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ABSTRACT
Transfer learning refers to transferring the knowledge of a specific
domain to a related domain. In cases where the source and the
target learner have similar distribution and parameters, transfer
learning can reduce the cost of learning and the construction of the
target learner and improve the performance of the target learner. In
wireless ad-hoc networks, the users connect to networks based on
the service location, and various network channels with different
levels of quality-of-service (QoS) are available. The wireless chan-
nels represent specific ranges of radio frequencies. When the users
move from one location to another, the mobile application may
switch channels for good quality of service. This paper predicts
the wireless channel based on the user’s location. Since channel
prediction based on location is feasible in one city, the knowledge
of channel prediction in one city can be transferred to another city.
Thus, transfer learning is applicable and effective in such appli-
cations. The paper uses two cities’ wireless mapping datasets to
predict network channels and uses transfer learning to predict one
city’s network channels based on the other city’s model. Exper-
iments using different initial learning rates during training and
different source and target domain data ratios show that transfer
learning is feasible for network prediction among different cities.
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1 INTRODUCTION
Cellular systems are fundamental wireless communication tools in
modern communication networks, enabling data to be transferred
seamlessly across locations worldwide [1]. Cellular systems pro-
vide wireless service by the geological arrangement of individual
cellular base stations. Each base station provides a coverage range
for a certain radius, and stations locate strategically to avoid signal
interference while providing maximum coverage, thus having the
name “cellular,” where each cell represents the geographic area
covered by a base station [1]. When users use mobile devices, they
communicate with the base station in their current area via radio
waves, allowing data transmission [1].

Each base station provides several radio-frequency (RF) bands
that can be divided into individual channels. Each channel rep-
resents a distinct range of the electromagnetic spectrum and can
perform different tasks, such as TV channels, radio channels, and
voice transmission during phone calls [1]. When a user moves from
one location to another, their mobile devices gather and analyze
the radio-frequency signals from the channels provided by the base
station at their current location, then select the channel that pro-
vides the strongest signal strength or the quality of service (QoS),
and connect to it. This action is called channel switching [1, 2]. Mo-
bile devices switch to a channel that provides the strongest signal
strength to improve the call quality, data transfer speeds, network
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connectivity, upload and download speeds [1]; however, channel
switching is a challenging task because (1) It is time-consuming
to gather and analyze the channel information, and (2) it is time-
consuming to disconnect from the current channel and switch to
the new one [2].

Since base stations provide channels based on their current loca-
tion, we can use location information to predict the channels that
might appear in a specific area [2, 3]. We can use machine learning
algorithms to carry out such tasks by using location information
to train a statistical model or neural network [2, 3]. The intuitive
way is to train predictive models individually for each location.
However, doing so is time-consuming, and the trained model is
data-dependent, which requires a large amount of data for train-
ing for each location. A more convenient way is to train a general
model that works on a location or several locations, then transfer
the knowledge obtained by the model, lastly, train a set of data from
a different location to get results. This is called transfer learning
[4–7].

Transfer learning is a machine learning technique that uses a pre-
trained model’s gained knowledge about a task to perform a similar
task with different input data [4–7]. Transfer learning improves the
model performance of the target domain that is being transferred
knowledge to and reduces the amount of time and data needed
from the target to perform a similar task as the source domain
that transfers knowledge to it [4–7]. A convenient way to perform
transfer learning is using deep neural networks (DNN) [2, 3], which
are deep learning models composed of multiple neural network
layers between the input and output layers [8, 9]. This paper uses
DNN as a model architecture for transfer learning.

In this paper, we experiment with the wireless mapping data of
two cities and apply transfer learning to them. The two cities are
(1) Beijing, which denotes city A in this paper, and (2) Philadelphia,
which denotes city B. We wish to examine the model accuracies of
channel prediction using transfer learning and the training speed
of transfer learning. Figure 1 shows the transfer learning method
in this paper and demonstrates how wireless channel prediction
utilizes transfer learning.

This paper demonstrates the feasibility of transfer learning in
spectral channel prediction based on location in terms of time and
data dependency. Our research is summarized as the following:

• We show that transfer learning in channel prediction can be
applied among different locations.

• We use different source and target data proportions for train-
ing and use different combinations of initial learning rates
for DNN during model fine-tuning.

• We evaluate the model accuracy and training time of transfer
learning on channel prediction through extensive simulation.

The limitations of this work include, firstly, the sample of cities
is limited, with only two cities examined; secondly, the transfer
learning model constructed in this paper is preliminary, as the mod-
els primarily test the feasibility of transfer learning on network
channel prediction via location. There is a trade-off among exper-
imenting with different combinations of data ratio, fine-tuning
initial learning rates, and a more sophisticated model that is more
time-consuming to run. In practice, the results of transfer learning
represent certain level of accuracy, compared to training individual

models. To achieve accurate results via transfer learning, compre-
hensive and extensive simulations of model training across various
cities and hyper-parameters are required.

2 RELATEDWORK
2.1 Channel prediction
Predicting RF channels can significantly reduce the resources used
during channel switching. Biswas and Wu [2] proposed using DNN
to predict channels based on GPS locations and combined the chan-
nel prediction results and users’ mobility patterns to predict the
users’ future locations. Navabi et al. [10] have used neural networks
to predict the wireless channel features at base stations that are
not directly observable to the base station. Their work gave rise to
the potential of predicting unknown channels based on observable
channels. In Tumuluru et al.’s paper [11], the authors used neural
networks and the hidden Markov model (HMM) to predict channel
status, i.e., whether a channel is used or unused, which sought to
reduce the energy needed by the mobile devices to sense and access
unused channels. Azmat et al. analyzed the occupancy of the RF
spectrum in cognitive radio networks [12] using various machine
learning algorithms, and have proposed a new SVM algorithm to
classify the channel occupancy information.

2.2 Transfer learning
Transfer learning can be applied to a wide range of tasks. In [4],
Zhuang et al. performed transfer learning for text-processing and
object-detection models. The results show that transfer learning
algorithms and approaches allow pre-trained models to be applied
to various tasks while saving training time and maintaining certain
accuracies. [6] demonstrates the feasibility of transfer learning in
human activity recognition tasks. It has characterized the sensor
modality for human activity recognition, the source and target envi-
ronment, the data availability, and the type and amount of data that
are transferred. Pan et al. [13] have used transfer learning to predict
the cross-domain Wi-Fi localization data. They can transfer the
knowledge from the source domain, which has a few labeled data,
to the target domain containing a large amount of unlabeled data. In
themedical field, transfer learning is also applied to transferring one
hospital’s data to another [14] and can enhance hospital-specific
data prediction. [15] demonstrates transfer learning is also feasible
for natural language processing (NLP).

3 OVERVIEW
3.1 Wireless channels
The cellular network is essential in telecommunication. It allows
radio waves to pass data and voice among wireless devices. The
cellular network also enables network access, security, etc. [1]. In
a given location, multiple base stations (or cell towers) make up a
cellular system, each covering a range of a certain radius. Antennas
are placedwithin the range of the base station, acting as transmitters
and receivers of radio waves among mobile devices [1].

When a mobile device is within the range of a base station, the
device receives a list of channels. These sections of radiofrequency
(RF) bands are called channels occupying specific ranges of frequen-
cies in the electromagnetic spectrum and are expressed in MHz

529



Wireless Channel Prediction in Different Locations Using Transfer Learning MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

Figure 2: RF channel switch when themobile devices go from
one location to another.

[1, 2]. For example, TV channel 2 has an RF range of 54 – 60 MHz.
In the case of Wi-Fi signals, for example, a 2.4 GHz band Wi-Fi
ranges from 3000 Hz to 300 GHz within the RF band. There are
many channels. Every channel is 20 MHz wide. 5 MHz separates
the channels. However, many of them overlap [1].

When a mobile device is placed from one location to another,
it receives the RF channels provided by the base station through
the antenna. It then analyzes the signal strength of the channels,
which also implies network stability, and then chooses the unused
channel that provides the most robust signal strength at the current
location, disconnects from its existing channel, and connects to
the new channel [2, 11]. Figure 2 illustrates the process of channel
switching.

3.2 Deep neural network
A deep neural network (DNN) is a neural network class with mul-
tiple layers between the input and output layers. DNN learns au-
tomatically from the representation of data (i.e., features) through
a series of non-linear transformers. DNN is built Conventionally
based on Stochastic Gradient Descent (SGD) [8, 9]. When training
a DNN model, the goal is to maximize the model’s accuracy. Thus,
choosing the hyperparameters, such as the initial learning rate, can
help minimize the loss function [8]. A loss function measures how
well a model performs [8, 9]. If the error is high, the loss function
is also high, whereas a decay in the loss function means the model
performs well.

In deep learning, stochastic gradient descent (SGD) is a funda-
mental technique during model training [8], in which it adjusts
training parameters iteratively based on the sample’s gradient. Still,
the required computation complexity is less than that of gradient
descent, an optimization algorithm that iterates to find the local
maximum of a differentiable function [8]. By adjusting the param-
eter’s gradient at every iteration, SGD or gradient descent goes
opposite to the current gradient. Thus, finding the suitable weight
for the sample and minimizing the loss function [9].

During the optimization process using gradient descent, the
update speed of whether the gradient should change direction is
determined by the initial learning rate [8, 9]. A lower initial learning
rate allows the optimization function to reach the optimal state
after a long time, and a higher initial rate enables the loss function

to decay faster. Still, it may lead to fluctuations in model accuracy
[8, 9].

3.3 Transfer learning
Transfer learning is a machine learning technique that transfers
knowledge from a source domain to a target domain [4–7]. Transfer
learning enables a target domain, usually the subject being trans-
ferred knowledge to. The target domain learns the knowledge of
a specific topic in a shorter time and uses less labeled data than
building a model specific to the dataset and domain. This tech-
nique is promising when the source and target perform different
but related tasks [4–7]. There are two categories of transfer learn-
ing: Homogeneous and heterogeneous transfer learning. There are
several approaches to transfer learning: Instance-based, parameter-
based, feature-based, and relational-based [4–7]. In this paper, we
focus mainly on homogeneous transfer learning and instance-based
learning.

Homogeneous transfer learning refers to when the source and
target domains have similar input features, learning tasks (e.g.,
network channel prediction), and domain of interest [4–7]. In ho-
mogeneous transfer learning, most approaches focus on correcting
the marginal distribution differences between the source and target
domains [4].

During instance-based transfer learning, we wish to correct the
marginal and conditional differences between the source and target
domains [4, 5]. There is a sample selection bias or covariate shift
when the source and target domains’ distribution does not match
[16]. Therefore, we need to correct the selection bias and covariate
shift. The idea is to assign weights to the loss function of the source
domain [4, 16]. The weighting strategy is shown in the following:

E𝑇(𝑥,𝑦) [L (𝑥,𝑦; 𝑓 )] = E𝑆(𝑥,𝑦)


(
𝑃𝑇 (𝑥,𝑦)

)
(
𝑃𝑆 (𝑥,𝑦)

) L (𝑥,𝑦; 𝑓 )
 , (1)

where E(𝑥,𝑦) is the expected risk, 𝑥 is the pattern in the domain,𝑦 is
the label in the domain, L (𝑥,𝑦; 𝑓 ) is the loss function that depends
on the parameter 𝑓 . When the distribution of the source domain
(𝑃𝑆 (𝑥)) is different from that of the target (𝑃𝑇 (𝑠)), the instances
are generalized and are drawn from the target domain (𝑃𝑇 (𝑥)),
denoted in 𝑃𝑇 (𝑥 )

𝑃𝑆 (𝑥 ) . The generalized instances are now viewed as the
weighting parameter, which is denoted in 𝛽 (𝑥,𝑦). To estimate the
re-weighting coefficient 𝛽 , the re-weighted regularization risk is
first minimized, and Ω(𝑓 ) is the regularizer, and 𝑛 is the number of
instances [16].

Therefore, the learning task’s general objective function can be
written as the following [4, 16]:

min
𝑓

1
𝑛𝑠

𝑛𝑠∑︁
𝑖=1

𝛽𝑖L
(
𝑓
(
𝑥𝑠𝑖
)
, 𝑦𝑠𝑖

)
+ Ω (𝑓 ) , (2)

where 𝛽𝑖 (𝑖 = 1, 2, . . . ., 𝑛𝑠) is the weighting parameter, and its theo-
retical value is equal to 𝑃𝑇 (𝑥𝑖 )/𝑃𝑆 (𝑥𝑖 ). However, in practice, the
values may be hard to determine [16].
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Figure 3: Wireless channels overlap in RF frequency band.

4 METHODOLOGY
This paper uses transfer learning on Beijing (City A) and Philadel-
phia (City B) wireless mapping datasets. This paper aims to transfer
knowledge from city A to city B. We can predict City B’s channels
using the channel-prediction model originally trained by City A’s
data.

4.1 Data collection
We collected data from Wigle.net [17], which is a wireless data
mapping database. From the website, we downloaded data from
two cities: Beijing, as city A, and Philadelphia, as city B. City A has
10,300 observations, and City B has 13,900 observations. Both cities
have the same features.

The wireless mapping datasets show the date, type of channel
the mobile device is connected to, the type of encryption used
for the network, the quality of service of the channel, and other
wireless information of the connected user at a specific location. The
location information in the dataset includes latitude, longitude, city,
country, street number, and more. Network information includes
channels, BCN interval, SSID, quality-of-service (QoS), encryption,
and more. The channels in the datasets are not represented in radio
frequencies in MHz. Instead, they are represented by channels 1, 2,
etc. City A has 29 channels, and City B has 38, where some channels
are the same, i.e., have the same frequencies.

4.2 Data processing
Because some channel frequencies overlap in the 2.4 GHz RF fre-
quency band [1], many channels in the datasets also overlap. There-
fore, some parts of channel 2 may overlap with channel 1, some
parts of channel 3 may overlap with channels 1 and 2, and others.
Figure 3 shows how wireless channels overlap in the RF frequency
band. We can combine the overlapping channels and reduce the
possible channels in both cities. Doing so simplifies the channel clas-
sification process and reduce the chances of false positive results.
City A has 7 channels combined, and City B has 9.

4.3 Feature selection
Since the wireless mapping datasets have a large amount of labeled
data, i.e., a specific variable name for the observation, we selected
the features and the response variable by hand for supervised learn-
ing. This paper uses the wireless channel as the response variable
for channel prediction. For the basic model, we selected latitude
and longitude as the model features, and this model is used for the
simulations.

Besides the basic model, we selected two extra features: encryp-
tion and quality-of-service (QoS). We have used the additional

Figure 4: Transfer learning strategy for simulations.

features and location features to run some machine learning classi-
fication algorithms without transfer learning.

4.4 Building the DNN
For the simulations, we used a 7-layered neural network to perform
the model training process. We use DNN because we can fine-tune
the training process. The DNN can share the learned weights among
the datasets.

The DNN comprises a feature input layer, where the location
values are normalized in z-score; a fully connected layer contains
50 nodes, a batch normalization layer, a rectified linear unit layer
(reLu) as the activation function. This fully connected layer includes
the number of possible network channels, a SoftMax layer, and a
classification layer. The training options use the mini-batch size of
30 and use adaptive moment estimation (Adam) as the optimization
algorithm.

In the DNN, the input layer takes the latitude and longitude as
features. The location values, which are in coordinate systems, are
normalized in z-score such that they have a mean of 0 and standard
deviation of 1. The fully connected layer that contains 50 nodes are
for weight-sharing during the instance-based transfer learning pro-
cess [4]. During the instance-based learning process, Eq.1 corrects
the the selection bias and covariate shift, which simultaneously
assigns weights to the loss function of the source domain [16]. In
the fully connected layer, the nodes share the assigned weights and
multiply them to the input values, then add the bias together [8].
The batch normalization layer makes the DNN training process
stable and efficient by correcting the internal covariate shifts, and
reduces the chance of over-fitting [9]. The adaptive moment estima-
tion (Adam) optimizer makes the training process memory-efficient
and reduces computational power [9].

During the simulation process, we fine-tune the DNN models by
adjusting initial learning rates. Learning rates is the parameter up-
dating step size [9]. Since the training process repetitively updates
the weights, the learning rates can control the slope of gradient
change [8, 9]. Thus, we can observe the performance of the DNN
models under different learning rates.

We use the basic model, which uses latitude and longitude as
features, to predict the wireless channels. During transfer learn-
ing, we first use a certain proportion of City A’s data to train the
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Figure 5: The data ratios are baseline (100% City A), 100% City A and 20% City B, 80% City A and 20% City B, 60% City A and 40%
City B, 40% City A and 60% City B, 20% City A and 80% City B, and upper bound (100% City B). (1) Transfer learning results at
different training data ratios, when A’s initial learning rate = 0.01. (2) Transfer learning results at different training data ratios,
when A’s initial learning rate = 0.05. (3)Transfer learning results for initial learning rate fine tuning, when initial learning rate
of A = 0.01. (4)Transfer learning results for initial learning rate fine tuning, when initial learning rate of A = 0.025.

prediction model at a certain initial learning rate. Once the last
mini-batch of City A’s data is trained, we apply a certain proportion
of City B’s data on the same model at a specific initial learning rate,
which may differ from City A’s. The transfer learning model is then
tested using city B’s test data. After each training, we record the
test accuracy and the training speed.

5 SIMULATION
In this section, we conduct simulations in three scenarios: (1) Basic
model training without transfer learning, (2) Transfer learning
from City A to City B, using different proportions of City A and
City B’s data during training, and fine-tuning the models using
different initial learning rates, and (3) training speed and accuracy
of transfer learning from training 100% of City A’s data, and transfer
to different proportions of City B’s data, at different initial learning
rates.

5.1 Basic model results without transfer
learning

In the basic model, latitude and longitude are the features used for
channel prediction. Without transfer learning, we want to use the
base model results as the baseline and upper bound accuracies for
the rest of the transfer learning simulations. To obtain the baseline
accuracy, we first train the channel-prediction model with 100% of
City A’s data and then test the model using 20% of city B’s data,
without transfer learning. We repeated this process 101 times for
different initial learning rates applied to the model, from 0.001 to
1, in steps of 0.01. The baseline value is the average of the results,
which is 6.26%.

The upper bound test accuracy is obtained from training and
testing solely on city B’s data without transfer learning. We split
the train-test data in 80/20, and the resulting upper bound accuracy
is 28.40%.

5.2 Transfer learning results
In this subsection, we perform transfer learning from City A to
City B, using different proportions of City A and City B’s data for
training over different initial learning rates. For instance, the model
trained on 100% of City A’s data transfers to 20% of City B’s data,
the model trained on 40% of City A’s data transfers to 60% of City
B’s data, 80% of City A with 20% city B for training, 60% city A

Figure 6: (1)Training speed of transfer A to different pro-
portions of B, over different initial learning rates. (2)Test
accuracies that correspond to the training speed..

and 40% city B, and 20% city A and80% city B for training. Figure
4 illustrates the strategy for transferring learning from City A to
City B.

We evaluated the test results for city B across various combina-
tions of training data and initial learning rates. Initially, we tested
three different initial learning rates for city A: 0.001, 0.01, and 0.05.
Then, we trained models for City B using seven different initial
learning rates, which were paired with the City A models. We as-
sessed City B’s performance for each pairing using five different
training data proportions from Cities A and B. We applied five dif-
ferent training data proportions for Cities A and B, resulting in 35
trials. Thus, we ran 105 tests to assess City B’s performance under
different training scenarios with the specified initial learning rates.
The results from Figure 5 show that, in general, as the proportion of
City B’s training data increase in the model, the higher the model
accuracies, regardless of the initial learning rates.

After experimenting with three different initial learning rates,
we sought to fine-tune them by adjusting the initial learning rates
of the transfer learning models. We then do simulations over more
combinations of initial learning rates for Cities A and B. Six initial
learning rates for City A are set to be 0.001, 0.01, 0.025, 0.05, 0.075,
and 0.1. We also choose seven different initial learning rates for
City B to pair with City A. However, the initial learning rates for
City B are greater than or equal to City A’s.

Figure 5 shows that finding the optimal initial learning rate re-
quires extensive tests and only sometimes guarantees an increase
in model accuracy. The results also show that increasing the data
of City B used to train the model always results in a greater overall
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model accuracy compared to using a small City B sample propor-
tion.

5.3 Training speed vs. model accuracy
This section will conduct transfer learning simulations and record
their corresponding training speed and test accuracy over different
initial learning rates. The initial learning rates range from 0.001
to 1, in steps of 0.05, with 21 initial learning rates. The channel-
prediction model is first trained using 100% of City A’s data. Then,
with the same initial learning rate as city A, different proportions of
city B’s data are used to train the model. City B’s data proportions
are 20%, 50%, 80%, and 100%.

Figure 6 shows the training speed of different proportions of
city B data used in transfer learning. We see that training 20% of
City B’s data uses 1/4 of the training time as training 100% of City
B’s data and training 50% of City B’s data uses half of the time.
Training 20% of City B’s data during transfer learning yields 17.27%
accuracy. However, it only takes 1/4 the time to train a model that
uses 100% of City B’s data, and its accuracy significantly improved
compared to the baseline of 6%. The simulation results show that
transfer learning can reduce the training time and the amount of
data needed to train a model.

The simulation results shows the effectiveness of transfer learn-
ing when there is not enough time and data to train individual mod-
els. Although the performance of the basic model in simulations is
a proportion of the upper bound, however, it can be improved by
using a more sophisticated DNN and more advanced models that
uses more features.

6 CONCLUSION
In this study, we explored the application of transfer learning for
Wi-Fi channel prediction across distinct geographical locations,
specifically focusing on the Wi-Fi channel datasets of Beijing (City
A) and Philadelphia (City B). Our objective was to train a deep
neural network (DNN) model trained on one city (City A) to en-
hance the prediction accuracy in another city (City B) through
instance-based transfer learning.

We began by constructing DNN models for the baseline and up-
per bound benchmarks of transfer learning, achieving accuracies of
6.26% and 28.4%, respectively. These initial accuracies served as our
performance benchmarks for subsequent evaluations. Subsequently,
we introduced and implemented an instance-based transfer learning
methodology. This approach involved retraining the City-A-trained
DNN on subsets of the City B dataset, utilizing two key parameters:
the City B dataset’s size and the sample’s initial learning rate.

Our experimental results demonstrated the effectiveness of the
instance-based transfer learning strategy for wireless channel pre-
diction. We conducted extensive simulations by varying the initial
learning rates in DNN training for Cities A and B. The accuracy
of these transfer learning models consistently outperformed the
lower-bound benchmark – a DNN model trained on the City A
dataset and tested on City B data. Our transfer learning models
exhibited performance improvements, albeit varying degrees, com-
pared to the standalone DNN model trained solely on City B data,
indicating the potential to transfer channel prediction knowledge
from one city to another.

Furthermore, we compared the speed of transfer learning on
different sizes of City B data. The results show that a small propor-
tion of City B data can improve the baseline accuracy and uses less
training time compared to training a standalone City B model. This
efficiency gain reinforces the practical utility of transfer learning
in real-world scenarios where time and resources are limited.

In the context of accuracy, our transfer learning models pre-
sented results falling between the upper-bound and baseline bench-
marks, validating the value of transfer learning in bridging the gap
between distinct geographical domains. Future work can involve
applying transfer learning to more cities. Exploring the optimal
subset size, initial learning rates, more sophisticated DNN model,
and use enhanced training models could yield even better results.
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