


adaptive to the non-stationarity in the environment.

Overall, this paper makes the following contributions:

1) a novel distributed MOE-based approach to modeling

non-stationary spatial fields with a desired predictive

accuracy.

2) a novel adaptive sampling strategy that reasons on

such a model, allowing robots to identify informative

sampling locations to explore.

3) a ROS implementation and an experimental analysis

with realistic simulations comparing other methods

used for environmental monitoring. Results show that

enforcing a desired predictive accuracy enhances mod-

eling and overall adaptive sampling performance.

II. RELATED WORK

Different approaches have been proposed for the sampling

problem, where robots have to collect spatial information in

the environment. Some recent surveys on exploration and

sampling include [18], [19]. These methods can be catego-

rized into two main families: non-adaptive and adaptive.

In non-adaptive approaches, informative paths are com-

puted offline using a previously trained model, if available,

and shared among robots. The problem addressed by these

approaches is also called coverage problem [20]–[22], where

the robots are assumed to have a sensor footprint and they

need to cover every point in the workspace. Such coverage

algorithms typically decompose the environment into cells,

abstract them through a graph, and solve the related prob-

lem of visiting every node – please see a comprehensive

survey from Galceran et al. [22] for full details. Some

offline methods have looked at how to determine informative

trajectories for modeling spatial distributions, for example,

using a sequential allocation approach to find paths to

allocate to robots, with mutual information to measure their

informativeness [23]; an asymptotically optimal RRT-based

approach [24]; or trained models based on data collected

beforehand to find offline informative paths with a certain

minimum accuracy [25].

Non-adaptive approaches have the advantage that plans

can be computed beforehand without being constrained by

on-board computational power availability. In fact, they are

the main approach used in environmental monitoring mis-

sions. The main limitation of these methods is that computed

plans do not adapt according to the collected data during

the mission, which may introduce inefficiencies. In contrast,

our method explicitly adapts the plan according to the data

collected by the robots at a given locality in the environment.

In adaptive approaches, robots learn the spatial field by

continuously updating their belief of the field using the

collected samples and re-planning informative paths. Various

works [6], [26]–[33] used different metrics to measure un-

certainty (e.g., variance, entropy) and proposed information-

based acquisition functions that enable robots to select

informative locations to sample, which are locations that

maximize a given acquisition function.

These approaches are capable of adapting the plan to the

collected data and drive robots to areas of higher uncertainty.

They typically use a single model for the entire environment.

In practice, the choice of using a single model over the whole

environment has two limitations: 1) the scalability in the size

of the environment might be limited and 2) there might be

variations in the environment that would be better captured

by an ensemble of models.

The scalability of the model has been addressed by some

methods [7], [34], [35] that reason on smaller partitions

of the environment. Some works [36], [37] proposed data

fusion strategies that minimize the data used in training the

GP. No guarantee on the predictive accuracy is provided by

adaptive methods. Our work proposes a solution that focuses

on maintaining a defined predictive accuracy based on the

real-time data stream.

A specific type of model that can help towards improving

the predictive accuracy is the Mixture of Gaussian Pro-

cesses (MGP) that was introduced by Tresp et al. [15] as

a model for active learning – another name for adaptive

sampling – [38] problems. These methods model large spatial

fields by aggregating local approximations obtained from

a collection of models. For a comprehensive review of

MGPs, please see the surveys from Liu et al. [39] and

Yuksel et al. [17]. Here, we highlight some of the existing

work that used MGPs in multi-robot adaptive sampling. For

instance, Ouyang et al. [8] proposed a decentralized MGP

approach for multirobot active learning of non-stationary

phenomena, where each robot represents a Gaussian Process

Expert (GPE) and data points are assigned to each expert

following a Dirichlet Process [40]. Luo et al. [9] presented

a distributed mixture of GPs that aim at improving the

tractability of GPs in a multirobot system by eliminating the

need for sharing raw data between robots. This is achieved by

enabling each robot to model its own collected data and only

exchange the resulting optimal GP parameters with other

robots. Each robot creates one GP expert that is linked to

other experts through their respective optimal parameters.

Similarly, Kemna et al. [7] and Fung et al. [41] developed

a decentralized mixture of GP models, where each robot

has one model. To improve coverage and tractability of the

GP models, robots independently divide the environment

into Voronoi partitions [42], [43], which are then assigned

to each robot. These approaches use information-theoretic

acquisition functions, such as entropy, mutual information

[6], [44], Integrated Variance Reduction (IVR) [28] and

Upper Confidence Bound (UCB) [44] to identify hot-spots

for sampling.

Our work differs from the existing work in 3 main aspects:

1) we define a new acquisition strategy whose utility is

a function of a network of GP experts, which cover the

explored region. This eliminates the data redundancy prob-

lem that results from the use of most acquisition functions

such as IVR, UCB, and entropy [45], and greatly reduces

the cost of computing sampling locations; 2) the number of

experts required to model and accordingly partition a given

workspace is independent of the size of the robot team –

it only depends on the variation in the target environmental

phenomenon; 3) we enforce a desired predictive accuracy on



the local estimates of every sub-region.

III. BACKGROUND: GAUSSIAN PROCESS REGRESSION

As our proposed approach is based on GPs and their

properties, here we include a brief description of the GPs

together with an analysis on the accuracy of the estimates.

Let X be a 2D vector of locations and y a vector of their

corresponding measurements collected by the robot. X∗ is

a vector of test locations, whose measurements are to be

estimated. Then, a GP model f∗ for estimating X∗ is drawn

from a normal distribution defined as

f∗|X, y,X∗ ∼ N (µ(X,X∗),Σ), (1)

where the mean vector µ(X,X∗) covariance matrix Σ are

µ(X,X∗) = K(X∗, X)[K(X,X) + σ2

nI]
−1y, (2)

Σ = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2

nI]
−1]K(X,X∗) (3)

The elements of the covariance matrix, K(·, ·) are given

by a kernel function, which describes the spatial correlation

between a pair of locations. We use a commonly used kernel

because of its general applicability to different domains, the

squared exponential (SE) [4], defined as

ky(xp, xq) = σ2

f exp(−
(xp − xq)

2

2l2
) + σ2

nσpq, (4)

where l is the length scale representing the function smooth-

ness; σ2

f is signal variance determining the amplitude; σ2

n is

the noise variance accounting for the estimate noise; and δpq
is the Kronecker delta (δpq = 1 if p = q, else δpq = 0).

Using the SE kernel, a GP model is parameterized by

θ = (σ2

f , l, σ
2

n), which are determined from the data using

Maximum Likelihood Estimation (MLE) [4], by maximizing

log p(y|X, θ) = −1

2
yTΣ−1

y y − 1

2
log |Σy| −

n

2
log 2π (5)

Suppose we are given a GPR estimator, θ̂ that estimates

some random variable θ; the Mean Squared Error (MSE)

[46] in the estimates is given by

MSE(θ̂) = E[(θ̂ − θ)2] (6)

We can express E[(θ̂− θ)2] in terms of the GPR variance to

obtain [46]

MSE(θ̂) = Var(θ̂) + Bias2(θ̂) (7)

where Var(θ̂) is the posterior variance of GPR and Bias(θ̂)
is the model bias. Accordingly, for an unbiased estimator as

a GP [25]

Var(θ̂) ≤ MSE(θ̂) = ∆ (8)

From Equation (8), we can define the predictive accuracy

of GPR estimates as a function of its posterior variance.

Based on this formulation, we define a threshold, ∆, that

ensures the corresponding desired predictive accuracy.

Note that the running time and memory complexity of GP

modeling is O(N3) and O(N2), respectively [47] – where

N is the size of the training set (X, y). This makes the

GP model intractable for real-time exploration of large areas

(e.g., N > 100 on an embedded system as a Raspberry Pi).

IV. PROBLEM STATEMENT

Given a 2D environment, E with an unknown non-

stationary spatial field, S , such that s = [x ∈ E , z ∈
R] ∈ S, ∀x ∈ E ; a team of K differential drive robots,

R = {1, ...,K} that can communicate with each other

through long-range WiFi or radio devices, and are equipped

with a sensor that measures z. The robots’ task is to

adaptively sample from the environment to reconstruct S
with a minimum desired predictive accuracy ∆ and minimum

traveled distance.

Although S is unknown, we can assume that it is com-

posed of an unknown collection of homogeneous sub-fields

so that spatially heterogeneous fields can be modeled. Hence,

E can be expressed as E =
⋃

∞

i=1
vi, where vi ⊆ E is a

sub-region centered at xi within a radius ri, containing a

homogeneous subfield, Si ⊆ S . For simplicity, we truncate

vi such that it is bounded by a square that is circumscribed by

the disc of radius ri. This simplification allows us to work

with grids, a popular discretization approach for coverage

and exploration problems. Therefore, vi is bounded by a

square shaped region of length, Li = ri
√
2. Future work

will look at other discretizations.

With sufficient measurements, Mi ⊆ Si collected from

within vi, Si can be reconstructed by a regression model, mi

with a desired predictive accuracy, ∆. However given that the

boundaries of Si are unknown and are potentially non-linear,

it is also necessary to include measurements collected from

the neighborhood of vi. This allows for accurate modeling

of boundary regions of Si.

We define a neighbor, vj of vi as any sub-region such

that some of its measurements are within distance Li

2
with

at least one location, xi ∈ vi (i.e., ∃xi ∈ vi, xj ∈ vj ; ||xi −
xj || ≤ Li

2
). To model Si, all locations in vi must have a

neighbor sub-region. Henceforth, we refer to this condition as

the neighborhood constraint. For example, if all sub-regions

are approximately of equal area (as in grids), then vi will

need to have measurements collected around the center of

its surrounding sub-regions (between 3 and 8 neighbors of

approximately equal sized grid cells) in order to satisfy the

neighborhood constraint.

Identifying all the sub-regions that make up S along

with their neighbors such that each sub-region satisfies its

neighborhood constraint allows the robots to achieve the

adaptive sampling task.

V. RAPIDLY-SAMPLING ADAPTIVE GRAPH

We devise the Rapidly-sampling Adaptive Graph (RAG), a

connected undirected graph G = (V,E) (with V nodes and E

edges), that encodes the predictive ranges of models used for

estimating various subfields and the boundary neighborhood

of these subfields. A subfield is a contiguous, homogeneous

subset of a spatial field. A node vi = (xi, Li,mi) ∈ V is

a subfield defined by a tuple consisting of a center location,

xi ∈ E , length, Li ∈ R of a boundary within which

the subfield is enclosed and a regression model, mi that

can accurately estimate the same subfield with a desired

predictive accuracy, ∆. In addition, (vi, vj) ∈ E is an edge









proposed strategy in the real world, e.g., lake, to study algal

blooms with a team of ASVs and contribute towards high-

impact applications, such as the study of climate change.
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