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ABSTRACT

As years pass, smartphones are becoming a larger part of daily
lives, causing users to interact with them more than ever. There
are moments, however, when it becomes difficult for the user to
operate their device directly. Currently, a user can either touch their
devices for direct interaction, or use voice commands for simpler
tasks. Although these two methods are very capable means of in-
teracting with the devices, they have their limitations. Touching
a physical device is not always practical, while voice commands
become ineffective in loud environments. A good example would be
if the user is washing dishes in a noisy environment, where neither
physical control nor voice commands are convenient. Existing sys-
tems of smartphone CSI gesture recognition rely on manual feature
extraction which could be hard to implement as gestures grow in
number and complexity. We study the feasibility of using light-
weight image classification models with minimal preprocessing by
implementing and testing the performance of such an architecture.
We collect data for five gestures from three setups and two phones,
on which our system is able to obtain 90.0% accuracy. Additionally,
we investigate the impact of different people, distances, and phones
on the system’s performance.
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1 INTRODUCTION

As computer hardware and software develop, an increasing portion
of our daily lives enters the digital realm. To maintain the same
levels of productivity on such interfaces, many researchers have
devoted themselves to making human-computer interaction more
natural, especially with smartphones.

There are many situations where a user may not be able to
directly operate their smartphone. In such a scenario, the most
prominent alternative methods of interacting with smartphones
are Bluetooth devices (e.g. AirPods) and voice assistants (e.g. Siri);
both of which have their limitations. While Bluetooth devices are
a reliable and easy-to-use way to interact with smartphones, they
require the user to wear them beforehand. Additionally, they still
require people to touch them, which is not convenient in certain
situations. Likewise, voice assistants are another intuitive method
of smartphone interaction, but they become ineffective in noisy
environments.

Hand gestures have the opportunity to cover some of these blind
spots. Urgent actions, like answering/declining calls or waking the
phone to glance at notifications can be performed quickly with
gestures, while also being intuitive to use. If such a technology is
successfully integrated, the user experience of smartphones and
many other devices could be improved considerably.

Current hand gesture recognition techniques include using cam-
eras [5], wearable devices [15], radar [10], Wi-Fi Received Signal
Strength (RSSI), and Wi-Fi Channel State Information (CSI). Vision-
based methods have proven to be quite accurate [7], but they suffer
from issues such as privacy and quality of the camera. Not to men-
tion that the gesture has to be in its field of view, a very unlikely
scenario on a smartphone. Wearable devices tend to also be very
accurate, but they are highly intrusive due to their reliance on
specialized equipment [15]. Radar devices could be applied, but
this solution requires hardware installations and can be costly [10].
RSSI-based systems can rely on the existing Wi-Fi infrastructure
in many buildings, but their scope is limited to coarse-grain activi-
ties [1]. Current studies using RSSI are only able to reliably detect
motions on the order of an arm and require equipment beyond
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a smartphone, putting scalable detection of hand gestures out of
reach [3].

CSl is a better alternative to RSSI because it contains multiple
magnitude channels, and thus more detailed data. It has been ex-
tensively studied for gesture detection on many devices, including
smartphones. Li et al. [12] use feature engineering for gesture clas-
sification on a Nexus 5 with high accuracy. They rely on threshold-
based algorithms, which can be difficult to adjust for more complex
gestures [2]. To solve this issue, we investigate the use of deep learn-
ing, and specifically, lightweight image classification techniques
to bypass the feature engineering process. Our work is inspired
by Bu et al. [6], who successfully use a large image-classification
model for gesture classification on commercial APs. Our architec-
ture, however, is much lighter, making it suitable for deployment
on mobile phones. Our main contributions are:

e To the best of our knowledge, this is the first work to em-
ploy deep image classification models for CSI hand gesture
detection on smartphones.

e We achieve an accuracy of 90.0% in classifying 5 gestures
using combined data from 3 setups and 2 smartphones.

e We investigate four impact factors on our model’s perfor-
mance: Smartphone & hand distance, AP & hand distance,
different phones, and different users.

2 RELATED WORK

Approaches for gesture recognition can be divided into three main
groups: worn sensor-based, camera-based, and radio-frequency
(RF)-based.

Worn / Carried Sensor-Based. Different types of worn sensors
have been used to facilitate gesture detection for Human Computer
Interaction (HCI). Zhang, et al. [17] use a strain sensor in a smart
glove to accurately map the shape of the hand. There has also
been interest in using ultrasound to detect gestures in challenging
environments. Most notably, EchoFlex [14] is able to achieve high
accuracy on 10 gestures by strapping an ultrasound transducer to
the forearm. While such approaches show great accuracy, they are
not easy to carry, and their adaptability is limited due to price.

Vision Based. Vision-based methods have experienced many
advancements in recent years due to breakthroughs in image recog-
nition techniques, making them suitable for tasks such as sign-
language translation [4]. For example, Kim et al. [9] use an Xbox
Kinect sensor to combine vision and depth info for an HCI appli-
cation. While this and similar systems perform well in complex
scenarios, the limited LOS (line of sight) of the sensors and privacy
concerns make them unsuitable for deployment on smartphones.

RF Based. RF-based technologies can be categorized into radar,
RSSI, and CSI-based methods. Radar gesture detection was seen on
Google Pixel 4 smartphones using Google’s Soli [13] millimeter-
wave radar sensor. It could be used to perform tasks such as skip-
ping songs and muting notifications. However, there are countless
phones without that specialized sensor, limiting its adaptability.

Unlike Radar, most devices are equipped with Wi-Fi chips that
can be used for gesture recognition. WiGest [1] uses pre-existing
computers and access points (APs) to perform general device in-
teraction functions. Their system is resilient to environment or
position variations. However, the system uses less detailed RSSI,
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and thus is plagued with issues of distinguishing identical gestures
across different people. The lack of applicability when it comes to
similar situations hinders its large-scale deployment.

As opposed to RSSI, CSI has proven to be much more flexible.
It contains Channel Frequency Response information of each Wi-
Fi subcarrier, which changes based on objects in the receiver’s
environment [4]. Historically, CSI has only been available internally
for the chips [8]. The release of custom firmware tools like Nexmon
[8], gave researchers the tools to experiment with this data. For
example, WiGER [3] uses commercial APs, and can operate with
multiple objects obstructing its view, even when the user is not
between the transmitter and receiver. However, CSI captured on
such devices has a much higher resolution compared to smartphone
Wi-Fi chips. They use high packet transmission rates of 100Hz,
which are not accessible on all mobile devices. Similarly, Li et al.
achieve very high accuracy by using techniques such as dynamic
time warping (DTW) and various filters on the CSI data of a Nexus
5 phone [12] for the task. That said, manual feature extraction is
difficult to implement as gestures grow in number and complexity
[4].

Bu et al. [6] tackle this issue by using a VGG image-classification
model pretrained on the ImageNet dataset. They then fine-tune
their model for CSI gestures, and achieve an almost perfect accuracy.
Their model’s main drawback is the very large size of more than
13 million convolutional parameters, which prevents it from future
smartphone implementation. Inspired by their paper, we attempt
to create a much lighter model to perform the same task on a
smartphone.

3 BACKGROUND & CHALLENGES

This section covers background information about technologies
and tools used for this paper. Additionally, we’ll cover challenges
specific to using smartphones for gesture classification as opposed
to traditional NICs.

3.1 CSI and CSI Tools

Channel State Information (CSI). Commercial off-the-shelf (COTS)
devices adhering to 802.11n standards use Orthogonal Frequency
division Multiplexing (OFDM) to achieve high data rates and reduce
Bit Error Rate. OFDM extracts the channel frequency response in
the format of CSI which can give the device information about
the stability of Wi-Fi subcarries for data transmission. For each
subcarrier, the data is in the form of a magnitude and a phase in
the form of a complex number [2].

Nexmon CSI Tool. Nexmon [8] is a C-based Wi-Fi chip patch-
ing tool that allows us to modify the firmware of our Nexus 5
smartphones. They offer a CSI extractor patch that we use for data
collection. Nexmon firmware can access low-level transmission
information, and saves the CSI of each subcarrier (64 in our case)
as complex pairs in UDP frames. Groups of UDP packets are then
stored in PCAP files which are then processed in our pipeline.

3.2 Challenges

Compared to using a Network Interface Controller (NIC), there are
several challenges that arise when using smartphones as the source
of CSI data.
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Figure 1: System overview

Software Limitations. Commercial Wi-Fi chips, like those in
smartphones, do not make CSI available for external usage. [8] This
data can only be obtained by using custom firmware on a number
of supported devices. We use LG Nexus 5s along with Nexmon for
this exact reason.

Lower Sampling Rate. Smartphones, due to power constraints,
cannot collect samples with the same high frequency as NICs. This
can lead to lower-resolution data that can negatively impact model
performance. We combat this by keeping as many subcarriers in
our preprocessing as possible.

Processing Power. On smartphones it is crucial for all software
to be as lightweight as possible due to their limited computing
ability. While large image classification models such as those used
in [6] are very accurate, they are not feasible for smartphones. We
address this problem by minimizing our parameter count.

4 SYSTEM DESIGN

Our system works on the idea that fluctuations in the magnitude of
subcarriers over time can be represented as a matrix, therefore can
be seen as an image-classification problem. We keep preprocessing
minimal and leave the task of feature extraction to the model.

4.1 System Overview

A summary of the system overview can be seen in Figure 1. After
collecting the CSI data using the Nexmon tool, the raw CSI data is
a complex matrix with dimensions 64 X 50, where 64 is the number
of subcarriers and 50 is the packet count. During preprocessing, we
discard phase information because no change is seen in response
to gestures. Then, we drop 14 static or noisy subcarriers of our
original 64. This is followed by anomaly removal and smoothing,
before pruning the packages into 20 for training. The trimming
window was set to 20 because participants were required to keep
gestures under two seconds while we recorded the CSI at 10 Hz.

The resulting 20 by 50 magnitude matrix is directly used as
training/testing data, as it can be treated like visual input for an
image-classification CNN model. It will recognize the patterns seen
over time in each subcarrier’s magnitude caused by activity.

4.2 Pre-processing

Raw data, as captured from each Wi-Fi packet through the Nexmon
utility [8], is a complex array of size 64. We use a 20MHz channel
width and get 54 valid subcarriers, discarding the other 10 due to
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them being static. This complex array can be decomposed into mag-
nitude and phase arrays. As shown in Figure 1, phase is discarded as
it shows no change when gestures are performed. We also discard
another 4 of the 54 original subcarriers due to excessive noise.

Our observations show that in the remaining 50 subcarriers,
there is occasional noise. To tackle this, we first remove any outliers
based on standard deviation and replace them with the median of
subcarrier signal strength with respect to time. Next, we apply a
Gaussian filter with a window size of 3 to further bring random
variation down to a manageable level.

If we capture multiple packets and stack their magnitude arrays
over time, we get a 50 by x matrix, where x is the number of captured
packets. We record 50 samples (5 seconds) for each sample to give
participants enough time to perform the gestures, which gives us
an initial 50 by 50 matrix. We ensured that all participants finished
any gesture in 2 seconds so that we could then select only the 20
packets containing movement data from the 50 we have collected
for each sample. This results in a final 20 by 50 matrix that is fed
into the model. The pruning process is as follows.

Firstly, a rolling difference operation is applied along the time
axis of the CSI matrix. This operation calculates the absolute dif-
ference between consecutive subcarrier values within a sliding
window of size two. The purpose of this step is to capture vari-
ations or changes in the subcarriers’ magnitudes, which can be
indicative of important features in the CSI.

Next, a rolling difference operation is performed along the subcar-
rier axis of the modified CSI matrix. This time, the rolling difference
is calculated between consecutive packets within a sliding window
of size two. The intention here is to capture differences between
neighboring packets, which can show if their rates of change are
synchronous or not.

Subsequently, a sum operation is executed on the resulting ma-
trix from the previous step that returns a time series. At a given
point, if this sum is a small number, it means that most of the sub-
carriers change synchronously, indicating that the current data is
background noise. If this sum is large, it indicates hand gesture
activity.

Finally, we employ a rolling sum with a window of size equal to
the desired packet count, which is 20, to check the interval where
the resulting array from the previous operation is maximized. The
starting index of that window at its maximum point will be the
same as the starting index of the desired gesture. The ending index
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Layer size activation
Batch Normalization - -
Conv2D 3Xx3x16 relu
Conv2D 3x3x%x16 relu
Max Pooling 2x2 -
Conv2D 3X3x32 relu
Conv2D 3 X3 %32 relu
Max Pooling 2x2 -
Conv2D 3X3X64 relu
Conv2D 3 X3 X 64 relu
Max Pooling 2x2 -
Flatten - -
Dense 256 relu
Dropout 0.5 -
Dense 256 relu
Dropout 0.5 -
Dense 5 softmax

Table 1: Model architecture

is obtained by adding, in our case, 20 to the starting index. These
two indices are then used to crop the 50 by 50 matrix into 20 by 50,
leaving us with the final result of preprocessing.

We use this method because we occasionally observed magnitude
fluctuations due to noise. Methods such as low-pass filtering could
not be employed due to the low sampling-rate. Observations show
that if the fluctuations are synchronous across subcarriers, they are
noise, but if they are not coordinated they are caused by the hand
gesture. This technique was able to correctly prune all samples
compared to ground truth.

4.3 Classification Model

Inspired by Bu et al’s work [6], we employ a convolutional image-
classification model to detect the given gesture based on the mag-
nitude matrix of each sample. Our model, however, is much lighter-
weight to make it feasible for deployment on smartphones. While
said paper uses pre-trained VGG-16 and VGG-19 models, with more
than 13 million parameters just on the convolutional layers [16],
our goal was to have a much lower parameter-count to make it
possible to deploy on smartphones.

Our model can be described as a non-linear mapping function
Feo (), where w represents the model weights. The training process
is as follows:

N
arg min Z L (Fo (xi),y1)

@ =1

stx;eXyeY,i=1,..,

)
N,

where L represents crossentropy loss, NV is the number of training
examples, and x; and y; represent the i* training data and the
respective label. Each x; is an m X n matrix, where m is the number
of packets, and n represents the number of subcarriers. In our case,
m and n are 20 and 50 respectively.

Our proposed model is shown in Table 1, containing 8 hidden
layers; six of which are convolutional, and 2 are dense. For each con-
volutional layer, we use a filter size of 3 and preserve the dimensions.
The output of each pair of convolutional layers is down-sampled
using a 2x2 max-pooling operation (3 in total). Then, the output
is flattened and fed into two dense layers of size 256, followed by
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Block Circle Knock Palm-fist  Vol-down

Figure 2: The five gestures identified in our model.
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Figure 3: Three setups for data collection.

(a) Performing "voldown"

(b) Performing "block"

Figure 4: The experiment environment

the final dense layer of size 5. The final model has less than 350,000
total parameters.

5 EXPERIMENT AND EVALUATION

We evaluate the performance by collecting CSI data from four
people, three setups and two phones. We first measure the model’s
overall performance using data from one user in setups 1,2,3 and
using both phones. Then we measure the effect of four impact
factors: 1) usage on different phones, 2) different users, 3) proximity
of access point and gesture, 4) and proximity of phone and gesture.

5.1 Experimental Methodology

Data Collection. We use two Nexus 5 Android smartphones with
stock hardware, along with a TP-Link AC1750 router for this ex-
periment. Both phones run Android 6.0.1 and have been rooted to
allow for the installation of custom "Nexmon CSI" firmware [8].
The sampling rate on the phones is 10Hz, which is considerably
lower than dedicated APs that are able to capture CSI at rates such
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Figure 5: Overall confusion matrices

as 100Hz [11]. As shown in Figure 2, we design five gestures which
are as follows: block, circle, knock, palm-fist, and vol-down.

We use an efficient scheme to reduce the time and resources
needed for data collection while still studying all of our impact
factors. Person 1 performs two datasets for all gestures in all envi-
ronments using both phones, totaling 300 samples per gesture (12
datasets of 25 per gesture). Persons 2, 3, and 4 each will perform
each gesture 50 times (two datasets of 25) in environment 3 using
phone 1.

We conduct the data collection in a controlled, noise-free room
with minimal activity and rich multipath reflections, which is shown
in Figure 4. The smartphone and router are placed on both sides of
the table, and subjects perform gestures directly in the line of sight
of the phone and router. Each time, the participants are given five
seconds (50 packets) to perform the gesture. These datasets can be
found on Kaggle!.

Experimental Setup. We found the model to generalize best at
150 epochs with a batch size of 64. To make the learning more stable
with such a large number of epochs, we use learning rate (LR) decay.
We initialize the model with a learning rate of 0.003 in the Adam
optimizer, and for every 10 epochs, multiply the existing learning
rate by a drop rate of 0.8. For example, if the current learning rate is
0.001, after 10 epochs it will be 0.0008, and 0.00064 in the 10 epochs
that follow. The code can be fond on GitHub 2.

Evaluation Metrics We define the following two metrics to
evaluate the performance: 1) Accuracy. The model’s accuracy is
measured as the total number of correct observations divided by the
number of all observations. 2) F1 Score. The F1 score of combines
the precision and recall of the class, and is less prone to bias if
any of the gestures in the datasets are unbalanced. It is defined as

follows:
_ 2 X Precision X Recall

Fy; = 2
! Precision + Recall @
where precision and recall are defined as:
True Positives
Precision = — — (3
True Positives + False Positives
True Positives
Recall = 4)

True Positives + False Negatives
It must be noted that each of these metrics are calculated for one
of the five classes. Any reference to these metrics for a complete
dataset refers to the mean from all five gestures.

https://www.kaggle.com/datasets/ashkanarabi/nexus-5-csi-hand-gestures
Zhttps://github.com/AshkanArabim/phone-gesture-recognition
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All tests are performed using 5-fold cross-validation to minimize
effects caused by the data distribution. The final reported result
represents the mean accuracy and F1 scores of all 5 folds. Note
that in comparison studies, unless otherwise specified, the model
is trained and tested on each condition in isolation from other
scenarios.

5.2 Overall Performance

In order to efficiently assess the overall performance of our model,
we devised a streamlined evaluation approach that allowed us to
save time and resources. Instead of having all four individuals
perform the gestures using both smartphones in all three setups,
we strategically divided the evaluation process into two phases.
(Figure 5)

Firstly, we trained and tested the model using data solely from
person 1, encompassing all three setups and both phones. This
approach provided us with a commendable 90.0% accuracy with
an F1 score of 0.898. This demonstrates the model’s robustness to
different phones of the same model and different distances. Then, we
sought to validate the model’s performance across a more diverse
dataset. To achieve this, we used data from all four individuals
but limited the evaluation to a specific scenario (setup 3, phone 1).
The results showed an accuracy of 86.0% and an F1 score of 0.862,
showing strong performance when faced with different gesture
styles.

Overall, we can see that our model can obtain a good accuracy
when trained on smartphone CSI. This is true for training on data
from different people and from different setups.

5.3 Impact Factors

Impact of Different Phones. For this experiment, we use data
from person 1 performing the five gestures in setup 1, 2, and 3 using
each phone (Figure 6a). The model gets 91.7% and 93.7% for the
performance of phone 1 and 2 respectively, and F1 scores of 0.937
and 0.917. The difference in performance could have been caused
by slight environmental variations, but they can also hint that the
slight differences in phones’ Wi-Fi chips, even if they are the same
model, can have an effect on CSI measurements. This could be a
limit for large-scale implementation.

Impact of Different Users. We measure the performance of
the model on four users, asking them to perform the five gestures
in Setup 3 with phone 1. A moderator was present to ensure correct
posture and participants’ hand form. The results show a significant
difference in the performance of participants, ranging from 81.7%
to 93.7% as seen in Figure 6b.

Impact of Access Point Proximity. We train the same model
on data from Setup 1 (phone/hand 20" apart) and 3 (60" apart) using
data from User 1 on Phone 1. We observe from the results (Figure 6c)
that there is a significant difference in performance when increasing
the distance of AP from 20" to 60" (92.3% and 86.0% respectively).
Our model performs noticeably better when the AP is placed closer
to the hand.

Impact of Smartphone Proximity. In order to investigate this
factor, we repeat the same process with Setups 2 and 3. We observe
a drop in performance when the phone is further from the hand in
Figure 6d. However, the difference is less significant than for AP
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Figure 6: Results from all impact factors

distance, as we achieved 93.7% and 91.7% accuracy when the phone
was 20" and 60" from our hands. The selected metrics are therefore
not seriously affected by the proximity of one’s mobile device.

6 DISCUSSION

Limitations. This is by no means a comprehensive model, and it
has several limitations.

e Firstly, since all of our experiments were done on Nexus 5
smartphones, we cannot make any assumptions about the
performance of this system on other smartphone hardware.

o Secondly, experiments were done in a controlled room, so our
results do not necessarily translate to other environments.

Future Work. Our future work will consider addressing the
above problems as top priority by expanding the study to more
smartphones and environments, while also developing more robust
preprocessing and classification to handle these scenarios. Addition-
ally, the system will benefit from a binary noise vs gesture classifier
for real-word deployment. We would also like to experiment with
scenarios where the hand is not directly between the smartphone
and AP.

7 CONCLUSION

In this paper, we explore hand gesture recognition using Channel
State Information (CSI) collected by smartphones, enabling users
to perform quick phone operations when in situations such as
washing dishes in a noisy environment. We examine the feasibility
of a lightweight image-classification convolutional neural network
(CNN) to detect hand gestures with minimal feature extraction,
which can adapt to different scenarios due to not needing manual
feature engineering. By designing five hand gestures and collecting
data from three setups, two phones and four people, our approach
achieves an average of 90.0% accuracy. Furthermore, we conduct
a comprehensive study on the impact factors, demonstrating the
scalability of our approach to different users, different distances
from users & phones and distances from users & APs, and different
phones.
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