
Teal: Learning-Accelerated Optimization of
WAN Traffic Engineering

Zhiying Xu
Harvard University

Francis Y. Yan
Microsoft Research

Rachee Singh
Cornell University

Justin T. Chiu
Cornell University

Alexander M. Rush
Cornell University

Minlan Yu
Harvard University

ABSTRACT

The rapid expansion of global cloud wide-area networks (WANs)
has posed a challenge for commercial optimization engines to ef-
ficiently solve network traffic engineering (TE) problems at scale.
Existing acceleration strategies decompose TE optimization into
concurrent subproblems but realize limited parallelism due to an
inherent tradeoff between run time and allocation performance.

We present Teal, a learning-based TE algorithm that leverages
the parallel processing power of GPUs to accelerate TE control. First,
Teal designs a flow-centric graph neural network (GNN) to capture
WAN connectivity and network flows, learning flow features as
inputs to downstream allocation. Second, to reduce the problem
scale and make learning tractable, Teal employs a multi-agent rein-
forcement learning (RL) algorithm to independently allocate each
traffic demandwhile optimizing a central TE objective. Finally, Teal
fine-tunes allocations with ADMM (Alternating Direction Method
of Multipliers), a highly parallelizable optimization algorithm for
reducing constraint violations such as overutilized links.

We evaluate Teal using traffic matrices from Microsoft’s WAN.
On a large WAN topology with >1,700 nodes, Teal generates near-
optimal flow allocations while running several orders of magnitude
faster than the production optimization engine. Compared with
other TE acceleration schemes, Teal satisfies 6–32% more traffic
demand and yields 197–625× speedups.

CCS CONCEPTS

• Networks→ Traffic engineering algorithms; • Computing

methodologies → Machine learning.

KEYWORDS

Traffic Engineering, Wide-Area Networks, Network Optimization,
Machine Learning

ACM Reference Format:

Zhiying Xu, Francis Y. Yan, Rachee Singh, Justin T. Chiu, Alexander M.
Rush, and Minlan Yu. 2023. Teal: Learning-Accelerated Optimization of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604857

WAN Traffic Engineering. In ACM SIGCOMM 2023 Conference (ACM SIG-
COMM ’23), September 10–14, 2023, New York, NY, USA. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3603269.3604857

1 INTRODUCTION

Large cloud providers invest billions of dollars to provision and
operate planet-scale wide-area networks (WANs) that interconnect
geo-distributed cloud datacenters. Cloud WANs play a vital role in
the operations of cloud providers as they enable low-latency and
high-throughput applications in the cloud. Over the last decade,
cloud providers have implemented centralized network traffic engi-
neering (TE) systems based on SDN (software-defined networking)
to efficiently utilize their cloud WANs [21, 22, 25, 33].

TE systems allocate demands between datacenters to achieve
high link utilization [21, 25], fairness among network flows [21],
and resilience to link failures in WANs [4, 38]. Traditionally, cloud
WAN TE systems have approached traffic allocation as an optimiza-
tion problem, with the objective of achieving a desired network
property (e.g., minimum latency, maximum throughput). To this
end, they implement a software-defined TE controller as illustrated
in Figure 1. The TE controller periodically (e.g., every five minutes)
receives traffic demands to allocate gauged by a bandwidth bro-
ker, solves the TE optimization problem, and translates the traffic
allocations into router configurations to deploy through SDN.

After a decade of operation, production WAN TE systems are
facing two major challenges. First, the deployment of new edge
sites and datacenters has increased the size of cloud WANs by an
order of magnitude [21]. Larger WAN topologies have increased
the complexity of TE optimization and the time required to solve it.
During the computation of updated flow allocations (even when the
five-minute time budget is not exceeded), stale routes will remain
in use and lead to suboptimal network performance [2]. Second,
WANs have evolved from carrying first-party discretionary traffic to
real-time and user-facing traffic [34]. As a result, cloud TE systems
must react to rapid changes in traffic volume, which is a hallmark of
organic user-driven demands. Sudden topology changes due to link
failures further exacerbate the negative effects of long TE control
on network performance. Therefore, fast computation of traffic
allocations is critical for TE systems to retain performance on large
WAN topologies.

While linear programming (LP) solvers used by TE systems can
find optimal solutions, they struggle to scale with the growing
network size. State-of-the-art algorithms designed for accelerating
TE optimization address this challenge by decomposing the original

https://doi.org/10.1145/3603269.3604857
https://doi.org/10.1145/3603269.3604857

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

update routing

every 5 minutes

?
topology,
demands allocationsBandwidth

Broker
TE

Controller SDN

Cloud
WAN

network state

Figure 1: Control loop of WAN traffic engineering.

problem into smaller subproblems (through the partition of WAN
topology [2] or traffic demands [46]), and solve them in parallel
using LP solvers. However, these algorithms face a fundamental
tradeoff between speed and performance in the decomposition,
restricting themselves to only a few dozen subproblems and thus
limited parallelism (§2.1).

Our key insight is that deep learning-based TE schemes may
unlock massive parallelism by utilizing thousands of GPU threads
that are made readily accessible through modern deep learning
frameworks [7, 48, 56]. The enormous parallelism is owing to the
well-known affinity between neural networks and GPUs (e.g., SIMD
operations on GPUs speed up matrix multiplication), as well as
the tremendous community efforts for optimizing neural network
inference [24, 27, 57]. Meanwhile, by capitalizing on a wealth of his-
torical data from production WANs and exploiting traffic patterns,
learning-based algorithms are poised to simultaneously retain TE
performance as well.

Unfortunately, off-the-shelf deep learning models do not directly
apply to TE. First, standard fully-connected neural networks fail
to take into account the effects of WAN connectivity on traffic
allocations, yielding solutions that are far from optimal. Second,
the escalating scale of the TE problem makes it intractable to train a
monolithic model to navigate the high-dimensional solution space.
Finally, neural networks are unable to enforce constraints, leading
to unnecessary traffic drops due to exceeded link capacities.

To address these challenges, we present a learning-accelerated
TE scheme named Teal. First, Teal constructs a flow-centric graph
neural network (GNN) to capture WAN topology and extract infor-
mative features from traffic flows for the downstream allocation
task. Next, Teal allocates each demand individually using a shared
policy (neural) network based on the learned features. Doing so
reduces the problem scale from global traffic allocation to per-
demand tasks, making the learning process more tractable (in a
low-dimensional space) and feasible (fit into GPUmemory). To coor-
dinate the independent allocations of demands and avoid contention
for links, Teal leverages multi-agent reinforcement learning (RL) to
train the end-to-end model—GNN and policy network—toward op-
timizing a central TE objective. Finally, Teal fine-tunes the model’s
output allocations using a highly parallelizable constrained opti-
mization algorithm—ADMM (alternating direction method of multi-
pliers), which is well suited for reducing constraint violations such
as oversubscribed links and enhancing solution quality.

We evaluate Teal on traffic matrices collected over a 20-day
period from Microsoft’s WAN (§5). Our experimental results show
that on large WAN topologies, Teal realizes near-optimal flow

Figure 2: On a topology with >1,700 nodes (ASN in Table 1),

the TE optimization using the Gurobi solver experiences a

marginal speedup as more CPU threads become available.

allocation while being several orders of magnitude faster than the
production TE optimization engine using LP solvers. Compared
with the state-of-the-art schemes for TE acceleration [2, 45, 46] on a
large topology with >1,700 nodes, Teal satisfies 6–32% more traffic
demand and yields 197–625× speedups. To aid further research
and development, we have released Teal’s source code at https:
//github.com/harvard-cns/teal.

2 BACKGROUND AND MOTIVATION

Production WANs rely on a centralized TE controller to allocate
traffic demands between datacenters, which are gauged by a band-
width broker periodically (e.g., every 5 minutes). The TE controller
splits the traffic demand onto a handful of precomputed paths (e.g.,
4 shortest paths [2, 46]) between the demand’s source and desti-
nation, with the goal of maximizing a TE objective (e.g., overall
throughput) while satisfying a set of constraints (e.g., link capaci-
ties). This path formulation of TE is widely adopted in production
inter-datacenter WANs [21, 22, 25, 33]. At its core, TE optimization
is a multi-commodity flow problem (formally defined in Appen-
dix A), which is traditionally solved with linear programming (LP)
solvers. In this section, we begin with the scalability crisis faced
by today’s TE systems, and motivate the need and challenges for a
learning-accelerated TE solution.

2.1 Scaling challenges of TE

In their early years, cloud WANs only consisted of tens of data-
centers, so it was feasible for commercial LP solvers to compute
traffic allocations frequently. However, the rapid deployment of
new datacenters has rendered the TE task prohibitively slow at
scale, requiring hours for commercial solvers to allocate traffic on
WANs with thousands of nodes. Consequently, WAN operators
are seeking to accelerate TE optimization to keep pace with the
growing size of the WAN.
Parallelizing LP solvers. An intuitive way of accelerating TE
optimization is to parallelize state-of-the-art LP solvers, such as
Gurobi [17] and CPLEX [23]. Figure 2 evaluates the speedup of the
Gurobi solver on aWAN topology with more than 1,700 nodes (ASN
in Table 1). As more CPU threads are made available, we observe
that the speedup is sublinear and marginal. E.g., using 16 threads
only makes Gurobi 3.8× faster, which still requires 5.5 hours to
complete a flow allocation. This is due to LP solvers’ sequential

https://github.com/harvard-cns/teal
https://github.com/harvard-cns/teal

Teal: Traffic Engineering Accelerated by Learning ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

nature, e.g., the conventional simplex method [47] takes one small
step at a time toward the optimal solution along the edges of the
feasible region, and requires thousands to millions of such steps to
complete. To exploit multiple CPU threads, LP solvers often resort
to concurrently running independent instances of different opti-
mization algorithms [1], where each instance executes serially on a
separate thread; the solution is yielded by whichever instance com-
pletes first. This is apparently not an efficient use of CPU capacity,
thus resulting in marginal speedups on multiple CPUs.

Approximation algorithms. Combinatorial algorithms, such as
the Fleischer’s algorithm [10], are designed to compute approximate
but asymptotically faster solutions to the underlying network flow
problem of TE. Despite having a lower time complexity than LP
solvers in theory, these approximation algorithms are found to be
hardly faster in practice [2]. The reason is that these algorithms
remain iterative in nature, incrementally allocating more flows until
the solution quality is deemed adequate (yet suboptimal), which
often results in an excess of iterations to terminate.

Decomposing TE into subproblems. Recently, NCFlow [2] and
POP [46] introduced techniques to decompose TE optimization into
subproblems, applying LP solvers simultaneously in each subprob-
lem and merging their results at the end. NCFlow partitions the
network spatially into 𝑘 clusters, whereas POP creates 𝑘 replicas of
the network, each with 1/𝑘 link capacities, and randomly assigns
traffic demands to these replicas. Although a larger 𝑘 reduces the
overall run time, it also fundamentally impairs the TE performance.
Moreover, NCFlow also requires nontrivial coordination during the
merging process. Consequently, NCFlow and POP are forced to
adopt small values of 𝑘 (e.g., 64–81 on a network of 754 nodes). In
§5, we show that NCFlow and POP are substantially slower than
our learning-accelerated approach, while having notably worse
allocation performance.

2.2 Accelerate TE optimization with ML

To cope with the growing scale of TE, we argue that with judicious
design, machine learning (ML) can significantly accelerate TE op-
timization. By training on a vast amount of historical traffic data,
ML-based TE schemes also have the potential to attain near-optimal
allocation performance.

Unlocking massive parallelism. Encoding a TE algorithm in
neural networks transforms the traditionally iterative TE optimiza-
tion (LP solvers or combinatorial algorithms) into the inference
process of neural networks, where the input data (e.g., traffic de-
mands on a WAN topology) is propagated in the forward direction
through the neural network to compute the output (e.g., traffic splits
on the preconfigured paths). This inference process unlocks mas-
sive parallelism due to mainly consisting of highly parallelizable
operations such as matrix multiplications.

Leveraging hardware acceleration. Modern deep learning frame-
works [48, 56, 57] have empowered neural networks to easily
leverage thousands of threads on GPUs (or other specialized hard-
ware [16]). They can greatly accelerate the computation of learning-
based TE systems compared with state-of-the-art schemes [2, 46],
which are fundamentally limited to tens of parallel workers. In

addition, the deep learning community has integrated various op-
timization techniques [24, 27, 57] into these frameworks, further
accelerating neural network inference.

Exploiting abundant training data. Operational WANs gener-
ate an abundance of traffic data that can be used to train neural
networks. A carefully designed ML-based TE scheme is capable
of discovering regularities in the training data—such as patterns
in graph connectivity, link capacities, and traffic demands—and
ultimately learns to optimize allocation performance with respect
to operator-specified objectives.

2.3 Challenges of applying ML to TE

While holding the promise of near-optimal performance and sub-
stantial speedup relative to LP-based TE methods, deep learning
is not a panacea. In fact, using ML for TE optimization is not as
straightforward as it may appear.

Graph connectivity and network flows. Naively using vanilla
fully-connected neural networks for TE optimization would ig-
nore the connectivity in WAN topology. While graph neural net-
works (GNNs) [50, 63], designed for graph-structured input data,
can model traditional graph attributes such as nodes and edges,
their unmodified form is inadequate to model network flows—the
focal point of TE optimization.

High-dimensional solution space. In the path formulation of TE
widely adopted in practice (details in Appendix A), the TE controller
splits each demand across a handful of preconfigured paths, such
as 4 shortest paths. Therefore, representing the flow allocation for
a topology of 𝑁 nodes requires 𝑂 (𝑁 2) split ratios. To put it into
context, on a topology with 1,000 nodes, the solution space would
contain up to 4 million dimensions, exposing ML-based TE methods
to the “curse of dimensionality” [32].

Constrained optimization. Unlike LP solvers, neural networks
are known to lack the capability to enforce constraints on out-
puts [37]. As a result, the traffic allocations generated by neural
networksmay exceed certain link capacities when deployed directly,
leading to network congestion and reduced TE performance.

To tackle the above challenges, we propose the following de-
signs: i) a flow-centric GNN (called “FlowGNN”) to capture WAN
connectivity and model network flows (§3.2); ii) a multi-agent re-
inforcement learning (RL) algorithm that allocates each traffic de-
mand independently to reduce the problem scale and make learn-
ing tractable (§3.3); iii) solution fine-tuning using the alternating
direction method of multipliers (ADMM) to minimize constraint
violations such as link overutilization (§3.4).

3 TEAL: LEARNING-ACCELERATED TE

In this section, we present the design of Teal—Traffic Engineering
Accelerated with Learning. The goal of Teal is to train a fast and
scalable TE scheme through deep learning while achieving near-
optimal traffic allocation on large-scale topologies. The rationale
behind using deep learning is to harness the massive parallelism
and hardware acceleration unlocked by neural networks. Moreover,
every component of Teal is carefully designed to be parallelizable
(fast on GPUs) and scalable (performant on large WANs).

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

FlowGNN
(§3.2)

traffic
demands

Multi-agent
RL (§3.3)

ADMM
(§3.4)

...

traffic
allocations

+ 

 ′

Figure 3:Workflow of Teal. Teal inputs traffic demands and

link capacities into FlowGNN to learn flow embeddings (§3.2),

which are then mapped to initial traffic allocations through

multi-agent RL (§3.3). ADMM subsequently fine-tunes the

allocations and mitigates constraint violations (§3.4).

3.1 Overview

We begin by outlining the workflow of Teal during deployment
(Figure 3). Upon the arrival of a new traffic demand matrix or a
change in link capacity1, Teal passes the updated traffic demands
and current link capacities into a novel graph neural network (GNN)
that we call FlowGNN (§3.2). FlowGNN learns to transform the
demands into compact feature vectors known as “embeddings,”
which preserve the graph structure and encode the flow information
required for the downstream allocation. These flow embeddings are
extracted by FlowGNN in a parallel and parameter-efficient manner
that scales well with the size of the WAN topology.

In the widely adopted path formulation of TE (details in Ap-
pendix A), each traffic demand is split into multiple flows over a
set of preconfigured paths (e.g., 4 shortest paths [2, 46]). To de-
termine the split ratios of a given demand, Teal aggregates the
embeddings learned for each flow of the demand and inputs them
into a shared policy (neural) network. The policy network, which
allocates demands independently, is trained offline to coordinate
flow allocations toward optimizing a global TE objective (e.g., total
flow), through a multi-agent reinforcement learning (RL) algorithm
we customize for TE (§3.3). This design enables processing demands
individually rather than the entire traffic matrix at once, making
the policy network more compact (in terms of the parameters to
learn) and oblivious to the WAN topology size.

So far, the split ratios output by the policy network might still
exceed certain link capacity constraints, resulting in dropped traffic
and suboptimal TE performance. To mitigate constraint violations
and enhance the solution quality, Teal augments the neural net-
works (FlowGNN and policy network) with 2–5 rapid iterations
of a classical constrained optimization algorithm—alternating di-
rection method of multipliers (ADMM) (§3.4). During each iteration,
ADMM starts from a potentially infeasible TE solution with capac-
ity violations and advances toward the feasible region, fine-tuning
traffic splits to meet more constraints and improve the overall TE
performance. Each iteration of ADMM is inherently parallel. When
warm-started with a reasonably good solution such as the one
generated by the neural networks, ADMM can attain a noticeable
improvement in performance within several fast iterations.

1We note that link failures can be viewed as an extreme scenario of capacity change,
where the capacity of a failed link is reduced to zero.

1

2 3

4

capacity
constraints

demand
constraints

edge

path

GNN layer
DNN layer

from 1 to 4

message passing

23V
12V
34V
24V

13V
32V

1234V

124V

134V

1324V

Figure 4: Illustration of a FlowGNN construction. FlowGNN

alternates between GNN layers that are designed to capture

capacity constraints, and DNN layers that are intended to

capture demand constraints.

For each WAN topology, Teal trains its “model”—FlowGNN and
policy network—end to end to optimize an operator-provided TE
objective; ADMM requires no training. All the three key compo-
nents of Teal (FlowGNN, multi-agent RL, and ADMM) are carefully
designed to be highly parallelizable, enabling fast computation and
scalable TE performance as the size of the WAN topology grows.

3.2 Feature learning with FlowGNN

In light of the graph-based structure of WAN topologies, Teal lever-
ages graph neural networks (GNNs) for feature learning. GNNs are
a family of neural networks designed to handle graph-structured
data [50] and have found applications in various domains, including
network planning [71], social network [9, 42], and traffic predic-
tion [36].

GNNs typically store information in graph attributes, commonly
in nodes, using a compact vector representation known as em-
beddings [18]. To preserve graph connectivity in the embeddings,
neighboring nodes in the GNN exchange information through “mes-
sage passing” [15]: Each node collects the embeddings from adja-
cent nodes, transforms the aggregated embeddings using a learned
transformation function (e.g., encoded in a fully-connected neural
network), and updates its own embedding with the result. GNNs
are intrinsically parallel as message passing occurs simultaneously
across nodes. Applying message passing once constitutes one GNN
layer, and stacking multiple GNN layers allows information to be
disseminated multiple hops away. It is noteworthy that GNNs are
parameter efficient because each layer shares the same transfor-
mation function that operates in the low-dimensional embedding
space, which does not grow in proportion to the input graph size.

Despite the strengths of GNNs, the primary focus of TE is the
assignment of flows, in which each flow originating from a demand
follows a predefined path along a chain of network links (edges). TE
is concerned with the interference between flows as they compete
for link capacities. Hence, we put a spotlight on flows and explicitly
represent flow-related entities—edges and paths—as the nodes in
our TE-specific GNN, which we call FlowGNN.

Figure 4 exemplifies the construction of a FlowGNN. At a high
level, FlowGNN alternates between GNN layers aimed at capturing

Teal: Traffic Engineering Accelerated by Learning ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

capacity constraints, and DNN layers aimed at capturing demand
constraints, which dictate that the total volume of all flows de-
rived from a demand should not exceed the demand itself (formal
formulation in Appendix A).

The GNN layer in FlowGNN is structured as a bipartite graph.
For each edge in the input topology, we create an “EdgeNode” (e.g.,
𝑉 13 for the edge connecting nodes #1 and #3), and for each precon-
figured path associated with a demand, we create a “PathNode” (e.g.,
𝑉 134 for the path containing nodes #1, #3, and #4). An EdgeNode
and a PathNode are connected in the GNN layer if and only if the
edge lies on the path (e.g.,𝑉 13 is connected to𝑉 134 but not to𝑉 124).
The intuition of this setup is to allow EdgeNodes and PathNodes to
interact and learn to respect capacity constraints during message
passing. For example, when an edge serves as a bottleneck for com-
peting flows, the EdgeNode’s embedding will be influenced by its
neighboring PathNodes. During initialization, the embedding of an
EdgeNode is initialized with the capacity of the corresponding edge,
(e.g.,𝑉 13 is initialized to the link capacity between nodes #1 and #3),
while the embedding of a PathNode is initialized with the volume of
the associated demand (e.g.,𝑉 134 is initialized to the traffic demand
from node #1 to node #3). In doing so, a PathNode’s embedding
becomes dependent on the corresponding demand specified in a
traffic matrix, thereby capturing a flow routed on the path (rather
than the underlying physical network path).

Due to the absence of connections between PathNodes, the GNN
layer is unable to make each PathNode aware of the other PathN-
odes associated with the same demand. To address this, we add a
DNN layer after each GNN layer to coordinate flows—represented
by their PathNodes—that stem from the same demand. The DNN
layer, a fully-connected neural network, essentially transforms and
updates the embeddings of the related PathNodes (e.g.,𝑉 1234,𝑉 124,
𝑉 134, and 𝑉 1324 for the demand from node #1 to node #4). Specif-
ically, these embeddings are fed into the DNN layer to obtain an
equal number of updated embeddings, which are then stored back
into the respective PathNodes.

Once the FlowGNN is fully trained (in conjunction with the
policy network described next), it learns to generate embeddings
that encode the graph-structured input of TE in the embedding
space. In particular, the final embeddings associatedwith PathNodes
represent the learned feature vectors of flows traversing those
paths and serve as informative input for the following task of flow
allocation. We visualize the learned flow embeddings in §5.8 to
interpret their encoded knowledge about path congestion.

3.3 Flow allocation with multi-agent RL

Given the flow embeddings generated by FlowGNN as feature in-
puts, Teal creates a policy network to map these embeddings to
traffic splits on the corresponding paths, materializing flow alloca-
tion. The FlowGNN and policy network constitute the “model” of
Teal, which is trained end to end to optimize an operator-specified
TE objective.

Since a network link is frequently utilized by many competing
flows, an ideal policy network should process all flows simultane-
ously to determine the globally optimal allocations. However, this
approach entails enormous input and output spaces, resulting in a
gigantic neural network with a large number of parameters. To put

...

...

policy network

Figure 5: Teal processes each demand independently using

a shared, significantly smaller policy network.

it in perspective, for a WAN topology with a thousand nodes, the
ideal policy network would require millions of flow embeddings
as input, and output an equal number of split ratios, one for each
flow. In practice, we find that this type of gigantic policy network
is difficult to train and leads to a significant amount of demand
unfulfilled (§5.7).

To reduce the problem dimension and the number of parame-
ters to learn, Teal processes each demand independently2 using
a shared policy network that is significantly smaller in size (as
illustrated in Figure 5). For instance, when assigning a traffic de-
mand across four candidate paths, our policy network only obtains
four (low-dimensional) flow embeddings from FlowGNN as input
(e.g., the embeddings of 𝑉 1234, 𝑉 124, 𝑉 134, and 𝑉 1324), and outputs
four split ratios to prescribe the allocation. Different demands are
processed simultaneously as a batch input to the policy network.
This design allows the policy network to be agnostic to the WAN
topology size, making it more compact and feasible to learn.

Despite the benefits, allocating each demand independently can
result in a lack of coordination unless the policy network is trained—
along with FlowGNN—to be aware of a central TE objective. This
raises the question: What learning algorithm is suitable for training
Teal’s model, which generates local traffic splits for each demand
while optimizing a global TE objective? To address this question, we
discuss several candidates below before landing on multi-agent RL.
Supervised learning: In an offline setting, LP solvers such as
Gurobi can be used to compute the optimal traffic allocations,
thereby providing ground-truth traffic splits for Teal’s model to
learn using standard supervised learning. Nevertheless, generat-
ing these ground-truth labels for large WANs can be excessively
time-consuming and incur substantial memory usage. E.g., Gurobi
requires 5.5 hours to find the optimal allocations for a single traffic
matrix on a 1739-node topology, while consuming up to 18.1 GB of
memory.
Direct loss minimization: Supervised learning minimizes the
distance between the optimal splits of each demand and the output
splits from Teal’s model as the loss. In fact, any differentiable loss
function can be used instead and minimized directly through gradi-
ent descent, referred to as “direct loss minimization” [19, 54]. How-
ever, common TE objectives are non-differentiable. E.g., calculating
the total (feasible) flow requires reconciling flows that collectively
exceed a link’s capacity, such as by proportionally dropping traffic
from each flow. Consequently, the gradient of the total feasible flow
with respect to model parameters is zero3, thus preventing learning
through gradient descent. To address this, a common workaround

2This approach bears resemblance to distributed TE [28], but we target a centralized
TE controller with full visibility into the entire WAN topology.
3In this case, we also refer to the loss function as “non-differentiable.”

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

is to approximate the non-differentiable loss function with a dif-
ferentiable “surrogate loss.” In §5.7, we define a surrogate loss that
approximates the total feasible flow and implement a baseline to di-
rectly minimize this surrogate loss. However, using a surrogate loss
entails approximation errors, and identifying a suitable surrogate
loss for a different TE objective may not be straightforward.

Multi-agent RL: Teal opts for employing the framework of multi-
agent RL [11, 12, 60], casting the allocation of each demand as an
RL agent striving to attain a shared objective in collaboration with
other agents. Each agent utilizes locally accessible information, i.e.,
the flow embeddings of its own demand, to independently generate
traffic splits. During training, however, TE allows us to simulate
the combined effect of local traffic splits and compute a global TE
objective, which serves as an accurate signal, or “reward,” to guide
the RL agents. The desired TE objective (e.g., the non-differentiable
total feasible flow) can be used directly as the reward because RL
algorithms do not require a differentiable reward function. Upon the
completion of training, each agent executes independently without
attending to the other agents. This learning paradigm—centralized
training of decentralized policies—is standard in the multi-agent
setting when applicable, with COMA [12] being the state of the art.
We tailor COMA to TE and implement it in Teal as follows.

Our variant of COMA, referred to as COMA∗, is also based on
policy gradients [55], a workhorse of modern deep RL that opti-
mizes a parameterized policy (as encoded in our policy network)
with respect to the long-term return (expected cumulative reward).
Unlike COMA, our COMA∗ capitalizes on the fact that the traffic
allocations in TE computed for one time interval do not affect fu-
ture intervals (e.g., traffic matrices). This domain-specific insight
allows us to improve training by reducing the long-term return to a
one-step return, as well as enhance another key mechanism within
COMA (related to the estimation of the reward contributions of
individual agents). We include the details of COMA∗ in Appendix B.

3.4 Solution fine-tuning with ADMM

In essence, TE is a constrained optimization problem, yet neural
networks are known to be inadequate in enforcing constraints,
such as link capacities in TE. As a result, the traffic allocations
directly generated by Teal’s neural network model are prone to
link overutilization. To mitigate constraint violations and enhance
solution quality, Teal fine-tunes the allocation results using 2–5
fast iterations of ADMM (Alternating Direction Method of Multi-
pliers) [5], a classical constrained optimization algorithm.

We outline the mechanism of ADMM below with additional de-
tails provided in Appendix C. ADMM is a variant of the augmented
Lagrangian method [3], which transforms the original constrained
optimization problem into a series of unconstrained problems by
converting constraints into penalty terms in the objective function.
Applying ADMM in TE optimization requires that we decouple
constraints properly and introduce auxiliary variables (a standard
optimization technique) for each edge, path, or demand based on
the corresponding constraints. Then, in each iteration, ADMM al-
ternates between i) minimizing the augmented Lagrangian with
respect to one variable while keeping other variables fixed, and ii)
updating the variables in a manner that balances optimization and
constraints.

ADMM is well-suited to Teal for two reasons. First, unlike the
widely used optimization methods in LP solvers, such as simplex
and interior-point methods, ADMM does not require a constraint-
satisfying solution to begin with. Instead, ADMM allows starting
from a constraint-violating point (as Teal’s neural networks might
output) and iteratively moves toward the feasible region. Second,
ADMM is highly parallelizable because the minimization of the
augmented Lagrangian can be decomposed into many subproblems,
each solving for a single variable, e.g., created for each path or edge
in TE. These subproblems can be solved in parallel and benefit from
significant acceleration on GPUs.

Additionally, we note that using ADMM alone does not accel-
erate TE optimization. This is because when initialized randomly,
ADMM still requires an excessive number of iterations to converge
to an acceptable solution, forfeiting its fast speed within each itera-
tion. In contrast, Teal’s neural networks can warm-start ADMM
with a reasonably good solution, allowing ADMM to perform fine-
tuning and attain a noticeable improvement in several iterations
with a negligible impact on the overall run time.

4 IMPLEMENTATION OF TEAL

Implementing Teal. In each time window (e.g., 5 minutes), Teal
takes as input a WAN topology with link capacities, a traffic matrix
indicating the demand between every node pair, and 4 precomputed
paths to route each demand. The output is 4 split ratios for each
demand, prescribing its allocation across the precomputed paths.
We implemented all three key modules of Teal in PyTorch. Hyper-
parameters (e.g., the number of neural network layers) are tuned
empirically by testing various values (§5.7).

• FlowGNN. FlowGNN comprises 6 GNN layers interleaved with 6
DNN layers. The embeddings in the first GNN layer are initialized
as described in §3.2, each with a single element. In each of the
following GNN layers, the embedding dimension is expanded by
one element, filled with the same value as the original initializa-
tion (a technique to enhance the expressiveness of GNNs [44]).
The final output embeddings consist of 6 elements each.

• Multi-agent RL. The policy network in Teal is implemented as a
fully-connected neural network with a single hidden layer of 24
neurons. It has 24 input neurons to receive 4 flow embeddings
from FlowGNN for each demand, and uses 4 output neurons,
followed by a softmax normalization, to generate 4 split ratios.

• ADMM. We apply two iterations of ADMM for topologies with
fewer than 100 nodes, and five iterations otherwise.

TrainingTeal. We train a separateTealmodel perWAN topology
and per TE objective. The Adam optimizer [29] is employed for
stochastic gradient descent, with a learning rate of 10−4. Training
Teal from scratch takes approximately a week to complete on large
WAN topologies, such as ASN.

Retraining. We retrain Teal if a new node or link is added to the
WAN topology permanently. We demonstrate in §5.3 that transient
link failures do not require retraining. Compared with training from
scratch, each retraining session of Teal only takes 6–10 hours.

Teal: Traffic Engineering Accelerated by Learning ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

of nodes # of edges

B4 12 38
SWAN 𝑂 (100) 𝑂 (100)
UsCarrier 158 378
Kdl 754 1,790
ASN 1,739 8,558

Table 1: Network topologies in our evaluation.

5 EVALUATION

In this section, we first describe our evaluation methodology in
§5.1. Next, we compare Teal with state-of-the-art TE schemes in
§5.2 and show that Teal simultaneously achieves substantial accel-
eration and near-optimal flow allocation. §5.3 demonstrates Teal’s
fast reaction to link failures, and §5.4 assesses Teal’s robustness to
temporal and spatial fluctuations in traffic demands. §5.5 evaluates
Teal’s flexibility with respect to different TE objectives. §5.6 re-
ports the idealized offline performance of TE schemes disregarding
their computation times. Finally, we examine the contributions of
Teal’s individual components in §5.7, and visualize its learned flow
embeddings in §5.8 to interpret its behaviors.

5.1 Methodology

Topologies. We consider five WAN topologies: Google’s private
WAN (B4 [25]), Microsoft’s software-defined WAN (SWAN [21]),
two topologies from the Internet Topology Zoo [30]—UsCarrier
and Kdl—and an AS-level internet topology [6] adapted for WAN
purposes, denoted as “ASN.” Their numbers of nodes and edges are
summarized in Table 1, with additional topology characteristics in
Appendix D. We adopt the path formulation of TE used in produc-
tion (Appendix A), and precompute 4 shortest paths [2, 46] between
every pair of nodes as the candidate paths to allocate flows. In cases
where link capacities are not provided, we set the capacities to
ensure that the best-performing TE scheme satisfies a majority of
traffic demand.

Traffic data. We collect traffic data over a 20-day period in 2022
from SWAN, the production inter-datacenter WAN at Microsoft.
The total traffic observed in each 5-minute interval between every
source-destination pair is considered as their demand. To translate
these traffic demands from SWAN to other topologies, we map each
new node pair to a random node pair in SWAN, and randomly
sample disjoint sequences of traffic matrices, with 700 consecutive
intervals for training, 100 for validation, and 200 for testing.

Baselines. We compare Teal against the following baselines.

• LP-all: LP-all solves the TE optimization problem for all demands
using linear programming (LP). Gurobi [17] v9.1.2 is employed
as the LP solver.

• LP-top: LP-top implements a simple yet effective heuristic TE
algorithm that is recently revealed as “demand pinning” [45].
It allocates the top 𝛼% of demands using an LP solver and as-
signs the remaining demands to the shortest paths. To balance

Algorithm Computation time

Teal Total run time (with GPU)
LP-all Gurobi run time
LP-top Gurobi run time + model rebuilding time
NCFlow Gurobi run time + time to coalesce subproblems
POP Gurobi run time
TEAVAR∗ Gurobi run time

Table 2: Breakdown of computation time for each scheme.

allocation quality and computation time, we set 𝛼 = 10 after test-
ing multiple values. In our traffic trace, the top 10% of demands
account for a vast majority (88.4%) of the total volume.

• NCFlow: NCFlow [2] partitions the topology into disjoint clus-
ters and concurrently solves the subproblem of TE optimization
within each cluster using an LP solver. The results obtained from
each cluster are then merged in a nontrivial fashion to generate a
valid global allocation. We adopt the same number of clusters as
specified in the paper for UsCarrier and Kdl, and apply the default
partitioning algorithm (“FMPartitioning”) for other topologies.

• POP: POP [46] replicates the entire topology 𝑘 times, with each
replica having 1/𝑘 of the original link capacities. The traffic
demands are randomly distributed to these replicas, and each
subproblem is solved in parallel with an LP solver. We set 𝑘 based
on the topology size, with 𝑘 = 1 for B4 and SWAN, 𝑘 = 4 for
UsCarrier, and 𝑘 = 128 for Kdl and ASN. Client splitting threshold
is set to 0.25 to break down large demands.

• TEAVAR∗: TEAVAR [4] is a TE scheme that takes into account
the risk of link failures. It balances link utilization with operator-
defined availability requirements when allocating traffic. We
compare Teal with TEAVAR∗, a variant of TEAVAR adapted by
NCFlow to maximize the total flow.

Objectives. Our default TE objective is to maximize the total (feasi-
ble) flow [2, 21, 25]. Section 5.5 evaluates two additional objectives:
minimizing the max link utilization (MLU) [10, 58], and maximizing
the total flow with delay penalties [8].
Metrics. We consider the following performance metrics.
• Computation time: We measure the total time required by each
scheme to compute flow allocation amortized over each traf-
fic matrix, while carefully excluding one-time costs such as the
initialization time. The measurement is conducted on 16 CPU
threads (Intel Xeon E5-2680) following the setup in NCFlow [2].
An additional GPU (Nvidia Titan RTX) is made available to all
schemes, except that only Teal is able to utilize it. Table 2 pro-
vides a breakdown of the computation time for each scheme.

• Satisfied demand: We focus on the percentage of demand satis-
fied by a TE scheme in a practical online setting [2], accounting
for the delay in TE control. This means that the current flow
allocation will persist until the TE scheme finishes computing a
new allocation. We note that the satisfied demand only normal-
izes the total flow with respect to the total demand, making it
an appropriate metric for evaluating schemes that optimize the
total flow.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

O(100)
(SWAN)

158
(UsCarrier)

754
(Kdl)

1739
(ASN)

Number of nodes

10
−2

10
−1

10
0

10
1

10
2

10
3

C
om

pu
ta

tio
n

tim
e

(s
)

LP-all
LP-top
NCFlow

POP
Teal

(a) Average computation time

O(100)
(SWAN)

158
(UsCarrier)

754
(Kdl)

1739
(ASN)

Number of nodes

50

60

70

80

90

100

S
at

is
fie

d
de

m
an

d
(%

)

LP-all
LP-top
NCFlow

POP
Teal

(b) Average satisfied demand

Figure 6: Comparing Teal with LP-all, LP-top, NCFlow, and POP across different networks (LP-all is not feasible on ASN).

Designed to accelerate TE optimization on large topologies such as Kdl and ASN, Teal attains scalable performance as the

network size grows, reducing computation time to less than 2 seconds while satisfying comparable or higher demand.

• Offline satisfied demand: We also present the satisfied demand
calculated in an idealized offline setting in §5.6, where TE schemes
are assumed to complete flow allocation instantaneously. This
metric eliminates the impact of delay on TE control and focuses
solely on the allocation quality.

5.2 Teal vs. the state of the art

Figure 6 compares Teal against the state-of-the-art schemes on
four network topologies. Although Teal is not designed for small
topologies such as SWAN and UsCarrier, where an LP-solver can
also quickly find the optimal allocation, we include the results to
demonstrate the trend (note that the computation time in Figure 6a
is in log scale). As the network size increases, we observe that Teal
demonstrates scalable performance precisely as intended, requiring
less than 1 second of computation time while allocating comparable
or higher demand on Kdl and ASN. On ASN, for instance, Teal
achieves 197–625× speedups relative to the baselines (LP-all is not
viable) while satisfying 6–32% more demand.

Small topologies (SWAN and UsCarrier). All the evaluated
schemes can compute flow allocation on SWAN and UsCarrier
within seconds, e.g., LP-all takes less than 1 second to determine
the optimal allocation, eliminating the need for TE acceleration
schemes. Nonetheless, we observe that when NCFlow is applied
to UsCarrier, it can only meet 72.6% of the demand (vs. 96.2% for
LP-all). In contrast to its suboptimal performance, Teal retains a
demand of 92.6% that is close enough to the optimal.

Kdl. On the larger Kdl topology with 754 nodes and 1,790 edges,
Teal takes only 0.95 seconds on average to complete each flow
allocation, which is 7× faster than NCFlow, 13× faster than POP,
27× faster than LP-top, and 616× faster than LP-all. Meanwhile,
Teal satisfies 90.6% of the demand, nearly the same as the best-
performing scheme LP-top (with a difference of only 0.14%). Among
the other schemes, LP-all requires over 585 seconds for computation,
exceeding the 5-minute time budget and forcing it to reuse stale
routes from several intervals ago. As a result, LP-all only allocates

10
0

10
1

10
2

10
3

Computation time (s)

0.00

0.25

0.50

0.75

1.00

C
D

F LP-top
NCFlow
POP
TealBetter

(a) CDF of computation time on ASN

50 60 70 80 90 100
Satisfied demand (%)

0.00

0.25

0.50

0.75

1.00

C
D

F

Better

LP-top
NCFlow
POP
Teal

(b) CDF of satisfied demand on ASN

Figure 7: CDFs for the computation time and satisfied de-

mand of schemes on ASN. Teal outperforms the baselines

on both dimensions across nearly all percentiles.

87.2% of the demand despite its ability to find the optimal solution
if granted unlimited run time. NCFlow and POP, on the other hand,
produce flow allocations quickly as intended, yet they only satisfy
63.8% and 87.7% of the demand, respectively.
ASN. On the largest topology of ASN with 1,739 nodes and 8,558
edges, Teal achieves a more remarkable speedup relative to the
other schemes. With an average computation time of 0.97 seconds,
Teal is 394× faster than NCFlow, 625× faster than POP, and 197×
faster than LP-top. LP-all is impractical to run on ASN due to its
incredibly slow computation time of up to 5.5 hours per allocation

Teal: Traffic Engineering Accelerated by Learning ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(4 orders of magnitude slower than Teal), as well as the memory
errors incurred. Not only does Teal attain substantial acceleration,
it also allocates the most demand on average (89.4%), surpassing
LP-top by 6%, POP by 14.5%, and NCFlow by 32%.

Figure 7 zooms in on the performance of schemes on ASN as CDF
curves. In Figure 7a, we observe that Teal’s computation time re-
mains highly stable across the tested traffic matrices, staying within
0.89–1.08 seconds at all percentiles. This remarkable stability can
be attributed to the fact that Teal performs exactly one forward
pass on its neural networks, followed by precisely five iterations
of ADMM (on this topology). Thus, the amount of computation
(measured in floating-point operations) is independent of the values
in the input traffic matrix. By contrast, the computation times of
POP, NCFlow, and LP-top fluctuate between 60–839 seconds, e.g.,
257–730× slower than Teal at the 90th percentile. The reason for
this variability is that the LP solvers employed in these methods
have a stopping criterion that is affected by problem-specific fac-
tors, such as the ratio between traffic demands and link capacities.
Meanwhile, NCFlow involves nontrivial consolidation of the sub-
problem results, and needs to iterate between LP optimization and
consolidation until a predefined accuracy threshold is reached.

Figure 7b shows that Teal achieves the highest flow allocation
across all percentiles. Compared with NCFlow, POP, and LP-top,
Teal’s satisfied demand is 6–33% higher at the median, and 5–33%
higher at the 90th percentile. We believe that Teal’s robust perfor-
mance makes it a compelling choice for production TE systems.

5.3 Reacting to link failures

Teal efficiently solves TE optimization within a second, even for
large topologieswith thousands of nodes such as ASN. The real-time
computation allows Teal to react promptly to link failures [2], as
Teal can quickly recompute flow allocation on the altered topology
(with failed links having zero capacities).

Although TEAVAR∗ is designed explicitly for fault tolerance un-
der link failures, it is only viable on the small B4 network due to its
significant computational overhead. Therefore, we first evaluate all
TE schemes on B4 and plot their immediate allocation performance
after the introduction of one or two link failures, with no link fail-
ures serving as a baseline. Figure 8 shows that as the number of link
failures increases, the demand satisfied by all the tested schemes
declines as expected. Nevertheless, Teal consistently outperforms
TEAVAR∗ by 2.4–5.1%, while being statistically indistinguishable
from the other schemes. It can be seen that in preparation for po-
tential link failures, TEAVAR∗ has sacrificed link utilization for
higher availability. In contrast, we concur with NCFlow’s view-
point [2]: the performance decline during transient link failures
can be compensated through rapid recomputation.

In practice, massive inter-datacenter link failures are very rare.
Even with fiber link failures, they do not usually translate to loss of
capacity on an inter-datacenter link (unless due to a fiber cut) [53].
As a stress test, however, we evaluate the extreme failure scenarios
depicted in prior work [70] and artificially inject 50, 100, and 200
link failures to the ASN network. Figure 9 presents the results for
the only 4 schemes feasible on ASN. From the figure, we observe a
similar trend across a variety of link failures: Teal is able to route
substantially more traffic demand than the baseline TE schemes,

no failure 1 link failure 2 link failures
60

70

80

90

100

S
at

is
fie

d
de

m
an

d
(%

)

TEAVAR*
NCFlow

Teal
LP-top

POP
LP-all

Figure 8: Satisfied demand of TE schemes in the presence of

zero, one, or two link failures on the small B4 network. Teal

consistently outperforms TEAVAR
∗
while remaining on par

with the other schemes.

no failure 50 link failures 100 link failures 200 link failures
40

60

80

100

S
at

is
fie

d
de

m
an

d
(%

)

NCFlow POP LP-top Teal

Figure 9: Satisfied demand of TE schemes in the presence of

zero, 50, 100, or 200 link failures on the large ASN network.

Through fast recomputation, Teal effectively minimizes the

duration impacted by link failures and thus preserves flow

allocation performance.

and the ranking is consistent with their run times shown in §5.2.
Specifically, Teal (with a run time less than 1 second) satisfies 6–
8% more demand than LP-top (191 s), 15–18% more demand than
POP (382 s), and 32–33% more demand than NCFlow (606 s). The
reason is that the baseline TE schemes take significantly longer
than Teal to recompute new allocations upon link failures. As a
result, thousands of traffic flows have traversed the failed links and
been dropped during the computation of rerouting strategies.

It is noteworthy that Teal achieves the above performance with-
out having to retrain its neural network models, showcasing its
generality across (transient) link failures. In the less common event
of persistent link failures or planned network upgrades such as
new network nodes or links, we anticipate having sufficient time
to retrain Teal within 6–10 hours and recover its allocation perfor-
mance on the updated topology.

5.4 Robustness to demand changes

We assess the robustness and generalization of Teal concerning
temporal and spatial variations in traffic demands. We do not specif-
ically address massively unforeseen demands because these sce-
narios pose a lesser concern in cloud WANs, in contrast to ISP
WANs [61], due to the mitigating effects of bandwidth brokering
and TE feedback loop. Nevertheless, in the event that Teal’s perfor-
mance deteriorates (e.g., in the face of exceptional demand changes),
we may concurrently execute an additional TE scheme, such as LP-
top, to compute traffic allocation. We can then seamlessly fall back
to it if it consistently yields superior solutions than Teal.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

1x 2x 5x 10x 20x
Temporal fluctuation

50

60

70

80

90

100

S
at

is
fie

d
de

m
an

d
(%

)

LP-top

NCFlow

POP

Teal

(a) Temporal fluctuations

2040608088.4
Volume (%) of the top 10% of demands

50

60

70

80

90

100

S
at

is
fie

d
de

m
an

d
(%

)

LP-top

NCFlow

POP

Teal

(b) Spatial distributions

Figure 10: Satisfied demand with temporal and spatial

changes.

Temporal fluctuation. We introduce various temporal fluctu-
ations to the traffic matrices. For each demand, we calculate the
variance in its changes between consecutive time slots, and mul-
tiply it by a factor of 2, 5, 10, and 20 to instantiate the variance
of a zero-mean normal distribution. Next, we randomly draw a
sample from this normal distribution and add it to each demand
in every time slot. Figure 10a shows that almost all the evaluated
schemes handle small fluctuations (2× and 5×) effectively, but their
performance declines noticeably as the fluctuations escalate to 10×
and 20×. Under 10× fluctuation, Teal remains the top performer
among all schemes. Under the most severe 20× fluctuation, Teal
starts to lag behind LP-top (by 2.3%) due to not seeing the pattern
during training, but still outperforms NCFlow and POP by 6–15%.
Spatial distribution. We redistribute traffic demands across node
pairs to simulate changes in their spatial distribution. Specifically,
we reassign the top 10% of demands, which originally account
for 88.4% of the total volume, such that they constitute 80%, 60%,
40%, and 20% instead. As shown in Figure 10b, Teal consistently
satisfies the most demand across all spatial distributions. LP-top’s
performance is reduced by∼10%, as its heuristic is inherently reliant
on the heavy-tailed demand distribution.

5.5 Teal under different objectives

In this section, we evaluate the applicability of Teal by retraining
it for two different TE objectives: (i) minimizing the max link uti-
lization (MLU) [10, 58], and (ii) maximizing the latency-penalized
total flow [8]. Recall from §3.3 that this is possible due to the flex-
ibility of Teal’s RL component with respect to the objective to
optimize. Although the above objectives can be transformed into a
form compatible with ADMM similarly (as shown in Appendix C),
we opt to omit ADMM in these experiments as the neural network
model already exhibits satisfactory performance. We compare Teal
against LP-all and LP-top since they are directly applicable to the
new objectives, which are also linear. However, adapting the code-
bases of NCFlow and POP to other objectives is challenging, so they
are not included in this section.
Max link utilization (MLU). Figure 11 shows that all three
schemes yield comparable MLUs, with no statistically significant
differences. However, Teal finds a solution within only 0.22–0.29
seconds when minimizing MLU, whereas LP-all and LP-top require

10
0

10
1

Computation time (s)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
ax

 li
nk

 u
til

iz
at

io
n

LP-all

LP-top

Teal

Bett
er

(a) Kdl

10
0

10
1

Computation time (s)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
ax

 li
nk

 u
til

iz
at

io
n

LP-all

LP-top

Teal

Bett
er

(b) ASN

Figure 11: Performance of Teal and baselines under the

TE objective of minimizing max link utilization (MLU). All

schemes attain comparable MLU, but Teal is 17–36× faster.

10
1

10
3

Computation time (s)

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 m
ax

 fl
ow

w
/ d

el
ay

 p
en

al
tie

s

LP-all

LP-top
Teal

Better

(a) Kdl

10
0

10
1

10
2

Computation time (s)

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

 m
ax

 fl
ow

w
/ d

el
ay

 p
en

al
tie

s

LP-top

Teal

Better

(b) ASN

Figure 12: Performance of Teal and baselines under the TE

objective of maximizing the total flow with delay penalties

(LP-all is not feasible on ASN). Teal achieves the best alloca-

tion performance while being 26–718× faster.

73–85× longer on Kdl and 158–181× longer on ASN. Additionally,
we observe two interesting phenomena. First, LP-all and LP-top
optimize MLU faster than the total flow, presumably because min-
imizing MLU is “easier” and requires fewer iterations for conver-
gence in Gurobi. Second, LP-all runs slightly faster than LP-top.
The reason is that the top 10% of demands vary over time and
thus require LP-top to constantly rebuild its model in Gurobi (see
Table 2) incurring additional computational overhead.
Latency-penalized total flow. As shown in Figure 12, Teal’s
solution quality is comparable to or higher than the best-performing
scheme LP-top, while being 56–505× faster in speed. LP-all is not
feasible on ASN when optimizing for this objective, while being
several orders of magnitude (1693×) slower than Teal on Kdl.

5.6 Offline TE performance

To determine the extent to which Teal’s performance benefits arise
from its fast and scalable computation, we evaluate all schemes
under the offline setting described in §5.1.

On Kdl, while LP-all requires over 500 seconds to compute each
flow allocation and exceeds the allotted time budget, its output
allocation is optimal and serves as a benchmark. Teal falls short of
the optimal allocation by 4.8% with respect to the offline satisfied

Teal: Traffic Engineering Accelerated by Learning ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

10
1

10
3

Computation time (s)

50

60

70

80

90

100

O
ffl

in
e

sa
tis

fie
d

de
m

an
d

(%
)

LP-all
LP-top

NCFlow

POPTeal

Better

(a) Kdl

10
1

10
3

Computation time (s)

50

60

70

80

90

100

O
ffl

in
e

sa
tis

fie
d

de
m

an
d

(%
)

LP-top

NCFlow

POP

Teal

Better

(b) ASN

Figure 13: Comparing the offline satisfied demand (defined

in §5.1) of Tealwith baselines (LP-all is not feasible on ASN).

Teal’s allocation quality remains close to optimal evenwhen

the computational delay is not taken into account.

demand, but remains within 0.7% of the best feasible scheme LP-top,
and outperforms NCFlow by a significant margin of 27% and POP
by 2.8%, respectively. On ASN, Teal and LP-top achieve a similar
level of offline satisfied demand, which is 30% higher than NCFlow
and 11% higher than POP.

These findings suggest that even when the computational delay
in TE control is not taken into account, Teal’s flow allocation
quality is still close to optimal. However, we note the caveat that
Teal achieves this by essentially “overfitting” the WAN topology,
link capacities, and demand distribution. For example, when faced
with significant out-of-distribution demands (as shown in §5.4), the
knowledge learned by Teal may struggle to apply and maintain
the allocation performance.

5.7 Ablation study of Teal

We perform an ablation study to assess the impact of Teal’s key
features on its overall performance.

Design of FlowGNN. We devise two alternative designs for
FlowGNN. The first design, called “Teal w/ naive DNN,” employs a
6-layer fully-connected neural network that directly takes a traffic
matrix as input and outputs traffic splits. The second, called “Teal
w/ naive GNN,” models the WAN topology as a GNN directly, with
each node in the GNN representing a network site in the WAN for
feature learning. This design enables information exchange among
neighboring nodes in the WAN, but fails to capture the relation-
ship between edges and paths, or network flows at the path level.
Figure 14 reveals that compared with Teal, these two variants
allocate 4.2–4.3% less demand on SWAN and 9.6–12.4% on ASN,
accentuating the importance of FlowGNN.

Processing demands independently. In contrast to Teal’s inde-
pendent allocation of each demand, an alternate approach described
in §3.3 involves processing all demands at once using a “gigantic
policy network.” This variant, referred to as “Teal w/ global policy,”
is not feasible for large networks such as ASN due to memory errors.
On the smaller SWAN network, it allocates 12.9% less demand on
average compared with the full-fledged Teal (Figure 14a).

70 80 90 100
Satisfied demand (%)

Teal

Teal w/o
ADMM

Teal w/
direct loss

Teal w/
global policy

Teal w/
naive GNN

Teal w/
naive DNN

(a) SWAN

70 80 90 100
Satisfied demand (%)

×

(b) ASN

Figure 14: Ablation study of Teal’s key features in its

FlowGNN, multi-agent RL, and ADMM components. Each

feature proves useful for Teal’s allocation performance.

70 80 90 100
Satisfied demand (%)

10

8

6

4

of

 F
lo

w
G

N
N

 la
ye

rs

(a) FlowGNN layers

70 80 90 100
Satisfied demand (%)

24

12

6

E
m

be
dd

in
g

di
m

en
si

on

(b) Embedding sizes

70 80 90 100
Satisfied demand (%)

4

2

1

of

 d
en

se
 la

ye
rs

(c) Dense layers

Figure 15: Sensitivity analysis of Teal’s hyperparameters.

Use of multi-agent RL. As discussed in §3.3, Teal’s multi-agent
RL policy can be replaced with direct loss minimization if a non-
differentiable TE objective is approximated by a surrogate loss.
For the total (feasible) flow, we define a surrogate loss as the total
intended flow (ignoring link capacities) minus the total overused
capacities (formal definition is in Appendix A). This variant, de-
noted as “Teal w/ direct loss,” allocates 2.3–2.5% less demand on
average (Figure 14), presumably due to the approximation error in
the surrogate loss. Moreover, Teal’s multi-agent RL policy may
optimize a flexible array of TE objectives (§5.5), while it is nontrivial
to identify a good surrogate loss for a new objective.
Fine-tuningwithADMM. RemovingADMM fromTeal’s pipeline
results in a decline of 2–2.5% in the satisfied demand, as indicated
by “Tealw/o ADMM” (Figure 14). Although the impact is tolerable,
ADMM is a transparent optimization algorithm that strictly reduces
constraint violations when applied, fine-tuning the solution with
negligible run-time overhead. We believe these properties make
ADMM a desirable option for WAN operators.
Sensitivity analysis. We further conduct an analysis on the sen-
sitivity of Teal’s performance with respect to its hyperparameters.
While the analysis is performed on the ASN topology, similar results
are observed across other topologies. Figure 15a depicts the impact
of varying the number of layers in FlowGNN. As the number of lay-
ers increases from 4 to 6, Teal’s satisfied demand rises from 86.3%
to 89.4%, with diminishing returns beyond 6 layers. Additionally,
we explore different embedding dimensions in FlowGNN. Instead
of having a final output embedding of 6 elements (by incrementing
the embedding dimension by one in each FlowGNN layer), we also
test higher final embedding dimensions such as 12 and 24. However,

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

t-SNE component 1

t-
S

N
E

 c
om

po
ne

nt
 2

paths w/ largest split ratios in LP-all
remaining paths

Figure 16: Visualization of embeddings in FlowGNN.

the improvements achieved with higher embedding dimensions are
marginal, as indicated by Figure 15b.

In Figure 15c, we vary the number of fully-connected (dense)
layers in the policy network of Teal’s multi-agent RL, and observe
little difference in the allocation quality. This outcome aligns with
our expectations since FlowGNN already captures the complex
capacity-demand relationship within its architecture. As a result,
multi-agent RL primarily focuses on the task of transforming em-
beddings into split ratios, requiring only a lightweight structure.

5.8 Visualization of flow embeddings

To gain insights into the behaviors of Teal, we visualize the flow
embeddings learned by FlowGNN for the SWAN topology through a
technique known as t-SNE (t-distributed stochastic neighbor embed-
ding) [20]. The resulting visualization is shown in Figure 16, where
the flow embeddings are projected onto a 2-dimensional space by
t-SNE. We color-code each flow embedding based on whether its
corresponding path is supposed to be “busy” in an optimal scenario,
i.e., it is assigned the largest split ratio among the preconfigured
paths in an optimal allocation generated by LP-all.

From the visualization, we observe an orange cluster of busy
paths, which is a useful indicator for the subsequent allocation
task as the downstream policy network can be trained to separate
this cluster from the remaining paths and allocate more traffic
to the paths desired to be busy, thereby mimicking the optimal
solution provided by LP-all. In other words, this cluster indicates
that FlowGNN has roughly captured path congestion within the
network in its learned embeddings.

However, it is noteworthy that Figure 16 also contains a small
number of outliers. This is because TE optimization can yield mul-
tiple optimal (or near-optimal) solutions. As a result, the solution
generated by Tealmight not be identical to that produced by LP-all,
leading to the discrepancy between the two approaches.

6 RELATED WORK

TE has been an integral part of service and cloud provider networks.
Network operators have leveraged TE to maximize network utiliza-
tion, guarantee fairness among flows, and prevent link overutiliza-
tion. While ISPs used switch-native protocols (e.g., MPLS, OSPF)
to engineer traffic in their networks [13, 64], cloud providers im-
plemented centralized software-defined TE systems to explicitly
optimize for desirable network characteristics, such as low latency,

high throughput, and failure resilience [4, 21, 22, 25, 33, 38, 68]. In
this section, we place Teal in the context of related work on cloud
WAN TE.
Intra-WAN traffic engineering. In the last decade, large cloud
providers have deployed SDN-based centralized TE in their planet-
scale WANs to allocate traffic between datacenters [21, 25, 33].
Centralized TE systems formulate the problem of allocating traf-
fic in the WAN as an optimization problem and periodically solve
it to compute flow allocations. Due to the increase in the scale
of WANs and traffic matrices, the time required to solve the opti-
mization problem has become a bottleneck in the TE control loop.
Researchers have proposed techniques that solve the TE optimiza-
tion on smaller subsets of the problem and combine the solutions
to compute traffic allocations for the global graph [2, 46]. Teal
tackles the scalability challenges faced by modern intra-WAN TE
controllers using a learning-based approach.
Inter-WAN traffic engineering. Cloud providers engineer traffic
at the edge of their networks by allocating demands on the links
between the cloud and ISPs. Recent work has shown the role of
engineering inter-WAN traffic for performance improvement and
cost reduction [51, 52]. In contrast, Teal focuses on intra-WAN TE.
ML for traffic engineering. Deep learning and broader ML tech-
niques have seen applications in a range of classical networking
problems, including adaptive video streaming [41, 66], TCP con-
gestion control [26, 67], and traffic demand prediction [35, 40].
Recently, researchers have begun leveraging ML to allocate traffic
in WANs [49, 58, 59], focusing on learning to route under traffic
uncertainty and exploiting the predictive power of ML to improve
allocation performance. However, production WAN TE still heav-
ily relies on separate components such as bandwidth brokers to
provide the traffic matrix for the next TE time step as input to the
TE controller. Other ML-based approaches to TE [14, 39, 43, 65, 69]
operate under a variety of assumptions and do not apply to the
acceleration of large-scale intra-WAN TE. Our work demonstrates
that learning-based approaches can significantly accelerate TE op-
timization while achieving near-optimal allocation performance,
addressing the increasing scale of TE optimization.

7 CONCLUSION

In this work, we demonstrate that deep learning is an effective
tool for scaling cloud WAN TE systems to large WAN topologies.
We develop Teal, a learning-based TE scheme that combines care-
fully designed, highly parallelizable components—FlowGNN, multi-
agent RL, and ADMM—to allocate traffic in WANs. Teal computes
near-optimal traffic allocations with substantial acceleration over
state-of-the-art TE schemes for large WAN topologies.
Ethics: This work does not raise any ethical issues.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their insightful comments
and Zhizhen Zhong for shepherding this work. We also thank
Srikanth Kandula, Firas Abuzaid, Yang Zhou, Deepak Narayanan,
Fiodar Kazhamiaka, Umesh Krishnaswamy, and Victor Bahl for
their helpful feedback. This work was supported in part by the NSF
grant CNS-2107078.

Teal: Traffic Engineering Accelerated by Learning ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

REFERENCES

[1] Parallelism in LP and MIP, August 2020. https://cdn.gurobi.com/wp-
content/uploads/2020/08/How-to-Exploit-Parallelism-in-Linear-and-Mixed-
Integer-Programming.pdf.

[2] Firas Abuzaid, Srikanth Kandula, Behnaz Arzani, Ishai Menache, Matei Zaharia,
and Peter Bailis. Contracting Wide-area Network Topologies to Solve Flow
Problems Quickly. In Proceedings of USENIX NSDI, pages 175–200, 2021.

[3] Dimitri P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.
Academic press, 2014.

[4] Jeremy Bogle, Nikhil Bhatia, Manya Ghobadi, Ishai Menache, Nikolaj Bjørner,
Asaf Valadarsky, and Michael Schapira. TEAVAR: Striking the Right Utilization-
Availability Balance in WAN Traffic Engineering. In Proceedings of ACM SIG-
COMM. ACM, 2019.

[5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed Optimization and Statistical Learning Via the Alternating Direction
Method of Multipliers. Foundations and Trends® in Machine learning, 3(1):1–122,
2011.

[6] CAIDA. The CAIDA AS Relationships Dataset, 2022.
[7] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John

Tran, Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient Primitives for
Deep Learning. arXiv preprint arXiv:1410.0759, 2014.

[8] Anwar Elwalid, Cheng Jin, Steven Low, and IndraWidjaja. MATE:MPLS Adaptive
Traffic Engineering. In Proceedings of IEEE INFOCOM, volume 3, pages 1300–1309
vol.3, 2001.

[9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
Graph Neural Networks for Social Recommendation. In International world Wide
Web Conference, pages 417–426, 2019.

[10] Lisa K. Fleischer. Approximating Fractional Multicommodity Flow Independent
of the Number of Commodities. SIAM Journal on Discrete Mathematics, 13(4):505–
520, 2000.

[11] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon White-
son. Learning to Communicate with Deep Multi-Agent Reinforcement Learning.
Advances in Neural Information Processing Systems, 29, 2016.

[12] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. Counterfactual Multi-Agent Policy Gradients. In Proceedings
of AAAI conference on artificial intelligence, volume 32, 2018.

[13] Bernard Fortz, Jennifer Rexford, and Mikkel Thorup. Traffic Engineering with
Traditional IP Routing Protocols. IEEE Communications Magazine, 40(10):118–124,
2002.

[14] Nan Geng, Mingwei Xu, Yuan Yang, Chenyi Liu, Jiahai Yang, Qi Li, and Shize
Zhang. Distributed and Adaptive Traffic Engineering with Deep Reinforcement
Learning. In Proceedings of IEEE/ACM International Symposium on Quality of
Service (IWQOS), pages 1–10, 2021.

[15] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural Message Passing for Quantum Chemistry. In International Confer-
ence on Machine Learning, pages 1263–1272. PMLR, 2017.

[16] Google Cloud. Cloud Tensor Processing Units (TPUs), 2022.
[17] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.
[18] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on

Graphs: Methods and Applications. arXiv preprint arXiv:1709.05584, 2017.
[19] Tamir Hazan, Joseph Keshet, and David McAllester. Direct Loss Minimization

for Structured Prediction. Advances in Neural Information Processing Systems, 23,
2010.

[20] Geoffrey E. Hinton and Sam Roweis. Stochastic neighbor embedding. Advances
in Neural Information Processing Systems, 15, 2002.

[21] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. Achieving High Utilization with Software-
Driven WAN. ACM SIGCOMM Computer Communication Review, 43(4):15–26,
August 2013.

[22] Chi-Yao Hong, Subhasree Mandal, Mohammad A. Alfares, Min Zhu, Rich Alimi,
Kondapa Naidu Bollineni, Chandan Bhagat, Sourabh Jain, Jay Kaimal, Jeffrey
Liang, Kirill Mendelev, Steve Padgett, Faro Thomas Rabe, Saikat Ray, Malveeka
Tewari, Matt Tierney, Monika Zahn, Jon Zolla, Joon Ong, and Amin Vahdat. B4
and After: Managing Hierarchy, Partitioning, and Asymmetry for Availability
and Scale in Google’s Software-Defined WAN. In Proceedings of ACM SIGCOMM,
2018.

[23] IBM. CPLEX Optimizer, 2022.
[24] GPU-Based Deep Learning Inference and Based Deep Learning. A Performance

and Power Analysis. Nvidia Whitepaper, Nov, 2015.
[25] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Ex-
perience with A Globally-Deployed Software Defined WAN. ACM SIGCOMM
Computer Communication Review, 43(4):3–14, 2013.

[26] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar.
A Deep Reinforcement Learning Perspective on Internet Congestion Control. In
International Conference on Machine Learning, pages 3050–3059. PMLR, 2019.

[27] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional Architec-
ture for Fast Feature Embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, pages 675–678, 2014.

[28] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the
Tightrope: Responsive Yet Stable Traffic Engineering. ACM SIGCOMM Computer
Communication Review, 35(4):253–264, 2005.

[29] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv preprint arXiv:1412.6980, 2014.

[30] Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. The Internet Topology Zoo. IEEE Journal on Selected Areas in Commu-
nications, 29(9):1765–1775, 2011.

[31] Vijay Konda and John Tsitsiklis. Actor-Critic Algorithms. Advances in Neural
Information Processing Systems, 12, 1999.

[32] Mario Köppen. The Curse of Dimensionality. In Proceedings of Online World
Conference on Soft Computing in Industrial Applications (WSC), volume 1, pages
4–8, 2000.

[33] Umesh Krishnaswamy, Rachee Singh, Nikolaj Bjørner, and Himanshu Raj. De-
centralized Cloud Wide-Area Network Traffic Engineering with BLASTSHIELD.
In Proceedings of USENIX NSDI, pages 325–338, Renton, WA, April 2022. USENIX
Association.

[34] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-Andre C. Bissonnette,
Nikolaj Bjørner, Zahira Nasrin, Sonal Kothari, Prabhakar Reddy, John Abeln,
Srikanth Kandula, et al. OneWAN Is Better than Two: Unifying a Split WAN
Architecture. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 515–529, 2023.

[35] Jitendra Kumar and Ashutosh Kumar Singh. Cloud Resource Demand Prediction
Using Differential Evolution Based Learning. In Proceedings of IEEE International
Conference on Smart Computing & Communications (ICSCC), pages 1–5. IEEE,
2019.

[36] Oliver Lange and Luis Perez. Traffic Prediction with Advanced Graph Neural
Networks, 2020.

[37] Jay Yoon Lee, Michael L. Wick, Jean-Baptiste Tristan, and Jaime G. Carbonell.
Enforcing Output Constraints via SGD: A Step Towards Neural Lagrangian
Relaxation. In Proceedings of NeurIPS Workshop on Automated Knowledge Base
Construction (AKBC), 2017.

[38] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David
Gelernter. Traffic Engineering with Forward Fault Correction. In Fabián E.
Bustamante, Y. Charlie Hu, Arvind Krishnamurthy, and Sylvia Ratnasamy, editors,
Proceedings of ACM SIGCOMM, pages 527–538. ACM, 2014.

[39] Libin Liu, Li Chen, Hong Xu, and Hua Shao. Automated Traffic Engineering in SD-
WAN: Beyond Reinforcement Learning. In IEEE INFOCOM WKSHPS Workshops,
pages 430–435, 2020.

[40] Tanwi Mallick, Mariam Kiran, Bashir Mohammed, and Prasanna Balaprakash.
Dynamic Graph Neural Network for Traffic Forecasting in Wide Area Networks.
In Proceedings of IEEE International Conference on Big Data (Big Data), pages 1–10.
IEEE, 2020.

[41] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive Video
Streaming with Pensieve. In Proceedings of ACM SIGCOMM, pages 197–210, 2017.

[42] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel.
Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network
for Human Trajectory Prediction. In Proceedings of IEEE/CVF CVPR, pages 14424–
14432, 2020.

[43] Bashir Mohammed, Mariam Kiran, and Nandini Krishnaswamy. DeepRoute
on Chameleon: Experimenting with Large-Scale Reinforcement Learning and
SDN on Chameleon Testbed. In Proceedings of IEEE International Conference on
Network Protocols (ICNP), pages 1–2, 2019.

[44] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki,
Ivan Lobov, Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja,
Pengming Wang, et al. Solving Mixed Integer Programs Using Neural Networks.
arXiv preprint arXiv:2012.13349, 2020.

[45] Pooria Namyar, Behnaz Arzani, Ryan Beckett, Santiago Segarra, Himanshu Raj,
and Srikanth Kandula. Minding the Gap Between Fast Heuristics and Their
Optimal Counterparts. In Proceedings of the 21st ACM Workshop on Hot Topics in
Networks, pages 138–144, 2022.

[46] Deepak Narayanan, Fiodar Kazhamiaka, Firas Abuzaid, Peter Kraft, Akshay
Agrawal, Srikanth Kandula, Stephen Boyd, and Matei Zaharia. Solving Large-
Scale Granular Resource Allocation Problems Efficiently with POP. In Proceedings
of ACM SOSP, pages 521–537, 2021.

[47] John C. Nash. The (Dantzig) SimplexMethod for Linear Programming. Computing
in Science and Engg., 2(1):29–31, jan 2000.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

[49] Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth Kandula, Ishai Menache,
Michael Schapira, and Aviv Tamar. DOTE: Rethinking (Predictive) Wan Traffic
Engineering. In 20th USENIX Symposium on Networked Systems Design and

https://cdn.gurobi.com/wp-content/uploads/2020/08/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://cdn.gurobi.com/wp-content/uploads/2020/08/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://cdn.gurobi.com/wp-content/uploads/2020/08/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

Implementation (NSDI 23), pages 1557–1581, 2023.
[50] Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B.

Wiltschko. A Gentle Introduction to Graph Neural Networks. Distill, 2021.
https://distill.pub/2021/gnn-intro.

[51] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering Egress with Edge Fabric: Steering Oceans of Content to the
World. In Proceedings of ACM SIGCOMM, pages 418–431. ACM, 2017.

[52] Rachee Singh, Sharad Agarwal, Matt Calder, and Paramvir Bahl. Cost-Effective
Cloud Edge Traffic Engineering With Cascara. In Proceedings of USENIX NSDI,
pages 201–216, 2021.

[53] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa
Gill. RADWAN: Rate Adaptive Wide Area Network. In Proceedings of ACM
SIGCOMM, page 547–560, New York, NY, USA, 2018. Association for Computing
Machinery.

[54] Yang Song, Alexander Schwing, Raquel Urtasun, et al. Training Deep Neural
Networks via Direct Loss Minimization. In International Conference on Machine
Learning, pages 2169–2177. PMLR, 2016.

[55] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
Gradient Methods for Reinforcement Learning with Function Approximation.
Advances in Neural Information Processing Systems, 12, 1999.

[56] Tensorflow. An End-to-End Open Source Machine Learning Platform, 2022.
[57] The Linux Foundation. Open Neural Network Exchange, 2022.
[58] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. Learning to

Route. In Proceedings of ACM HotNets, pages 185–191, 2017.
[59] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. Learning to

route with deep RL. In NIPS Deep Reinforcement Learning Symposium, 2017.
[60] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-

drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. Grandmaster Level in StarCraft II Using Multi-Agent
Reinforcement Learning. Nature, 575(7782):350–354, 2019.

[61] Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert
Greenberg. COPE: Traffic Engineering in Dynamic Networks. In Proceedings of
the 2006 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 99–110, 2006.

[62] David H. Wolpert and Kagan Tumer. Optimal Payoff Functions for Members
of Collectives. In Modeling Complexity in Economic and Social Systems, pages
355–369. World Scientific, 2002.

[63] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S. Yu Philip. A Comprehensive Survey on Graph Neural Networks. IEEE transac-
tions on neural networks and learning systems, 32(1):4–24, 2020.

[64] Xipeng Xiao, A. Hannan, B. Bailey, and L. M. Ni. Traffic Engineering with MPLS
in the Internet. IEEE Network, 14(2):28–33, March 2000.

[65] Zhiyuan Xu, Jian Tang, Jingsong Meng, Weiyi Zhang, Yanzhi Wang, Chi Harold
Liu, and Dejun Yang. Experience-Driven Networking: A Deep Reinforcement
Learning Based Approach. CoRR, abs/1801.05757, 2018.

[66] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi
Zhang, Philip Levis, and Keith Winstein. Learning in Situ: A Randomized Experi-
ment in Video Streaming. In Proceedings of USENIX NSDI, pages 495–511, Santa
Clara, CA, February 2020. USENIX Association.

[67] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby,
Philip Levis, and Keith Winstein. Pantheon: the Training Ground for Inter-
net Congestion-Control Research. In Proceedings of USENIX ATC, pages 731–743,
Boston, MA, July 2018. USENIX Association.

[68] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
et al. Taking the Edge off with Espresso: Scale, Reliability and Programmability
for Global Internet Peering. In Proceedings of ACM SIGCOMM, pages 432–445,
2017.

[69] Junjie Zhang, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H. Jonathan Chao.
CFR-RL: Traffic Engineering with Reinforcement Learning in SDN. IEEE Journal
on Selected Areas in Communications, 38(10):2249–2259, 2020.

[70] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting Xia, and
Ying Zhang. ARROW: Restoration-Aware Traffic Engineering. In Proceedings
of ACM SIGCOMM, page 560–579, New York, NY, USA, 2021. Association for
Computing Machinery.

[71] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuandong Tian, Ying Zhang, and
Xin Jin. Network Planning with Deep Reinforcement Learning. In Proceedings of
ACM SIGCOMM, pages 258–271, 2021.

Appendices

Appendices are supportingmaterial that has not been peer-reviewed.

A TE OPTIMIZATION FORMULATION

The goal of cloud WAN traffic engineering (TE) algorithms is to
efficiently utilize the expensive network resources between dat-
acenters to achieve operator-defined performance goals, such as
minimum latency, maximum throughput, and fairness between
customer traffic flows.
Network. We represent theWAN topology as a graph𝐺 = (𝑉 , 𝐸, 𝑐),
where nodes (𝑉) represent network sites (e.g., datacenters), edges
(𝐸) between the sites represent network links resulting from long-
haul fiber connectivity, and 𝑐 : 𝐸 → R+ assigns capacities to links.
Let 𝑛 = |𝑉 | denote the number of network sites. Each network site
can consist of either one or multiple aggregated routers.
Traffic demands. The demand 𝑑 ∈ 𝐷 between a pair of network
sites 𝑠 and 𝑡 in𝐺 is the volume of network traffic originating from 𝑠

that must be routed to 𝑡 within a given duration of time. A separate
component in the system (such as a bandwidth broker) periodically
gauges demands for the next time interval (e.g., five minutes) based
on the needs of various services, historical demands, and bandwidth
enforcement [25]. The gauged demand is considered fixed for the
next time interval and provides as input to the TE optimization.
The TE algorithm computes allocations along network paths to
meet the given demand [2, 58].
Network paths. The network traffic corresponding to a demand
𝑑 flows on a set of preconfigured network paths 𝑃𝑑 . These paths
are precomputed by network operators (e.g., using the shortest
paths) and serve as input to the TE optimization. This version of
TE optimization that allocates demands onto preconfigured paths
as opposed to individual edges, is known as the path formulation
of TE, which is widely adopted in production WANs [21, 22, 25, 33].
Path formulation reduces the computational complexity of the TE
optimization and also reduces the number of switch forwarding
entries required to implement the traffic allocation.
Traffic allocations. A traffic allocation F allocates a demand
𝑑 ∈ 𝐷 as flows across the assigned network paths 𝑃𝑑 . Therefore, F𝑑
is a mapping from the path set 𝑃𝑑 to non-negative split ratios, i.e.,
F𝑑 : 𝑃𝑑 → [0, 1], such that F𝑑 (𝑝) is the fraction of traffic demand
𝑑 allocated on path 𝑝 . The traffic allocation in time interval 𝑖 is
denoted as F (𝑖) .
Constraints. For any demand 𝑑 ∈ 𝐷 ,

∑
𝑝∈𝑃𝑑 F𝑑 (𝑝) ≤ 1 is

maintained such that we only allocate as much traffic as the
demands. Additionally, we constrain the allocations by 𝑒 ∈ 𝐸,
𝑐 (𝑒) ≥ ∑

𝑝∋𝑒
∑
𝑑∈𝐷 F𝑑 (𝑝) · 𝑑 to ensure that the traffic allocations

do not exceed the capacity of network links.
TE objectives. The goal of TE algorithms can range from maxi-
mizing network throughput to minimizing latency, and previous
work has explored algorithms with a variety of TE objectives. We
show that Teal can achieve near-optimal allocation with substan-
tial acceleration for different well-known TE objectives (§5). In
this section, we illustrate the TE optimization problem using the
maximum network flow objective since it has been adopted by
production TE systems [21, 33]. The TE optimization computes a
routing policy F that satisfies the demand and capacity constraints

https://distill.pub/2021/gnn-intro

Teal: Traffic Engineering Accelerated by Learning ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

while maximizing the TE objective. Equation (1) summarizes our
TE formulation:

maximize
∑︁
𝑑∈𝐷

∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) · 𝑑

subject to
∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) ≤ 1,∀𝑑 ∈ 𝐷∑︁
𝑝∋𝑒

∑︁
𝑑∈𝐷

F𝑑 (𝑝) · 𝑑 ≤ 𝑐 (𝑒),∀𝑒 ∈ 𝐸

F𝑑 (𝑝) ≥ 0,∀𝑑 ∈ 𝐷,∀𝑝 ∈ 𝑃𝑑

(1)

Surrogate loss. The surrogate loss that approximates the (non-
differentiable) total feasible flow is defined as the total flow intended
to be routed (disregarding link capacities), penalized by total link
overutilization. Using the above notations, the surrogate loss can
be formally expressed as∑︁

𝑑∈𝐷

∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) · 𝑑 −
∑︁
𝑒∈𝐸

max(0,
∑︁
𝑝∋𝑒

∑︁
𝑑∈𝐷

F𝑑 (𝑝) · 𝑑 − 𝑐 (𝑒)).

B COMA
∗
DETAILS

At a high level, COMA builds on the idea of counterfactual rea-
soning [62], deducing the answer to a “What if...” question: At the
moment every agent is about to make a decision (action), what
would be the difference in global reward if only one agent’s action
changes while the other agents’ actions remain fixed? E.g., in the
context of TE that aims to maximize the total flow, our COMA∗

reasons about: Compared with the current traffic allocations, how
much would the total flow differ if we only reallocate the flows of
one demand while keeping the allocations of the other demands
unchanged? The performance difference measures the contribution
of an agent’s action to the overall reward. Specifically, the reward
difference defines the “advantage” of the current joint action over
the counterfactual baseline (where only one agent tweaks its ac-
tion). The advantage is heavily used in this family of RL algorithms
(known as actor-critics [31]) to effectively reduce the variance in
training.

At each time step when a new traffic matrix arrives or any link
capacity changes (e.g., due to a link failure), Teal passes the flow
embeddings (stored in PathNodes of FlowGNN) for the same de-
mand to the RL agent 𝑖 designated to manage the demand.We define
these flow embeddings as the state 𝑠𝑖 observed locally by agent 𝑖 .
Presented only with the local view captured by 𝑠𝑖 , agent 𝑖 makes
an action 𝑎𝑖 , a vector of split ratios that describes the allocation of
the agent’s managed demand. Let 𝜋𝜃 denote the policy network
parameterized by 𝜃 shared by agents. Learning the weights 𝜃 with
gradient descent is known as policy gradient [55], which typically
requires a stochastic form 𝜋𝜃 (𝑎𝑖 |𝑠𝑖) that represents the probability
of outputting 𝑎𝑖 given 𝑠𝑖 . Since allocations are deterministic in TE,
a common way that converts 𝜋𝜃 to stochastic is to have it output
the mean and variance of a Gaussian distribution. During training,
actions are sampled from the Gaussian distribution 𝑎𝑖 ∼ 𝜋𝜃 (·|𝑠𝑖),
whereas the mean value of the Gaussian is directly used as the
action during deployment.

We use s to denote the central state formed by all local states 𝑠𝑖 ,
and a to denote the joint action formed by all local actions 𝑎𝑖 . A

reward 𝑅(s, a), such as the total flow, is available after all agents
have made their decisions. To compute the advantage𝐴𝑖 (s, a) when
only agent 𝑖 alters its action, COMA proposes to estimate the ex-
pected return, namely a discounted sum of future rewards, obtained
by taking the joint action a in central state s. By comparison, our
COMA∗ computes the expected return by leveraging the “one-step”
nature of TE: an action (flow allocation) in TE does not impact the
future states (traffic demands). Consequently, the expected return
effectively equals the reward 𝑅(s, a) obtained at a single step. More-
over, suppose that agent 𝑖 varies its action to 𝑎′

𝑖
while the other

agents keep their current actions, the new joint action—denoted as
(a−𝑖 , 𝑎′𝑖)—can be directly evaluated by simulating its effect, i.e., we
compute the TE objective obtained if the new joint action were to be
used. Putting everything together, COMA∗ computes the advantage
for agent 𝑖 as follows:

𝐴𝑖 (s, a) = 𝑅(s, a) −
∑︁
𝑎′
𝑖

𝜋𝜃 (𝑎′𝑖 |𝑠𝑖)𝑅(s, (a−𝑖 , 𝑎
′
𝑖)), (2)

where we perform Monte Carlo sampling to estimate the counter-
factual baseline, e.g., by drawing a number of random samples for
𝑎′
𝑖
∼ 𝜋𝜃 (·|𝑠𝑖). The gradient of 𝜃 is then given by

𝑔 = E𝜋

[∑︁
𝑖

𝐴𝑖 (s, a)∇𝜃 log𝜋𝜃 (𝑎𝑖 |𝑠𝑖)
]
, (3)

which is used for training the policy network with standard policy
gradient. In practice, Teal trains FlowGNN and the policy network
of COMA∗ end to end, so 𝜃 represents all the parameters to learn in
the end-to-end model, backpropagating gradients from the policy
network to FlowGNN.

C ADMM DETAILS

In this section, we derive the ADMM iterates for the TE problem in
Equation (1), reproduced here:

maximize
∑︁
𝑑∈𝐷

∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) · 𝑑

subject to
∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) ≤ 1,∀𝑑 ∈ 𝐷 (4)∑︁
𝑝∋𝑒

∑︁
𝑑∈𝐷

F𝑑 (𝑝) · 𝑑 ≤ 𝑐 (𝑒),∀𝑒 ∈ 𝐸 (5)

F𝑑 (𝑝) ≥ 0,∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃𝑑 .

In order to apply ADMMwhich requires a specific form to optimize,
we must decouple the constraints in the original problem. As Con-
straint (5) couples the edge traffic across paths and demands, we
introduce dummy variables 𝑧𝑝𝑒 for each path 𝑝 (from in any demand
𝑑 ∈ 𝐷), and edge 𝑒 ∈ 𝑝 . We note that each path 𝑝 ∈ 𝑃𝑑 uniquely
stems from a particular demand 𝑑 . Then, we replace Constraint (5)
with the following constraints:∑︁

𝑝∋𝑒
𝑧𝑝𝑒 ≤ 𝑐 (𝑒),∀𝑒 ∈ 𝐸 (6)

F𝑑 (𝑝) · 𝑑 − 𝑧𝑝𝑒 = 0,∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃𝑑 , 𝑒 ∈ 𝑝. (7)

Finally, we add slack variables 𝑠 = (𝑠1𝑑 , 𝑠3𝑒), for all demands 𝑑 ∈ 𝐷

and edges 𝑒 ∈ 𝐸 respectively, to turn inequality in Constraint (4)

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Z. Xu, F. Yan, R. Singh, J. Chiu, A. Rush, M. Yu

and Constraint (6) into equality:

maximize
∑︁
𝑑∈𝐷

∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) · 𝑑

subject to
∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) + 𝑠1𝑑 − 1 = 0,∀𝑑 ∈ 𝐷 (4)∑︁
𝑝∋𝑒

𝑧𝑝𝑒 + 𝑠3𝑒 − 𝑐 (𝑒) = 0,∀𝑒 ∈ 𝐸 (6)

F𝑑 (𝑝) · 𝑑 − 𝑧𝑝𝑒 = 0,∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃𝑑 , 𝑒 ∈ 𝑝 (7)
F𝑑 (𝑝) ≥ 0,∀𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃𝑑 .

By introducing Lagrangemultipliers 𝜆 = (𝜆1, 𝜆3, 𝜆4) ∈ R |𝐷 |×R |𝐸 |×
R |𝑃 | |𝐸 | and a penalty coefficient 𝜌 , the augment Lagrangian for this
transformed problem becomes

L𝜌 (F , 𝑧, 𝑠, 𝜆)

= −
∑︁
𝑑∈𝐷

∑︁
𝑝∈𝑃𝑑

F𝑑 (𝑝) · 𝑑 + 𝜆𝐺 (F , 𝑧, 𝑠) + 𝜌

2
∥𝐺 (F , 𝑧, 𝑠)∥22,

where 𝐺 (F , 𝑧, 𝑠) = (𝐺1,𝐺3,𝐺4)⊤ and

𝐺1𝑑 = F𝑑 (𝑝) + 𝑠1𝑑 − 1

𝐺3𝑒 =
∑︁
𝑝∋𝑒

𝑧𝑝𝑒 + 𝑠3𝑒 − 𝑐 (𝑒)

𝐺4𝑑𝑝𝑒 = F𝑑 (𝑝) · 𝑑 − 𝑧𝑝𝑒 .

The ADMM iterates at step 𝑘 + 1 are then given by

F 𝑘+1 := argmin
F

L𝜌 (F , 𝑧𝑘 , 𝑠𝑘 , 𝜆𝑘)

𝑧𝑘+1 := argmin
𝑧

L𝜌 (F 𝑘+1, 𝑧, 𝑠𝑘 , 𝜆𝑘)

𝑠𝑘+1 := argmin
𝑠

L𝜌 (F 𝑘+1, 𝑧𝑘+1, 𝑠, 𝜆𝑘)

𝜆𝑘+1 := 𝜆𝑘 + 𝜌 ·𝐺 (F 𝑘+1, 𝑧𝑘+1, 𝑠𝑘+1)
with the initial iterates warm-started by the policy network.

D TOPOLOGY DETAILS

Table 3 provides additional details about the network topologies
utilized in our study (SWAN is excluded from the table due to con-
taining private information). In general, as the size of the network
topology increases, the average shortest-path length and network
diameter tend to become longer, with the exception of the ASN
topology. This can be attributed to the presence of star-shaped clus-
ters (ASes) within ASN. These clusters are interconnected, resulting
in a strong connectivity at the cluster level.

Average shortest-
path length Network diameter

B4 2.3 5
UsCarrier 12.1 35
Kdl 22.7 58
ASN 3.2 8

Table 3: Additional topology details.

B4 UsCarrier Kdl ASN
Network topology

0

10

20

30

R
ou

ta
bl

e
de

m
an

ds
on

 e
ac

h
ed

ge
 (%

)

Figure 17: Percentage of routable demands for each edge, i.e.,

if (any of) the demand’s preconfigured paths pass through

the edge.

Meanwhile, we examine the percentage of demands (over the
total number of demands) that are routable on each edge, i.e., if the
edge lies on at least one of a demand’s preconfigured paths, and plot
the distributions in Figure 17. This figure reveals that as the network
grows in size, each edge tends to serve a decreasing percentage of
demands due to the sparser distribution of demands. Notably, the
ASN topology exhibits an exceptionally low proportion of routable
demands on each edge due to its distinctive characteristics.

E TE PERFORMANCE OVER TIME

0 20 40 60 80 100
Time (minute)

50

60

70

80

90

100

S
at

is
fie

d
de

m
an

d
(%

)

Reuse last routes Update routes

LP-top NCFlow POP Teal

Figure 18: Allocation performance of schemes in response

to changing demands over time on ASN. Teal consistently

allocates the most demand in each time interval.

We present the allocation performance of different schemes in
response to changing demands over time in Figure 18. With the
run time fluctuating from a median of 200 s to the worst case of
450 s in Figure 7a, LP-top only uses updated routes at the end of
the 5-minute interval and occasionally uses stale routes throughout
the interval, leading to less demand satisfied. We also observe that
NCFlow and POP can only compute a new allocation for every
other or every third traffic matrix, and using stale routes from 5
or 10 minutes ago causes further performance degradation to the
original suboptimal traffic allocation. In contrast, Teal consistently
allocates the most demand in each time interval.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Scaling challenges of TE
	2.2 Accelerate TE optimization with ML
	2.3 Challenges of applying ML to TE

	3 Teal: Learning-accelerated TE
	3.1 Overview
	3.2 Feature learning with FlowGNN
	3.3 Flow allocation with multi-agent RL
	3.4 Solution fine-tuning with ADMM

	4 Implementation of Teal
	5 Evaluation
	5.1 Methodology
	5.2 Teal vs. the state of the art
	5.3 Reacting to link failures
	5.4 Robustness to demand changes
	5.5 Teal under different objectives
	5.6 Offline TE performance
	5.7 Ablation study of Teal
	5.8 Visualization of flow embeddings

	6 Related Work
	7 Conclusion
	References
	A TE optimization formulation
	B COMA* details
	C ADMM details
	D Topology details
	E TE performance over time

