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Network pruning is a widely used technique to reduce computation cost and model size for deep neural
networks. However, the typical three-stage pipeline (i.e., training, pruning, and retraining (fine-tuning)) sig-
nificantly increases the overall training time. In this article, we develop a systematic weight-pruning opti-
mization approach based on surrogate Lagrangian relaxation (SLR), which is tailored to overcome difficulties
caused by the discrete nature of the weight-pruning problem. We further prove that our method ensures
fast convergence of the model compression problem, and the convergence of the SLR is accelerated by using
quadratic penalties. Model parameters obtained by SLR during the training phase are much closer to their
optimal values as compared to those obtained by other state-of-the-art methods. We evaluate our method on
image classification tasks using CIFAR-10 and ImageNet with state-of-the-art multi-layer perceptron based
networks such as MLP-Mixer; attention-based networks such as Swin Transformer; and convolutional neural
network based models such as VGG-16, ResNet-18, ResNet-50, ResNet-110, and MobileNetV2. We also evalu-
ate object detection and segmentation tasks on COCO, the KITTI benchmark, and the TuSimple lane detection
dataset using a variety of models. Experimental results demonstrate that our SLR-based weight-pruning opti-
mization approach achieves a higher compression rate than state-of-the-art methods under the same accuracy
requirement and also can achieve higher accuracy under the same compression rate requirement. Under clas-
sification tasks, our SLR approach converges to the desired accuracy 3X faster on both of the datasets. Under
object detection and segmentation tasks, SLR also converges 2X faster to the desired accuracy. Further, our
SLR achieves high model accuracy even at the hardpruning stage without retraining, which reduces the tradi-
tional three-stage pruning into a two-stage process. Given a limited budget of retraining epochs, our approach
quickly recovers the model’s accuracy.
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1 INTRODUCTION

Deep Neural Network (DNN)-based statistical models are increasingly demanding of computa-
tional and storage resources, with costs proportional to the model size (i.e., the number of parame-
ters in a model). This resource consumption is especially an issue for embedded or IoT devices [16].
By reducing model size, one can decrease both storage costs and computation costs when evaluat-
ing a model. Various techniques exist for reducing model size while maintaining its performance,
such as weight pruning, sparsity regularization, quantization, and clustering. These techniques are
collectively known as model compression [13, 28, 29, 32, 33, 49].

These works leverage the observation that training a compact model from scratch is more dif-
ficult and less effective than retraining a pruned model [9, 26]. Therefore, a typical three-stage
pipeline has been used: training (large model), pruning, and retraining (also called fine-tuning).
The pruning process involves setting the redundant weights to zero while keeping the important
weights to maintain performance. The retraining process is necessary since the model accuracy
significantly decreases after hardpruning. However, this three-stage weight pruning approach sub-
stantially adds to the overall training cost. For example, although the state-of-the-art weight prun-
ing methods achieve a very high compression rate while maintaining the prediction accuracy on
many DNN architectures, the retraining process requires more time—for example, 80 epochs for
ResNet-18 on ImageNet, which is 70% of the original training epochs using the Alternating Di-
rection Method of Multipliers (ADMM) [38, 50].

Given the pros and cons of the current weight pruning method, this article aims to answer the
following questions: Is there an optimization method that can achieve high model accuracy even
at the hardpruning stage and can significantly reduce retraining trails? Given a limited budget of
retraining epochs, is there an optimization method that can rapidly recover model accuracy (much
faster than the state-of-the-art methods)?

The primary obstacle in addressing these questions is the discrete nature of the model com-
pression problems caused by “cardinality” constraints, which ensure that a certain proportion of
weights is pruned. In this work, we develop a weight-pruning optimization approach based on
recent Surrogate Lagrangian Relaxation (SLR) [6], which overcomes all major convergence
difficulties of standard Lagrangian relaxation. Within the SLR approach, Lagrangian multipliers
converge to their optimal values much faster as compared to those within other methods (e.g.,
ADMM).

We summarize our contributions/findings as follows:

e We adapt the SLR-based approach to overcome difficulties caused by the discrete nature of
the weight-pruning problem while ensuring fast convergence.

e We use quadratic penalties to further accelerate the SLR convergence. The method possesses
nice convergence properties inherited from the rapid reduction of constraint violations ow-
ing to quadratic penalties, and quadratic penalties ultimately lead to faster convergence. In
addition, unlike previous methods such as ADMM, the SLR method guarantees convergence,
thereby leading to unmatched performance compared to other methods. Therefore, model
parameters obtained by SLR are much closer to their optimal values as compared to those
obtained by other state-of-the-art methods.

e We provide a convergence proof of the SLR method for weight-pruning problems. Existing
coordination-based weight pruning approaches do not converge when solving non-convex
problems. Other coordination techniques (e.g., ADMM) are not designed to handle discrete
variables and other types of non-convexities.

e Our proposed SLR-based model compression method achieves high model accuracy even at
the hardpruning stage using our SLR-based weight-pruning optimization approach; given a
limited budget of retraining epochs, our method quickly recovers the model accuracy.
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We conduct comprehensive experiments on various tasks and datasets to further prove the ef-
fectiveness of our proposed SLR-based model compression method. For classification tasks, we
test our method on not only Convolutional Neural Network (CNN)-based models like VGG-16,
ResNet-18, ResNet-50, ResNet-110, and MobileNetV2 but also on non-CNN based models such
as MLP-Mixer, a Multi-Layer Perceptron (MLP)-based network, and Swin Transformer, an
attention-based network. We also test and compare our SLR method with other state-of-the-art
pruning methods on segmentation and detection tasks. Our experiments involve various dataset
benchmarks like CIFAR-10, ImageNet, COCO, KITTI, and TuSimple. The results demonstrate that
our proposed SLR method outperforms the state-of-the-art compression methods. Our method
converges 3X faster to the desired accuracy on both CIFAR-10 and ImageNet datasets under both
CNN-based and non-CNN-based classification tasks, and 2x faster on COCO object detection tasks.
Moreover, up to a 6% accuracy gap can be achieved between SLR and the state of the art at the
hardpruning stage under classification tasks, and a 44% accuracy gap in object detection and seg-
mentation tasks.

2 RELATED RESEARCH
2.1 Model Compression

Given the increasing computational and storage demands of DNNs, model compression has be-
come increasingly essential when we implement highly efficient deep learning applications in the
real world. There are two common compression techniques: weight pruning and weight quanti-
zation. As numerous researchers have investigated that some portion of weights in neural net-
works are redundant, weight pruning aims to remove these less important coefficient values and
achieves model compression while maintaining performance similar to the uncompressed model.
Structured and non-structured (irregular) weight pruning are two mainstream methods. Weight
quantization is another technique that reduces weight storage by decreasing the number of bits
used to represent weights.

In early work [11], the researchers proposed an iterative irregular weight pruning method where
most reductions are achieved in fully connected layers, and the reduction achieved in convolutional
layers can hardly achieve significant acceleration in GPUs. For weight storage, it reduces 9x the
number of parameters in AlexNet and 13X in VGGNet-16. To address the limitation in irregular
weight pruning, structured weight pruning methods were proposed by Wen et al. [44], which
investigated structured sparsity at the levels of filters, channels, and filter shapes. However, the
overall compression rate in structured pruning is limited compared to unstructured pruning. In
AlexNet without accuracy degradation, the average weight pruning rate in convolutional layers is
only 1.4%. The recent work [14] achieved 2Xx channel pruning with a 1% accuracy degradation on
VGGNet-16. Later, Louizos et al. [27] proposed a framework for Ly norm regularization for neural
networks, aiming to prune the network during training by selecting weights and setting them to
exactly zero. Frankle and Carbin [9] introduced the lottery ticket hypothesis, which observes that
a subnetwork of a randomly initialized network can replace the original network with the same
performance. In this work, our focus is on irregular pruning, which can achieve much higher
accuracy compared to structured pruning [44] due to its flexibility in selecting weights [52].

2.2 Alternating Direction Method of Multipliers

ADMM is an optimization algorithm that breaks optimization problems into smaller subproblems,
each of which is then solved iteratively and more easily. The early studies of ADMM can be traced
back to the 1970s, and a variety of statistical and machine learning problems that can be effi-
ciently solved by using ADMM have been discussed [3]. Recently, weight pruning studies have

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 102. Pub. date: October 2023.



102:4 S. Zhou et al.

achieved a high compression rate and avoided significant accuracy loss by integrating the pow-
erful ADMM. The successful applications with ADMM outperform prior approaches by applying
dynamic penalties on all targeted weights. The algorithm can be applied to various schemes of both
non-structured pruning and structured pruning. The work of Zhang et al. [50] was the first imple-
menting an ADMM-based framework on DNN weight pruning, achieving 21X irregular weight
pruning with almost no accuracy loss in AlexNet. A pattern-based weight pruning approach was
proposed with high efficiency specifically designed and optimized for mobile devices [31]; it ex-
plored a fine-grained sparsity to maximize the utilization of devices with limited resources. Li
et al. [22] improved the previous ADMM-based structured weight pruning framework by adopt-
ing a soft constraint based formulation to achieve a higher compression rate and tune fewer
hyperparameters.

3  WEIGHT PRUNING USING SLR

Consider a DNN with N layers indexed by n € 1, ..., N, where the weights in layer n are denoted
by W,,. The objective is to minimize a loss function
i 1
min {£(W,)} )
subject to constraints on the cardinality of weights within each layer n, where the number of non-
zero weights should be less than or equal to the pre-defined number [,,. This constraint can be
captured using an indicator function g, (-) as follows:

0 ifcard(W,) <Il,, n=1,...,N.

+oo0 otherwise

gn(Wy) = { @)

In its entirety, the problem cannot be solved either analytically or by using Stochastic Gradient
Descent (SGD). To enable the decomposition into smaller manageable subproblems, duplicate
variables are introduced and the problem is equivalently rewritten as

N
rrjlgn {f(Wn) + Zlgn(Zn)} , subjecttoW,=Z,,n=1,...,N. 3)
n=

Here, the first term is a non-linear smooth loss function and the second term is a non-differentiable
“cardinality” penalty term [50]. To solve the problem, constraints are first relaxed by introducing
Lagrangian multipliers to decompose the resulting problem into manageable subproblems, which
will be coordinated by the multipliers. The constraint violations are also penalized by using qua-
dratic penalties to speed up convergence. The resulting augmented Lagrangian function [3, 50] of
the preceding optimization problem is thus given by

N N N
Lp(WniZai ) = F(Wa) + 37 0(Za) + 3 6IAT(Wa =Zo)] + ) EIW, = Z,1E @)
n=1 n=1 n=1

where A, is a matrix of Lagrangian multipliers corresponding to constraints W,, = Z, and has
the same dimension as W,. The positive scalar p is the penalty coefficient, tr(-) denotes the trace,
and || - ||12: denotes the Frobenius norm.

In the following, we are motivated by decomposability enabled by SLR [6], which overcame
all major difficulties of standard Lagrangian relaxation, significantly reducing zigzagging and en-
suring convergence. The relaxed problem will be decomposed into two manageable subproblems,
andthese subproblems will then be coordinated by Lagrangian multipliers.

Step 1: Solve the “Loss Function” Subproblem for W, by Using SGD. At iteration k, for given values
of multipliers A%, the first “loss function” subproblem is to minimize the Lagrangian function while
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keeping Z, at previously obtained values ZX~! as
minL, (W, ZE1 AL). (5)

Since the regularizer is a differentiable quadratic function, and the loss function is differen-
tiable, the subproblem can be solved by SGD [2]. To ensure that multiplier-updating directions are
“proper,” the following “surrogate” optimality condition needs to be satisfied following Bragin et
al. [6, p. 179, Equation (12)]:

LP(wﬁ’erclilsAﬁ) < LP(Wﬁil’Zﬁil’Alrj)‘ (6)

If (6) is satisfied, multipliers are updated following Bragin et al. [6, p. 179, Equation (15)] as

k+1 k k k k-
A/n+ = An +s’ (Wn - Zn 1)’ (7)
where stepsizes are updated as in the work of Bragin et al. [6, p. 180, Equation (20)]:
o _ f sk—l||wk—1 _ Zk—l“
Wk —Zk=1|

Step 2: Solve the “Cardinality” Subproblem for Z,, through Pruning by Using Projections onto Dis-
crete Subspace. The second “cardinality” subproblem is solved with respect to Z, while fixing other
variables at values WX as

®)

. k k+1
n%tan (Wn,Zn,A'n+ ) 9)

Since g, (+) is an indicator function, the globally optimal solution of this problem can be explicitly
derived as follows [3]:

Alk+1
Z, =Tis, (Wﬁ + —) (10)
p
where ITg, () denotes the Euclidean projection onto the set S, = {W, | card(W,) < [,},n =
1,...,N. To ensure that multiplier-updating directions are “proper,” the following “surrogate” op-
timality condition needs to be satisfied:
k 7k Ark+1 k k- rk+1
L,(WhZE A3) < L, (WE ZE2 A7k, (11)
Once (11) is satisfied,! multipliers are updated as
AR = AR 4 SR (W - ZE), (12)
where stepsizes and stepsize-setting parameters [6, p. 188, Equation (67)] are updated as
S/k Wk—l _ Zk—l 1
ko gk STl [N - ————— M>10<r<1. (13)
Wk —ZK|| M x k1=7r)

The theoretical results are based on other works [5, 7, 10] and are summarized in the following.

THEOREM 1 (SUFFICIENT CONDITION FOR CONVERGENCE). Assuming for any integer number k
there exists k > k such that surrogate optimality conditions (6) and (11) are satisfied, then under
stepsizing conditions (8) and (13), the Lagrangian multipliers converge to their optimal values A},
that maximize the following dual function:

g(A) = min L, (Wi Zn, An). (14)

UIf condition (11) is not satisfied, subproblems (5) and (9) are solved again by using the latest available values for W,, and
Zp.
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Proor. The proof will be based on that of Bragin et al. [6]. The major difference between the
original SLR method [6] and the SLR method of this article is the presence of quadratic terms
within the Lagrangian function (4).

It is important to mention that the weight-pruning problem can be equivalently rewritten in a
generic form as (15), where X collectively denotes the decision variables {W,, Z,}

ngnF(X), st. G(X) =0, (15)

where
N N p
F(X) = f(Wa) + D gu(Za) + D SIWa = Zullp, G(X)= Wy ~Zy, n=1...N. (16)
n=1 n=1

The feasible set of (15) is equivalent to the original model compression problem. Feasibility
requires W, = Z,, which makes the term gIIWn - Zn||12: within (16) disappear. Therefore, the
Lagrangian function corresponding to (15) is the augmented Lagrangian function (4) to the original
model compression problem. Furthermore, the surrogate optimality conditions (6) and (11) are the
surrogate optimality conditions that correspond to the Lagrangian function F(X) + AG(X) that
corresponds to (15). Therefore, since within the original SLR [6, Prop. 2.7, p. 188] convergence
was proved under conditions on stepsizes (8) and (13) and the satisfaction of surrogate optimality
conditions, which are assumed to be satisfied here, multipliers converge to their optimal values
for the model compression under consideration as well. O

Although the convergence proof in Theorem 1 is valuable for distinguishing SLR from previous
decomposition and coordination methods (e.g., ADMM) in terms of convergence, it does not pro-
vide insight into the solution quality on its own. This issue is addressed in Theorem 2, where the
faster convergence of SLR is rigorously quantified. Since both ADMM and SLR methods are dual
methods to maximize the dual function (14), it is common practice to determine upper bounds for
the maximization problems. In the context of the problem being examined, an upper bound for
the optimal dual value g will be established within each method, enabling the evaluation of the
quality of dual solutions—specifically, Lagrangian multipliers serve as the decision variables in the
dual space.?

THEOREM 2 (DUAL SOLUTION QUALITY: BEST-CASE PERFORMANCE). Assuming that the “sufficient
condition for convergence” stated within Theorem 1 is satisfied, then surrogate Lagrangian relaxation
provides a better dual solution quality as compared to ADMM: in particular, there exists an iteration
Kk so that for all iterations k > «k, the following condition holds:

—SLR _ —ADMM
T <qe - (17)

Proor. There exists an overestimate of the optimal dual value [5, 7], which in terms of our

problem under consideration can be expressed as follows:

QR =y st IWE = ZEIE + L, (WE ZE AF). (18)

Here, y € [0, 1] is a parameter. Following Nedic and Bertsekas [30], y can be set as % —a reciprocal
of the number of subproblems; however, for this theoretical analysis, the specific value of y is of
secondary importance. Since within the SLR the stepsizes are approaching 0, then

3 - L, (W Z5, AY). (19)

2Higher quality of primal variables—weights and biases are implied since superior coordination through Lagrangian mul-
tipliers significantly improves the quality of primal solutions [7].
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Moreover, assuming that a sufficient condition for convergence is satisfied, then the Lagrangian
dual value approaches the dual value (as proved, for example, in the work of Bragin et al. [6]), and
therefore

7R - q). (20)

Within ADMM, however, since stepsizes/penalty coefficients do not approach zero, then the over-
estimate of the optimal dual value g(1*) is bounded away from it:

FEPMM =y IWE — ZE )12+ L, (WE, ZE, AK). (21)

Therefore, since the first term does not approach zero, and the second term does not approach the
optimal dual value from above, there exists k such that (17) holds. O

The algorithm of the proposed SLR
method is summarized in Algorithm 1. The

ALGORITHM 1: Surrogate Lagrangian relaxation.

1: Initialize W9,Z9, A and s° SLR method benefits from efficient sub-
2: while Stopping criteria are not satisfied do problem solution coordination with guaran-
3. 1solve subproblem (5), teed convergence enabled by stepsizes (8)
4 if surrogate optimality condition (6) is satis- and (13) approaching zero. Without this re-
fied then quirement, multipliers (12) would not ex-
5: keep Wk, Zk and update multipliers AX hibit convergence. The satisfaction of sur-
per (7), rogate optimality conditions (6) and (11)
6: else ensures that multipliers are updated along
7: keep WK, ZK  do not update multipliers AX, “good” directions, promoting convergence.
8. endif Section 4 will empirically verify that there
9: 2 solve subproblem (9), always exists iteration k after which the
10:  if surrogate optimality condition (11) is satis- “surrogate” optimality conditions are sat-
fied then isfied ensuring that multipliers approach
11: keep WK, ZK and update multipliers AX their optimal values during the entire iter-
per (12), ative process.
12:  else The SLR method also benefits from the
13: keep WX, Zk do not update multipliers A¥, independent and systematic adjustment of
14:  endif two hyperparameters: penalty coefficient p
15: end while and the stepsize s¥. In contrast, other coordi-

nation methods are not designed to handle

discrete variables and other types of non-
convexities. For example, ADMM does not converge when solving non-convex problems [3, p. 73]
because stepsizes p within the method do not converge to zero. Lowering stepsizes to zero within
ADMM would also result in a decreased penalty coefficient, leading to slower convergence.

4 EVALUATION

In this section, we discuss our experimental results for the image classification task using CNN-
based models and non-CNN-based models. We also evaluate our method under object detection
and image segmentation tasks.

4.1 Experimental Setup

All of our code, including image classification tasks and object detection and segmentation tasks,
is implemented with Python 3.6 and PyTorch 1.6.0. For our experiments on the COCO 2014 dataset,
we used the pycocotools v2.0 packages. For our experiments on the TuSimple lane detection
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Table 1. Comparison of SLR and ADMM on CIFAR-10 and ImageNet

Baseline (%) Epoch ADMM (%) SLR (%) Compression Rate

CIFAR-10
ResNet-18 93.33 40 72.84 89.93 8.71X
ResNet-50 93.86 50 78.63 88.91 6.57X
VGG-16 93.27 110 69.05 87.31 12x
ResNet-56 93.39 30 90.5 92.3 6.5%
ResNet-110 93.68 30 89.71 92.31 9.7x

ImageNet
ResNet-18 69.7 / 89.0 40 58.9/81.7 60.9/84.4 6.5%
ResNet-50 76.1/92.8 30 64.8/851 659/87.5 3.89%
MobileNetV2 ~ 71.8/91.0 50 61.8/843 632/855 1.76x

ImageNet results show Top-1/ Top-5 accuracy. Epoch means when SLR or ADMM converges. The accuracy
values for all experiments are reported at the corresponding epoch.

benchmark dataset,? we used the SpConv v1.2 package. We conducted our experiments on Ubuntu
18.04 using an NVIDIA Quadro RTX 6000 GPU with 24 GB of GPU memory.

We begin by pruning the pre-trained models through SLR training. Afterward, we perform hard-
pruning on the model, completing the compression phase. We report the overall compression rate
(or the percentage of remaining weights) and prediction accuracy.

4.2 Evaluation of Image Classification Tasks Using CNN-Based Models

Models and Datasets. We use ResNet-18, ResNet-50, ResNet-56, ResNet-110 [12], and VGG-
16 [40] on CIFAR-10. On the ImageNet ILSVRC 2012 benchmark, we use ResNet-18, ResNet-50 [12],
and MobileNetV2 [39]. We use the pre-trained ResNet models on ImageNet from Torchvision’s
“models” subpackage.

Training Settings. In all the experiments, we set p = 0.1. In CIFAR-10 experiments, we use a
learning rate of 0.01, batch size of 128, and the ADAM optimizer. In ImageNet experiments, we use
a learning rate of 1074, batch size of 256, and the SGD optimizer. For a fair comparison of SLR and
ADMM methods, we use the same sparsity configurations for both methods in the experiments.

Table 1 shows our comparison of SLR and ADMM on CIFAR-10 and ImageNet benchmarks. For
both experiments, SLR parameters are set as M = 300, r = 0.1, and sy = 1072. After the SLR and
ADMM training, hardpruning is performed, and the hardpruning accuracy is reported without
any additional retraining, given a limited budget of training epochs. The epoch listed in the table
corresponds to the specific point in the training process where either SLR or ADMM successfully
converges, indicating when optimal performance is reached. The accuracy values for all the ex-
periments are reported at the corresponding epoch. According to our results, SLR outperforms
the ADMM method in terms of accuracy under the same compression rate. When the compres-
sion rate is the same, SLR always obtains higher classification accuracy compared with ADMM
under the same number of epochs of training. As compression rates increase, the results reveal
a more significant accuracy gap between SLR and ADMM across various network architectures.
This demonstrates that our SLR converges faster and quickly recovers the model accuracy at the
hardprune stage, which achieves retrain-free given the limited training budget.

Figure 1 shows the hardpruning accuracy for SLR vs. ADMM on CIFAR-10 and ImageNet,
corresponding to Table 1. During training, hardpruning accuracy is checked periodically. If the

Shttps://github.com/TuSimple/tusimple-benchmark
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Fig. 1. Hardpruning accuracy after SLR and ADMM training on CIFAR-10 and ImageNet benchmarks. Accu-
racy is reported periodically and training is stopped when desired accuracy is reached.

hardpruning accuracy meets the accuracy criteria, the training is stopped. As seen in Figure 1,
SLR converges quickly and reaches the desired accuracy almost 3x faster than ADMM on CIFAR-
10. Moreover, in Figure 1(e), ADMM is still below the desired accuracy even after 300 epochs of
training on VGG-16, whereas SLR finishes training at 80 epochs. Similarly, as shown in Figure 1(f)
and (g), ADMM cannot achieve the desired accuracy after 60 and 50 epochs of training onlmageNet,
whereas SLR reaches the threshold quicker.

Table 2 shows the comparison of SLR with other recent model compression works on the CIFAR-
10 benchmark. We report the percentage of parameters pruned after SLR training and the final
accuracy. To ensure fair comparison against the state-of-the-art method, we have made adjust-
ments to the compression rate of our SLR algorithm. Our experimental results consistently demon-
strate the superior performance of our SLR algorithm compared to the state-of-the-art algorithms
across a range of model architectures and compression rates. It is evident that our method consis-
tently outperforms the existing approach, making it a compelling choice for various application
scenarios.

4.3 Evaluation on Image Classification Tasks Using State-of-the-Art Non-CNN-Based
Models

In this subsection, we demonstrate our experimental results of applying the SLR weight pruning
method on an MLP-based architecture(MLP-Mixer [41]) and on an attention-based network (Swin
Transformer [25]).

Models and Datasets. MLP-Mixer does not contain any convolution layer or self-attention
block. This architecture relies solely on MLPs. Alternating between channel-mixing MLPs and to-
ken (image patch)-mixing MLPs, the MLP-Mixer model can achieve decent accuracy with much
fewer computational resources than state-of-the-art methods. Swin Transformer is a hierarchi-
cal transformer based architecture that utilizes shifted windows for representation. It has linear
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Table 2. SLR Performance Comparison with VGG-16, ResNet-18, ResNet-50, and
ResNet-56 on CIFAR-10

Model Method Accuracy (%) Parameters Pruned (%)
SLR 91.2
AMC [13] 91.0 90
L0 [27] 80.0

VGG-16 SLR 93.1 60
One-shot pruning [26] 924
SLR 93.2 50
Iter. Prun. [11] 92.2
SLR 91.76
EarlyCroP-U [36] 91.1 95
GRASP [42] 88.4

ResNet-18  SLR 92.3 85
Iter. Prun. [11] 75
SLR 92.93 75
Cprune [15] 92.7
SLR 93.6

ResNet-50 AMC [13] 935 60
SLR 93.8
GSM [8] 94.1 80
Group Sparsity [19] 92.65
SLR 93.64
GNN-RL [48] 93.49
KSE [21] 93.23 50
EB [46] 92.44
RST [1] 92.11

ResNet-56 SLR 93.66
3D [43] 93.46
DHP [20] 93.32 40
HRank [23] 93.17
NISP [47] 93.01
SLR 93.52
GAL-0.6 [24] 93.38 15
[18] 93.06

computational complexity with respect to input image size and achieves state-of-the-art perfor-
mance on both image classification and object detection and semantic segmentation tasks. We
conduct experiments on the ImageNet ILSVRC 2012 benchmark. We utilize the pre-trained models
from the PyTorch Image Models code base [45].

Training Settings. Similar to experiments with CNN-based models, we set p = 0.1. We set the
learning rate at 0.01 and the batch size at 128, and we use the SGD optimizer with the momentum of
0.9 and a weight-decay of 10™%. To ensure a fair comparison, we used the same number of training
epochs and sparsity configurations for both SLR and ADMM methods.

Comparison of SLR and ADMM.. The comparison of SLR and ADMM applied on the MLP-
Mixer model on the ImageNet benchmark is presented in Table 3. We compare the two methods
using three distinct compression rates. The final hardpruning accuracy is reported after 100 epochs
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Table 3. SLR Pruning Results with MLP-Mixer on ImageNet through Different Compression Rates

Baseline Compression Hardpruning Acc. (%) Retraining Acc. (%)
Acc (%) Rate ADMM SLR ADMM SLR
Top@1 Top@5 Top@1 Top@5 Top@l Top@5 | Top@l Top@5 Top@l Top@5
1.96X 75.332  91.734 75392  91.752 | 75.332 91.714 75392  91.752
76.598  92.228 3.16X 71.798  89.64  72.578 90.136 | 73.362  90.672 73.56  90.750
8.28% 47.592  71.698 54834 77.696 | 70.864  89.38  71.036  89.494

Table 4. SLR Pruning Results with Swin Transformer (Tiny) on ImageNet through
Different Compression Rates

Baseline Compression Hardpruning Acc. (%) Retraining Acc. (%)
Acc (%) Rate ADMM SLR ADMM SLR
Top@1 Top@5 Top@1 Top@5 Top@l Top@5 | Top@l Top@5 Top@l Top@5
1.95% 78.910 94.288  79.018 94.446 | 79.146 94.424 79.108  94.456
81.350  95.532 3.13X 73.074  91.370  74.322  91.988 | 75.278 92.55 75.508  92.630
4.50x 63.892  85.104 67.398 87.494 | 72.626 90.966 73.046 91.364

of training without further retraining. Retrain accuracy is also reported after 50 epochs. For all SLR
experiments, we set the parameters to M = 300, r = 0.1, and sp = 0.01. As indicated in Table 3, in
terms of hardpruning, when the compression rate is low at 1.96x, the two methods have similar
performance. As the compression rate increases to 3.16x and 8.28%, SLR outperforms ADMM,
with the accuracy gap widening as the compression rate increases. This demonstrates that SLR
outperforms ADMM by achieving higher accuracy during the hardpruning stage, which leads to
more efficient use of training resources.

The comparison of SLR and ADMM on the Swin Transformer model on the ImageNet benchmark
is shown in Table 4. In all the experiments, we choose the tiny version (Swin-T) because it balances
the model size and accuracy very well. For SLR experiments, when the compression rate is 1.96X,
we use the parameters M = 150, r = 0.1, and sp = 0.05. When the compression rate is 3.16X,
we use the parameters M = 300, »r = 0.1, and sy = 0.01. And when compression rate is 4.5X, we
use the parameters M = 150, r = 0.05, and sy = 0.005. As demonstrated, when the compression
rate is 1.95%, SLR obtains higher accuracy than ADMM at the hardpruning stage. After 50 epochs
of retraining, the accuracy of ADMM improves 0.2% and becomes closer to the accuracy of SLR,
whereas SLR improves 0.01%. This demonstrates that our SLR can obtain higher accuracy at the
hardpruning stage. As the compression rate increases, the accuracy gap between SLR and ADMM
also widens. For instance, at a compression rate of 4.5%, the accuracy of SLR is 2.4% higher than
that of ADMM at the hardpruning stage.

Figure 2 plots periodically checked the hardpruning accuracy of SLR and ADMM with MLP-
Mixer on ImageNet. The compression rates correspond to Table 3, following the same procedure
described in Section 4.2 that if the hardpruning accuracy meets the accuracy criteria, the training
is stopped. As shown, SLR quickly converges and achieves higher accuracy compared with ADMM.
When the compression rate is low, such as 1.96X, two methods converge at a similar rate. However,
as the compression rate increases, SLR not only converges faster than ADMM but also reaches
much higher accuracy. ADMM even cannot achieve the desired accuracy after 60 epochs of training
when the compression rate is 8.28x. In Figure 2(c), we can see that SLR quickly converges to the
threshold at around 50 epochs and results in an 8.6% accuracy gap between ADMM when the
training of SLR is stopped, and ADMM'’s accuracy continues to improve, albeit slowly, until epoch
100.

Figure 3 plots periodically checked hardpruning accuracy of SLR and ADMM with Swin Trans-
former on ImageNet, with the compression rates corresponding to those reported in Table 4. It
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Fig. 2. Top-5 hardprune accuracy of MLP-Mixer on ImageNet after SLR and ADMM pruning. Accuracy is
reported periodically and training stops when the method reaches the accuracy threshold.
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Fig. 3. Top-5 hardprune accuracy of Swin Transformer (Tiny) on ImageNet benchmarks after applying SLR
and ADMM weight pruning. Accuracy is reported periodically and training stops when the method reaches
the accuracy threshold.

follows the same procedure described in Section 4.2 that the training stops if the hardpruning ac-
curacy meets the accuracy criteria. Under the three compression rates, SLR consistently converges
to the desired accuracy in half the number of training epochs compared to ADMM. Even when the
compression rate is 3.16X, SLR results in an approximately 1% accuracy gap with ADMM when it
stops training. This further demonstrates that our SLR can quickly recover the model accuracy at
the hardpruning stage itself.

4.4 Evaluation on Object Detection and Segmentation Tasks

In this subsection, we evaluate our SLR-based weight pruning method on three object detection
and segmentation benchmarks.

Models and Datasets. In the first experiment, we test YOLOv3 and YOLOv3-tiny models [37] on
the COCO 2014 benchmark. We followed the publicly available Ultralytics repository* for YOLOv3
and its pre-trained models. The second experiment focuses on lane detection. We use the pre-
trained model from Ultra-Fast-Lane-Detection [35] on the TuSimple lane detection benchmark
dataset. The third experiment involves 3D point cloud object detection experiments. We use the
PointPillars [17] pre-trained model on the KITTI 2017 dataset following the OpenPCDet reposi-
tory. In this experiment, we use LIDAR point cloud data as input. Each point cloud data point is
stored as a large collection of 3D elevation points, and each point is represented as a 1 = 4 vector
containing x, y, z (3D coordinates) and intensity [51].

Training Settings. In all experiments, we use p = 0.1. We set SLR parameters as M = 300,
r = 0.1, and sy = 1072. We follow the same training settings provided by the repositories we use.

4https://github.com/ultralytics/yolov3
Shttps://github.com/open-mmlab/OpenPCDet
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Table 5. ADMM and SLR Pruning Results Table 6. SLR Pruning Results with
with Different Structures of YOLOv3 ResNet-18 on the TuSimple Benchmark
on the COCO Dataset through Different Compression Rates

. Hardprune Comp. Comp. Hardprune Acc. (%) Retrain Acc. (%)
Architecture  Epoch  Method " 4p Rate Rate ~ADMM _ SLR | ADMM _ SLR
15 ADMM 35.2 | 19x 1.82% 92.49 94.64 94.28 94.63

SLR 36.1 ) 2.54x 92.25 94.56 94.04 94.93

YOLOV3-tiny 20 ADMM 32.2 2% 4.21% 90.97 94.66 94.18 94.68
(mAP = 37.1) SLR 36.0 12.10x ~ 88.41 9451 94.45 94.7
”s ADMM 25.3 3 33% 16.85x  78.75 94.55 94.23 94.65

SLR 35.4 ’ 22.80% 67.79 94.62 94.08 94.55

YOLOv3-SPP 15 ADMM 41.2 2% 35.25% 57.05 93.93 93.63 94.34
(mAP = 64.4) SLR 53.2 77.67%  46.09 89.72 88.33 90.18

YOLOv3 YOLOv3-tiny

Hardpruning Accuracy

—— SLR

(%]

Accuracy (%)
N
S

—— ADMM
5 601 o sir
O PP R 0P 501 —»— ADMM
Epoch 40
P % s88 & 5
, ~ ey g N
(a) YOLOv3 (b) YOLOv3-t|ny Compression Rate

Fig. 4. Hardpruning accuracy of YOLOv3 and Fig. 5. Hardpruning accuracy on the TuSimple
YOLOVv3-tiny. Accuracy is reported every 5 epochs benchmark with ADMM vs. SLR training for several
and training is stopped when methods reach the compression rates. SLR has a greater advantage over
accuracy threshold. ADMM as the compression rate increases.

Finally, weuse the same number of training epochs and sparsity configurations for ADMM and
SLR.

Testing Settings. On the YOLOv3 models, we calculate the COCO mAP with IoU = 0.50 with
an image size of 640 for testing. In lane detection experiments, the evaluation metric is “accuracy,”

. . cli Cci . . .
which is calculated as %, where C,j;), is the number of lane points predicted correctly and
clip Oclip

Sctip is the total number of ground truth in each clip.

The KITTI dataset is stratified into easy, moderate, and hard difficulty levels. Here, Easy level
means that the minimum height of the bounding box is 40 pixels, all objects in the images are
fully visible, and the percentage of truncation of objects is less than 15%; Moderate level means
that the minimum bounding box height is 25 pixels, objects in the images are partly visible, and
the percentage of truncation of objects is less than 30%; and Hard level means that the minimum
bounding box height is 25 pixels but some objects in the image are difficult to see, and the maximum
percentage of truncation is 50%. mAP is calculated under each difficulty strata with IoU = 0.5.

Comparison of SLR and ADMM. Our comparison of SLR and ADMM methods on the COCO
dataset is shown in Table 5. We have compared the two methods under three different compres-
sion rates for YOLOv3-tiny and tested the YOLOv3-SPP pre-trained model with a compression
rate of 1.98X. We can see that the model pruned with the SLR method has higher accuracy after
hardpruning in all cases. At a glance at YOLOv3-tiny results, we can observe that the advantage
of SLR is higher with an increased compression rate.

At a compression rate of 3.33x on YOLOv3-tiny, given a limit of 25 epochs, we can observe that
the gap between ADMM and SLR is much higher, which is due to the faster convergence of SLR as
shown in Figure 4(b). Similarly, Figure 4(a) shows the mAP progress of YOLOv3 during SLR and
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Fig. 6. Heatmap of ResNet-18 weights on the TuSimple benchmark before and after pruning with SLR and
ADMM. Weights are more zeroed out with SLR compared to ADMM.
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Fig. 7. mAP of the PointPillars model after hardpruning using different compression rates under different
difficulty levels.

ADMM training for 50 epochs, pruned with a 2x compression rate. SLR reaches the mAP threshold
only at epoch 15.

Table 6 reports our result for the lane detection task on the TuSimple lane detection benchmark
after 40 epochs of training and 5 epochs of masked retraining. We conducted experiments under
eight different compression rates. Figure 5 illustrates the accuracy gap between ADMM and SLR
methods after hardpruning as the compression rate increases.

From Figure 5, our observation is that for a small compression rate such as 1.82x, SLR has lit-
tle advantage over ADMM in terms of hardpruning accuracy. However, as the compression rate
increases, SLR starts to perform better than ADMM. For example, SLR survives 77.67X compres-
sion with slight accuracy degradation and results in 89.72% accuracy after hardpruning, whereas
ADMM accuracy drops to 46.09%. This demonstrates that our SLR-based training method has a
greater advantage over ADMM, especially at higher compression rates, as it achieves compression
with less accuracy loss and reduces the time required to retrain after hardpruning.
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Table 7. ADMM and SLR Results of the PointPillars Model on KITTI in Different Task Difficulty Levels
and Compression Rates

Level Orig. mAP Compression ADMM SLR
& P After Hardprune After Retrain | After Hardprune After Retrain
4.874x 77.0 815 77.8 82.2
5.702% 74.7 74.7 77.3 79.3
Easy 80.7 6.431x 72.9 77.5 76.6 75.3
9.449x 58.6 70.9 68.0 79.9
4.874x 73.8 77.1 745 78.4
5.702% 71.9 71.0 745 75.3
Moderate 78:5 6.431x 69.9 73.2 73.2 72.7
9.449% 54.1 66.8 65.6 75.8
4.874x 51.9 51.2 52.0 56.4
5.702% 50.1 50.2 52.9 51.3
Hard 60.7 6.431x 485 47.8 495 50.7
9.449x 30.8 35.6 46.1 51.4

Finally, in Figure 6, we show the difference between the weights of one layer before and after
pruning with SLR and ADMM. In Figure 6(a), we show the initial (non-pruned) weights and then
show the sparsity of weights under the same compression rate (77x) with SLR and ADMM. Initially,
the layer has low sparsity. After training with SLR and ADMM, we can see an increased number
of zeroed weights. SLR moves toward the desired sparsity level faster than ADMM. In Figure 6(b),
we compare the sparsity of weights under the same accuracy (89.0%). It can be observed that SLR
significantly reduced the number of non-zero weights, and ADMM has more non-zero weights
remaining compared with SLR.

Last, Table 7 shows the 3D point cloud object detection model compression results on the KITTI
benchmark. The SLR and ADMM results are reported after 40 epochs of training and 3 epochs of
masked retraining. We have two observations. First, SLR has much higher accuracy than ADMM
after hardpruning with the compression rate increased. For example, as shown in Figure 7, when
tested under a 9.44x compression rate, under “hard” strata, SLR has a mAP that is more than
15% higher than ADMM, as illustrated in Figure 7(c). In “easy” and “moderate” difficulty strata,
as shown in Figure 7(a) and (b), the hardpruning mAP of SLR is still more than 10% higher than
ADMM under a 9.44x compression rate. Second, we can observe that since SLR has higher mAP
after the hardpruning stage, it also reaches significantly higher mAP after retraining. There is
almost 16% mAP difference between SLR and ADMM in the “hard” difficulty level under a 9.44x
compression rate. This shows that when the retraining budget is limited, our SLR method can
quickly recover the model accuracy.

4.5 Ablation Studies

We conduct several experiments to observe
Surrogate Optimality Condition

1| D ommn cmoTTh ST SISO SLR behavior with respect to SLR parameters
o Contion T P, So, ', and M on the ResNet-18 model (93.33%

Condition 2 accuracy) on CIFAR-10. We prune the model

ol © (v ) o s ] ® o0 through SLR training for 50 epochs with a com-
0 5o 20 N B e pression rate of 8.71x and observe the hard-

pruning accuracy every 10 epochs. Figure 9
shows the accuracy of the model through SLR
training based on the different values of s,
M, and r. Based on the hardpruning accuracy
throughout training, it can be seen that even
though the parameters do not have a great im-

Fig. 8. Surrogate optimality condition satisfaction
graph during the SLR training of ResNet-18 on CIFAR-
10 for 50 epochs (1: satisfied, 0: not satisfied). Condi-
tions are satisfied periodically.
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Fig. 9. Hardpruning accuracy of ResNet-18 on CIFAR-10 during SLR training with respect to different values
of so, M, and r.

pact on the end result, the choice of sy can impact the convergence of the model. From Figure 9(a),
we can state that sy = 1072 provides higher starting accuracy and converges quickly. Figure 9(b)
and (c) demonstrate the impact of M and r on the hardpruning accuracy, respectively.

Figure 8 demonstrates that there exists iteration x (as required in the theorem) so that the sur-
rogate optimality condition, the high-level convergence criterion of the SLR method, is satisfied
during training with s) = 1072, p = 0.1, thereby signifying that “good” multiplier-updating direc-
tions are always found. For example, after the conditions are violated at epoch 9, there exits k = 10
so that at iteration 11, after k = 10, the surrogate conditions are satisfied again.

5 DISCUSSION

ADMM and SLR are both optimization techniques. Although possessing certain similarities, each is
marked by unique attributes and workflows. Primarily, they aim to decompose complex optimiza-
tion problems into a series of simpler subproblems, which can be solved more efficiently. These
subproblems are then coordinated in a manner dictated by specific requirements and the choice
of stepsizes.

ADMM, although widely used, strictly speaking, imposes a significant computational burden
due to its stringent requirements for subproblem optimality. These requirements become especially
challenging due to the non-convex nature of the subproblems. Even though the preceding require-
ment can be implicitly relaxed (e.g., optimization can stop after one epoch in our problem context),
the method does not explicitly provide criteria for the quality of the resulting multiplier-updating
directions. However, SLR presents a more approachable option by necessitating the fulfillment of
the surrogate optimality condition, which is easier to satisfy (as compared to obtaining the exact
optimum at each iteration) and has been proven to be instrumental to guarantee convergence [6],
because of better multiplier-updating directions.

The selection of stepsizes also defines a key difference between ADMM and SLR. Due to the
discrete nature of the dual problems, stepsizes need to asymptotically approach zero—a concept
echoed in numerous historical studies (e.g., [34]) as well as recent ones (e.g., [4]). Although ADMM
does not follow this rule, SLR stepsizes do approach zero, which significantly influences the efficacy
of each method.

In our research, we provide empirical and theoretical evidence indicating the superiority of SLR
over ADMM, primarily presented in Theorem 2. To quantitatively measure the superiority of SLR
solutions, we introduce a novel quality metric.

In sum, although both ADMM and SLR methods hold distinct merits, our recent research [4]
provides a critical conceptual juxtaposition. Our findings indicate that ADMM may not always
converge due to the non-differentiability of the underlying dual function. However, our proposed
quality measure providing a theoretical advantage of SLR over ADMM is specific to this work.
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6 CONCLUSION

In this article, we addressed the DNN weight-pruning problem as a non-convex optimization prob-
lem by adopting the cardinality function to induce weight sparsity. The SLR method decomposes
the relaxed weight-pruning problem into subproblems, which are then efficiently coordinated by
updating Lagrangian multipliers, resulting in fast convergence. We carried out weight-pruning ex-
periments on image classification and object detection and segmentation tasks on various datasets
to compare our SLR method against ADMM and other state of the art. We observed that our SLR
method offers a significant advantage under high compression rates and achieves higher accuracy
during weight pruning. Additionally, SLR reduces the accuracy loss caused by the hardpruning and
shortens the retraining process. Given its effective optimization as well as coordination capabili-
ties and clear advantages demonstrated through various examples, the SLR method holds strong
potential for broader DNN-training applications.
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