a nonunique geodesic. On page 23 of [59], they note that the set of directions with a
nonunique geodesic “should be dense over the real line.” Our result is that this set is dense,
and, furthermore, it is the set E of discontinuities of the Busemann process.

The last theorem of this section describes the set of initial points with disjoint geodesics
in the same direction. Let E be the random set from Theorem 2.5 (precisely characterized
in (5.1)). Define the following random sets of splitting points:

(2.6) G, :={x € R: I disjoint semi-infinite geodesics from (x, s) in direction &},

(2.7) S:= |J & x{sh

seR,EeB
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REMARK 2.9. From Theorem 2.5(ii), &5 ¢ = & whenever § ¢ E.

THEOREM 2.10. The following hold:

(i) On a single event of full probability, the set & is dense in R.
(ii) For each fixed p e R, P(p € &) =0.
(iii) Foreachs € R, on an s-dependent full-probability event, for every & € E, the set G ¢
has Hausdorff dimension %
(iv) On a single event of full probability, simultaneously for every s € R and & € E, the
set S ¢ is nonempty and unbounded in both directions.

REMARK 2.11. For each s € R and & € &, the set G, ¢ has an interpretation as the
support of a random measure, up to the removal of a countable set. Thus, since E is count-
able, for each s € R, the set {x e R: (x,s) € G} is the countable union of supports of ran-
dom measures, up to the removal of an at most countable set. By Item (iii) this set also has
Hausdorff dimension % Conditioning in the appropriate Palm sense on & € &, the random
measure, whose support is “almost” S ¢, is equal to the local time of a Brownian motion
(Theorems 8.2, 8.1,and 8.13). We expect that, simultaneously for all s € R, the set &; ¢ has
Hausdorff dimension % but currently lack a global result stronger than Item (iv).

3. Invariance and uniqueness of the stationary horizon under the KPZ fixed point.
In this section we prove Theorem 2.1. Take {G¢ }¢cr as the initial data of the KPZ fixed point,
where G is the stationary horizon, independent of {£(x,0; y,#) :x,y € R, ¢ > 0}. For £ e R,
set

hi(y; Gg) = sup{Gg(x) + L(x,0;y, t)} forall y e Rand r > 0.
xeR

Define the following state space:
Y= {{0°);cp € D(R, C(R)) : b <in h for &1 < &,
(3.1) and for all £ € R, hS(O) =0and bé satisfies condition (2.4)

with all lim sup and liminf terms finite}.

LEMMA 3.1. The space Y, defined in (3.1), is a Borel subset of D(R, C(R)). Let L be
the directed landscape, {b*}scr € Y, ho(+; b¥) = b* and

he(y; b5) = sup{b® (x) + L(x,0,y;7)} fort >0,y eRand £ €R.
xeR

Then t +— {h;(+; b%) — h;(0; f)g)}geR is a Markov process on Y. Specifically, on the event of
full probability from Lemma B.2, {h;(~; h%) — h;(0; h°)}gcr € Y for each t > 0.

PROOF. Borel measurability of ) is standard and left to the reader. We show that
{h:(-; ) — hs(O; f)‘f)}geR € Y for all + > 0. Lemmas B.4(iii) shows the preservation of the
ordering of functions, Lemma B.7 shows the preservation of limits and Lemma B.6(i) shows
that i, (+; h%) € C(R) for all £. It remains to show that {h,(-; h*)}¢cr € D(R, C(R)) for each
t > 0. Since b5 <jpc %2, Lemma A.1 and the global bounds of Lemma B.2 imply that, for
each compact K C R and & € R, there exists arandom M = M (€, t, K) > 0 such that, for all
yveK,ae(E—-1,£+1),

sup{h®(x) + L(x,0; y,0)} = sup  {h¥(x) + L(x,0; y,1)}.
xeR xe[—M,M]
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Then it follows that {/;(-; hg )}eer, as an R — C(R) function of &, is right-continuous with
left limits because this is true of {h% Jeer.
By the metric composition (2.1) of the directed landscape £, for 0 < s < ¢,

he(y; 6%) — he (05 5%) = Suﬁ{hs (x; b5) = Ay (0; %) + L(x, 55y, D)}

— sup{hs(x: b%) — hs(0: b¥) + L(x,5:0,1)}.
xeR
The process t — {h;(+; f)g ) — h(0; f)g)}seR is Markovian by the independent temporal incre-
ments of £. [J

PROOF OF THEOREM 2.1. [Invariance: For the invariance of SH G, it suffices to prove

the invariance of a finite-dimensional marginal (Gg,, ..., Gg,) for given —00 < §; <--- <
&r < 00. So for
(3.2) he(y; Gg,) =sup{Gg (x) + L(x,0; y,1)}, 1<i<k,

xeR

the goal is to show that, for each t > 0,

(3.3) (he(+; Gg)) — he(0; Gg)), ..., hi(+; Gg,) — he(0; Gg)) 4 (Ggpy ..., Gg).

We prove (3.3) via a limit using stability of discrete queues. For N € Z.o and 1 <i <k,
set p; = % — 27435 N~13 and p* = (p1, ..., px). Let ,u”k be the probability distribution on
(Rzo)k defined in (C.8) in Appendix C.3. It is the joint distribution of k horizontal Busemann
functions of the exponential corner growth model by Theorem C.5. Let (IN-!, ..., IN*)be a
u”k—distributed k-tuple of random, positive bi-infinite sequences IV = (I ]N ’i) jez.

For 1 <i <k, let FiN :R — R be the linear interpolation of the function defined by

m
FN)=0 and FN@m)— FN(k)= Z IJI-V” for integers k < m.

j=k+1

Its scaled and centered version is defined by

34 GlN(x) = 2*4/3N*1/3[FiN(25/3N2/3x) — 28/3N2/3x] forx e R.
Theorems C.5 and D.2 give the distributional limit

(3.5) GY,....GY) = (Gg,...,Gg),

on the space C(R, R¥), under the Polish topology of uniform convergence of functions on
compact sets.

For N e N sufficiently large and 1 <i < k, we consider discrete LPP with initial data FiN
and exponential weights, as in (C.2) in Appendix C. For m € Z and n € Z-¢, let

d¥(m,n)= sup {FN () +d((, 1), (m,n))}.
L4<m

The scaled and centered version is given by Hl% = GlN and for ¢ > 0 by letting Hi{\f ‘R—R
be the linear interpolation of

(3.6)  HN)=2"*AN"1P[aN (tN + 2PNy tN) — 4Nt — 283Ny,
By Lemma C.1 and Theorem C.4, VN € Z-g and ¢t > 0 such that tN € Z,
d
(HY () = H(0), ... HY,(-) — HY,0) = (GY, ... G}).
Then, using (3.5), the proof of (3.3) is completed by the following lemma.
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LEMMA 3.2. Let (Gg,, ..., Gg) be independent of {L(x,0;y,t):x,y e R, t > 0} and
h:(y; Gg,;) defined by (3.2). Then for t > 0, as N — 00, in the topology of uniform conver-
gence on compact sets of functions R — R¥, we have the distributional limit

(3.7) (HY,(). . HYO) = (hi(5 Gy, hi(+5 Gyy)).

PROOF. Replace the integer £ with a continuous variable x,

(3.8) HY () = sup 27BNTIBIEN (¢)
—oo<€§tN+25/3N2/3y
+d((6, 1), (1N + 25N>y tN)) — 4Nt — 28/3N?/3y]
_ sup 24BNTIBEN (25833 N2/3) — 2813 N3y

—00<25AN 3y <tN+25/3N2 3y
+d((2°PxN?3,1), (tN +2°3N?3y, tN)) — 4Nt — 283N/ (y — x)]
(3.9) = sup{G' (x) + Ly (x,0; y, 1)},
xeR

where GIN is defined in (3.4) and

d((23BxN?3,1), (N + 253Ny tN)) — 4Nt — 28/3N?3(y — x)
24/3N1/3

Ly(x,0;y,1) =

when x <y + 2733 N1/3¢ and —oo otherwise.

Let ZiN (y) denote the largest maximizer of (3.8). It is precisely the exit point defined in
equation (C.6). These satisfy ZiN (x) < ZiN (y) for x < y. If there exists some M > 0 such
that |ZN (y)| < M23/3N?/3, then

line (3.9)= sup {GN(x)+Ln(x,0;y,0)}.
xe[-M,M]

By the weak limit (3.5), Theorem C.3 and independence, Skorokhod representation ([30],
Theorem 11.7.2, [32], Theorem 3.1.8) gives a coupling of copies of {(va)lf,-fk, Ly} and
{(Gg)<i<k, L} such that GY — G, for 1 <i <k and Ly — L, almost surely and uni-
formly on compacts. Then for a < b, M > 0 and ¢ > 0, in this coupling we have

=5 N _ .
P(lrg?ka yesar,)b]}Hi,z()’) hi(y; Gg)| > 8)

sup  {GN(x)+Ly(x,0;y,1)}

(3.10) < @( max sup
xe[—M,M]

I=i=k ye[a,b]

—  sup {Ggi(x)+£(x,0;y,t)}‘>s)

xe[—M,M]
(3.11) +P(sup{Ge, (1) + L(x, 00,0} > sup (G () + L(x,0;.a,1)})
xeR xe[—M,M]
(3.12) —I—f@(sup{Ggi (X)+L(x,0;b,0)} >  sup {Gg(x)+ L(x,0; b, t)})
xeR x€[—M,M]
k
(.13) + Y [B(ZN (@) < —M2PNY3) 1 B(zN b) > M25 PN,
i=1

Above, (3.10) vanishes as N — oo by the coupling. (3.11)—(3.12) vanish as M — oo by
Lemma B.2 because G¢ is a Brownian motion with drift, independent of {L(x,0;y,1) :
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x,y € R, t > 0}, which has leading order —(x_t—y)z (Lemma B.2). Lemma C.2 controls (3.13).
This combination verifies the goal (3.7). U

Attractiveness and uniqueness: The proof idea is similar to that of Theorem 3.3 in [6]. Let
ke N, and let &£ = (£, ..., &) € R¥ be a strictly increasing vector. Let h=@®'....p5 €
uck satisfy (2.4) with h = b’ and £ = &; for 1 <i <k. Let ¢ > 0. By Theorem D.3(vi), there
exists § > 0 such that

]P){Ggiig(x) =Gg(x)Vx e[—a,al,1 <i < k} >1—¢g/2.
Then by invariance of the stationary horizon under the KPZ fixed point, for all # > 0,
P{hs(x; Ggas) — he(0; Gg45) = he(x; Gg) — b (0; Gg,)

(3.14)
Vx €[—a,al,1 <i<k}>1—¢/2.

Recall the sets Z‘}’O’t of exit points from (B.2). Because G¢,+s is a Brownian motion with
drift 2(&; £ §) (Theorem D.3(i)), it satisfies (2.4) with drift &; £ §. By the temporal reflection
symmetry of Lemma B.1, Lemma B.5 implies that, for all ¢ sufficiently large,

,0,¢ ,0,¢ ,0,¢ .
(3.15) P(ZaGg,-_a <Zj' =< Z"Gé&ms VI<i<k)>1-¢/2,

where for A, B C Rwesay A < Bifsup A <inf B. By Lemma B.4(iii), on the event in (3.15)
the following holds for all x € [0,a] and 1 <i <k:
(3.16) hi(x: Gg—s5) — hi(0: Gg,—5) < hi(x:b') — hi(0:5') <y (x; G 18) — i (0: G 19).

The reverse inequalities hold for x € [—a, 0].
Combining (3.14)—(3.16), we have that, for sufficiently large ¢,

P{h;(x; Gg,) — h(0; Gg,) = hy (x5 ') — he(0; §') Vx € [—a,al, 1 <i <k} >1—e.
The proof of Theorem 2.1 is complete. [

4. Summary of the Rahman-Virag results. The paper [59] shows existence of the
Busemann function for a fixed direction. Below is a summary of their results that we use.

THEOREM 4.1 ([59]). The following hold.

(i) For fixed initial point p, there exist almost surely leftmost and rightmost semi-infinite

geodesics gi’g and gi’r from p in every direction & simultaneously. There are at most count-

ably many directions & such that gf,’z *g p’r.

(ii) For fixed direction &, there exist almost surely leftmost and rightmost geodesics gf,’e
and gf,’r in direction & from every initial point p.

(iii) For fixed p= (x,s) e R>and £ e R, g := gf,’e = gf,’r with probability one.

(iv) Given & € R, all semi-infinite geodesics in direction & coalesce with probability one.

REMARK 4.2. Article [59] used — and + in place of the superscripts £ and r used above.
We replaced —/+ with £/r to avoid confusion with our = notation that links with the left-
and right-continuous Busemann processes. As demonstrated in Section 6, nonuniqueness of
geodesics is properly characterized by two parameters O € {—, +} and S € {L, R}.

For fixed direction &, [59] defines x¢(p, ) as the coalescence point of the rightmost
geodesics in direction £ from initial points p and g. Then they define the Busemann function

(4.1) We(p; @) = L(p; €5 (p. @) — L(q; €5 (p, @)).
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THEOREM 4.3 ([59], Corollary 3.3, Theorem 3.5, Remark 3.1).

(i) For eacht € R, the process x — We(x,t;0,t) is a two-sided Brownian motion with

diffusivity /2 and drift 2§
Given a direction &, the following hold on a &-dependent event of probability one:

(ii) Additivity: We(p; q) + We(q;r) = We(p;r) forall p,q,r € R2.
(iii) Foralls <t and x,y € R,

We(x,s;y,t) =sup{L(x,s;z,1) + We(z, 15 y,0)}.
zeR
The supremum is attained exactly at those z such that (z,t) lies on a semi-infinite geodesic
from (x, s) in direction &:
(iv) The function Wy : R* — R is continuous.

Moreover:

(v) For a pair of fixed directions & < & with probability one, for everyt e R and x <y,
We (v, 8, x,1) < We, (y, 85 x, 1),

5. Busemann process and Busemann geodesics. With the intention of being accessible
to a large audience, in this section we first present a list of theorems regarding the Busemann
process in Section 5.1. Section 5.2 defines Busemann geodesics and states their main proper-
ties. The proofs are found in Section 5.3, except for the proofs of Theorem 5.1(vi)—(viii) and
the mixing in Theorem 5.3(ii), which are proved in Section 7.2, and Theorem 5.5(ii), which
is proved in Section 8.3.

5.1. The Busemann process. The Busemann process {Ws(p; q)} is indexed by points
p,q € R?, a direction & e R and a sign O € {—, +}. The following theorems describe this
global process. The parameter O € {—, +} denotes the left- and right-continuous versions of
this process as a function of &.

THEOREM 5.1. On (2, F, P), there exists a process

{Wer(piq) 16 eR, O € {—, +}, p,q € R?}

satisfying the following properties. All the properties below hold on a single event of proba-
bility one, simultaneously for all directions & € R, signs O € {—, +}, and points p,q € R?,
unless otherwise specified. Below, for p, q € R?, we define the sets

(5.1) E(piq) ={6€R:We (p:q) #Wer(pi@)} and E= |J E(pig):
p,qeR?

(i) (Continuity) As an R4 — R function, (x,s;y,t) = Weg(x,s; y, t) is continuous.
(i1) (Additivity) Forall p,q,r € R2, Wea(p; q) + We(q; r) = Wen(p; ). In particu-

lar, Wep(p; ) = —Wep(q; p), and Wep(p; p) =0.
(iii) (Monotonicity along a horizontal line) Whenever §] <&, x <y andt e R,

We - (v, t3x,0) < W (v, 155, 1) < We, - (y, 13 x, 1) < Wiy (3, 15X, 1).
(iv) (Backward evolution as the KPZ fixed point) Forall x,y e R and s < t,

(5.2) Wen(x, s; y, 1) =sup{L(x,s;z,1) + We(z, 15 y, 1) }.
zeR
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(v) (Regularity in the direction parameter) The process & — We . is right-continuous in
the sense of uniform convergence on compact sets of functions R* — R, and & > We_ is
left-continuous in the same sense. The restrictions to compact sets are locally constant in the
parameter &: for each & € R and compact set K C R4, there exists a random & = e(&,K)>0
such that, whenever £ —e <a <& < B <&+4¢eand O € {—, +}, we have these equalities for
all (x,s;y,t) €K,

(5.3) Wog(x,s;y,8) =We_(x,s;y,t) and Wgo(x,s;y,t) = Wey(x,s;y,1).

(vi) (Busemann limits 1) If & ¢ B, then, for any compact set K € R? and any net r; =
(21> Ur)reRoy With uy — 00 and z;/u; — & as t — 00, there exists R € R~ such that, for all
p,g €K andt > R,

We(p; q) = L(pir) — L(g;17).

(vii) (Busemann limits IT) For all § € R, s € R, x <y € R and any net (z;, us)rer., in
R2 such that u;, — oo and /Uy —> £ ast — o0,

We_(y,s;x,s) <liminf L(y, s; 2, us) — L(x, 85 2¢, Ur)
—>00

<limsup L(y, s; z¢, us) — L(x, 85 2¢, ur) < Wey (y, 85 x,8).
—00

(viii) (Global attractiveness) Assume that & ¢ &, and let iy € UC satisfy condition (2.4) for
the parameter &. For s <t, let

hy i (x; h) = suHré{E(x, s;2,0) +h(2)}.

Then, for any s € R and a > 0, there exists a random ty = to(a, &, s) < oo such that, for all
t>1tpand x € [—a,al, hs:(x; h) — hy1(0; h) = We(x,5;0,5).

REMARK 5.2. Item (vi) is novel in that it shows the limits simultaneously for all £ ¢ &,
uniformly over compact subsets of R?. The existence of Busemann limits in fixed directions
is shown in [59] and [36]. Item (viii) is analogous to Theorem 3.3 in [6] and Theorem 3.3
in [7] on the global solutions of the Burgers equation with random forcing. When comparing
with [6, 7], note that our geodesics travel north while theirs head south.

We describe the distribution of the Busemann process. The key to Item (iii) is Theorem 2.1.

THEOREM 5.3. The following hold:

(1) (Independence) For each T € R, these processes are independent,
{(Wep(x,s;9,0) 6 eR,0€ef{—,+},x,yeR, s, >T} and
{Lx,s59,):x,yeR, s <t <T}.

(ii) (Stationarity and mixing) The process

(5.4) [L@), Wea(pi@):veRY p.geR* EeR, O € {—, +}}

is stationary and mixing under shifts in any space-time direction. More precisely, let a,b € R
not both 0, and z > 0. Set r, = (az, bz). Then the process (5.4) is stationary and mixing (for
fixed a, b as 7 — +00) under the transformation

{LW), Wer(p: @} > Tra p{L, W= {L(v+ (r;5r2), We(p + 1259 + 1)},
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where, on each side, the process is understood as a function of (v, (p, q)) € R* x R*. Mixing
means that, for allk € Z.-¢, &1, ..., & € R, and Borel subsets A, B C C(R4, R) x C(R4, R)k,

Zl_i)ngo]P’({C, Wed € AT a b L, Toa s Wey ) € B)
= ]P)({‘C’ We i} € A)]P)({‘C’ We .} € B)'

Above, Wg,, = (We,, ..., Wg,) € C(R*, R) .
(iii) (Distribution along a time level) For each t € R, the following equality in distribution
holds between random elements of the Skorokhod space D(R, C (R)):

d
{Wf'f'(" t; 0, t)}geR = {Gé(')}§€R7
where G is the stationary horizon in Section 2.4, with diffusivity /2 and drifts 2§ .

REMARK 5.4. Combining Items (i) and (iii) with Theorem 5.1(iv) gives a description of
the Busemann process on the full plane R2.

We describe the random sets of Busemann discontinuities defined in (5.1).

THEOREM 5.5. The following hold on a single event of probability one:

(1) Foreacht € R, the set E(x,t; —x,t) is nondecreasing as a function of x € Rxy.
(i1) For s, & € R, define the function

(5.5 x> fre(x)i=Wep(x,s5;0,8) — We_(x,5;0,5).
Then & € E if and only if, for all s € R,
(5.6) xlirfoo fs,e(x) ==+o0.

In particular, simultaneously for all s, x € R and all sequences |x;| — oo,

(5.7) E=JEx 55 x,5).
k

(iii) The set B is countably infinite and dense in R, while for each fixed§ e R,P(§ € B) =
0. In particular, the full-probability event of the theorem can be chosen so that E contains no
directions & € Q.

(iv) For each p # q in R?, the set E(p; q) is discrete, that is, has no limit points in R. The
Sunction & — We_(p; q) = Wer(p; q) is constant on each open interval I € (R \ E(p; q)).
For t € R, on a t-dependent full-probability event for all x <y, E(y, t; x,t) is infinite and
unbounded for both positive and negative &.

Furthermore:

(v) Forx,y,t,veRandc > 0,the sets E(x, t; —x, t) satisfy the following distributional
invariances:.

E(. 12,0 L E(y,0:x,0) L —E(—y, 0; —x,0) £ ¢ E(c 2y, 0;¢ 22, 0) — v.

REMARK 5.6. Item (ii) states that all discontinuities of the Busemann process are present
on each horizontal ray. By Item (iv) § — W1 (p; q) are the left- and right-continuous ver-
sions of a jump process. This function defines a random signed measure supported on a
discrete set. When p and ¢ lie on the same horizontal line, this function is monotone (The-
orem 5.1(iii)), and the support of the measure is exactly the set of directions at which the
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properly chosen coalescence point of semi-infinite geodesics jumps (see Definition 7.7 and
Theorems 7.8-7.9).

The discreteness of Item (iv) allows us to view the sets E(y, ¢; x, t) as well-defined point
processes and gives the statements in Item (v) meaning. The set E itself is dense, and it is
not easy, a priori, to interpret as a random object. However, by Items (i) and (ii), E is the
increasing union of the sets E(xg, 0; x, 0), where xj is a monotone sequence converging to
+00 or —o0.

5.2. Busemann geodesics. The study of Busemann geodesics starts with this definition.

DEFINITION 5.7. For £ e R, O € {—, 4}, (x,5) € R2 and ¢ € (s, 00), let ng;f(t)

and ngY’)R (t) denote, respectively, the leftmost and rightmost maximizer of £(x,s; y,t) +

Wen(y,t;0,1) over y € R. For t =5, define gf)i,’)L/R(s) =x.

REMARK 5.8. The modulus of continuity bounds of the directed landscape, recorded in
Lemma B.2 along with continuity of We, imply that limy s ngS’)L / R(t) = x, so the defini-

tion g(ims’)L / R(s) = x makes g(ExDS’)L /R continuous at # = s. In fact, the path is continuous for all

t € [s, 00) because it is the leftmost/rightmost geodesic between any pair of points along the
path (Theorem 5.9(iv)), and geodesics are continuous. As is seen in the proofs, we are relying
on the existence of leftmost and rightmost point-to-point geodesics from [26], Lemma 13.2.

As noted earlier, Rahman and Virag [59] showed the existence of semi-infinite geodesics,
almost surely for a fixed initial point across all directions and almost surely for a fixed di-
rection across all initial points. We extend this simultaneously across both all initial points
and directions. Theorem 4.3(iii), quoted from [59], states that for a fixed direction &, with
probability one at times ¢ > s, the maximizers z of the function L(x, s;z,t) + We(z,1;0,1)
are exactly the points on semi-infinite & -directed geodesics from (x, s). Theorem 5.9 clarifies
this on a global scale: across all directions, initial points and signs, one can construct semi-

infinite geodesics from the Busemann process. Furthermore, gfxmg)]“ and g(éxDS’)R both define
semi-infinite geodesics in direction £ and give the leftmost (or rightmost) geodesic between

any two of their points. We use this heavily in the present paper.

THEOREM 5.9. The following hold on a single event of probability one across all initial
points (x,s) € R2, times t > s, directions & eRand signs O € {—, +}:

(i) All maximizers of z+— L(x,s;z,t) + Wep(z, t; 0, t) are finite. Furthermore, as x, s, t
vary over a compact set K C R with s <t, the set of all maximizers is bounded.

(i) Let s =ty <ty <ty <--- be an arbitrary increasing sequence with t, — 00. Set
g(ty) = x, and for each i > 1, let g(t;) be any maximizer of L(g(t;—1),ti—1;2,t;) +
Wen(z,1;0,t) over z € R. Then, pick any geodesic of L from (g(ti—1),ti—1) to
(g(t), t)), and for ti_| <t <t;, let g(t) be the location of this geodesic at time t. Then,
regardless of the choices made at each step, the following hold:

(a) The path g : [s, 00) — R is a semi-infinite geodesic.
(b) Forallt <uin s, 00),

(5.8) L(g(0),1;8w),u) = Wery(g(t), 1 g(u), u).

(c) Forall t <u in [s,00), g(u) maximizes L(g(t),t;z,u) + Wer(z,u; 0, u) over
zeR.
(d) The geodesic g has direction &, that is, g(t)/t — & ast — o0.
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(iii) For § € {L, R}, g(SXDS’)S i s, 00) = R is a semi-infinite geodesic from (x, s) in direction
&. Moreover, for any s <t < u, we have that

S ,S
L(g{hy (0,15 805 @), u) = Weny(8( ) (1), 15 g0msy (), ),

and gfx?;f (u) is the leftmost/rightmost (depending on S) maximizer of /J(gfﬁ;f (1), t;

z,u) + Wen(z,u; 0, u) over z € R.
(iv) The path g(sEs’)L is the leftmost geodesic between any two of its points, and g(sxD,S’)R is the
rightmost geodesic between any two of its points.

DEFINITION 5.10. We refer to the geodesics constructed in Theorem 5.9(ii) as €0 Buse-
mann geodesics or simply £ geodesics.

REMARK 5.11'.. The geodesics gfx 9) and g(x 5) are special Buse@ann geodesics.
By Theorem 5.9(iii)—(iv), for any sequence s = fo < t] < tp < --- with f, — oo, the

path g = gfxDs’L can be constructed by choosing g(t;) as the leftmost maximizer of
L(g(ti—1), 132, ti) + Wep(z, 150, 1) over z € R, and for ¢ € (t;_1, t;), taking g(¢) to be
the leftmost geodesic from (g(t;—1), ti—1) to (g(#;), t;). The analogous statement holds for L
replaced with R and “leftmost” replaced with “rightmost”.

5.3. Construction and proofs for the Busemann process and Busemann geodesics. This
section proves the results of Sections 5.1 and 5.2. The order in which the items are proved
is somewhat delicate, so we outline that here. After proving some lemmas, we prove The-
orem 5.1(i)—(iv) and Theorem 5.3. We then skip ahead to constructing the semi-infinite
geodesics, culminating in the proof of Theorem 5.9. Afterward, we turn to the proof of the
regularity in Theorem 5.1(v), then prove Theorem 5.5, except for Item (ii), which is proved
in Section 8.3.

We construct a full-probability event 2; and later in (5.25) and (8.37) follow full-
probability events 23 C Q5 C €2;. For the rest of the proofs, we work almost exclusively
on these events. Once the events are constructed and shown to have full probability, the re-
maining proofs are deterministic statements that hold on those events.

(5.9) We define 27 C €2 to be the event of probability one on which the following hold:

(i) Simultaneously for all (x, s; v, ) € R?, there exist leftmost and rightmost geodesics
(possibly in agreement) between (x, s) and (y, t) (see Section 2.2).

(ii) For each rational direction £ € QQ and each point p € R?, there exist leftmost and
rightmost semi-infinite geodesics (possibly in agreement) from p in direction &, and all semi-
infinite geodesics in direction & coalesce (see Theorem 4.1, Items (ii) and (iv)).

(iii) For each rational direction £ € Q and each rational point p € Q2, there is a unique
semi-infinite geodesic from p in direction & (see Theorem 4.1(iii)).

(iv) For each rational direction & € Q, the Busemann process, defined by (4.1), satisfies
conditions (ii)—(iv) of Theorem 4.3. For any pair & < &, or rational directions, Item (v) of
Theorem 4.3 holds.

(v) Foreach (x,1,y,&) e Q* limgse—e Wo(y, 1 x,1) = We(y, 15 x, 1).

(vi) For every rational time ¢ € Q and rational direction & € Q,

(5.10) lim x Wi (x,1;0,1) = 2¢.

x—+o0

This holds with probability one by properties of Brownian motion and Theorem 4.3(i).
(vii) The conclusions of Lemmas B.2, B.8 and B.9 hold for £. Note that then Lemma B.2
holds also for the reflected version {L(y; —t, x; —s) : (x,s; y,1) € R4}.
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To justify P(€2;) = 1, it remains only to check Item (v). By Theorem 4.3(v), for y > x,
5.11 li Wo(y,t;x,t) < We(y,t;x,t) < i Wo (v, t; x,1).
(5.11) Qalotn}'é a(y, 15X, 1) (v, t;x,1) @alan{g a(y, 15X, 1)

By Theorem 4.3(i), Wy (v, t; x,1) ~ N (2a(y — x), 2(y — x)). Hence, all terms in (5.11) have
the same distribution and are almost surely equal.
Now, on the full-probability event €21, we have defined the process

(5.12) {Wa(p:q):p.q eR* a Q).
On this event, for an arbitrary direction £ and ¢, x, y € R, define
We_(y,t;x, )= 1i Wy(y,t;x,t) and
- (y, t5x,1) ohm «(y,15x,1) an
(5.13) |
W, ,tx,t)= i Wo(y,t;x,1).
e+ (¥, 15X, 1) olm w(y, 15x,1)

By Theorem 4.3(v) these limits exist for all # € R. Complete the definition by setting,

fors <t, Weg(x,s;y, 1) =sup{L(x,s:2,0) + Wen(z, 15y, 1)},
(5.14) zeR
and finally fors > ¢, Weg(x,s;y,1) =—Weg(y, t; x,5).

With this construction in place, we prove an intermediate lemma.

LEMMA 5.12. The following hold on the event 21, across all points, directions and
signs:
(i) For all x,y,t e R and § € Q, We_(y,t;x,t) = We (v, t;x,1) = We(y, t;x,1),

where We is the originally defined Busemann function from (5.12).
(i) Horizontal Busemann functions are additive: Vx,y,z,t € R, £ e R,and O € {—, +},

Weg(x,t;y,0) + Wen (v, t5 2, 1) = Weg(x, £ 2, ).

(iii) For every t,& € R, the limits (5.13) hold uniformly over (x, y) on compact sets. Fur-
ther, for each t, & € R and O € {—, +}, these limits hold in the same sense,

lim Wog(y,t;x,1) = We_(y,t;x,t) and
o€

(5.15)
lim Woq(y,t;x,1) = Wey (y, 85 x, 1),
a\é§

(iv) Forevery§ e R, 0 € {—,+}, (p,q) = Wen(p; q) is continuous, and for each t € R,
(5.16) lim x~'Weg(x,1;0,1) = 2¢.

x— =300
PROOF. We prove Item (i) last.
Item (ii) follows from the same property in rational directions (Theorem 4.3(ii)).
Item (iii): The monotonicity of the horizontal Busemann process from Theorem 4.3(v)
extends to all directions by limits. That is, for any two rational directions &; < &, and any real
x <y,andt,

(5.17) We (v, t5x,8) < We (v, 85 x,1) < W (v, 15 x, 1) < We,—(y, 15 x, 1),

and when &; ¢ Q, the same monotonicity holds, removing the middle term that does not
distinguish between +. Hence, the limits as o ' & and « | £ exist and agree with the limits
from rational directions (without the [1). Without loss of generality, we take the compact set
to be [a, b]?. Then by (5.17) and Lemma A.2, forae <&, 0 € {—,+},anda <x <y <b,

(5.18) 0<We_(y,t;x,1) = Won(y,1;x,1) < We_(b,t;a,t) — Won (b, 1; a,1),
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and for general (x, y) € [a, b]?,

|We_(y,t;x,8) — Wor . t; x,1)| < |We_(b, t;a,1) — Wory(b, 15 a, 1)

’

so the limit as & ' £ is uniform on compacts. An analogous argument applies to o N\ £.

Item (iv): For t,& € R and O € {—, +}, the continuity of (x, y) = Weo(y,t; x, 1) follows
from Item (iii) and the continuity for rational & in Theorem 4.3(iv). Before showing the
general continuity, we show the limits (5.16). For &, r € Q, (5.10) holds by definition of ;.
Keeping £ € Q, let s € R, and let ¢ > s be rational. By Theorem 4.3(ii)—(iii),

We(x,s5;0,5) = We(x,s;0,1) + We(0,1;0,5)

=sup{L(x,s;z,1) + We(z,2;0,1)} + We (0,70, 5).
zeR
Then by Lemma B.7 (for the temporally reflected L), limx_&oox_le (x,s;0,5) = 2¢&.
Now, let £ e R, O € {—, +} and ¢ € R be arbitrary. Then the monotonicity of (5.17) implies
that, for @ < & < B with o, 8 € Q,

Ce ] ) : -1 .
oefl}cn_l)loréfx ng(x,t,O,t)ﬁhxnl)solépx Wen(x,1;0,1) < B.

Sending Q 2« /& and Q 2 B\ & implies (5.16) for +o00. The case x — —oo follows a
symmetric argument.

Lastly, the continuity of (x, y) = Wgg(y, t; x,t) and (5.16) imply that We(x,7;0,17) <
a + b|x| for some constants a, b. The general continuity follows from (5.14) and Lem-
ma B.6(1).

Item (i): The statement holds for all x, y, ¢, £ € Q by Item (v) of €. The continuity proved
in Item (iv) extends thisto all x, y,t € R. [

Recall Definition 5.7 of the extreme maximizers gfxDS’)L /R (1).

LEMMA 5.13. Foreach w € 1, (x,s;y,t) € R4, EeRand O e {—, +},
(5.19) lim L(x,s;z,t)+ Wep(z, t;y, 1) = —00
z—+o00

so that g?ES’)L/R are well-defined. Let K C R be a compact set, § € R and O € {—, +}. Then
there exists a random Z = Z(£0, K) € (0, 00) such that for all x,s,t € K with s <t and

.S
Se(L, R}, gy D < Z.

PROOF. By the continuity and asymptotics of Lemma 5.12(iv), V¢ € R Ja, b > 0 such

that [Weg(x,¢;0,1)| <a+ b|x| Vx € R. Lemma B.2 implies L(x, s;z,1) ~ — (Zt__’;)z, which
gives (5.19). Next, we observe that

inf  sup{L(x,s;z,1) + Wep(z,1;0,1)}
x,s,teK,s<t zeR

(5.20)
> inf  L(x,s;x,1)+ Wep(x,1;0,1) > —o0.

T x,s,teK,s<t

The last inequality is justified as follows. Since We(x, £; 0, t) evolves backward in time as
the KPZ fixed point (5.14), Lemma B.6(ii) implies that a and b can be chosen uniformly for
t € K. Lemma B.2 states that Vx, s, r € R with s < ¢; there is a constant C such that

2V/2x2 + 52+ 12 + 4)

(t—s)A1

L(x,s;x,t)>—C(t — s)l/3 logz(

Taking the infimum over x, s, ¢ € K with s < ¢ yields the last inequality in (5.20).
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To contradict the last statement of the lemma, assume maximizers z, of L(x,, su; 2, ty) +
Wen(z, 1,3 0, 1,) over z € R such that x,, s,, 1, € K but |z,| — oo. Then by (5.20),

(5.21) liminf £(x,, Sn; 20, ta) + We(2n, ta; 0, 2,) > —00,
n— 00

but since z,, — 00 and X, $u, t, € K for all n, L(x,,, Sn; 2n; tr) ~ (Z;’ _’;”) by Lemma B.2.

By the bound |Wgn(x,t;0,¢)| < a + b|x| that holds uniformly for ¢ €K and x € R, the
inequality (5.21) cannot hold. [J

PROOF OF THEOREM 5.1, ITEMS (i)—(iv). The full-probability event of these items is
21. The remaining items are proved later:

Item (i) (Continuity): This was proved in Lemma 5.12(iv).

Item (ii) (Additivity): First, we show thaton Qq fors <¢,x € R, & <& and S € {L, R},

(5.22) —co < gl P =gt 0 =2 (1) < 821 (1) < oo
The finiteness of the maximizers comes from Lemma 5.13. The rest of (5.22) follows from
the monotonicity of (5.17) and Lemma A.1. Next, we show that, for (x,s; y,?) € R* and
& €R, Wy(x,s;y,t) converges pointwise to We_(x,s;y,1) as Q > o /' &. The same holds
for limits from the right, with £— replaced by £+ (Later, we prove that the convergence
is locally uniform). By (5.14) it suffices to assume s < 7. By (5.22) and the additivity of
Lemma 5.12(ii) when s = ¢, foralla € [§ — 1, € + 1]NQ and O € {—, +},

Wo(x,s;y,1) =sup{L(x,s;2,1) + Wu(z,t; v, 1)}

zeR
=sup{L(x,s;z,1) + Wo(z,1;0,1)} + We (0, 7; y, 1)
zeR
= sup [L(x,552,1) + Wy(z,1,0,0)} + We (0,15 y,1).
zelgs ) 085 R ()

By Lemma 5.12(iii), Wy (z, t; y, t) converges uniformly on compact sets to We_(x, t; y, 1) as
Q>a /& andto Wep(x,t;y,1) as Q 3 o N\ &. This implies the desired pointwise conver-
gence. The additivity follows from the additivity for rational & (Theorem 4.3(ii)).

Item (iii) (Monotonicity along a horizontal line): This was previously proven as equa-
tion (5.17).

Item (iv) (Backward evolution as the KPZ fixed point): This follows directly from the
construction (5.14).

We postpone the proofs of Items (v)—(viii). Item (v) is proved after the proof of Theo-
rem 5.3, and Items (vii)—(viii) are proved after the proof of Theorem 7.3. No subsequent
results depend on Items (vii)—(viii), except the mixing in Theorem 5.3(ii), which is proven
later. [J

PROOF OF THEOREM 5.3 (DISTRIBUTIONAL PROPERTIES OF BUSEMANN PROCESS).
Item (i) (Independence): We know that {L(x,s; y,t):s,y € R, s <t < T} is independent of
{L(x,s;y,t):5,yeR, T <s <t} for T € R. From the definition of the Busemann process
from geodesics and the extension (5.13)—(5.14), the process

{(Weg(x,s;y,0): 6 eR,0e{—, +},x,yeR, 5,1 >T}

is a function of {L(x, s; y,1):s,y € R, T <s < t}, and independence follows.

Item (ii) (Stationarity): Similarly as the previous item, the stationarity of the process fol-
lows from the stationarity of the directed landscape from Lemma B.1(i). The mixing proper-
ties will be proven in Section 7.2 along with Items (vii)—(viii) of Theorem 5.1.
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Item (iii) (Distribution along a time level): By the additivity of Theorem 5.1(ii) and the
variational definition (5.14), for x e R, s <t and O € {—, +} on the full-probability event
Q,

Wen(x,s:0,5) = Weg(x, 5;0,1) — Weg(0, 550, 1)

=sup{L(x,s;y,t) + We(y,1;0,1)}
yeR

—sup{L(0, s; y,1) + Wep(y, 1 0,1)}.
yeR
By Item (i), Theorem 5.1(iii) and Items (iii) and (iv) of Lemma 5.12, {Wg(-,1;0,7) : § €
R};er is a reverse-time Markov process that almost surely lies in the state space ) de-
fined in (3.1). By the stationarity of Item (ii), the law of {We(-,7;0,¢) : § € R} must be
invariant for this process. By the temporal reflection invariance of the directed landscape
(Lemma B.1(ii1)), {We (-, 1;0,¢) : § € R} is also invariant for the KPZ fixed point, forward
in time. The uniqueness part of Theorem 2.1 completes the proof. [

LEMMA 5.14. For every w € Q1 and (x,s;y,t) € R4, L(x,s;y,t) < Weg(x,s;y, 1)
and equality occurs if and only if y maximizes L(x,s;z,t) + Wen(z,t;0,¢t) over z € R.

PROOF. For s < ¢, Theorem 5.1(ii), (iv) gives

Wen(x, 55y, 1) =sup{L(x,s; 2z, 1) + Wen (2, 15 y, 1)}
zeR

=sup{L(x,s;z,1) + Wep(z,1;0,0)} + Weg (0,15 y, 1).
zeR

(5.23)

Setting z = y on the right-hand side of (5.23), it follows that Weg(x,s;y,1) > L(x,s;y,1),
and equality holds if and only if y is a maximizer. [J

PROOF OF THEOREM 5.9 (CONSTRUCTION OF THE BUSEMANN GEODESICS). The
full-probability event of this theorem is €2 (5.9):

Item (i) (Finiteness of the maximizers): This follows immediately from Lemma 5.13.

We prove Items (i1)—(iv) together. By Lemma 5.14, for any such construction of a path
from the sequence of times s =y <t <--- andany i > 1,

L(gti-1).ti—1: ), i) = Wern(gti—1), ti—15 g(0), i)
Furthermore, for any ;| <t < u < ;, it must hold that
L(g®), t; gu),u) = Wery(g(0), 15 g(w), u),
for otherwise, by additivity of the Busemann functions (Theorem 5.1(ii)),
L(gti-1).ti—1;g), i)

= L(g(ti—1), ti—15 8(1), 1) + L(g (1), 15 (), u) + L(g (w), u; g(t:), 1;)

< Wem(g(tiz1), ti—1; 8(0), 1) + Wen(g(0), 5 g(u), u) + Wem (g (), u; g(1:), ;)

= Wen(g(tiz1), ti—1: (1), 1i),

a contradiction. Additivity extends (5.8) to all s <t < u. Therefore, the path is a semi-infinite
geodesic because the weight of the path in between any two points is optimal by Lemma 5.14.
From the equality (5.8) and Lemma 5.14, for every t > s, g(t) maximizes L(x, s;z,t) +
Wen(z,t;0,¢) over z € R.
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(20 w) (g(u),u)

(wy, t)

(z,5)

FI1G. 3. Illustration of the proof of Lemma 5.15. Here the red/thick path denotes the path y in the case
wy < g(t), which is to the right of the rightmost geodesic between (x, s) and (g(u), u), which passes
through (wy, t) by assumption. This gives the contradiction.

Before global directedness of all geodesics, we show that gfxDs’)S are semi-infinite geodesics

and the leftmost/rightmost geodesics between any two of their points. Take S = R, and the
result for § = L follows similarly. Omit x, s, £ and O from the notation temporarily, and write

gt)= ng;f (t). By what was just proved, it is sufficient to prove the following lemma.

LEMMA 5.15. Let g be as defined above. For s <t < u, let z,, be the rightmost maxi-
mizer of L(g(t),t;z,u) + Wen(z, u; 0, u) over z € R, and let w; be the rightmost maximizer
of L(x,s;w,t)+ L(w,t; g(u), u) over w € R (Equivalently, the proof of [26], Lemma 13.2,
shows that (wy,t) is the point at level t on the rightmost geodesic between (x,s) and
(g(m),u)). Then g(t) = wy and g(u) = zy.

PROOF. By Lemma 5.14 and Items (ii)(b)—(c), w, maximizes L(x, s; z,t) + Wen(z, t;
0, 1) over z € R, and z,, maximizes L(x, s; z,u) + We(z, u; 0, u) over z € R. By definition
of g(u) and g(t) as the rightmost maximizers, we have w; < g(¢) and z,, < g(u) in general.
Assume, to the contrary, that g(¢) # w; or g(u) # z,. We first prove a contradiction in the
case w; < g(t). For the proof, refer to Figure 3 for clarity. Let y; : [s, u] — R be the rightmost
geodesic from (x, s) to (g(u), u) (which passes through (wy, t)), and let y» be the concate-
nation of the rightmost geodesic from (x, s) to (g(¢), ¢) followed by the rightmost geodesic
from (g(¢),t) to (z,,u). By Item (ii)(b) for i = 1, 2, the weight of the portion of any part
of y; is equal to the Busemann function between the points. Since w; < g(¢) and z,, < g(u),
y1 and y, must split before time ¢ and then meet again before or at time u. Let (y, v) be a
crossing point, where t < v <u. Let y : [s, u] — R be defined by y (r) = y»(r) for r € [s, v]
and y (r) =y (r) from (y, v) to (g(u), u). Then by the additivity of Busemann functions, the
weight £ of any portion of the path y is equal to the Busemann function between the two
points. By Lemma 5.14, ¥ is then a geodesic between (x, s) and (g(u), u), which is to the
right of y, which was defined to be the rightmost geodesic between the points, a contradic-
tion.

Now, we consider the case z,, < g(u). Define y; and y» as in the previous case. Since
Zy < g(u), there is some point (y, v) with # < v < u such that y; splits from or crosses y» at
(v, v). Then, define y as in the previous case. Again, the weight £ of any portion of the path y
is equal to the Busemann function between the two points. Specifically, £(g (), t; g(u), u) =
Wen(g(t), t; g(u), u), and by Item 5.14, g(u) maximizes L£(g(t),t; z,u) + Wen(z, u; 0, u)
over z € R. This contradicts the definition of z,, as the rightmost such maximizer. [J

Returning to the proof of Theorem 5.9, we show the global directedness of all Busemann
geodesics constructed in the manner described in Item (ii). By (5.22),fort > sando <& < 8
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with «, B € Q,

(5.24) g(x s)(t) = g(x 5) (t) <g() =< 8(x 5) (t) = g(x s)(f)

Note that on €21 the =+ distinction is absent for «, 8 € Q (Lemma 5.12(i)). By definition (5.9)
of the event 2| and Theorem 4.3(iii), Vo € QQ, the maximizers of L(x, s; z,1) + Wy (z,1;0,1)
over z € R are exactly the locations z where an «-directed geodesic goes through (z, ).
Therefore, g?);i)(t)/t — o and g&ﬁ) (t)/t — B when «, B € Q. By (5.24)

a <liminfr~'g(r) <limsupr~'g(r) < B.
—00

11— 00

Sending Q> « ' & and Q > B\ & completes the proof of Theorem 5.9. [J

We now define the next full-probability event.
(5.25) Let ©2; be the subset of 21 on which the following hold:

(i) For eachinteger T € Z and each compact set K C R2, there exists & = e, T,K)>0
such that, for§ —e<a <& <fB<&+eand(x,y) €K,

(5.26) Wo(y,T;x,T)=We_(y,T;x,T) and Wgo(y,T;x,T)=Wey (y,T;x,T).
(i1) For each integer T € Z, the set
(5.27) {6 €eR:We(x,T;0,T) # Wei(x, T30, T) for some x € R}

is countably infinite and dense in R.
(iii)) Foreachs <teR,x, £ eR, O0€{—,+}and S € {L, R},

(5.28) Jim g( (1) = %00,

LEMMA 5.16. P(Qy) =1.

PROOF. The fact that (i) holds with probability one is a direct consequence of Theo-
rems 5.3(iii) and D.3(vi). The set (5.27) is countably infinite and dense for all T € Z by
the distributional equality {Wz; (-, T;0, T)}ser 4 {G¢)eer from Theorem 5.3(iii) and the
properties of G from Theorem D.3(vi), (ix).

Now, we prove that (5.28) holds with probability one. By the monotonicity of (5.22), the
limits limg _ o0 g(sfls’f (t) and limg ., _ gfxl_j‘s’f (t) exist in RU {—o0, oo}. Furthermore, by this
monotonicity it is sufficient to show that

: §—L .\ _ =L N _
gll)ngo 8(x.5) ()= suﬂg 8(x.5) (t) =00 and
(5.29)
hm g(x 9) (t) = 1nf g(x 9 (t) = —00

First, we show that (5.29) holds with probability one for a fixed initial point (x, s) and fixed
t > s. It is, therefore, sufficient to take (x,s) = (0,0) and then 7 > 0. By the monotonicity
it suffices to take limits over & € QQ so that, by Theorem 4.1(iii), the + and L/R distinctions
are unnecessary. We(z, 1; 0, 1) is a two-sided Brownian motion with drift 2& and diffusivity
V2, independent of the random function (x, y) — L(x,0; y, ) (Theorem 5.3(i)). Let B be
a standard Brownian motion, independent of L. Using skew stationarity with ¢ = —& in the
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(2, t)

%{ (gfu_,.}fl)(m%qz)

(9(qa2), a2)

(w,q1) (9(qr1), q1)

£

(2, 5)

FIG. 4. The blue/thin path represents gi; ’qII), and the red/thick path represents g.

third equality below and time stationarity in the fifth equality (Lemma B.1), we obtain, for

§£€Q,
g(gx’s)(t) =argmax{L(x,s;z,t) + We(z,1;0,1)}
zeR

4 argmax{L(x,s;z,1) + V2B(2) + 26z}

zeR

- argmax|L(x — &s, 537 —£1,1) +26(x —2) + (t — )E> + V2B(z) + 26z}
zeR

= argmax{L(x — &s, ;2 —&1,1) +vV2(B(z) — B(E(t — 5)))}
zeR

iargmax{ﬁ(x,s; z—&@t—s),1)+ V2B(z — &1 — 5))}
zeR

= argmax{L(x, 532, 1) + V2B@)} + £ — ) L g0 (1) + & — ).
zeR

Therefore, V& € Q, the distribution of gfx’ 5)(#) is that of a fixed, almost surely finite, random
variable plus & (z —s). Since we know limQsg s +00 g(sx’s) () exists, the limit must be +00 a.s.
Now, consider the intersection of €21 with event of probability one on which for each triple
(w, g1, 92) € Q° with g1 < g2,
. £E—,L . . E+.R _
(5.30) gEToo 8w.q(@2) =+o0 and 51111100 8(w.q)(42) = —00.

On this event, let (x, s, t) € R3 with s < ¢ be arbitrary. Assume, by way of contradiction, that

(5.31) zi=supg(, .y (1) < 0o,
£eR

and let g : [s, t] denote the leftmost geodesic from (x, s) to (z,t). For this proof, refer to
Figure 4 for clarity. By the assumption (5.31) and the fact that gfxf;)L is the leftmost geodesic
between any two of its points (Theorem 5.9(iv)), gfxfs’)L (t) < g() forall £ eR and ¢ > s.
Let g1 € (s, t) be rational. Choose w € Q such that w < g(q1). By continuity of geodesics,

we may choose g2 € (g1,1) N Q to be sufficiently close to ¢ so that |g(g2) — z| < 1. Next,
by (5.30) we may choose positive & sufficiently large so that

—,L —,L
(5.32) gfw,ql)(qz) >z+1>g(g) = gfx,s) (q2).
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Since w < g(q1), g(suqul) and g(gx_s’)L cross at some (Z,7) with f € (gq1,¢2). By Theo-

rem 5.9(iii), both g(i; ’qu)(qg) and gfxfs’)L(qg) are the leftmost maximizer of £L(Z,;y, q2) +
We_(y,q2;0,q2) over y € R. This contradicts (5.32). The proof for § — —o0 is analogous.
O

PROOF OF THEOREM 5.1(v) (Regularity of the Busemann process). By definition of the
event 3 (5.25), for each £ € R, each integer 7 and compact set K C R2, there is a ¢ > 0 so
that (5.26) holds for all (x, y) € K.

Now, let £ € R, let K be a compact subset of R* and let T be an integer greater than
sup{t Vs:(x,s;y,t) € K}. Let

. —1)—,L —1)—,L
A:=infg; ) (T)/\g((it)) (T): (x,s:y.0) €K} and

)+, R +.R
B:= sup{gEii))+ (T) v g((ij) TRy (x,s: y, 1) € K}.

By (5.22) and Lemma 5.13, —o0 < A < B < o0. By (5.22) and the additivity of Theo-
rem 5.1(ii), for all (x,s;y,r) e Kanda € (§ —1,& + 1),

WQD(X,S; yat) = WO{D(an; 09 T) - WO(D(y’ ta 0’ T)
=sup{L(x,s;2,T) + Wo(z,T;0,T)}

zeR
—sup{L(y,t;2,T) + Won(z,T;0,T)
(5.33) ZGR{ D }
= Sup {ﬁ(X, §;2, T)+ Wun(z, T;0, T)}
z€[A, B]
— sup {L(y,t;2,T)+ Wan(z, T;0,T)}.
z€[A,B]

By (5.26), the conclusion follows. [J

PROOF OF THEOREM 5.5 (DESCRIPTION OF THE DISCONTINUITY SET). The full prob-
ability event of this theorem is €25, except for Item (ii) whose proof is postponed until Sec-
tion 8.3. Proofs of results that rely on Item (ii) come afterward:

Item (i) (Monotonicity): By the monotonicity of Theorem 5.1(v) and by Lemma A.2, for
a<x=<y=<b,

(5.34) 0<Wer(y.t;x,0) = We_(y,t;x,8) <Wey (b, t;a,1) — We_(b,t;a,t).

Thus, discontinuities of § — Wen(y, ; x, t) are also discontinuities for § — Wen (b, t;a,1).
Item (iii) (E is a countable dense set): Similarly, as in (5.33), if (x,s; y,t) € R*, then for
EeR,0€e{—,+}and anyinteger T > s V t,

Wen(x, 55y, 1) =sup{L(x,s;2, T) + We(z, T; 0, T)}
R
(5.35) <€
—sup{L(y,t;2,T) + Wey(z, T; 0, T) }.
zeR
Soif We_(z,T;0,T)=We4(z2,T;0,T)Vz € R, then We_(x,s;y,1) = Wey(x,s;y,1), and
(5.36) &= U {6 eR:We(x,T;0,T)# Wep(x, T;0,T) for some x € R}.
TeZ

On €2,, E is countably infinite and dense by (5.25). Lemma 5.12(i) along with (5.36)
imply that E contains no rational directions &. For an arbitrary § € R, We_(-,7;0,T)
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and Wgy (-, T;0,T) are both Brownian motions with the same diffusivity and drift, and
We (v, T;x,T) < Wey(y, T; x,T) for x <y by Theorem 5.1(iii). By (5.36) and continuity,

PEeB)< > PWee(x,T;0,T)# Wey(x,T:0,7)) =
TeZ,xeQ
where P(We_(x,T;0,T) # Wey(x,T;0,T)) =0 because the two random variables have
the same law and are ordered.

Item (iv) (E(p; q) is discrete): The discreteness is a direct consequence of the regularity
of the Busemann process from Theorem 5.1(v). By Theorem D.3(vii), on a ¢-dependent full
probability event, and for each x <y, Weg(y, t; x, 1) — F00 as § — +00. Since the jumps
are discrete, E(y, t; x, t) is infinite and unbounded for both positive and negative &.

Item (v) (Distributional invariances of E:) The discreteness of Item (iv) allows us to view

—~

the sets E(y, t; x,t) as well-defined point processes. We recall that £ € E if and only if

We_(y,t;x,1) # Wey(y, t; x, t). Start with the distributional equality {We (-, #; 0, 1) }ser 4
{G¢}eer, which holds for all # (Theorem 5.3(iii)). Furthermore, the additivity of the Buse-
mann process (Theorem 5.1(i1)) implies

d
[(Wer (v t3x,8):x,y ER}seR ={Ge(y) — Ge(x) :x,y ER}EGR'

This gives the first distributional equality E(y,t; x,1) 4 E(y,0; x,0). The invariance
E(,0;x,0) 4 —E&(—y,0; —x,0) follows from the reflection invariance of G (Corol-

lary D.4). The invariance E(y, 0; x, 0) 4 ¢! E(c_zy, 0; ¢ 2x, 0) — v follows from the cor-
responding invariance for G in Theorem D.3(ii). U

6. Nonuniqueness of semi-infinite geodesics. Theorem 5.9 established global existence
of semi-infinite geodesics from each initial point and into each direction. We know from The-
orem 3.3 of [59], recorded earlier in Theorem 4.1(iii), that, for a fixed initial point and a fixed
direction, there almost surely is a unique semi-infinite geodesic. However, this uniqueness
does not extend globally to all initial points and directions simultaneously. In fact, two qual-
itatively different types of nonuniqueness of Busemann geodesics from a given point into a
given direction arise. One is denoted by the L/R distinction and the other by the + distinc-
tion. All semi-infinite geodesics from p in direction £ lie between the leftmost Busemann
geodesic gff’L and the rightmost Busemann geodesic gf,Jr’R; see Theorem 6.5(i). We refer
the reader back to Figure 2 for the two types of nonuniqueness. The L /R uniqueness is de-
picted on the left, where geodesics split and return to coalesce, while the & nonuniqueness is
depicted on the right in the figure, where geodesics split and stay apart, all the way to co.

The L/R nonuniqueness is a feature of continuous space. Only the £ nonuniqueness ap-
pears in the discrete corner growth model with exponential weights, while both L/R and &
nonuniqueness are present in semidiscrete BLPP [63, 64].

To capture L/R nonuniqueness, we introduce the following random sets of initial points.

For& e Rand O € {—, +}, let NU%D be the set of points p € R? such that the £[] geodesic

from p is not unique. Let NU?D be the subset of NUgD of those initial points at which two
&0 geodesics separate immediately. In notational terms

(6.1) NUED {(x,5) € R?: g(ngS)L(t) < g(x %) R (t) for some t > s} and

(6.2) NUSEI = {(x s) € NUSD de > 0 such that g(x 9 (t) < g(x 9 (t) Vte(s,s+ 8)}
Fori =0,1, let

(6.3) NU;= ) NUEL
éeR,0e{—,+}
Figure 5 illustrates NUp and NUj.
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(y,t)

(z,5)

F1G. 5. In this figure (x,s) € NUg\NU; and (y,t) € NU; € NUy. It has since been shown by Bha-
tia [17] and Dauvergne [24] that no such points (x, s) exist.

Theorem 6.1(ii) establishes that, with probability one, for each £ € R and O € {—, +},
the restriction of NU%D to each time level s is countably infinite. By Theorem 7.1(i), on a
single event of probability one, for each direction £ and sign O € {—, 4}, all £0 geodesics
coalesce. Therefore, from each p € NU%D, two £ geodesics separate but eventually come

back together. In particular, the set of points (x, s) € R? such that gff";f (1) < gfxD,S’)R (t) for

all ¢ € (s, 00) is empty and the & > 0 in the definition (6.2) of NU“’ID is essential.

By definition NU?D - NUgD. When this paper was first posted, we did not know whether
NU‘?D was a strict subset of NU(%D. Afterward, Bhatia [17] and Dauvergne [24] each inde-
pendently proved that, in fact, NUED = NU?D. In fact, something stronger is true: With prob-
ability one there are no pairs of points (x, s; y, #) € R* and pairs of distinct geodesics g1, g2
from (x, s) to (y, t) satisfying, for some ¢ > 0, g1 (1) = go(u) forallu € (s,s +e)U(t — ¢, 1)
([171, Theorem 1, [24], Lemma 3.3). In BLPP the set NU; plays a significant role as the set of
points from which the leftmost and rightmost competition interfaces have different directions
(Theorem 4.32(ii) in [64]). Presently, we do not have an analogous characterization in DL.

Since NU(E)_ U NU(E)Jr captures only the L/R distinction and not the = distinction, it does
not, in general, contain all the initial points from which the &-directed semi-infinite geodesic
is not unique. However, when the &+ distinction is absent, Theorem 6.5(i) implies that N US =
NU%i is exactly the set of points p € R? such that the semi-infinite geodesic from p in
direction & is not unique. This happens under two scenarios: when & ¢ E and when we restrict
attention to the &£-dependent event of full probability on which gif’s = gf,J“S for all p € R?
and S € {L, R}.

The failure to capture the £ nonuniqueness is also evident from the size of NUg. When-
ever & € &, there are at least two semi-infinite geodesics with direction & from every initial
point. But along a fixed time level, NUj is countable and thereby a strict subset of R? (The-
orem 6.1(ii) below).

Recall that Hy = {(x,s) : x € R} is the set of space-time points at time level s. Theo-
rem 5.5(iii) states that, on a single event of full probability, & C R \ Q, so for £ € Q, we can
drop the + distinction and write NU? = NU?_ = NU?JF.
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THEOREM 6.1. On a single event of probability one, for i =0, 1, the set NU; satisfies

(6.4) NU; = [ NUS .
£eQ
In particular, the following hold.

(i) For each p € R%, P(p € NUg) = 0 and the full-probability event of the theorem can
be chosen so that NUy contains no points of Q>.

(i) On a single event of full probability, simultaneously for every s € R, & € R and
O € {—, +}, the set NUED NHs is countably infinite and unbounded in both directions.
Specifically, for each s € R, there exist sequences x, — —oo and y, — +00 such that
(xXn,8), Yn, $) € NU%D. By (6.4) NUg NH, is also countably infinite.

REMARK 6.2. By adjusting the full-probability event, the set Q can be replaced by any
countable dense subset of R. In all applications in this paper, we use the set Q.

The next theorem states properties of Busemann geodesics that involve the L/R and £
distinctions.

THEOREM 6.3. The following hold on a single event of full probability:

(1) Fors <t,xeR,& <& and S € {L, R},

+.§ +,§

gl =gl 0 =gl 0 =gl @)

(ii) Let& € R, let K C R be a compact set and let T > max K . Then there exists a random

e=¢(&, T, K) > 0 such that, whenever § —e <a <& <B<&+e,0€{—,+},Se{L,R}
and x,s € K,

S -8 S
g5 =gl 50 and LI =git @) foralltels, Tl

(iii) Foreach (x,s) €R2, t>s, 0 ¢€{—,+} and S c {L R}, 1im§_>:|:oo gi (1) = %o0.

(v) Forallé eR,0€{—,+},s <tandx <y, g(x 9) (t) < g(y 9) (t) More generally, if
x <y,s €R, g1 isa &0 geodesic from (x, s) and g, is a £0 geodesic from (y, s) such that
g1(t) = ga(t) for some t > s, then g1(u) = g>(u) for all u > t. In other words, if g1 and g>»
intersect, they coalesce at their first point of intersection.

(v) Forallé eR,0e€{—,+},Se{L,R},xeRands <t,

6.5 lim ¢ PS5 () = o5 L (s d lim ¢t 51 = R,
(6.5) wmlg(wvs)( ) = 8(x,s) (t) an ln}cg(y,s) (1= 8(x,s) ®)

. ,L R
and if gL (1) = g (1) =2 {1 (1), then for S € (L, R},

: 0,8 N
(6.6) (w,ul)lin(x,s) 8(w, u)( )= g(x 5) ().
Furthermore,
S
6.7) lim_g((6) = oo,

REMARK 6.4. In general, Theorem 6.3(i) cannot be extended to mix L with R. Pick a
point (x,s) € NUp, where NUjy is defined as in (6.3). Then on the full-probability event of
Theorem 6.1, there exists a rational direction & and ¢ > s such that

+.R
By D =200 () < gl =g ()
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By Theorem 6.3(ii), we may choose &1 < & < & sufficiently close to & such that

+,L —L +.R —R +.R
2oy =gl W =gy O <glo 0=y O =g .
Item (iv) is an extension of Item 2 of Theorem 3.4 in [59] to all directions and all pairs of
initial points on the same horizontal level. It is not true that forall £ e R, s < and x < y,

gfx’Lc)R (1) < gfy_“;)L (2). This is discussed further in Remark 7.4 below.

The next theorem controls all semi-infinite geodesics with Busemann geodesics.

THEOREM 6.5.  The following hold on a single event of probability one. Let (xy, t;)reR.,
be any net such that t, — oo and x, /t, — &:

(i) Let (x,s) € R? and & € R. For each r large enough so that t, > s, let g, : [s,t,] > R
be a geodesic from (x, s) to (x,, t,). Then, for each t > s,

(6.8) g(x 5) (t) = hmlnfgr(t) = hm Supgr(t) = g(x 5) (t)

In particular, gfx 5 IS the leftmost and g(x 9 R the rightmost among all semi-infinite geodesics
from (x, s) in direction & .

(ii) Let K C R? be compact. Suppose that there is a level t after which all semi-
infinite geodesics from (x,s) € K in direction & have coalesced. For u > t, let g(u) be this
geodesic. Then, given T > t, there exists R € R~ such that forr > R and all (x,s) € K, if
gr 1 s, ] = Ris a geodesic from (x, s) to (x,, t,), then

gr(w)y=g) foralluelt, T].

In particular, suppose there is a unique semi-infinite geodesic from (x,s) in direction &,
denoted by g(éx 5" Then, given T > s for sufficiently large r, we have

gr(u)= g(ngs)(u) foralluels,T].

REMARK 6.6. Theorem 7.1(i) below states that the assumed coalescence in Item (ii)
occurs whenever £ ¢ E. The second statement of Item (ii) is in Corollary 3.1 in [59]. We
provide a different proof that uses the regularity of the Busemann process.

6.1. Proofs. In this section we prove Theorems 6.1, 6.3 and 6.5. In each of these, the
full-probability event is €22 (5.25). We start by proving parts of Theorem 6.3, then go to the
proof of Theorem 6.1.

PROOF OF THEOREM 6.3, ITEMS (i)—(iii). Item (i) (Monotonicity of geodesics in the
direction parameter) was already proven as Equation (5.22). In fact, this item holds on €2;.

Item (ii) (Geodesics agree locally for close directions): This follows a similar proof as the
proof of Theorem 5.1(v). Let K be a compact subset of R, and let 7 be an integer greater
than max K . Set

A=inflgs V7T ix.seK) and B=sup{gl ') (T) x5 e k).

By Lemma 5.13 and Item (i), —o0 < A < B < 00. Then for all 0 < ¢ < 1 sufficiently small,
all £ —e <a <& and all x, s € K, the functions z — L(x,s;2,T) + Wynq(z, T;0,T) and
2> L(x,s;2,1) + We_(z,T;0,T) agree on the set [A, B], which contains all maximizers.

Hence, for such « and Oe{—,+},and S € {L, R}, g‘("xmq’)S(T) = gfx_;f(T) Since g‘(xxDY’)L :

[s,00) — R and g(x A) : s, o0) — R define semi-infinite geodesics that are, respectively, the
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leftmost and rightmost geodesics between any of their points (Theorem 5.9(iii)—(iv)), it must
also hold that for S € {L, R} and 1 € [, T1, g{ "1 (1) = g{, ;) (¢). Otherwise, taking § = L
without loss of generality, there would exist two distinct leftmost geodesics from (x, s) to
(g(x 9 (T) T), a contradiction. The proof for the £+ geodesics, where g is sufficiently close
to & from the right, is analogous.

Item (iii) (Limit of geodesics as direction goes to +00): This holds on €2, by defini-
tion (5.25).

We postpone the proofs of Items (iv) and (v) until after the following proof. [

PROOF OF THEOREM 6.1 (DESCRIPTION OF THE SETS NU;). By Theorem 5.5(ii) on
the event Q, o ¢ E for all « € Q so we 0m1t the + distinction in this case. We first
prove (6.4). If (x, s) € NU%D, then g(x %) (t) < g(x 9 (t) for some ¢ > s. By Theorem 6.3(ii),
there exists a rational direction o (greater than £ if O = + and less than & if O = —) such
that

g(x s)(t) = g(x s) (t) < g(x s) (t) = g(x S)(t)

Hence, (x, s) € NUG. An analogous proof shows that NU; = g NU%.

Item (1): By Theorem 4.1(iii), for fixed direction £ and fixed initial point p, there is a unique
semi-infinite geodesic from p in direction &, implying (x, s) ¢ NU%. The result now follows
directly from (6.4) and a union bound. In particular, by definition of the event 21 D 25 (5.9),
foreach (q,r) € Q% and & € Q, (¢, r) ¢ NU;,. Then by (6.4) on the event £, NUp € R2\ Q2.

We postpone the proof of Item (ii) until the end of this subsection. [

REMAINING PROOFS OF THEOREM 6.3. [Item (iv) (Spatial monotonicity of geodesics):
We first prove a weaker result. Namely, fors e R, x <y, £ e R, 0€{—,+}and S € {L, R},

N
6.9) g () =gy (1) forallr >s.
By continuity of geodesics, it suffices to assume that z := gfxD;)L 1) = gfyDY)L (t), for some

t > s, and then show that gfxDS’)L (n) =

g(ngS)S(t) g(SDSS(t) then for u > ¢, both g(x 9) (u) and g(y’s) (u) are the leftmost maximizer

of L(z,t; w,u) + Weg(w, u; 0, u) over w € R, so they are equal.

Now, to prove the stated result, we follow a similar argument as Item 2 of Theorem 3.4
in [59], adapted to give a global result across all direction, signs and pairs of points along
the same horizontal line. Let g; be a £0 geodesic from (x, s), let g» be a £0 geodesic from
(v, s) and assume that g (t) = g»(¢) for some ¢ > s. By continuity of geodesics, we may take
t to be the minimal such time. Choose r € (s, t) N Q and then choose g € (g1(r), g2(r)) N Q;
see Figure 6. By Theorem 6.1(i) on the event 25, there is a unique £ Busemann geodesic

from (g, r), which we shall call g = g(qur)L = gfqmr)R Foru >r,

g(y S) (u) for all u > ¢t. By Theorem 5.9(ii), if z :

(6.10) g1(u) = g(x 9) () < gu) < g(y 5) Y () < g (u).
The two middle inequalities come from (6.9). The two outer inequalities come from the
definition of g(éD ) L/R (u) as the left and rightmost maximizers.

By assumption and (6.10), z := g1(¢) = g(¢t) = g2(¢). By Theorem 5.9(ii)(c), for u > ¢,
g1(u), g2(u) and g(u) are all maximizers of L(z,t; w,u) + Wep(w, u; 0,u) over w € R.
However, since there is a unique £[J geodesic from (g, r), there can be only one such maxi-
mizer, so the inequalities in (6.10) are equalities for u > ¢.

Item (v) (Limits of geodesics in the spatial parameter). We start by proving (6.5). We
prove the statement for the limits as w ' x, and the limits as w \( x follow analogously. By
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(9(t), 1)

(q,7)

(iU, 3) (y,8)

FIG. 6. Choosing a point (q,r) € Q> whose £0] geodesic is unique.

Item (iv) z :=limy, 7y g(w 9 (t) exists and is less than or equal to g (t) Further, by the

same monotonicity for all w € [x — 1, x], all maximizers of L(w, s; y t) + Wen(y,1;0,1)

over y € R lie in the common compact set [g(fxD_’lL’s)(t), gfxDS’)R (t)]. By continuity of the di-

rected landscape (Lemma B.2), as w 7 x, the function y — L(w, s; y,t) + Weq(y,1;0,1)
converges uniformly on compact sets to the function y > L(x,s;y,1) + Wen(y,1;0,1).
Hence, Lemma A3 implies that zis amaximizer of L(x,s;y,t)+Wen(y,1;0,1) overy e R.
Since z < g (t) and g ) (t) is the leftmost such maximizer, equality holds.

The proof of (6.6) is 31m11ar: in this case Lemma 5.13 implies that, for all (w, u) suffi-
ciently close to (x, s), the maximizers of y — L(w, u; y, 1)+ Weg(y, t; 0, 1) lie in a common
compact set. Then by Lemma A.3, every subsequential limit of gfﬁ;g(t) as (w,u) — (x,s)
is a maximizer of y — L(x,s; y,t) + Weg(y, t; 0,¢). By assumption there is only one such
maximizer, so the desired convergence holds.

Lastly, to show (6.7), we recall that the Busemann process evolves as the KPZ fixed point
(Theorem 5.1(iv)). The Busemann functions are continuous and satisfy the asymptotics pre-
scribed in Lemma 5.12(iv). Therefore, for each ¢, & and 0O, there exists constants a, b > 0 so
that [We(x,1;0,1)| < a + b|x|. Lemma B 6(iii) applied to the temporally reflected version

of L states that, for sufficiently large |x|, g(x 9 (t) e(x—|x*3 x+x*3. O

PROOF OF THEOREM 6.5. We remind the reader that this theorem controls arbitrary
geodesics via the Busemann geodesics:

Item (i): Let o < & < B. By directedness of Busemann geodesics (Theorem 5.9(iii)) and
the assumption x, /r, — &, for all sufficiently large r,

—,L +.R
g((l; $) () <xr < gé 5) (tr)

Since g( )L is the leftmost geodesic between any of its points and g( ’)R is the rightmost
(Theorem 5.9(iv)), it follows that, for u € [s, t,],

_ R
6.11) gl ) < gr(w) < gl ).
Hence, for all t > s,
R
g(x 9 (t) < 11mmfgr(t) <limsup g,(¢) < gé:rs) ()

r—00

By Theorem 6.3(ii), taking limits as & ' & and 8 \ & completes the proof.
Item (ii): Assume that all geodesics in direction &, starting from a point in the compact set
K, have coalesced by time ¢, and for u > ¢, let g(u) be the spatial location of this common
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geodesic. By Item (i), for all p € K and u > ¢,
gu)=g5 7 w) = g5 w).
Let T > t be arbitrary. By Theorem 6.3(ii), we may choose o < & < § such that, for all p € K
andu € [t,T],
—L - +.R
(6.12) iy ) = g%~ ) = gu) = 5T R w) = gliF (w).

The outer equalities hold because the geodesics pass through (g(¢), t). With this choice of
o, B, by the directedness of Theorem 5.9(iii) and since x,/t, — &, we may choose r large
enough so that ¢, > T and g?‘g_(t’)L’ t)(tr) <X < gf gtt’fl)(tr). Then, as in the proof of Item (i),
forall u € [t, t,],

—L +.R
Sei 1) = &) < glet ().
Combining this with (6.12) completes the proof. [J

It remains to prove Theorem 6.1(ii). We first prove a lemma.

LEMMA 6.7. Letwe 2, EeR, O0e{—,+}, Qs <t eR, and assume that there is a
nonempty interval 1 = (a, b) C R such that, for all x € Q, g(gxm’s)(t) ¢ I (By Theorem 6.1(1),
we may ignore the L /R distinction when (x, s) € Q3). Then there exists X € R such that

(6.13) gl <a<b<gfo.

PROOF. Choose some y € (a, b), and let

x=sup{x €Q: g(xs)(t)<y}
By equation (6.7) of Theorem 6.3(v), x € R. By the monotonicity of Theorem 6.3(iv), for all
Q>x<x, gfxmc)(t) < y, while for all Q 9 x> X, gfxmq)(t) > y.By assumption of the lemma,

this further implies that for Q > x < x, g (r.s) (t) < a while for Q 5 x > X, g(x o ()= b. By
taking limits via equation (6.5) of Theorem 6. 3(v), we obtain (6.13). [

PROOF OF THEOREM 6.1(ii) (NU%D N?Hg 1S COUNTABLY INFINITE AND UNBOUNDED).
We prove the statement in three steps. First, we show that on Q;, for all s € Q, & € R,

O € {—, +}, the set NU(S)D N7H; is infinite and unbounded in both directions. Next, we show

that, on €29, NUED NH, is, in fact, infinite and unbounded in both directions for all s € R.
Lastly, we show that the set NUg N'H, (the union over all directions and signs) is countable.
For the first step, Theorem 6.1(i) states that, on the event 2, for each (x,s) € Q?, EeR
and O € {—, +}, there is a unique £ geodesic gfx?s), and, therefore, this geodesic is both
the leftmost and rightmost £ geodesic from (x, s). Since leftmost (resp., rightmost) Buse-
mann geodesics are leftmost (rightmost) geodesics between any two of their points (Theo-

rem 5.9(iv)), it follows that gf DA), restricted to times ¢ € [s, s 4+ 2], is the unique geodesic
from (x, s) to (g(x Y)(s +2),s +2). By Lemma 5.13 for each compact set K, the set
{g(xs)(s—}— D:xeQnNK}

is contained in some compact set K’. Then we have the following inclusion of sets:

(6.14) (gl s+ D:xeQnklc |J {g6+D}
g€Ak k/
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where
Ak k' = {g: g is the unique geodesic from (x, s) to (y, s +2) for some x € K,y € K'}.

By Lemma B.9 the set in the RHS of (6.14) is finite, so the set on the LHS is finite as well.
Therefore, the set

(6.15) (gl s+ :xeQf= () {gl)6+DixeQn[—k k)
kEZ>0

is a union of finite nested sets. Further, by the ordering of geodesics from Theorem 6.3(iv)
for each k, the difference

{g(xv)(s—l-l) xeQn[— (k+1),k+1]}\{g(x9)(s+l) x € QN[—k, kl}

lies entirely in the union of intervals

(—oo.inf{g{T (s + 1) :x € QN [k, kI}] U [sup{g¢th (s + 1) 1 x € QN [—k, k], 00).

Therefore, the set (6.15) has no limit points. Further, by equation (6.7) of Theorem 6.3(v), the
set (6.15) is unbounded in both directions. These two facts imply that there exist infinitely
many disjoint nonempty intervals whose intersection with the set (6.15) is empty, and the
set of endpoints of such intervals is unbounded. By Lemma 6.7 for each k > 0, there ex-

ists (x,s) € NU(S)D such that gSD’R(s + 1) > k, and there exists (x,s) € NUgD such that

(x,s)
gfxDS)L (s + 1) < —k. Next, assume, by way of contradiction, that the set {x e R: (x,0) €

NU“E } has an upper bound b. Then by the monotonicity of Theorem 6.3(iv), for all x € R

with (x, s) € NU0 , g(SxDS)R s+1)< g(éb%’)R (s + 1). But this contradicts the fact we showed

that {gfxD’S)R (s + 1) : x € R} is not bounded above. Hence, there exists a sequence y,, — 00
such that (y,, s) € NU%D for all n. By a similar argument, there exists a sequence x, — —00
such that (x,,s) € NUéD for all n.

Now, for arbitrary s € R, pick a rational number T > s. Pick (z, T) € NUgD, and let
x; =sup{x eR: g(x 5 Ly < z} and xy=inf{x eR: g(SXD,S’)R(T) >z}

By the limits in equation (6.7) of Theorem 6.3(v), x; and x; lie in R.
We first show that x, < xj. If not, then choose x € (x1,x2). Then g(x 9 (T) <z<

gfxDS)L (T), contradicting the meaning of L and R. Hence, x; < x1 For any x > x»,

g(x 9 (T) > z and by the limit in equatlon (6 5) of Theorem 6.3(v), g(x 3) (T) > z as well.

By an analogous argument, for x < x1, g(x 9) (T) < z and the inequality g(x S)(T) < z holds
by the same argument. Hence, for x € [x2, x1],

L ,R
gk <z and g2FM) =z

Then by the monotonicity of Theorem 6.3(iv), fort > T,
L
(6.16) 2wy (O < gy () < gy (1) < () (@),

By assumption that (z,7T) € NU%D, there exists ¢+ > T such that the middle inequality

in (6.16) is strict, so (x,s) € NU(S)D. Furthermore, by assumption the set {z e R: (z,T) €
NUp} has neither an upper or lower bound. Then by the t = T case of (6.16) and a similar
argument as for the s = 0 case, the set {x € R: (x,s) € NUp} also has neither an upper nor
lower bound.



36 0. BUSANI, T. SEPPALAINEN AND E. SORENSEN

We lastly show countability of the sets. By (6.4) it suffices to show that, for each & € Q and
s eR, NUg NH; is countable. The proof is that of Theorem 3.4, Item 3 in [59], adapted to all

horizontal lines simultaneously. For each (x, s) € NUS , there exists ¢ > s such that gi;Ls) (1) <

g(f);ﬁ)(t). By continuity of geodesics, the space between the two geodesics contains an open
subset of R2. By the monotonicity of Theorem 6.3(iv), for x < y, gf);ﬁ)(t) < gfy”LS) (¢) for all
t > s. Hence, for x < y, with (x, s), (y,s) € NUS, the associated open sets in R2 are disjoint,
and NUg NH, is at most countably infinite. [

7. Coalescence and the global geometry of geodesics. We can now describe the global
structure of the semi-infinite geodesics, beginning with coalescence.

THEOREM 7.1. On a single event of full probability, the following hold across all direc-
tions & € R and signs O € {—, +}:

() Forall p,q € R?,if g1 and g, are £01 Busemann geodesics from p and q, respectively,
then g1 and g» coalesce. If the first point of intersection of the two geodesics is not p or q,
then the first point of intersection is the coalescence point of the two geodesics.

(1) Let g1 and g» be two distinct £€00 Busemann geodesics from an initial point (x, s) €
NU(%D. Then the set {t > s : g1(t) # g2(t)} is a bounded open interval. That is, after the
geodesics split, they coalesce exactly when they meet again.

(iii) For each compact set K C R2, there exists a random T = T(K,&,0O) < oo such that
for any two £0 geodesics g1 and g» whose starting points lie in K, g1(t) = ga(t) for all
t > T. That is, there is a time level T after which all semi-infinite geodesics started from
points in K have coalesced into a single path.

REMARK 7.2. Theorem 1 of [17] and, independently, Lemma 3.3 of [24] imply the fol-
lowing refinements of the results in this section. In Theorem 7.1(ii), {t > s : g1(t) # g2(¢)} =
(s, r) for some r € (s, 00). Under Condition (i) of Theorem 7.3 below, the entire collection
of semi-infinite geodesics in direction £ is a tree.

The following gives a full classification of the directions in which geodesics coalesce. We
refer the reader to Theorems 7.8 and 7.9 below for the connection between coalescence and
the regularity of the Busemann process.

THEOREM 7.3. On a single event of probability one, the following are equivalent:

(i) §¢E.
(i) g5 ¥ =¢5"" forall peR? and S € (L, R}.
(ii1) All semi-infinite geodesics in direction & coalesce (whether Busemann geodesics or
not).
(iv) For all p € R*\ NUy, there is a unique geodesic starting from p with direction & .
(v) There is a unique &-directed semi-infinite geodesic from some p € R2.

(vi) There exists p € R? such that gi_’L = gi+’L-
(vii) There exists p € R? such that gi_’R = g§,+’R

Under these equivalent conditions, the following also holds:

(viii) From any p € R?, all semi-infinite geodesics in direction & are Busemann geodesics.
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REMARK 7.4. The equivalence (i)<>(vi) implies that V& € E and p € R?, geodesics

gg_’L and g, L are distinct. The same is true when L is replaced with R. Since gi_’L and

gff’L are both leftmost geodesics between any two of their points (Theorem 5.9(iv)) then

if £ € E, these two geodesics must separate at some time ¢ > s, and they cannot ever come
back together. For each & € E, there are two coalescing families of geodesics, namely, the
&— and £+ geodesics. (See again Figure 2.) In particular, whenever £ € E, s e Rand x < y,

gf:s’)L () > g(sy_’s’)R () for sufficiently large 7, as alluded to in Remark 6.4.

7.1. Proofs. In each of these theorems, the full-probability event is 25 (5.25). We start
by proving some lemmas that allow us to prove Theorem 7.1. The proof of Theorem 7.3
comes at the very end of this subsection. Section 7.2 proves Theorem 2.5 as well as lingering
results from Section 5.

LEMMA 7.5. Letw € Qq,s € Rand x <y € R. Assume, for some a < & and (01,03 €
{—, 4}, that Wop, (y,s;x,5) = Wep, (v, 55 x,5). We also allow o« =& if 01 = — and

o=+.Ift > s and gfx?f)’R(t) < g‘(xy’Dsl)’L(t), then for all u € [s,t],
,R 2, R L O»,L
(7.1) gl Ry = g3 ) and  glEV ) =i 3 ).

PROOF. By assumption, whenever w < z and ¢ € R, Theorem 5.1(iii) gives
(7.2) Wer, (2, t;w, 1) < Wep, (2, 1 w, 1).
For the rest of the proof, we suppress the (11, (0> notation. By Theorem 5.1(ii), (iv),
We(y,s;x,8) = We(y,5;0,1) — We(x,s;0,1)

=sup{L(y,s;z,t) + We(z,1;0,1)
(7.3) zeR{ : }

—sup{L(x, s;z,1) + We(z,1;0,1)},
zeR

and the same with & replaced by «. Recall that gfxm’s’)]“ (t) and gfxD’s’)R (t) are, respectively, the

leftmost and rightmost maximizers of L(x, s; z,t) + We(z, t; 0, 1) over z € R. Understand-

ing that these quantities depend on s and ¢, we use the shorthand notation gi’R = gfxm’s')’R(t)

and, similarly, with the other quantities. Then we have
Lloe,sigd0) + We (g8 R 1:0.0) — (L, 51857, 1) + Walgr . 1:0,1))

(7.4) > sup{L(x,s;2,1) + We(z,1;0,0)} —sup{L(x,s;2,1) + Wo(z,1;0,1)}
zeR zeR

=sup{L(y,s;z,1) + We(z,2;0,1)} —sup{L(y, s; 2, 1) + Wa(z,1;0,1)}
zeR zeR

(75 =L(y.sigyh 1) + We(gh1:0.0) — (L. 53 855, 1) + Walg5h. 13.0,1)),

where the middle equality came from the assumption that We (y, s; x, s) = Wy (y, s; x, 5) and
equation (7.3) applied to both £ and «. Rearranging the first and last lines yields

We (gL, 1 858 1) < Wa(g9F, 1 g5 R 1),

However, the assumption gi’R < gg’L, combined with (7.2), implies that this inequality is an

equality. Hence, inequalities (7.4) and (7.5) are also equalities. From the equality (7.4),

L(x, s; gi’R, 1)+ Wa(gf’R, 1;0,1) =sup{L(x,s;z,1) + Wo(z,1;0,1)},
zeR
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SO0z = gi’R is a maximizer of L(x, s; z,t)+ Wy(z,1;0,1). By deﬁnition g“ is the rightmost

maximizer, and by geodesic ordering (Theorem 6. 3(i)) g 5.k > gx , SO g)% R — g)‘f’R. An
analogous argument applied to (7.5) implies g;" = gy . We have shown that
O O2.R O1,L Oa.L
g O =g T3 0 and gDV 0 =g 3" 0.
Since g‘(xx’Dsl)’R and g(ims2 are both the rightmost geodesics between any two of their points

and similarly with the leftmost geodesics from (y, s) (Theorem 5.9(iv)), equation (7.1) holds
for all u € [s, t], as desired. [

LEMMA 7.6. Letwe 2, s €Randx < y. Iffor some a<&Eandd1,02 € {—, +} we
oy, L _&E02,R

have that Wy, (v, s;x,5) = Wen, (v, 55 X, ), then g(x S) R coalesces with 8(yvs) » &(x.s)

coalesces with gfygf)’L and the coalescence points of the two pairs of geodesics are the same.
“ee SDzvR . ald ,L
PROOF. By Theorem 5.9(iii), 8y D/t — & while &(y.s) (t)/t > a as t — oo. By

this and continuity of geodesics, there exists a minimal time ¢ > s such that z := gfxDS%’R ()=

g‘(xymyl) L(#). By Lemma 7.5

R L L
glo Ry =g 3 @y and gl =gf 3 ) forallu e ls. 1],
Since ¢ was chosen to be minimal, Theorem 6.3(iv) implies that the pair g'(xfs])’R, g‘(nyS‘)’L

the pair g(imf) R g(SyDSZ) L both coalesce at (z, ). O

and

PROOF OF THEOREM 7.1. [Item (i) (Coalescence): Let g1 and g, be £0 Busemann
geodesics from (x, s) and (y, t), respectively, and take s < ¢ without loss of generality. Let
a=(g1(t)Ay)—1land b= (g1(t) Vy) + 1. By Theorem 6.3(iv), for all u > ¢,

(7.6) g(a 0 Ry < g1u) A gau) < g1(u) v gau) < g(b ) " ().

By Theorem 5.1(v), there exists «, sufficiently close to &, (from the left for O = — and

from the right for D = +) such that Weq (b, t;a,t) = Wy (b, t;a,t). By Lemma 7.6, gfft’)R

coalesces with g(b t) . Then for u large enough, all inequalities in (7.6) are equalities, and g
and g coalesce.

If the first point of intersection is not (y, t), then g1(¢) # y, and the coalescence point of
g1 and g» is the first point of intersection by Theorem 6.3(iv).

Item (ii) (Geodesics coalesce when they meet): Let (x,s) € NUgD, and let g; and g7 be
two distinct £[0 Busemann geodesics from (x, s). The set GNEQ := {r > s : g1(¢) # g2(¢)} is,
therefore, nonempty and infinite by continuity of g; and g». Assume, by way of contradiction,
that GNEQ is not an open interval. By continuity of geodesics, GNEQ cannot be a closed or
half-closed interval, so GNEQ is not path connected. Thus, there exists #; < f, < #3 so that

g1(t1) # g2(11), g1(12) = g2(t2) and  g1(13) # g2(13).

The geodesics g1l[z,,00) and g2][1,00), Started from (g1 (#1), #1) and (g2(t1), 11), respectively,
are both Busemann geodesics by their construction in Theorem 5.9. Since the geodesics
81l.00) and g2l[#,00) start at different spatial locations (namely, gi(¢1) and g>(#1)) along
the same time level #1, they cannot intersect at either of their starting points. By Item (i)
the two geodesics g1[z,00) and g2|[s,,00) Must coalesce, and the first point of intersection is
the coalescence point. Since g1(f2) = g2(f2), this implies that g1 (t) = g»(¢) for all t > 15, a
contradiction to the existence of 73.
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Item (iii) (Uniformity of coalescence): Let £ € R, O € {—, +}, and let the compact set K
be given. Let S be the smallest integer greater than max{s : (x, s) € K}. Set

A —mf{g(x 9 Lisy:(x,s) e K} and B:= sup{g(x 9 RSy :(x,s5) e K}.

By Lemma 5.13, —0co < A < B < 00. Then by Theorem 6.3(iv), whenever g is a £[0 geodesic
starting from (x,s) € K,

g(A S)(t) <g) =< g(B 5 (t) forallt > S.

To complete the proof, let T be the time at which g( A.5) L and g( B :9) coalesce, which is guar-
anteed to be finite by Item (i). [

For two initial points on a horizontal level, as & varies, a constant Busemann process
corresponds to a constant coalescence point of the geodesics. The nonuniqueness of geodesics
requires us to be careful about the choice of left and right geodesic.

DEFINITION 7.7. For s e R and x < y, let ng(y, s; x, s) be the coalescence point of

&0, L
8(y,9) and g(x S)

THEOREM 7.8. On a single event of probability one, for all reals o« < 8, s and x <y,
the following are equivalent:

(D) War(y,s;x,8)=Wg_(y,s;x,5).

(i) 2%t (y,s;x,8) =2 (y, s x, ).

(iii) There exist t > s and z € R such that there are paths g : [s,t] — R (connecting
(x,s) and (z,t)) and g3 : [s,t] — R (connecting (y, s) to (z,t)) such that, for all £ € (a, B),
Oe{—,4+}andu €[s,t),

. g1(u) = g¢ ¥ ) = gl F ) = gf )

O.L s —,L
<) =g w =gtk w =gl w.

PROOF. (i)=(ii) follows from Lemma 7.6.
(i)=(): Assume (z,1) := z°"(y,s;x,5) = zﬁ_(y, s;x,s). By additivity (Theo-
rem 5.1(i1)) and Theorem 5.9(iii),

Wor (v, 85x,8) = Wor(y,s;2,1) — Wop(x,s52,1)
=L(y,s;2,t) — L(x,s;2,1)
=Wg_(y,s;2,1) — Wg_(x,s,2,1) =Wg_(y,s5,x,5).

(ii)=>(iii) Let (z t) be as in the proof of (ii))=(i). By Theorem 5.9(iv), the restriction
of g(x Y) and g{i 5 to the domain [s, ¢] are both rightmost geodesics between (x s) and

(z, 1), and, therefore, they agree on this restricted domain. Similarly, (+3) and &y, b’)L agree

on the domain [s, ¢]. By the monotonicity of Theorem 6.3(i) and since (z, t) is the common
coalescence point, (7.7) holds for u € [s, t), as desired.
(iii))=(i1) is immediate. [

THEOREM 7.9. On a single event of probability one, for all reals s,& € R and x < y,
the following are equivalent:

1) We_(y,s:x,8) =Weyi(y,s;x,5).
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(i1) zé_(y,s;x s)—z$+(y $;X,5).

~R —R
(ii1) gfx’s) ()= g(g;s) (t) for some t > s, that is, the paths g(x 9 and g(y 3) intersect.

REMARK 7.10. InItem (iii), if £ € E, then despite intersecting, the geodesics gfx_’;)R and

g(s;) cannot coalesce. This follows from Theorem 7.3, which gives a full classification of

the directions in which all semi-infinite geodesics coalesce.

PROOF OF THEOREM 7.9. ()=(i): If We_(y,s;x,5) = Wei(y,s;x,s), then Theo-
rem 5.1(v) implies that, for some o <& < B, Wy (y,s;x,5) = Wg_(y,s; x,s). Then, we
apply (i)=>(iii) of Theorem 7.8 to conclude that for some # > s and z € R,

g(x ) (M) _g(x $) (”) < g(y $) (M) _g(y 5 (u) foru € [s, 1),

whereas for u = ¢, all terms above equal some common value z. Therefore, (z,7) =
£ (y,s:x,8) =25 (v, 51 x, 5).
(ii)=>(i): Similarly, as in the proof of (ii)=>(i) of Theorem 7.8, if (z, ) =z~ (y, 5; x, 5) =
z5+(y, s;x,s),then We_(y,s;x,5) =L(y,s;2,t) — L(x,5;2,1) = We(y,5;x, 5).
(i)=>(ii): Assume (z,1) = 25~ (y,51x,5) = 25 (y,51x,5). Then gf, (1) = z =

+,L
g(éy s) ®).

(ii1)=-(i1): Assume that g(x 5) (t) = g(y 9 (t) for some t > s. Let  be the minimal such
time, and let (z, t) be the point where the geodesics first intersect. By Theorem 6.3, Items (i)
and (iv), for u > s,

—.R +,L
(7.3) gfx,s) (u) < g(x S) (M) A g(y S) (”) = g(x S) (”) \% g(y s) (“) = g(sy 5) ().
In particular, when u# = ¢, all inequalities in (7.8) are equalities. Further, since gfx_s’)R , g(é;rsf

are rightmost geodesics between (x, s) and (z,t) (Theorem 5.9(iv)), g(sx_;)R (n) = gfjf(u)

for u € [s, t]. Similarly, g(sy_S)L (u) = g(y 9) (u) for u € [s, t]. Since t was chosen minimally

for g¢o s (1) = g5, sy (1), we have (z.1) =25~ (v, s1x,8) =2+ (v, s1x,5). [

PROOF OF THEOREM 7.3 (CLASSIFICATION OF DIRECTIONS). (1)=(ii): If £ ¢ E, then
We_ = We 4, so (ii) follows by the construction of the Busemann geodesics from the Buse-
mann functions.

(il)=(iii): Since a geodesic in direction & from (x, s) must pass through each horizontal
level ¢ > s, it is sufficient to show that, for s € R and x < y, whenever g| is a semi-infinite
geodesic from (x, s) in direction £ and g; is a semi-infinite geodesic from (y, s) in direction
&, g1 and g coalesce. Assuming (ii) and using Theorem 6.5(i), for all ¢ > s,

gf;lf(t) = g(x 5) Loy<ai) A ga0) <gi(t) v g2(t) < g(y 5) K.

By Theorem 7.1(i), g(‘gxf;)L and g(y ) coalesce, so all inequalities above are equalities for
large ¢, and g1 and g» coalesce.

(i11)=-(1): We prove the contrapositive. If § € &, then by Theorem 5.1(iii1)—(iv), We_(y, s;
x,8) < Weyp(y,s; x,s) for some x < y and s € R. By (1)< (iii) of Theorem 7.9, gfx_,s’f(t) <

g(Ser Y)L (¢) for all t > s. In particular, g(x 9 R and gf;r;)L do not coalesce.

SDL E0.R

(i1))=>(iv): By definition of NUy, whenever p ¢ NUy, g =gp forE eRand O €
{—, +}. Hence, assuming p ¢ NUg and gg R — gff , we also have gf,_’L = gf,Jr , so there

is a unique geodesic from p in direction & by Theorem 6.5(1).



STATIONARY HORIZON AND DIRECTED LANDSCAPE 41

(iv)=>(v): By Theorem 6.1(i) on the event £, NUj contains no points of Q?, and, there-
fore, NUj is not all of R2.
(v)=(vi) and (v)=(vii) are direct consequences of Theorem 6.5(i): If there is a unique

seémil—einﬁnite geodesic in direction & from a point p € R?, then gg_’L = g§,+’L = gi_’R =
+,
8p -

(vi)=(ii): Let p be a point from which gf,_’L = gf,+’L, and call this common geodesic g.

Let ¢ be an arbitrary point in R?. By Theorem 7.1(i), gg_’L, g§+’L, gg_’R and g§+’R each

coalesce with g, so gf_’L and g§+’L coalesce. Since both geodesics are the leftmost geodesics
between their points by Theorem 5.9(iv), they must be the same. Similarly, gg_’R = gg R

(vii)=(ii) follows by the same proof.

Item (viii): Let £ e R\ E, and let g be a semi-infinite geodesic in direction &, starting from
a point (x,s) € R2. By Lemma 5.14 and Theorem 5.9(ii), it is sufficient to show that, for
sufficiently large ¢,

(7.9) L(x,s58(1),1) = We(x,s;8(),1)

(we dropped the + distinction since We_— = We ). By Item (iii), g coalesces with gi;ﬁ). Then
for sufficiently large ¢, g(t) = gaﬁ)(t) and by Theorem 5.9(iii), (7.9) holds. [J

7.2. Remaining proofs from Section 5 and Proof of Theorem 2.5. We complete some
unfinished business.

PROOF OF ITEMS (vi)—(viii) OF THEOREM 5.1 AND MIXING IN THEOREM 5.3(ii). We
continue to work on the event €2,.

Item (vi) of Theorem 5.1 (Busemann limits I): By Theorem 7.3(viii), if £ ¢ &, all £-directed
semi-infinite geodesics are Busemann geodesics, and they all coalesce. By Theorem 7.1(iii),
there exists a level T such that all geodesics from points starting in the compact set K have
coalesced by time T'. Let (Z, T') denote the location of the point of the common geodesics at
time T. Let r; = (2, us)1eR., be any net with u; — oo and z;/u; — &. By Theorem 6.5(ii),
for all sufficiently large ¢ and p € K, all geodesics from p to r, pass through (Z, T). Then
for p,qg € K,

L(p;r) —L(q;r) =L(p; Z,T)+ L(Z,T; 1) — (L(q; Z, T) + L(Z, T; 11)).
By Theorems 5.9(ii)(b) and 5.1(ii), the right-hand side is equal to
We(p: Z,T) — We(q; Z,T) = We(p; q).

Item (vii) of Theorem 5.1 (Busemann limits I1): By Theorem 5.5(iii) on the event €27,
E contains no rational directions. Then for arbitrary £ e R, s e R, x <y e R, o, 8 € Q
with ¢ < & < B and a net (z,,u,) with u, — oo and z,/u, — &, for sufficiently large r,
au, <z < Bu,. Theorem 5.1(vi) gives the existence of the limits in the first and last lines
below, while the monotonicity of Lemma B.4(i) justifies the first and last inequalities,

Wo(y, s5x,8) = lim L(y, s; aur, uy) = L(x, 55 iy, ur)
<liminf £(y, s; 2, ur) — L(x, 8527, Ur)

<limsup L(y, s; zr, uy) — L(x, 8; 2r, Uy)
r—00

< lim L(y,s; Bur,ur) = LOx, 55 fur, ur) = Wg(y, 5; x, ).
Sending Q> « 7 & and Q 2 B\ & and using Item (v) completes the proof.
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Item (viii) of Theorem 5.1 (Global attractiveness): We follow a similar proof to the at-
tractiveness in Theorem 2.1. Let § ¢ E, and assume § € UC is a function satisfying the drift
condition (2.4). Recall that we define

(7.10) hs.i(x) =sup{L(x,s;2,1) +h(2)}.
zeR

For a > 0 and s < ¢, Theorems 5.1(v) and 5.5(iii) allows us to choose &€ = ¢(§) > 0 small
enough so that £ +2¢ € Q (and thus & £ 2¢ ¢ E), and so for all x € [—a, a],

(7.11) Wetre(x,5;0,5) = We(x,s;0,5).

By Theorem 7.1(iii), there exists a random T = T (a, £ £ ¢) such that all £ — 2¢ Busemann
geodesics have coalesced by time T and all £ + 2¢ Busemann geodesics have coalesced
by time T. For r > T, let g§*2¢(¢) be locations of these two common geodesics at time 7.
By Theorem 5.9(ii)(d), g§*2¢(1)/t — & + 2¢. By the reflected version of equation (B.4) in
Lemma B.5, there exists ty(a, £(£), s) so that for ¢ > #y, whenever x € [—a,a] and 7 is a
maximizer in (7.10), g5 =% (1) < z < g5T2¢(¢). Then by Lemma B.4(iii), for such large 7,

We_26(x,5:0,5) < hg(x) — hs 1 (0) < Weyoe(x,5:0,5),

while for —a < x <0, the equalities reverse. Combined with (7.11), this completes the proof.

Item (ii) of Theorem 5.3 (Mixing): This proof follows a similar idea as that in Lemma 7.5
of [6], and the key is that, within a compact set, the Busemann functions are equal to differ-
ences of the directed landscape for large enough ¢. Then we use Lemma B.3, which states that,
as a projection of {£, W}, the directed landscape £ is mixing under the transformation 77., p.
Set r, = (az, bz). By a standard 7 — A argument, it suffices to show that, for &;,...& € R
(ignoring the sign O since &; ¢ = a.s.), all compact sets K := K| X Ké‘ C R* x (RH* and all
Borel sets A, B C(K,R),

Zl_i)nolo]P’({ﬁ, We Mk € A {Tea b L, Troa s We, Yk € B)

= P({ﬁ’ Wél;k}lK € A)P({E’ WE1:/<}|K € B)’
where we use the shorthand notation
(L, We, Mk = {L@), W, (p;q): 1 <i <k, (v, p,q) € K},

and 7., acts on £ and W as projections of {£, W}. By Theorem 5.1(vi), we may choose
t > 0O sufficiently large so that

(7.12)  P(Wg (p;q) = L(p; &, 1)) — L(q; (¢, 1)) V(p,q) € Ko, 1 <i <k) > 1 —e.

By stationarity of the process under space-time shifts, we also have that, for such large ¢ and
all ze R,

7.13) P(Ta,6We; (5 @) = Tria b [ L(p; (16, 1)) — L(q; (6, 1))]
. Y(p.g) €Ky, 1 <i<k)>1-—¢.

Let C; ; be the intersection of the events in (7.12) over 1 <i < k with the event (7.13). Then
for large enough ¢, P(C; ;) > 1 — 2¢ and

IP({L, We, Yk € A{Tra bl Tooa o We Mk € B)
—P({L, We, Mk € A)P({L, We,, } |k € B)|
< [P({L, We,, Mk € A ATz 0 b L, Tria s We Yk € B, Coy)
—P({L, We,, |k € A, C,)P({L, We, Mk € B,C,)| + Ce
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= [P({L), L(p; tE1x, 1)) — L(q: €1k, 1))}k € A,
{Teap L), Tpoa [ L(p; (614, 1)) — L(q; (tE1:4, 1)) ]} Ik € B, C7 1)
—P({L), L(p; (t§1k, 1)) — L(q; (tE14, 1))}k € A, C2 )
x P({L(), L(p; (t&1x, 1)) — L(q; t€1x, 1))}k € B, C21)| + Ce
< |[P({LW), L(p; t&1:x, 1)) — L(q; (t614, 1))}k € A,
{Tap L), Tra p [ L(p: (tE11, 1) — L(q: (1614, 1))]} & € B)
—P({L), L(p; (tc1k, 1)) — L(g; (t&1x, D))}k € A)
x P({L(), L(p; (t61:x, 1)) — L(g; (t51x, 1))}k € B)| + C'e,

where the constants C, C’ came as the cost of adding and removing the high-probability
event C, ;. The proof is complete by sending z — oo and using the mixing of £ under the
shift 7,., », (Lemma B.3). [

PROOF OF THEOREM 2.5. Item (i) (All geodesics have a direction): First, we show that,
on €2y, if g is a semi-infinite geodesic starting from (x, s), then
(7.14) —o0 < liminfr ~'g(r) <limsupz~'g(r) < .
=00 t—00
We show the rightmost inequality, the leftmost being analogous. Assume, by way of contra-
diction, that limsup,_, ., g(t)/t = 0o. By the directedness of Theorem 5.9(iii), V& € R there
exists an infinite sequence #; — oo such that g(#;) > gfof;)L (t;) foralli. Since gf;:;)L is the left-

§+,L(t)

most geodesic between any two of its points (Theorem 5.9(iv)), we must have g(¢) > g (r.5)

V& e R and t € R. By Theorem 6.3(iii), g(¢) = oo Vt > s, a contradiction.
Having established (7.14), assume by way of contradiction that
liminfr~'g(r) <limsups~'g ().
—00

t—00

Choose some & strictly between the two values above. By the directedness of Theo-

rem 5.9(iii), there exists a sequence #; — oo such that gf;r;f(t,-) < g(t;) for i even and

gfor;)R (t;) > g(t;) for i odd. This cannot occur since g(sxf;)R is the rightmost geodesic between

any two of its points.

By Theorem 5.9(iii), for each £ € R and (x, s) € R2, gf;’r;)R , for example, is a semi-infinite
geodesic from (x, s) in direction &, justifying the claim that there is at least one semi-infinite
geodesic from each point and in every direction.

Item (ii) (Coalescence): The first statement follows from the equivalences (i)<>(iii) < (iv)
of Theorem 7.3. By Theorem 6.1(i), P(p € NUg) =0 Vp € RZ. This and Fubini’s theorem
imply that the set NUg almost surely has planar Lebesgue measure zero.

Item (iii) (Nonuniqueness in exceptional directions): This follows from Remark 7.4. [

8. Random measures and their supports. This section studies further the points with
disjoint geodesics in the same direction, discussed in Theorem 2.10 and Remark 2.11. Recall
the functions fj ¢ (x) = Wey(x,5;0,5) — We_(x,5;0, 5), defined in (5.5), and the sets S ¢
from (2.6),

Syt := {x € R: 3 disjoint semi-infinite geodesics from (x, s) in direction &},

3.1 S = U Gs,é x {s}.

seR,E€B
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Fic. 7. The Busemann difference profile fe¢(x). The function vanishes in a nondegenerate random
neighborhood of x = 0 and evolves as two independent Brownian local times to the left and right
(Theorem 8.1).

Each & € R is a direction of discontinuity with probability zero. Conditioning on & € & is
done through the Palm kernel from the theory of random measures (see [46] for background).
The next theorem is proved in Section 8.1, together with a study of the random point process
{(tz, &) }eez. The Palm conditioning is made precise in Theorems 8.8 and 8.13.

THEOREM 8.1. For § € R, consider the random function f: := fo ¢ from (5.5). Let
e =inf{x > 0: fe(x) >0} and T =inf{x >0:—fi(—x) >0}

denote the points to the right and left of the origin beyond which We(-,0;0,0) and
We_(-,0;0,0) separate, if ever. Then, conditionally on & € B in the appropriate Palm sense,
the restarted functions

x> e+ 1) = fe(te) and x> —fi(—x — %) + fi(-T), xR,

are equal in distribution to two independent running maximums of Brownian motion with
diffusivity 2 and zero drift. In particular, they are equal in distribution to two independent
appropriately normalized versions of Brownian local time; see Figure 7.

As described in the next theorem, Gy ¢ is the support of a random measure, up to the
removal of an at most countable set.

THEOREM 8.2.  On a single event of full probability, the function f; ¢ is nondecreasing
simultaneously for all s € R and & € E. Denote the set of local variation of fs ¢ by
(8.2) Dse={xeR: fie(x —¢) < fse(x +¢) Ve > 0}.
Then on a single event of full probability, simultaneously for each s e R and & € E,
(8.3) Dy =6 USE, €6y,
where for S € {L, R},

(8.4) 65,& ={xeR: g(sx_’s’f and g(gxfs’)s are disjoint}.

(Ss,6 \ Dy.¢) x {s} is contained in the at most countable set NUi_ ﬁNU?Jr NH;.
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REMARK 8.3. Presently, we do not know if Dy ¢ equals &, ¢. Since NUf_ ﬁNU?Jr -
NU; and NU; NH; is at most countable (Theorem 6.1(ii)), S5 ¢ and D, ¢ have the same
Hausdorff dimension for all s € R and & € E. In Section 8.3 we prove that this Hausdorff
dimension is % on an s-dependent probability one event (as Theorem 2.10(ii1)).

The remainder of this section develops the theory needed to prove Theorems 8.1 and 8.2
and ultimately Theorem 2.10. Sections 8.1 and 8.2 develop the Palm kernel theory necessary
for Theorem 8.1. The proofs of Theorems 8.1, 8.2, 2.10 are in Section 8.3 along with the
unfinished business of Theorem 5.5(i1).

8.1. Random measures and Palm kernels. To study Palm conditioning, we represent the
Busemann process {Wz4.(+,0,0,0)}scr by the stationary horizon {Gg(+)}scr, as permitted
by Theorem 5.3(iii). Define the process of jumps

J:={Je}eer = (Gt — Ge_}eer,

where G¢_ = lim, ~¢ G, . Either Jg¢ vanishes identically or Jg is a nondecreasing continu-
ous function that vanishes in a nondegenerate (random) neighborhood of the origin. By a
combination of Theorem D.3(ii)—(iii),

d
(8.5) Jern(V+0) = Je1y(0) :x eR} g = {Js () :x €R}, (g Yy, neR.

We study the functions Jg(x) first for x > 0. Approximate J by a process J N defined on
dyadic rational £. For N € Z+ ¢, let

(8.6) Y =Ge — Gy, forg =" =i2"" andi e Z.
Fori € Z, let
(8.7) ) =inf{x > 0: JY (x) > 0}.

Since the G¢, have different drifts for different values of i, ‘L'g < oo almost surely. For f €
C(R) and 7 € R, let [ f]* € C(R>¢) denote the restarted function

(8.8) [fTTx)= f(r +x)— f(r) forx €[0,00).

Denote by D“ the distribution on C(Rx() of the running maximum of a Brownian motion
with drift @ € R and diffusivity 2. That is, if X denotes standard Brownian motion, then

DY(A) :IP’{[ sup 2X(u)+au]sewm) c A}

O0<u<s
for Borel sets A C C(R>¢). When the drift vanishes (o« = 0), we abbreviate D = DO,

LEMMA 8.4. Let B* = {B%(x) : x > 0} be a Brownian motion with drift o and diffusiv-
ity 2. Let W be an almost surely negative random variable independent of B*. Let

6 =inf{x > 0: W + B%(x) > 0}.
Then for all x > 0,

+
8.9 P W + B* €. |0=x)=D%).
(®2) <[0§ssgg+u + (s)]ue[0,00) ‘ x) “)
In particular,
+
8.10 P S W+BOI c.) =D,
( ) (I:Ofsglg—ku (S)]”E[Osoo) ) ( )
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PROOF. Let A € B(C(Rx>p)) and 6 > 0. Below, notice that B*(#) = —W. Then, noting
that 6 is a stopping time with respect to the filtration F, = o (W, {B%(x)}x¢[0,y]), We use the
strong Markov property to restart at time 6,

P([ngggﬂ W+ B“(s)];[o’oo) cAl0= x)
(g5 4100
(8.11) ==
= P([ngu B0 +5) — B“(@)]ue[o’oo) cAlo= x)
- P([Oggu B“(s)]ue[o’oo) c A) — DY(A).

The claim of (8.9) has now been verified. Equation (8.10) follows. [

COROLLARY 8.5. Letay =2"N* Then foralli € Z and x > 0,
(8.12) PIN]S e |1 =x) =D ().

PROOF. From the definition of the stationary horizon (Definition D.1), one can deduce
that, for each i € Z, the process ng,v has the same distribution as the process
8.13) TNyy=[ sup W B )],

0<x<y

where B*V is a Brownian motion with drift oy =2~V and diffusivity 2 and W is an almost
surely negative random variable independent of B*V. Define

(8.14) oY =inf{x > 0: TV (x) > 0} =inf{x > 0: W + B*¥ (x) > 0}.

Hence, now (Jé_.’iv, rg) 4 (fN, QN), and the result follows from Lemma 8.4. [

For & e R, let
(8.15) 7z =inf{x > 0: J: (x) > 0}.
The connection with the discrete counterpart in (8.7) is
(8.16) ) =min{r; : £ € (51, &1}
On the space R>¢ x R, define the random point measure and its mean measure
(8.17) = > 8@y and Ar(-):=E[l'()].
(t¢,8)175 <00

The point process I' records the jump directions & and the points 7z where G¢ and G
separate on Rx(. Theorem D.3(vi) ensures that I' and Ar are locally finite. It will cause no
confusion to use the same symbol I to denote the random set

I={(1:,8): £ €R, 1z <o0}.

Then also Ar(-) = E(|I' N +|), where | - | denotes cardinality. The counterparts for the ap-
proximating process are

(8.18) r'™ ={()),&):ieZ 1) <oo} and AN =E(r™n.|).
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The dyadic partition in (8.6) imposes a certain monotonicity as N increases: T¢ values
can be added but not removed. The &-coordinates that are not dyadic rationals move as the
partition refines. So we have

(8.19) {r : (rf. &) eT™) {rg+l : (rgi\”r],éi) e TWVHDY c tgp o (e, 8) e T).

LEMMA 8.6. The measure Ar and Lebesgue measure m are mutually absolutely contin-
uous on R~ g x R. The Radon—Nikodym derivative is given by

dir 2
(8.20) —— (@8 =/— for(r.§)eRo xR
dm TT

PROOF. From Theorem D.3(v), for £ e R, t > 0and § > 0,

E+8 pT+S
)»r((t,t—ké]x[§—8,§+8])=4\/§8(\/t+ —ﬁ):/ / ‘/idxda. 0
g £-8 Jr TX

By (8.20) Ar does not have a finite marginal on the £-component, as expected, since the
jump directions are dense. Hence, below we do Palm conditioning on the pair (7¢,§) € R. ¢ x
E¢ and not on the jump directions & € E alone.

LEMMA 8.7. Let A € C(R>¢) be a Borel set. Then for any open rectangle R = (a, b) x
(Cv d) g Rzo X R’

(8.21) E[ > 1A([J$]f)1R(r,§)] = Ar(R)D(A).

(r,§)el’

PROOF. It suffices to prove (8.21) for continuity sets A of the distribution D of the type
A={f € CR>0) : flio,x] € Ak} for k > 0 and Borel Ay € C[0, k]. Such sets form a 7-
system that generates the Borel o -algebra of C(Rx¢).

We prove (8.21) for JV . Below, the values & = i2~" are not random and hence can come
outside the expectation. Condition on rg_]iv , and use (8.12),

B X L)

(rg) &) eRNC W)

—B( ¥ LT an()
(8.22) sieted

N
= > E(lwn(@)EMa((F %))
giced)

S P € (a,0) D (4) = DN (ALY (R).
§ic(c,d)

To conclude the proof, we check that (8.21) arises, as we let N — oo in the first and last
member of the string of equalities above. DN (A) — D(A) by the continuity of « — D% in
the weak topology and the assumption that A is a continuity set.

As an intermediate step, we verify that Vk > 0, lu]/% —> 1 almost surely for the events

U, ={|Ir™) N R| = |I' N R| and for every (, &) € I' N R there is a unique

(8.23) v
T

(‘L'g, &) € '™ N R such that [ngiv] Siljo,k] = [Je]™ |[O,k]}-
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Almost surely, ' N R is finite, and none of its points lie on the boundary of R. For any such
realization, the condition in braces holds when: (i) all points (7¢, &) € I' N R lie in distinct
rectangles (a,b) x (§_1,&] C (a,b) x (c,d), (ii) when no point (zg,g,-) eT™MNRis
generated by a point (¢, &) € I' outside R and (iii) when N is large enough so that for the
unique i with§; <& <&;41, Ge—(x) = Gg (x) and Gg 1 (x) = Gg,, (x) forall x € [0, Tz +k].
By Theorem D.3(vi), this happens for all the finitely many (z, £) € I' N R when the mesh 2~V
is fine enough. Thus, for each k > 0, almost every realization lies eventually in Ilf,

We prove that )L%N) (R) — Ar(R). The paragraph above gave IT™ N R| — I N R| almost
surely. We also have |F(N) NR|<|I'N((a,b) x (c—1,d))| because (8.16) shows that each
point (té;’ ,&i) that is not matched to a unique point (7¢, ) € I' N R must be generated by

some point (t¢,§) € ' N ((a, b) x (¢ —1,d)). The limit )»%-N)(R) — Ar(R) comes now from
dominated convergence.
It remains to show that
N
B Y nl) B X ).

N—o0
(7 &) eRNT W) (t¢,£)eRNT

This follows by choosing k > 0 so that A depends only on the domain [0, k]. Then the differ-
ence in absolute values in the display below vanishes on /%,

Y LT - Y 1)

lim E[
(73 &)eRNT ) (te,6)eRNT

N—o0

< Nli_I)HOOZEHF N((a,b) x (c—1,d))]- 1(%’%)”] =0,
and the last equality follows by dominated convergence. [J

To capture the distribution of [J¢]%, we augment the point measure I" of (8.17) to a point
measure on the space R>p x R x C(Rxp),

(8.24) A=) S et
(rg,é‘)ef‘

The Palm kernel of [Jg]* with respect to I" is the stochastic kernel Q from R~ x R into
C(R>p) that satisfies the following identity: for every bounded Borel function ¥ on Rx>¢ X
R x C(Rx>) that is supported on B x C(Rx>¢) for some bounded Borel set B C R>o x R,

E Y W& [l%)=E W(z.6, hA(dr, d§, dh)
(te,§)eBNI’ R0 xRxC(Rx0)
(8.25) ’

=/ )»r(d‘t,dé’)/ O(t,&,dn)V (T, &, h).
]RZ()X]R C(RZQ)

The first equality above is a restatement of the definition of A and included to make the next
proof transparent. The key result of this section is this characterization of Q.

THEOREM 8.8. For Lebesgue-almost every (1, &), Q(t,&, ) =D(+), the distribution of
the running maximum of a Brownian motion with diffusivity 2.

PROOF. This comes from Lemma 8.7: take W (t, &, h) = 1g(7,&)14(h) in (8.25), and
note that the left-hand side of (8.21) is exactly the left-hand side of (8.25). Lemma 8.6 turns
Ar-almost everywhere into Lebesgue-almost everywhere. [
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Denote the set of directions & for which G¢ and G¢_ separate on R by
(8.26) Bo={§ eR:1 <00}

THEOREM 8.9. Let A € C(Rxg) be a Borel set such that D(A) = 0. Then
(8.27) P(3& € Eg:[Je]% € A)=0.

PROOF. Let Ry =(0,N) x (=N, N). Since § € Eg means that 7z < 00, we have
P(Is e Eg:[J]% € A) = Nlim P(3& € Eg : (12,&) € Ry, [Je]® € A)
— 00

< lim E ) 14([Je]") gy (2. )
N—o00
(z.§)el’

821 . B
= IJE]OOAF(RN)D(A)_O' n

We show that (8.26) captures all £ at which a jump happens on the real line.

COROLLARY 8.10. With probability one, Eg = {§ € R : Js(x) # 0 for some x € R}.
Furthermore, for each § € Eg, limy_, 400 Jg (x) = F00.

PROOF. By Theorem 8.9 and the associated fact for the running max of a Brownian
motion,

(8.28) P(vg € &g, lim Je(x)= —l—oo) —1.

By definition, Eg = {§ € R: J:(x) # 0 for some x > 0}. Now, we show that if Jg (x) # 0 for
some x < 0, then Jg (x) # 0 for some x > 0. If not, then there exist § € R and m € Z_( such
that [Je]"[[0,00) 7 0, but [Je]™ |[—,00) 1s constant. In particular, [J£]™[[0,00) is bounded. Let
‘L’é" =inf{x > 0:[J:]"(x) > 0}. Then [J¢]"|[0,00) 7 O iff ré" < 00, and we have

P(Eg # {§ e R: Je(x) # 0 for some x € R})
(8.29) < Z PEseR: t" < 00, but [Je]" |[0.00) i bounded) = 0.

meZg

The probability equals zero by (8.28) because by shift invariance (8.5), [J]" 2 J. To fin-
ish, (8.28) proves the limits for x — +o00. The limits as x — —oo then follow from (8.28)
and the reflection invariance of Corollary D.4. [

Let vy denote the Lebesgue—Stieltjes measure of a nondecreasing function f on R. Denote
the support of v by supp(vy). The Hausdorff dimension of a set A is denoted by dimg (A).

COROLLARY 8.11.  Consider the Lebesgue-Stieltjes measure v, for & € Eg on the en-
tire real line. Then we have

(8.30) IP’{VS € Bg :dimy (supp(ng)) = 1/2} =1.
PrROOF. First, note that

- . 1 - ) 1
{EIS € Eg :dimg (supp(vy,)) # 5} - U {35 € Eg :dimg (supp(vy,) N [m, 00)) # 5}

m€Z§0
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By (8.5) it is enough to take m = 0 and show that
P(3¢ € E¢ : dimy (supp(vy,) N[0, 00)) # 1/2) =0.

This last claim follows from Theorem 8.9 because the event in question has zero probabil-
ity for the running maximum of Brownian motion ([65]; see also [51], Theorem 4.24 and
Exercise 4.12). 0O

REMARK 8.12. Representation of the difference of Busemann functions as the running
maximum of random walk goes back to [9]. It was used in [19] to capture the local uni-
versality of geodesics. The representation of the difference profile as the running maximum
of Brownian motion in the point-to-point setup emerges from the Pitman transform [23,
35]. Theorem 1 and Corollary 2 in [35] are point-to-point analogues of our Theorem 8.8
and Corollary 8.11. Their proof is different from ours. Although an analogue of the Pitman
transform exists in the stationary case [18], Section 3, comparing the running maximum of a
Brownian motion to the profile requires different tools in the two settings.

8.2. Decoupling. By Corollary 8.10, whenever £ is a jump direction, the difference pro-
files for both positive and negative x are nontrivial. We extend Theorem 8.8 to show that
these two difference profiles are independent and equal in distribution. We spell out only the
modifications needed in the arguments of the previous section. For the difference profile on
the left, define for x > 0

<~ — . <~
Je(x)=—Je(=x) and 7T :=inf{x >0: J¢ >0}

For N € Z~¢ and &;, as in (8.6), the discrete approximations are

N N
T =—J¥x) and F":=inflx>0: T, (x)>0}.

<~ <« (N) (N) . .
The measures I, )‘(F’ r and )ul: are defined as in (8.17) and (8.18) but now with

((rg, &) and (fg , &i). Extend the measure A of (8.24) with a component for the left profile,
I = <~
A=) e‘s@,s,ws]ff,[‘fs]fé)‘
(%.6)el
Since 1¢ < oo if and only if %g < 00 (Corollary 8.10), it is immaterial whether we sum over
(t¢, &) or ((rg, £). The latter is more convenient for the next calculations.

The Palm kernel of ([Jg]%, [<J_g]¥) with respect to <f_‘ is the stochastic kernel Q2 from
R>o xRinto C(Rx0) x C(Rx¢) that satisfies the following identity: for every bounded Borel
function ¥ on R>p x R x C(R>() x C(Rx>0) that is supported on B x C(Rx>g) x C(Rxp)
for some bounded Borel set B C R>p x R,

< =
E| > W(T.E [T Jg]fs)}
831  (oesnT

= hie(d T, dE) QX (% .&.dh' dn’) (T &, h' 1?).
RsoxR C(R=0)xC(R=0)

THEOREM 8.13. For Lebesgue-almost every (t, &), Qz(‘L’, £, )=(D®D)(-), the prod-
uct of the distribution of the running maximum of a Brownian motion with diffusivity 2. In
particular, for any Borel set A C C(Rx0) x C(Rxq) such that (D ® D)(A) =0,

3

P{3t € Bg : ([Je]%. [T £1%) € A} =0.
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PROOF. By definition of the stationary horizon (Definition D.1), as functions in C (R),

(8.32) WL sup {BN@) - sup {BW)),

—00<X=<y —o0o<x<0

where BYV is a two-sided Brownian motion with drift oy and diffusivity 2, with B*¥ (0) =0
By adjusting our probability space if needed, we will assume that such a process B*N exists
on our space and Jg, is given as (8.32). Define two independent o -algebras

F_=0(B*"(x):x<0) and Fy=0(B*"(x):x>0).

When y > 0, we may write

+
(8.33) AOE [W + sup BV (x)] ,
' 0<x<y
where W = —sup_,,_,<o{B*¥(x)} € F_, and supy, -, B*¥(x) € F. Then, conditional

on F_, W is constant while the law of B*V (x) for x > 0 is unchanged. Then by (8.33) and
equation (8.10) of Lemma 8.4 in the special case where W is constant (using the exact same
reasoning as in the proof of Corollary 8.5),

(8.34) P([ ]’g €| F_)=DN().

N
For a fixed i, 7&, and JS have the same distribution as functions on R. This comes by
first applying Corollary D.4 and then (8.5), shifting the directions by & _1 + &;,

<«~N N d
J & (x) = —J&. (_X) = —G,gi(—x) + Ggi_l(—x) = _G—Si (x) + G—Si_1 (x)
S —Ge_, (1) + Gg (x) = J (1),

N
By (8.32), (7&, , ?g) € JF_. We mimic the calculation in (8.22), for two Borel sets A1, Ay C
C(R>p) and an open rectangle R = (a, b) x (c¢,d) CR>p x R,

B X @7 )

(T Erernt ™
<«N_<N
= Y Eda (7] ) han(TL)E1A, ([JX5) 1 7))
ge(e,d)
8.34 <N_ ¢V o
C2V S EE[4 (T 6] ) lan (o) | T)D™ (A
(8.35) £ e(c.d)
<N <.[—§’ <N ay
= Y Eun(Te)Eda ([ 1] %) TL])D™ (A
ge(cd)

8.12) N
L2 S P(TL € (a, b)) DY (A)D™ (42)
§ic(e,d)

= DN (AND*N (A2 (R).

As in the proof of Lemma 8.7, we derive from the above that

(8.36) E( > 14, ([Ue]®)1y, ([75]%_5)> =D(A1)D(A2)r=(R)
(Fe.)eRNT
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through the convergence of line (8.35) to the left-hand side of (8.36). Instead of the events
UL, in (8.23), consider

~ (N) (N)
i ={|T NR|=IT NR.,and¥(¥,& e T NR,Junique (¥, &) e T NR
N «—N_<N <— <«
such that [J2]% I = [Je]% lox and [ T ] 4 lo.er =T ] " ¢lio -
For each k > 0, lﬁﬁ/ — 1 almost surely, as it did for (8.23). Indeed, there are finitely many
pairs (7 ,€) € Tn R, and each has a finite forward splitting time t. All these can be con-

fined in a common compact rectangle. From here the proof continues as for Lemma 8.7 and
Theorem 8.9. [

8.3. Remaining proofs. It remains to prove Theorems 5.5(ii), 8.1 and 2.10. Recall the
definition of the function from (5.5): fy ¢ (x) = Wey(x,5;0,5) — We_(x,s;0,5).

Let €23 be the subset of 2> on which the following holds: for each T € Z,

8.37
( ) whenever & € R is such that f7 ¢ # 0, then lil‘:Itl Jr,e(x) ==+o0.
X—> =0

By Theorem 5.3(iii) and Corollary 8.10, P(23) = 1.

PROOF OF THEOREM 5.5(ii). We work on the full-probability event €23. The statement
(5.6)tobeprovedis § € E <= Vs € R:limy 1+ f5,6(x) =00 If forany s, fs ¢ — +o0
as x — Fo0, then We_(x,s;0,5) # Wey(x,s;0,s) for x| sufficiently large, and § € E. It
remains to prove the converse statement. From (5.36),

B = U {6 €eR:Wee(x,T;0,T) # Wep(x, T;0,T) for some x € R}.
TeZ
To finish the proof of (5.6), by definition of €23, it suffices to show these two statements:

(i) If f5¢ #0 forsome 5,& € R, then fr ¢ #Oforall T > s.
(ii)) ForT € Z,& e R, if fr ¢ #0,thenforall s < T, limy_, 40 f5,£(x) = F00.

Part (i) follows from the equality below. By (5.35), fors < T,

Wen(x,s;0,5) =sup{L(x,s;2,T) + We(z, T; 0, T)}
zeR

—sup{L(0,s;z,T) + Wen(z, T;0,T)}.
zeR

(8.38)

To prove (ii), we show the limits as x — 400, and the limits as x — —oo follow analo-
gously. Let T € Z, § € R be such that fr ¢ # 0, and let R > 0. By definition of the event Q3,
we may choose Z > 0 sufficiently large so that inf,~ z{ f7 £ (z)} > R. Then by equation (6.7)
of Theorem 6.3(v), for all sufficiently large x and O € {—, +},

sup{L(x,s;2,T) + We(z, T;0,T)} = sup{L(x,s;2, T) + Wen(z, T3 0, T) }.

zeR z>7Z
Let
A:=sup{L(0,s5;2,T) + Wey(z, T;0,T)} —sup{L(0,s;2,T) + We_(z, T; 0, T)},
zeR zeR

and note that this does not depend on x. Then by (8.38),
— fo.6(x) =sup{L(x,s;2,T) + We_(z, T;0, T)}

>Z

—sup{L(x,s;2,T)+ Wei (2, T;0,T)} + A

>Z
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<sup{We—(z,T;0,T) — Wey (2, T;0, )} + A

>Z

—inf{fre(x)}+A<—-R+A
>Z

sothat fy ¢(x) > R— A. Since A is constant in x and R is arbitrary, the desired result follows.
Note that (5.6) immediately proves (5.7) in the case x = 0. The general case follows from
additivity of the Busemann functions (Theorem 5.1(ii)) and (5.6). [l

PROOF OF THEOREM 8.1 (LOCAL TIME DESCRIPTION OF THE DIFFERENCE PROFILE).

This comes by Theorem 8.13 smce {We(+,0;0,0)}eer = G (Theorem 5.3(iii)), with prob-
ability one & € B iff 7¢ < 00 iff T T¢ < 00 (Theorem 5.5(ii), Corollary 8.10) and the running
maximum process and the local time process of a Brownian motion are equal in distribution
(Lévy [47]). O

For the convenience of the reader, we repeat definitions (2.6)—(2.7) and (8.2), (8.4). As
before, S € {L, R},

S;.¢ = {x € R : there exist disjoint semi-infinite geodesics from (x, s) in direction &},

S = U Gse x {s}, &3 s={xeR: g(x S’) and g()C S) are disjoint},

seR,EcB

S35 = U 6 pe X {s} and Die={xeR: fie(x —&) < fse(x +¢&) Ve > 0}.
EcE,seR

REMARK 8.14. In contrast with & in (8.1), the sets &5 are concerned only with leftmost
(S = L) and rightmost (S = R) Busemann geodesics. In BLPP the analogues of St and SR
are both equal to the set of initial points from which some geodesic travels initially vertically
(Theorems 2.10 and 4.30 in [64]). Furthermore, in BLPP the analogue of this set contains
NUjp. We do not presently know whether either is true in DL.

PROOF OF THEOREM 8.2. The full-probability event is €2, in (5. 25) The monotonicity
of the function f ¢ follows from (5.34). We now prove that Dy ¢ = 6 g U GR Assume
that y ¢ Dy ¢. Then there exist a < y < b such that f; ¢ is constant on [a b]. Hence for
a<x<y,

Wei(x,5;0,8) — We_(x,5;0,5) = Wer (y,5;0,5) — We_(y,5;0,5),
and by additivity (Theorem 5. l(ii)) Wg (v,8;x,8) = W§+(y,s X, s) Choose t > s suffi-
ciently small so that g(x 5) (t) < g(y 5) (t) By Lemma7.5, g(y 9 (u) = g(y s) (u) foru € [s, t].
By a symmetric argument, instead choosing a point x > y, gfy f and g(y ) agree near the
starting point (y, s). Hence, y ¢ 65 U 65 .
Next, assume that y € Dy ¢. Then forallx <y <z,
Wei(x,5;0,8) — We_(x,5;0,5) < Wey(z,5:0,5) — We_(z,5:0,5),
and hence either: (i) We_(y,s;x,5) < Wei(y,s;x,5) forall x <y or (ii) We_(z,s;y,5) <
Wei(z,8,,5) for all z > y.
We show that g(y 9 L and g(y Y) are disjoint in the first case. A symmetric proof shows that
gfy S)R and g(y s) are disjoint in the second case. So assume We_(y, s;x,5) < Wey (v, 55 x,5)

forall x < y. Sending x v, g(gx_’k;)R converges to gfy_’;)L by Theorem 6.3(v). Assume, by way
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of contradiction, that g(y 9 (u) = g(s;r S’)L (u) for some u > s. This implies then g(y 9 (t) =
g(y 9 (t) for all ¢ € [s, u] since both paths are the leftmost geodes1c between any two of their
&~

points (Theorem 5.9(iv)). For ¢ > s, the convergence 8x.5) (t) — g(y 5 (t) is monotone by
Theorem 6.3(iv). Since geodesics are continuous paths, Dini’s theorem implies that, as x 7 y,

g(i_;)R (t) converges to g(sy_;)L (t)= g(s;r S)L (t) uniformly in t € [s, u]. Lemma B.8 implies that,

for sufficiently close x < y, gfx s’f and g(y 3) are not disjoint. This contradicts (i)<>(iii) of
Theorem 7.9 since we assumed We_(y, s; x,s) < We i (y,s;x,s) forall x < y.
Lastly, we show that (G ¢ \ Dsg) x {s} C NUE_ ﬂNUEJr NH. Let x € 6s§ \ Ds.¢. By

Theorem 6.5(i), g(x s’) is the leftmost & -directed geodesic from (x, s), and g(x s) is the right-

most. Since x € G, ¢, these two geodesms must be disjoint. Since x ¢ Dy ¢, g(i 9 and gf;;)L

are not disjoint, and g(x s’f and g(x ) are not disjoint. Since the leftmost/rightmost semi-
infinite geodesics are leftmost/rightmost geodesics between their points (Theorem 5.9(iv)),
there exists ¢ > 0 such that, for r € (s, s + ¢),

—,L +,L — R +,R
g =g <g N =g R

s0 recalling the definition (6.2), (x,s) € NU;” NNU " nH,. O

LEMMA 8.15. Given w € 2 and (x,s;y,u) € R4, let g :[s,u] — R be the leftmost
(resp., rightmost) geodesic between (x,s) and (y,u). Then (g(t),t) € St (resp., GR)for
some t € [s, u). Furthermore, among the directions & for which g(gxfg)l“ and gf:;)L separate at

some t € [s, u), there is a unique direction E such that

g(x ;) (”) =y< g(x Y) (M)
The same holds with L replaced by R and the strict and weak inequalities swapped.

PROOF. We prove the statement for leftmost geodesics. The proof for rightmost
geodesics is analogous. Set

(8.39) £:=sup{t eR: g(x ;) L) <y} =inflg eR: g(x 9 Ly > y).

The monotonicity of Theorem 6.3(i) guarantees that the second equality holds and that the
definition is independent of the choice of O € {—, +}. Theorem 6.3(iii) guarantees that E e R.

By definition of E and the monotonicity of Theorem 6.3(i), g‘(’ﬁf u)<y= g(u) < g(x 5) (u)

whenever & < £ < g and 00 € {—, +). But by Theorem 6.3(ii), the B0 and £+ geodesics
agree locally when g is close enough to £. We can conclude that

(8.40) g <y =g < gk w).
Since all three are leftmost geodesics (recall Theorem 5.9(iv) for the Busemann geodesics),
(8.41) Gy (D=8 =gy () fort € s,ul.

By (8.40) the paths g(x ;) and g(x S) must separate at some time ¢ € [s, u). Furthermore,

once gsx ) splits from géx s ata point (z1, 1), the geodesics must stay apart. Otherwise,

they would meet again at a point (22, ), and Theorem 5.9(iv) implies that both paths are the
leftmost geodesic between (z 1 t1) and (z3, 12); see Figure 8. Set f = inf{t > s : g(éx—;)L (1) <

g(ngrs)L (1)}. Then g(x s) (t) < g(x 9 (t) for all ¢+ > 7. By (8.41) and continuity of geodesics,

g(x 5 (t)—g(t)—g(x 5 L) fort e[s,7], and so (g(), D) e &L. O
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(z,5)

F1G. 8. The black/thin path is the path g. The red/thick paths are the semi-infinite geodesics gfx_A)L

and gf;r v)L after they split from g. Once the red paths split, they cannot return or else there would be
two leftmost geodesics from (g (f), t) to the point where they come back together.

PROOF OF THEOREM 2.10. Item (i) (G is dense): Work on the full-probability event €25.
Since & 2 GLUGR, it suffices to show that, for (x, s) € R?, there is a sequence (y,, 1,) € &
converging to (x, s). Let g be the leftmost geodesic from (x, s) to (x,s + 1). Then Vn > 1,
8lis.s+n-17 1s the leftmost geodesic from (x, s) to (x,s + n~1). By Lemma 8.15, Vn € Z-¢
3(x,, t,) € &L such that x,, = g(ty)ands <t, <s +n~!. The proof is complete by continuity
of geodesics.

Item (ii) (P(p € &) =0 for all p € R?): If there exist disjoint semi-infinite geodesics from
(x,s), then for each level ¢ > s, there exist disjoint geodesics from (x,s) to some points
(y1,1), (0, t). For each fixed (x,s), with probability one, this occurs for no such points
by [14], Remark 1.12.

Item (ii1) (Hausdorff dimension of S, ¢): Since s is fixed, it suffices to take s = 0. By

Theorem 5.3(iii), {We1 (-, 0;0,0)} 4 G, and by Theorem 5.5(ii), § € E if and only if fo ¢ #
0. Therefore, Corollary 8.11 implies that, with probability one, dimg (Do ¢) = % forall§ € E.
By Remark 8.3, P(dimy (So¢) = V& € E) = 1.

Item (iv) (Gg ¢ is nonempty and unbounded for all s): By Theorem 5.5(ii), on the event
23, whenever &£ € B, for all s € R, f; ¢(x) = +o00 as x — Fo0. Since f; ¢ is continuous

(Theorem 5.1(i)), the set Dy ¢ is unbounded in both directions. The proof is complete since
D; ¢ C G, ¢ by definition. [

9. Open problems. We enumerate open problems that arise from this paper and mention
solutions that have appeared since this paper was first posted:

(i) Prove convergence to SH for the Busemann process of some model other than ex-
ponential LPP [18] and BLPP [64] (For BLPP convergence has been shown only for finite-
dimensional distributions). In our work [21] that came after the first version of this paper, we
show convergence of the TASEP speed process from [1] to the SH. In this particle systems
context, there are no Busemann functions, but there is a notion of coupled invariant mea-
sures. In the long term, a true statement for KPZ universality should include convergence of
its coupled invariant measures to the stationary horizon.

(i) Recall definitions (2.6)—(2.7) and Remark 2.11. Can one describe the size of the sets

Gs.¢ globally instead of just on a fixed horizontal line, as in Theorem 2.10? Does G ¢ have

Hausdorff dimension % simultaneously for all s € R and & € E? The support of the Airy

difference profile along a vertical line was recently studied in [36]. What properties does the
set G have along a vertical line?

(iii) Are all semi-infinite geodesics Busemann geodesics? (Theorem 7.3(viii) covers the
case & ¢ E.) Equivalently, does every semi-infinite geodesic in direction £ € E coalesce with
a &— or £+ geodesic?
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@iv) For £ e R and O € {—, 4}, is NU%D a strict subset of NUED? (Recall definitions
(6.1)- (6.2).) That is, are there £ 0 geodesics that stick together for some time, separate, then
come back together, or must they separate immediately? See Figure 5. After the posting of
the first version of this paper, it was shown in two independent works [17, 24] that the two
sets are equal.

(v) The set NUj is countably infinite on each horizontal line and hence globally un-
countable (Theorem 6.1). What is the Hausdorff dimension of NU(? It has since been shown

in [17] that for fixed direction & € R, NU% almost surely has Hausdorff dimension ‘31. By

Theorem 6.1 the full set NU( also has Hausdorff dimension %.

(vi) In BLPP the analogue of the inclusion NUy € & holds [64]. The reason is that, in
BLPP, the analogue of the set & is the set of initial points from which some finite geodesic
begins with a vertical step. We do not have such a description in DL. Does the inclusion still
hold?

(vii) Are the sets G and GR defined in (8.4) equal, as is the case for the analogous sets
in BLPP? See Remark 8.14.

APPENDIX A: MAXIMIZERS OF CONTINUOUS FUNCTIONS

Recall the definitions of f(x,y) and f <in g from Section 2.1. The proofs of the next
elementary lemmas are in [20].

LEMMA A.1. Let f, g : R — R be continuous functions satisfying f(x) VvV g(x) = —oo,

as x — £oo and f <inc g. Let xJLc and lef be the leftmost and rightmost maximizers of f

R

over R and similarly defined for g. Then x]I; < ng and lef <xg.

LEMMA A.2. Assume that f, g : R — R satisfy f <inc g&. Then fora <x <y <b,
Ofg(x»)’)_f(x’Y)fg(a’b)_f(a»b)

LEMMA A.3. Let S CR", and let f, : S — R be continuous functions that converge
uniformly to f : S — R. Let ¢, be a maximizer of f,, and assume ¢, — c € S. Then c is a
maximizer of f.

APPENDIX B: DIRECTED LANDSCAPE AND THE KPZ FIXED POINT

The next three results state basic useful properties of the directed landscape.

LEMMA B.1 ([26], Lemma 10.2 and [28], Proposition 1.23). As a random continuous
function of (x,s;y,t) € R*, the directed landscape L satisfies the following distributional
symmetries, for all r,c € R and g > 0:

(1) (Space-time stationarity) L(x, s; y,1) 4 Lx+c,s+r;y+c,t+r).
(ii) (Skew stationarity) L(x, s; v, t) 4 L(x+cs,s;y+ct, 1) —2c(x —y)+ (t —s)c?.
(iii) (Spatial and temporal reflections) L(x, s; y, t) 4 L(—x,s;—y,1) < L(y,—t;x,—5).

(iv) (Rescaling) L(x,s;y,1) 4 qﬁ(q_zx, q_3s; q_zy, q_3t).

LEMMA B.2 ([26], Corollary 10.7). There exists a random constant C such that, for all
v={(x,S;y,t) € R4, we have

(x —y)?

2 2
Loxosiy, D)+ ——— SC(I_S)IBIOg%(M
— —

)1og2/3(||v|| +2),

where ||v|| is the Euclidean norm.
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The following is a corollary of Proposition 2.6 in [23]. The derivation is in [20].

LEMMA B.3. Fora, b € R, not both 0 and z > 0, consider the shift operator T,.,  acting
on the directed landscape L as

Tz;a,bﬁ(X, s;v,t)=L(x+az,s+bz;y+az;t+bz),

where both sides are understood as a process on R*. Then L is mixing under this transfor-
mation. That is, for all Borel subsets A, B of the space C (R“, R),

7—> 00

P(LeA T,.qpLeB)— P(LecAPLeB).

Recall the definition of the state space UC (2.2) for the KPZ fixed point. Recall the vari-
ational representation (2.3) of the KPZ fixed point. This leads to a semigroup property: for
O0<s<t,

hi(y; ) = SU£{hs(x; b+ Lx,s;y,0}.

If we start at time s from initial function § so that
hi(y; b) = sup{h(x) + L(x,s;y,0)} forz>s,
xeR
then we say that £, has initial data f sampled at time s < ¢.
LEMMA B.4 ([11, 26, 35, 57]). Let £ :R* — R be a continuous function satisfying the

metric composition law (2.1) and such that maximizers in (2.1) exist. Then:

(i) Whenever s <t,x1 < Xx2,y1 < Y2,

L(x2,8;y1,1) — L(x1, 55 y1,1) < L(x2, 85 y2, 1) — L(x1, 85 y2,1).
Let hl, f)2 eUC,andfori=1,2andt > 0, set
(B.1) he(v: ') = sup{b’ (x) + L(x, 0; y, )}
xeR

Then, assuming that maximizers in (B.1) exist, the following hold.

(i) Ifh =inc hz then hy(-; h ) <inc ht( [] ) forallt > 0.
(iii) Fort>0andi=1,2,set Z;(y; b )_maxargmaxzeR{h (z)+£(z 0; y,0)}. Thenlf

X <yandzl(y’b )SZZ(X’[] )7wehavehf(yah )_ l(x9h )Sh«l(y’[] )_ t(x’h )
Next, we state three technical lemmas whose proofs can be found in [20].

LEMMA B.5. Fix& € R and a > 0. Consider the KPZ fixed point starting at time s from
a function h € UC. Fort > s, let Zg’s’t € R denote the set of exit points from the time horizon

Hs of the geodesics associated with §) and that terminate in {t} x [—a, a]. That is,

(B.2) Zg’s’t = U argmax{h(x) + L(x,s;y,1)}.

ye[—a,a] xeR

Then on the full probability event of Lemma B.2, whenever §) € UC satisfies condition (2.4)
and when ¢ > 0, a > 0, and s € R, there exists a random ty = to(e, a,s) > s Vv 0 such that,
foranyt > tg,

(B.3) Zyt [ — o, (€ + o).
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In particular, if Yy is a random function almost surely satisfying condition (2.4), then this
random ty exists almost surely, and

lim (2 €[~ € +or]) =1

Furthermore, an analogous statement holds on the same full-probability event if t is held
fixed and s — —oo. That is, there exists a random sy = so(€, a,t) <t A Q such that, for any
s < S0,

(B.4) Zg™' C [ — )5, —( +o)s].

LEMMA B.6. Let h € UC be initial data for the KPZ fixed point sampled at time s € R.
Forallt > s and y € R, set

(B.5) hi (y; h)=su£{h(X)+£(x,S;y,t)}-

Then on the full-probability event of Lemma B.2, the following hold:

(1) If b is continuous, then (t, y) — h;(y; §) is continuous on (s, 00) x R.

(ii) For each compact set K C R.g, there exist constants A = A(a,b, K) and B =
B(a, b, K) such that, for all t € K and all y € R, h;(y; §) < A + B|y|. If we assume that
h(x) > —a — b|x| for some constants a,b > 0, then we also obtain the bound h;(y; H) >
—A — Bl|y| forall t € K and y € R (the upper bound h(x) < a + b|x| is assumed in the
definition of UC).

(iii) If there exists a, b > 0 so that |h(x)| < a + b|x| for all x, then for any t > 5,5 > 0,
there exists Y =Y (t,8) > 0 so that when |y| > Y, all maximizers of hH(x) + L(x,s; y,t) over
x € R lie in the interval (y — |y|1/2+8, y+ |y|1/2+5).

We believe Lemma B.6 is well-known, but we do not have a reference. In particular, [50]
states that the KPZ fixed point preserves the space of linearly bounded continuous functions
and gives regularity estimates for the KPZ fixed point.

LEMMA B.7. The following holds simultaneously for all initial data and all t > s on the
event of probability one from Lemma B.2. Let iy € UC be initial data for the KPZ fixed point,
sampled at time s. For t > s, let h; be defined as in (B.5). Then, simultaneously for all t > s,

hi(x; h) : fh(X)

he(x; .
(B.6) liminf > limin and limsup D i sup 2
x——400 X X—>+00 X X— —00 X x——00 X

Furthermore, assuming that b : R — R is continuous and satisfies

(B.7) iminf 2™~ oo and  Timsup "2 < oo,
x—Fo00 x > too X
then also
hy (x5 . o he(x .
(B.8) lim sup 1(x:b) fhmsup@ and liminf 1(x; b) zhmmf@_
X—> 400 X x—>4oo0 X xX——00 X X—>—00 X

In particular, for continuous initial data Yy satisfying (B.7), if either (or both) of the limits
h(x)

limy_, 400 = exist (potentially with different limits on each side), then for t > s,
. hi(xsh) . hx)
lim ——= lim —.
x—+00 X x—too x

Geodesics in the directed landscape is the last topic of this section.
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LEMMA B.8 ([14], Theorem 1.18. See also [27], Lemmas 3.1 and 3.3). There exists a
single event of full probability on which, for any compact set K C R*, there is a random
& > 0 such that the following holds. If vi = (x, s; y,u) € K and vo = (z, s; w, u) € K admit

geodesics yy and y» satisfying |y1(t) — y2(t)| < € for all t € [s, u], then y1(t) = y(t) for
somet € [s,u].

LEMMA B.9. On a single event of full probability, the following holds. For all ordered
triples s <t < u and compact sets K C R, the following set is finite:
(B.9) {g(t) : g is the unique geodesic between (x, s) and (y, u) for some x,y € K}
Lemma B.9 is known. Its derivation from Lemma B.8 and some results of [27] are shown
in [20]. Lemma 3.12 in [36] (posted after our first version) provides a stronger quantitative
statement, but we do not need it for our purposes. This stronger estimate can be traced back
to the work of Basu, Hoffman, and Sly [12] using integrable methods in exponential LPP.
APPENDIX C: EXPONENTIAL LAST-PASSAGE PERCOLATION

C.1. LPP on the half-plane. Let {Yx},7> be i.i.d. Exp(1) random variables on the ver-
tices of the planar integer lattice. For x <y € Z?, define the last-passage value

ly—xI
(C.1) d(X,y)= sup Z Yy
x.€lxy k=0

where Iy y is the set of upright paths {x;};_ that satisfy xo =X, X, =y and x; — X¢_1 €
{e1, e2}. A maximizing path is called a geodesic. This model is exponential last-passage per-
colation (LPP) or the exponential corner growth model (CGM).

We extend this bulk LPP to LPP in the upper half-plane. The boundary condition is a real
sequence h = (h(k))rez. Form € Z, let d"(m,0) = h(m), and for n > 0,

(C.2) d"(m,n)=sup {h(k) +d((k, 1), (m,n))}.
—oo<k<m
We consider only % such that the supremum is achieved at some finite k.
This half-plane LPP has an alternative representation in terms of queuing mappings. Let
I = (Ix)rez and o = (wy)rez be nonnegative real sequences such that

0
lim w; — I = —00.
m_)_OOZ( i H—l)
i=m

Let F = (Fy)kez be a sequence satisfying Iy = Fy — Fy_1, and define F= (fg)gez by
12
(C3) Fy= sup {Fi+> wif. (€L
—oo<k<t i=k
Then define the sequences I= (Tg)gez and J = (Jr)rez by
INg = Fg — F—'g,1 and J; = ﬁk — Fy.

In queuing terms / is the time between the arrivals of customers k — 1 and &, wy is the service
time of customer k, I, is the interdeparture time between customers £ — 1 and £ and Ji is the
sojourn time of customer k. Let D and S denote the mappings

(C.4) I=Dw,]) and J=S,I).

The following lemma shows how to construct the half-plane LPP from the queuing map-
pings. The details are given in [20].
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LEMMA C.1. Let the weights {Yx}yc72 and the boundary condition h be as above. For
n>1,let Y" ={Ym n}mez denote the weights along the horizontal level n. Define the se-
quence 19 = (Iio)iez by Ii0 =h()—h(@ —1). Forn > 1, define inductively I" = D(Y", b
and J" = S(Y", I”_l). Then for eachn > 1 and m € Z,

(C5)  I"=d"(m,n)—d"(m—1,n) and J'=d"(m,n)—d"m,n—-1).

For p € (0, 1), the stationary boundary condition 4” is defined so that #”(0) = 0 and
{h* (k) — h?(k — 1)}xez is a sequence of i.i.d. Exp(p) random variables, independent of
the i.i.d. Exp(1) bulk variables {Yx}xezxz_,. Stationary boundary conditions describe the
distribution of Busemann functions to be discussed in Section C.3. With this initial data, we
write d” = d"”.

C.2. KPZ scaling of the exponential CGM. The next lemma states that the exit point of
half-plane stationary LPP obeys the KPZ wandering exponent 2/3. The proof is given in [20],
Lemma C.5. The main idea is to use the exit point bounds for the stationary model in the
quadrant from [31] and then connect them to the upper-half plane case using ideas from [8]
and [60]. These bounds have also appeared in the literature using integrable methods, for
example, [15], Theorem 2.5, [13], Theorem 3, and in [49], Lemma 2.8.

LEMMA C.2. Fix c € R. For large enough N > 1, consider the stationary half-plane
LPP dPN defined above with parameter py = % +cN~1/3 € (0, 1). Define the exit point by
(C.6) ZPN(m,n) = max{k € Z: h"N (k) + d((k, 1), (m,n)) = d”N (m, n)}.

Then for any y € R and t > 0, there exist constants C1 = Ci(c,y,t) > 0 and C, =
Cy(c,y,t) > 0 such that

limsupP{|Z"N (|t N +N2/3yJ, = MN2/3} < Cle_CzM3 forall M > 0.

— 00

We cite the theorem on the DL limit of exponential LPP.

THEOREM C.3 ([28], Theorem 1.7). Let d denote last-passage percolation (C.1) with
i.i.d. Exp(1) weights. Then there exists a coupling of the directed landscape L and identically
distributed copies dy of d such that

dn((sN 4+23xN?3,sN), (tN +253yN?/3 tN))
=4N(t — )+ 253Ny —x) + 2*3N3 (L +on)(x, 55y, 1).

Here dy is appropriately interpolated and oy : R* — R is a random continuous function
such that, for every compact K C R?, there exists a constant ¢ > 0 such that

sup oy | — 0 almost surely and E[c sup(ox,)3 + (o;)] — 1.
K K
C.3. Busemann process. This section describes the distribution of the Busemann pro-

cess of the exponential CGM. The direction vectors u €]e;, e[ are connected to the parameter
p € (0, 1) through this bijection,

p* (1—p)* )
P2+ (1 —p)? p2+(1—p)?

Then for a fixed p € (0, 1) and x,y € 72, this almost sure Busemann limit holds,
() B{,=B"(x,y) = lim d(-nu(p),y) — d(-nu(p), x).

u(p) = (
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The Busemann functions extend to a process {B’H(x,y): p € (0,1),0 € {—, +},x,y € 72
[45]. Note that, in (C.7), geodesics travel southwest. This convention is convenient for the
queuing representation.

Define the following state space )" of n-tuples of bi-infinite nonnegative sequences:

12 1
Z . . 2: k . 2: k+1
{(11,“.’1n)G(REO)n'mEIEoom, i <mllr>noom. Ii+,for1§k§n—1 '
1=m 1=m

The limits above are assumed to exist. Extend the mapping D of (C.4) to mappings D® :
Yk - R%O of multiple input sequences: DV (1) = I'! and inductively for k > 1,

DO, 1N =D, DI, 13, 1),
Combine these into a mapping D" = (Di("))l’.‘:1 : V" — V" between n-tuples of sequences,
DI, ) =D, .. 1) fori=1,...,n.

For p" = (p1, ..., py) such that p; > --- > p, > 0, define the probability measure e
on V" as the distribution of (I',..., I") when I',..., I" are independent and each I’ is a
sequence of i.i.d. Exp(p;) random variables. Then define the measure " as

(C.8) wf" = v o (DM,
The next two theorems explain the significance of *" for queues and LPP.
THEOREM C.4 ([33], Theorem 5.4). Let p" = (p1,...,00) With1 > p1 > ---> p, >0

and assume (I', ..., I") ~ uP". Let I° be a sequence of i.i.d. exponential random variables
with rate 1, independent 0f(11, o I Then (DO, 1Y), ..., DU, 1) ~ ;u"".

THEOREM C.5 ([33], Theorem 3.2). For p € (0, 1), define the sequence I” as I’ =

1

Bl _1yepie,- Let 0" = (01, ., o) with 1> py > -+ > p, > 0. Then (I”', ..., I"") ~uf".

APPENDIX D: STATIONARY HORIZON

After [18], let Wy (f) = sup_oo<x5y[f(y) — f(x)], and define @ : C(R) x C(R) - C(R)
by

FOY+[Wo(f =)+ nf (£ —g@)] y=0,

O(f.8)() = . -
FO) =W =0+ inf (F@) =) ~[g0) —s0]] . v <0.

We apply @ only to functions for which the suprema are finite. By Lemma 9.2 in [64], when
f(0)=¢g(0) =0,

(D.1) (f,0M=fM+ sup {gx)— f()}— sup {g(x)— f0)}.

—00<x<y —o0o<x<0
Extend @ to maps &k : C(R)¥ - C(R)¥ as follows. Abbreviate Smn = s -5 Jn):

1. oL(f)(x) = fix).
2. @2(f1, L)) = [PI(f1, ) (x), P3(f1, £)()] = [fi1(x), D(fi, f>)(x)] and for k >
3

3. K (f) ) = Lfi (), D(fi. OE () ), - @Cf1, RF T (f20D ()]
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DEFINITION D.1. The stationary horizon {G¢}ecr is the C(RR)-valued cadlag process
described in Section 2.4 whose distribution is characterized as follows: for & < --- < &,
(Ggyy ..., Gg) < d>k(f1, ...y fr), where fi,..., fr are independent two-sided Brownian
motions with diffusivity /2 and drifts 2¢1, ..., 2& (as defined in (ix) in Section 2.1).

The existence of the process G is nontrivial. It was achieved through the next theorem.
For N e N and & € R, let Fé\' € C(R) be the linear interpolation of the function Z > m +—

B(%_TmS N 71/3)_(0, me1) from the Busemann process B of the exponential CGM. FNisa

C(R)-valued cadlag process. Its suitably centered and scaled version is

(D.2) G (x) =273NTIPEN (22PN Bx) — 283 N2k ].

THEOREM D.2 ([18], Theorem 1.1). As N — oo, GV converges in distribution to G
on the Skorokhod space D(R, C(R)). In particular, for &1, ...,&, € R, (Gg, e Gg) =
(Gg,, ..., Gg,) in the topology of uniform convergence on compact subsets of R.

Note that the parameterizations in [18] and here differ: if G denotes the SH in [18], then

Ge(x) 4 6}45 (x/2) as processes indexed by (&, x). The next theorem summarizes facts about
SH. By the cadlag paths, G¢ 1 = G¢ and G¢— =limy ¢ G, existin C(RR). Recall the notation
f(x,y)= f(y)— f(x) for a function f:R — R.

THEOREM D.3 ([18], Theorem 1.2; [64], Theorems 3.9, 3.11, 3.15, 7.20 and Lemma 3.6).
The following hold for the stationary horizon:

(i) Foreach & € R, with probability one, G¢ — = G¢ 4, and Gg is a two-sided Brownian
motion with diffusion coefficient /2 and drift 2§.
(i1) Forc>0andv e R, {ch(ngv)(c_zx) —2vx:x € Rlger 4 {Ge(x) 1 x € R}ger.
(iii) Spatial stationarity holds in the sense that, for y € R,
d
{Ge() i x eR} g = {Ge(y, x +y) 1 x € R}, .
(iv) Fixx >0,& €R, & >0and z > 0. Then

P( sup [Geyrela b) — Gyla, b)| <2)

a,be[—x,x]

= P(GE(H‘E (—)C, X) - GS()(_-xa .X) =< Z)

where © is the standard normal distribution function.
(v) For x <y and o < B, with # denoting the cardinality,

E[#{& € (@ B) : Ge—(x,y) < Gey(x, »)}] =2,/2/m (B — a)/y — x.
Furthermore, the following hold on a single event of full probability:

(vi) For xg > 0, define the process G € D(R, C[—xq, xo]) by restricting each function
Gg to [—x0, x0]: Ggo = G¢l{—xq,x0)- Then & — Ggo is a C[—xg, xo]-valued jump process with
finitely many jumps in any compact interval but countably infinitely many jumps in R. The
number of jumps in a compact interval has finite expectation, given in item (v) above, and
each direction & is a jump direction with probability 0. In particular, for each & € R and
compact set K, there exists a random ¢ = ¢(§, K) > 0 such that forall§ —¢ <a <& < B <
E+e,0e{— +}),andallx e K, Gs_(x) = Gy(x) and G (x) = Gg(x).
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(vii) For x1 < x2, § = Gg(x1, x2) is a nondecreasing jump process, converging to £00
as & — Fo0.

(viii) Let a < B. The function x > Gg(x) — G4 (x) is nondecreasing. There exist finite
S1=81(a, B) and $r = Sy (e, B) with S1 <0 < 83 such that Go(x) = Gg(x) for x € [S1, $3]
and Gy (x) # Gg(x) for x ¢ [S1, $2].

(ix) Leta < B, S1 = Si1(e, B) and Sr = S»(«, B). Then AL, n € [, B] such that

G- (x)=Gey(x) forxe[=81,0] and G;_(x)>Gey(x) forx <S8y and
Gy-(x)=Gyp(x) forxel0,8] and G, (x) <Gy(x) forx>S$;.
In particular, the set {§ € R: Gg¢4 # Ge_} is dense in R.

Theorem 2.1 gives the following new property of SH.

COROLLARY D.4.  SH satisfies this reflection: {G (—g)—(—+)}eer 4 {Ge(+))eer-

PROOF. By the spatial reflection invariance of the directed landscape (Lemma B.1(iii)),
{G(—£)—(—+)}eer 18 an invariant distribution for the KPZ fixed point such that each marginal
satisfies (2.4). The result follows from the uniqueness part of Theorem 2.1. [
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