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ABSTRACT

In two-dimensional electron systems, plasmons are gapless and long-lived collective excitations of propagating charge density oscillations.
We study the fluctuation mechanism of plasmon-assisted transport in the regime of electron hydrodynamics. We consider pristine electron
liquids where charge fluctuations are thermally induced by viscous stresses and intrinsic currents, while attenuation of plasmons is deter-
mined by the Maxwell mechanism of charge relaxation. It is shown that, while the contribution of plasmons to the shear viscosity and
thermal conductivity of a Fermi liquid is small, plasmon resonances in the bilayer devices enhance the drag resistance. In systems without
Galilean invariance, fluctuation-driven contributions to dissipative coefficients can be described only in terms of hydrodynamic quantities:
intrinsic conductivity, viscosity, and plasmon dispersion relation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/10.0022363

1. INTRODUCTION

Hydrodynamic effects in electron transport can occur in solids
at intermediate temperatures when the system is sufficiently pure,
see reviews1–5 for the detailed discussion of recent results. Indeed,
Gurzhi6 argued early on that if electron-electron interactions
provide the most frequent scattering mechanism so that the corre-
sponding mean free path is the shortest length scale in the
problem, then one could use approximate local conservation laws
to develop an effective hydrodynamic description. The hydrody-
namic equations can be obtained by expanding the equations of
motion for the element of the fluid in gradients of the velocity and
thermodynamic quantities up to terms of second order in the
spatial derivatives.7 Alternatively, these equations can be derived
from a more microscopic Boltzmann kinetic theory by projecting
collision terms into the slow modes.8 In this principal approxima-
tion, the structural form of hydrodynamic equations follows
uniquely from the general conservation laws of particle, momen-
tum, energy densities, and underlying symmetry of the system.

When going beyond the leading approximation one can con-
sider several different types of corrections to hydrodynamics. First
are the usual gas-kinetic corrections obtained by Burnett9 based on
Boltzmann equation with an extension of the Chapman–Enskog
expansion method. These corrections lead to the appearance of the
higher-order gradient terms. This approach can be made systematic
in dilute systems, e.g. gases, however, it is uncontrolled for fluids

where there is no small parameter. Second, are the correlation
effects that can arise in electron systems subjected to the long-range
disorder potential such as strongly-correlated high-mobility semi-
conductor devices10,11 and graphene devices.12,13 It can be shown
that in these systems hydrodynamic equations retain their principal
form on the scales large as compared to the disorder correlation
radius but with the renormalized quantities and dissipative coeffi-
cients. Third is thermal fluctuation corrections in pristine systems
due to the presence of long-lived collective modes, particularly
acoustic fluctuations. It was shown by Andreev14 that the fluctua-
tion mechanism is always the basic one at sufficiently small gradi-
ents. In neutral normal fluids long-wavelength thermal fluctuations
result in nonanalytical corrections thus leading to essentially nonlo-
cal equations. Interestingly, these corrections contain no new
parameters and can be expressed solely in terms of the thermody-
namic functions and dissipative coefficients that enter the hydrody-
namic equations in the main approximation.

In electron liquids, the relevant collective modes are propagating
charge density fluctuations so-called plasmons.15 In two-dimensional
electron systems, plasmons are low-lying gapless and long-lived exci-
tations.16,17 While plasmons were meticulously studied over the years,
most recently in the context of graphene and surface states of topolog-
ical insulators,18–34 the role of plasmons in electron hydrodynamic
behavior was not systematically addressed. In the hydrodynamic limit,
plasmons can be thermally excited by fluctuating viscous stresses and
intrinsic currents. In bilayer devices, one finds both acoustic and
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optical plasmons branches. In systems without Galilean invariance,
these modes are attenuated by the Maxwell mechanism of charge
relaxation. In the Galilean invariant case, when intrinsic conductivity
vanishes, the decay of plasmons is governed by viscous diffusion. Our
estimations show that fluctuation corrections of propagating plasmons
to viscosity and thermal conductivity of a Fermi liquid are small. We
further identify examples of transport phenomena where plasmons
play a dominant role in the hydrodynamic regime. Building on our
recent work on the near-field energy transfer35 we consider Coulomb
drag resistance in the electronic double-layers.

The presentation is organized as follows. In Sec. 2 we summa-
rize the main ingredients of the theory of hydrodynamic fluctuations
in electron liquids that form the basis of our analysis. This presenta-
tion parallels earlier works36,37 on the technically overlapping topics.
In Sec. 3 we apply this formalism to determine the nonequilibrium
dynamical structure factor of an electron fluid to the linear order in
the hydrodynamic velocity. This result enables the calculation of the
drag resistance near plasmon resonances in electron double-layer
devices. In Sec. 4 we introduce the kinetic equation for plasmons in
the relaxation time approximation and apply it to estimate the con-
tribution of plasmons to the viscosity and thermal conductivity of
electron fluid. As any real device is prone to some degree of disorder
in Sec. 5 we recall the impact of impurities and long-range density
inhomogeneities on the plasmon broadening.

2. HYDRODYNAMIC FLUCTUATIONS

To have a self-contained presentation we provide a brief
account of the hydrodynamic theory with an inclusion of stochastic
Langevin forces. For normal fluids this formalism was developed
by Landau and Lifshitz,38 and generalized by Khalatnikov39 for the
case of superfluids. The pedagogical presentation of lectures on
hydrodynamic fluctuations can be found in Refs. 40 and 41. In
applications to electron liquids in quantum materials one has to
add the Coulomb law as appropriate for the charged system, and
incorporate additional terms in transport currents for the systems
that are generically not Galilean invariant.

For this purpose and having in mind applications to
interactively-coupled transport in electron double-layered devices,
we consider a planar geometry of two conducting two-dimensional
sheets separated by the distance d. Applicability of the hydrody-
namic approximation requires us to consider transport regime
when the intralayer electron mean-free path l is short as compared
to the interlayer spacing, l�d. In each layer the thermally-driven
spatial and temporal fluctuations of the particle density δn(r, t)
render the corresponding current fluctuations δjn(r, t) that follow
each other in accordance with the continuity equation7

@tδnþ ∇ � δjn ¼ 0: (1)

Fluctuations of the particle current density comprise of several con-
tributions:42

δjn ¼ vδnþ nδv þ σ

e2
δFþ δξ: (2)

The first term in the above expression is the convective part of
fluctuations in the presence of macroscopic hydrodynamic flow of

the fluid with the velocity v(r, t). The second term describes fluctu-
ations in the hydrodynamic velocity. The third term captures
current fluctuations generated by fluctuating electromotive force
δF. This term is present in systems with broken Galilean invari-
ance, which have nonvanishing intrinsic conductivity σ. The last
term is dictated by the fluctuation-dissipation theorem and
describes random Langevin currents whose correlation function at
temperature T is given by43

δξi(r, t)δξj(r
0, t0)

D E
¼ 2T

σ

e2
δijδ(r� r0)δ(t � t0), (3)

where h� � �i denotes thermal average.44 In principle, particle current
fluctuations in Eq. (2) may also include thermoelectric contribu-
tions generated by the temperature fluctuations, e.g., α∇δT , where
α is an intrinsic thermoconductivity. However, for the type of
effects that we consider below, these terms lead to insignificant cor-
rections, which we thus neglect.

Thermal fluctuations also lead to the entropy density fluctua-
tions of the fluid δs(r, t) and associated with it fluctuations of the
respective entropy current density δjs(r, t). These quantities are
also linked by the continuity equation

@tδsþ ∇ � δjs ¼ 0: (4)

Without thermoelectric effects the entropy current density also has
four contributions similar to Eq. (2)

δjs ¼ vδsþ sδv � κ

T
∇δT þ δζ

T
: (5)

Here, the first two terms are completely analogous to that in
Eq. (2). The third term describes entropy fluxes due to finite
thermal conductivity κ. The last term is the associated Langevin
thermal noise whose correlation function is given by

δζ i(r, t)δζ j(r
0, t0)

D E
¼ 2κT2δijδ(r� r0)δ(t � t0): (6)

For a fluid with the mass density ρ the evolution of the momentum
density p ¼ ρv is governed by the Navier–Stokes equation

ρ(@t þ v � ∇)δv ¼ �∇δΠ̂� en∇δΦ, (7)

which we present here in its linearized form with respect to fluctua-
tions. The first term on the right-hand-side of Eq. (7) captures fluc-
tuations of the momentum flux tensor

δΠij ¼ δPδij � δΣij: (8)

It includes local hydrodynamics fluctuations in the pressure of a
fluid

δP ¼ @P
@n

� �
s

δnþ @P
@n

� �
v

δs, (9)

that couples Eq. (7) to the continuity Eqs. (1) and (4), and
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fluctuations of viscous stresses

δΣij ¼ η(@iδvj þ @jδvi � δij@kδvk)þ δΞij, (10)

that are expressed via gradients of the velocity field, where η is the
shear viscosity. The random viscous Langevin sources in Eq. (10)
are described by the correlation function of the form38

δΞik(r, t)δΞlm(r
0, t0)h i

¼ 2ηT(δilδkm þ δimδkl � δikδlm)δ(r� r0)δ(t � t0): (11)

For simplicity, we neglected terms with the bulk viscosity. As
is known, bulk viscosity vanishes in the systems with quadratic and
linear dispersion relations.8 Finally, the second term on the
right-hand-side of Eq. (7) describes the flow of momentum due to
fluctuations of the long-range Coulomb interaction. The corre-
sponding fluctuations of the electric potential δΦ are related to the
electron density fluctuation δn by the Poisson equation. It should
be noted that in the geometry of a bilayer δΦ includes both poten-
tial due to density fluctuations in a given layer, as well as dynami-
cally screened potential arising from the density fluctuations in the
other layer.

The formalism of hydrodynamic theory of fluctuations allows
computation of various correlation functions in any concrete setup.
The approach to a given problem of interest is rather straightfor-
ward and can be summarized as follows. One considers Langevin
sources δξ, δζ , δΞij as given functions fluctuating in space and
time. The linearized equations of motion then can be solved for
δn, δv, δP with an account of the proper boundary conditions. As
a result these quantities are expressed as linear functionals of the
source fields. Therefore, any quadratic form with respect to
δn, δv, δP can be expressed via quadratic average of sources with
the help of the fluctuation-dissipation relations. Upon thermal
averaging h. . .i the auxiliary sources drop out and the result is
expressed via a handful number of dissipative coefficients and ther-
modynamic quantities of the system.

In this work, we calculate the dynamic structure factor of the
fluid which is formally defined as the density-density correlation
function. This object is finite even in equilibrium, it carries infor-
mation about the collective modes in the system and obeys rather
generic properties such as Kramer–Kronig relations and sum
rules.40,45 Furthermore, being interested in the transport effects we
take one step further and calculate correction to the structure factor
to the linear order in hydrodynamic velocity. These results enable
applications to nonlocal transport effects in bilayers such as drag
friction.

3. PLASMON-ENHANCED COULOMB DRAG
RESISTIVITY

Coulomb drag46 is the useful experimental technique to
directly probe the strength of electronic correlations that can be
quantified via measured drag resistance. The setup consists of two
spatially-separated and electrically-isolated conducting layers,
where one (active) layer is driven out of equilibrium and the result-
ing nonlocal response is measured in the other (passive) layer that
can be dragged along since electrons interact via the long-range

Coulomb potential. Importantly for our applications, Coulomb
drag was recently measured in both monolayer and bilayer gra-
phene double-layers.47–51 To the best of our knowledge, the existing
calculations of this effect52–59 didn’t address the role of plasmons
in the hydrodynamic regime. Thus far such analysis was carried
out only in the Galilean invariant systems.36,60 Here we provide sol-
ution to this problem with generalizations as appropriate for
systems with broken Galilean invariance.

3.1. Linear response analysis

For simplicity we consider symmetrical layers with average
carrier density n. We work in the limit kFd� 1, where kF is the
Fermi momentum. We denote density fluctuations in each layer as
δn1,2(r, t) and respective fluctuations of velocity as δv1,2(r, t). In
the active layer we impose finite (in average) homogeneous hydro-
dynamic velocity v. For all fluctuating quantities, including
Langevin sources, we introduce Fourier components {δn, δv, δΦ}
/ exp(�iωt þ iqr). In these notations, the linearized continuity
Eq. (1) takes the form

�iωδn1 þ in(q � δv1)þ i(q � v)δn1 þ σ

e2
q2eδΦ1 þ i(q � δξ1) ¼ 0:

(12)

In the fluctuating electromotive force, Coulomb potential
includes both fluctuations of the density in the layer-1 as well as
screened fluctuations of the density in the layer-2, namely

δΦ1(q, ω) ¼ 2πe
εq

δn1(q, ω)þ e�qdδn2(q, ω)
� �

, (13)

where ε is the dielectric constant of the material surrounding the
electron layers. The continuity equation for the density fluctuations
δn2 in the passive layer is the same, one only has to interchange
indices 1 $ 2 and take v ! 0. The linearized Navier–Stokes
Eq. (7) in the active layer takes the form

�iρωδv1 þ iρ(q � v)δv1 ¼ �ienqδΦ1 þ i(q � δΣ1): (14)

Here, we made one approximation by neglecting pressure fluc-
tuations δP as compared to fluctuations in the Coulomb potential
δΦ. This is legitimate as the long-range nature of Coulomb interac-
tion dominates for fluctuations in the long wavelength limit when
q ! 0. We also note that with this approximation, the entropy con-
tinuity equation decouples and thus entropy fluctuations will not
contribute the to drag. Previous analysis36 showed that density-
density coupling induced by thermal expansion of the fluid and
temperature fluctuations leads to a very small drag that can be dis-
regarded. It is convenient to multiply Eq. (14) by one extra power
of q to have equation in the scalar form. We then notice that
q � (q � δΣ) ¼ iηq2(q � δv)þ q � (q � δΞ). As a next step, we rewrite
Eqs. (12) and (14) equivalently

n(q � δv1)� ωδn1 � iγq(δn1 þ e�qdδn2) ¼ �(q � v)δn1 � (q � δξ1),
(15a)
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(ωþ iωη)n(q � δv1)� ω2
p(δn1 þ e�qdδn2)

¼ n(q � v)(q � δv1)� n
ρ
q � (q � δΞ1), (15b)

where we introduced

ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π(ne)2q

ρε

s
, γq ¼

2πσq
ε

, ωη ¼ ηq2

ρ
: (16)

There are two more equations of the same kind for the passive
layer. At this point, one can exclude fluctuations of velocity to
arrive at the coupled equations that govern density fluctuations
only. For this purpose, it is convenient to symmetrize density fluc-
tuations and introduce δn+¼ δn1 + δn2, and similarly for all
other quantities, e.g., δξ+¼ δξ1 + δξ2. In this basis of normal
modes fluctuations δn+ decouple. Finally, we introduce
δn+¼ δn(0)+ þ δn(1)+ þ . . ., where δn(0)+ denote the equilibrium fluc-
tuations induced by the Langevin sources, and δn(1)+ capture the
nonequilibrium advection of fluctuations by the hydrodynamic
flow to the linear order in v. After some algebra we find

δn(0)+ ¼ � n
ρΓ+

q � (q � δΞ+)þ ωþ iωη

Γ+
(q � δξ+), (17a)

δn(1)+ ¼ (q � v)
2Γ+

X
+

ϒ+δn(0)+ � (q � δξ+)
h i

: (17b)

Here, we introduced

Γ+(q, ω) ¼ ω2 � ω2
+ � ωηγ+þiω(ωη þ γ+), (18a)

ϒ+(q, ω) ¼ 2ωþ i(ωη þ γ+), (18b)

where

ω2
+ ¼ ω2

q(1+ e�qd), γ+¼ γq(1+ e�qd): (19)

To close the system of equations we need thermal averages
which follow from Eqs. (3) and (11)

h(q � δξ+)(q � δξ+)i ¼ 4Tq2σ/e2, (20a)

hq � (q � δΞ+)q � (q � δΞ+)i ¼ 4Tq4η: (20b)

It is clear from the obtained solution that the dynamical struc-
ture factor hδn+δn+i contains resonant denominators for certain
values of frequencies and wave numbers of fluctuations. We thus
first discuss roots of Γ+(q, ω).

3.2. Hydrodynamic plasmon modes

As is well known from the hydrodynamic linear response
theory,40 zeros of Γ+(q, ω) define complex frequencies of collective
modes propagating in the system. The real part of frequency
defines the dispersion relation of the mode, while the complex part

defines its decay rate. The double-layer system supports two modes
termed as optical plasmon (OP) and acoustic plasmon (AP).16,17

This distinction holds for qd� 1, while in the opposite limit dis-
persions smoothly connect to the plasmon frequencies of each indi-
vidual layers. The OP corresponds to the in-phase oscillations of
the electron density and its dispersion relation is similar to the
plasmon frequency of a single layer with the square-root depen-
dence on q, ωþ/ ffiffiffi

q
p

. The AP mode corresponds to the
out-of-phase charge neutral oscillations and thus exhibits linear
dispersion ω� / q.

Attenuation of plasmons occurs differently in systems with or
without Galilean invariance. Indeed, in the Galilean invariant
system, σ ! 0, the imaginary part of the root of Γ+ depends only
on ωη. Therefore, relaxation occurs via viscous diffusion and the
corresponding rate is the same for both OP and AP that scales qua-
dratically with the wave vector, namely =ω/ q2. The fact that kine-
matic viscosity determines plasmon decay was discussed earlier in
the context of conductivity of the classical two-dimensional electron
gas.61 If Galilean invariance is broken, the relaxation is dominated
by the Maxwell mechanism of charge dissipation. This feature is
important and was discussed in the context of nonlocal optical con-
ductivity in graphene.62 In a double layer, the decay rate of OP is
linear in q whereas it scales quadratically for the AP. We see that
regardless of the attenuation mechanism, both branches of charge
oscillations are underdamped so that plasmons are well-defined and
long-lived excitations in the hydrodynamic regime. We note that
plasmons remain underdamped in the high-frequency (kinetic)
regime, ω�vFq, where plasmon attenuation is dominated by the
decay into two part particle–hole pairs. From the results of Refs. 63
and 64 we can deduce that the corresponding rates are the same for
both Galilean invariant and Dirac systems, modulo logarithmic
factors, and scale as =ω/ q2. Disorder leads to additional mecha-
nism of plasmon broadening that we discuss separately in Sec. 4.

3.3. Drag force and resistivity

We apply the above formalism to the Coulomb drag problem.
The steady current in the active layer exerts the drag force on the
passive layer. We relate the potential to density fluctuations by
using the Poisson equation and thus express the drag force in terms
of the density-density correlation function

FD ¼
ð
dωd2q

(2π)3
(�iq)

2πe2

εq
e�qdhδn1(q, ω)δn2(� q, � ω)i: (21)

Knowing the drag force, one readily finds the drag resistivity

rD ¼ FD/(e
2n2v): (22)

We observe that since viscous stresses do not correlate with intrin-
sic current fluctuations the respective contributions to the drag
force can be considered separately. We focus on the latter terms as
they yield the dominant contribution.

To calculate the average hδn1δn2i we transform it into the
symmetrized basis. We notice that equilibrium parts of the average
hδn(0)+ δn(0)+ i do not contribute to the force as they are isotropic thus
average to zero upon q integration. To the linear order in v we
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have two types of terms to consider: the same parity hδn(0)+ δn(1)+ i
and the mixed parity hδn(0)+ δn(1)+ i contributions. Using Eq. (17) we
notice that both Γ+ and ϒ+ depend only on the absolute value of
the wave vector q ¼ jqj, therefore they are even function with
respect to q ! �q exchange. In contrast, changing the sign of fre-
quency, ω ! �ω we get Γ+(q, � ω) ¼ Γ*

+(q, ω) and
ϒ+(q, � ω) ¼ �ϒ*

+(q, ω). These properties result in the corre-
lator hδn(0)+ δn(1)+ i being frequency odd while correlator hδn(0)+ δn(1)+ i
being frequency even. Thus, the former drops out upon the fre-
quency integration in Eq. (21). The remaining contributions come
in the complex conjugated pairs. To simplify the formulas at the
intermediate steps we notice that ω2

þγ��ω2
�γþ¼ 0, which gives

=(ΠþΠ*
�) � ω3(γþ�γ�) and =(ϒ*

�ΓþþϒþΓ*
�) � 3ω3(γþ�γ�).

The approximate sign means that we neglected the shift of the
plasmon pole /ωηγ+ in the expressions for Γ+, and we also
neglected viscous damping of plasmons as compared to γ+ in the
imaginary part of Γ+ and ϒ+. Collecting all the pieces together we
arrive at the following expression:

rD ¼ Tσ
2e4n2

ð
dωd2q

(2π)3
2πe2

εq

� �
ω4q4(γþ�γ�)e�qd

jΓþj2jΓ�j2
: (23)

To deal with final integrations it is useful to rescale all fre-
quencies ω in units of the plasma frequency ωq taken at q ¼ 1/d,
and also to rescale all momenta q in units of 1/d. The integral then
depends on a single dimensionless parameter β ¼ (γq/ωq)q¼1/d

.
These steps lead us to the final result for the drag resistance

rD ¼ σ

4π2e4
T
EF

� �
1
nd2

� �2

f (β): (24)

The dimensionless function f (β) is obtained from the double-integral

of the following function:

F(x, y, β) ¼
Y
+

ffiffiffi
β

p
x5/2y2e�x

(y2 � x(1+ e�x))2 þ β2y2x2(1+ e�x)2
, (25)

where x ¼ qd and y ¼ ω/ωq¼1/d . In order to highlight importance of
plasmons we plot F(x, y, β) in Fig. 1. Physically this function is
defined by the product of the dynamical structure factor, the phase
space volume, and the strength of Langevin fluxes. We see that the
resonant contribution of plasmons to the drag resistance occurs for
q � 1/d and ω � ωq¼1/d , or equivalently in dimensionless notations
x � y � 1. For (x, y) � 1 the spectral weight of plasmon resonances
is suppressed and they are not clearly visible on the plot. In Fig. 2 we
further plot dispersions of optical and acoustic plasmons superim-
posed on top of the color plot of the function F(x, y, β).

We estimate the dimensionless parameter β to be of the order

β� σ

e2

ffiffiffiffiffiffiffi
e2

εvF

s
1ffiffiffiffiffiffiffi
kFd

p : (26)

Since we work in the limit kFd � 1 it is small. In the limit β � 1

FIG. 2. Dispersion laws ω ¼ ω+(q) for OP and AP shown by dashed lines
superimposed on top of the color plot that defines magnitude of the dimension-
less function from Fig. 1 plotted for β ¼ 0:15. The light area where OP and AP
tend to merge corresponds to the maximum of F � 4.

FIG. 1. Dimensionless function F(x, y, β) defined by Eq. (25) plotted for
β ¼ 0:15. The traces of plasmon resonances can be seen for momenta x . 1
as their spectral weight is suppressed at x ! 0 thus making them invisible.
The dimensionless parameter β controls the broadening of plasmon branches
and determines the maximum of F.
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we are able to extract an asymptotic expression for f (β) in the form

f (β) � π

10
ln3 (Λ) ln

4

β ln
Λ

β

0
BB@

1
CCA, Λ ¼ 2

β

ffiffiffiffiffiffiffi
ln
1
β

r : (27)

To assess the accuracy of this approximate formula we
compare it to the result of the numerical integration and find an
excellent agreement, see Fig. 3.

In a similar way one can compute viscous contribution to the
drag resistivity from Eqs. (17) and (21). The final result can be
found in the form

rD ¼ εvF
e4

T
EF

� �
η/n

(kFd)
5 g(β), (28)

where g(β) is another dimensionless function that has logarithmic
dependance on β in the limit β � 1. There are two key differences
between rD given by Eqs. (24) and (28). First is that intrinsic mech-
anism is parametrically stronger as it decays as 1/d4 whereas
viscous contribution diminishes much faster as 1/d5 at large inter-
layer separations. Therefore, drag effect is stronger in systems with
broken Galilean invariance. This feature is qualitatively consistent
with experimental observations. The second difference concerns
the temperature dependence. In the Fermi liquid regime η/ 1/T2

therefore viscous contribution scales as rD / 1/T in the hydrody-
namic limit. In contrast, for systems with broken Galilean invari-
ance the temperature dependence of rD is determined by the
product of intrinsic conductivity σ(T) and an extra power of T
coming from the Langevin sources, modulo additional logarithmic
term in f (β). For example, in the monolayer and bilayer graphene,
σ(T) is known to be very weakly temperature dependent, therefore
rD is approximately linear in temperature, rD / T . It is striking to
observe that at temperatures where l�d the hydrodynamic result

for drag resistance is parametrically larger than the conventional
Fermi liquid result for the collisionless regime.65–67 This implies
that frequent intralayer collisions strongly enhance Coulomb drag.
We note that Eq. (28) applies to the Galilean invariant systems
except that β should be replaced by a different dimensionless
parameter that depends on viscosity β ! η/(ρd2ωq) with
q ¼ 1/d.36 Perhaps even more importantly, Eqs. (24) and (28)
apply to non-Fermi liquids as long as hydrodynamic limit can be
justified.68

4. PLASMON CORRECTIONS TO KINETIC
COEFFICIENTS IN FERMI LIQUIDS

As mentioned in the introduction, the fluctuational correc-
tions to the viscosity of a two-dimensional neutral liquid diverge,14

which means that hydrodynamic equations are nonlocal in two
dimensions. On the other hand, the calculations presented in the
preceding sections were based on the local form of the theory and
assumed that the viscosity and thermal conductivity of the electron
system are well-defined quantities. Thus, it is instructive to estimate
fluctuational corrections to the dissipative hydrodynamic coeffi-
cients of the two-dimensional charged electron liquid. We present
a straightforward generalization of the procedure outlined in
Ref. 61 to the case of systems with broken Galilean invariance. For
this purpose, it is convenient to introduce a distribution function
of plasmon fluctuations Nq that obeys the kinetic equation

@Nq

@t
þ @ωq

@q
∇Nq ¼ St{Nq}: (29)

The microscopic derivation of the collision integral St{Nq} that
describes scattering of plasmons is a challenging task.69 For the sake
of estimation it suffice to use the relaxation-time-approximation for
the linearized collision integral, St{Nq} ¼ �γqδNq, where δNq

denotes the nonequilibrium part of the distribution and the intrinsic
relaxation rate is given by Eq. (16).

The energy flux of plasmons can be written in the usual
kinetic form:

jε ¼
ð

d2q

(2π)2
vqωqNq, (30)

where vq ¼ @ωq/@q is the group velocity of plasmons. Solving the
kinetic equation to the linear order in a small temperature gradient
∇T gives correction to the thermal conductivity jε ¼ �δκ∇T,

δκ ¼ 1
2

ð
ωqτqv

2
q

@Nq

@T
d2q

(2π)2
, (31)

where τq ¼ 1/γq and Nq should be understood as the equilibrium
Bose distribution function. In two-dimensional pure systems the
momentum integral logarithmically diverges at the infrared.
However, in the presence of the elastically scattering potential the
dispersion relation of plasmons which we used holds only at those
frequencies for which the plasmon mean free time is shorter than
the electron-impurity scattering time τ. This determines a cut-off
in Eq. (31). In Sec. 5 we analyze broadening of plasmon dispersion

FIG. 3. Plot of the dimensionless function f (β) introduced in Eq. (24). The solid
line represents the result of a numerical integration, and the dashed line corre-
sponds to the approximate analytical formula given in Eq. (27) and applicable
for β , 1.
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and provide estimates for two different models of the disorder
potential. As a result, the fluctuational correction to the thermal
conductivity can be estimated as δκ � (e2/σ)EF ln (Tτ). This
estimate should be compared to the thermal conductivity of a
two-dimensional electron gas with Coulomb inter-
action:70,71κ ¼ (E2

F/T) ln
�1

(EF/T). Therefore, the correction is small
δκ/κ � (T/EF) � 1.

In complete analogy we can estimate corrections to viscosity.
For that one needs to consider the flux of momentum associated
with plasmon excitations, which is given by

Πij ¼ �
ð

d2q

(2π)2
qi
@ωq

@qj
Nq: (32)

Solving now the kinetic Eq. (29) to the linear order in the hydrody-
namic flow with velocity u(r) we extract the correction to the shear
viscosity

δη ¼ � 1
2

ð
q2

@ωq

@q

� �2

τq
@Nq

@ωq

d2q

(2π)2
, (33)

and after integration δη � (v2F/e
2σ)n(T/EF)

3. This correction is
negligible as compared to the electron viscosity in a 2D Fermi
liquid, which is η � n(EF/T)

2 modulo logarithmic factors.72,73

5. PLASMON ATTENUATION FROM DISORDER
SCATTERING

For completeness, we briefly recall the effect of disorder on
plasmon scattering and relaxation, see Refs. 23, 24, 33, and 62 for
the related studies. To this end, it suffices to analyze the σ ! 0
limit, namely Galilean invariant case. In the following, we focus on
a specific experimentally relevant setup in which a doping layer is
separated from the two-dimensional electron system by a distance
d.17 Randomness of the spatial distribution of charged dopants
leads to electron density in the form

n(r, t) ¼ nþ ~n(r)þ δn(r, t), (34)

where n is the average uniform electron density, ~n(r) is the static
density variations due to doping layer, and δn(r, t) is the plasmon-
related dynamic density oscillations. The average density of
dopants is equal to the average density of electrons. Within the
hydrodynamic approximation density fluctuations follow the equa-
tion of motion:

@2

@t2
δn(r, t)� e2

εm
∇[nþ ~n(r)]∇

ð
d2r0

δn(r0, t)
jr� r0j ¼ 0: (35)

In the Fourier representation this equation can be cast in the
form

(ω2 � ω2
q)δn(q) ¼

2πe2q
εm

X
k

(nq � nk)~n(q� k)δn(k), (36)

where nk is the unit vector along the direction of the corresponding

momentum. We solve this integral equation perturbatively per-
forming disorder averaging to the lowest order in ~n. After one itera-
tion we find

ω2 � ω2
q � Σ(ω, q) ¼ 0, (37)

where the self-energy is given by

Σ(ω, q) ¼ 2πe2

εm

� �2X
k

qk(nq � nk)2
ω2 � ω2

k þ i0
D(q� k), (38)

which is expressed in terms of a correlation function of density var-
iations caused by disorder

D(q) ¼
ð
d2r ~n(r)~n(0)h ie�iqr: (39)

In contrast to the notations of the previous sections, here h� � �i
denotes disorder average rather than thermal average. It should be
noted that within the theory of linear screening this correlation
function is related to the probability of electron scattering since
density variations cause potential variations, νδV(r)þ ~n(r) ¼ 0,
which is Thomas–Fermi condition, and ν ¼ m/π is the density of
states. The imaginary part of the self-energy in Eq. (38) yields the
scattering rate

τ�1
q ¼ � 1

2ωq
=Σ(ωq, q)

¼ π2e2q
2εmn

X
k

(nq � nk)2δ(ωq � ωk)D(q� k): (40)

For the spatially uncorrelated dopants, the spectral power of the
external random potential induced in the plane of the electron
system is

D(q) ¼ nκs2

(qþ κs)
2 e

�2qd , (41)

where κs ¼ 2πe2ν is the inverse Thomas–Fermi screening radius.
For a quantum well of a thickness a the above expression for D(q)
should be additionally multiplied by a factor sinh(qa)/qa.17 In
Eq. (41) we assumed qa�1. For smooth disorder (kF , κs) � 1/d,
which leads to a plasmon broadening

τ�1
q ¼ ωqq2

16πn

ðπ
0

dθcos2θe�4qd sinθ2

¼ qωq

32πnd

πqd qd � 1

1 qd � 1

�
:

(42)

It can be readily verified that the effect of density variation in the
random long-range potential on the attenuation of two-
dimensional plasmons dominates over the effect of broadening of
single-particle states for smooth disorder. Indeed, the latter can be
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inferred from the optical Drude conductivity

σ(ω) ¼ ie2n/m
ωþ i/τtr

(43)

expressed in terms of the transport scattering time74

τ�1
tr ¼ 2π

ν

ð
dn0(1� n � n0)D(kFn� kFn

0): (44)

In the hydrodynamic approach16 the plasmon spectrum is related
to the optical conductivity as follows ω ¼ �2πiqσ(ω)/ε, which is
equivalent to

ω(ωþ i/τ tr) ¼ ω2
q: (45)

This equation is analogous to Eq. (37). However in contrast,
plasmon broadening is independent of q in the limit τ�1

tr � ωq,
and simply determined by the transport scattering rate

τ�1
q ¼ 1

2τtr
¼ 2πn

ν

ðπ
0

dθsin2
θ

2
e�4kFd sinθ2 � EF

(2kFd)
3 : (46)

It is dominated by a small angle scattering θ�q/kF � 1.
Comparing Eqs. (42) and (46) one can see that plasmon broaden-
ing from inhomogeneous density variation dominates starting from
momenta q � d�1/(kFd)

1/5 , d�1. In contrast, if we compared now
intrinsic Maxwellian rate of attenuation for systems with broken
Galilean invariance Eq. (16) to that of disorder broadening Eq. (42)
at typical moment for bilayers q � d�1 the former dominates in a
large factor �(σ/vF)(kFd)

3/2�1. These estimates justify assump-
tions and approximation used in Sec. 3.
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