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A B S T R A C T   

Microbial communities are the primary drivers of carbon cycling in the McMurdo Dry Valleys of Antarctica. 
Dense microbial mats, consisting mainly of photosynthetic cyanobacteria, occupy aquatic areas associated with 
streams and lakes. Other microbial communities also occur at lower densities as patchy surface biological soil 
crusts (hereafter, biocrusts) across the terrestrial landscape. Multispectral satellite data have been used to model 
microbial mat abundance in high-density areas like stream and lake margins, but no previous studies have 
investigated the lower detection limits of biocrusts. Here, we describe remote sensing and field-based survey and 
sampling approaches to study the detectability and distribution of biocrusts in the McMurdo Dry Valleys. Using a 
combination of multi- and hyperspectral tools and spectral linear unmixing, we modeled the abundances of 
biocrust in eastern Taylor Valley. Our spectral approaches can detect low masses of biocrust material in labo
ratory microcosms down to biocrust concentrations of 1% by mass. These techniques also distinguish the spectra 
of biocrust from both surface rock and mineral signatures from orbit. We found that biocrusts are present 
throughout the soils of eastern Taylor Valley and are associated with diverse underlying soil communities. The 
densest biocrust communities identified in this study had total organic carbon 5x greater than the content of 
typical arid soils. The most productive biocrusts were located downslope of melting snowpacks in unique soil 
ecosystems that are distinct from the surrounding arid landscape. There are similarities between the snowpack 
and stream sediment communities (high diversity of soil invertebrates) as well as their ecosystem properties (e.g., 
persistence of liquid water, high transfer of available nutrients, lower salinity from flushing) compared to the 
typical arid terrestrial ecosystem of the dry valleys. Our approach extends the capability of orbital remote sensing 
of photosynthetic communities out of the aquatic margins and into the drier soils which comprise most of this 
landscape. This interdisciplinary work is critical for measuring and monitoring terrestrial carbon stocks and 
predicting future ecosystem dynamics in this currently water-limited but increasingly dynamic Antarctic land
scape, which is particularly climate-sensitive and difficult to access.   

1. Introduction 

Biocrusts, i.e., soil aggregates containing communities of cyanobac
teria, algae, moss, lichen, etc. on the surface of soil (Weber et al., 2022), 
inhabit all continents (Belnap et al., 2016), are estimated to cover 12% 
of the Earth’s terrestrial surface (Rodriguez-Caballero et al., 2018), and 

play foundational roles in the ecosystems where they occur (Belnap 
et al., 2016). Biocrusts are distributed across hot and cold deserts and are 
oftentimes an important source, if not the primary source, of carbon (C) 
in these systems (Elbert et al., 2012). They perform key ecological 
functions, including photosynthesis, nitrogen fixation, nutrient cycling, 
and soil stabilization (Belnap, 2003), which are particularly important 

* Corresponding author. 
E-mail address: snpower@vt.edu (S.N. Power).  

Contents lists available at ScienceDirect 

Science of Remote Sensing 

journal homepage: www.sciencedirect.com/journal/science-of-remote-sensing 

https://doi.org/10.1016/j.srs.2024.100120 
Received 13 June 2023; Received in revised form 1 February 2024; Accepted 5 February 2024   

mailto:snpower@vt.edu
www.sciencedirect.com/science/journal/26660172
https://www.sciencedirect.com/journal/science-of-remote-sensing
https://doi.org/10.1016/j.srs.2024.100120
https://doi.org/10.1016/j.srs.2024.100120
https://doi.org/10.1016/j.srs.2024.100120
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Science of Remote Sensing 9 (2024) 100120

2

in ecosystems that lack vascular vegetation. Biocrusts may be more 
susceptible to climate change than previously thought (Finger-Higgens 
et al., 2022). Climate warming and precipitation variation appears to 
have already impacted some biocrust communities and will likely 
continue to result in biocrust degradation across ecosystems (Finger-
Higgens et al., 2022). Detecting and mapping biocrust is essential for 
monitoring these important soil communities in a changing climate. 

In the McMurdo Dry Valleys (MDV) of Antarctica, microbial com
munities are the drivers of carbon cycling, particularly in and adjacent 
to lakes, ponds, and streams where dense microbial mats are abundant 
(Cary et al., 2010; Van Horn et al., 2016; Stone et al., accepted). How
ever, less dense microbial communities also occur in drier soils outside 
the hydrological influence of glaciers, stream channels, or lakes in areas 
where snow or subsurface thaw are presumably the main sources of 
water. In such environments, which constitute most of the dry valley 
landscape, microbial communities are sparse, have high soil content, 
and are better described as biocrusts. Here, we define biocrusts as the 
communities which are present in drier areas away from streams and 
lakes, and although they can be quite similar morphologically to the 
microbial mats present in aquatic areas, biocrusts are typically less 
dense and patchily distributed among the terrestrial landscape where 
there are alternative sources of moisture, e.g., snowpacks and ground
water seeps (Gooseff et al., 2013; Weber et al., 2022). 

Previous studies of MDV microbial mat dynamics have primarily 
focused on the communities occurring close to or within the streams and 
lakes (e.g., Alger et al., 1997). Soil environments outside of stream 
channels have traditionally been thought to support less visible biocrust 
biomass in comparison, so fewer studies have focused on these terres
trial communities. However, these terrestrial areas are far more spatially 
extensive than the aquatic environments in the MDV, and therefore, 
even sparse distributions and densities of biocrusts could sum to a 
considerable amount of total biomass. For example, the Lake Fryxell 
basin, excluding Lake Fryxell, is 53.55 km2, while the cumulative stream 
area is approximately 2.58 km2 (4.82%), determined via satellite im
agery. The terrestrial landscape of this region occupies more than 20x 
the surface area relative to ephemeral stream channels and lake margins, 
so although biocrusts are typically less dense than microbial mats, we 
anticipate soils of the MDV contain a considerable amount of carbon in 
and under these biocrusts (e.g., Burkins et al., 2001). We suggest that the 
terrestrial regions of Taylor Valley may contain more cumulative 
biomass than the stream channels given their spatial extent. A system
atic and scalable method is required to measure and monitor biocrust 
biomass over large spatial scales: remote sensing. 

Assessing the detectability of biocrusts via remote sensing is a critical 
first step in estimating terrestrial carbon stocks in this region and 
examining controls over the distribution and activity of these soil 
communities. Our previous research has demonstrated the utility of 
multispectral satellites (e.g., WorldView-2 and WorldView-3; WV-2 and 
WV-3) in detecting densely colonized microbial mats near streams in the 
Lake Fryxell basin region using spectral parameters and spectral linear 
unmixing models (Power et al., 2020; Salvatore, 2015; Salvatore et al., 
2020, 2021). In addition to the strong photosynthetic signatures iden
tified near stream channels and lake margins, we also observed 
enhanced spectral signatures indicative of photosynthetic activity in 
upland areas not connected to streams or lakes (Power et al., 2020). 
While remote sensing techniques have been demonstrated to be effective 
in regions of dense microbial mats, these techniques have not been 
specifically validated throughout the broader landscape where photo
synthetic communities are much more dispersed and their resultant 
signatures are often much weaker and discontinuous. Therefore, this 
work tests the hypothesis that these observed spectral signatures outside 
of stream channels are associated with areas of increased soil produc
tivity and not, for example, associated with spectral artifacts created by 
topographic or lithological variations. 

Our objectives for this study are to assess the detectability of biocrust 
and examine the environments in which these unique communities are 

found in the MDV. By investigating the spatial distribution of biocrusts 
using orbital data, our work contributes in part to efforts in refining 
existing carbon budgets (e.g., Barrett et al., 2006b; Burkins et al., 2001), 
predicting future carbon stocks, and examining controls over the dis
tribution and activity of biocrusts in the MDV. Here, we present the first 
assessment of biocrust detectability in the MDV terrestrial landscape 
using a combination of laboratory hyperspectral spectroscopy, 
WorldView-2 and WorldView-3 multispectral satellite imagery, and 
in-situ soil and biocrust surveying and sampling. 

2. Materials and methods 

2.1. Site description 

The MDV are the largest contiguous ice-free area on the Antarctic 
continent, with approximately 4500 km2 of exposed soil, stream, and 
lake ecosystems (Levy, 2013). Glacial meltwater during the austral 
summer (i.e., 24 h daylight) feeds streams that flow for an average of 4–9 
weeks per year (Wlostowski et al., 2016). These streams drain into 
perennially ice-covered lakes along the floor of Taylor Valley. While 
dense microbial mats (mm – cm thick) occupy streams and lake margins 
(Fig. 1 a), biocrusts occur at lower densities as discontinuous mats in 
intermittently wet soils (Fig. 1 b, c). The microbial mats are dominated 
by cyanobacteria (e.g., Nostoc, Oscillatoria, and Phormidium) and also 
contain chlorophyta (green algae) (Alger et al., 1997), various diatom 
species (Alger et al., 1997), and mosses which can also occur separately 
from microbial mats (Bryum spp. and Hennediella spp.; Pannewitz et al., 
2003; Schwarz et al., 1992). While studies on biocrust composition in 
the MDV are lacking, the biocrusts here contain cyanobacteria and 
mosses based on visual identification and appear to be dominated by 
Nostoc specifically. Communities of nematodes, rotifers, and tardigrades 
also inhabit the soils, sediments, and microbial mats of this region 
(Freckman and Virginia, 1997; Simmons et al., 2009a). Though, given 
the relatively low soil invertebrate biomass, grazing influences on mi
crobial mats and biocrusts are thought to be minimal, making the MDV a 
simple system for studying biocrust and microbial mat dynamics. 

Taylor Valley, one of several valleys in the MDV, spans from the 
McMurdo Sound of the Ross Sea in the east to the Taylor Glacier in the 
west. The eastern portion of Taylor Valley includes a dozen ephemeral 
glacial meltwater streams and Lake Fryxell, which have been the subject 
of numerous microbial mat studies (e.g., Alger et al., 1997; Kohler et al., 
2015; McKnight et al., 1998; Stanish et al., 2011). Due to proximity to 
the coast, eastern Taylor Valley also has the greatest relative humidity 
and the most shallow ice-cemented permafrost layers in the region, and 
therefore typically has higher soil water content (Bockheim et al., 2008; 
Doran et al., 2002; Obryk et al., 2020) and richer communities of soil 
invertebrates with greater biomass than other parts of Taylor Valley or 
neighboring Wright Valley (Adams et al., 2006; Barrett et al., 2006c, 
2007; Courtright et al., 2001; Xue et al., 2023). 

2.2. Spectral detection limit experiment 

We created microcosms of biocrust material and bare soil (not con
taining biocrust) of varying percent (0–100%) biocrust by weight (g/g) 
in the laboratory and characterized these materials using hyperspectral 
reflectance techniques to quantify the potential detection limits of our 
remote sensing methods. The soil was collected from the Fryxell basin, 
and to minimize oversampling of the sensitive dry valley biocrust 
communities, we collected a Nostoc-dominated biocrust from a warm 
desert environment in Arizona, which has a similar spectrum as the dry 
valley biocrust (Fig. S1). Both biocrust spectra contain absorption fea
tures at ~0.68, 1.19, 1.45, 1.78, and 1.93 μm, indicating that the major 
spectral characteristics between both types of biocrust are the same and 
therefore justify this analog material’s appropriateness for our labora
tory experiment. The biocrust and soil were separately ground into a 
homogenous fine particle size for hyperspectral analysis. This 
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disaggregation process allows the biocrust to evenly distribute among 
the soil particles, and from a chemical and pigment perspective, the 
spectral characteristics of the biocrust remain largely unchanged after 
disaggregating. A known quantity of biocrust was mixed with a known 
quantity of soil to achieve the desired percent biocrust mixtures, and the 
mixtures were placed into a sample holder ~2.5 cm in diameter and 0.5 
cm in depth. Sample mixtures were moistened with DI water and placed 
under a halogen lamp for several minutes, allowing time for the or
ganisms to reactivate and begin photosynthesizing. We targeted a final 
water content for our wetted samples of approximately 0.25 GWC (g 
H2O/g dry soil and biocrust material). Spectra were acquired using an 
Analytical Spectral Devices (ASD) FieldSpec4 high-resolution hyper
spectral reflectance spectrometer set up for use in a stable lab environ
ment. Data were collected between 350 and 2500 nm at a 1 nm sampling 
interval. A halogen lamp was used to illuminate the samples at 30◦ off- 
nadir and approximately 25 cm away, while reflectance was measured at 
nadir using the ASD’s bare fiber optic cable roughly 3 cm above the 
sample surface with a 25◦ field of view projecting a 1.39 cm2 spot size 
onto our samples. To minimize instrument noise, particularly at the 
longest and shortest wavelengths where the output of the halogen bulb is 
lowest, we averaged 50 individual spectra for each biocrust-soil com
bination produced in the lab. All data were then downsampled to WV-2 
and WV-3 spectral resolutions for direct comparison to the respective 
orbital platforms. Linear mixtures of pure soil and biocrust spectra were 
also modeled for comparison to the spectra of those known physical 
mixtures to determine the nature of the observed spectral mixing rela
tionship, validating the ability to confidently translate this linear 
unmixing method to orbital data. 

2.3. Orbital spectral collection and processing 

Satellite images acquired during austral summers were used to 
identify photosynthetic signatures in upland terrestrial areas. 
WorldView-2 and WorldView-3 (DigitalGlobe, Inc.) are multispectral 
satellites in polar orbit with 8 multispectral bands at 1.84 m and 1.24 m 
nadir resolutions, respectively. Georeferenced data, validated using 
ground control points, were obtained from the University of Minnesota 

Polar Geospatial Center (PGC) through a cooperative agreement be
tween the National Science Foundation (NSF) and National Geospatial- 
Intelligence Agency (NGA). These data were subsequently processed to 
atmospherically corrected surface reflectance using five spectral ground 
validation targets acquired in the field during the 2018–2019 austral 
summer, following methods from Salvatore et al. (2021). Band-specific 
linear relationships between top-of-atmosphere reflectance data and 
ground validation spectra were applied to the entirety of the satellite 
images to remove atmospheric contributions to the observed signal. 
These corrected surface reflectance data were used in several analyses 
and compared with ground-based surveys of soil chemical and biological 
properties detailed in the sections below. 

2.4. Field site identification and in-situ environmental sample collection 

We used vegetation indices, such as the Normalized Difference 
Vegetation Index parameter (NDVI; Tucker, 1979), to target locations of 
varying photosynthetic activity across the eastern Taylor Valley land
scape. High NDVI values are typical of photosynthetic vegetation, which 
has a unique spectral signature of absorbance in the visible wavelengths 
(due to the activity of chlorophyll-a and other pigments) and strong 
reflectance in near-infrared regions due to scattering and reflectance of 
long-wave radiation by cell walls. NDVI was calculated using spectral 
reflectance measurements acquired in the near-infrared (WV-2 Band 7, 
centered at 831 nm; WV-3 centered at 832 nm) and red (WV-2 Band 5, 
centered at 659 nm; WV-3 centered at 661 nm) using the Environment 
for Visualizing Images (ENVI, Harris Geospatial) software package. 

Thirty locations with either consistently high NDVI values, consis
tently low NDVI values, or variable NDVI values were identified in 
eastern Taylor Valley outside of stream channels and lake margins 
(Fig. 2) using three satellite images: a WV-3 image acquired on January 
17, 2015 (1040010006846000), a WV-2 image acquired on January 19, 
2018 (1030010077755100), and another WV-2 image acquired on 
December 11, 2018 (1030010089D13500). These 30 locations were 
selected to represent a range of potential photosynthetic activity and 
topographic features (i.e., slope, aspect, and elevation) characterized 
using an airborne lidar-derived digital elevation model (DEM) at 1 m 

Fig. 1. Photos of (a) dense, wet microbial mat in the Canada Flush (see Power et al., 2020); (b) dense biocrust downhill from snowpack (plot 09); (c) sparse, incipient 
biocrust in moist depression (plot 26); and (d) representative low productivity desert pavement (plot 31). Photographs taken by S. Power. 
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spatial resolution (Fountain et al., 2017). Depressions, rocky outcrops, 
sloped hills, and flat surfaces were all represented in our field locations. 
Overall, these locations were selected to maximize spatial coverage of 
ranges in photosynthetic activity and topography across the landscape. 

We sampled, photographed, and documented relevant environ
mental conditions (e.g., evidence of surface moisture, presence/absence 
of microbial mat, moss, or biocrust, presence of snowpacks, surface or 
lithological variations like dominant presence of oxidized granite) at 
each of these 30 locations in December of 2019. We collected a surface 
layer sample of soil or biocrust (if present) and rock from all sites for 
subsequent hyperspectral analysis in the laboratory using the same 
methods and laboratory set-up as previously described in Section 2.2. At 
12 of the sites, we established 5 m × 5 m intensive sampling plots and 
collected 5 surface layer soil or biocrust samples 128 cm2 in area from 
each corner and center of the plots for pigment analysis (chlorophyll-a, 
scytonemin, and carotenoids) and organic matter content via ash-free 
dry mass (AFDM). We also collected underlying soil down to 10 cm 
below the surface for gravimetric water content (GWC), electrical con
ductivity (EC), pH, inorganic nitrogen (N) concentration in the form of 
ammonium (NH4

+) and nitrate (NO3
−), inorganic phosphorus (P) con

centration in the form of phosphate (PO4
3−), total organic carbon (TOC), 

total nitrogen (TN), and invertebrate abundance (see below). After the 
initial soil chemistry and invertebrate diversity and abundance analyses, 
samples were frozen at −20 ◦C and transported to Virginia Tech and 
Northern Arizona University for remaining chemical and spectral 
analyses. 

2.5. Analysis of environmental field samples 

We estimated pigment concentration on the surface ~1 cm layer soil 
and biocrust samples using a trichromatic spectrophotometric method 
for chlorophyll-a, carotenoids, and scytonemin at 663, 490, and 384 nm, 
respectively (Garcia-Pichel and Castenholz, 1991). Throughout the 
process, care was taken to avoid exposing the samples to light. The 
samples were dried at 105 ◦C for 24 h, sieved through a 4 mm sieve, and 
extracted for 24 h at ambient temperature in 90% unbuffered acetone 
using a 3.75:10 soil to solvent ratio, based on protocols from Couradeau 
et al. (2016) and the McMurdo Dry Valleys Long Term Ecological 
Research Program (MCM LTER) standard methods. After centrifugation, 

the extracts were analyzed on a spectrophotometer using 10 mL cu
vettes. The absorbances contributed by each pigment were calculated 
using the trichromatic equations outlined in Garcia-Pichel and Cas
tenholz (1991), and the pigment concentrations were calculated using 
the Beer-Lambert Law with the extinction coefficients of 89.7 L g−1 cm−1 

for chlorophyll-a (Couradeau et al., 2016), 112.6 L g−1 cm−1 for scyto
nemin (Brenowitz and Castenholz, 1997), and 262 L g−1 cm−1 for ca
rotenoids (Thrane et al., 2015). Additionally, the surface layer soil and 
biocrust samples were measured for AFDM by weighing a known area of 
sample, combusting at 550 ◦C for 24 h using a muffle furnace, gently 
stirring samples halfway through combustion, and reweighing after 
cooling in a desiccator. Given the very low clay content of soils in this 
region (Barrett et al., 2006a), the rehydration of clays was assumed 
negligible, so we did not rewet samples. 

Using the underlying 1–10 cm soil, we measured pH and electrical 
conductivity using a 1:2 and 1:5 soil to DI H2O slurry with pH and 
conductivity probes, respectively (Barrett et al., 2004), and we 
measured gravimetric water content by mass lost after oven drying at 
105 ◦C for 24 h. We also extracted inorganic N (NH4

+ and NO3
−) in 2 M 

potassium chloride and inorganic P (PO4
3−) in 0.5 M sodium bicarbonate; 

inorganic N and P were measured on extracts using a Lachat QuikChem 
flow injection analyzer (Keeney and Nelson, 1982; Olsen and Sommers, 
1982; Knepel, 2003; Prokopy, 1995). Additionally, we measured TOC 
and TN using an Elementar Vario MAX Cube analyzer after fumigating 
samples with concentrated hydrochloric acid to remove the influence of 
carbonates on TOC values (Ramnarine et al., 2011; Walthert et al., 2010; 
Fritsen et al., 2000). 

Invertebrate abundance was enumerated using inverted light mi
croscopy on soil solutions using a modified sugar-centrifugation 
extraction procedure described by Freckman and Virginia (1993). 
Nematode abundance is reported as the total number of live Scottnema, 
Eudorylaimus, and Plectus individuals, and total live rotifers and tardi
grades per kg dry mass soil. Using R Statistical Software version 4.0.3 (R 
Core Team, 2017), a PCA on correlation was executed to visually 
compare plots in terms of their physicochemical properties. A MANOVA 
was performed to statistically assess whether there is a significant dif
ference between the three plot types (biocrust, oxidized granite, soil) 
using physicochemical variables. An ANOVA was performed next to 
assess which, if any, physicochemical variables are significantly 
different between the plot types. 

2.6. Vegetation index analysis using orbital data 

To examine variations in photosynthetic activity across our sampled 
locations in eastern Taylor Valley, we applied several vegetation indices 
to orbital data. The primary WV-2 image used in this analysis 
(103001009FA0AE00) was acquired on December 3, 2019, approxi
mately three weeks before our field sampling campaign. In addition to 
NDVI, we also calculated the Simple Ratio Index (SR), the Red-Edge 
Simple Ratio Index (SRre), and the Normalized Pigment Chlorophyll 
Index (NPCI). SR and NPCI are effective in detecting dry biocrust com
munities from other arid regions (e.g., the Colorado Plateau) with a 
portable spectroradiometer (Young and Reed, 2017). SR was calculated 
using the NIR and red bands, SRre was calculated using the NIR and 
red-edge bands, and NPCI was calculated using the red and coastal 
bands. Each of the parameter values were extracted from the four pixels 
centered at each of the plot locations, based on handheld GPS co
ordinates taken during sampling and visually confirming plot location 
via nearby boulders, snowpacks, etc. These values were averaged to 
estimate an average NDVI, SR, SRre, and NPCI value for each of the 
plots. Average reflectance values for each of the eight WV-2 bands were 
calculated for each plot as well. Using R Statistical Software version 
4.0.3 (R Core Team, 2017), a correlation matrix was constructed with 
the vegetation indices and raw bands to investigate any significant re
lationships between these primary remote sensing data and biological 
parameters collected in-situ (AFDM and pigment concentration). A 

Fig. 2. True color image of the Lake Fryxell basin with the 30 sampling loca
tions labeled. The 12 intensively sampled plots are denoted by triangles. Inset 
on the bottom right corner identifies the McMurdo Dry Valleys, Antarctica with 
a red square. WV-2 imagery (1030010089D13500) © Dec 11, 2018 Digital
Globe, Inc. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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principal components analysis (PCA) on covariance was executed to 
visually compare plots in terms of their orbital reflectance spectra (raw 
bands B1 – B8). A multivariate analysis of variance (MANOVA) was 
performed to statistically assess whether there is a significant difference 
between the three plot types (biocrust, oxidized granite, soil) using the 
multispectral bands. A univariate analysis of variance (ANOVA) was 
performed next to assess which, if any, spectral bands and vegetation 
indices (NDVI, SR, SRre, NPCI) are significantly different between the 
plot types. Plot 11 and plot 21 were excluded from these three statistical 
analyses because they were covered in snow and therefore their reflec
tance data skewed the analyses. 

2.7. Spectral linear unmixing of orbital data 

Spectral linear unmixing was used to model the spectral contribution 
of individual surface types, and therefore calculate the fractional 
abundance of each surface type per pixel (Lawson and Hanson, 1974; 
Adams et al., 1993; Ramsey and Christensen, 1998; Bioucas-Dias et al., 
2012; Salvatore et al., 2020). Spectral unmixing uses a library of ‘pure’ 
spectral endmembers of each surface type to train the model by 
matching the measured spectral signature, while reducing the misfit 
between the measured and modeled spectra. Endmembers are limited to 
the number of spectral bands and degrees of freedom in the data that are 
being unmixed; therefore, we were constrained to eight or fewer end
members for unmixing using the WV-2 and WV-3 satellites (Adams et al., 
1993; Ramsey and Christensen, 1998). Our seven hyperspectral end
members were derived through collection in the field, collection after 
laboratory preparation, or were modeled from field experiments. Six of 
these endmembers (black microbial mat, orange microbial mat #1 and 
#2, water, moss, and soil) were previously used in this region and are 
described in detail in Salvatore et al. (2021), and one additional end
member (an orange oxidized granite) was added for an updated 
emphasis on the terrestrial landscape and was collected during our field 
campaign and subsequently measured in the laboratory. This granite 
endmember is from a minor subunit of the broader Granite Harbour 
Intrusive Complex that outcrops near the top walls of Taylor Valley (Cox 
et al., 2012). X-ray diffraction confirmed the dominance of quartz 
(~30%), plagioclase feldspar (~25%), alkali feldspar (~25%), and 
mafic and other ancillary phases (~20%), while VNIR reflectance 
spectroscopy indicated a crystalline Fe-oxide phase, likely goethite or 
hematite, at orbitally relevant wavelengths. As a result of these analyses, 
we refer to this endmember as “oxidized granite.” All seven spectra were 
downsampled to WV-2 and WV-3 resolutions to create a spectral library 
that was used to unmix the entirety of each orbital image. Snow and ice 
were not included as spectral endmembers despite their pervasiveness 
across the landscape, because both snow and ice are known to exhibit 
significant VNIR spectral variability. For example, variations in snow 
crystallinity, grain size, liquid water content, and impurity content all 
have significant spectral influences (Warren, 1982). Instead, snow was 
identified in unmixed images using a combination of both high 
root-mean-square errors (RMSE) and high VNIR albedo. 

Linear unmixing is less commonly used in the visible or near-infrared 
portions of the electromagnetic spectrum in more vertical ecosystems 
where multiple scattering can be significant, (i.e. between vegetation 
canopy layers). Here, however, we assume minimal spectral contribu
tions from volumetric scattering with depth in the largely barren surface 
environments of the MDV where linear unmixing has been demonstrated 
successfully (Salvatore et al., 2020, 2021). Because of these assumptions 
and their demonstrated effectiveness in the past, we have selected linear 
unmixing as an appropriate method for this study (Peddle et al., 1999; 
Roberts et al., 1993; Salvatore et al., 2020, 2021). 

An ‘early season’ December 21, 2021 WV-2 image 
(10300100CB9F3900) and a ‘late season’ January 21, 2015 WV-2 image 
(103001003ED2B400) were the primary images used in this unmixing 
analysis to capture potential seasonal variation in the spectral signatures 
of biocrusts and soils. The DaVinci software package was used to run the 

unmixing model, using our seven spectral endmembers to linearly derive 
the areal abundance of these different surface components. The results 
include percent surface abundance as well as RMSE, which provides a 
measure of the goodness of fit between the input spectrum and the 
modeled spectrum. Abundance estimates from each of the endmembers 
were extracted from the 30 plot locations, incorporating a buffer to 
confidently capture the plot area (25 pixels per plot). RMSE were 
analyzed for each pixel-level abundance estimate, commonly ranging 
between ~0.1% to below 0.4%. However, certain pixels contained high 
RMSE and were attributed to being covered in snow, as verified by 
examining albedo estimates and the true-color WV-2 images. To account 
for the uncertainty imposed by snow in these areas, we filtered the 
abundance data by applying a threshold of RMSE >0.5%. Any pixels that 
contained RMSE >0.5% were removed from the analysis. 

To qualitatively and quantitatively assess the unmixing model output 
for an early season and late season image, we selected 15 plots to 
examine abundances of the different surface types. These plots were 
visually categorized in the field as having either biocrust/incipient 
biocrust, soil, or oxidized granite (i.e., 5 biocrust/incipient biocrust, 5 
soil, and 5 oxidized granite plots). The orange microbial mat #1 and #2 
endmember abundances were aggregated into a single orange mat group 
abundance, and we combined the soil endmember and water end
member abundances together as ‘other abiotic’ abundance. We 
compared our field measurements to our modeled total biocrust abun
dance, which was calculated as the sum of modeled black microbial mat, 
orange microbial mat, and moss abundance estimates for each pixel. 
While it is unlikely for all three of these microbial mat communities to 
co-occur in the environments we assessed outside of stream channels 
(Alger et al., 1997), summing all biological endmembers to create a 
“total biocrust abundance” parameter provides a quantitative assess
ment of the spectral contributions of photosynthetic pigments and the 
reflective structure of living cells. Therefore, this parameter is effective 
for the purposes of distinguishing surfaces where photosynthetic sig
natures are present, and our efforts will help to quantify our abilities to 
derive the abundances of these communities remotely. 

2.8. Albedo analysis of orbital data 

We selected 13 cloud-free WorldView images acquired between 2009 
and 2019 (six images acquired in December and seven images acquired 
in January) (Table S1) to determine how the landscape’s albedo changes 
from the ‘early season’ to the ‘late season’ and to therefore examine the 
potential presence of ephemeral snowpacks in the vicinity of our study 
plots, which based upon our field surveys were often associated with 
visible biocrust communities. Moreover, the presence of snowpack can 
mask surface soil features, so it was necessary for our analyses to char
acterize snowpacks in the vicinity of our plots. The mean and standard 
deviation of each pixel in these suites of early and late season images can 
provide important information related to surface landscape features. For 
example, brightening of surfaces indicates the presence of salts or snow 
on the surface, while darkening typically indicates increased soil mois
ture. We assume that topographic variations resulting in variations in 
shadows are negligible on the valley floor for the purposes of this ex
ercise. We predict that surfaces dominated by abiotic materials (granite 
and soil) will experience less variability in albedo over time than areas 
exhibiting increased photosynthetic and/or hydrological activity. After 
stacking the December and the January images, the average albedo and 
albedo standard deviation (SD) were calculated for each of the 25 pixels 
surrounding each plot’s center. Plot-level average and SD albedo were 
then calculated for December and January, separately. These data were 
plotted against one another and visualized based on identified surface 
type (biocrust, granite, soil) to analyze any associations with albedo and 
seasonality. 
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3. Results 

3.1. Laboratory spectral validation study 

Hyperspectral measurements of the soil biocrust microcosms 
exhibited significant chlorophyll absorption features at ~0.68 μm for all 
mixtures containing biocrust (Fig. 3), including the lowest abundance 
sample of 1% biocrust by weight (g/g). Lab measurements of the two 
extreme spectra (100% soil and 100% biocrust) were downsampled to 
WorldView resolution to compare with the resolution of the orbital data 
available for the field plots and were used to unmix spectra of actual 
biocrust mixtures measured in the lab. There was a strong linear fit 
between the modeled and measured biocrust abundance with an R2 of 
0.99 and p-value <0.001 (Fig. 4). Mixtures of biocrust and soil combine 
linearly in VNIR spectral space in these ideal conditions, demonstrating 
how linear unmixing models can successfully predict biocrust 
abundance. 

3.2. Field surveys and spectral analyses 

We found that many of the high or variable NDVI locations occurred 
in areas near snowpacks and in the lee of hills or in depressions (i.e., 
nivation hollows; Eveland et al., 2013), where biocrust cover over desert 
pavement was visually evident. One location in particular had visibly 
wet soils and dense biocrusts, plot 09 (Fig. 5 a, d, g). Percent coverage of 
up to 47% biocrust and average surface AFDM of 280 g m−2 of biocrust 
in plot 09 is similar to the lower range of densities reported for microbial 
mats on riparian sediments adjacent to nearby stream channels (Alger 
et al., 1997; Power et al., 2020; Salvatore et al., 2021). In contrast, 
several plots were extremely dry with no visible biocrust but had 
oxidized granite boulders and relatively high NDVI from orbital data 
(Fig. 5 b, e, h). Hyperspectral VNIR measurements collected from the 
field plot samples exhibited clear spectral differences between plots with 
visible presence of biocrust, granite boulders, and typical desert pave
ment soil (Fig. 5 j, k, l). Additionally, some plots were visually charac
terized as having sparse, incipient biocrust with weak but significant 
chlorophyll absorptions (e.g., P04, P11; Fig. 6). We ranked each plot on 

biocrust presence as “not present”, “possibly present”, “likely present”, 
and “present” based entirely on visual observations in the field, finding 
that plots where biocrust was present or was likely present had overall 
higher NDVI values using the hyperspectral VNIR measurements 
(Fig. 7). Plots that were dominated by oxidized granite also had rela
tively high NDVI but lacked visible biocrust. The densest biocrust plot 
and the granite boulder plots had relatively high NDVI based on the 
hyperspectral data as well; however, the shapes of their spectral signa
tures are very different (e.g., biocrust plot 09 and oxidized granite plot 
20; Fig. 5 j, k; Fig. S2). 

In a PCA on covariance using the WV-2 band reflectance (B1 – B8), 
plot types are significantly differentiated using multispectral band data 
(MANOVA, p-value = 0.048) (Fig. 8). Notably, the plots with oxidized 
granite are spectrally dissimilar from the biocrust and soil plots when all 
eight bands are used. It is also possible to distinguish among plot types 
using common vegetation indices (ANOVA; NDVI p-value <0.001; SR p- 
value <0.001; SRre p-value <0.01; NPCI p-value <0.01). Particularly, 
oxidized granite plots have significantly higher values for all vegetation 
indices compared to the biocrust and soil plots. In a correlation matrix 
between the vegetation indices, raw reflectance bands, and biological 
parameters (AFDM, chlorophyll, and scytonemin concentration), there 
are no significant relationships between these primary remote sensing 
data and biological parameters (Table S2). 

3.3. Soil characterization 

There was significant variation in pigments, organic matter, inver
tebrate populations, (Table 1) and in other physical and chemical vari
ables (Table 2) among the plots. Notably, plot 09, with dense biocrust, 
had the highest abundances and diversity of soil invertebrates, hosting 
three nematode taxa (Scottnema, Eudorylaimus, and Plectus) in addition 
to tardigrades, rotifers, and ciliates, similar to the community compo
sition found in soils near streams (Ayres et al., 2007; Simmons et al., 
2009a; Treonis et al., 1999). While Scottnema was present in relatively 
high abundances throughout most plots (as has been previously reported 
for this area of Taylor Valley; Courtright et al., 2001), there were several 
plots (P22, 30, 31) without any invertebrates present where distinct soil 
chemistry (pH, nitrate, and electrical conductivity) likely created 

Fig. 3. Hyperspectral signatures of wetted laboratory mixtures of soil and 
biocrust at varying abundances. Reflectance offset to distinguish each spectra 
separately. Listed percentages indicate measured biocrust by weight. Chloro
phyll absorption feature identifiable at ~0.68 μm, denoted by vertical gray bar. 

Fig. 4. Scatterplot showing modeled vs. measured biocrust abundance deter
mined in laboratory experiment. Highly significant fit (R2 

= 0.99, p-value 
<0.001) between modeled (spectral linear unmixing) and measured biocrust 
abundance using laboratory mixtures of soil and biocrust. 
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inhospitable conditions (e.g., Barrett et al., 2004; Poage et al., 2008). 
The majority of samples had NH4

+ concentration below detection except 
for plots 01, 09, 10, 22, 31, 33. Soil organic carbon and total nitrogen 
concentrations were higher than average compared to soils in this part of 
Taylor Valley (Barrett et al., 2006b, 2007) and may reflect the influence 
of moderate to dense biocrusts found in our most productive plots 
(Table 2). Importantly, dense biocrust plot 09 had the lowest electrical 
conductivity (indicator of soils that are regularly flushed by water), a 
more neutral pH, and a relatively higher concentration of ammonium, 

NH4
+, (indicative of active microbial decomposition). Moreover, plot 09 

had more than 5x the AFDM of the other plots on average. In a PCA on 
correlation, plot types are not significantly distinguished by physico
chemical properties (MANOVA, p-value = 0.56) (Fig. S3). However, 
NH4

+ availability is significantly different among the plot types (ANOVA, 
p-value = 0.044) with dense biocrust most associated with increasing 
NH4

+ availability. 

Fig. 5. Orbital NDVI images of (a) relatively high NDVI area of plot 09, (b) relatively high NDVI area of plot 20, and (c) relatively low NDVI area of plot 02. 
Landscape photos of (d) dense biocrust downhill from snowpack (plot 09), (e) oxidized, weathered granite boulder field (plot 20), and (f) typical low productivity 
desert pavement (plot 02). Close up photos of the (g) dense biocrust, (h) oxidized, weathered granite, and (i) typical desert pavement. Hyperspectral reflectance 
signature of (j) plot 09 biocrust, (k) plot 20 oxidized granite, and (l) plot 02 typical soil with each separate spectra transparent in background. Gray bars outline the 
region of NDVI calculation (steeper slope illustrates higher NDVI). Photographs taken by S. Power. WV-3 imagery (10400100485D6900) © Jan 26, 2019 Digital
Globe, Inc. 
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3.4. Spectral linear unmixing of orbital data 

The linear spectral unmixing analysis of an early season (Dec 21, 
2021) and late season (Jan 21, 2015) image demonstrated consistency in 
surface cover estimates between the two images (Table 3). RMSE were 
relatively low except for areas that were snow covered (i.e., also dis
played high albedo values). Notably, these snowy areas often coincided 
with plots that were identified in the field as either having biocrust 

Fig. 6. Spectra acquired from each plot’s surface soil or biocrust sample using a 
hyperspectral imaging spectrometer. Spectra downsampled to WV-2 resolution 
are shown in bold in the NDVI identified region of the spectrum with gray bars. 
Bright green spectra indicate higher NDVI. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 7. Confidence in biocrust presence at each plot location, based on human 
interpretation in the field, compared to hyperspectral NDVI measurements ac
quired from samples transferred to and measured in the laboratory. Visually 
identified oxidized granite dominated plots are denoted in orange and the 
remaining plots (biocrust or typical soil) are denoted in blue. (For interpreta
tion of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 8. Principal components analysis ordination on covariance of 28 plots (2 
plots excluded due to snow coverage). Plots with ground cover consisting 
mainly of oxidized granite are shown in orange, biocrust and incipient biocrust 
in green, and typical soil in purple. Plots shown in green are categorized as 
biocrust “present” or “likely present” based on our visual biocrust categoriza
tion. Vectors represent correlations of WorldView-2 band reflectance (B1 – B8) 
with PCA ordination axes (all displayed correlations are significant, p < 0.001). 
Spectral data were acquired by the WV-2 satellite on Dec 03, 2019. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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present or likely present (incipient biocrust). Half of locations with 
biocrust or incipient biocrust (n = 4 of 8) were snow covered during the 
early season image. The remaining locations with biocrust and incipient 
biocrust were all within 15–35 m of snowpacks, measured from the 
center of the plots. Among the remaining 22 plots identified as biocrust 
not present or possibly present, only 3 plots contained some pixels with 
RMSE >0.5%. One of these plots contained some snow cover and lacked 
visible biocrust (P33), while the other two plots did not contain snow 
cover in the immediate area (P29, 30). Table 3 includes a subset of our 
30 plots documenting the consistency of surface cover types between our 
two analyzed images, and also demonstrates the likely association be
tween the presence of biocrust and snow cover. 

3.5. Albedo analysis of orbital data 

To identify any possible associations between biocrust cover and 
early season snowpack, the mean albedo and albedo SD were calculated 
for all plots among several December and January images (Fig. 9). Lo
cations that contained snow cover had greater mean albedo, primarily 
early in the season when snowpacks are most present, and greater al
bedo SD between images based on the seasonality of snow and surface 
soil moisture. All of the plots that contained visually conspicuous bio
crust cover had higher mean albedo and albedo SD than typical soil or 
oxidized granite plots. While not all of our biocrust identified plots were 
associated with variations in snow cover within the immediate area of 

Table 1 
Biological variables averaged (n = 5) ± 1 standard deviation from each of the 12 intensively sampled plots. Invertebrates are counted as the number of total-living.  

Plot 
ID 

AFDM (mg 
cm−2) 

Chlorophyll (μg 
cm−2) 

Carotenoid (μg 
cm−2) 

Scytonemin (μg 
cm−2) 

Nematodes (# kg−1 dry 
soil) 

Rotifers (# kg−1 dry 
soil) 

Tardigrades (# kg−1 dry 
soil) 

P01 5.35 0.009 0.062 0.864 362 0 2  
±2.81 ±0.006 ±0.030 ±0.693 ±804 ±0 ±5 

P09 28.29 4.974 2.141 77.395 1102 30 1822  
±21.62 ±5.698 ±2.500 ±89.278 ±735 ±38 ±2144 

P10 2.12 0.007 0.031 0.331 1453 32 2  
±0.49 ±0.002 ±0.009 ±0.109 ±1405 ±31 ±4 

P14 4.06 0.006 0.063 0.800 959 0 0  
±1.06 ±0.006 ±0.030 ±0.314 ±1990 ±0 ±0 

P17 3.90 0.005 0.040 0.683 449 0 0  
±0.79 ±0.003 ±0.016 ±0.231 ±756 ±0 ±0 

P22 2.19 0.005 0.027 0.285 0 0 0  
±0.95 ±0.002 ±0.004 ±0.049 ±0 ±0 ±0 

P23 2.99 0.002 0.040 0.399 85 0 0  
±0.89 ±0.002 ±0.026 ±0.271 ±179 ±0 ±0 

P27 3.18 0.006 0.032 0.432 168 0 0  
±1.12 ±0.003 ±0.013 ±0.186 ±354 ±0 ±0 

P28 2.55 0.003 0.033 0.379 495 2 0  
±0.51 ±0.002 ±0.017 ±0.165 ±595 ±5 ±0 

P30 3.46 0.005 0.036 0.272 0 0 0  
±0.57 ±0.003 ±0.023 ±0.184 ±0 ±0 ±0 

P31 3.87 0.007 0.037 0.309 0 0 0  
±0.77 ±0.002 ±0.013 ±0.122 ±0 ±0 ±0 

P33 2.61 0.004 0.019 0.137 875 0 0  
±0.84 ±0.003 ±0.003 ±0.054 ±1288 ±0 ±0  

Table 2 
Physical and chemical variables averaged (n = 5) ± 1 standard deviation from each of the 12 intensively sampled plots where “GWC” refers to gravimetric water 
content, “EC” electrical conductivity, “TOC” total organic carbon, and “TN” total nitrogen.   

Plot ID 
GWC (g/g) EC (μS cm−1) pH NH4

+ NO3
− PO4

3- TOC TN 

μg N g−1 dry soil μg N g−1 dry soil μg P g−1 dry soil mg C g−1 dry soil mg N g−1 dry soil 

P01 0.06 2330 8.4 0.12 57.87 3.56 0.309 0.112  
±0.03 ±2318 ±1.3 ±0.19 ±60.82 ±0.54 ±0.08 ±0.05 

P09 0.06 70 8.5 0.09 0.86 3.12 1.24 0.176  
±0.04 ±37 ±0.7 ±0.19 ±0.36 ±0.66 ±0.34 ±0.04 

P10 0.02 112 9.9 0.02 0.002 4.47 0.405 0.119  
±0.00 ±50 ±0.4 ±0.04 ±0.01 ±5.93 ±0.08 ±0.04 

P14 0.06 2311 8.6 0 48.30 12.19 1.14 0.203  
±0.02 ±1819 ±0.7 ±0 ±43.83 ±6.15 ±0.55 ±0.07 

P17 0.02 1095 8.8 0 65.79 5.85 0.497 0.115  
±0.01 ±654 ±0.5 ±0 ±71.17 ±2.65 ±0.19 ±0.04 

P22 0.05 2152 9.5 0.02 65.51 18.65 1.11 0.178  
±0.02 ±786 ±0.6 ±0.03 ±51.13 ±10.70 ±0.58 ±0.06 

P23 0.02 907 9.6 0 13.43 3.34 0.272 0.081  
±0.01 ±283 ±0.6 ±0 ±7.04 ±0.40 ±0.07 ±0.02 

P27 0.03 656 8.4 0 4.32 2.71 0.495 0.097  
±0.04 ±523 ±0.3 ±0 ±5.95 ±1.07 ±0.16 ±0.02 

P28 0.08 515 8.9 0 5.17 3.00 0.529 0.099  
±0.09 ±440 ±0.5 ±0 ±7.02 ±2.03 ±0.28 ±0.02 

P30 0.04 2347 9.0 0 33.40 3.70 0.364 0.111  
±0.03 ±2602 ±0.8 ±0 ±46.07 ±1.70 ±0.21 ±0.06 

P31 0.05 2431 8.2 0.01 27.68 1.70 0.275 0.074  
±0.02 ±1757 ±0.3 ±0.01 ±22.36 ±0.52 ±0.09 ±0.02 

P33 0.02 130 9.6 0.03 0.12 2.30 0.352 0.085  
±0.00 ±67 ±0.3 ±0.05 ±0.27 ±0.88 ±0.11 ±0.02  
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the plots (note that biocrust can obtain moisture from groundwater 
seeps or melting subsurface ice as well), we do find that the brightest and 
most variable surfaces in our study area are all biocrust identified areas 
(Fig. 9). 

4. Discussion 

4.1. Laboratory spectral detection of biocrust 

Our laboratory spectral validation study demonstrated that biocrust 
present in soil microcosms is detectable at abundances as low as 1% by 
weight, and that spectral linear unmixing models can be used to suc
cessfully predict biocrust abundance. The absorption feature associated 
with photosynthetic pigments (~0.68 μm) is present in all biocrust 
microcosm mixtures, including the 1% biocrust microcosm where the 

feature is observable as well (Fig. 3). When comparing the modeled 
biocrust abundance of each sample mixture to the actual measured 
biocrust abundance, there is a strong linear fit between the modeled and 
measured abundance with an R2 of 0.99 (Fig. 4). We have shown how, 
under ideal conditions, mixtures of biocrust and soil combine linearly in 
VNIR spectral space, allowing for linear unmixing models to accurately 
predict biocrust abundance. This detection method is successful over a 
range of abundances analogous to dense microbial mat communities 
associated with productive aquatic habitats (Power et al., 2020; Salva
tore et al., 2021) and sparse biocrusts in the more typical arid soils of the 
MDV. Despite the known complexities associated with extrapolating 
these results to field and orbital data (e.g., atmospheric contributions, 
variations in biotic and abiotic surface composition and moisture), the 
relationships derived in our laboratory analyses are successful in iden
tifying and quantifying biocrust and can be modeled to approximate the 
distribution of microbial communities in the MDV. 

4.2. Oxidized granite impedes use of vegetation indices 

It was evident during our field surveying and sampling campaign 
that geological features are a significant factor in the detection of low 
density biocrusts in dry terrestrial environments. While the soils and 
dominant lithologies of the MDV have been widely characterized by 
previous investigators (e.g., Bockheim et al., 2008), isolated outcrops or 
boulders of distinct composition have been shown to locally influence 
observed spectral signatures. For example, during our field campaign, 
several plots with high NDVI values were found to be predominantly 
covered by oxidized granitic boulders (Fig. 5 e, h). Despite their high 
NDVI values, these oxidized granite plots lack visible biocrust presence 
based on visual observation in the field (Fig. 7) and had low AFDM and 
chlorophyll contents (Table 1), indicating that these relatively high 
NDVI values are not associated with photosynthesis. The hyperspectral 
data of the surface samples of all plots illustrated clear distinctions 
among the plots (Fig. 6). For example, plots 20 and 29 were located 
within oxidized granite boulder fields and exhibit two broad absorption 
features associated with the presence of ferrous and ferric iron (Fe), 
centered near 0.67 μm and 0.94 μm, and resulting in a broad reflectance 
peak at approximately 0.74 μm (Fig. 5 k; Fig. S2). While the hyper
spectral shape of these granitic spectra is distinct from those of biocrust, 
NDVI does not effectively distinguish between them due to the granitic 
spectra containing an Fe-absorption feature at red wavelengths and thus 

Table 3 
Modeled abundance of total biocrust, oxidized granite, and remaining abiotic endmembers at a select number of plots visually identified by the surface type. ‘Other 
abiotic’ is the combination of the soil and water endmember abundances. An ‘early season’ and a ‘late season’ WV-2 image were selected for the spectral linear 
unmixing: Dec 21, 2021 and Jan 21, 2015, respectively. Specific pixels were excluded from the abundance average (n = 25 per plot) if the RMSE >0.5%, common for 
snow covered areas.   

Plot 
ID 

Surface Type 
Visually Present 

Dec 21, 2021 
‘Early Season’ 

Jan 21, 2015 
‘Late Season’ 

Modeled Abundance (%) Average % 
RMSE 

% Excluded 
Pixels 

Modeled Abundance (%) Average % 
RMSE 

% Excluded 
Pixels   

Biocrust Oxidized 
Granite 

Other 
Abiotic   

Biocrust Oxidized 
Granite 

Other 
Abiotic   

P02 soil 0.6 2.4 97.0 0.302 0 1.7 9.4 88.9 0.240 0 
P04 biocrust – – – 5.000 100 8.4 11.0 80.6 0.260 0 
P09 biocrust – – – 5.863 100 16.5 11.3 72.2 0.200 0 
P10 oxidized granite 9.5 39.9 50.6 0.181 0 2.5 52.1 45.3 0.150 0 
P11 biocrust – – – 5.297 100 4.2 1.7 94.1 0.190 0 
P14 soil 0.6 4.9 94.4 0.303 0 0.4 5.5 94.1 0.260 0 
P17 soil 2.7 6.9 90.4 0.309 0 1.3 12.0 86.7 0.220 0 
P20 oxidized granite 7.4 50.2 42.4 0.203 0 1.9 49.6 48.4 0.170 0 
P22 oxidized granite 5.8 40.2 54.0 0.160 0 2.1 69.4 28.6 0.170 0 
P23 incipient biocrust 0.4 23.5 76.0 0.226 0 0.0 33.9 66.1 0.220 0 
P26 incipient biocrust 7.7 29.1 63.2 0.201 0 12.2 1.0 86.8 0.241 0 
P27 oxidized granite 2.2 27.0 70.9 0.168 0 4.3 20.9 74.8 0.224 0 
P29 oxidized granite 16.7 39.3 44.0 0.308 24 17.8 39.3 42.9 0.303 16 
P30 soil 3.5 25.8 70.8 0.226 4 0.8 24.4 74.8 0.262 0 
P31 soil 7.6 25.8 66.6 0.231 0 3.3 8.9 87.7 0.276 0  

Fig. 9. Mean and standard deviation albedo of early season December and late 
season January WorldView-2 and -3 images at each of the 30 plots locations. 
Colors indicate surface type of plot. Biocrust plots include those which were 
identified in the field as having visually conspicuous biocrust present or likely 
present (incipient biocrust). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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an increase in reflectance in the NIR (Fig. S2). This change in reflectance 
creates a slope that causes these granitic areas to have a high NDVI, 
despite not being correlated to indicators of photosynthetic activity (e.g., 
chlorophyll or AFDM). While hyperspectral reflectance data can be used 
to distinguish these abiotic absorption features from those associated 
with biological activity, simple multispectral parameters (e.g., NDVI) are 
less capable of distinguishing between these different compositions and 
are therefore less reliable at detecting biocrust presence. 

4.3. Biocrust distribution is associated with seasonal snowpacks 

In contrast to soils with oxidized granites, several locations con
tained sparse, incipient biocrust, where it appeared that cyanobacteria 
colonies and potentially moss were emerging from wet desert pavement 
(Fig. 1 c). The locations identified as having biocrust present or likely 
present had relatively higher NDVI compared to the desert pavement 
locations not containing biocrust and which upon analyses were shown 
to have low chlorophyll concentrations and AFDM. Of particular inter
est, plot 09 hosted dense biocrust (Fig. 5 d, g) and diverse soil fauna 
(Table 1), similar in composition to the diversity found near stream and 
lake ecosystems (Ayres et al., 2007; Treonis et al., 1999). Plot 09 is 
outside of any stream channel or water track and is ~700 m above the 
current elevation of Lake Fryxell. The only visible source of liquid water 
for plot 09 are a series of snowpacks immediately uphill and ~10 and 50 
m uphill (at the time of sampling and visible in multiple satellite im
ages). While diverse invertebrate communities are common near aquatic 
environments in the Fryxell basin (Courtright et al., 2001; Freckman and 
Virginia, 1997), they have not been commonly reported for upland soils 
outside stream channels. 

One well-documented landscape that exhibits similar biotic diversity 
to plot 09 is the Wormherder Creek wetland in western Taylor Valley on 
the south side of the west lobe of Lake Bonney (Harris et al., 2007; 
Simmons et al., 2009b; Nielsen et al., 2012). Unlike the soil biocrusts 
documented here (e.g., plot 09), which are fed by the melt of relatively 
small snowpacks (<60 m in diameter), the Wormherder Creek wetland is 
fed intermittently by the melt of large snowpacks on the southern valley 
wall which create melt-water drainages that have contributed to satu
rated soils and overland flow on at least 3 documented occasions (suf
ficiently warm and sunny summers) in the last thirty years (Lyons et al., 
2005; Nielsen et al., 2012; Wlostowski et al., 2019; Stanish et al., 2012; 
Harris et al., 2007). Abundant microbial mats hosting diatom and 
invertebrate communities have been described in Wormherder Creek 
(Nielsen et al., 2012; Stanish et al., 2012; Simmons et al., 2009b). Both 
these snowpack-fed meltwater environments are examples of biological 
hotspots in an otherwise arid terrestrial landscape physically separated 
from the diverse communities within the annual ephemeral streams. 

These snowpack-fed biological hotspots are distinct from the water 
track features described by Levy et al. (2011), which are narrow areas of 
subsurface hydrologic flow that route water downslope through soils 
above the ice table and lack overland flow. Water tracks are more saline 
in comparison to the surrounding landscape and therefore do not host 
conspicuous surface biocrust, microbial mats, or invertebrate commu
nities (Kuentz et al., 2022; Levy et al., 2011, 2014). Therefore, biological 
activity in these snowpack areas is not driven solely by the presence of 
liquid water, but also suitable soil conditions as well. 

A continuum of hydrological conditions exists: the arid terrestrial 
landscape, hypersaline water tracks, snowpack-fed microhabitats, 
snowpack-fed non-annual ephemeral wetlands, annual ephemeral 
streams, and lakes (Table 4). Plot 09 is compositionally and chemically 
more similar to near-stream environments than to the persistently dry 
and low organic matter soils that characterize most of this arid terres
trial landscape (Burkins et al., 2001; Barrett et al., 2006a). For example, 
plot 09 is wetter and less alkaline than the other soil plots with low or no 
biocrusts, which are representative of the arid soils described by Barrett 
et al. (2006a) and Campbell et al. (1998) (Table 2). Plot 09 also has the 
lowest electrical conductivity, which is an indicator that soils are 
regularly flushed by water, and it has a relatively higher concentration 
of ammonium, NH4

+, typical for biologically active soils with active 
turnover of organic matter (Barrett et al., 2009). Additionally, the 
concentration of soil organic C in this plot is more than 2x greater on 
average than previous reports for arid soils in Taylor Valley (Barrett 
et al., 2006b; Burkins et al., 2001) and closer to the concentrations of C 
in near-stream and lake sediments (Barrett et al., 2009). Moreover, the 
mass of carbon in the biocrust itself is 2–3x greater than that in the 
underlying surface soils (Burkins et al., 2001), indicating the importance 
of including biocrust estimates in regional carbon mass balances. Rather 
than viewing this landscape as simply aquatic or terrestrial units, a 
continuum of hydrological conditions exists, and these snowpack-fed 
landscapes constitute a unique component of the soil-sediment envi
ronment. Elucidating the factors contributing to the structure and 
function of these snowpack-associated environments is essential for 
refining our understanding of species distribution and organic C balance 
in the MDV. 

4.4. Comparisons between multispectral and hyperspectral data 

There are inherent limitations to multispectral data when they are 
used for detecting surfaces that are spectrally weaker and discontinuous, 
such as patchy biocrusts. When investigating our intensively sampled 
plots which had in-situ biological data collected (i.e., AFDM, pigment 
content), there were no significant correlations between the biological 
parameters and multispectral vegetation indices and raw bands 
(Table S2). There were some correlations (e.g., with B1, R ~ 0.73; and 
with B2, R ~ 0.64) that were driven by plot 09 with orders of magnitude 
higher AFDM and pigment concentration, but all significant correlations 
were lost when removing this dominant plot. Solely using these tradi
tional multispectral indices is inadequate for identifying patchy biocrust 
surfaces, specifically in areas with spectrally dominant surface geology, 
such as the MDV. 

Hyperspectral reflectance measurements were essential in this study 
to understand the spectral complexities of our surface types. For 
example, plot 09 contained the most visibly dense biocrust in our field 
campaign and was spectrally unique with the highest NDVI measured 
from hyperspectral data in the laboratory (Fig. 6). However, it did not 
always have the highest satellite-derived NDVI as expected; the oxidized 
granite areas sometimes had higher NDVI across images. This demon
strates the differences in spectral resolution between a hyperspectral 
reflectance spectrometer and a multispectral satellite, and also the dif
ferences in surface area of larger granitic surfaces compared to patchy 
biocrust surfaces when using satellite data. Additionally, this difference 

Table 4 
Continuum of hydrological conditions in Taylor Valley, Antarctica.  

Landscape Feature Water Abundance Salinity Biological Activity 

Arid Terrestrial Landscape Low Low-High Low 
Hypersaline Water Tracks Medium High Low 
Snowpack-Fed Microhabitats Low-Medium Low-Medium Medium 
Snowpack-Fed Non-Annual Ephemeral Wetlands Medium Low-Medium Medium 
Annual Ephemeral Streams Medium-High Low Medium-High 
Lakes High Low High  
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in plot 09 NDVI from hyperspectral laboratory measurements to multi
spectral orbital data could also in part be the result of fluctuating bio
logical activity through time. For example, a 2019 WorldView-3 image 
shows higher NDVI at this location in January when the snow generally 
melts, the surrounding soils are moist, and the biocrust communities are 
likely active (Fig. 5 a). Barták et al. (2016) and Trnková and Barták 
(2017) both demonstrate the relationship between water content in 
black microbial mats, their photosynthetic activity, and their resultant 
spectral signatures. Their results indicate that there is a reduction in 
NDVI by roughly 50% from maximum photosynthetic signatures at 
roughly 55% relative water content (RWC) to complete desiccation at 
0% RWC. These and other authors (e.g., Salvatore et al., 2021) also note 
how burial by windblown sand can significantly mask the spectral sig
natures of dry mats and biocrusts. Together, these studies and our results 
demonstrate there are many factors that can influence the observed 
NDVI signature at multispectral resolutions beyond simply the abun
dance of photosynthetic biomass, and hyperspectral data were necessary 
to elucidate these interactions. 

However, incorporating all multispectral bands makes it possible to 
differentiate between the three plot types here (Fig. 8). The gradient of 
plots from bare soil to denser biocrust along the raw WV-2 band 
reflectance vectors informs a detection threshold for biocrust around 
47% cover or 280 g m−2 AFDM (plot 09). The oxidized granite plots are 
most spectrally dissimilar from the biocrust and soil plots. When using 
the vegetation indices calculated from the multispectral data, it is also 
possible to statistically distinguish among plot types. Though, the plots 
with the highest vegetation index values are those with the oxidized 
granite surfaces. It is evident through our analyses that surface geology 
in this environment can result in higher NDVI values, which is not 
indicative of biological activity, but are instead spectrally dominant 
areas in the wavelengths typically diagnostic for photosynthesis. 
Although hyperspectral data in the laboratory show that biocrust is 
identifiable and distinct from oxidized granite surfaces and typical soil 
surfaces, we are currently limited to multispectral resolution with 
available satellite data. While vegetation indices are also limited in the 
number of bands they incorporate and are shown here to be affected by 
surface geology, incorporating all eight multispectral bands proves 
useful in distinguishing biologically active surfaces. It is of particular 
importance to note that the overall success of our analyses was depen
dent on our ability to ground truth, which allows us to confidently link 
spectral data to what we saw and measured with boots on the ground. 

4.5. Spectral linear unmixing models predict biocrust abundance 

Moving beyond traditional remote sensing indices, we applied 
spectral linear unmixing models to WV-2 orbital data using spectral 
endmembers collected from the field with a hyperspectral reflectance 
spectrometer, including an oxidized granite endmember (Table 3). The 
low RMSE associated with the unmixing of all surface types discussed 
here demonstrates that there are no clearly omitted spectral endmem
bers. Although our hyperspectral measurements outperform multispec
tral data in terms of biological detection, we are limited to multispectral 
bands with available satellite imagery. However, using multispectral 
orbital data, our results demonstrate how linear unmixing models 
perform better than vegetation indices, because they use all eight mul
tispectral bands as opposed to only a few select bands. Specifically, there 
are clear spectral differences between oxidized granites and photosyn
thetic biocrust when all eight spectral bands are investigated, but these 
differences are lost when using vegetation parameters like NDVI. While 
some endmembers are less spectrally unique at multispectral resolutions 
in comparison to hyperspectral and can confuse the unmixing models at 
times, these models are still a far improvement over simple vegetation 
indices in detecting low density biocrusts and can be used to infer 
ecologically relevant properties of biocrust in this region. Most notably, 
our unmixing analyses with RMSE indicate that plots containing bio
crust were all either snow covered or within 15–35 m of snowpacks 

during an early season (Dec 21, 2021) WorldView-2 image (Table 3). 
This result suggests snowpacks are important sources of moisture sus
taining biocrust community microhabitats in an otherwise arid terres
trial landscape, and therefore encourages further investigation. 

4.6. Snowpacks as microhabitats for biocrusts and diverse soil 
communities 

To identify associations between biocrust cover and early season 
snowpack, we visualized the mean albedo and albedo SD for all plots 
based on surface type among several December and January images 
(Table S1). We found that the brightest and most variable surface areas, 
where snow is present, were areas that were identified as biocrust 
visually in the field (Fig. 9). There are biocrust areas that have lower 
mean and SD albedo and are likely associated with other sources of 
moisture, like groundwater seeps or snow, which accumulates to a much 
lesser extent and melts earlier in the season. Among our plots, the 
highest and most variable albedo surfaces are associated with biocrust 
presence, indicating that these MDV biocrust habitats are likely associ
ated with areas where snow accumulates early in the season, slowly 
melts later in the season, and supplies soil communities and biocrusts 
with sufficient moisture to sustain biological activity throughout the 
austral summers. 

Snow is an important surface component of the Taylor Valley. Sea
sonal snow accumulates more on the eastern portion of the Taylor Valley 
closer to the coast (Eveland et al., 2012, 2013; Fountain et al., 2010). 
The Fryxell basin, where our study region is located, receives the 
greatest annual snowfall and has the highest interannual variability of 
snowfall within Taylor Valley (Myers et al., 2022). The Fryxell basin 
region received an average of 11.5 mm wet equivalent of snow accu
mulation from 1995 to 2017 between the months of August and May 
(Myers et al., 2022). While the magnitude of snowfall and snow accu
mulation is dependent on the variability of the frequency and intensity 
of storms and winds, snow is expected to collect in the same locations 
inter-annually because snow accumulation is most associated with 
variation in fine-scale topography (Eveland et al., 2012, 2013). Seasonal 
snow accumulates across a large portion of the Fryxell basin region. For 
example, prior research has shown accumulation covering an area of 
10.29 km2 (17.83% of the Fryxell basin delineated region) in late 
October of 2009 (Eveland et al., 2012). By mid-January of 2010, 93% of 
the snow accumulation was lost (Eveland et al., 2012), primarily due to 
sublimation given the arid environment but also due to snowmelt. For 
example, Gooseff et al. (2003) and Ayres et al. (2010) observed increases 
in soil moisture near snowpacks compared to the nearby dry soils. 
Eveland et al. (2012) also suggest that volumes of water that usually 
seem insignificant to some ecosystems may be an important driver in 
structuring communities below snow in highly water-limited environ
ments such as the MDV. Snow cover has also been shown to reduce 
temperature extremes in underlying soil and influence biogeochemical 
cycling and microbial activity in soils generally (Schimel et al., 2004; 
Van Horn et al., 2013). 

Furthermore, we suggest that snowpacks commonly occurring 
throughout eastern Taylor Valley provide enough moisture for the 
development of biocrusts and underlying soil communities and likely 
create suitable microhabitats shielded from temperature extremes and 
intense UV-radiation. Given the broader spatial extent of the terrestrial 
landscape outside of stream channels and lake margins and the abun
dance of snowpacks, we anticipate that a considerable proportion of the 
valley-wide carbon budget is represented by biocrust communities. To 
refine the Taylor Valley carbon budget, future field work should incor
porate more sampling and surveying of these snowpack areas to docu
ment the influence of snowpack variability on the dynamics of biocrust 
and soil microbial communities in the MDV. Given the strong interan
nual variability of snowfall and snow persistence in the Taylor Valley 
(Myers et al., 2022), the documented occurrence of anomalous weather 
events (Barrett et al., in review), and the prediction that Antarctic coasts 
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will experience more frequent and intense rainfall by the end of the 
century (Vignon et al., 2021), we encourage continued research on these 
biocrust microhabitats in this currently water-limited but increasingly 
dynamic landscape. 

5. Conclusion 

Here, we show that low density biocrusts are patchily distributed 
throughout the eastern Taylor Valley region in upland areas away from 
streams and lake margins. Seasonal snowpacks create microhabitats for 
these biocrust communities to successfully thrive in this otherwise 
harsh, desert environment. Soils beneath these biocrusts can support 
diverse soil fauna, similar in community composition to soils immedi
ately beside streams and lake margins. A continuum exists between 
aquatic and terrestrial environments where microhabitats are driven by 
snowpacks physically separate from streams that otherwise have 
ecosystem properties and biological diversity more similar to the local 
streams than the nearby arid soils. We suggest that these snowpack-fed 
microhabitats are unique ecosystems and a key ecological component to 
the region’s carbon budget. Moreover, our work to study these micro
habitats in further detail is ongoing (e.g., Power et al., in prep), and we 
encourage other efforts as well. 

Ground truthing is essential for detecting and mapping biocrust. 
Although geological surface composition can impede use of NDVI on 
soils, spectral linear unmixing methods are a practical alternative for 
successful biocrust detection. Our modeling efforts are currently the 
foundation of follow-up studies where further validation efforts in the 
field are needed to extrapolate the model and test our hypotheses about 
hydrological transitions and their influence on photoautotrophic com
munities. This work brings us closer in our efforts to refine the carbon 
budget for this region and to examine the controls over the distribution 
and activity of these critical soil communities. These remote sensing 
technologies are ideal for measuring ecosystem dynamics in Antarctic 
ecosystems, which are particularly climate-sensitive and difficult to 
access. 
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