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ARTICLE INFO ABSTRACT

Keywords: Microbial communities are the primary drivers of carbon cycling in the McMurdo Dry Valleys of Antarctica.
Antarctica Dense microbial mats, consisting mainly of photosynthetic cyanobacteria, occupy aquatic areas associated with
Blo]c)rust streams and lakes. Other microbial communities also occur at lower densities as patchy surface biological soil
Carbon crusts (hereafter, biocrusts) across the terrestrial landscape. Multispectral satellite data have been used to model
Reflectance spectroscopy . . . . . . . . .

Snow microbial mat abundance in high-density areas like stream and lake margins, but no previous studies have

investigated the lower detection limits of biocrusts. Here, we describe remote sensing and field-based survey and
sampling approaches to study the detectability and distribution of biocrusts in the McMurdo Dry Valleys. Using a
combination of multi- and hyperspectral tools and spectral linear unmixing, we modeled the abundances of
biocrust in eastern Taylor Valley. Our spectral approaches can detect low masses of biocrust material in labo-
ratory microcosms down to biocrust concentrations of 1% by mass. These techniques also distinguish the spectra
of biocrust from both surface rock and mineral signatures from orbit. We found that biocrusts are present
throughout the soils of eastern Taylor Valley and are associated with diverse underlying soil communities. The
densest biocrust communities identified in this study had total organic carbon 5x greater than the content of
typical arid soils. The most productive biocrusts were located downslope of melting snowpacks in unique soil
ecosystems that are distinct from the surrounding arid landscape. There are similarities between the snowpack
and stream sediment communities (high diversity of soil invertebrates) as well as their ecosystem properties (e.g.,
persistence of liquid water, high transfer of available nutrients, lower salinity from flushing) compared to the
typical arid terrestrial ecosystem of the dry valleys. Our approach extends the capability of orbital remote sensing
of photosynthetic communities out of the aquatic margins and into the drier soils which comprise most of this
landscape. This interdisciplinary work is critical for measuring and monitoring terrestrial carbon stocks and
predicting future ecosystem dynamics in this currently water-limited but increasingly dynamic Antarctic land-
scape, which is particularly climate-sensitive and difficult to access.

Soil ecology

1. Introduction play foundational roles in the ecosystems where they occur (Belnap
et al., 2016). Biocrusts are distributed across hot and cold deserts and are

Biocrusts, i.e., soil aggregates containing communities of cyanobac- oftentimes an important source, if not the primary source, of carbon (C)
teria, algae, moss, lichen, etc. on the surface of soil (Weber et al., 2022), in these systems (Elbert et al., 2012). They perform key ecological
inhabit all continents (Belnap et al., 2016), are estimated to cover 12% functions, including photosynthesis, nitrogen fixation, nutrient cycling,
of the Earth’s terrestrial surface (Rodriguez-Caballero et al., 2018), and and soil stabilization (Belnap, 2003), which are particularly important
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in ecosystems that lack vascular vegetation. Biocrusts may be more
susceptible to climate change than previously thought (Finger-Higgens
et al., 2022). Climate warming and precipitation variation appears to
have already impacted some biocrust communities and will likely
continue to result in biocrust degradation across ecosystems (Finger--
Higgens et al., 2022). Detecting and mapping biocrust is essential for
monitoring these important soil communities in a changing climate.

In the McMurdo Dry Valleys (MDV) of Antarctica, microbial com-
munities are the drivers of carbon cycling, particularly in and adjacent
to lakes, ponds, and streams where dense microbial mats are abundant
(Cary et al., 2010; Van Horn et al., 2016; Stone et al., accepted). How-
ever, less dense microbial communities also occur in drier soils outside
the hydrological influence of glaciers, stream channels, or lakes in areas
where snow or subsurface thaw are presumably the main sources of
water. In such environments, which constitute most of the dry valley
landscape, microbial communities are sparse, have high soil content,
and are better described as biocrusts. Here, we define biocrusts as the
communities which are present in drier areas away from streams and
lakes, and although they can be quite similar morphologically to the
microbial mats present in aquatic areas, biocrusts are typically less
dense and patchily distributed among the terrestrial landscape where
there are alternative sources of moisture, e.g., snowpacks and ground-
water seeps (Gooseff et al., 2013; Weber et al., 2022).

Previous studies of MDV microbial mat dynamics have primarily
focused on the communities occurring close to or within the streams and
lakes (e.g., Alger et al., 1997). Soil environments outside of stream
channels have traditionally been thought to support less visible biocrust
biomass in comparison, so fewer studies have focused on these terres-
trial communities. However, these terrestrial areas are far more spatially
extensive than the aquatic environments in the MDV, and therefore,
even sparse distributions and densities of biocrusts could sum to a
considerable amount of total biomass. For example, the Lake Fryxell
basin, excluding Lake Fryxell, is 53.55 km?, while the cumulative stream
area is approximately 2.58 km? (4.82%), determined via satellite im-
agery. The terrestrial landscape of this region occupies more than 20x
the surface area relative to ephemeral stream channels and lake margins,
so although biocrusts are typically less dense than microbial mats, we
anticipate soils of the MDV contain a considerable amount of carbon in
and under these biocrusts (e.g., Burkins et al., 2001). We suggest that the
terrestrial regions of Taylor Valley may contain more cumulative
biomass than the stream channels given their spatial extent. A system-
atic and scalable method is required to measure and monitor biocrust
biomass over large spatial scales: remote sensing.

Assessing the detectability of biocrusts via remote sensing is a critical
first step in estimating terrestrial carbon stocks in this region and
examining controls over the distribution and activity of these soil
communities. Our previous research has demonstrated the utility of
multispectral satellites (e.g., WorldView-2 and WorldView-3; WV-2 and
WV-3) in detecting densely colonized microbial mats near streams in the
Lake Fryxell basin region using spectral parameters and spectral linear
unmixing models (Power et al., 2020; Salvatore, 2015; Salvatore et al.,
2020, 2021). In addition to the strong photosynthetic signatures iden-
tified near stream channels and lake margins, we also observed
enhanced spectral signatures indicative of photosynthetic activity in
upland areas not connected to streams or lakes (Power et al., 2020).
While remote sensing techniques have been demonstrated to be effective
in regions of dense microbial mats, these techniques have not been
specifically validated throughout the broader landscape where photo-
synthetic communities are much more dispersed and their resultant
signatures are often much weaker and discontinuous. Therefore, this
work tests the hypothesis that these observed spectral signatures outside
of stream channels are associated with areas of increased soil produc-
tivity and not, for example, associated with spectral artifacts created by
topographic or lithological variations.

Our objectives for this study are to assess the detectability of biocrust
and examine the environments in which these unique communities are

Science of Remote Sensing 9 (2024) 100120

found in the MDV. By investigating the spatial distribution of biocrusts
using orbital data, our work contributes in part to efforts in refining
existing carbon budgets (e.g., Barrett et al., 2006b; Burkins et al., 2001),
predicting future carbon stocks, and examining controls over the dis-
tribution and activity of biocrusts in the MDV. Here, we present the first
assessment of biocrust detectability in the MDV terrestrial landscape
using a combination of laboratory hyperspectral spectroscopy,
WorldView-2 and WorldView-3 multispectral satellite imagery, and
in-situ soil and biocrust surveying and sampling.

2. Materials and methods
2.1. Site description

The MDV are the largest contiguous ice-free area on the Antarctic
continent, with approximately 4500 km? of exposed soil, stream, and
lake ecosystems (Levy, 2013). Glacial meltwater during the austral
summer (i.e., 24 h daylight) feeds streams that flow for an average of 4-9
weeks per year (Wlostowski et al., 2016). These streams drain into
perennially ice-covered lakes along the floor of Taylor Valley. While
dense microbial mats (mm - cm thick) occupy streams and lake margins
(Fig. 1 a), biocrusts occur at lower densities as discontinuous mats in
intermittently wet soils (Fig. 1 b, ¢). The microbial mats are dominated
by cyanobacteria (e.g., Nostoc, Oscillatoria, and Phormidium) and also
contain chlorophyta (green algae) (Alger et al., 1997), various diatom
species (Alger et al., 1997), and mosses which can also occur separately
from microbial mats (Bryum spp. and Hennediella spp.; Pannewitz et al.,
2003; Schwarz et al., 1992). While studies on biocrust composition in
the MDV are lacking, the biocrusts here contain cyanobacteria and
mosses based on visual identification and appear to be dominated by
Nostoc specifically. Communities of nematodes, rotifers, and tardigrades
also inhabit the soils, sediments, and microbial mats of this region
(Freckman and Virginia, 1997; Simmons et al., 2009a). Though, given
the relatively low soil invertebrate biomass, grazing influences on mi-
crobial mats and biocrusts are thought to be minimal, making the MDV a
simple system for studying biocrust and microbial mat dynamics.

Taylor Valley, one of several valleys in the MDV, spans from the
McMurdo Sound of the Ross Sea in the east to the Taylor Glacier in the
west. The eastern portion of Taylor Valley includes a dozen ephemeral
glacial meltwater streams and Lake Fryxell, which have been the subject
of numerous microbial mat studies (e.g., Alger et al., 1997; Kohler et al.,
2015; McKnight et al., 1998; Stanish et al., 2011). Due to proximity to
the coast, eastern Taylor Valley also has the greatest relative humidity
and the most shallow ice-cemented permafrost layers in the region, and
therefore typically has higher soil water content (Bockheim et al., 2008;
Doran et al., 2002; Obryk et al., 2020) and richer communities of soil
invertebrates with greater biomass than other parts of Taylor Valley or
neighboring Wright Valley (Adams et al., 2006; Barrett et al., 2006c,
2007; Courtright et al., 2001; Xue et al., 2023).

2.2. Spectral detection limit experiment

We created microcosms of biocrust material and bare soil (not con-
taining biocrust) of varying percent (0-100%) biocrust by weight (g/g)
in the laboratory and characterized these materials using hyperspectral
reflectance techniques to quantify the potential detection limits of our
remote sensing methods. The soil was collected from the Fryxell basin,
and to minimize oversampling of the sensitive dry valley biocrust
communities, we collected a Nostoc-dominated biocrust from a warm
desert environment in Arizona, which has a similar spectrum as the dry
valley biocrust (Fig. S1). Both biocrust spectra contain absorption fea-
tures at ~0.68, 1.19, 1.45, 1.78, and 1.93 pm, indicating that the major
spectral characteristics between both types of biocrust are the same and
therefore justify this analog material’s appropriateness for our labora-
tory experiment. The biocrust and soil were separately ground into a
homogenous fine particle size for hyperspectral analysis. This
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Fig. 1. Photos of (a) dense, wet microbial mat in the Canada Flush (see Power et al., 2020); (b) dense biocrust downhill from snowpack (plot 09); (c) sparse, incipient
biocrust in moist depression (plot 26); and (d) representative low productivity desert pavement (plot 31). Photographs taken by S. Power.

disaggregation process allows the biocrust to evenly distribute among
the soil particles, and from a chemical and pigment perspective, the
spectral characteristics of the biocrust remain largely unchanged after
disaggregating. A known quantity of biocrust was mixed with a known
quantity of soil to achieve the desired percent biocrust mixtures, and the
mixtures were placed into a sample holder ~2.5 cm in diameter and 0.5
cm in depth. Sample mixtures were moistened with DI water and placed
under a halogen lamp for several minutes, allowing time for the or-
ganisms to reactivate and begin photosynthesizing. We targeted a final
water content for our wetted samples of approximately 0.25 GWC (g
H20/g dry soil and biocrust material). Spectra were acquired using an
Analytical Spectral Devices (ASD) FieldSpec4 high-resolution hyper-
spectral reflectance spectrometer set up for use in a stable lab environ-
ment. Data were collected between 350 and 2500 nm at a 1 nm sampling
interval. A halogen lamp was used to illuminate the samples at 30° off-
nadir and approximately 25 cm away, while reflectance was measured at
nadir using the ASD’s bare fiber optic cable roughly 3 cm above the
sample surface with a 25° field of view projecting a 1.39 cm? spot size
onto our samples. To minimize instrument noise, particularly at the
longest and shortest wavelengths where the output of the halogen bulb is
lowest, we averaged 50 individual spectra for each biocrust-soil com-
bination produced in the lab. All data were then downsampled to WV-2
and WV-3 spectral resolutions for direct comparison to the respective
orbital platforms. Linear mixtures of pure soil and biocrust spectra were
also modeled for comparison to the spectra of those known physical
mixtures to determine the nature of the observed spectral mixing rela-
tionship, validating the ability to confidently translate this linear
unmixing method to orbital data.

2.3. Orbital spectral collection and processing

Satellite images acquired during austral summers were used to
identify photosynthetic signatures in upland terrestrial areas.
WorldView-2 and WorldView-3 (DigitalGlobe, Inc.) are multispectral
satellites in polar orbit with 8 multispectral bands at 1.84 m and 1.24 m
nadir resolutions, respectively. Georeferenced data, validated using
ground control points, were obtained from the University of Minnesota

Polar Geospatial Center (PGC) through a cooperative agreement be-
tween the National Science Foundation (NSF) and National Geospatial-
Intelligence Agency (NGA). These data were subsequently processed to
atmospherically corrected surface reflectance using five spectral ground
validation targets acquired in the field during the 2018-2019 austral
summer, following methods from Salvatore et al. (2021). Band-specific
linear relationships between top-of-atmosphere reflectance data and
ground validation spectra were applied to the entirety of the satellite
images to remove atmospheric contributions to the observed signal.
These corrected surface reflectance data were used in several analyses
and compared with ground-based surveys of soil chemical and biological
properties detailed in the sections below.

2.4. Field site identification and in-situ environmental sample collection

We used vegetation indices, such as the Normalized Difference
Vegetation Index parameter (NDVI; Tucker, 1979), to target locations of
varying photosynthetic activity across the eastern Taylor Valley land-
scape. High NDVI values are typical of photosynthetic vegetation, which
has a unique spectral signature of absorbance in the visible wavelengths
(due to the activity of chlorophyll-a and other pigments) and strong
reflectance in near-infrared regions due to scattering and reflectance of
long-wave radiation by cell walls. NDVI was calculated using spectral
reflectance measurements acquired in the near-infrared (WV-2 Band 7,
centered at 831 nm; WV-3 centered at 832 nm) and red (WV-2 Band 5,
centered at 659 nm; WV-3 centered at 661 nm) using the Environment
for Visualizing Images (ENVI, Harris Geospatial) software package.

Thirty locations with either consistently high NDVI values, consis-
tently low NDVI values, or variable NDVI values were identified in
eastern Taylor Valley outside of stream channels and lake margins
(Fig. 2) using three satellite images: a WV-3 image acquired on January
17,2015 (1040010006846000), a WV-2 image acquired on January 19,
2018 (1030010077755100), and another WV-2 image acquired on
December 11, 2018 (1030010089D13500). These 30 locations were
selected to represent a range of potential photosynthetic activity and
topographic features (i.e., slope, aspect, and elevation) characterized
using an airborne lidar-derived digital elevation model (DEM) at 1 m
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Fig. 2. True color image of the Lake Fryxell basin with the 30 sampling loca-
tions labeled. The 12 intensively sampled plots are denoted by triangles. Inset
on the bottom right corner identifies the McMurdo Dry Valleys, Antarctica with
a red square. WV-2 imagery (1030010089D13500) © Dec 11, 2018 Digital-
Globe, Inc. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

spatial resolution (Fountain et al., 2017). Depressions, rocky outcrops,
sloped hills, and flat surfaces were all represented in our field locations.
Overall, these locations were selected to maximize spatial coverage of
ranges in photosynthetic activity and topography across the landscape.

We sampled, photographed, and documented relevant environ-
mental conditions (e.g., evidence of surface moisture, presence/absence
of microbial mat, moss, or biocrust, presence of snowpacks, surface or
lithological variations like dominant presence of oxidized granite) at
each of these 30 locations in December of 2019. We collected a surface
layer sample of soil or biocrust (if present) and rock from all sites for
subsequent hyperspectral analysis in the laboratory using the same
methods and laboratory set-up as previously described in Section 2.2. At
12 of the sites, we established 5 m x 5 m intensive sampling plots and
collected 5 surface layer soil or biocrust samples 128 cm? in area from
each corner and center of the plots for pigment analysis (chlorophyll-a,
scytonemin, and carotenoids) and organic matter content via ash-free
dry mass (AFDM). We also collected underlying soil down to 10 cm
below the surface for gravimetric water content (GWC), electrical con-
ductivity (EC), pH, inorganic nitrogen (N) concentration in the form of
ammonium (NHZ$) and nitrate (NO3), inorganic phosphorus (P) con-
centration in the form of phosphate (PO%‘), total organic carbon (TOC),
total nitrogen (TN), and invertebrate abundance (see below). After the
initial soil chemistry and invertebrate diversity and abundance analyses,
samples were frozen at —20 °C and transported to Virginia Tech and
Northern Arizona University for remaining chemical and spectral
analyses.

2.5. Analysis of environmental field samples

We estimated pigment concentration on the surface ~1 cm layer soil
and biocrust samples using a trichromatic spectrophotometric method
for chlorophyll-a, carotenoids, and scytonemin at 663, 490, and 384 nm,
respectively (Garcia-Pichel and Castenholz, 1991). Throughout the
process, care was taken to avoid exposing the samples to light. The
samples were dried at 105 °C for 24 h, sieved through a 4 mm sieve, and
extracted for 24 h at ambient temperature in 90% unbuffered acetone
using a 3.75:10 soil to solvent ratio, based on protocols from Couradeau
et al. (2016) and the McMurdo Dry Valleys Long Term Ecological
Research Program (MCM LTER) standard methods. After centrifugation,
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the extracts were analyzed on a spectrophotometer using 10 mL cu-
vettes. The absorbances contributed by each pigment were calculated
using the trichromatic equations outlined in Garcia-Pichel and Cas-
tenholz (1991), and the pigment concentrations were calculated using
the Beer-Lambert Law with the extinction coefficients of 89.7 Lg ™! cm™!
for chlorophyll-a (Couradeau et al., 2016), 112.6 L g~! em™* for scyto-
nemin (Brenowitz and Castenholz, 1997), and 262 L g*1 em™! for ca-
rotenoids (Thrane et al., 2015). Additionally, the surface layer soil and
biocrust samples were measured for AFDM by weighing a known area of
sample, combusting at 550 °C for 24 h using a muffle furnace, gently
stirring samples halfway through combustion, and reweighing after
cooling in a desiccator. Given the very low clay content of soils in this
region (Barrett et al., 2006a), the rehydration of clays was assumed
negligible, so we did not rewet samples.

Using the underlying 1-10 cm soil, we measured pH and electrical
conductivity using a 1:2 and 1:5 soil to DI HpO slurry with pH and
conductivity probes, respectively (Barrett et al., 2004), and we
measured gravimetric water content by mass lost after oven drying at
105 °C for 24 h. We also extracted inorganic N (NH4 and NO3) in 2 M
potassium chloride and inorganic P (PO%’) in 0.5 M sodium bicarbonate;
inorganic N and P were measured on extracts using a Lachat QuikChem
flow injection analyzer (Keeney and Nelson, 1982; Olsen and Sommers,
1982; Knepel, 2003; Prokopy, 1995). Additionally, we measured TOC
and TN using an Elementar Vario MAX Cube analyzer after fumigating
samples with concentrated hydrochloric acid to remove the influence of
carbonates on TOC values (Ramnarine et al., 2011; Walthert et al., 2010;
Fritsen et al., 2000).

Invertebrate abundance was enumerated using inverted light mi-
croscopy on soil solutions using a modified sugar-centrifugation
extraction procedure described by Freckman and Virginia (1993).
Nematode abundance is reported as the total number of live Scottnema,
Eudorylaimus, and Plectus individuals, and total live rotifers and tardi-
grades per kg dry mass soil. Using R Statistical Software version 4.0.3 (R
Core Team, 2017), a PCA on correlation was executed to visually
compare plots in terms of their physicochemical properties. A MANOVA
was performed to statistically assess whether there is a significant dif-
ference between the three plot types (biocrust, oxidized granite, soil)
using physicochemical variables. An ANOVA was performed next to
assess which, if any, physicochemical variables are significantly
different between the plot types.

2.6. Vegetation index analysis using orbital data

To examine variations in photosynthetic activity across our sampled
locations in eastern Taylor Valley, we applied several vegetation indices
to orbital data. The primary WV-2 image used in this analysis
(103001009FAOAE00) was acquired on December 3, 2019, approxi-
mately three weeks before our field sampling campaign. In addition to
NDVI, we also calculated the Simple Ratio Index (SR), the Red-Edge
Simple Ratio Index (SRre), and the Normalized Pigment Chlorophyll
Index (NPCI). SR and NPCI are effective in detecting dry biocrust com-
munities from other arid regions (e.g., the Colorado Plateau) with a
portable spectroradiometer (Young and Reed, 2017). SR was calculated
using the NIR and red bands, SRre was calculated using the NIR and
red-edge bands, and NPCI was calculated using the red and coastal
bands. Each of the parameter values were extracted from the four pixels
centered at each of the plot locations, based on handheld GPS co-
ordinates taken during sampling and visually confirming plot location
via nearby boulders, snowpacks, etc. These values were averaged to
estimate an average NDVI, SR, SRre, and NPCI value for each of the
plots. Average reflectance values for each of the eight WV-2 bands were
calculated for each plot as well. Using R Statistical Software version
4.0.3 (R Core Team, 2017), a correlation matrix was constructed with
the vegetation indices and raw bands to investigate any significant re-
lationships between these primary remote sensing data and biological
parameters collected in-situ (AFDM and pigment concentration). A
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principal components analysis (PCA) on covariance was executed to
visually compare plots in terms of their orbital reflectance spectra (raw
bands B1 — B8). A multivariate analysis of variance (MANOVA) was
performed to statistically assess whether there is a significant difference
between the three plot types (biocrust, oxidized granite, soil) using the
multispectral bands. A univariate analysis of variance (ANOVA) was
performed next to assess which, if any, spectral bands and vegetation
indices (NDVI, SR, SRre, NPCI) are significantly different between the
plot types. Plot 11 and plot 21 were excluded from these three statistical
analyses because they were covered in snow and therefore their reflec-
tance data skewed the analyses.

2.7. Spectral linear unmixing of orbital data

Spectral linear unmixing was used to model the spectral contribution
of individual surface types, and therefore calculate the fractional
abundance of each surface type per pixel (Lawson and Hanson, 1974;
Adams et al., 1993; Ramsey and Christensen, 1998; Bioucas-Dias et al.,
2012; Salvatore et al., 2020). Spectral unmixing uses a library of ‘pure’
spectral endmembers of each surface type to train the model by
matching the measured spectral signature, while reducing the misfit
between the measured and modeled spectra. Endmembers are limited to
the number of spectral bands and degrees of freedom in the data that are
being unmixed; therefore, we were constrained to eight or fewer end-
members for unmixing using the WV-2 and WV-3 satellites (Adams et al.,
1993; Ramsey and Christensen, 1998). Our seven hyperspectral end-
members were derived through collection in the field, collection after
laboratory preparation, or were modeled from field experiments. Six of
these endmembers (black microbial mat, orange microbial mat #1 and
#2, water, moss, and soil) were previously used in this region and are
described in detail in Salvatore et al. (2021), and one additional end-
member (an orange oxidized granite) was added for an updated
emphasis on the terrestrial landscape and was collected during our field
campaign and subsequently measured in the laboratory. This granite
endmember is from a minor subunit of the broader Granite Harbour
Intrusive Complex that outcrops near the top walls of Taylor Valley (Cox
et al., 2012). X-ray diffraction confirmed the dominance of quartz
(~30%), plagioclase feldspar (~25%), alkali feldspar (~25%), and
mafic and other ancillary phases (~20%), while VNIR reflectance
spectroscopy indicated a crystalline Fe-oxide phase, likely goethite or
hematite, at orbitally relevant wavelengths. As a result of these analyses,
we refer to this endmember as “oxidized granite.” All seven spectra were
downsampled to WV-2 and WV-3 resolutions to create a spectral library
that was used to unmix the entirety of each orbital image. Snow and ice
were not included as spectral endmembers despite their pervasiveness
across the landscape, because both snow and ice are known to exhibit
significant VNIR spectral variability. For example, variations in snow
crystallinity, grain size, liquid water content, and impurity content all
have significant spectral influences (Warren, 1982). Instead, snow was
identified in unmixed images using a combination of both high
root-mean-square errors (RMSE) and high VNIR albedo.

Linear unmixing is less commonly used in the visible or near-infrared
portions of the electromagnetic spectrum in more vertical ecosystems
where multiple scattering can be significant, (i.e. between vegetation
canopy layers). Here, however, we assume minimal spectral contribu-
tions from volumetric scattering with depth in the largely barren surface
environments of the MDV where linear unmixing has been demonstrated
successfully (Salvatore et al., 2020, 2021). Because of these assumptions
and their demonstrated effectiveness in the past, we have selected linear
unmixing as an appropriate method for this study (Peddle et al., 1999;
Roberts et al., 1993; Salvatore et al., 2020, 2021).

An ‘early season’ December 21, 2021 WV-2 image
(10300100CB9F3900) and a ‘late season’ January 21, 2015 WV-2 image
(103001003ED2B400) were the primary images used in this unmixing
analysis to capture potential seasonal variation in the spectral signatures
of biocrusts and soils. The DaVinci software package was used to run the
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unmixing model, using our seven spectral endmembers to linearly derive
the areal abundance of these different surface components. The results
include percent surface abundance as well as RMSE, which provides a
measure of the goodness of fit between the input spectrum and the
modeled spectrum. Abundance estimates from each of the endmembers
were extracted from the 30 plot locations, incorporating a buffer to
confidently capture the plot area (25 pixels per plot). RMSE were
analyzed for each pixel-level abundance estimate, commonly ranging
between ~0.1% to below 0.4%. However, certain pixels contained high
RMSE and were attributed to being covered in snow, as verified by
examining albedo estimates and the true-color WV-2 images. To account
for the uncertainty imposed by snow in these areas, we filtered the
abundance data by applying a threshold of RMSE >0.5%. Any pixels that
contained RMSE >0.5% were removed from the analysis.

To qualitatively and quantitatively assess the unmixing model output
for an early season and late season image, we selected 15 plots to
examine abundances of the different surface types. These plots were
visually categorized in the field as having either biocrust/incipient
biocrust, soil, or oxidized granite (i.e., 5 biocrust/incipient biocrust, 5
soil, and 5 oxidized granite plots). The orange microbial mat #1 and #2
endmember abundances were aggregated into a single orange mat group
abundance, and we combined the soil endmember and water end-
member abundances together as ‘other abiotic’ abundance. We
compared our field measurements to our modeled total biocrust abun-
dance, which was calculated as the sum of modeled black microbial mat,
orange microbial mat, and moss abundance estimates for each pixel.
While it is unlikely for all three of these microbial mat communities to
co-occur in the environments we assessed outside of stream channels
(Alger et al., 1997), summing all biological endmembers to create a
“total biocrust abundance” parameter provides a quantitative assess-
ment of the spectral contributions of photosynthetic pigments and the
reflective structure of living cells. Therefore, this parameter is effective
for the purposes of distinguishing surfaces where photosynthetic sig-
natures are present, and our efforts will help to quantify our abilities to
derive the abundances of these communities remotely.

2.8. Albedo analysis of orbital data

We selected 13 cloud-free WorldView images acquired between 2009
and 2019 (six images acquired in December and seven images acquired
in January) (Table S1) to determine how the landscape’s albedo changes
from the ‘early season’ to the ‘late season’ and to therefore examine the
potential presence of ephemeral snowpacks in the vicinity of our study
plots, which based upon our field surveys were often associated with
visible biocrust communities. Moreover, the presence of snowpack can
mask surface soil features, so it was necessary for our analyses to char-
acterize snowpacks in the vicinity of our plots. The mean and standard
deviation of each pixel in these suites of early and late season images can
provide important information related to surface landscape features. For
example, brightening of surfaces indicates the presence of salts or snow
on the surface, while darkening typically indicates increased soil mois-
ture. We assume that topographic variations resulting in variations in
shadows are negligible on the valley floor for the purposes of this ex-
ercise. We predict that surfaces dominated by abiotic materials (granite
and soil) will experience less variability in albedo over time than areas
exhibiting increased photosynthetic and/or hydrological activity. After
stacking the December and the January images, the average albedo and
albedo standard deviation (SD) were calculated for each of the 25 pixels
surrounding each plot’s center. Plot-level average and SD albedo were
then calculated for December and January, separately. These data were
plotted against one another and visualized based on identified surface
type (biocrust, granite, soil) to analyze any associations with albedo and
seasonality.
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3. Results
3.1. Laboratory spectral validation study

Hyperspectral measurements of the soil biocrust microcosms
exhibited significant chlorophyll absorption features at ~0.68 pm for all
mixtures containing biocrust (Fig. 3), including the lowest abundance
sample of 1% biocrust by weight (g/g). Lab measurements of the two
extreme spectra (100% soil and 100% biocrust) were downsampled to
WorldView resolution to compare with the resolution of the orbital data
available for the field plots and were used to unmix spectra of actual
biocrust mixtures measured in the lab. There was a strong linear fit
between the modeled and measured biocrust abundance with an R? of
0.99 and p-value <0.001 (Fig. 4). Mixtures of biocrust and soil combine
linearly in VNIR spectral space in these ideal conditions, demonstrating
how linear unmixing models can successfully predict biocrust
abundance.

3.2. Field surveys and spectral analyses

We found that many of the high or variable NDVI locations occurred
in areas near snowpacks and in the lee of hills or in depressions (i.e.,
nivation hollows; Eveland et al., 2013), where biocrust cover over desert
pavement was visually evident. One location in particular had visibly
wet soils and dense biocrusts, plot 09 (Fig. 5 a, d, g). Percent coverage of
up to 47% biocrust and average surface AFDM of 280 g m 2 of biocrust
in plot 09 is similar to the lower range of densities reported for microbial
mats on riparian sediments adjacent to nearby stream channels (Alger
et al., 1997; Power et al., 2020; Salvatore et al., 2021). In contrast,
several plots were extremely dry with no visible biocrust but had
oxidized granite boulders and relatively high NDVI from orbital data
(Fig. 5 b, e, h). Hyperspectral VNIR measurements collected from the
field plot samples exhibited clear spectral differences between plots with
visible presence of biocrust, granite boulders, and typical desert pave-
ment soil (Fig. 5 j, k, 1). Additionally, some plots were visually charac-
terized as having sparse, incipient biocrust with weak but significant
chlorophyll absorptions (e.g., P04, P11; Fig. 6). We ranked each plot on
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Fig. 3. Hyperspectral signatures of wetted laboratory mixtures of soil and
biocrust at varying abundances. Reflectance offset to distinguish each spectra
separately. Listed percentages indicate measured biocrust by weight. Chloro-
phyll absorption feature identifiable at ~0.68 pm, denoted by vertical gray bar.
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mined in laboratory experiment. Highly significant fit (R?> = 0.99, p-value
<0.001) between modeled (spectral linear unmixing) and measured biocrust
abundance using laboratory mixtures of soil and biocrust.

biocrust presence as “not present”, “possibly present”, “likely present”,
and “present” based entirely on visual observations in the field, finding
that plots where biocrust was present or was likely present had overall
higher NDVI values using the hyperspectral VNIR measurements
(Fig. 7). Plots that were dominated by oxidized granite also had rela-
tively high NDVI but lacked visible biocrust. The densest biocrust plot
and the granite boulder plots had relatively high NDVI based on the
hyperspectral data as well; however, the shapes of their spectral signa-
tures are very different (e.g., biocrust plot 09 and oxidized granite plot
20; Fig. 5j, k; Fig. S2).

In a PCA on covariance using the WV-2 band reflectance (B1 — B8),
plot types are significantly differentiated using multispectral band data
(MANOVA, p-value = 0.048) (Fig. 8). Notably, the plots with oxidized
granite are spectrally dissimilar from the biocrust and soil plots when all
eight bands are used. It is also possible to distinguish among plot types
using common vegetation indices (ANOVA; NDVI p-value <0.001; SR p-
value <0.001; SRre p-value <0.01; NPCI p-value <0.01). Particularly,
oxidized granite plots have significantly higher values for all vegetation
indices compared to the biocrust and soil plots. In a correlation matrix
between the vegetation indices, raw reflectance bands, and biological
parameters (AFDM, chlorophyll, and scytonemin concentration), there
are no significant relationships between these primary remote sensing
data and biological parameters (Table 52).

3.3. Soil characterization

There was significant variation in pigments, organic matter, inver-
tebrate populations, (Table 1) and in other physical and chemical vari-
ables (Table 2) among the plots. Notably, plot 09, with dense biocrust,
had the highest abundances and diversity of soil invertebrates, hosting
three nematode taxa (Scottnema, Eudorylaimus, and Plectus) in addition
to tardigrades, rotifers, and ciliates, similar to the community compo-
sition found in soils near streams (Ayres et al., 2007; Simmons et al.,
2009a; Treonis et al., 1999). While Scottnema was present in relatively
high abundances throughout most plots (as has been previously reported
for this area of Taylor Valley; Courtright et al., 2001), there were several
plots (P22, 30, 31) without any invertebrates present where distinct soil
chemistry (pH, nitrate, and electrical conductivity) likely created
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Fig. 5. Orbital NDVI images of (a) relatively high NDVI area of plot 09, (b) relatively high NDVI area of plot 20, and (c) relatively low NDVI area of plot 02.
Landscape photos of (d) dense biocrust downhill from snowpack (plot 09), (e) oxidized, weathered granite boulder field (plot 20), and (f) typical low productivity
desert pavement (plot 02). Close up photos of the (g) dense biocrust, (h) oxidized, weathered granite, and (i) typical desert pavement. Hyperspectral reflectance
signature of (j) plot 09 biocrust, (k) plot 20 oxidized granite, and (1) plot 02 typical soil with each separate spectra transparent in background. Gray bars outline the
region of NDVI calculation (steeper slope illustrates higher NDVI). Photographs taken by S. Power. WV-3 imagery (10400100485D6900) © Jan 26, 2019 Digital-

Globe, Inc.

inhospitable conditions (e.g., Barrett et al., 2004; Poage et al., 2008).
The majority of samples had NH4 concentration below detection except
for plots 01, 09, 10, 22, 31, 33. Soil organic carbon and total nitrogen
concentrations were higher than average compared to soils in this part of
Taylor Valley (Barrett et al., 2006b, 2007) and may reflect the influence
of moderate to dense biocrusts found in our most productive plots
(Table 2). Importantly, dense biocrust plot 09 had the lowest electrical
conductivity (indicator of soils that are regularly flushed by water), a
more neutral pH, and a relatively higher concentration of ammonium,

NHJ, (indicative of active microbial decomposition). Moreover, plot 09
had more than 5x the AFDM of the other plots on average. In a PCA on
correlation, plot types are not significantly distinguished by physico-
chemical properties (MANOVA, p-value = 0.56) (Fig. S3). However,
NHj availability is significantly different among the plot types (ANOVA,
p-value = 0.044) with dense biocrust most associated with increasing
NHj availability.
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this article.)
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Fig. 8. Principal components analysis ordination on covariance of 28 plots (2
plots excluded due to snow coverage). Plots with ground cover consisting
mainly of oxidized granite are shown in orange, biocrust and incipient biocrust
in green, and typical soil in purple. Plots shown in green are categorized as
biocrust “present” or “likely present” based on our visual biocrust categoriza-
tion. Vectors represent correlations of WorldView-2 band reflectance (B1 — B8)
with PCA ordination axes (all displayed correlations are significant, p < 0.001).
Spectral data were acquired by the WV-2 satellite on Dec 03, 2019. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

3.4. Spectral linear unmixing of orbital data

The linear spectral unmixing analysis of an early season (Dec 21,
2021) and late season (Jan 21, 2015) image demonstrated consistency in
surface cover estimates between the two images (Table 3). RMSE were
relatively low except for areas that were snow covered (i.e., also dis-
played high albedo values). Notably, these snowy areas often coincided
with plots that were identified in the field as either having biocrust
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Table 1
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Biological variables averaged (n = 5) + 1 standard deviation from each of the 12 intensively sampled plots. Invertebrates are counted as the number of total-living.

Plot AFDM (mg Chlorophyll (ug Carotenoid (pg Scytonemin (pg Nematodes (# kg ™' dry ~ Rotifers (# kg ' dry  Tardigrades (# kg~' dry
D cm?) cm ) cm?) cm ) soil) soil) soil)
P01 5.35 0.009 0.062 0.864 362 0 2
+2.81 +0.006 +0.030 +0.693 +804 +0 +5
P09 28.29 4.974 2.141 77.395 1102 30 1822
+21.62 +5.698 +2.500 +89.278 +735 +38 +2144
P10 2.12 0.007 0.031 0.331 1453 32 2
+0.49 +0.002 +0.009 +0.109 +1405 +31 +4
P14 4.06 0.006 0.063 0.800 959 0 0
+1.06 +0.006 +0.030 +0.314 +1990 +0 +0
P17 3.90 0.005 0.040 0.683 449 0 0
+0.79 +0.003 +0.016 +0.231 +756 +0 +0
P22 2.19 0.005 0.027 0.285 0 0 0
+0.95 +0.002 +0.004 +0.049 +0 +0 +0
P23 2.99 0.002 0.040 0.399 85 0 0
+0.89 +0.002 +0.026 +0.271 +179 +0 +0
P27 3.18 0.006 0.032 0.432 168 0 0
+1.12 +0.003 +0.013 +0.186 +354 +0 +0
P28 2.55 0.003 0.033 0.379 495 2 0
+0.51 +0.002 +0.017 +0.165 +595 +5 +0
P30 3.46 0.005 0.036 0.272 0 0 0
+0.57 +0.003 +0.023 +0.184 +0 +0 +0
P31 3.87 0.007 0.037 0.309 0 0 0
+0.77 +0.002 +0.013 +0.122 +0 +0 +0
P33 2.61 0.004 0.019 0.137 875 0 0
+0.84 +0.003 +0.003 +0.054 +1288 +0 +0
Table 2

Physical and chemical variables averaged (n = 5) + 1 standard deviation from each of the 12 intensively sampled plots where “GWC” refers to gravimetric water
content, “EC” electrical conductivity, “TOC” total organic carbon, and “TN” total nitrogen.

GWC (g/g) EC (S cm™) pH NH{ NO3 POY TOC TN
Plot ID pg N g1 dry soil ug N g1 dry soil pg P g1 dry soil mg C g~ ! dry soil mg N g1 dry soil
PO1 0.06 2330 8.4 0.12 57.87 3.56 0.309 0.112
+0.03 +2318 +1.3 +0.19 +60.82 +0.54 +0.08 +0.05
P09 0.06 70 8.5 0.09 0.86 3.12 1.24 0.176
+0.04 +37 +0.7 +0.19 +0.36 +0.66 +0.34 +0.04
P10 0.02 112 9.9 0.02 0.002 4.47 0.405 0.119
+0.00 +50 +0.4 +0.04 +0.01 +5.93 +0.08 +0.04
P14 0.06 2311 8.6 0 48.30 12.19 1.14 0.203
+0.02 +1819 +0.7 +0 +43.83 +6.15 +0.55 +0.07
P17 0.02 1095 8.8 0 65.79 5.85 0.497 0.115
+0.01 +654 +0.5 +0 +71.17 +2.65 +0.19 +0.04
P22 0.05 2152 9.5 0.02 65.51 18.65 1.11 0.178
+0.02 +786 +0.6 +0.03 +51.13 +10.70 +0.58 +0.06
P23 0.02 907 9.6 0 13.43 3.34 0.272 0.081
+0.01 +283 +0.6 +0 +7.04 +0.40 +0.07 +0.02
P27 0.03 656 8.4 0 4.32 2.71 0.495 0.097
+0.04 +523 +0.3 +0 +5.95 +1.07 +0.16 +0.02
P28 0.08 515 8.9 0 5.17 3.00 0.529 0.099
+0.09 +440 +0.5 +0 +7.02 +2.03 +0.28 +0.02
P30 0.04 2347 9.0 0 33.40 3.70 0.364 0.111
+0.03 +2602 +0.8 +0 +46.07 +1.70 +0.21 +0.06
P31 0.05 2431 8.2 0.01 27.68 1.70 0.275 0.074
+0.02 +1757 +0.3 +0.01 +22.36 +0.52 +0.09 +0.02
P33 0.02 130 9.6 0.03 0.12 2.30 0.352 0.085
+0.00 +67 +0.3 +0.05 +0.27 +0.88 +0.11 +0.02

present or likely present (incipient biocrust). Half of locations with
biocrust or incipient biocrust (n = 4 of 8) were snow covered during the
early season image. The remaining locations with biocrust and incipient
biocrust were all within 15-35 m of snowpacks, measured from the
center of the plots. Among the remaining 22 plots identified as biocrust
not present or possibly present, only 3 plots contained some pixels with
RMSE >0.5%. One of these plots contained some snow cover and lacked
visible biocrust (P33), while the other two plots did not contain snow
cover in the immediate area (P29, 30). Table 3 includes a subset of our
30 plots documenting the consistency of surface cover types between our
two analyzed images, and also demonstrates the likely association be-
tween the presence of biocrust and snow cover.

3.5. Albedo analysis of orbital data

To identify any possible associations between biocrust cover and
early season snowpack, the mean albedo and albedo SD were calculated
for all plots among several December and January images (Fig. 9). Lo-
cations that contained snow cover had greater mean albedo, primarily
early in the season when snowpacks are most present, and greater al-
bedo SD between images based on the seasonality of snow and surface
soil moisture. All of the plots that contained visually conspicuous bio-
crust cover had higher mean albedo and albedo SD than typical soil or
oxidized granite plots. While not all of our biocrust identified plots were
associated with variations in snow cover within the immediate area of
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Table 3
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Modeled abundance of total biocrust, oxidized granite, and remaining abiotic endmembers at a select number of plots visually identified by the surface type. ‘Other
abiotic’ is the combination of the soil and water endmember abundances. An ‘early season’ and a ‘late season’ WV-2 image were selected for the spectral linear
unmixing: Dec 21, 2021 and Jan 21, 2015, respectively. Specific pixels were excluded from the abundance average (n = 25 per plot) if the RMSE >0.5%, common for

snow covered areas.

Surface Type Dec 21, 2021

Jan 21, 2015

Plot Visually Present ‘Early Season’ ‘Late Season’
D
Modeled Abundance (%) Average % % Excluded Modeled Abundance (%) Average % % Excluded
RMSE Pixels RMSE Pixels
Biocrust ~ Oxidized Other Biocrust  Oxidized Other
Granite Abiotic Granite Abiotic
P02 soil 0.6 2.4 97.0 0.302 0 1.7 9.4 88.9 0.240 0
P04 biocrust - - - 5.000 100 8.4 11.0 80.6 0.260 0
P09 biocrust - - - 5.863 100 16.5 11.3 72.2 0.200 0
P10 oxidized granite 9.5 39.9 50.6 0.181 0 2.5 52.1 45.3 0.150 0
P11 biocrust - - - 5.297 100 4.2 1.7 94.1 0.190 0
P14 soil 0.6 4.9 94.4 0.303 0 0.4 5.5 94.1 0.260 0
P17 soil 2.7 6.9 90.4 0.309 0 1.3 12.0 86.7 0.220 0
P20 oxidized granite 7.4 50.2 42.4 0.203 0 1.9 49.6 48.4 0.170 0
P22 oxidized granite 5.8 40.2 54.0 0.160 0 2.1 69.4 28.6 0.170 0
P23 incipient biocrust 0.4 23.5 76.0 0.226 0 0.0 33.9 66.1 0.220 0
P26 incipient biocrust 7.7 29.1 63.2 0.201 0 12.2 1.0 86.8 0.241 0
P27 oxidized granite 2.2 27.0 70.9 0.168 0 4.3 20.9 74.8 0.224 0
P29 oxidized granite 16.7 39.3 44.0 0.308 24 17.8 39.3 42.9 0.303 1
P30 soil 3.5 25.8 70.8 0.226 4 0.8 24.4 74.8 0.262 0
P31 soil 7.6 25.8 66.6 0.231 0 3.3 8.9 87.7 0.276 0
feature is observable as well (Fig. 3). When comparing the modeled
! ! ! ! ! J ! ! ! biocrust abundance of each sample mixture to the actual measured
g Hl December |mages biocrust abundance, there is a strong linear fit between the modeled and
—— = measured abundance with an R? of 0.99 (Fig. 4). We have shown how
‘= 20%F A January Images - : ance with )99 (Fig. 4). We have shown how,
] a A under ideal conditions, mixtures of biocrust and soil combine linearly in
'; . / VNIR spectral space, allowing for linear unmixing models to accurately
_8 O | S°|I A B / _ predict biocrust abundance. This detection method is successful over a
o () Granite / range of abundances analogous to dense microbial mat communities
o = Biocrust ) associated with productive aquatic habitats (Power et al., 2020; Salva-
- = 10%}| 4 Bf'ghtef & more _ tore et al., 2021) and sparse biocrusts in the more typical arid soils of the
< © ¢ Variable surfaces MDV. Despite the known complexities associated with extrapolating
© A V4 (snow) these results to field and orbital data (e.g., atmospheric contributions,
% L V4 ] variations in biotic and abiotic surface composition and moisture), the
— a , relationships derived in our laboratory analyses are successful in iden-
wn o tifying and quantifying biocrust and can be modeled to approximate the
() istribution of microbial communities in the .
9 - L1 1 1 1 | distribution of bial t the MDV
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Fig. 9. Mean and standard deviation albedo of early season December and late
season January WorldView-2 and -3 images at each of the 30 plots locations.
Colors indicate surface type of plot. Biocrust plots include those which were
identified in the field as having visually conspicuous biocrust present or likely
present (incipient biocrust). (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)

the plots (note that biocrust can obtain moisture from groundwater
seeps or melting subsurface ice as well), we do find that the brightest and
most variable surfaces in our study area are all biocrust identified areas
(Fig. 9).

4. Discussion
4.1. Laboratory spectral detection of biocrust

Our laboratory spectral validation study demonstrated that biocrust
present in soil microcosms is detectable at abundances as low as 1% by
weight, and that spectral linear unmixing models can be used to suc-
cessfully predict biocrust abundance. The absorption feature associated
with photosynthetic pigments (~0.68 pm) is present in all biocrust
microcosm mixtures, including the 1% biocrust microcosm where the
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4.2. Oxidized granite impedes use of vegetation indices

It was evident during our field surveying and sampling campaign
that geological features are a significant factor in the detection of low
density biocrusts in dry terrestrial environments. While the soils and
dominant lithologies of the MDV have been widely characterized by
previous investigators (e.g., Bockheim et al., 2008), isolated outcrops or
boulders of distinct composition have been shown to locally influence
observed spectral signatures. For example, during our field campaign,
several plots with high NDVI values were found to be predominantly
covered by oxidized granitic boulders (Fig. 5 e, h). Despite their high
NDVI values, these oxidized granite plots lack visible biocrust presence
based on visual observation in the field (Fig. 7) and had low AFDM and
chlorophyll contents (Table 1), indicating that these relatively high
NDVI values are not associated with photosynthesis. The hyperspectral
data of the surface samples of all plots illustrated clear distinctions
among the plots (Fig. 6). For example, plots 20 and 29 were located
within oxidized granite boulder fields and exhibit two broad absorption
features associated with the presence of ferrous and ferric iron (Fe),
centered near 0.67 pm and 0.94 pm, and resulting in a broad reflectance
peak at approximately 0.74 pm (Fig. 5 k; Fig. S2). While the hyper-
spectral shape of these granitic spectra is distinct from those of biocrust,
NDVI does not effectively distinguish between them due to the granitic
spectra containing an Fe-absorption feature at red wavelengths and thus



S.N. Power et al.

Table 4
Continuum of hydrological conditions in Taylor Valley, Antarctica.
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Landscape Feature Water Abundance Salinity Biological Activity
Arid Terrestrial Landscape Low Low-High Low

Hypersaline Water Tracks Medium High Low
Snowpack-Fed Microhabitats Low-Medium Low-Medium Medium
Snowpack-Fed Non-Annual Ephemeral Wetlands Medium Low-Medium Medium

Annual Ephemeral Streams Medium-High Low Medium-High
Lakes High Low High

an increase in reflectance in the NIR (Fig. S2). This change in reflectance
creates a slope that causes these granitic areas to have a high NDVI,
despite not being correlated to indicators of photosynthetic activity (e.g.,
chlorophyll or AFDM). While hyperspectral reflectance data can be used
to distinguish these abiotic absorption features from those associated
with biological activity, simple multispectral parameters (e.g., NDVI) are
less capable of distinguishing between these different compositions and
are therefore less reliable at detecting biocrust presence.

4.3. Biocrust distribution is associated with seasonal snowpacks

In contrast to soils with oxidized granites, several locations con-
tained sparse, incipient biocrust, where it appeared that cyanobacteria
colonies and potentially moss were emerging from wet desert pavement
(Fig. 1 c). The locations identified as having biocrust present or likely
present had relatively higher NDVI compared to the desert pavement
locations not containing biocrust and which upon analyses were shown
to have low chlorophyll concentrations and AFDM. Of particular inter-
est, plot 09 hosted dense biocrust (Fig. 5 d, g) and diverse soil fauna
(Table 1), similar in composition to the diversity found near stream and
lake ecosystems (Ayres et al., 2007; Treonis et al., 1999). Plot 09 is
outside of any stream channel or water track and is ~700 m above the
current elevation of Lake Fryxell. The only visible source of liquid water
for plot 09 are a series of snowpacks immediately uphill and ~10 and 50
m uphill (at the time of sampling and visible in multiple satellite im-
ages). While diverse invertebrate communities are common near aquatic
environments in the Fryxell basin (Courtright et al., 2001; Freckman and
Virginia, 1997), they have not been commonly reported for upland soils
outside stream channels.

One well-documented landscape that exhibits similar biotic diversity
to plot 09 is the Wormherder Creek wetland in western Taylor Valley on
the south side of the west lobe of Lake Bonney (Harris et al., 2007;
Simmons et al., 2009b; Nielsen et al., 2012). Unlike the soil biocrusts
documented here (e.g., plot 09), which are fed by the melt of relatively
small snowpacks (<60 m in diameter), the Wormherder Creek wetland is
fed intermittently by the melt of large snowpacks on the southern valley
wall which create melt-water drainages that have contributed to satu-
rated soils and overland flow on at least 3 documented occasions (suf-
ficiently warm and sunny summers) in the last thirty years (Lyons et al.,
2005; Nielsen et al., 2012; Wlostowski et al., 2019; Stanish et al., 2012;
Harris et al., 2007). Abundant microbial mats hosting diatom and
invertebrate communities have been described in Wormherder Creek
(Nielsen et al., 2012; Stanish et al., 2012; Simmons et al., 2009b). Both
these snowpack-fed meltwater environments are examples of biological
hotspots in an otherwise arid terrestrial landscape physically separated
from the diverse communities within the annual ephemeral streams.

These snowpack-fed biological hotspots are distinct from the water
track features described by Levy et al. (2011), which are narrow areas of
subsurface hydrologic flow that route water downslope through soils
above the ice table and lack overland flow. Water tracks are more saline
in comparison to the surrounding landscape and therefore do not host
conspicuous surface biocrust, microbial mats, or invertebrate commu-
nities (Kuentz et al., 2022; Levy et al., 2011, 2014). Therefore, biological
activity in these snowpack areas is not driven solely by the presence of
liquid water, but also suitable soil conditions as well.
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A continuum of hydrological conditions exists: the arid terrestrial
landscape, hypersaline water tracks, snowpack-fed microhabitats,
snowpack-fed non-annual ephemeral wetlands, annual ephemeral
streams, and lakes (Table 4). Plot 09 is compositionally and chemically
more similar to near-stream environments than to the persistently dry
and low organic matter soils that characterize most of this arid terres-
trial landscape (Burkins et al., 2001; Barrett et al., 2006a). For example,
plot 09 is wetter and less alkaline than the other soil plots with low or no
biocrusts, which are representative of the arid soils described by Barrett
et al. (2006a) and Campbell et al. (1998) (Table 2). Plot 09 also has the
lowest electrical conductivity, which is an indicator that soils are
regularly flushed by water, and it has a relatively higher concentration
of ammonium, NHj, typical for biologically active soils with active
turnover of organic matter (Barrett et al., 2009). Additionally, the
concentration of soil organic C in this plot is more than 2x greater on
average than previous reports for arid soils in Taylor Valley (Barrett
et al., 2006b; Burkins et al., 2001) and closer to the concentrations of C
in near-stream and lake sediments (Barrett et al., 2009). Moreover, the
mass of carbon in the biocrust itself is 2-3x greater than that in the
underlying surface soils (Burkins et al., 2001), indicating the importance
of including biocrust estimates in regional carbon mass balances. Rather
than viewing this landscape as simply aquatic or terrestrial units, a
continuum of hydrological conditions exists, and these snowpack-fed
landscapes constitute a unique component of the soil-sediment envi-
ronment. Elucidating the factors contributing to the structure and
function of these snowpack-associated environments is essential for
refining our understanding of species distribution and organic C balance
in the MDV.

4.4. Comparisons between multispectral and hyperspectral data

There are inherent limitations to multispectral data when they are
used for detecting surfaces that are spectrally weaker and discontinuous,
such as patchy biocrusts. When investigating our intensively sampled
plots which had in-situ biological data collected (i.e., AFDM, pigment
content), there were no significant correlations between the biological
parameters and multispectral vegetation indices and raw bands
(Table S2). There were some correlations (e.g., with B1, R ~ 0.73; and
with B2, R ~ 0.64) that were driven by plot 09 with orders of magnitude
higher AFDM and pigment concentration, but all significant correlations
were lost when removing this dominant plot. Solely using these tradi-
tional multispectral indices is inadequate for identifying patchy biocrust
surfaces, specifically in areas with spectrally dominant surface geology,
such as the MDV.

Hyperspectral reflectance measurements were essential in this study
to understand the spectral complexities of our surface types. For
example, plot 09 contained the most visibly dense biocrust in our field
campaign and was spectrally unique with the highest NDVI measured
from hyperspectral data in the laboratory (Fig. 6). However, it did not
always have the highest satellite-derived NDVI as expected; the oxidized
granite areas sometimes had higher NDVI across images. This demon-
strates the differences in spectral resolution between a hyperspectral
reflectance spectrometer and a multispectral satellite, and also the dif-
ferences in surface area of larger granitic surfaces compared to patchy
biocrust surfaces when using satellite data. Additionally, this difference
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in plot 09 NDVI from hyperspectral laboratory measurements to multi-
spectral orbital data could also in part be the result of fluctuating bio-
logical activity through time. For example, a 2019 WorldView-3 image
shows higher NDVI at this location in January when the snow generally
melts, the surrounding soils are moist, and the biocrust communities are
likely active (Fig. 5 a). Bartak et al. (2016) and Trnkova and Bartak
(2017) both demonstrate the relationship between water content in
black microbial mats, their photosynthetic activity, and their resultant
spectral signatures. Their results indicate that there is a reduction in
NDVI by roughly 50% from maximum photosynthetic signatures at
roughly 55% relative water content (RWC) to complete desiccation at
0% RWC. These and other authors (e.g., Salvatore et al., 2021) also note
how burial by windblown sand can significantly mask the spectral sig-
natures of dry mats and biocrusts. Together, these studies and our results
demonstrate there are many factors that can influence the observed
NDVI signature at multispectral resolutions beyond simply the abun-
dance of photosynthetic biomass, and hyperspectral data were necessary
to elucidate these interactions.

However, incorporating all multispectral bands makes it possible to
differentiate between the three plot types here (Fig. 8). The gradient of
plots from bare soil to denser biocrust along the raw WV-2 band
reflectance vectors informs a detection threshold for biocrust around
47% cover or 280 g m~2 AFDM (plot 09). The oxidized granite plots are
most spectrally dissimilar from the biocrust and soil plots. When using
the vegetation indices calculated from the multispectral data, it is also
possible to statistically distinguish among plot types. Though, the plots
with the highest vegetation index values are those with the oxidized
granite surfaces. It is evident through our analyses that surface geology
in this environment can result in higher NDVI values, which is not
indicative of biological activity, but are instead spectrally dominant
areas in the wavelengths typically diagnostic for photosynthesis.
Although hyperspectral data in the laboratory show that biocrust is
identifiable and distinct from oxidized granite surfaces and typical soil
surfaces, we are currently limited to multispectral resolution with
available satellite data. While vegetation indices are also limited in the
number of bands they incorporate and are shown here to be affected by
surface geology, incorporating all eight multispectral bands proves
useful in distinguishing biologically active surfaces. It is of particular
importance to note that the overall success of our analyses was depen-
dent on our ability to ground truth, which allows us to confidently link
spectral data to what we saw and measured with boots on the ground.

4.5. Spectral linear unmixing models predict biocrust abundance

Moving beyond traditional remote sensing indices, we applied
spectral linear unmixing models to WV-2 orbital data using spectral
endmembers collected from the field with a hyperspectral reflectance
spectrometer, including an oxidized granite endmember (Table 3). The
low RMSE associated with the unmixing of all surface types discussed
here demonstrates that there are no clearly omitted spectral endmem-
bers. Although our hyperspectral measurements outperform multispec-
tral data in terms of biological detection, we are limited to multispectral
bands with available satellite imagery. However, using multispectral
orbital data, our results demonstrate how linear unmixing models
perform better than vegetation indices, because they use all eight mul-
tispectral bands as opposed to only a few select bands. Specifically, there
are clear spectral differences between oxidized granites and photosyn-
thetic biocrust when all eight spectral bands are investigated, but these
differences are lost when using vegetation parameters like NDVI. While
some endmembers are less spectrally unique at multispectral resolutions
in comparison to hyperspectral and can confuse the unmixing models at
times, these models are still a far improvement over simple vegetation
indices in detecting low density biocrusts and can be used to infer
ecologically relevant properties of biocrust in this region. Most notably,
our unmixing analyses with RMSE indicate that plots containing bio-
crust were all either snow covered or within 15-35 m of snowpacks
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during an early season (Dec 21, 2021) WorldView-2 image (Table 3).
This result suggests snowpacks are important sources of moisture sus-
taining biocrust community microhabitats in an otherwise arid terres-
trial landscape, and therefore encourages further investigation.

4.6. Snowpacks as microhabitats for biocrusts and diverse soil
communities

To identify associations between biocrust cover and early season
snowpack, we visualized the mean albedo and albedo SD for all plots
based on surface type among several December and January images
(Table S1). We found that the brightest and most variable surface areas,
where snow is present, were areas that were identified as biocrust
visually in the field (Fig. 9). There are biocrust areas that have lower
mean and SD albedo and are likely associated with other sources of
moisture, like groundwater seeps or snow, which accumulates to a much
lesser extent and melts earlier in the season. Among our plots, the
highest and most variable albedo surfaces are associated with biocrust
presence, indicating that these MDV biocrust habitats are likely associ-
ated with areas where snow accumulates early in the season, slowly
melts later in the season, and supplies soil communities and biocrusts
with sufficient moisture to sustain biological activity throughout the
austral summers.

Snow is an important surface component of the Taylor Valley. Sea-
sonal snow accumulates more on the eastern portion of the Taylor Valley
closer to the coast (Eveland et al., 2012, 2013; Fountain et al., 2010).
The Fryxell basin, where our study region is located, receives the
greatest annual snowfall and has the highest interannual variability of
snowfall within Taylor Valley (Myers et al., 2022). The Fryxell basin
region received an average of 11.5 mm wet equivalent of snow accu-
mulation from 1995 to 2017 between the months of August and May
(Myers et al., 2022). While the magnitude of snowfall and snow accu-
mulation is dependent on the variability of the frequency and intensity
of storms and winds, snow is expected to collect in the same locations
inter-annually because snow accumulation is most associated with
variation in fine-scale topography (Eveland et al., 2012, 2013). Seasonal
snow accumulates across a large portion of the Fryxell basin region. For
example, prior research has shown accumulation covering an area of
10.29 km? (17.83% of the Fryxell basin delineated region) in late
October of 2009 (Eveland et al., 2012). By mid-January of 2010, 93% of
the snow accumulation was lost (Eveland et al., 2012), primarily due to
sublimation given the arid environment but also due to snowmelt. For
example, Gooseff et al. (2003) and Ayres et al. (2010) observed increases
in soil moisture near snowpacks compared to the nearby dry soils.
Eveland et al. (2012) also suggest that volumes of water that usually
seem insignificant to some ecosystems may be an important driver in
structuring communities below snow in highly water-limited environ-
ments such as the MDV. Snow cover has also been shown to reduce
temperature extremes in underlying soil and influence biogeochemical
cycling and microbial activity in soils generally (Schimel et al., 2004;
Van Horn et al., 2013).

Furthermore, we suggest that snowpacks commonly occurring
throughout eastern Taylor Valley provide enough moisture for the
development of biocrusts and underlying soil communities and likely
create suitable microhabitats shielded from temperature extremes and
intense UV-radiation. Given the broader spatial extent of the terrestrial
landscape outside of stream channels and lake margins and the abun-
dance of snowpacks, we anticipate that a considerable proportion of the
valley-wide carbon budget is represented by biocrust communities. To
refine the Taylor Valley carbon budget, future field work should incor-
porate more sampling and surveying of these snowpack areas to docu-
ment the influence of snowpack variability on the dynamics of biocrust
and soil microbial communities in the MDV. Given the strong interan-
nual variability of snowfall and snow persistence in the Taylor Valley
(Myers et al., 2022), the documented occurrence of anomalous weather
events (Barrett et al., in review), and the prediction that Antarctic coasts
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will experience more frequent and intense rainfall by the end of the
century (Vignon et al., 2021), we encourage continued research on these
biocrust microhabitats in this currently water-limited but increasingly
dynamic landscape.

5. Conclusion

Here, we show that low density biocrusts are patchily distributed
throughout the eastern Taylor Valley region in upland areas away from
streams and lake margins. Seasonal snowpacks create microhabitats for
these biocrust communities to successfully thrive in this otherwise
harsh, desert environment. Soils beneath these biocrusts can support
diverse soil fauna, similar in community composition to soils immedi-
ately beside streams and lake margins. A continuum exists between
aquatic and terrestrial environments where microhabitats are driven by
snowpacks physically separate from streams that otherwise have
ecosystem properties and biological diversity more similar to the local
streams than the nearby arid soils. We suggest that these snowpack-fed
microhabitats are unique ecosystems and a key ecological component to
the region’s carbon budget. Moreover, our work to study these micro-
habitats in further detail is ongoing (e.g., Power et al., in prep), and we
encourage other efforts as well.

Ground truthing is essential for detecting and mapping biocrust.
Although geological surface composition can impede use of NDVI on
soils, spectral linear unmixing methods are a practical alternative for
successful biocrust detection. Our modeling efforts are currently the
foundation of follow-up studies where further validation efforts in the
field are needed to extrapolate the model and test our hypotheses about
hydrological transitions and their influence on photoautotrophic com-
munities. This work brings us closer in our efforts to refine the carbon
budget for this region and to examine the controls over the distribution
and activity of these critical soil communities. These remote sensing
technologies are ideal for measuring ecosystem dynamics in Antarctic
ecosystems, which are particularly climate-sensitive and difficult to
access.
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