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Abstract— This paper presents an adaptive sampling strategy
for a team of robots to model non-stationary spatial fields - i.e.,
fields with uneven variations — in large environments, with a
desired predictive accuracy. Modeling non-stationary heteroge-
neous fields is essential for many applications, like monitoring
air quality or contamination level in lakes. Mainstream adaptive
sampling strategies assume stationarity of the environmental
phenomenon and use a single model to explain such fields,
resulting in inaccurate characterization of unique localized
variations. In this paper, we model a non-stationary field as
a collection of (infinite, in theory) non-overlapping layers of
stationary homogeneous subfields. This approach allows for
modeling non-stationary fields using a mixture of experts, where
each expert is assigned a particular homogeneous subregion to
map. This approach decomposes the environment into smaller
homogeneous regions, which allows real-time modeling of large
environments. We design a data-driven approach to adaptively
identify each stationary layer and define its relationship to
other layers. We model the relationship between various sub-
regions as a network of experts — the rapidly-sampling adaptive
graph. Each robot incrementally builds its own sub-network of
experts, which is used to determine where to sample. Several
experiments in realistic simulation demonstrate competitive
accuracy and sampling efficiency compared to other state-of-
the-art methods.

I. INTRODUCTION

We tackle the problem of multi-robot adaptive sampling
for large data collection and modeling of a non-stationary
spatial field with predefined predictive accuracy. In contrast
to stationary fields that exhibit a uniform variation across the
environment, non-stationary fields have uneven variations — a
property that is more representative of real world phenomena,
e.g., wildlife [1] and phytoplankton [2] distribution. Spatial
field modeling is important for many applications, such as
environmental monitoring and precision agriculture [3].

Mainstream adaptive sampling strategies commonly ex-
ploit Gaussian Process Regression (GPR) [4] — a non-
parametric Bayesian model, to estimate the distribution of
an environmental phenomena from its samples — because
of its effectiveness in modeling spatial fields and providing
an uncertainty measure for identifying informative regions
[5]-[9]. However, GPRs typically assume a homogeneous
distribution of the spatial field of interest, an assumption that
breaks when modeling non-stationary fields as there tends
to be heterogeneous spatial distributions [10]. In addition,
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Fig. 1. Sample scenario of the problem considered in the paper: Given an
unknown non-stationary field with unique regions, A and B, and multiple
robots that are tasked to collect data to reconstruct the spatial field. Is it
possible to adapt the sampling path to ensure a certain predictive accuracy
(e.g., left vs. right grid) and at the same time minimize the task cost?

due to the cubic time computational complexity of GPR
models, their application in environments that require a large
number of measurements is still prohibitive. To address
these limitations, some work has been done to enhance the
performance of GPRs and its flexibility in modeling uneven
variations. Examples include sparse GPRs [11], [12] that
regulate the input data while maintaining high performance;
multi-kernel learning [13] that combine several kernels to
enhance the flexibility of the covariance function in modeling
uneven distributions; methods that project the non-stationary
field into a different space so that the stationary assumption
can hold [14]; and a mixture of experts (MOE) [15]-[17]
approach. Despite these efforts, the practical use of such
enhanced modeling methods for adaptive sampling with a
desired predictive accuracy is still an open challenge.

This paper proposes a scalable adaptive sampling strategy
for multiple robots, which aims at modeling non-stationary
spatial fields with a specific predictive accuracy, while min-
imizing traveled distance. To achieve these goals, taking
inspiration from MOE, we propose a network of GPR
experts, which are incrementally created by a team of robots
as they sample the environment. Each expert is associated
with a particular non-overlapping sub-region that it is tasked
to model. Each robot creates its own sub-network of experts
and uses it to determine where to collect samples and when a
given expert can model its corresponding sub-region. Robots
coordinate by restricting themselves to visiting a particular
subarea of the environment through sharing the regions
covered by the sub-network. A robot creates a new expert by
visiting and sampling data at a location that is not covered by
any expert. Depending on the variation in the data collected
in a given locality, a sparse or dense network of experts will
be created, as shown in Fig. 1. Regions with less variance
in the data will be modeled by fewer experts than those
with high variance. Consequently, some regions are sampled
more densely than others, which makes the sampling process
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adaptive to the non-stationarity in the environment.
Overall, this paper makes the following contributions:

1) a novel distributed MOE-based approach to modeling
non-stationary spatial fields with a desired predictive
accuracy.

2) a novel adaptive sampling strategy that reasons on
such a model, allowing robots to identify informative
sampling locations to explore.

3) a ROS implementation and an experimental analysis
with realistic simulations comparing other methods
used for environmental monitoring. Results show that
enforcing a desired predictive accuracy enhances mod-
eling and overall adaptive sampling performance.

II. RELATED WORK

Different approaches have been proposed for the sampling
problem, where robots have to collect spatial information in
the environment. Some recent surveys on exploration and
sampling include [18], [19]. These methods can be catego-
rized into two main families: non-adaptive and adaptive.

In non-adaptive approaches, informative paths are com-
puted offline using a previously trained model, if available,
and shared among robots. The problem addressed by these
approaches is also called coverage problem [20]-[22], where
the robots are assumed to have a sensor footprint and they
need to cover every point in the workspace. Such coverage
algorithms typically decompose the environment into cells,
abstract them through a graph, and solve the related prob-
lem of visiting every node — please see a comprehensive
survey from Galceran et al. [22] for full details. Some
offline methods have looked at how to determine informative
trajectories for modeling spatial distributions, for example,
using a sequential allocation approach to find paths to
allocate to robots, with mutual information to measure their
informativeness [23]; an asymptotically optimal RRT-based
approach [24]; or trained models based on data collected
beforehand to find offline informative paths with a certain
minimum accuracy [25].

Non-adaptive approaches have the advantage that plans
can be computed beforehand without being constrained by
on-board computational power availability. In fact, they are
the main approach used in environmental monitoring mis-
sions. The main limitation of these methods is that computed
plans do not adapt according to the collected data during
the mission, which may introduce inefficiencies. In contrast,
our method explicitly adapts the plan according to the data
collected by the robots at a given locality in the environment.

In adaptive approaches, robots learn the spatial field by
continuously updating their belief of the field using the
collected samples and re-planning informative paths. Various
works [6], [26]-[33] used different metrics to measure un-
certainty (e.g., variance, entropy) and proposed information-
based acquisition functions that enable robots to select
informative locations to sample, which are locations that
maximize a given acquisition function.

These approaches are capable of adapting the plan to the
collected data and drive robots to areas of higher uncertainty.

They typically use a single model for the entire environment.
In practice, the choice of using a single model over the whole
environment has two limitations: 1) the scalability in the size
of the environment might be limited and 2) there might be
variations in the environment that would be better captured
by an ensemble of models.

The scalability of the model has been addressed by some
methods [7], [34], [35] that reason on smaller partitions
of the environment. Some works [36], [37] proposed data
fusion strategies that minimize the data used in training the
GP. No guarantee on the predictive accuracy is provided by
adaptive methods. Our work proposes a solution that focuses
on maintaining a defined predictive accuracy based on the
real-time data stream.

A specific type of model that can help towards improving
the predictive accuracy is the Mixture of Gaussian Pro-
cesses (MGP) that was introduced by Tresp et al. [15] as
a model for active learning — another name for adaptive
sampling — [38] problems. These methods model large spatial
fields by aggregating local approximations obtained from
a collection of models. For a comprehensive review of
MGPs, please see the surveys from Liu et al. [39] and
Yuksel et al. [17]. Here, we highlight some of the existing
work that used MGPs in multi-robot adaptive sampling. For
instance, Ouyang et al. [8] proposed a decentralized MGP
approach for multirobot active learning of non-stationary
phenomena, where each robot represents a Gaussian Process
Expert (GPE) and data points are assigned to each expert
following a Dirichlet Process [40]. Luo et al. [9] presented
a distributed mixture of GPs that aim at improving the
tractability of GPs in a multirobot system by eliminating the
need for sharing raw data between robots. This is achieved by
enabling each robot to model its own collected data and only
exchange the resulting optimal GP parameters with other
robots. Each robot creates one GP expert that is linked to
other experts through their respective optimal parameters.
Similarly, Kemna et al. [7] and Fung et al. [41] developed
a decentralized mixture of GP models, where each robot
has one model. To improve coverage and tractability of the
GP models, robots independently divide the environment
into Voronoi partitions [42], [43], which are then assigned
to each robot. These approaches use information-theoretic
acquisition functions, such as entropy, mutual information
[6], [44], Integrated Variance Reduction (IVR) [28] and
Upper Confidence Bound (UCB) [44] to identify hot-spots
for sampling.

Our work differs from the existing work in 3 main aspects:
1) we define a new acquisition strategy whose utility is
a function of a network of GP experts, which cover the
explored region. This eliminates the data redundancy prob-
lem that results from the use of most acquisition functions
such as IVR, UCB, and entropy [45], and greatly reduces
the cost of computing sampling locations; 2) the number of
experts required to model and accordingly partition a given
workspace is independent of the size of the robot team —
it only depends on the variation in the target environmental
phenomenon; 3) we enforce a desired predictive accuracy on



the local estimates of every sub-region.

III. BACKGROUND: GAUSSIAN PROCESS REGRESSION

As our proposed approach is based on GPs and their
properties, here we include a brief description of the GPs
together with an analysis on the accuracy of the estimates.
Let X be a 2D vector of locations and y a vector of their
corresponding measurements collected by the robot. X, is
a vector of test locations, whose measurements are to be
estimated. Then, a GP model f, for estimating X, is drawn
from a normal distribution defined as

where the mean vector u(X, X,) covariance matrix 3 are
(X, Xo) = K(X XK (X, X) +ou0] 7y, ()

Y= K(X,, X,) — K(X,, X)[K(X,X) + 2] YK (X, X,) (3)

The elements of the covariance matrix, K (-,-) are given
by a kernel function, which describes the spatial correlation
between a pair of locations. We use a commonly used kernel
because of its general applicability to different domains, the
squared exponential (SE) [4], defined as

2 (xp — 24)° 2

ky(zp, xq) = Oy eXP(—T)"‘C’nqua “)

where [ is the length scale representing the function smooth-

ness; 0]20 is signal variance determining the amplitude; o2 is

the noise variance accounting for the estimate noise; and d,,
is the Kronecker delta (6, = 1 if p = g, else dpq = 0).

Using the SE kernel, a GP model is parameterized by
6 = (0},1,07), which are determined from the data using
Maximum Likelihood Estimation (MLE) [4], by maximizing

1 _ 1 n
log p(y X, 0) = =5y %, 'y — 5 log [Ty| = 5 log 27 (5)

Suppose we are given a GPR estimator, 0 that estimates
some random variable #; the Mean Squared Error (MSE)
[46] in the estimates is given by

MSE(0) = E[(6 — 6)°] 6)
We can express E [(é —0)?] in terms of the GPR variance to
obtain [46]

MSE() = Var(6) + Bias?(f) 7)
where Var(f) is the posterior variance of GPR and Bias(6)
is the model bias. Accordingly, for an unbiased estimator as
a GP [25]

Var(f) < MSE(f) = A (8)

From Equation (8), we can define the predictive accuracy
of GPR estimates as a function of its posterior variance.
Based on this formulation, we define a threshold, A, that
ensures the corresponding desired predictive accuracy.

Note that the running time and memory complexity of GP
modeling is O(N?) and O(N?), respectively [47] — where
N is the size of the training set (X,y). This makes the
GP model intractable for real-time exploration of large areas
(e.g., N > 100 on an embedded system as a Raspberry Pi).

IV. PROBLEM STATEMENT

Given a 2D environment, £ with an unknown non-
stationary spatial field, S, such that s = [z € &,z €
R] € §,Vz € &; a team of K differential drive robots,
R = {1,...,K} that can communicate with each other
through long-range WiFi or radio devices, and are equipped
with a sensor that measures z. The robots’ task is to
adaptively sample from the environment to reconstruct S
with a minimum desired predictive accuracy A and minimum
traveled distance.

Although § is unknown, we can assume that it is com-
posed of an unknown collection of homogeneous sub-fields
so that spatially heterogeneous fields can be modeled. Hence,
& can be expressed as £ = Uf; v;, where v; C £ is a
sub-region centered at x; within a radius r;, containing a
homogeneous subfield, S; C S. For simplicity, we truncate
v; such that it is bounded by a square that is circumscribed by
the disc of radius r;. This simplification allows us to work
with grids, a popular discretization approach for coverage
and exploration problems. Therefore, v; is bounded by a
square shaped region of length, L; = r;1/2. Future work
will look at other discretizations.

With sufficient measurements, M; C S; collected from
within v;, S; can be reconstructed by a regression model, m;
with a desired predictive accuracy, A. However given that the
boundaries of S; are unknown and are potentially non-linear,
it is also necessary to include measurements collected from
the neighborhood of v;. This allows for accurate modeling
of boundary regions of S;.

We define a neighbor, v; of v; as any sub-region such
that some of its measurements are within distance % with
at least one location, z; € v; (i.e., 3x; € v;, x; € vj;||w; —
x| < %) To model S;, all locations in v; must have a
neighbor sub-region. Henceforth, we refer to this condition as
the neighborhood constraint. For example, if all sub-regions
are approximately of equal area (as in grids), then v; will
need to have measurements collected around the center of
its surrounding sub-regions (between 3 and 8 neighbors of
approximately equal sized grid cells) in order to satisfy the
neighborhood constraint.

Identifying all the sub-regions that make up S along
with their neighbors such that each sub-region satisfies its
neighborhood constraint allows the robots to achieve the
adaptive sampling task.

V. RAPIDLY-SAMPLING ADAPTIVE GRAPH

We devise the Rapidly-sampling Adaptive Graph (RAG), a
connected undirected graph G = (V, E) (with V nodes and E
edges), that encodes the predictive ranges of models used for
estimating various subfields and the boundary neighborhood
of these subfields. A subfield is a contiguous, homogeneous
subset of a spatial field. A node v; = (z;, L;,m;) € V is
a subfield defined by a tuple consisting of a center location,
x; € &, length, L; € R of a boundary within which
the subfield is enclosed and a regression model, m; that
can accurately estimate the same subfield with a desired
predictive accuracy, A. In addition, (v;,v;) € E is an edge
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Fig. 2. Illustration of the steps for RAG generation. Step 1: RAG creation
process starts with sampling data (blue dots) within radius Lo from initial
location xg (i.e., within circle with solid border). The data is used to train
a GPR model which in turn is used to predict a region that is 2L¢ radius
from zg (i.e., region within circle with discrete border). Step 2: From the
GPR estimates, a region whose posterior variance satisfies the A constraint
is identified and a RAG Node is created within this region using the new
parameters (L1 and m1). The new RAG node is added to the graph (top
right). Step 3: The robot finds a new location, x1 in the uncovered region
and creates another RAG node using the parameters of the RAG Node
closest to 1. Step N: The process continues until the entire neighborhood of
each node is covered. Whenever a node meets the neighborhood constraint,
its region is modeled (e.g., o).

of G if and only if v; and v; are neighbors as defined in the
previous section.

A full RAG covers the entire environment and every
node satisfies the neighborhood constraint. In theory, an
unknown spatial field in a continuous environment, V' is
assumed to have infinite nodes as every possible location can
have a unique spatial field property. Whereas, for a known
homogeneous spatial field, V' could have only 1 node. In
practice, a RAG usually has a finite set of nodes that varies
with the size of the workspace and the predictive power of
the model.

VI. MULTI-ROBOT SPATIAL FIELD ADAPTIVE SAMPLING

Our proposed adaptive sampling strategy with a desired
predictive accuracy, A, constructs a full RAG and estimates
the distribution of each node with its corresponding model.
The overall process is depicted in Fig. 2 and the formalization
of the algorithm is in Algorithm 1. In the following, we
describe in detail the algorithm.

Algorithm 1 RAG Sampling Algorithm

Input: z¢, Lo; Initial Center and Boundary Length
. Ryx, L + 0,x0, Lo
2: while x != -1 do
3: Navigate to =
A < Extract Sub-region of square length 2L centered at =
D < Get measurements in square of length L centered at =
v < CreateRAGNode(z, D, A)
AddNodeToRAG(R, v)
v.status <— COVERED
9 ModelCompleteNodes( R)
10: ShareRAGNode(v)
1 x < FindNextCenter( R, x)
12: L <+ GetNextBoundaryLength( R, =)
13: end while

A. RAG Construction

RAG construction is an iterative two-step process com-
posed of RAG node generation and RAG edge generation,
until the full RAG is constructed — see Fig. 2.

1) RAG Node generation: Suppose we have a location x
in the environment. To obtain the length of the boundary
L, a GPR model is used to estimate the measurements of
every location in some arbitrary area, A that is centered at x
using data, D collected from within A. The output of a GPR
prediction is the measurement estimates (posterior mean,
tap) and the predictive uncertainty (posterior variance,
Uil p) of each location in A — as discussed in Section IIL
From these outputs we use ai p of each location to compute
L as shown in the following:

L = v2max[min(z — xp)Vz € A,Vzp € V) s.t. Ui‘D(l‘) <Al 9)

which is the maximum distance of every location in A
to its closest measurement. The rationale of this formu-
lation is based on the property of the SE kernel, which
we apply in GPR modeling. With a SE kernel, posterior
variance/correlation of any location, x, to other estimates
and measurements is only dependent on the hyper-parameters
obtained from D and the distance between x and these
locations, which reduces exponentially as the distance in-
creases. Therefore, the estimate at a given location is highly
dependent on its closest measurement. We hereby attribute
this relationship to the predictive power of GPR, which is
how wide it can accurately estimate a measurement at an
unobserved location in A. Hence, we can observe that a GPR
model that is trained with data in some region A, centered
at « can predict a certain subset of the locations within A
with a desired predictive accuracy, A.

Although the area of A can be arbitrary, its size has
to be carefully selected to balance the trade-off between
performance and predictive power of the model, which
inherently balances the exploration-exploitation trade-off. In
this work, we consider A to be a square region of length 2L.

2) RAG Edge Generation: When a new RAG node is
created, it induces new edges on the RAG depending on
its proximity to other nodes and the boundary length of each
node. For any new node, v; that is introduced into the RAG
and an already existing RAG node, v;, (v;,v;) is an edge on
the RAG if and only if ||z; — x;|| < L;. Likewise, another
node on RAG will seek to establish an edge with v; if it
satisfies this proximity condition.

As discussed earlier, the purpose of these neighbors is to
avail more data to the model of a node, such that it is able to
accurately predict the entire sub-region within its boundaries.

B. Path Planning

With the environment initially unexplored, we propose the
following strategy for a robot in pose z,, to find the next
location to sample:

Top = arg min(||z, — z||I(x)),Ve ¢ V (10)

The overall objective is to minimize traveled distance and
at the same time to ensure that created RAG nodes quickly
satisfy their neighborhood constraints and get modeled while
extending to unexplored regions. Thus, we define the infor-
mativeness I(z) of x in an unexplored (i.e., it is not covered
by the RAG) sub-region of the workspace, as I(x) = [{v; :
lle — || < Li Az & v;}|,Vi = 1,...,|V], which is the




number of RAG nodes that are close enough to z that they
can form a RAG edge with a node created at . Specifically,
we need to find a location in the unexplored sub-region at
which a new node can be created and linked to at least one
RAG node.

C. Modeling RAG Nodes

A sub-region of a given RAG node is modeled when the
neighborhood constraint is satisfied by the node. A RAG
node that satisfies such a constraint is called a complete node.
A complete RAG Node, v; has atleast one neighbor on the
RAG, and each neighbor has its own model and data.

To model v;, we need to compare the data obtained from
its neighbors against its own data in order to ascertain if
they are all homogeneous (i.e., have similar distributions)
and thus determine whether its model needs retraining. If
data from the neighborhood share a similar distribution with
that of v;, then v; model needs no retraining. Otherwise, it
will be retrained with the neighboring data in order to learn
the patterns in the neighborhood, before the neighboring data
is incorporated into the modeling. We perform a pairwise
Student’s t-test [48] to determine the similarity between v;’s
data and that from each of its neighbors.

The new modeling dataset D} for the v; model is the data

from v; and all its neighbors:
P

Dy =D;u| D,
j=1
Using D;, the v; model is used to estimate the distribution
of every location within the v; node, which is the ultimate
spatial field estimate of this sub-region. The status of the
modeled node is then changed to MODELED.

(1)

D. Robot Coordination

The RAG allows multirobot task allocation, restricting
robots to particular regions of the environment. Initially,
robots can be deployed in arbitrary locations. However, as
they seek to construct their respective RAG, they encounter
boundaries along the way.

We define boundaries as regions, which have been ex-
plored, yet they are not covered by the RAG. These regions
are flagged by other robots through communication. A robot
shares new nodes of its RAG with communicating robots to
increase the situation awareness of its surrounding robots.
Note that the algorithm does not require full communication
since robots can continue expanding the RAG even if they
are unable to communicate.

Note that RAG construction is restricted to unexplored
regions and the planning objective function prioritizes loca-
tions that are closer to a robot’s RAG nodes, thus pushing
robots within their boundaries.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

Setup. We implemented our method in Python and the
Robot Operating System (ROS) [49] to enable portability
across different robotic platforms. We ran several experi-
ments with teams of differential drive autonomous surface
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Fig. 3. Spatial field simulation of Chlorophyll a (Chl-a) concentration (in
pugL~1) as an indicator of the presence of cyanobacteria. SF1 (top left):
The lateral region of the lake has lower Chl-a concentration; whereas the
pelagic region has higher Chl-a concentration SF2 (top center): High Chl-a
concentration along two opposite shorelines and low Chl-a concentration
in the rest of the lake. SF3 (top right): homogeneous region. SF4 (bottom
left) has two inlets (both ends) with high variation of Chl-a concentration,
whereas the center regions exhibit low variation. Example of Gazebo
simulation with 4 ASVs (bottom right).

vehicles (ASVs) in 2D and 3D simulators — Stage [50] and
Gazebo [51] respectively — that have actuators and localiza-
tion noise. In addition, Gazebo includes water dynamics.

We simulated four different environments, each with a
generated unique non-stationary spatial field (SF) (Fig. 3),
representing realistic variations of Chlorophyll-a concentra-
tion as an indicator of the presence of Cyanobacteria [52]
in lakes. The purpose for these variations is to evaluate the
adaptiveness of the proposed method in environments with
various phenomena. Environments with SFI, SF2 and SF3
cover an area of size 400 x 400 m whereas the environment
with SF4 cover an area of size 823 x 134 m. We implemented
a simulated sensor providing SRF measurements with Gaus-
sian noise to account for the sensor error, such as the YSI
EXO 2 sonde with chlorophyll-a probe [53], so that we can
analyze the robustness to noisy data.

We spawned ASV teams of 3 different sizes 2,4,6. We
ran experiments with three (3) different accuracy thresholds,
A to assess its effect on the overall performance, namely;
0.5,1.0 and 1.5. Each experiment was repeated 5 times. The
experiments are run on a Ubuntu 20.04 computer with an
Intel i7 CPU with 32GB RAM.

For comparison with our method (labeled RAG with cor-
responding A), we included both non-adaptive — being a
commonly used strategy — and adaptive alternatives. For non-
adaptive, we implemented a lawn-mower way point profile
(labeled as LM), with five (5) different inter-lap spacing,
namely; 8m, 10m, 20m, 30m and 40m. We set 8m
resolution because it has been shown to perform better than
higher resolutions [25] when a boustrophedon [54] waypoint
pattern is applied. For adaptive, we implemented the dynamic
partitioning approach (labeled as DPart with corresponding
A) [7], where a robot team iteratively divides the environ-
ment into Voronoi partitions and each robot samples one
unique partition. Instead of using only time as the termination
criterion, we modify DPart to terminate whenever a desired
A is achieved. We also cap the mission time to 3500s as
applied in [7] to guarantee termination.

Qualitative Analysis. As sample representatives, Fig. 4
shows the reconstructed fields of each environment, for
RAGO.5, LM _08, LM_40 and DPart0.5 with a team of 6 robots
respectively. We observe that all methods except DPart0.5
accurately modeled SFI and SF2. However, only RAGO.5
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Fig. 4. Sample reconstruction of spatial fields using 6 robots — SF/ (left),
SF2 (Center), SF3 (Right) — while the methods indicated at each row. RAG
accurately reconstructs all the spatial fields, while DPart leaves some gaps.
Lawn mower generally is able to reconstruct the spatial fields with some
inaccuracies dependent on the interlap spacing.
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Fig. 5. Trajectories with RAG of a 2 robot team after the mission in
SF1 (Top Left), SF2 (Top Center), SF3 (Top Right) and SF4 (Bottom)
environments. Robots sample more densely at the boundary of the two
homogeneous regions than in the homogeneous areas. This demonstrates
the robustness of our method in sampling non-stationary fields.

managed to reconstruct SF3 accurately. The failure for both
LM_* and DPart0.5 is due to the areas that are not sampled
by the robots. LM paths are planned with a non-adaptive
interlap spacing, which limits the informativeness of the path
and might miss for example the higher spot in SF3. On the
other hand, DPart dynamically partitions the environment
such that each robot focuses on a particular partition. As a
result, some subregions of the environment can be ignored.
These two shortfalls do not affect RAG as it ensures that all
regions of the environment are sufficiently sampled in order
to achieve the desired predictive accuracy.

Indeed, looking at the robot trajectories in the four envi-
ronments — Fig. 5 — we observe that robots sample the fields
more densely along the boundary of the two heterogeneous
regions compared to the homogeneous regions. This is due
to the high variance in the data collected in this area.

Quantitative Analysis. The quantitative evaluation is in
terms of predictive accuracy measured as average posterior
variance (aPVAR), reconstruction error measured as Root
Mean Squared Error (RMSE) [55], average distance traveled
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Fig. 6. Modeling SF2: Average Posterior variance (top left), RMSE (top
right), traveled distance (bottom left), computation time (bottom right).
by the robots, and computation time to assess the feasibility
of a given method for use in online adaptive sampling. As
a representative example (other environments overall follow
similar trends) we show the results for SF2 in Fig. 6.

The GPR estimates in RAG variants have the least aPVAR
across all robot teams and environments because of the A.
This is followed by LM and then DPart variants. Both RAG
and LM variants record lower reconstruction error across all
robot teams than DPart especially with a team of 2 robots.
Observing its trajectories, DPart’s approach of partitioning
the environment tends to leave out some unexplored regions.
Overall, RAG variants achieve the least traveled distance
across all robot teams, except for LM_30 and LM_40, which
however have the worst learning accuracy. The low traveled
distance of our method is attributed to the adaptiveness of the
data collection process as shown in the qualitative analysis.
The computation time results show a constant time for RAG.

VIII. CONCLUSION

This work proposes an efficient multirobot active learning
strategy for accurately reconstructing spatial fields. We pro-
pose an approach that allows for continuous modeling of the
desired phenomenon with locally collected data to achieve
local optimality based on a predefined desired predictive
accuracy, A. The locally optimal regions are interconnected
to account for local discontinuities, such that a given local
region is modeled only when its entire neighborhood has
been sampled. We model this process as a rapidly sampling
adaptive graph, where its nodes are the locally optimal
regions and edges encode the neighborhood of each locally
optimal region. Experiments and results show a superior
performance of the proposed method over non-adaptive and
adaptive strategies from the literature.

In future work, we plan to incorporate kinodynamic
constraints to account for other robot types for generating
efficiently reachable neighbors, as well as explicitly mod-
eling communication constraints to enable robots to take
decisions on when to share information with other robots.
In addition, we plan to study long-term sampling where
temporal resolution is another important factor to decide
when to deploy the robots. Finally, we intend to test the



proposed strategy in the real world, e.g., lake, to study algal
blooms with a team of ASVs and contribute towards high-
impact applications, such as the study of climate change.
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