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Abstract

Composite minimization is a powerful framework in large-scale convex optimization,
based on decoupling of the objective function into terms with structurally different
properties and allowing for more flexible algorithmic design. We introduce a new
algorithmic framework for complementary composite minimization, where the objec-
tive function decouples into a (weakly) smooth and a uniformly convex term. This
particular form of decoupling is pervasive in statistics and machine learning, due to its
link to regularization. The main contributions of our work are summarized as follows.
First, we introduce the problem of complementary composite minimization in general
normed spaces; second, we provide a unified accelerated algorithmic framework to
address broad classes of complementary composite minimization problems; and third,
we prove that the algorithms resulting from our framework are near-optimal in most of
the standard optimization settings. Additionally, we show that our algorithmic frame-
work can be used to address the problem of making the gradients small in general
normed spaces. As a concrete example, we obtain a nearly-optimal method for the
standard ¢; setup (small gradients in the £, norm), essentially matching the bound
of Nesterov (Optima Math Optim Soc Newsl 88:10-11, 2012) that was previously
known only for the Euclidean setup. Finally, we show that our composite methods are
broadly applicable to a number of regression and other classes of optimization prob-
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lems, where regularization plays a key role. Our methods lead to complexity bounds
that are either new or match the best existing ones.

Keywords Composite minimization - Gradient norm minimization - Linear
convergence - Regression
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1 Introduction

No function can be both smooth and strongly convex with respect to an £, norm
and have a dimension-independent condition number, unless p = 2.

This is a basic fact from convex analysis! and the primary reason why in the existing
literature smooth and strongly convex optimization is typically considered only for
Euclidean (or, slightly more generally, Hilbert) spaces. In fact, it is not only that
moving away from p = 2 the condition number becomes dimension-dependent, but
that the dependence on the dimension is polynomial for all examples of functions
we know of, unless p is trivially close to two. Thus, it is tempting to assert that
dimension-independent linear convergence (i.e., with logarithmic dependence on the
inverse accuracy 1/¢) is reserved for Euclidean (or nearly-Euclidean) spaces, which
has long been common wisdom within the optimization community.

We show that this separation between Euclidean and non-Euclidean setups is not
so clear-cut, and it is in fact possible to attain linear convergence even in £, (or,
more generally, in normed vector) spaces, as long as the objective function can be
decomposed into two functions with complementary properties. In particular, we show
that if the objective function can be written in the following complementary composite
form

fx) = f(x)+ ¢¥(x), (1

where f is convex and L-smooth w.r.t. a (not necessarily Euclidean) norm || - || and v
is m-strongly convex w.r.t. the same norm and “simple,” meaning that the optimization
problems of the form?

rr;in (z,X) + ¥ (x) (2)

I More generally, it is known that the existence of a continuous uniformly convex function with growth
bounded by the squared norm implies that the space has an equivalent 2-uniformly convex norm [12];
furthermore, using duality [63], we conclude that the existence of a smooth and strongly convex function
implies that the space has equivalent 2-uniformly convex and 2-uniformly smooth norms, a rare property
for a normed space (the most notable examples of spaces that are simultaneously 2-uniformly convex and
2-uniformly smooth are Hilbert spaces; see e.g., [7] for related definitions and more details).

2 This oracle should be contrasted with the proximal oracle, which would require solving problems of the
form minx{% Ix — Z||% + ¥ (x)} and is primarily used with Euclidean norms. Equation (2) reduces to a
linear optimization/Frank-Wolfe oracle when v is the indicator of a convex polytope. For our analysis, it
also suffices to have an oracle of the form minx{% Ix — ZH2 + ¥ (x) + ¢(x)}, where ¢ is strongly convex
w.rt. | - |
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Complementary composite minimization, small gradients...

can be solved efficiently for any linear functional z, then f(x) can be minimized to
accuracy € > 0 in 0<\/% log(%x*))) iterations, where X* = argmin, f(x). As
in other standard first-order iterative methods, each iteration requires one call to the
gradient oracle of f and one call to a solver for the problem from Eq. (2). To the best
of our knowledge, such a result was previously known only for Euclidean spaces [51].

This is the basic variant of our result. We also consider more general setups in
which f is only weakly smooth (with Holder-continuous gradients) and i is uni-
formly convex (see Sect. 1.2 for specific definitions and useful properties). We refer
to the resulting objective functions f as complementary composite objective func-
tions (as functions f and v that constitute f have complementary properties) and to
the resulting optimization problems as complementary composite optimization prob-
lems. The algorithmic framework, based on the Approximate Duality Gap Technique
(ADGT) [29], that we consider for complementary composite optimization in Sect.2
is near-optimal (optimal up to logarithmic or poly-logarithmic factors) in terms of iter-
ation complexity in most of the standard optimization settings, which we certify by
providing near-matching oracle complexity lower bounds in Sect.4. On a conceptual
level, the extension of ADGT to complementary composite settings that handles both
uniform convexity and weak smoothness without much additional technical work is
another contribution of our work.> We now summarize some further implications of
our results.

Small gradients in £, and /), norms. The original motivation for complementary
composite optimization in our work comes from making the gradients of smooth
functions small in non-Euclidean norms. This is a fundamental optimization question,
whose study was initiated in [53] and that is still far from being well-understood. Prior
to this work, (near)-optimal algorithms were known only for the Euclidean (¢) and
Lo setups.t

For the Euclidean setup, there are two main results: due to [43] and due to [53]. The
algorithm of [43] is iteration-complexity-optimal; however, the methodology by which
this algorithm was obtained is crucially Euclidean, as it relies on numerical solutions
to semidefinite programs, whose formulation is made possible by assuming that the
norm of the space is inner-product-induced. An alternative approach, due to [53], is to
apply the fast gradient method to a regularized function fx) = f(x)+ %Hx —Xo ||%
for a sufficiently small A > 0, where f is the smooth function whose gradient we
hope to minimize. Under the appropriate choice of A > 0, the resulting algorithm is
near-optimal (optimal up to a logarithmic factor).

As discussed earlier, applying the fast gradient method directly to a regularized
function as in [53] is out of question for p # 2, as the resulting regularized objective
function cannot simultaneously be smooth and strongly convex w.r.t. || - || , without its
condition number growing with the problem dimension. This is where the framework
of complementary composite optimization proposed in our work comes into play.
Our result also generalizes to normed matrix spaces endowed with ., (Schatten-p)

3 We note that ADGT could already handle basic composite cases (without uniform convexity of v) [29]
and weakly smooth cases [28]; however, previous analyses did not allow exploiting uniform convexity of

.

4 In the £oo setup, a non-Euclidean variant of gradient descent is optimal in terms of iteration complexity.
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norms.> As a concrete example, our approach leads to near-optimal complexity results
in the £ and .} (a.k.a. nuclear norm) setups, where the gradient is minimized in the
{0, respectively, .%o, (a.k.a. spectral), norm.

It is important to note here why strongly convex regularizers are not sufficient in
general and what motivated us to consider the more general uniformly convex functions
Y. While for p € (1, 2] choosing ¢ (x) = %H . ||f, (which is (p — 1)-strongly convex
w.r.t. || - || p; see [41, 48]) is sufficient, when p > 2 the strong convexity parameter of
%H . ||f, w.r.t. || - ||, is bounded above by l/dlf%. This is not only true for %H I3,
but for any convex function bounded above by a constant on a unit £ ,-ball; see e.g.,
[25, Example 5.1]. Thus, in this case, we work with ¥ (x) = %HXH;, which is only
uniformly convex.

Lower complexity bounds. We complement the development of algorithms for comple-
mentary composite minimization and minimizing the norm of the gradient with lower
bounds for the oracle complexity of these problems. Our lower bounds leverage recent
lower bounds for weakly smooth convex optimization from [27, 38]. These existing
results suffice for proving lower bounds for minimizing the norm of the gradient, and
certify the near-optimality of our approach for the smooth (i.e., with Lipschitz con-
tinuous gradient) setting, when 1 < p < 2. On the other hand, proving lower bounds
for complementary convex optimization requires the design of an appropriate oracle
model; namely, one that takes into account that our algorithm accesses the gradient
oracle of f and solves subroutines of type (2) w.r.t. 1. With this model in place, we
combine constructions from uniformly convex nonsmooth lower bounds [42, 60] with
local smoothing [27, 38] to provide novel lower bounds for complementary composite
minimization. The resulting bounds show that our algorithmic framework is nearly
optimal (i.e., optimal up to poly-logarithmic factors w.r.t. dimension, target accuracy,
regularity constants of the objective, and initial distance to optimum) for all interesting
regimes of parameters.

Applications. The importance of complementary composite optimization and making
the gradients small in £, and .%), norms is perhaps best exhibited by considering some
of the classical problems that are frequently used in statistics and machine learning. It
turns out that considering these problems within the complementary composite frame-
work not only leads to faster algorithms in general, but also reveals some interesting
properties of the solutions. For example, an application of our framework to risk min-
imization problems leads to statistically optimal rates of the order \/LE in £, spaces for

p € (1, 2], while simultaneously guaranteeing that the £, norm of the output predictor
is within a constant factor of the minimum £, norm over all minimizers of the (unreg-
ularized) risk function. When p is close to 1, the latter property can be interpreted as
enforcing sparsity, similar to LASSO.

Section 5 provides several illustrative examples of problems that can be addressed
using our framework, including lasso, elastic net, empirical risk minimization, solving
positive semidefinite linear systems with maximum constraint violation guarantee, £,
regression (with standard and correlated errors), and related spectral variants. It is
important to note that a single algorithmic framework suffices for addressing all of

5 p norm of a matrix A is defined as the £, norm of A’s singular values.
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these problems. Most of the results we obtain in this way are either conjectured or
known to be unimprovable. Furthermore, to illustrate the broad applicability of our
methods, we also explore the consequences of minimizing the norm of the gradient
for the discrete optimal transport problem. In this case, our space of interest is £~,, and
we make use of simple quadratic regularization. The resulting arithmetic complexity
of our method matches many of the recently developed methods for this problem.

1.1 Further related work

Nonsmooth convex optimization problems with the composite structure of the objec-
tive function f(x) = f(x)+ (x), where f is smooth and convex, but i is nonsmooth,
convex, and “simple,” are well-studied in the optimization literature [11, 37, 39, 51,
57, and references therein]. The main benefit of exploiting the composite structure lies
in the ability to recover accelerated rates for nonsmooth problems. One of the most cel-
ebrated results in this domain are the FISTA algorithm from [11], and a method based
on composite gradient mapping proposed in [51], which demonstrated that accelerated
convergence (with rate 1/k?) is possible for this class of problems.

By comparison, the literature on complementary composite minimization is scarce.
For example, in [51] it was proved that in a Euclidean space complementary composite
optimization with smooth f and strongly convex ¥ admits a linear convergence rate.
The algorithm proposed there is different from ours, as it relies on the use of composite
gradient mapping, for which the proximal operator of ¥ (solution to problems of the
form miny {1 (x) + % Ix— z||%} for all z; compare to Eq. (2)) is assumed to be efficiently
computable. A more general setting of complementary composite optimization with
non-Euclidean norms can be handled by [4]; however it still requires computing a non-
Euclidean version of the proximal operator of i, of the form miny{(z, x) + ¥ (x) +
% I x—xo||%} for any z, Xo. In addition to being primarily applicable to Euclidean spaces,
such assumptions about the existence of a generalized proximal operator further restrict
the class of functions that can be efficiently optimized compared to our approach
(see Sect.2.2 for a further discussion). Another composite algorithm where linear
convergence has been proved is the celebrated method from [19], where proximal
steps are taken w.r.t. both terms in the composite model (f and ). In the case where
f is smooth and ¥ is strongly convex, a linear convergence rate can be established.
Notice their result works with analog assumptions to ours, but it is only applicable to
the Euclidean setting.

Beyond the realm of Euclidean norms, linear convergence results have been estab-
lished for functions that are relatively smooth and relatively strongly convex [8, 9,
46]. The class of complementary composite functions does not fall into this category.
Further, while we show accelerated rates (with square-root dependence on the appro-
priate notion of the condition number) for complementary composite optimization,
such results are not attainable for relatively smooth relatively strongly convex opti-
mization (see Appendix A for a proof). In a work independent and parallel to ours,
[22, Appendix E] obtained a linear convergence result that handles complementary
composite setting in which f is smooth and ¥ is strongly convex, with respect to an
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arbitrary norm, under a similar assumption about “simplicity” of ¥ to ours, as stated
in (2).

The problem of minimizing the norm of the gradient has become a central question
in optimization and its applications in machine learning, mainly motivated by noncon-
vex settings, where the norm of the gradient is useful as a stopping criterion. However,
the norm of the gradient is also useful in linearly constrained convex optimization
problems, where the norm of the gradient of a Fenchel dual is useful in controlling the
feasibility violation in the primal [53]. Our approach for minimizing the norm of the
gradient is inspired by the regularization approach proposed in [53]. As discussed ear-
lier, this regularization approach is not directly applicable to non-Euclidean settings,
and is where our complementary composite framework becomes crucial.

Finally, our work is inspired by and uses fundamental results about the geometry of
high-dimensional normed spaces; in particular, the fact that for £, and .}, spaces the
optimal constants of uniform convexity are known [7]. These results imply that powers
of the respective norm are uniformly convex, which suffices for our regularization.
Moreover, those functions have explicitly computable convex conjugates (problems
as in Eq. (2) can be solved in closed form), which is crucial for our algorithms to work.

1.2 Notation and preliminaries

Throughout the paper, we use boldface letters to denote vectors and italic letters to
denote scalars.

We consider real finite-dimensional normed vector spaces E, endowed with a norm
|l - |l, and denoted by (E, || - ||). The space dual to (E, || - ||) is denoted by (E*, | -
ll+), where || - ||« is the norm dual to || - ||, defined in the usual way by ||z||x =
SUPycE:|x| <1 (% X), Where (z, X) denotes the evaluation of a linear functional z on

a point x € E. As a concrete example, we may consider the £, space @R, - |l »)
where |x|, = (Z;jzl |x,-|P)1/p, 1 < p < oco. The space dual to (R?, | - ) is
isometrically isomorphic to the space (Rd, Il - 1Ip,), where % + i = 1. Throughout,

given 1 < p < oo, we refer to p, = % as the conjugate exponent to p (notice that

1 < px <00, and LS l* = 1). The (closed) || - ||-norm ball centered at x with radius
R > 0is denoted by B (x, R). We start by recalling some standard definitions from
convex analysis.

Definition 1 A function f : E — R is said to be (L, «)-weakly smooth w.r.t. a norm
Il - |l, where L > 0 and « € (1, 2], if its gradients are (L, x — 1) Holder continuous,
ie., if

¥x,y€eE): [IVFX) —VFWls < LiIx—yl<".

We denote the class of (L, x)-weakly smooth functions w.r.t. || - || by Fy.; (L, ).

Note that when « = 1, the function may not be differentiable. Since we will only be
working with functions that are proper, convex, and lower semicontinuous, we will
still have that f is subdifferentiable on the interior of its domain [56, Theorem 23.4].

@ Springer



Complementary composite minimization, small gradients...

The definition of (L, k)-weakly smooth functions then boils down to the bounded
variation of the subgradients.

Definition 2 A function ¢ : E — R is said to be g-uniformly convex w.r.t. a norm
I - || and with constant A (and we refer to such functions as (X, g)-uniformly convex),
where A > 0 and g > 2, if Vo € (0, 1) :

A
vx,yeE): ¥((l—-a)x+ay) < -a)y& +ap(y) - 50t(1 —a)lly —x|?.

We denote the class of (A, g)-uniformly convex functions w.r.t. || - || by U (X, g).

When v is only subdifferentiable (but not differentiable), we make a mild assumption
that the subgradient oracle of ¥ is consistent, i.e., that it returns the same element of
Y (x) whenever queried at the same point x.

Observe that when A = 0, uniform convexity reduces to standard convexity, while
for A > 0 and g = 2 we recover the definition of strong convexity. We only consider
functions that are lower semicontinuous, convex, and proper. These properties suffice
for a function to be subdifferentiable on the interior of its domain. It is then not hard
to show that if ¥ is (A, ¢)-uniformly convex w.r.t. anorm | - || and gx € 9y (Xx) is its
subgradient at a point X, we have

A
VyeE): y(y) > w(X)+(gx,y—X>+6—llly—X|lq. ©)

Definition 3 Let ¢ : E — R U {4o00}. The convex conjugate of vr, denoted by *, is
defined by

(Vz e E") 1 y*(z) = sup{(z,x) — y(X)}.

x€E

Recall that the convex conjugate of any function is convex. Some simple examples
of conjugate pairs of functions that will be useful for our analysis are: (i) univariate
functions %| - |? and il - |Px, where 1 < p < oo (see, e.g., [13, Exercise 4.4.2]) and

(ii) functions %H - ||? and %H - |12, where norms || - || and | - ||+ are dual to each other
(see, e.g., [15, Example 3.27]). The latter example can be easily adapted to prove that
the functions 1| - ||” and L*H - ||%* are conjugates of each other, for 1 < p < oc.

The following auxiliary facts will be useful for our analysis.

Fact1 Let ¢y : E — R U {+00} be proper, convex, and lower semicontinuous, and
let Y™ be its convex conjugate. Then ™ is proper, convex, and lower semicontinuous
(and thus subdifferentiable on the interior of its domain) and Vz € intdom(¢¥*):
g € 0y ™ (z) if and only if g € argmax, g4 {(z, X) — ¥ (X)}.

The following proposition will be repeatedly used in our analysis, and we prove it
here for completeness.
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Proposition 1 Let (E, || - ||) be a normed space with || - ||*> : E — R differentiable,
andlet 1 < q < 0o. Then

! :
[v(S )| = o=t = /e,
q *

where g, = qu is the exponent conjugate to q.

Proof We notice that || - ||? is differentiable if and only if || - ||¢ is differentiable [64,
Thm. 3.7.2]. Since the statement clearly holds for x = 0, in the following we assume
that x # 0. Next, write L9 as a composition of functions %| <1972 and || - ||3.
Applying the chain rule o? differentiation, we now have:

V(éuxuq) = L) v (?) = 2 ().

It remains to argue that HV(% ||x||2> H = ||x||. This immediately follows by Fact 1,
&

as %H -||I* and %H . ||i are convex conjugates of each other. m]

We also state here a lemma that allows approximating weakly smooth functions by
weakly smooth functions of a different order. A variant of this lemma (for p = 2) first
appeared in [26], while the more general version stated here is from [25].

Lemma1 Let f : E — R be a function that is (L, k)-weakly smooth w.r.t. some norm
Il - |l. Then for any § > 0 and

20075 @

M>[
- pKé

we have

M 8
(vx,yeE): f(y) < f(X)+(Vf(X),y—X)+;Ily—XII”+§~

Finally, the following lemma will be useful when bounding the gradient norm in
Sect. 3 (see also [64, Section 3.5]).

Lemma2 Let f : E — R be a function that is convex and (L, k)-weakly smooth
w.r.t. some norm || - ||. Then:

-1 '
(Vx.yeE): = — IV = VI®IT < f) = f® = (V ),y —x).

LTk

Proof Let h(x) be any (L, «)-weakly smooth function and let x* € argminy g /1 (X).
As his (L, k)-weakly smooth, we have for all X,y € RY .

L
h(y) < h(x) + (Vh(x),y —X) + ;Ily — x|
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Fixing x € R? and minimizing both sides of the last inequality w.r.t. y € R?, it follows
that

1—ky

h(x*) < h(x) — VA5 &)

*

where we have used that the functions %H - || and é | - |I% are convex conjugates of
each other.

To complete the proof, it remains to apply Eq. (5) to function hx(y) = f(y) —
(Vf(x),y — x) forany fixedx € Rd, and observe that hx (y) is convex, (L, x)-weakly
smooth, and minimized at y = x. O

2 Complementary composite minimization

In this section, we consider minimizing complementary composite functions, which
are of the form

f&x) = fx)+yx), (6)
where f is (L, k)-weakly smooth w.r.t. some norm || - ||, ¥ € (1, 2], and ¥ is (A, g)-

uniformly convex w.r.t. the same norm, for some g > 2, > > 0. We assume that the
feasible set X C E is closed, convex, and nonempty.

2.1 Algorithmic framework and convergence analysis

The algorithmic framework we consider is a generalization of AGD+ from [21],0
stated as follows:

Generalized AGD+
Ap_1 ag
Xk = A Yi—1 + A—ka—l
k
ve = argmin | Y ai (V£050), u = xi) + Agyr @) + mo(w) |
weX Vi) @)
Ap_1 ag
Yk = Ar Yi—1 + A—ka,

Yo = Vo, Xo € X,

where mg and the sequence of positive numbers {ay } x>0 are parameters of the algorithm
specified in the convergence analysis below, Ay = Zf:o ai, and we take ¢ (u) to be

6 The same method is also known as the method of similar triangles, introduced independently in [37].
This method is also related to Tseng’s accelerated proximal gradient method [61], and can be seen as its
“lazy” or dual averaging counterpart.
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a function that satisfies ¢ (u) > 37||u — Xo||4. For example, if A > 0, we can take

d(u) = %Dw (u, Xp). Observe also that for this choice of ¢, the minimization problem
defining v is of the form of Eq. (2). When A = 0, we take ¢ to be (1, g)-uniformly
convex.

The convergence analysis relies on the approximate duality gap technique (ADGT)
of [29]. The main idea is to construct an upper estimate G > fye) — f(X*) of
the true optimality gap, where X* = argmin, f(u), and then argue that Ay Gy <
Ak—1Gk—1 + Ek, which in turn implies:

fly — fXY <

AoGo n Z;{:] E;
Ay Ay

Thus, as long as AgG is bounded and the cumulative error Zle E; is either bounded
or increasing slowly compared to Ay, the optimality gap of the sequence y; converges
to the optimum at rate (1 + Z;;l E;)/Aj. The goal is, of course, to make Ay as
fast-growing as possible, but that turns out to be limited by the requirement that A; G
be non-increasing or slowly increasing compared to Ay.

The gap Gy is constructed as the difference Uy — Li, where Uy > f (yx) is an
upper bound on f(yx) and Ly < f(X*) is a lower bound on f(x*). In this particular
case, we make the following choices:

k
1
Ur = f(yr) + A E aiy(vi).
i=0

As yr = AL,( Zf:o a;vi, we have, by Jensen’s inequality: Uy > f(yx) + ¥ (yx) =
f(yk), i.e., Uy is a valid upper bound on f(yk).
For the lower bound, we use the following inequalities:

k k
_ 1 1
FE > A—k§ aif(xl~)+A—k§ a; (V£ (x;), X — x;) + ¥ (X*)
i=0

i=0
nmo —x mo —x
+ A—k¢(X ) — A—k¢(x )

k
1 mo , _,
= ;aif(xi) — A PE

k
+ i min IZa; (VFixi),u—x;) + Ary(u) +mo¢(u)}

Af ueXx =
=: Ly,

where the first inequality uses
1 1
F&) = - > aifxi)+ m Y ai (VEx), X" —xi),
i=0 i=0
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by convexity of f.
We start by bounding the initial (scaled) gap AoGo.

q—K
Lemma3 (Initial Gap) For any 8o > 0 and Mo = [Zﬁlqug)] LY if AgMo = mo,

then

Apdo
AoGo < mop (X*) + -

Proof By definition, and using that ap = Ao,

AoGo = Ao( (o) + (30 = F(%0) = (V£ (%0). Yo = Xo) = ¥ (¥o) = 2(v0))

+ mo¢ (X*)
= Ao(f(yo) — f(X0) — (V f(X0), Yo — X0)) — mod(yo) + moep (X*)

where the second line is by yp = vg.
By assumption, ¢ (u) > %Hu —Xx||4, for all u, and, in particular, ¢ (yo) > %Hyo —
x0||Z. On the other hand, by (L, K) -weak smoothness of f and using Lemma 1, we

have that (below My = [2459]'% L),

M, )
£(¥0) — F(xX0) — (V£ (X0). Yo — Xo) < 70”)’0 —xolld + 2.

2
Therefore:
lyo — xoll? Aodo Aodo
AoGo < (AgMo — mo) ———— + mop(X*) + - =mop(X*) + -
3
asmy = AgMy. |
The next step is to bound Ay Gy — Ax—1Gk—1, as in the following lemma.
q—K
Lemma4 (Gap Evolution) Given arbitrary §; > 0 and My = [%] “ L%, if

a;d max{AAg_1,mo}
2,0 < i then

Ay
ArGr — Ap—1Gr—1 < —

Proof Tobound A;Gy; — Ax_1Gi_1, we first bound A Uy — Ap_1Uix—1 and Ax Ly —
Aj—1Lk—1. By definition of Uk,

AU — AUk = Ar (i) — Ax—1f (Yk—1) + axyr (Vi)
= A(f(yo) — X)) + A1 (f ) — fye=1))  (9)
+ ap f(Xx) + axy (vi).
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For the lower bound, define the function under the minimum in the definition of the
lower bound as A (u) := Zf:o a; (Vf(x;),u—x;)+ Apy(u) +moe (u), so that we
have:

ArLi — Ap—1Lg—1 = ar f (Xi) + hpe (Vi) — hi—1(vi—1). (10)

Observe first that

hi (Vi) — b1 (Vi) = ax (V f(Xk), Vi — Xk) + apr (Vi). (11

On the other hand, using the definition of Bregman divergence and the fact that Breg-
man divergence is blind to constant and linear terms, we can bound hj_1(vg) —
hk—1(Vk—1) as

hi—1(vi) — hg—1(Vk—1) = (Vhr—1(Vk=1), Vk — Vk—1) + Dpy_, (Vi Vi—1)
> Ag—1Dy (Vi, Vi—1) + moDy Vi, Vk—1),

where the second line is by v;_; being the minimizer of hz_;. Combining with
Egs. (10) and (11), we have:

ArLg — Ap—1Lg—1 = ar f(Xx) + aryr (Vi) + ag (V f(Xk), Vi — Xg)

(12)
+ Ap—1 Dy (Vie, Vi—1)+mo Dy (Vie, Vi—1).

Combining Egs. (9) and (12), we can now bound Ay Gy — Ax—1Gk—1 as

ArGr — Ag—1Gr—1 < Ax(f(yi) — f(xx)) + Ak—1(f Xe) — f(Yk—1))
—ap (V f(Xk), Vi — Xg)
— Ag—1Dy (Vi Vi—1) — mo Dy (Vi Vk—1)
< Ar(f(yr) — X)) — (Vf(Xk), Ye — Xk)
— Ag—1 Dy (Vk, Vk—1) — mo Dy (Vk, Vk—1),

where we have used f(xx) — f(Yr—1) < (Vf(Xk), Xy — Yx—1) (by convexity of f)
and the definition of y; from Eq. (7). Similarly as for the initial gap, we now use the
weak smoothness of f and Lemma 1 to write:

A

M;, Sk
fi) — f&) = (V&) yx —Xk) < TIIYk —x||? + 5

My a4 Sk
= ——|lvik = Vi1 II9 + =,
7 Al IVie = Vit I + =
q—kK q
where M = | 24=9) | “ L¥ and the equality is by yx — X = % (v — vk_1), which
g8 q Yy y Ar

follows by the definition of algorithm steps from Eq. (7).

@ Springer



Complementary composite minimization, small gradients...

On the other hand, as v is (X, g)-uniformly convex, we have that
A q
Dy (Vi, Vi—1) = EHVk — vt l?.

Further, if A = 0, we have that Dy (vi, Vi—1) > %Hvk — Vi_1]|9. Thus:

ax’ Vi — Vi—t1ll9 Ak
AkGik — Ag—1Gk—1 < (Mk—,l — maX{XAkfl,mo}) I I +
At q 2
Apdk
=
as S0ty < Mgl .

We are now ready to state and prove the main result from this section.

Theorem 2 Let f(x) = f(X) + ¥ (X), where f is convex and (L, k)-weakly smooth
w.rt. a norm || - |, k € (1, 2], and ¥ is q-uniformly convex with constant .. > 0
w.r.t. the same norm for some q > 2. Let X* be the minimizer of f. Let Xg, Vi, Yk
evolve according to Eq. (7) for an arbitrary initial point Xo € X, where AgMy = my,

q—kK
-1 =
@l < ma"{)‘Ak*};I;moA"q }fork > 1, and My = [%] L%,for 8r > 0 and

k>0.Then Vk > 1:

2A0Mop (X*) + 35 Aid;

fy) — fX) < 24,

In particular, for any € > 0, setting §y = /‘;—’16, fork = 0,a0 = Ap = 1, and
max{AAg_19,moAr?™

ad = i i fork = 1, we have that f(yx) — f(X*) < € after at most
IS T=m3 Lé TaTE Lo (x*
k = 0(min{(—)q " (max{T,l})q F log( P )),
€ €
LN\ G, omny
_ *)) gk —q+k
(5 o)
iterations.

Proof The first part of the theorem follows immediately by combining Lemma 3 and
Lemma 4.
For the second part, we have

_ _ AoM, X*
Fow — F&) < %"(X) +i,

so all we need to show is that, under the step size choice from the theorem statement,
we have —AOMgd’(X ) < 5.
k
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As Ag = ap = 1, we have that §) = € and

2007 1

My = [
qxe

13)

It remains to bound the growth of Ay. In this case, by theorem assumption we have

max{AAg_17,moA?1} N ag
p . Thus, (i) 7 > M and (ii) -4 Ak" T > M s

of Ay can be bounded below as the maximum of growths determined by these two
cases.

akq =

and the growth

Consider Ai’iql ﬁrst As 8 = e and My = [zquak)] N LK the condition
Alﬂf+:kl > ML,( can be equlvalently written as:
A [2(q —K)]— = A
Ap 4 i1 T L qre LL
Hence,
dag - [2(51 - K):I_qkq:ql:—!( ( A )qK—Kq+K
A1 — gKe L% '
__ 49K K
Asap = Ap— Aj_y1, it follows that 725 > 14 [ 2K | 970 (A )90 gy pper
Ak—1 qKe I
leading to

—K K k
Ak > <1+|:2(q_/()]_q;(qq+x (iq)qqurK) .
qKe LI

On the other hand, the condition Aal(;(il > VO can be equivalently written as:
k

gK— 41+1 q—K

akK mo[ QKE]K_I

kK—q

— q
K L« 2(6]-/()
Ak

where we have used the definition of m, which implies
Ar= (K, (14)

and further leads to the claimed bound on the number of iterations. O

Let us point out some special cases of the bound from Theorem 2. When f is smooth
(x = 2) and v is g-uniformly convex, assuming L9 /2 > ), the bound simplifies to

e=o(min] ()P (5 P10 (X0, ()P ). a9
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In particular, if ¥ is strongly convex (¢ = 2), we recover the same bound as in the

Euclidean case:
_ | /L Lo (x*) Lo (x*)
k_0<m1n{ xlog( - ), p }) (16)

Note that this result uses smoothness of f and strong convexity of i with respect to
the same but arbitrary norm || - ||. Because we do not require the same function to
be simultaneously smooth and strongly convex w.r.t. || - ||, the resulting “condition
number” 3 can be dimension-independent even for non-Euclidean norms (in partic-
ular, this will be possible for any £, norm with p € (1, 2]). Observe further that it is
generally possible for the “condition number” 3 to be smaller than one. In that case,
as the convergence bound in Theorem 2 depends on max{%, 1}, the bound becomes
independent of the condition number (although it still depends on L).

Because f is g-uniformly convex, Theorem 2 also implies a bound on |y — X*||
whenever A > 0, as follows.

Corollary 1 Under the same assumptions as in Theorem 2, and assuming, in addition,
that . > 0, we have that ||yx — X*|| < € after at most

o)) e ()

iterations.

Proof By g-uniform convexity of f and 0 € 3 f (X*) (as X* minimizes f), we have
S* 19 q,z rrok
Iye =x*I% = = (F ) = £ ).

Thus, it suffices to apply the bound from Theorem 2 with the accuracy parameter
A&l

€ =2, O
q

2.2 Computational considerations

At a first glance, the result from Theorem 2 may seem of limited applicability, as there
are potentially four different parameters (L, «, A, g) that one would need to tune.
However, we now argue that this is not a constraining factor. First, for most of the
applications in which one would be interested in using this framework, function y is
aregularizing function with known uniform convexity parameters A and g (see Sect. 5
for several illustrative examples). Second, the knowledge of parameters L and « is not
necessary for our results; we presented the analysis assuming the knowledge of these
parameters to not over-complicate the exposition.

In particular, the only place in the analysis where the (L, k) smoothness of f is
used is in the inequality

My, Ok
i) < f&x0) + (VX)) yr — Xk) + 7IIYk — x|l + 5 o))
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But instead of explicitly computing the value of My based on L, x, one could maintain
an estimate of M, double it whenever the inequality from Eq. (17) is not satisfied,
and recompute all iteration-k variables. This is a standard line-search trick employed
in optimization (see, e.g., [52]). Observe that, due to (L, x)-weak smoothness of f
and Lemma 1, there exists a sufficiently large M} for any value of ;. In particular,
under the choice §; = %% ¢ from Theorem 3, the total number of times that M} can
get doubled is logarithmic in all of the problem parameters, which means that it can
be absorbed in the overall convergence bound from Theorem 2.

Finally, the described algorithm (Generalized AGD+ from Eq. (7)) can be efficiently
implemented only if the minimization problems defining v can be solved efficiently
(preferably in closed form, or with O(d) arithmetic operations). This is indeed the
case for most problems of interest. In particular, when v is uniformly convex, we will
typically take ¢ (u) to be the Bregman divergence Dy, (u, Xo). Then, the computation
of v; boils down to solving problems of the form (2), i.e., minyc x {(z, X) + ¥ (x)}, for
a given z. Such problems are efficiently solvable whenever the convex conjugate of
Y + Iy, where Iy is the indicator function of the closed convex set X, is efficiently
computable, in which case the minimizer is V(¢ + Ix)*(z). In particular, for ¥ = E
and ¥ (x) = ql|| -4, ¢ > 1, (a common choice for our applications of interest; see

Sect. 5), the minimizer is computable in closed form as V(qi* |z I|Z*), where g, = # is
the exponent dual to g. This should be compared to the computation of proximal maps
needed in [4, 51], where the minimizer would be the gradient of the infimal convolution
of ¢ and the squared norm, for which there are much fewer efficiently computable
examples. Note that such an assumption would be sufficient for our algorithm to work

in the Euclidean case (by taking ¢ (u) = %Hu — X()||%); however, it is not necessary.

3 Minimizing the gradient normin {, and Sch, spaces

We now show how to use the result from Theorem 2 to obtain near-optimal convergence
bounds for minimizing the norm of the gradient. In particular, assuming that f is
(L, «)-weakly smooth w.r.t. || - || ,, to obtain the desired results, we apply Theorem 2
to function f(-) = f(-) + AYp,(-), where

o Ix = xoll}, if pe (1,2,

Vp(x) = (18)

SlIx = xol7, if p € (2, +00).

Function ¥, is then (1, max{2, p})-uniformly convex. The proof of strong convexity of
Y¥p when1 < p < 2 can be found, e.g., in [10, Example 5.28]. For 2 < p < +o00, ¥,
is a separable function, hence its p-uniform convexity can be proved from the duality
between uniform convexity and uniform smoothness [63] and direct computation.
These £, results also have spectral analogues, given by the Schatten spaces ./, =
(R*d | . >, p)- Here, the functions below can be proved to be (1, max{2, p})-
uniformly convex, which is a consequence of sharp estimates of uniform convexity
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for Schatten spaces [7, 41]

X —xoll%, . ifpe (2],

. (19)
1 _ p
E”X XO”y’p’ lfp € (23 +OO)

Wy,p(x) = {

Finally, both for £1 and .#] spaces, our algorithms can work on the equivalent norm with
parameter p = Ind/(Ind — 1). The cost of this change of norm is at most logarithmic
in d for the diameter and strong convexity constants. Similarly, our results also extend
to the case p = oo, by similar considerations (here, using exponent p = Ind).

To obtain the results for the norm of the gradient in £, spaces, we can apply
Theorem 2 with ¢(x) = v, (x), where v, is specified in Eq. (18). The result is
summarized in the following theorem. The same result can be obtained for ., spaces,
by following the same argument as in Theorem 3 below, which we omit for brevity.

Theorem 3 Let f be a convex, (L, k)- weakly smooth function w.r.t. a norm | - | p,
where p € (1, 00). Then, for any € > 0, Generalized AGD+ from Eq. (7), initialized
at some point Xy € R? and appliedto f = [ Ay, where ), is specified in Eq. (18),

e(p—1) ,
L Al ifpe(l,2],
| —5—=. ifpe (2, ),
2HX,_X0”[P) 1 fp ( )

and with the choice ¢ = rp, constructs a point yi with |V f(yi)llp, < € in at most

i I
2L | &=DB-2) 2% Ix*=xoll3\ 32 Lx*—xol| .
k 0<<?> ((Kil)z'( (P—I)Kp) IOg( (p_l)ep)>, lfp e (1,2],

B 2L|x* P lrie wepe y (LIX =xoll
0((%) Pr—pe (KKTl> R og (%))7 if p e (2, 00),

iterations. In particular, when k = 2 (i.e., when f is L-smooth):

5( AE%EM), ifpe1,2],
1

= 2(p—
S LIX*—xollp\ p+2 .
where O hides logarithmic factors in L, ||x — Xo|l p, ﬁ and 1/e.

Proof Let us first relate [|X* — Xol|» to [X* — x|, where X* = argminyga f(x),
X* € argmin, e f(X). By the definition of f:
0= f(x) = f(&)
= f(x") — f&X) + 2 (X)) — A, (XF)
<M (XY = A (X9).
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It follows that
Yp(X) < Yp(xH).
Thus, using the definition of ¥,
IX* —xoll, < IIX* —xoll- (20)
By triangle inequality and X* = argminy f(x) (which implies V f (x*) = 0),

IVFOlp. IV = VI p, + IVFEDp,
= IVS3K) = VL E)p, + IVFE) = AV, &),
= V() = VLE)p, + VY&l p,. 2n

As f is convex and (L, k) weakly smooth, using Lemma 2, we also have:

-1 K
—IIVfly) = VIE)I < flw) — fFE) = (VFE), yx —X)

LTk
= fy) — F&) = AP (ye) + A, (X7
—(VF&E) = AVY, (&), yi — X*)
= fyo) — F&) = A(¥p(y0) — ¥p(X)
— (VY (X), yx —X*))
< f) — f&, (22)

where the second line uses f=f+ ¥p, the third line follows by V f(&*) =0 (as
X* = argmin, e f (X)), and the last inequality is by convexity of V.

FromEgs. (21) and (22), to obtain IV £yl p. <€, itsufficesthat A|| Vi, (X*) || p, <
Sand f(yo) — F&) < ()77 7.

Lr—Tg
The first condition determines the value of A. Using Proposition 1, A | Vi, (X*) || », <
5 is equivalent to

A

A

= 2 o[I%* —Xoll <5 ifpe(l,2]
MR —x0l57 <5, ifpe @ 00).
Using Eq. (20), it suffices that:
—1 .
. 2”;@_){0_)” -, if p € (1, 2], ’
B < p—1> lfp € (27 OO) ( )

2[Ix*—xollp

Using the choice of A from Eq. (23), it remains to apply Theorem 2 to bound the
number of iterations until f(yz) — f(X*) < (6 ) Rl KoL Applylng Theorem 2, we
L/c
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have:

e gk . .
o (G )T )T e ()

It remains to plug in the choice of A from Eq. (23), ¢ = max{p, 2}, and simplify. O

Although the proof of Theorem 3 appears fairly simple, we now discuss why it is not
obvious in light of similar existing results for the Euclidean norm [53]. In Euclidean
settings, one uses an accelerated method to minimize the smooth and strongly convex
objective f(x) = f(x) + 4/Ix — xol|3 for A = @(M) Because the regularized
function f in this setting is (L + A)-smooth, we can conclude that the same algorithm

ensures ||V f X)]l2 < €/2 within 0(\/; log(m» iterations. To guarantee that
IV f(x)|l2 < e, it then suffices to use the triangle inequality:

IV 2 < IVF®ll2 + AlIx = xo]l2. (24)

This approach does not directly extend to £, norms (even when || - ||?7 is strongly convex,
that is, when p € (1, 2)), for the following reasons. First, the composite function
fx) = f(x)+ %||x - xo||%7 is not smooth, so it is unclear how to directly argue that

IV F )| p* is small when f(x) — f(x*) is small. This is the reason why our proof
never uses an equivalent of (24) but instead applies the less obvious triangle inequality
from (21) and then leverages the definitions of f and X*. The second term that comes
from applying either of the two triangle inequalities, ||V (5|x — X()||§,)|| p*» can be
bounded using our Proposition 1 and it is crucial here that the regularizer we use is of
the form % Ix — xo ||f,; otherwise, for an alternative regularizer chosen as the Bregman
divergence of a strongly convex function, we would need to use smoothness, which
for p not trivially close to 2 would scale polynomially with the dimension, leading to
polynomial in d scaling of the parameter A (and consequently the convergence bound).
Second, even efficiently minimizing the complementary composite objectives of this
form, as discussed in the introduction, was not clear how to do prior to this work.
Finally, it is crucial that in (22) we relate the norm of the gradient distance to the
optimality gap w.r.t. f (as opposed to f); otherwise, to have f(yx) — f (x*) that scales

with €2, we would need A <,
Ix*—xoll5

from the application of Theorem 2.

leading to a worse complexity bound resulting

Remark 1 Observe that, as the gradient norm minimization relies on the application
of Theorem 2, the knowledge of parameters L and « is not needed, as discussed in
Sect.2.2. The only parameter that needs to be determined is A, which cannot be known
in advance, as it would require knowing the initial distance to optimum || x* — Xgl|.
However, tuning A can be done at the cost of an additional log(f—o) multiplicative
factor in the convergence bound. In particular, one could start with a large estimate of
A (say, A = Ao = 1), run the algorithm, and halt and restart with A <— 1 /2 each time
IV F(yi)llx < 2€but |V £(yi)llx > €. This condition is sufficient because, when A is
of the correct order, A[ VY (yo) I« = OAIVY (X)) = O(€), IV f(yu)ll« < €, and
IVl < IVl + VYOl = O(e).
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Remark 2 The approach conducted in this section is more broadly applicable; in fact,
it is not even necessary to use the same norm to a power in order to regularize the
objective. In Sect.5 we explore an alternative regularization for minimizing the norm
of the gradient, in the context of discrete optimal transport. This example also shows
the importance of considering non-Euclidean norms for minimizing the norm of the
gradient; particularly, the importance of quantifying the gradient error in the £1-norm,
as this permits a dimension-independent error in a rounding procedure proposed in

[6].

4 Lower bounds

In this section, we address the question of the optimality of our algorithmic framework,
in a formal oracle model of computation. We first study the question of minimizing
the norm of the gradient, which follows from a simple reduction to the complexity of
minimizing the objective function and for which nearly tight lower bounds are known.
In this case, the lower bounds show that our resulting algorithms are nearly optimal
when g =k = 2.

Regarding the complexity of minimizing the norm of the gradient, in cases where
either we have weaker smoothness (k¢ < 2) or larger uniform convexity exponent
(g > 2), we observe the presence of polynomial gaps in the complexity w.r.t. 1/e.
One natural question regarding the aforementioned gaps is whether this is due to a
possible suboptimality of the algorithm used for complementary composite minimiza-
tion (see Eq. (7)), or due to the approach of minimizing the norm of the gradient via
the composite model itself. Here, we discard the first possibility, showing sharp lower
bounds for complementary composite optimization in a new composite oracle model.
Our lower bounds show that the complementary composite minimization algorithms
are optimal up to factors which depend at most logarithmically on the initial distance
to the optimal solution, the target accuracy, and dimension.

Before proceeding to the specific results, we provide a short summary of the classical
oracle complexity in convex optimization and some techniques that will be necessary
for our results. For more detailed information on the subject, we refer the reader to the
thorough monograph [48]. In the oracle model of convex optimization, we consider a
class of objectives F, comprised of functions f : E — R; anoracle O : F x E - F
(where F is a vector space); and a target accuracy, € > 0. An algorithm A can be
described by a sequence of functions (Ag)ien, where A4 @ (E x F)k‘|r1 — E, so
that the algorithm sequentially interacts with the oracle querying points

X = A &0, 00, x0), . % O, X)),
The running time of algorithm .4 is given by the minimum number of queries to achieve
some measure of accuracy (with accuracy parameter € > 0), and will be denoted by
T (A, f, €). The most classical example in optimization is achieving additive optimal-
ity gap bounded by e:
T(A f,e) =infk = 0: fx) < f* + e},
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but other relevant goal for our work is achieving a (dual) norm of the gradient bounded
above by €, i.e.,
T(A f.e) =inffk = 0: [V &)« <€)

Given a measure of efficiency T, the worst-case oracle complexity for a problem class
F endowed with oracle O, is given by

Compl(F, O, €) = inf sup T(A, f,€).
A reF

4.1 Lower complexity bounds for minimizing the norm of the gradient

We now provide lower complexity bounds for minimizing the norm of the gradient.
For the sake of simplicity, we can think of these lower bounds for the gradient oracle
O(f,x) = Vf(x), but we point out they work more generally for arbitrary local
oracles (more on this in the next subsection).

In short, we reduce the problem of making the gradient small to that of approxi-
mately minimizing the objective.

Proposition2 Ler f : E — R be a convex and differentiable function, with a global
minimizer X*. If |V f (X) ||« < € and || x — X*|| < R, then f(x) — f(x*) < €R.

Proof By convexity of f,
JX) = f(XF) < (VF®),x =x*) < [VF®)llx — x| <€R,

where the second inequality is by duality of norms || - || and || - ||«. m|

For the classical problem of minimizing the objective function value, lower com-
plexity bounds for £ ,-setups have been previously studied in both constrained [38] and
unconstrained [27] settings. We summarize those results in the following theorem,’

Theorem 4 (From [27, 38]) Let 1 < p < oo, and consider the problem class of
unconstrained minimization with objectives in the class ./'_'.Rd’ 11, (x, L), whose minima
are attained in B).| (0, R). Then, the complexity of achieving additive optimality gap
€, for any local oracle, is bounded below by:

2
K 3k—2 .
- () )22

_r
- 2((mmfiar) ™) 72 < p < oo and

1
LR* =T\ .o
_ g((_e[lndlk,l) ) if p = oo.

7 More precisely, to obtain this result one can use the p-norm smoothing construction from [38, Section
2.3] in combination with the norm term used in [27, Eq. (3)]. This leads to a smooth objective over an
unconstrained domain that provides a hard function class. We also remark for the interested reader that the
lower bounds from Theorem 4 also apply to randomized algorithms, at least in the case 2 < p < oo and
with a more restrictive dimension regime. For details we refer to [27].
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The dimension d for the lower bound to hold must be at least as large as the lower
bound itself.

By combining the reduction from Proposition 2 with the lower bounds for function
minimization from Theorem 4, we can now immediately obtain lower bounds for
minimizing the (dual of the) £, norm of the gradient, as follows.

Corollary2 Let 1 < p < oo, and consider the problem class with objectives in
fRd’”,Hp (x, L), whose minima are attained in B”.HP(O, R). Then, the complexity of
achieving the dual norm of the gradient bounded by €, for any local oracle, is bounded
below by:

2
x—1 Ic—2 .
- Q((e[fan]KfJ ) flsp<2
_p
a Q((mﬁ#}%—')Wﬂw): if2 < p < o00; and,

1
LRV \emTY oo
- 2((=) ) i =co
The dimension d for the lower bound to hold must be at least as large as the lower
bound itself.

Comparing to the upper bounds from Theorem 3, it follows that for p € (1, 2] and
k = 2, our bound is optimal up to a log(d) log((pL_—If)e) factor; i.e., it is near-optimal.
Recall that the upper bound for p = 1 can be obtained by applying the result from
Theorem 3 with p = log(d)/[logd — 1]. When p > 2 and « = 2, our upper bound

p=2 )
" log (L) (min{p, log(d)})7+.
The reason for the suboptimality in the p > 2 regime comes from the polynomial
in 1/€e factors in the upper bound for complementary composite minimization from
Sect.2, and it is a limitation of the regularization approach used in this work to obtain
bounds for the norm of the gradient. In particular, we believe that it is not possible
to obtain tighter bounds via an alternative analysis by using the same regularization
approach. Thus, it is an interesting open problem to obtain tight bounds for p >
2, and it may require developing completely new techniques. Similar complexity
gaps are encountered when « < 2; however, it is reasonable to suspect that here
the lower bounds are not sharp. In particular, when x = 1, the objective function is
not guaranteed to be differentiable (see the discussion below Definition 1 in Sect. 1.2)
and points with small subgradients may be a zero measure set,® making them difficult
(if not impossible) to attain. Notice that this is not reflected in the lower bound for
p < oo, while for p = oo the lower bound rules out oracle complexity guarantees
of the form min{d log(1/¢€), poly(1/€) as k — 1 (suppressing the dependence on
parameters other than d and €), which are otherwise attainable for x bounded away
from one. Therefore, two interesting questions arise: first, how to strengthen these
lower bounds for weakly smooth function classes; and second, can we study milder

is larger than the lower bound by a factor (LG—R>

8 Asa specific example, consider f(x) = ||x||;. Here, the norm of subgradient is constant and bounded
away from zero for any x # 0 and even at x* = 0 the subgradient oracle could return any point from
-1, 1.
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accuracy measures in the weakly smooth case? For example, a recent line of work
has focused on the task of approximating near stationary points, by use of proximal
mappings [31, 32]. We leave these interesting open questions for future research.

4.2 Lower complexity bounds for complementary composite minimization

We investigate the (sub)optimality of the composite minimization algorithm in an
oracle complexity model. To accurately reflect how our algorithms work (namely,
using gradient information on the smooth term and regularized proximal subproblems
w.r.t. the uniformly convex term), we introduce a new problem class and oracle for
the complementary composite problem. We observe that existing constructions in the
literature of lower bounds for nonsmooth uniformly convex optimization (e.g., [42,
601]) apply to our composite setting for k = 1. The main idea of the lower bounds in this
section is to combine these constructions with local smoothing, to obtain composite
functions that match our assumptions.

Assumptions 5 Consider the problem class P(Fj. (L, k), U (A, q), R), given by
composite objective functions

(Pry) I;leiél[.f(X) =[x +yX]

with the following assumptions:

(A1) fe L, «);
(A2) ¥ €U (A, q); and,
(A.3) the optimal solution of (P, y ) is attained within B (0, R).

The problem class is additionally endowed with oracles Or and Oy, for function
classes F|.| (L, k) and Uy (A, q), respectively; which satisfy

(0.1) OF isalocal oracle: if f, g € Fj. (L, «) are such that there exists » > 0 such
that they coincide in a neighborhood Bj.|(x, r), then O (X, f) = Or(X, g);
and,

(0.2) Uy (A, g) is any oracle (not necessarily local).

In brief, we are interested in the oracle complexity of achieving e-optimality gap for
the family of problems (Py y ), where f € Fy. (L, k) is endowed with a local oracle,
¥ € U). (A, g) is endowed with any oracle, and the optimal solution of problem
(P#,y) lies in B). (0, R). A simple observation is that in the case A = 0, our model
coincides with the classical oracle mode, which was discussed in the previous section.
The goal now is to prove a more general lower complexity bound for the composite
model.

Before proving the theorem, we first provide some building blocks in this construc-
tion, borrowed from past work [27, 38]. In particular, our lower bound works generally
for g-uniformly convex and locally smoothable spaces.

Assumptions 6 Given the normed space (E, || - ||), we consider the following proper-
ties:
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B.1) y(x) = $||x||‘1 is g-uniformly convex with constant A w.r.t. | - ||.

(B.2) The space (E, || - |) is (x, n, n, it)-locally smoothable. That is, there exists
a mapping S : Fg,.np(0,1) — FE, ), ) (denoted as the smoothing
operator in [27, Definition 2]), such that |[Sf — f|lco < 1, and this operator

preserves the equality of functions when they coincide in a ball of radius 27;
i-e" if f|B”.H(0,2n) = g|BH.H(O,27]) then Sf'B".H(O,n) = Sng”.”(O,r;)-

(B.3) There exists A > 0 and vectors z!, ..., z" € E with ||zi [l+ < 1, such that for
all s1,...,sy € {—1,+1}4

inf H 3 wisiz H > A, (25)
*

€A
“EAM T e

where Ay = {a € Rﬁf’ : Y ;o = 1} is the discrete probability simplex in
M-dimensions.

The three assumptions in Assumptions 6 are common in the literature, and can be intu-
itively understood as follows. Assumption (B.1) is the existence of a simple function
that we can use as the uniformly convex term in the composite model. Assumption (B.2)
appeared in [38], and provides a simple way to reduce the complexity of smooth con-
vex optimization to its nonsmooth counterpart. We emphasize that there is a canonical
way to construct smoothing operators, which is stated in Observation 7 below. Finally,
Assumption (B.3) comes from the hardness constructions in nonsmooth convex opti-
mization from [48], which are given by piecewise linear objectives that are learned
one by one by an adversarial argument. The fact that the resulting piecewise linear
function has a sufficiently negative optimal value (for any adversarial choice of signs)
can be directly obtained by minimax duality from Eq. (25).

Note that d-dimensional £, spaces (denoted by (‘I’,) satisfy the assumptions above
when 2 < p < oo.

Observation7 (From [38]) Let 2 < p < oo and n > 0, and consider the
space E;i) = R4, | - lp). We now verify the Assumptions 6 for q = p, L= 1,
= 2%2"%(min{p, Ind}/n)* ' and A = 1/M"/P. Indeed,
— (B.1) The p-uniform convexity of  was discussed after Eq. (18).
— (B.2) The smoothing operator can be obtained by infimal convolution, with ker-
nel function ¢ (x) = 2||X||% (with r = min{p, 3Ind}. We recall that the infimal
convolution of two functions f and ¢ is given by

(fUe)(x) = heén(fo 1)[f(X +h) +¢h)].

p\Y,

The infimal convolution above can be adapted to obtain arbitrary uniform approx-
imation to f and the preservation of equality of functions (see [38, Section 2.2]
for details).

— (B.3) Letting 2’ = e;, i € [M], be the first M canonical vectors, we have

i 1/ps—1 -1
| > sl =l = MU = M
ielM] b=
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This bound is achieved when a; = 1/M, for all i.

Before proving the result for £,-spaces, we provide a general lower complexity
bound for the composite setting, which we later apply to derive the lower bounds for
£, setups.

Lemma5 Let (E, || - ||) be a normed space that satisfies Assumptions 6 and let
PFi (L, ), Uy (s ), R)

be a class of complementary composite problems that satisfies Assumptions 5. Suppose
the following relations between parameters are satisfied:
(a) 2qLA/[ha] < RT71.
(b) (M +3)n < 4R.
-1
L 1 (LA\Gx (X\7=T
(c) m(M+7)7) =< E(T) (x)q L

Then, the worst-case optimality gap for the problem class where algorithms are con-
strained to make M queries to oracles O, U).| (A, q), is bounded below by

1 (LA)%(X),,%I
2q:\ [ A .

Proof Given M € N, scalars §1,...,8y > 0,and s1,...,sy € {—1, +1}, we con-
sider the functions

L ; ‘
£:00 = =5 maxsial, ) = 5i1) .

and f;(x) = fs(x) + (A/A) ¥ (x), where ¥ is given by Assumption (B.1).

We now show the composite objective f; satisfies Assumption 5. Properties (A.1)
and (A.2) are clearly satisfied. Regarding (A.3), we prove next that the optimum of
these functions lies in B (0, R). For this, notice that by Assumption (B.2):

_ L . L A
fi®) > = max[(s:z,x) — 8] — — + = [|x|4
M ielM] noogA

v

Ao L1 L
Il [ = " = 2] = 0+ max 8.
Agq md i

We will later show that n 4+ max; §; < (M + 3)n/4 < R (the last inequality by (b)),
hence for ||x|| > R

- A _ 2L
A0 = (£t = =2 )il = 0,
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where the last inequality follows from (a). To conclude the verification of Assump-
tion (A.3), we now prove that mingecpr f5(X) < 0. By Assumption (B.2):

L : L A
1nf f(x) < inf ( — max [(s;z", x) — §; 1+ =n + —_||x||q)
i

xeE \ L ie[M]
:maxinf(< ;87 x>+—xq—— a;ié; + — )
[max inf Z i8i I > a;
€[M] ie[M]

‘ § Q;S;Z

LE ()T
max ———\| —
«€dy g ie[M]

1 /LNas /AN 751 L
LG e
H A n

qx L
- : Z @6 + =n
o Hian H

Notice that the second step above follows from the Sion Minimax Theorem [59]. We
conclude that the optimal value of (P y ) is negative by (c).

Following the arguments provided in [38, Proposition 2], one can prove that for
any algorithm interacting with oracle O, after M steps there exists a choice of
Sty ..., 8y € {—1, +1}M such that

L
min f;(x") > —[—n — max §;];
M i ie[M)

further, for this adversarial argument it suffices that min;cp)8; = 0, and

max;e[m) 6 = (M — Dn/4.
We conclude that the optimality gap after M steps is bounded below by

min f;(x’) — min f;(x) > L (M +Tn + ! (L)q*()_\)%A‘I
1 — min - —| = *
e’ xek 70 T 4n T\ G
1 (LA) (5\)(,%1
> T )
T 2q4 A

where we used the third bound from the statement. O

We now proceed to the lower bounds for £,-setups, with2 < p < 0.

Theorem 8 Consider the space E‘f, = R, - lp), where 2 < p < oo. Then, the
oracle complexity of problem class P := P (F. (L, k), U (X, p), R), comprised of
composite problems in the form (Py y ) under Assumptions 5, is bounded below by

L [L _7J, if p=x =2, € <2y2ALR*min{Z%, 1},
1

C(p,k) LP Kp+K—p . T
min(p I d) %D (AKGI,_K) , ifl <k <p, pel2,00], and A > A.

@ Springer



Complementary composite minimization, small gradients...

1
(p—D _ (p=01=2p)+=D)p@p=3) | kpFk=p
) 2 =0 is bounded below by

where C(p, k) := ((pT

an absolute constant, and

_ K

i:=C€m {mm{p,lnd} (;R)T‘,
=l (26)

s Ep Kkp+l—p
min{p, In d} G—Dpte—p }
L(r+DR =T

where C > 0 is a universal constant.

In particular, our lower bounds show that the algorithm presented in the previous
section—particularly the rates stated in Theorem 2—are nearly optimal. In the case
p = k = 2, the gap between upper and lower bounds is only given by a factor
which grows at most logarithmically in L¢ (x*)/€, and in the case k < p, the gap
is 0(log(L¢(f(*)/e)/ min{p, In d}@(l)). In both cases, the gaps are quite moderate,
so the proposed algorithm is proved to be nearly optimal. Finally, we would also like
to emphasize that the constant C(p, k) = ©(1), as a function of 1 < k¥ < 2 and
2 < p < oo. Therefore, the lower bounds also apply to the case p = oo.

Proof (of Theorem 8) By Observation 7, in the case of 4 with2 < p < 0o, Assump-
tions 6 are satisfiedif g = p, A = 1/M'/P,x = 1,and i = 2> (min{p, Ind}/n)*~!
(for given 1 > 0). This way, hypotheses (a), (b), (c) in Lemma 5 become

@ 1 min{pzlnd}()LRle)ﬁ'

(b) (M +3)n <4R.

() nP™" =

2p+K—3L
PPV min{p, Ind}e—DAMM+T) D

Case 1: p = k = 2. In order to satisfy (c), it suffices to choose M = L, / % — 7J.
Given such a choice, to satisfy (a), (b) of the lemma, we can choose

20 . (1 [2x
{ >R —mln{— —,4}
2L M+3 L 4V L

Now, under the conditions imposed above, the lemma provides an optimality gap
lower bound of

1/ Ly \2 2
—(—"> > 2v/22LR2 min [—, 1}.
A0\ M L

In conclusion, if € < 2+/2AL R? min{2X\/L, 1}, then

Compl(P, (OF, Oy). €) > { iJ 1
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Case 2: p > « (where 1 < k < 2,2 < p < 00). Here, to ensure (a) and (b), it
suffices that

4R lnm{pJnd}(ARp_l)ﬁj], (27)

nimm{ ,
M+3 2 p

We later certify these conditions hold. On the other hand, for (c) it suffices to let

n=[("7) - I
p Amin{p, Ind}¥~ MM + 7)r-1 '

Then by Lemma 5 the optimality gap is bounded below as

1 LPnP(K—l) ﬁ
2p4 <2P(2*’<))LM min{p, In d}P(K*1)>
1
L? P
— +r—
= |:C(P,K)Kp r. - pe—D(kp—2k+1) ] ’
min{p, Ind} p=T AM(M + T)kpte—rp
_1\¥P=D _ (=0(-2p)+(=1)p@p=3) | «pF+k—p ) o
where C(p, k) := (%) 2 (=1 . In particular, if € is
smaller than the gap above, resolving for M gives
1
C(p. k) Lr \weer
Compl(P, (Or,Oy),€) > M = — , (28
PI(P. (OF. Oy). €) = min{p, Ind}>®«—D \ Acep—x %)

where we further simplified the bound, noting that Wm <2(k —1).
Now, given the chosen value of M, we will verify that Eq. (27) holds. For this, we
note that Eq. (27) is implied by the following pair of inequalities

R
A > C'(p, k) min{p, Ind}* D@~ 1)(LR>K_] (29)
el

6p Kkp+l—p
A > C"(p, k)min{p, Ind)’ Tz (30)
p—D«ptk—p)
LP+DR =T)

with C’(p, ), C"(p, k) = C > 0, are bounded below by a universal positive constant.
Therefore, there exists a universal constant C > 0 such that if A satisfies Egs. (29) and
(30) where C’(p, «), C"(p, k) are replaced by C, then the lower complexity bound
from Eq. (28) holds. O

Remark 3 Observe that the lower bounds from Theorem 8 apply only when A is suffi-
ciently large, which is consistent with the behavior of our algorithm, which for small
values of A obtains iteration complexity matching the classical smooth setting (as if
we ignore the uniform convexity of the objective).
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5 Applications

We now provide some illustrative applications of the results from Sects.2 and 3 to
different regression problems. In typical applications, the data matrix A is assumed
to have fewer rows than columns, so that the system Ax = b, where b is the vector
of labels, is underdetermined, and one seeks a sparse solution x* that provides a good
linear fit between the data and the labels.

5.1 Elastic net

One of the simplest applications of our framework is to the elastic net regularization,
introduced by [65]. Elastic net regularized problems are of the form:

min £ + 22 1x13 + A1 lx ],
xecR4 2

i.e., the elastic net regularization combines the lasso and ridge regularizers. Function
f is assumed to be (L, 2)-weakly smooth (i.e., L-smooth) w.r.t. the Euclidean norm
Il - ll2. It is typically chosen as either the linear least squares loss or the logistic loss.

We can apply results from Sect. 2 to this problem for g = « = 2, choosing ¥ (x) =
)‘72 ||X||% + A1lIx|l1 and ¢ (x) = %Hx — X()||%. Observe that our algorithm only needs to
solve subproblems of the form

"

min | (2. %) + - 1xI3 + VIl ).
xeR4 2

for fixed vectors z € R? and fixed parameters A’, A", which is computationally inex-
pensive, as the problem under the min is separable.

Applying Theorem 2, the elastic net regularized problems can be solved to any
accuracy € > 0 using

L Lix* — Lllx* — 2
k=0<min{ /—log< [Ix Xo||2)7 [ L|x X0||2}>
Ao € €

iterations, where x* € R is the problem minimizer. We note in passing that an upper
bound of the same order can be obtained by the composite accelerated method in [51].

5.2 Risk minimization with strongly convex {,-norm regularization

In this section, we argue that the results obtained in this paper are useful for solving
certain regularized empirical risk problems and that the particular choice of regulariz-
ers proposed here leads to non-asymptotic consistency and generalization bounds. We
emphasize that most of the theory used in what follows (particularly regarding regu-
larization, stability and generalization) is classical (e.g., [14]), and we only provide
the necessary tools for completeness.
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Concretely, our main object of interest are population risk minimization problems
of the form

min L(x), L(x)=E,.pl(x;2z)], (31)
xeR

where D is an unknown distribution, individual loss functions £ are convex, and we
are given a set of n i.i.d. samples S = {z;, 75, . .., z,} from D. For this problem to be
(computationally and statistically) tractable, further assumptions are required, which
we state in Assumption 9.

To address (31), we apply AGD+ to the following regularized empirical version of
the problem

A
min Ls(x) + = Ix||%, (32)
xeRd 2

where Lg(x) = % Y i1 £(x; z;) is the empirical risk, A is a regularization parameter
(specified in the analysis below), and p € (1, 2]. We let X denote the output of AGD+,
invoked with accuracy parameter €, > 0, specified later in this subsection. Further,
we let X* denote the unique9 solution to (32). We further use X’ gi to denote the set of
minimizers of the empirical loss L£s and denote the minimum value of the empirical
loss Ls by L.

First, we provide a justification for the regularization used in (32), from an optimiza-
tion perspective, in the following proposition. In particular, we argue that the utilized
regularization ensures that the solution output by AGD+ has £,-norm almost as small
as the smallest norm among empirical minimizers, minye x5 1Xllp, while requiring
only a modest amount of computation. When p is close to 1, we can interpret this
property as enforcing sparsity of the output solution, similar to LASSO.

Proposition 3 Given (32), assume that X§ = argming s L5(X) is non-empty. Let X*
denote the solution to (32). Then:

Ak . *

X < min ||X*|,, and

IX* M, < . Ix*[l »

Ls@)— L5 <2 min (x|
R

As a consequence, if X is the solution output by AGD+ for optimality gap €, then

&I, < min X, + | —" d
X min ||x ——, an
P = xrexs P Ap—1)

. o
Ls() = L5 = 5 min NI} + €.
S

9 The solution to (32) is unique as the problem is strongly convex, due to the regularizer.
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Proof The first inequality follows by (20), already proved within the proof of Theo-
rem 3, as [|X||, < [[x*||, holds for any x* € X'S. For the second inequality, using the
assumption that X* is the solution to (32), we have, for all x* € X%,

N Aa A
Ls®) + I, — (L5 + SIKI}) <. (33)

Hence, the second inequality follows by rearranging (33), using that % Ix* ||f7 > 0, and
taking the minimum of both sides over x* € X¢.

For the third inequality, as Ls5(x) + % ||X||§7 is A(p — 1)-strongly convex w.r.t. || - || »
(as Ls(x) is convex and %||x||%7 is (p — 1)-strongly convex w.r.t. || - || ,), X* minimizes
Ls(x) + %||X||2 , and X is an €,-approximate solution to (32), we have

AMp —1
%nﬁ 22 < fR) - fRD) < en.

Hence, we have [X — X*||, < /%. The claimed inequality now follows using
triangle inequality and the first part of the proposition, since

2¢,

IXIl, < IX*ll, + IX —=X*||, < min [x*||, + | ——.
P P P = xrexs P Ap—1)

For the final part, let x* € argmin, . X% x| p. Then

o R A A Ao A
Ls®) = L= Ls® + SIXIG = L5 = SIXI5 = ZIKIG + S IXI5

IA

o Ao R Ao A
Ls® + SIKI = Ls &) = JIRTIG + S I

IA

A %2
& + S IX15,

where the first inequality follows from X* being the minimizer of (32) and % IX]12 > 0,
and the last inequality is by the definition of ¢,. O

Note that Proposition 3 allows us to treat the empirical problem (32) as if it
were a constrained optimization problem, with constraint set {x € R? : ||x| p =

Mings¢ X% Ix*]l, + /%}, as the predictor X is guaranteed to lie in this set.
We now specify the assumptions used for obtaining statistical and computational
guarantees.

Assumptions 9 Given the population risk minimization problem (31), the following
all hold

(C.1) For any set S = {zy, ..., z,} of empirical samples, the set of empirical mini-
mizers X; is non-empty and minxe;(; Ix|l, < B, where B < oo;
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(C.2) The loss function ¢ is differentiable and satisfies that for any two samples z, z’
drawn from D and x such that ||x||, < B, we have | VE(x; z) — VL(X;2) [« <
M, where M < o0;

(C.3) The loss function £ is L-smooth for some L < oo.

(C.4) For any x such that ||x]|, < 2B, E,-p[|¢(x;z) — LX)|] < G.

Assumption (C.1) ensures learnability of the population risk minimization problem,
and some variant of it is necessary. It is usually enforced via a stronger condition
that the minimization is performed over a bounded convex set. Assumption (C.2) is
looser than the assumption about Lipschitz-continuity of ¢ that is typically enforced
in the literature on stability and generalization. Further, due to Assumptions (C.1)
and (C.3) and the criterion [|X||, < B in its statement, Assumption (C.2) holds as
in this case |V4(X,z)|l« < M is bounded (by 2L B). Assumption (C.3) is made for
computational tractability via the complexity bound of AGD+, and can be replaced
with an assumption that ¢ is («x, L)-weakly smooth for any « € [1, 2], with all of the
analysis still being applicable and just by invoking the appropriate complexity bound
for this class (observe that constant M in Assumption (C.2) can still be bounded by
2L B~ !in this case). However, for concreteness and simplicity of exposition, we carry
out the analysis under the assumption that £ is L-smooth. Finally, Assumption (C.4) is
made to be able to apply [58, Theorem 8], which relates uniform replace one stability
(as in Lemma 6) to consistency and generalization. Note that this assumption can
be omitted, since it is automatically satisfied for any non-degenerate problem, as ¢
is a (Lipschitz) continuous function and as such bounded on the compact domain
xll, < 2B. In particular, by Assumption (C.1), £ has at least one minimizer x*
that belongs to the £,-ball x|, < B. As £ is L-smooth (by Assumption (C.3)),
SUPy. ), <25 (%) = LX)} <SPy <op Slx — x*113 < 2LE Thus, G < 2LE°.

The key property that allows us to prove consistency and generalization bounds
is uniform replace one (RO) stability. For completeness, we first define uniform RO
stability, consistency, and generalization, and then move on to proving the claimed
bounds. The definitions provided below can be found in, e.g., [58].

Definition 4 Let A be a rule that given a sample S = {zy, ..., z,} and problem (31)
outputs a predictor A(S). A is said to be uniform-RO stable with rate € (n), if for all
possible sets SO = {z1,...,2i—1, z;, Zi+1, .. .2y} that replace the jth sample z; by
some z; and for any z’ from the support of D, we have

% D UAS); ) — LA D); )] < eq(m).
i=1

Definition 5 A learning rule A is said to be consistent with rate €cops(2) under distri-
bution D if foralln > 1,

Es~pr[L(A(S)) — in[é‘d L(X)] < €cons(n).
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A learning problem is learnable if there exists a learning rule A that is consistent with

rate €g(n) under any distribution D and where € (n) =50 If it exists, such a rule
is then called a universally consistent learning rule.

Definition 6 A rule A is said to generalize with rate €ge, (1) under distribution D if
foralln > 1,

Es~pr[IL(A(S)) — L5(AS))]] < €gen(n).

A rule is said to universally generalize with rate egen(n) if it generalizes with rate
€gen (1) irrespective of the distribution over the given support.

To prove the consistency and generalization rates, we prove the following lemma
that certifies uniform RO stability of the outputs of AGD+ (under a suitable choice of
€, and 1). We then obtain the consistency and generalization rates as an application
of [58, Theorem 8].

Lemma 6 Given the population risk minimization problem (31), let Xs be an €,-
approximate solution for the regularized empirical problem formulation in (32). Then
Xs is a uniform RO stable learning rule with rate

ey =L (284 [ 26 M, % (34)
stinn) = s
' ap—1 ) \nr(p—1) Ap—1)

under any distribution that satisfies Assumption (C.1) and for any loss function £ that
satisfies Assumptions (C.2) and (C.3).

Proof LetS = {z1,...,2,} i D. Let S be any set obtained from S by replacing
the i™ element (z;) by an independent sample z; ~ D. Let ﬁg(i) be the minimum
£ ,-norm solution to (32) with sample S @) and % s be the approximate solution to the
same problem output by AGD+. Similarly, let f(j‘s be the minimum £ ,-norm solution to
(32) with sample S and X s be the approximate solution to the same problem output by
AGD-+. To prove the lemma, we first bound ||§(:,“3 —X S0) |, and then use Proposition 3
with smoothness of £ to conclude that X is uniform RO stable.

As X% minimizes Ls(x) + 5[[x]|3, we have VLs(X%) + V(5]R%13) = 0, and,
similarly, VL ga) (f(:,‘;,(,-)) + V(% ||f($<i) ||?,) = 0. Further, as L5(x) + % ||X||%, isA(p—1)-
strongly convex w.r.t. || - | p,

(VLsRS) — VLS K50)), X5 — X5 )
. 1 1 .
x(p = DIRE — K5 113 — <V(5||x5||§,) - V(3185013 ). %5 - x}gm>

= )M(P - 1)”;(‘*3 - ﬁs([) ”?; + (V‘CS(QS) - V»C‘s'(i) (ﬁikg(;))» )A(‘*g - ﬁg(;)) (35)

v
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Further, observe that by definition of Ls, we have VLs(X3) — VLs(Xg;) =
VLs&S) — VLo Ks) + L(VERE,). 7)) — VL&Y, 2)). Hence:

(VLsRS) — VLs K50, X5 — X5
< (VLs(&%) — VLo KSi), X5 — X5 (36)

1 . . . .
+ ; (Vg(xfg(i) s Z;) - VE(XZ(,'), z;), Xz‘ - XZ(:‘))

Hence, combining (35) and (36), we have

IA
S| =

A A 2 A A A A
Mp = DIRS = K50l < = (VEKS0), 2) — VERS ), ), X5 — X))

IA
=[x

IR% — Ko [ -

Thus, we conclude that

X5 —Xoolp < ——.
185 = X50lp = s

and, consequently, using strong convexity and the guarantee of AGD+ as in the proof
of Proposition 3, we have

s — Xsillp < IX5 — X501, + I1Rs — X5l p + IXsi) — K50 Il p
(37)
< M ) 2¢, ‘
ni(p —1) Ap—1)

Finally, let x] be the minimizer of £(-; z') with the minimum £, norm. By Assump-
tion (C.1), [Ix7|l, < B. Hence, using smoothness of £, we have

[L(xs:2) — LRsi: 2)| < (VEGKs: 2), ks — Xs0))
< |VLR&s:2) — VLX]: )| p- ks — Xso [l p
< L|xs —x]ll,lIXs —Xsoll
< L(%sllp + IXT1p) I%s — Xso |l »

< L<2B b2 >||f( 2ol
= P E—— S — (i)
Ap—1) sulr

2¢, M 2¢,
§L<2B+ )L(pg— 1))(nk(p—1) +2 A(pe— 1))’

where the second to last inequality uses the third part of Proposition 3 and the last
inequality uses (37). The quantity —(£(Xs; z') — £(Xg@; 2')) can be bounded using a
similar argument, which is omitted for brevity. O
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We are now ready to state and prove computational and statistical guarantees for a
learning rule X defined as an €, -approximate solution to (32), which can be computed
using AGD+.

Theorem 10 Given the population risk minimization problem (31) that satisfies
Assumptions (C.1)~(C.4), let Xs be an €,-approximate solution for the regularized
empirical problem formulation in (32), where €,, and ) are defined by:

Bx(p—1 Mm?
€, = min (p=1 . —2V3 S (39
2 8n?i(p —1) Bnp( 1)
Then Xs can be computed with
LB
k= 0(,/ log( - ))
(39)

() (222

iterations of AGD+ and it is consistent and generalizes under D with rates

LM
€cons(1) = 23/3. | —— p —— B3

LM 2G
€gen(n) = 2«/_ 1 . By = «/ﬁ

Proof The bound on the number of iterations of AGD+ required to compute X5 follows
as a direct application of Theorem 2.
For the consistency and generalization rates, we apply [58, Theorem 8], by which

€cons (M) < €5¢(n) + €erm (),

2G
6gen("’) < €x(n) + €erm(n) + —=,

N
where
s * A 2
€erm(n) == L5 (X) — ES = EB + €n
(by Proposition 3) and €4 (n) was bounded in Lemma 6. The claimed bounds now fol-

low after plugging in the choice of A, €, from the theorem statement, and simplifying.
O

A few remarks are in order regarding the practical use of the proposed learning rule
based on (32). In Theorem 10, we choose €, and A according to the problem parameters
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specified in Assumptions (C.1)-(C.4). However, parameters B, M, L are usually not
available at the input. Further, if the minimum loss ﬁf‘s is not known, we cannot use
f(yx) — f(x*) < €, as a stopping criterion in AGD+. (Recall that, as discussed in
Sect.2.2, knowledge of L is not required for running AGD+, as L can be adaptively

estimated.) In such situations, it sufficestolet A = ® (/W——l))’ € =06 (pn—_zl), and

run AGD+ until the number of iterations reaches the estimate C \/ % log(nL/(p — 1))

for some constant C and the adaptively estimated value of L. It is simple to verify that
under this choice, €cons (1) and €gen (1) grow as - (11)7]) as functions of n and p (albeit
with a worse, though still polynomial, dependence on the remaining parameters).

Finally, when p = 1 + oo for ¢ > 0, we have || - [, < [| - [l < (1 + )] - .
Hence, the proposed regularized empirical risk minimization approach can be used as
an alternative to LASSO under this choice of p, based on the discussion preceding
Proposition 3. Note that, as shown in [58, Section 4.3], [36, Section 3.3], for general
loss functions and under the assumptions from this section (Assumptions 9), the same
consistency and generalization rates cannot be obtained using LASSO (regardless
of whether it is formulated using £; regularization or via bounding the optimization
problem using ¢ ball constraints).

5.3 Solving symmetric PSD linear systems with maximum constraint violation
guarantee

When solving linear systems Ax = b, we are often interested in the maximum con-
straint violation as opposed to the ¢, norm of the error vector Ax — b, |[Ax — b||,,
obtained by minimizing the quadratic function ||Ax — b||%. When A is symmetric and
positive semidefinite (PSD), a common approach to solving linear systems is by min-
imizing the quadratic function f(x) = %XTAX — b”x. The gradient of this quadratic
function is precisely the error vector Ax — b for the linear system Ax = b, thus in this
case we are interested in minimizing the gradient of f.

If one uses a Euclidean first-order approach to minimize the gradient of f, then the
resulting gradient oracle complexity to obtain ||Ax — blj; < € is

@(min{d, ,/”A”2”X+X*”2}),

where X is an initial point and x* is a solution to the linear system Ax = b [49,
50]. Note that |[Ax — b||» can be as large as |Ax — b||; in the worst case. On the
other hand, applying our result from Theorem 3 with p = 1 + bgﬁ’ c > 0, we

Al = p* IXo—x*I» ) _
ce -

get that ||AX — b||o < € with gradient oracle complexity 5(

= [maxizi=a A T%o—x" - i
0 (\/ M Ixo=x"Ih ). If the system Ax — b has sparse solutions, then selecting

xo = 0, the obtained bound can be smaller by a factor V/d for constant ¢, as |A|2
can be as large as d max<; j<q A; j.lo Further, as a consequence of the results from

10° This bound is tight for the matrix of all ones.
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Sect. 3, our algorithm enforces small £ ,-norm of the output solutions (and thus a small
£1 norm). In particular, due to Eq. (20), when solving the regularized problem from
Sect. 3 to obtain a solution with small gradient norm, it is guaranteed that ||)‘(||*l‘7 <
Ix*|l ,, where X* is the solution to the regularized problem and x* is any solution to
the linear system Ax = b. As a consequence, ||)'(||",‘7 < miny:Ax=p ||X]|». Since the
regularized problem is strongly convex, we further have that the output solution yi
satisfies |lyx — X || < zlk(f(yk) — f(x*)). If we slightly change the target error

of Generalized AGD+ in Theorem 3 to guarantee that f(y;) — f(X*) < w
(which only affects the terms under the log factor and does not change the resulting
asymptotic complexity), we get that |y — X*|, < €. As a consequence, using the
triangle inequality, we have

Iyllp < llyx = X"l + IX*ll, < A+ IX, < (1 +e) min [x|,.

Finally, using properties of £, norms and our choice of p, we have that

Iyl = (14 0 +6) min_Ixi.

5.4 {, regression

Standard £ ,-regression problems have as their goal finding a vector x* that minimizes
[Ax — bl|,, where p > 1. When p = 1 or p = oo, this problem can be solved using
linear programming. More generally, when p ¢ {1, oo}, the problem is nonlinear, and
multiple approaches have been developed for solving it, including, e.g., a homotopy-
based solver [16], solvers based on iterative refinement [1, 3], and solvers based on the
classical method of iteratively reweighted least squares [2, 34]. Such solvers typically
rely on fast linear system solves and attain logarithmic dependence on the inverse
accuracy 1/e, at the cost of iteration count scaling polynomially with one of the
dimensions of A (typically the lower dimension, which is equal to the number of rows
m), each iteration requiring a constant number of linear system solves.

Here, we consider algorithmic setups in which the iteration count is dimension-
independent and no linear system solves are required, but the dependence on 1/¢€ is
polynomial. First, for standard £ ,-regression problems, we can use a non-composite
variant of the algorithm (with () = 0), while relying on the fact that the function
%H . ||(f, with ¢ = min{2, p} is (1, p)-weakly smooth for p € (1,2) and (p — 1, 2)-
weakly smooth for p > 2. Using this fact, it follows that the function

1
fr(x) = c_IHAX —bll}

is (L, g)-weakly smooth w.r.t. || - || ,, with L, = max{p — 1, 1}||A||pﬁp* On the

other hand, function ¢ (x) = WHX x0||p, where ¢ = max{2, p}is (1, g)-
uniformly convex w.r.t. || - || ,. Thus, applying Theorem 2, we find that we can construct
a point yx € R? such that Fo(yi) — fp(X*) < €, where X* € argming ga fp(X), with
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at most

p—1 2 *_ 2 %
O((MAH?,’*)zH (”pr’?“p)”’ 2), if pe(l,2)

k= P N PN —2-
0((([7_1)”?H1)~>p*)P+2(HX ;XOH1))P+2>’ lfp > 2

iterations of Generalized AGD+. The same result can be obtained by applying the
iteration complexity-optimal algorithms for smooth minimization over £ ,-spaces [25,
47].

More interesting for our framework is the £, regression on correlated errors,
described in the following.

L p-regression on correlated errors. As argued in [17], there are multiple reasons why
minimizing the correlated errors AT (Ax — b) in place of the standard errors Ax — b
is more meaningful for many applications. First, unlike standard errors, correlated
errors are invariant to orthonormal transformations of the data. Indeed, if U is a matrix
with orthonormal columns, then (UA)T (UAx — Ub) = AT (Ax — b), but the same
cannot be established for the standard error Ax — b. Other reasons involve ensuring
that the model includes explanatory variables that are highly correlated with the data,
which is only possible to argue when working with correlated errors (see [17] for more
information).

Within our framework, minimization of correlated errors in £,-norms can be
reduced to making the gradient small in the £,-norm; i.e., to applying results from
Sect. 3. In particular, consider the function:

1
FOx) =5 lIAx — bl3.

The gradient of this function is precisely the vector of correlated errors, i.e.,
Vf(x) = AT(Ax — b). Further, function f is L py-smooth wrt. || - ||, where
Ly, = IATAllp,p.

Applying the results from Theorem 3, it follows that, for any € > 0, we can
construct a vector y; € R? with |AT (Ay; — b)||, < €, where % + ﬁ =1, with at
most

DN

T *_ %
(Aol ) ¥ 2), ifpe(l2)

IATAllpy— p IX* —Xoll ps :
\/ £ , if p>2

DN

iterations of generalized AGD+, where O hides a factor that is logarithmic in 1/€ and
where each iteration takes time linear in the number of non-zeros of A. We are not
aware of results of this type in the literature.
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5.5 Spectral variants of regression problems

The algorithms we propose in this work are not limited to £, settings, but apply
more generally to uniformly convex spaces. A notable example of such spaces are the
Schatten spaces, ), = (RI*d || . .7, p), where [ X|| & , = (Zje[d] oj(X)l’)l/l’,
where 01 (X), ..., 04(X) are the singular values of X. In particular, the aforementioned
£p-regression problems have their natural spectral counterparts, e.g., given a linear
operator A : R4*4 — R and b € R¥,

o1
min -

a
—_— s —_— r,
min < IAX = b, + 21X,

The most popular example of such a formulation comes from the nuclear norm
relaxation for low-rank matrix completion [20, 54, 55]. We observe that the exact
formulation of the problem may vary, but by virtue of Lagrangian relaxation we can
interchangeably consider these different formulations as equivalent (modulo appro-
priate choice of regularization/constraint parameter choice).

To apply our algorithms to Schatten norm settings, we observe the functions below
are (1, r)-uniformly convex, with » = max{2, p}:

o IXI5, . ifpe,2l,

lp&”,p(x) =11 p .
LX|L, . ifpe @ +o).

On the other hand, notice that more generally than regression problems, for composite
objectives

FX)+ ¥y (X — Xo),

if the function f is unitarily invariant and convex, there is a well-known formula
for its subdifferential, based on the subdifferential of its vector counterpart (there is a
one-to-one correspondence between unitarily invariant functions R¢*¢ and absolutely
symmetric functions on R4) [44]. Even if f is not unitarily invariant, in the case of
regression problems the gradients can be computed explicitly. On the other hand, the
regularizer ¥ , admits efficiently computable solutions to problems from Eq. (2),
given its unitary invariance (see, e.g., [10, Section 7.3.2]).

Iteration complexity bounds obtained with these regularizers are analogous to those
obtained in the £,, setting. On the other hand, the lower complexity bounds proved in
Sect. 4 also apply to Schatten spaces by diagonal embedding from ¢<, hence all the
optimality/suboptimality results established for £, carry over into .%%,.
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5.6 Entropy-regularized optimal transport

Consider the entropic regularization [35] of the discrete optimal transport problem
and its dual [24, 45]. Given a transport cost C € R’} ™", marginals p € A, v € PRE
and regularization parameter r > 0, let

(P") min {(C,X)+rX,In(X)=U): Xl =p, X' 1=v, (U,X) =1}

mxn
XeRY

(D") min _ ¢((u,v)) = [rln (Zexp (%[ui +vj — cij])> —{(,u) — (v, V)].
i,j

uelR” veR"

where 1 denotes the all-ones vector (of the corresponding dimension) and U € R™*"
is the all-ones matrix, (-, -) applied to vectors is the standard inner product, which
for matrices is the Frobenius inner product, and In(-) applied to a matrix denotes
the component-wise application of the natural logarithm. Note that u, v are the dual
variables associated with the marginal constraints X1 = g and X "1 = v, respectively.
Further, we emphasize that the dual objective ¢ is L-smooth with respect to the || - || o
norm with L = 1/r [10].

Observe that by denoting B(u, v) = (exp([u,- +vj— cij]/r))
B(u, v)/(U, B(u, v)), then

i el and X(u, v) =

Vo((u,v) = (X, W1 —p, Xu,v)1-v)".

In particular, a global minimum of (D") induces a feasible solution for (P”), and a
dual solution with small (£1-norm of the) gradient implies a primal solution with small
(€1-norm) infeasibility. The utility of finding such nearly feasible transports is related
to the possibility of constructing (exactly) feasible transports with small additional
transport cost.

Lemma 7 (From [6]) There exists an algorithm that runs in time O (mn) which takes
as input X € Ay xn (infeasible w.r.t. the marginal constraints), and produces a X e
Amxn, Which is feasible for the marginal constraints, and such that | X — Xlll <
201X1 = plli + X1 = v]|i].

We conclude that, in order to solve an (unregularized) optimal transport problem,
it suffices to find a (regularized) dual solution with small norm of the gradi-
ent. More specifically, noticing that if X" is an optimal solution for (P"), then
(C, X"y — (C, X% < rIn(mn) [23, 62], and therefore in order to obtain an e optimal
solution for (P%) (the unregularized problem), it suffices to choose r = €/[2 In(mn)]
and target accuracy for the norm of the gradient | Ve ((u, v))||1 < ¢/[4|Clloo] =: 6,
where ||C|lo0 = max; ; |c;jl.

We now use the methods developed in previous sections to compute such a solu-
tion. For this purpose, we endow the space R 1" with the £, norm, and we use the
regularizer y(z) = % |z ||%, which is 1-strongly convex w.r.t. £5-norm. Notice that this

1 Without loss of generality, we may assume that both probability distributions have full support, thus
Wi, vj > O0foralli, j.
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setting does not exactly coincide with that of Sect. 3, in particular since v is not the
{0 norm to some power. Nevertheless, the same rationale used in the aforementioned
section shows that running AGD+ on the regularized objective ¢ := ¢ 4+ Ay with A
set such that || Vi ((u*, v¥))|l1 < &/2 will provide the desired vector with £; norm

of the gradient § with complexity O (\/; log (w))
Our last task is then to provide an a-priori bound on the £,-norm of the optimal

dual solution. In this respect, multiple results can be found in the literature [18, 23,
33]. The following is particularly useful for our purposes.

Proposition 4 (Adapted from [45]) There exists an optimal solution (u*, v*) for (D")
such that ||(@*, v*)|lco < r[Inmax{f, v} + In(mn)] + ||C||c0, where p. = max; 1/u;,
and v =max; 1/v;.

Finally, the resulting oracle complexity to obtain accuracy § in the norm of the
gradient is given by

L Ly ((u*, v¥)
o, =log(———~
(V Pl S —
_ 20 v IClloo |l (u*, v*) |12
=0 ( urtSv : log( re 2))
=0 ( (m + n) log(mn) In ((m"l‘n‘)g”C”oc)l:”CJoo + I\C\Iooi)lg(gm%x{ﬁ,i}]) )

Noticing that each step of this method requires arithmetic complexity O (mn), we
finally obtain a total complexity of é((m +n)>/? ICllso/€), which matches the state
of the art of the existing practically scalable methods (see discussions in [18]). The
only existing method that obtains improved complexity is based on area convexity
[40], which unfortunately is not competitive unless the dimension is extremely large.
To summarize, this example shows how our methods can directly reproduce existing
complexity bounds that have been obtained by arguably much more sophisticated and
ad-hoc methods.

6 Conclusion and future work

We presented a general algorithmic framework for complementary composite opti-
mization, where the objective function is the sum of two functions with complementary
properties—(weak) smoothness and uniform/strong convexity. The framework has a
number of interesting applications, including in making the gradient of a smooth func-
tion small in general norms and in different regression problems that frequently arise
in machine learning. We also provided lower bounds that certify near-optimality of
our algorithmic framework for the majority of standard £, and .%), setups.

Some challenging questions for future work remain. First, the regularization-based
approach that we employed for gradient norm minimization leads to near-optimal
oracle complexity bounds only when the objective function is smooth and the norm
of the space is strongly convex (i.e., when the p,-norm of the gradient is sought for
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P« = 2). The primary reason for this is that these are the only settings in which the
complementary composite minimization leads to linear convergence. As the bounds
we obtain for complementary composite minimization are near-tight, this represents
a fundamental limitation of direct regularization-based approach. It is an open ques-
tion whether the non-tight bounds for gradient norm minimization can be improved
using some type of recursive regularization, as in [5]. Of course, there are clear chal-
lenges in trying to generalize such an approach to non-Euclidean norms, caused by the
fundamental limitation that non-Euclidean norms cannot be simultaneously smooth
and strongly convex with a dimension-independent condition number, as discussed at
the beginning of the paper. Another interesting question is whether there exist direct
(not regularization-based) algorithms for minimizing general gradient norms and that
converge with (near-)optimal oracle complexity.

Acknowledgements The authors would like to thank Carlos Sing-Long and Adrien Taylor for valuable
discussions and feedback on a first version of this paper. We would also like to thank Juan Pablo Contr-
eras, Roberto Cominetti and Mario Bravo for insightful discussions on optimal transport and its entropic
regularization.

A Impossibility of acceleration in the relatively smooth and relatively
strongly convex setting

Below we exploit a simple reduction based on regularization to prove a lower bound
on relatively smooth and relatively strongly convex optimization. The problem we will
reduce to is relatively smooth convex optimization, for which tight lower complexity
bounds are known [30].

Proposition 5 The complexity of L-relatively smooth and -relative strongly convex
minimization is bounded below by .Q(ﬁ)

Proof Suppose that the oracle complexity of solving relatively smooth and relatively
strongly convex functions is o(ﬁ). Then, given a function f which is L relatively
smooth w.r.t. /i, consider the optimization problems

(Py) min f(x),
(P) min f(x) + 2h(x).

Note that (P,) is A-relative strongly convex and (L + X)-relatively smooth, both w.r.t.
h. Proceeding as in the proof of Theorem 3, we have that h(x)‘) < h(xo), where x°
and x* are optimal solutions for (Py) and ( Py ), respectively. Hence, it suffices to solve
(P;) to accuracy ¢/2 and A = ¢/[2 h(x®)], to obtain a solution with accuracy ¢ for
problem (Pp).

Now, using an optimal algorithm for problem (P, j5;,(,0y), we have by our assumption
that its oracle complexity is at most

o(E2) oK)

a contradiction with the lower bound from [30]. O
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