
Phone-based CSI Hand Gesture Recognition with Lightweight
Image-Classification Model

Ashkan Arabi

the University of Texas at El Paso

El Paso, TX, United States

aarabimian@miners.utep.edu

Michael Straus

Columbia University

New York, NY, United States

mjs2435@columbia.edu

Zijie Tang

Temple University

Philadelphia, PA, United States

zijie.tang@temple.edu

Zhengkun Ye

Temple University

Philadelphia, PA, United States

zhengkun.ye@temple.edu

Yan Wang

Temple University

Philadelphia, PA, United States

y.wang@temple.edu

ABSTRACT
As years pass, smartphones are becoming a larger part of daily

lives, causing users to interact with them more than ever. There

are moments, however, when it becomes difficult for the user to

operate their device directly. Currently, a user can either touch their

devices for direct interaction, or use voice commands for simpler

tasks. Although these two methods are very capable means of in-

teracting with the devices, they have their limitations. Touching

a physical device is not always practical, while voice commands

become ineffective in loud environments. A good example would be

if the user is washing dishes in a noisy environment, where neither

physical control nor voice commands are convenient. Existing sys-

tems of smartphone CSI gesture recognition rely on manual feature

extraction which could be hard to implement as gestures grow in

number and complexity. We study the feasibility of using light-

weight image classification models with minimal preprocessing by

implementing and testing the performance of such an architecture.

We collect data for five gestures from three setups and two phones,

on which our system is able to obtain 90.0% accuracy. Additionally,

we investigate the impact of different people, distances, and phones

on the system’s performance.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting.

KEYWORDS
Wi-Fi Sensing; Gesture Recognition; Channel State Information;

Human Computer Interaction

ACM Reference Format:
Ashkan Arabi, Michael Straus, Zijie Tang, Zhengkun Ye, and Yan Wang.

2023. Phone-based CSI Hand Gesture Recognition with Lightweight Image-

Classification Model. In The Twenty-fourth International Symposium on

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9926-5/23/10. . . $15.00

https://doi.org/10.1145/3565287.3617613

Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and
Mobile Computing (MobiHoc ’23), October 23–26, 2023, Washington, DC, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3565287.3617613

1 INTRODUCTION
As computer hardware and software develop, an increasing portion

of our daily lives enters the digital realm. To maintain the same

levels of productivity on such interfaces, many researchers have

devoted themselves to making human-computer interaction more

natural, especially with smartphones.

There are many situations where a user may not be able to

directly operate their smartphone. In such a scenario, the most

prominent alternative methods of interacting with smartphones

are Bluetooth devices (e.g. AirPods) and voice assistants (e.g. Siri);

both of which have their limitations. While Bluetooth devices are

a reliable and easy-to-use way to interact with smartphones, they

require the user to wear them beforehand. Additionally, they still

require people to touch them, which is not convenient in certain

situations. Likewise, voice assistants are another intuitive method

of smartphone interaction, but they become ineffective in noisy

environments.

Hand gestures have the opportunity to cover some of these blind

spots. Urgent actions, like answering/declining calls or waking the

phone to glance at notifications can be performed quickly with

gestures, while also being intuitive to use. If such a technology is

successfully integrated, the user experience of smartphones and

many other devices could be improved considerably.

Current hand gesture recognition techniques include using cam-

eras [5], wearable devices [15], radar [10], Wi-Fi Received Signal

Strength (RSSI), and Wi-Fi Channel State Information (CSI). Vision-

based methods have proven to be quite accurate [7], but they suffer

from issues such as privacy and quality of the camera. Not to men-

tion that the gesture has to be in its field of view, a very unlikely

scenario on a smartphone. Wearable devices tend to also be very

accurate, but they are highly intrusive due to their reliance on

specialized equipment [15]. Radar devices could be applied, but

this solution requires hardware installations and can be costly [10].

RSSI-based systems can rely on the existing Wi-Fi infrastructure

in many buildings, but their scope is limited to coarse-grain activi-

ties [1]. Current studies using RSSI are only able to reliably detect

motions on the order of an arm and require equipment beyond

412

https://orcid.org/0009-0000-9818-5864
https://doi.org/10.1145/3565287.3617613
https://doi.org/10.1145/3565287.3617613
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3565287.3617613&domain=pdf&date_stamp=2023-10-16

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Ashkan Arabi, Michael Straus, Zijie Tang, Zhengkun Ye, and Yan Wang

a smartphone, putting scalable detection of hand gestures out of

reach [3].

CSI is a better alternative to RSSI because it contains multiple

magnitude channels, and thus more detailed data. It has been ex-

tensively studied for gesture detection on many devices, including

smartphones. Li et al. [12] use feature engineering for gesture clas-

sification on a Nexus 5 with high accuracy. They rely on threshold-

based algorithms, which can be difficult to adjust for more complex

gestures [2]. To solve this issue, we investigate the use of deep learn-

ing, and specifically, lightweight image classification techniques

to bypass the feature engineering process. Our work is inspired

by Bu et al. [6], who successfully use a large image-classification

model for gesture classification on commercial APs. Our architec-

ture, however, is much lighter, making it suitable for deployment

on mobile phones. Our main contributions are:

• To the best of our knowledge, this is the first work to em-

ploy deep image classification models for CSI hand gesture

detection on smartphones.

• We achieve an accuracy of 90.0% in classifying 5 gestures

using combined data from 3 setups and 2 smartphones.

• We investigate four impact factors on our model’s perfor-

mance: Smartphone & hand distance, AP & hand distance,

different phones, and different users.

2 RELATEDWORK
Approaches for gesture recognition can be divided into three main

groups: worn sensor-based, camera-based, and radio-frequency

(RF)-based.

Worn / Carried Sensor-Based. Different types of worn sensors

have been used to facilitate gesture detection for Human Computer

Interaction (HCI). Zhang, et al. [17] use a strain sensor in a smart

glove to accurately map the shape of the hand. There has also

been interest in using ultrasound to detect gestures in challenging

environments. Most notably, EchoFlex [14] is able to achieve high

accuracy on 10 gestures by strapping an ultrasound transducer to

the forearm. While such approaches show great accuracy, they are

not easy to carry, and their adaptability is limited due to price.

Vision Based. Vision-based methods have experienced many

advancements in recent years due to breakthroughs in image recog-

nition techniques, making them suitable for tasks such as sign-

language translation [4]. For example, Kim et al. [9] use an Xbox

Kinect sensor to combine vision and depth info for an HCI appli-

cation. While this and similar systems perform well in complex

scenarios, the limited LOS (line of sight) of the sensors and privacy

concerns make them unsuitable for deployment on smartphones.

RF Based. RF-based technologies can be categorized into radar,

RSSI, and CSI-based methods. Radar gesture detection was seen on

Google Pixel 4 smartphones using Google’s Soli [13] millimeter-

wave radar sensor. It could be used to perform tasks such as skip-

ping songs and muting notifications. However, there are countless

phones without that specialized sensor, limiting its adaptability.

Unlike Radar, most devices are equipped with Wi-Fi chips that

can be used for gesture recognition. WiGest [1] uses pre-existing

computers and access points (APs) to perform general device in-

teraction functions. Their system is resilient to environment or

position variations. However, the system uses less detailed RSSI,

and thus is plagued with issues of distinguishing identical gestures

across different people. The lack of applicability when it comes to

similar situations hinders its large-scale deployment.

As opposed to RSSI, CSI has proven to be much more flexible.

It contains Channel Frequency Response information of each Wi-

Fi subcarrier, which changes based on objects in the receiver’s

environment [4]. Historically, CSI has only been available internally

for the chips [8]. The release of custom firmware tools like Nexmon

[8], gave researchers the tools to experiment with this data. For

example, WiGER [3] uses commercial APs, and can operate with

multiple objects obstructing its view, even when the user is not

between the transmitter and receiver. However, CSI captured on

such devices has a much higher resolution compared to smartphone

Wi-Fi chips. They use high packet transmission rates of 100Hz,

which are not accessible on all mobile devices. Similarly, Li et al.

achieve very high accuracy by using techniques such as dynamic

time warping (DTW) and various filters on the CSI data of a Nexus

5 phone [12] for the task. That said, manual feature extraction is

difficult to implement as gestures grow in number and complexity

[4].

Bu et al. [6] tackle this issue by using a VGG image-classification

model pretrained on the ImageNet dataset. They then fine-tune

their model for CSI gestures, and achieve an almost perfect accuracy.

Their model’s main drawback is the very large size of more than

13 million convolutional parameters, which prevents it from future

smartphone implementation. Inspired by their paper, we attempt

to create a much lighter model to perform the same task on a

smartphone.

3 BACKGROUND & CHALLENGES
This section covers background information about technologies

and tools used for this paper. Additionally, we’ll cover challenges

specific to using smartphones for gesture classification as opposed

to traditional NICs.

3.1 CSI and CSI Tools
Channel State Information (CSI).Commercial off-the-shelf (COTS)

devices adhering to 802.11n standards use Orthogonal Frequency

division Multiplexing (OFDM) to achieve high data rates and reduce

Bit Error Rate. OFDM extracts the channel frequency response in

the format of CSI which can give the device information about

the stability of Wi-Fi subcarries for data transmission. For each

subcarrier, the data is in the form of a magnitude and a phase in

the form of a complex number [2].

Nexmon CSI Tool. Nexmon [8] is a C-based Wi-Fi chip patch-

ing tool that allows us to modify the firmware of our Nexus 5

smartphones. They offer a CSI extractor patch that we use for data

collection. Nexmon firmware can access low-level transmission

information, and saves the CSI of each subcarrier (64 in our case)

as complex pairs in UDP frames. Groups of UDP packets are then

stored in PCAP files which are then processed in our pipeline.

3.2 Challenges
Compared to using a Network Interface Controller (NIC), there are

several challenges that arise when using smartphones as the source

of CSI data.

413

Phone-based CSI Hand Gesture Recognition with Lightweight Image-Classification Model MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

Preprocessing

Anomaly Removal + Smoothing

Packet Selection
…

64 × 50 Raw
CSI Complex

Matrix

CNN Training

Noise

N
o

is
e

Gesture GestureNoise

G
es

tu
re

Difference over
Time

Sum of
Differences over
Subcarriers

Gesture

Subcarrier Selection

Subcarrier Magnitude Extraction

So
ft
m
ax

O
u
tp
u
t

Figure 1: System overview

Software Limitations. Commercial Wi-Fi chips, like those in

smartphones, do not make CSI available for external usage. [8] This

data can only be obtained by using custom firmware on a number

of supported devices. We use LG Nexus 5s along with Nexmon for

this exact reason.

Lower Sampling Rate. Smartphones, due to power constraints,

cannot collect samples with the same high frequency as NICs. This

can lead to lower-resolution data that can negatively impact model

performance. We combat this by keeping as many subcarriers in

our preprocessing as possible.

Processing Power. On smartphones it is crucial for all software

to be as lightweight as possible due to their limited computing

ability. While large image classification models such as those used

in [6] are very accurate, they are not feasible for smartphones. We

address this problem by minimizing our parameter count.

4 SYSTEM DESIGN
Our system works on the idea that fluctuations in the magnitude of

subcarriers over time can be represented as a matrix, therefore can

be seen as an image-classification problem. We keep preprocessing

minimal and leave the task of feature extraction to the model.

4.1 System Overview
A summary of the system overview can be seen in Figure 1. After

collecting the CSI data using the Nexmon tool, the raw CSI data is

a complex matrix with dimensions 64 × 50, where 64 is the number

of subcarriers and 50 is the packet count. During preprocessing, we

discard phase information because no change is seen in response

to gestures. Then, we drop 14 static or noisy subcarriers of our

original 64. This is followed by anomaly removal and smoothing,

before pruning the packages into 20 for training. The trimming

window was set to 20 because participants were required to keep

gestures under two seconds while we recorded the CSI at 10 Hz.

The resulting 20 by 50 magnitude matrix is directly used as

training/testing data, as it can be treated like visual input for an

image-classification CNN model. It will recognize the patterns seen

over time in each subcarrier’s magnitude caused by activity.

4.2 Pre-processing
Raw data, as captured from each Wi-Fi packet through the Nexmon

utility [8], is a complex array of size 64. We use a 20MHz channel

width and get 54 valid subcarriers, discarding the other 10 due to

them being static. This complex array can be decomposed into mag-

nitude and phase arrays. As shown in Figure 1, phase is discarded as

it shows no change when gestures are performed. We also discard

another 4 of the 54 original subcarriers due to excessive noise.

Our observations show that in the remaining 50 subcarriers,

there is occasional noise. To tackle this, we first remove any outliers

based on standard deviation and replace them with the median of

subcarrier signal strength with respect to time. Next, we apply a

Gaussian filter with a window size of 3 to further bring random

variation down to a manageable level.

If we capture multiple packets and stack their magnitude arrays

over time, we get a 50 by𝑥 matrix, where𝑥 is the number of captured

packets. We record 50 samples (5 seconds) for each sample to give

participants enough time to perform the gestures, which gives us

an initial 50 by 50 matrix. We ensured that all participants finished

any gesture in 2 seconds so that we could then select only the 20

packets containing movement data from the 50 we have collected

for each sample. This results in a final 20 by 50 matrix that is fed

into the model. The pruning process is as follows.

Firstly, a rolling difference operation is applied along the time

axis of the CSI matrix. This operation calculates the absolute dif-

ference between consecutive subcarrier values within a sliding

window of size two. The purpose of this step is to capture vari-

ations or changes in the subcarriers’ magnitudes, which can be

indicative of important features in the CSI.

Next, a rolling difference operation is performed along the subcar-

rier axis of the modified CSI matrix. This time, the rolling difference

is calculated between consecutive packets within a sliding window

of size two. The intention here is to capture differences between

neighboring packets, which can show if their rates of change are

synchronous or not.

Subsequently, a sum operation is executed on the resulting ma-

trix from the previous step that returns a time series. At a given

point, if this sum is a small number, it means that most of the sub-

carriers change synchronously, indicating that the current data is

background noise. If this sum is large, it indicates hand gesture

activity.

Finally, we employ a rolling sum with a window of size equal to

the desired packet count, which is 20, to check the interval where

the resulting array from the previous operation is maximized. The

starting index of that window at its maximum point will be the

same as the starting index of the desired gesture. The ending index

414

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Ashkan Arabi, Michael Straus, Zijie Tang, Zhengkun Ye, and Yan Wang

Layer size activation

Batch Normalization – –

Conv2D 3 × 3 × 16 relu

Conv2D 3 × 3 × 16 relu

Max Pooling 2 × 2 –

Conv2D 3 × 3 × 32 relu

Conv2D 3 × 3 × 32 relu

Max Pooling 2 × 2 –

Conv2D 3 × 3 × 64 relu

Conv2D 3 × 3 × 64 relu

Max Pooling 2 × 2 –

Flatten – –

Dense 256 relu

Dropout 0.5 –

Dense 256 relu

Dropout 0.5 –

Dense 5 softmax

Table 1: Model architecture

is obtained by adding, in our case, 20 to the starting index. These

two indices are then used to crop the 50 by 50 matrix into 20 by 50,

leaving us with the final result of preprocessing.

We use this method because we occasionally observedmagnitude

fluctuations due to noise. Methods such as low-pass filtering could

not be employed due to the low sampling-rate. Observations show

that if the fluctuations are synchronous across subcarriers, they are

noise, but if they are not coordinated they are caused by the hand

gesture. This technique was able to correctly prune all samples

compared to ground truth.

4.3 Classification Model
Inspired by Bu et al.’s work [6], we employ a convolutional image-

classification model to detect the given gesture based on the mag-

nitude matrix of each sample. Our model, however, is much lighter-

weight to make it feasible for deployment on smartphones. While

said paper uses pre-trained VGG-16 and VGG-19 models, with more

than 13 million parameters just on the convolutional layers [16],

our goal was to have a much lower parameter-count to make it

possible to deploy on smartphones.

Our model can be described as a non-linear mapping function

F𝜔 (·), where 𝜔 represents the model weights. The training process

is as follows:

argmin

𝜔

N∑︁
𝑖=1

L (F𝜔 (𝑥𝑖) , 𝑦𝑖)

s.t. 𝑥𝑖 ∈ X, 𝑦𝑖 ∈ Y, 𝑖 = 1, ...,N ,

(1)

where L represents crossentropy loss, N is the number of training

examples, and 𝑥𝑖 and 𝑦𝑖 represent the 𝑖
𝑡ℎ

training data and the

respective label. Each 𝑥𝑖 is an𝑚 ×𝑛 matrix, where𝑚 is the number

of packets, and 𝑛 represents the number of subcarriers. In our case,

𝑚 and 𝑛 are 20 and 50 respectively.

Our proposed model is shown in Table 1, containing 8 hidden

layers; six of which are convolutional, and 2 are dense. For each con-

volutional layer, we use a filter size of 3 and preserve the dimensions.

The output of each pair of convolutional layers is down-sampled

using a 2x2 max-pooling operation (3 in total). Then, the output

is flattened and fed into two dense layers of size 256, followed by

Block Circle Knock Palm-fist Vol-down

Figure 2: The five gestures identified in our model.

60”20”

60” 20”

20” 20”

Setup 1

Setup 2

Setup 3

Figure 3: Three setups for data collection.

40"

(a) Performing "voldown"

40"

(b) Performing "block"

Figure 4: The experiment environment

the final dense layer of size 5. The final model has less than 350,000

total parameters.

5 EXPERIMENT AND EVALUATION
We evaluate the performance by collecting CSI data from four

people, three setups and two phones. We first measure the model’s

overall performance using data from one user in setups 1,2,3 and

using both phones. Then we measure the effect of four impact

factors: 1) usage on different phones, 2) different users, 3) proximity

of access point and gesture, 4) and proximity of phone and gesture.

5.1 Experimental Methodology
Data Collection. We use two Nexus 5 Android smartphones with

stock hardware, along with a TP-Link AC1750 router for this ex-

periment. Both phones run Android 6.0.1 and have been rooted to

allow for the installation of custom "Nexmon CSI" firmware [8].

The sampling rate on the phones is 10Hz, which is considerably

lower than dedicated APs that are able to capture CSI at rates such

415

Phone-based CSI Hand Gesture Recognition with Lightweight Image-Classification Model MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

(a) 4 people in one scenario (b) Person 1 in all scenarios

Figure 5: Overall confusion matrices

as 100Hz [11]. As shown in Figure 2, we design five gestures which

are as follows: block, circle, knock, palm-fist, and vol-down.

We use an efficient scheme to reduce the time and resources

needed for data collection while still studying all of our impact

factors. Person 1 performs two datasets for all gestures in all envi-

ronments using both phones, totaling 300 samples per gesture (12

datasets of 25 per gesture). Persons 2, 3, and 4 each will perform

each gesture 50 times (two datasets of 25) in environment 3 using

phone 1.

We conduct the data collection in a controlled, noise-free room

withminimal activity and richmultipath reflections, which is shown

in Figure 4. The smartphone and router are placed on both sides of

the table, and subjects perform gestures directly in the line of sight

of the phone and router. Each time, the participants are given five

seconds (50 packets) to perform the gesture. These datasets can be

found on Kaggle
1
.

Experimental Setup. We found the model to generalize best at

150 epochs with a batch size of 64. To make the learning more stable

with such a large number of epochs, we use learning rate (LR) decay.

We initialize the model with a learning rate of 0.003 in the Adam

optimizer, and for every 10 epochs, multiply the existing learning

rate by a drop rate of 0.8. For example, if the current learning rate is

0.001, after 10 epochs it will be 0.0008, and 0.00064 in the 10 epochs

that follow. The code can be fond on GitHub
2
.

Evaluation Metrics We define the following two metrics to

evaluate the performance: 1) Accuracy. The model’s accuracy is

measured as the total number of correct observations divided by the

number of all observations. 2) F1 Score. The F1 score of combines

the precision and recall of the class, and is less prone to bias if

any of the gestures in the datasets are unbalanced. It is defined as

follows:

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(2)

where precision and recall are defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(4)

It must be noted that each of these metrics are calculated for one

of the five classes. Any reference to these metrics for a complete

dataset refers to the mean from all five gestures.

1
https://www.kaggle.com/datasets/ashkanarabi/nexus-5-csi-hand-gestures

2
https://github.com/AshkanArabim/phone-gesture-recognition

All tests are performed using 5-fold cross-validation to minimize

effects caused by the data distribution. The final reported result

represents the mean accuracy and F1 scores of all 5 folds. Note

that in comparison studies, unless otherwise specified, the model

is trained and tested on each condition in isolation from other

scenarios.

5.2 Overall Performance
In order to efficiently assess the overall performance of our model,

we devised a streamlined evaluation approach that allowed us to

save time and resources. Instead of having all four individuals

perform the gestures using both smartphones in all three setups,

we strategically divided the evaluation process into two phases.

(Figure 5)

Firstly, we trained and tested the model using data solely from

person 1, encompassing all three setups and both phones. This

approach provided us with a commendable 90.0% accuracy with

an F1 score of 0.898. This demonstrates the model’s robustness to

different phones of the samemodel and different distances. Then, we

sought to validate the model’s performance across a more diverse

dataset. To achieve this, we used data from all four individuals

but limited the evaluation to a specific scenario (setup 3, phone 1).

The results showed an accuracy of 86.0% and an F1 score of 0.862,

showing strong performance when faced with different gesture

styles.

Overall, we can see that our model can obtain a good accuracy

when trained on smartphone CSI. This is true for training on data

from different people and from different setups.

5.3 Impact Factors
Impact of Different Phones. For this experiment, we use data

from person 1 performing the five gestures in setup 1, 2, and 3 using

each phone (Figure 6a). The model gets 91.7% and 93.7% for the

performance of phone 1 and 2 respectively, and F1 scores of 0.937

and 0.917. The difference in performance could have been caused

by slight environmental variations, but they can also hint that the

slight differences in phones’ Wi-Fi chips, even if they are the same

model, can have an effect on CSI measurements. This could be a

limit for large-scale implementation.

Impact of Different Users. We measure the performance of

the model on four users, asking them to perform the five gestures

in Setup 3 with phone 1. A moderator was present to ensure correct

posture and participants’ hand form. The results show a significant

difference in the performance of participants, ranging from 81.7%

to 93.7% as seen in Figure 6b.

Impact of Access Point Proximity. We train the same model

on data from Setup 1 (phone/hand 20" apart) and 3 (60" apart) using

data from User 1 on Phone 1.We observe from the results (Figure 6c)

that there is a significant difference in performance when increasing

the distance of AP from 20" to 60" (92.3% and 86.0% respectively).

Our model performs noticeably better when the AP is placed closer

to the hand.

Impact of Smartphone Proximity. In order to investigate this

factor, we repeat the same process with Setups 2 and 3. We observe

a drop in performance when the phone is further from the hand in

Figure 6d. However, the difference is less significant than for AP

416

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Ashkan Arabi, Michael Straus, Zijie Tang, Zhengkun Ye, and Yan Wang

Phone 1 Phone 2

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

3.3
0.5

91.7
93.7

2.8 0.6

91.7
93.7

Accuracy (%)
F1 score (%)

(a) Two different Nexus 5s

Person 1 Person 2 Person 3 Person 4

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

0.5 0.5

1.2

0.9

93.7 93.3

81.7

86.7

0.6 0.3

1.2

1.0

93.7 93.3

81.7

86.9

Accuracy (%)
F1 score (%)

(b) Four different people

60 inches 20 inches

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

1.6

1.2

86.0

92.3

1.9

0.9

86.1

92.5

Accuracy (%)
F1 score (%)

(c) Impact of AP proximity

60 inches 20 inches

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

1.2
0.5

91.7
93.7

1.2
0.6

91.8
93.7

Accuracy (%)
F1 score (%)

(d) Impact of phone proximity

Figure 6: Results from all impact factors

distance, as we achieved 93.7% and 91.7% accuracy when the phone

was 20" and 60" from our hands. The selected metrics are therefore

not seriously affected by the proximity of one’s mobile device.

6 DISCUSSION
Limitations. This is by no means a comprehensive model, and it

has several limitations.

• Firstly, since all of our experiments were done on Nexus 5

smartphones, we cannot make any assumptions about the

performance of this system on other smartphone hardware.

• Secondly, experiments were done in a controlled room, so our

results do not necessarily translate to other environments.

Future Work. Our future work will consider addressing the

above problems as top priority by expanding the study to more

smartphones and environments, while also developing more robust

preprocessing and classification to handle these scenarios. Addition-

ally, the system will benefit from a binary noise vs gesture classifier

for real-word deployment. We would also like to experiment with

scenarios where the hand is not directly between the smartphone

and AP.

7 CONCLUSION
In this paper, we explore hand gesture recognition using Channel

State Information (CSI) collected by smartphones, enabling users

to perform quick phone operations when in situations such as

washing dishes in a noisy environment. We examine the feasibility

of a lightweight image-classification convolutional neural network

(CNN) to detect hand gestures with minimal feature extraction,

which can adapt to different scenarios due to not needing manual

feature engineering. By designing five hand gestures and collecting

data from three setups, two phones and four people, our approach

achieves an average of 90.0% accuracy. Furthermore, we conduct

a comprehensive study on the impact factors, demonstrating the

scalability of our approach to different users, different distances

from users & phones and distances from users & APs, and different

phones.

8 ACKNOWLEDGEMENTS
This research includes calculations carried out on HPC resources

supported in part by the National Science Foundation through

major research instrumentation grant number 1625061 and by the

US Army Research Laboratory under contract number W911NF-

16-2-0189. This work was supported in part by the US National

Science Foundation Grant CNS 2150152.

REFERENCES
[1] Abdelnasser, H., Youssef, M., and Harras, K. A. Wigest: A ubiquitous wifi-

based gesture recognition system. In 2015 IEEE Conference on Computer Commu-
nications (INFOCOM) (2015), pp. 1472–1480.

[2] Ahmed, H. F. T., Ahmad, H., and Aravind, C. Device free human gesture recog-

nition using wi-fi csi: A survey. Engineering Applications of Artificial Intelligence
87 (2020), 103281.

[3] Al-qaness, M. A. A., and Li, F. Wiger: Wifi-based gesture recognition system.

ISPRS International Journal of Geo-Information 5, 6 (2016).
[4] Al-Shamayleh, A. S., Ahmad, R., Abushariah, M. A., Alam, K. A., and Jomhari,

N. A systematic literature review on vision based gesture recognition techniques.

Multimedia Tools and Applications 77 (2018), 28121–28184.

[5] Alsheakhali, M., Skaik, A., Aldahdouh, M., and Alhelou, M. Hand gesture

recognition system. Information & Communication Systems 132 (2011).
[6] Bu, Q., Yang, G., Ming, X., Zhang, T., Feng, J., and Zhang, J. Deep transfer

learning for gesture recognition with wifi signals. Personal and Ubiquitous
Computing (2020), 1–12.

[7] Chin-Shyurng, F., Lee, S.-E., and Wu, M.-L. Real-time musical conducting

gesture recognition based on a dynamic time warping classifier using a single-

depth camera. Applied Sciences 9, 3 (2019).
[8] Gringoli, F., Schulz, M., Link, J., and Hollick, M. Free your csi: A channel state

information extraction platform for modern wi-fi chipsets. In Proceedings of the
13th InternationalWorkshop onWireless Network Testbeds, Experimental Evaluation
& Characterization (New York, NY, USA, 2019), WiNTECH ’19, Association for

Computing Machinery, p. 21–28.

[9] Kim, K., Kim, J., Choi, J., Kim, J., and Lee, S. Depth camera-based 3d hand gesture

controls with immersive tactile feedback for natural mid-air gesture interactions.

Sensors 15, 1 (2015), 1022–1046.
[10] Kim, Y., and Toomajian, B. Application of doppler radar for the recognition of

hand gestures using optimized deep convolutional neural networks. In 2017 11th
European Conference on Antennas and Propagation (EUCAP) (2017).

[11] Kresge, K., Martino, S., Zhao, T., and Wang, Y. Wifi-based contactless gesture

recognition using lightweight cnn. In 2021 IEEE 18th International Conference on
Mobile Ad Hoc and Smart Systems (MASS) (2021), IEEE, pp. 645–650.

[12] Li, T., Shi, C., Li, P., and Chen, P. A novel gesture recognition system based on

csi extracted from a smartphone with nexmon firmware. Sensors 21, 1 (2021).
[13] Lien, J., Gillian, N., Karagozler, M. E., Amihood, P., Schwesig, C., Olson,

E., Raja, H., and Poupyrev, I. Soli: Ubiquitous gesture sensing with millimeter

wave radar. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–19.
[14] McIntosh, J., Marzo, A., Fraser, M., and Phillips, C. Echoflex: Hand gesture

recognition using ultrasound imaging. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (New York, NY, USA, 2017), CHI ’17,

Association for Computing Machinery, p. 1923–1934.

[15] Shukor, A. Z., Miskon, M. F., Jamaluddin, M. H., bin Ali@Ibrahim, F., Asyraf,

M. F., and bin Bahar, M. B. A new data glove approach for malaysian sign

language detection. Procedia Computer Science 76 (2015), 60–67. 2015 IEEE

International Symposium on Robotics and Intelligent Sensors (IEEE IRIS2015).

[16] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[17] Zhang, H., Zhang, D., Guan, J., Wang, D., Tang, M., Ma, Y., and Xia, H. A flex-

ible wearable strain sensor for human-motion detection and a human–machine

interface. Journal of Materials Chemistry C 10, 41 (2022), 15554–15564.

417

	Abstract
	1 Introduction
	2 Related Work
	3 Background & Challenges
	3.1 CSI and CSI Tools
	3.2 Challenges

	4 System Design
	4.1 System Overview
	4.2 Pre-processing
	4.3 Classification Model

	5 Experiment and Evaluation
	5.1 Experimental Methodology
	5.2 Overall Performance
	5.3 Impact Factors

	6 Discussion
	7 Conclusion
	8 Acknowledgements
	References

