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Introduction: Understanding the neural code has been one of the central
aims of neuroscience research for decades. Spikes are commonly referred to
as the units of information transfer, but multi-unit activity (MUA) recordings
are routinely analyzed in aggregate forms such as binned spike counts, peri-
stimulus time histograms, firing rates, or population codes. Various forms of
averaging also occur in the brain, from the spatial averaging of spikes within
dendritic trees to their temporal averaging through synaptic dynamics. However,
how these forms of averaging are related to each other or to the spatial
and temporal units of information representation within the neural code has
remained poorly understood.

Materials and methods: In this work we developed NeuroPixelHD, a symbolic
hyperdimensional model of MUA, and used it to decode the spatial location
and identity of static images shown to n = 9 mice in the Allen Institute
Visual Coding—NeuroPixels dataset from large-scale MUA recordings. We
parametrically varied the spatial and temporal resolutions of the MUA data
provided to the model, and compared its resulting decoding accuracy.

Results: For almost all subjects, we found 125ms temporal resolution to
maximize decoding accuracy for both the spatial location of Gabor patches
(81 classes for patches presented over a 9x9 grid) as well as the identity of
naturalimages (118 classes corresponding to 118 images) across the whole brain.
This optimal temporal resolution nevertheless varied greatly between different
regions, followed a sensory-associate hierarchy, and was significantly modulated
by the central frequency of theta-band oscillations across different regions.
Spatially, the optimal resolution was at either of two mesoscale levels for almost
all mice: the area level, where the spiking activity of all neurons within each brain
area are combined, and the population level, where neuronal spikes within each
area are combined across fast spiking (putatively inhibitory) and regular spiking
(putatively excitatory) neurons, respectively. We also observed an expected
interplay between optimal spatial and temporal resolutions, whereby increasing
the amount of averaging across one dimension (space or time) decreases the
amount of averaging that is optimal across the other dimension, and vice versa.
Discussion: Our findings corroborate existing empirical practices of
spatiotemporal binning and averaging in MUA data analysis, and provide
a rigorous computational framework for optimizing the level of such
aggregations. Our findings can also synthesize these empirical practices
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with existing knowledge of the various sources of biological averaging in the
brain into a new theory of neural information processing in which the unit of
information varies dynamically based on neuronal signal and noise correlations
across space and time.

KEYWORDS

neural code, multi-unit activity, averaging, spatial resolution, temporal resolution,
hyper-dimensional computing, computational modeling, neural dynamics

Introduction

Neural dynamics span across a wide range of spatiotemporal
scales, from (sub)cellular to regional and from (sub)millisecond to
circadian and higher (Buzsaki, 2006; Bressler and Menon, 2010;
Breakspear, 2017). Arguably, the most common link between
neural dynamics across different spatiotemporal scales is averaging.
Macroscopic measurements such as EEG, MEG, and fMRI
reflect spatially-averaged activities of millions of neuronal post-
synaptic potentials (Logothetis et al., 2001; Buzsaki et al.,, 2012)
which are themselves the result of pre-synaptic spatial averaging
through dendritic trees (Cash and Yuste, 1999) and are linked
to higher-frequency spiking activity through synaptic temporal
averaging (Kandel et al, 2013). Averaging is also the theoretical
foundation for the broad family of mean-field models (Buice and
Cowan, 2009; Breakspear, 2017), and is further applied across
imaging modalities as a signal-processing step for improving
signal to noise ratio (SNR) (Poldrack et al, 2011; Luck, 2014;
Widmann et al., 2015). Averaging or averaging-involved methods
such as spatial smoothing and parcellation of voxel-wise fMRI, low-
pass filtering, principal component analysis (PCA), independent
component analyses (ICA), peri-stimulus time histograms (PSTH),
and firing rate estimations are all popular means for reducing the
dimensionality of data and making large-scale brain recordings
understandable and explainable.

On the other hand, averaging also involves an inevitable loss
of information. This can be seen, at a generic level, from the
information-theoretic data processing inequality (Cover, 1999).
In a series of recent works (Ahmed and Nozari, 2022, 2023;
Nozari et al., 2023), we have further shown that averaging has
a particularly strong linearizing effect, transforming functionally-
relevant nonlinearities (spiking, multi-stability, limit cycles, etc.)
into what appears to be “noise” in macroscopic measurements.
Notably, the strength of this linearizing effect is directly related to the
amount of signal correlation among the averaged units: the higher
signal correlation is among a group of neurons and the slower it
decays with distance between them, the weaker the linearizing effect
of averaging becomes, i.e., the more neurons we need to average
over before nonlinearities fade (Nozari et al., 2023).

As such, averaging can have a dual effect on the neural code: it
can improve SNR by averaging over noise, but it can also degrade
SNR by canceling out functionally-relevant nonlinearities. The
balance of these two effects depends on the relative strength of
signal and noise correlations among neurons. If noise correlations
are weaker and decay more rapidly with distance, then controlled
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amounts of averaging can be beneficial by canceling noise faster
than fading the signal. Otherwise, no amount of averaging would
be beneficial and the neural code can be best decoded from the raw
spiking activity of individual neurons with millisecond resolution.

In this work, we test the central hypothesis that there exists
an optimal amount of spatial and temporal averaging, i.e., an
optimal spatiotemporal resolution, which maximizes neuronal
SNR and therefore the accuracy of decoding the neural code.
Using data from n = 9 mice from the Allen Institute Visual
Coding - Neuropixels dataset, we design computational models that
classify visual images shown to each mouse using its large-scale
MUA with parametrically varied amounts of spatial and temporal
averaging. The use of the brain-inspired hyper-dimensional
computing (HDC) framework (Kanerva, 2009; Schlegel et al,
20225 Zou et al, 2022) allows us to gain precise control over
the amount of end-to-end spatiotemporal averaging performed
by the decoder and minimize implicit sources of averaging that
extensively occur during the training of most machine learning
alternatives and can confound our findings. The resulting HDC-
based classifier, termed NeuroPixelHD, provides a means to
testing this work’s central hypothesis as well as a general-purpose
model for encoding and decoding large-scale MUA data in a
transparent and interpretable manner owing to the symbolic
nature of HDC.

Results

NeuroPixelHD: a hyperdimensional model
for large-scale multi-unit activity

In this work we use the brain-inspired framework of
HDC (Kanerva, 2009; Schlegel et al., 2022; Zou et al, 2022
to design NeuroPixelHD, an efficient decoding model for MUA.
The use of HDC to test our central hypothesis is motivated
by the core observation that vector summation results in an
irreversible averaging in small dimensions (i.e., the summands
are not recoverable from the sum), but it can result in reversible
memorization in very large dimensions (Supplementary Note 1). As
such, a trained HDC model can embed a copy of all of its training
samples, without any unintended implicit averaging. In this work,
we train NeuroPixelHD to classify images within two categories
based on MUA recordings: Gabor patches at different locations of
a 9x9 grid in the visual field, and 118 different images of natural
scenes (Methods).

frontiersin.org


https://doi.org/10.3389/fncel.2024.1287123
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org

Samiei et al.

10.3389/fncel.2024.1287123

D = 10000

"Polarization
mf

[\
[ cos(X. B; + b:)sin(X. 9

- oA+

spatial encoded hypervector
for one time bin

unit hypervector
-j:D:-/\
| DEEN W

lcos(X. B; + b‘-)as'n(X.@

area ) hypervecior

[

)

.4 .

P area; hypervecior
N: %

- £

. é D = 10000

N é - = |
.

unit hypervector

L+ Binding

‘/®—>-]:[-]3]ﬁ

N EE

A spatial encoding

Time Hypervector

Random

o R i R P

Spatial Encoded Hypervector

O —f & ImeE f\C\J

e m a1
1) | o> W—

(o) __ Fendom

Time Bins

rar-1y L B [T 1T ]

Final spatio-temporal Hypervecior
OO T + |

B Time encoding

FIGURE 1

The structure and encoding of NeuroPixelHD. (A) Spatial encoding in NeuroPixelHD. Spatially correlated hypervectors are generated for each neuron,
using each neuron’s responses to receptive field tuning and cosine encoding, and then bound with (randomly generated) hypervectors representing
corresponding brain areas. (B) Temporal encoding in NeuroPixelHD. Two random hypervectors are generated for times 0 and 250 ms and then linearly
interpolated, via dimension borrowing, to generate correlated hypervectors for intermediate time points. (C) Encoding of each trial in NeuroPixelHD.

C Spatio-temporal encoding

Inspired by our earlier work on event-based cameras (Zou
et al., 2022), the design of NeuroPixelHD involves an encoding
phase and an adaptive training phase. During the encoding phase,
the binned spike counts of all the recorded neurons throughout
each trial (250 ms here) is encoded into one hyper-vector (HV)
(Figure 1). As described in details in Methods, The encoding
involves a sequence of reversible binding and bundling operations
(standard in HDC, see Methods) over three ingredients: binned
spike counts, neuron HVs, and time bin HVs. Neuron HVs are
generated based on each neuron’s anatomical region and response
during receptive field tuning, therefore maintaining a level of
spatial correlation proportional to the anatomical and functional
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proximity of each pair of neurons. Time bin HVs are generated
randomly for the beginning and end of each trial (Oms and 250 ms)
and interpolated via linear dimension borrowing for intermediate
bins, maintaining a level of temporal correlation proportional to
the temporal proximity of each pair of time bins. These HVs are
then fused with binned spike counts using binding and bundling
operations to encode all the neural activity during each trial into
one trial activity HV used during the second phase for classifier
training.

The second phase of NeuroPixelHD consists of adaptive
training. Each class (Gabor location or natural scene image) is
represented by one class HV. All class HVs are initialized at
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zero and iteratively updated such that the similarities between
each class HV and corresponding trial activity HVs gradually
increase and the similarities between each class HV and trial activity
HVs of other classes gradually decrease (see Methods). We use
cosine similarity (normalized dot product) in NeuroPixelHD due
to its simplicity and computational efficiency, but various other
measures of similarity have also been proposed in HDC and can be
alternatively used. At the end of training, each test trial is assigned
to the class that has the largest similarity between its class HV and
activity HV of that test trial. To measure classification accuracy,
we use standard F1 score for natural scene images and median
Euclidean error between the actual and predicted locations for
Gabor patches (see Section Methods).

125ms temporal resolution maximizes
visual decoding accuracy for static images

We investigated the optimal amount of temporal averaging
for visual decoding by comparing the decoding accuracy of
NeuroPixelHD for varying bin size values. We started from the
smallest bin size of 1 ms and gradually increased the bin size until
reaching one bin for the entire trial duration (250 ms). As we
increase the bin size, both the signal and the noise components of
spike counts are averaged, potentially changing the spike counts’
signal to noise ratio and, in turn, the decoding accuracy of the
downstream classification.

When classifying the location of Gabor patches from binned
MUA spike counts, in most subjects, we observe an initial
insensitivity of classification accuracy to bin size between 1-
10 ms, followed by a sharp improvement in decoding accuracy
until 125 ms, and an occasional worsening of accuracy afterwards
(Figure 2). Remarkably, for most subjects, the worst accuracy
occurs at the smallest bin size, despite the classifiers access to all
spike count information. This may be at first counter-intuitive from
an information-theoretic perspective [cf,, e.g., the Data Processing
Inequality (Cover, 1999)], but demonstrates the importance of
optimal feature extraction from a machine learning perspective
and is consistent with the common perception of individual spikes
as being highly noisy and the common practice of binning spike
counts before using them for downstream analyses.

To further resolve the heterogeneity among subjects and
compute the optimal temporal resolution at the group level, we
found the optimal bin size for each subject (namely, the bin size
with the lowest median classification error) and calculated, for
each bin size, the number of subjects for whom that bin size
is optimal. If two or more bin sizes were jointly optimal (p >
0.05, Wilcoxon signed rank test), we included all of them in the
group-level count. The result, shown in Figure 2B, corroborates
that 125ms resolution is optimal at the group level, 250 ms is the
second best, and 1-5ms resolution yields the least signal to noise
ratio overall. The same trend appears even more contrastively for
the decoding of natural scenes (Figures 2C, D). Here, we measure
classification accuracy using F1 score with higher values indicating
higher accuracy. Across all subjects, the 125ms resolution provides
the highest decoding accuracy, while the 1-10 ms resolutions result
in chance level classification (1/118 =~ 0.008) in all but one mouse.
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We also investigated a more precise quantification of optimal
temporal resolutions by including all regularly spaced bin sizes
with a 25ms increment (i.e., 75, 100, 150, 175, 200, and 225 in
addition to the original selection). The newly added bin sizes are
harder to interpret and are generally avoided in this study since
each spike can no longer be included in exactly 1 bin, thereby
making their comparison against bin sizes that are divisors of
250 ms potentially unfair. However, we mitigated this potential
unfairness as much as possible by computing the decoding accuracy
of NeuroPixelHD at the newly added time bins via two methods
and averaging the results: overlapping, whereby time bins are
allowed to overlap in order to cover the whole 250ms duration
of each trial (over-counting), and cropping, whereby time bins are
not allowed to overlap and some remaining portion of the 250 ms
duration is discarded accordingly (under-counting). The results are
shown in Supplementary Figure S4. Interestingly, while 125ms still
remains optimal for most subjects across both tasks, a distinction
now appears between the two tasks: Gabor locations are encoded
at slightly slower resolutions than the identity of natural scene,
even though both categories of images are displayed for the same
duration (250ms) and alternated without any inter-stimulus delay.
This result provide evidence that even within the same sensory
modality and task structure, stimulus content and complexity can
affect the resolution at which neural information is encoded.

Optimal temporal resolution follows a
top-down hierarchy and is significantly
correlated with theta oscillations

We next investigated the consistency of this optimal temporal
resolution across the available brain regions (Table 1). Neuronal
dynamics of different brain regions are known to have a hierarchy
of time constants, whereby the autocorrelations of signals recorded
from lower-level sensoritmotor areas decays faster with lag than
those recorded from higher-level association cortices (Murray
et al, 2014). To test whether a similar pattern exists in the
optimal temporal resolution of distinct regions, we compared
the accuracy of NeuroPixelHD when using binned spike trains
of areas within only one brain region at a time (Figure 3A).
We found a wide variation in the optimal temporal resolutions
across regions, ranging (on average) from 5-250ms. Furthermore,
we observed a spatially-organized and hierarchical pattern in the
regionally-optimal resolutions, whereby visual areas (both early
and later) have the slowest resolution (250ms) and areas across
the hippocampal formation have the fastest resolutions (~5ms
on average). Thalamus and midbrain areas most often prefer
the globally-optimal 125ms resolution, though the latter shows
little sensitivity to temporal resolution in general (Figures 3C-]).
Therefore, the globally-optimal 125 ms resolution has arisen from
and should be understood as a trade off between a top-down
hierarchy of regions that encode information at significantly slower
and faster resolutions.

Given the long history of neural oscillations across the
studied regions and the hypothesized role of oscillations in
information transfer, we next tested whether the observed
regional and subject-to-subject variability in optimal temporal
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Comparisons between classification accuracy of NeuroPixelHD with different temporal resolutions. (A) Mean Euclidean distance errors of
NeuroPixelHD in classifying Gabor locations. Each line corresponds to one mouse (n = 9) and error bars represent 1 s.e.m. (B) Distribution showing
the number of mice for whom each time bin is optimal. The optimal time bin for each mouse was selected based on Wilcoxon signed rank test with
a = 0.05. In cases where 2 or more bin sizes had the least error (insignificant statistical difference), all of them were counted as optimal bin size for
that mouse and included in the aggregate bar graph. (C, D) Similar to (A, B) but for the classification of nature scenes. Here accuracy is measured by
F1 score (higher is better; see Methods). Across both tasks, the 125 ms time bin resulted in maximum decoding accuracy.

resolutions is related to ongoing neural oscillations. For each
mouse and brain region, we first computed the average firing
rate of all neurons within each region (binned at 1ms) and
used the FOOOF toolbox (Donoghue et al, 2020) to find the
central frequency of the slowest oscillation in each case (see
Methods for details). Indeed, we found a strong relationship
between the resulting central frequencies of ongoing oscillations
and optimal temporal resolutions, whereby regions with slower
ongoing oscillations, particularly in the theta (4-8Hz) range, tend
to also encode information at proportionately slower temporal
-0.73, p < 1074
randomization test). This finding suggests theta-band neural

resolutions (Figure 3B, Pearson r =

oscillations as a partial mechanistic explanation of the functionally-
discovered optimal temporal resolutions via NeuroPixelHD,
while additional investigations are needed to fully uncover the
biological mechanisms underlying neuronal information encoding
at distinct resolutions.
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Population and area level spatial
resolutions maximize visual decoding
accuracy

We next performed a dual analysis, comparing the visual
decoding accuracy of NeuroPixelHD when the spike counts
provided at its input were spatially averaged at progressively larger
scales. We used five levels to divide the range from micro to
macro scale: single neuron level, where no averaging is performed;
population level, where the spike counts of regular spiking
(putatively excitatory) and fast spiking (putatively inhibitory)
neurons within each brain area were combined; area level, where
the spike counts of all neurons within each area were combined;
region level, where the spike counts of all neurons within all areas of
each brain region were combined; and whole-brain level, where the
spike counts of all recorded neurons were combined (cf. Methods).
The classification accuracy of NeuroPixelHD was then compared
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FIGURE 3

temporal resolutions and vice versa.

Breakdown of optimal temporal resolution by brain region and its relationship with neural oscillations. (A) Similar to Figure 2A but averaged over mice
and distinguished across brain regions. On average, thalamic and visual areas have the largest optimal resolutions (250 ms), whereas regions across
the hippocampal formation have significantly smaller optimal resolutions (1-25 ms). Midbrain areas show more variable patterns but most often
prefer 125 ms. A breakdown of optimal resolutions across regions and mice can be seen in (C-J). Power Spectrum Across Various Brain Regions. (B)
Relationship between regionally-optimal temporal resolutions and the central frequency of each region’s neural oscillations across all mice
(r=-0.73, p < 10~%, randomization test) (see Methods). Regions with slower oscillations, particularly within the theta range, have longer optimal

between these levels for each mouse, separately for the Gabor
patches and natural scenes.

Similar to the above analysis of temporal averaging, the optimal
resolution was at the micro nor at the macro scales, but rather
at an intermediate (meso) scale. For the classification of the
spatial location of Gabor patches, for almost all subjects, maximum
decoding accuracy (minimum Euclidean error) was obtained at
either the population level or the area level (Figure4A). In
particular, the two extremes of neuron and whole-brain levels are
significantly worse than the intermediate levels and not optimal in

Frontiersin Cellular Neuroscience

any of the subjects (Figure 4B). The same trend also appeared in
the decoding of images of natural scenes. For all but one subject,
NeuroPixel’s classification accuracy (measured via F1 score, see
Tls = 0.008 at the neuron and
whole-brain levels and reached its maximum at an intermediate

Methods) was at the chance level

level (Figure 4C). In fact, in most subject, the maximum decoding
accuracy was obtained at either the population or the area level as
was the case in the Gabor task (Figure 4D).

In summary, across both the temporal and spatial dimensions
of visual coding as well as spatial localization and object
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identification, we found intermediate resolutions, rather than the
micro or macro extremes thereof, to maximize decoding accuracy
in most cases. This is consistent with a model in which noise
correlations decay more rapidly among nearby neurons than
do signal correlations, and confirms our initial hypothesis that
averaging initially improves, but then degrades, neuronal SNR and
therefore the accuracy of decoding the neural code.

NeuroPixelHD has similar accuracy to other
machine learning classifiers but unique
structure for unbiased detection of optimal
resolutions

We next compared NeuroPixelHD against alternative state-
of-the-art machine learning classifiers, namely, random forest,
artificial neural networks, K-nearest neighbor (KNN), and naive
Bayes (see Section Methods). In general, we found the decoding
accuracy of NeuroPixelHD to be comparable with other algorithms
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and significantly better than chance at its optimal resolutions
(Figure 5A, Supplementary Figure 5A), ensuring its viability as a
normative decoding algorithm as used in this study. Similarly,
NeuroPixelHD has comparable time complexity relative to other
algorithms at fine resolutions, but its time complexity remains
flat with resolution whereas other algorithms often become
faster at coarser resolutions (Figure 5B, Supplementary Figure 5B).
These findings are in line with prior findings in the HDC
literature (Hernandez-Cano et al,, 2021) and highlight the need for
targeted application of HDC-based models. In other words, HDC-
based models such as NeuroPixelHD are not universally better
or worse than other algorithms, but are particularly beneficial for
applications that benefit from the symbolic architecture of HDC
and the implications thereof (such as averaging-free operations,
brain-inspired encoding, transparency, etc).

Despite having similar overall accuracy, NeuroPixelHD and
other algorithms give rise to distinct optimal temporal resolutions
(Figures 5C-F, Supplementary Figures 5C-F). This can be at least
due to two main sources of bias in the alternative algorithms with
regards to detecting optimal resolutions: implicit averaging and
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FIGURE 5
Comparing NeuroPixelHD with alternative machine learning classifiers. We compared the accuracy and time complexity of NeuroPixelHD with
random forest (RF), artificial neural network (ANN), K-nearest neighbor (KNN), and naive Bayes (NB) classifiers at different temporal resolutions. All
models are trained for classifying the location of Gabor stimuli (cf. Methods) at the neuron level spatial resolution, separately for n = 9 mice (A)
Average (across mice) cross-validated accuracy (Euclidean error) of all algorithms at different temporal resolutions. NeuroPixelHD has comparable
accuracy with other algorithms. (B) Similar to (A) but for the time complexity of different algorithms. The time complexity of NeuroPixelHD is
comparable to other algorithms at the 1 ms resolution where they have comparable input dimensions (cf. Methods), but remains flat with resolution
unlike other algorithms that generally become more efficient at coarser resolutions. (C-J) Similar to Figures 2A, B for RF, KNN, ANN, and
NB, respectively.

input dimensionality. As noted earlier, averaging occurs in many  optimize their accuracy, therefore biasing their optimal resolutions

forms during the encoding and training of many machine learning  toward finer scales. In the naive Bayes classifier, e.g., averaging is

classifiers and can make them need less explicit averaging to  the key operation in computing the mean and variance of Gaussian
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likelihoods from training samples, and is likely contributing to the
fact that naive Bayes classification reaches its maximum accuracy in
decoding Gabor locations at 10ms for most mice (Figures 51, ]).

In most other cases, however, an opposite bias toward coarser
resolutions seems to be dominant in the alternative classifiers
(Figures 5C-H, Supplementary Figures 5C-J). Coarser resolutions
lead to lower-dimensional inputs (features), which are preferred
by many machine learning models particularly when learning
patterns from small amounts of training data, as is often the
case in neural recordings. This can bias the resulting optimal
bin size toward coarser resolutions even if more information
is present in higher-dimensional inputs corresponding to finer
resolutions. This source of bias seems to be frequently dominating
other machine learning alternatives, all of which often prefer the
coarsest temporal resolution (250ms). In NeuroPixelHD, however,
data at all resolutions are mapped into the same hyperdimension,
preventing such dimensionality-induced bias toward finer or
coarser resolutions.

Finally, we examined the interplay between temporal and
spatial resolutions by comparing the decoding accuracy of
NeuroPixelHD and alternative machine learning methods across
different temporal (spatial) resolutions while the spatial (temporal)
resolution is optimized. In both cases, we expect less averaging
to be required in one dimension (temporal or spatial) for
reaching optimal accuracy, compared to the case when the
other dimension was at its finest level (Figures?2, 4), as both
dimensions of averaging ultimately improve signal to noise
ratio through the same underlying mechanism (diminishing
noise faster than diminishing signal). This was indeed the case
both spatially (Supplementary Figures 56, S7) and temporally
(Supplementary Figures S8, S9) and in nearly all algorithms,
although to different degrees. All algorithms, except for naive
Bayes, prefer neuron-level spatial resolution when decoding at
mouse-specific optimal temporal resolution, and prefer a finer
temporal resolution when decoding at population-level spatial
resolution, exhibiting a consistent pattern of inter-dependence
between averaging dimensions whereby finer resolutions in one
dimension necessitate coarser resolutions in the other and
vice versa.

Discussion

In this study we designed NeuroPixelHD, a normative
hyperdimensional computational model for large-scale MUA, and
used it to probed into the effects of spatial and temporal averaging
on the neuronal signal to noise ratio in the brain. While the
largely averaging-free architecture of NeuroPixelHD was its key
property in allowing us to gain precise control over the amount
of end-to-end averaging performed by the model and achieve an
unbiased detection of optimal resolutions, we also demonstrated its
comparable accuracy and efficiency compared to several alternative
machine learning models. We compared the decoding accuracy
of NeuroPixelHD from large-scale MUA when its input spike
counts were averaged to varying degrees over space and time. We
found 125ms temporal resolution and population-area level spatial
resolution to maximize, on average across the whole brain, the
accuracy of decoding both the spatial location of Gabor patches
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and the identity of natural scenes. We further observed a broad
hierarchy of finer time resolutions, significantly modulated by
the central frequency of theta-band oscillations, across different
brain regions. Finally, we observed an interplay between optimal
spatial and temporal resolutions, whereby increasing the amount
of averaging across one dimension (space or time) decreases the
amount of averaging that is optimal across the other dimension,
and vice versa.

The globally-optimal resolution of 125ms, as well as the wide
range of locally-optimal resolutions observed in Figure 3, reflect
the interplay of various mesoscale dynamics across the brain. It
is well-known that these mesoscale dynamics are distinct from,
even though highly intertwined with, the microscale processes of
spike generation. The latter involve sub-millisecond dynamics up
to about 5KHz or even higher, whereas the primary focus of our
study is the significantly slower dynamics of spike interpretation
and decoding. Also, even at the mesoscale, population dynamics
involved in visual processing are well-known to rely on dynamics
faster than 125ms, such as gamma oscillations (Eckhorn et al., 1988;
Gray et al., 1989; Fries et al, 2001). While these fast dynamics
are likely critical for generation and successful transfer of spikes
between cortical columns involved in processing the same visual
features and dimensions (Fries, 2005) [i.e., at the implementational
level (Marr and Poggio, 1976)], they do not necessarily imply that a
downstream area seeking to decode the external visual scene from
such spike streams must do so at equally fast resolutions [i.e., at
the algorithmic level (Marr and Poggio, 1976)]. Our findings shed
light on the latter, suggesting that streams of spikes evoked by static
visual stimuli in various brain regions are sufficiently stationary
over intervals of approximately 250ms in visual cortex, 125ms in
the thalamus, and 5ms in hippocampal areas such that averaging
spike streams over such intervals effectively preserves the signal
while minimizing noise.

Mechanistically, implementation of such an optimal decoding
at a downstream region, such as higher-level association cortices,
requires a neurobiological mechanism for low-pass filtering of
spikes at this resolution. Synaptic transmission provides a natural
mechanism for this purpose. NMDA Glutamate receptors, GABA-
A receptors, and Nicotinic ACh receptors all have time constants
close to 125 ms (Jones and Bekolay, 2014). These receptors are well-
known to mediate various functions, including synaptic plasticity,
regulation of excitability, and attention which are all relatively
slow and can all benefit from such integration of spikes and
improvement in spiking signal to noise ratio.

An interesting finding of this study was a confirmation of
the widespread belief that neural populations clustered based
on cell type form functionally relevant units for studying the
neural code (Klausberger and Somogyi, 2008; Pfeffer et al,
20135 Jadi and Sejnowski, 2014). However, our results also show
that in the absence of ground-truth genetic information, this
is a nuanced clustering sensitive to the functional proxy used
for cell type differentiation. Putatively excitatory and inhibitory
neurons are often interchangeably classified based on their spiking
waveform shape or spiking statistics (Connors and Gutnick,
1990; Bartho et al., 2004; Becchetti et al., 2012; Tseng and Han,
2021). However, we found the two proxies to lead to notably
distinct clusters (Supplementary Figure 1B) and clustering based
on Fano factor to give significantly better classification results
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(Supplementary Figures 1C, D). This marked difference is in need
of further mechanistic investigation, but in itself highlights the
importance of functional proxies used for population-level analysis
of neural dynamics.

An unconventional aspect of NeuroPixelHD encoding is the
use of independent time bin HVs for different trials (even though
time bin HVs within each trial are correlated, cf. Methods).
This is critical for preventing averaging to occur among trial
HVs during the adaptive training process where HVs of different
trials are linearly combined (bundled). Using shared time bin
HVs would instead result in every pair of trial HVs to become
more similar to each other, due to the shared spatial and
magnitude similarity within the same time bin. This is the similarity
8(a,b). In
comparison, When independent time bin HVs are applied, the

preserving property of binding: §(a ® ¢,b ® ¢) =

same similarity no longer transfers to similarity between trial
HVs, leading to a broader and more widespread usage of the
hyperspace (cf. Supplementary Note 1). On the other hand, using
shared time HVs leads to an improved classification accuracy
(Supplementary Figure S2). This is expected, particularly in light of
the benefits of moderate amounts of averaging that we observed
(cf. Results), but is still undesirable for the purposes of this study
as the implicit averaging implied by using shared time bin HVs
can confound the explicit amounts of averaging we perform at each
spatiotemporal resolution and potentially bias our results.

A note is also warranted on our use of HDC (as opposed to
other machine learning architectures) in designing NeuroPixelHD.
From a purely machine learning perspective, HDC-based models
are often sought for their transparency and interpretability (Imani
et al,, 2021; Thomas et al., 2021; Kleyko et al., 2023) while they
may also at times achieve higher task accuracy (Imani et al,
2017; Kim et al., 2018) and/or computational efficiency (Ge and
Parhi, 2020) compared to non-symbolic alternatives. However,
the key advantage of HDC in the present study is its averaging-
free nature. Testing our central hypothesis, i.e., that there exists
some intermediate amount of averaging which is optimal for
decoding the neural spiking information, necessitates using a
computational framework that refrains from implicit averaging
of sample inputs during training. HDC not only affords this
property, but does so in a brain-inspired way (as opposed to, e.g.,
k-nearest neighbor classification that is also averaging free but
completely non-biological). In this context, the transparency and
interpretability of HDC further act as “bonus" characteristics that
can potentially be leveraged in future studies for gaining a deeper
understanding of neural processing. Finally, we should emphasize
that NeuroPixelHD is the first HDC-based classifier designed for
MUA data, and thus may not be the best one. Future studies are
needed to investigate the full potential of HDC in encoding and
decoding large-scale MUA.

This study has a number of limitations. As noted earlier,
NeuroPixelHD is not necessarily the best HDC architecture for
encoding and decoding large-scale MUA data. Our analysis is
further limited to two categories of static visual stimuli, making
it possible that other, possibly very different, spatial and temporal
resolutions are optimal for different categories of stimuli, sensory
modalities, and tasks. Notably, the globally-optimal 125 ms
temporal resolution we found is equivalent to an 8Hz sampling
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rate or a 4Hz Nyquist frequency, which is also the frequency
at which the visual stimuli are shown in this experiment (each
stimulus lasting 250 ms). This can suggest a testable hypothesis for
further investigation, namely, that the optimal temporal resolution
for detecting any stimulus depends on the dominant frequencies
present in that stimulus. Faster sampling may not provide a
significant advantage, while averaging at frequencies close to
stimulus band-width can improve signal quality by averaging out
other (irrelevant) variations. For other tasks, such as viewing
natural movies or drifting gratings with varying frequencies,
and other sensory modalities, this hypothesis would predict the
optimal temporal resolution to become faster as the bandwidth
of the stimulus dynamics increases (involves higher frequencies).
Moreover, our analyses of optimal spatial resolution is likely
confounded by the sparse sampling of neurons in our dataset.
Should we had access to spiking activity of all neurons in each
region, we might have found different, possibly finer, resolutions
to be optimal for decoding. Finally, further studies are needed
to confirm the generalizability of our findings to humans and
other species.

Opverall, this study presents empirical support for the presence
of an optimal amount of spatial and temporal averaging that
maximizes the neuronal signal to noise ratio, and provides an
initial estimate of optimal spatial and temporal resolutions during
passive viewing of static images. Future work is needed to extend
these estimates to other tasks, sensory modalities, and species.
While about half of the variance of optimal temporal resolutions
across mice and brain regions was explained by theta-band central
frequency, further investigations are necessary to more accurately
explain our data-driven optimal resolution estimates, potentially
by linking them to underlying biological mechanisms such as
synaptic time constants noted earlier, axonal conduction velocities,
and signal and noise correlations among populations of excitatory
and inhibitory neurons. Axonal conduction velocities putatively
affect optimal temporal resolutions as they regulate the time that
it takes for spikes from one region to travel to another. Thus,
when projections from multiple regions converge on a downstream
region, coordination would be essential for the post-synaptic
potentials (PSPs) resulting from one stream of spikes to be able
to efficiently interact with the PSPs from other streams. Longer
optimal time windows, such as those in the visual cortex and
thalamus, would then provide for a relatively broad window of
time during which the accumulation and averaging of spikes can
happen and result in an efficient decoding. In contrast, shorter
windows such as those observed in hippocampal areas make the
precision of conduction velocities (regulated by glia) much more
critical. Further, our results have clear implications about relative
signal and noise correlations among populations of excitatory and
inhibitory neurons. In the majority of our subjects, the population
level spatial resolution was either optimal or nearly so. In light of
our earlier results [see, e.g., Figure 4 of Nozari et al. (2023)], this
optimally of population-level spatial resolution suggests that within
the same population of neurons, there exists a significantly stronger
signal correlation than noise correlation, making averaging over
each population beneficial for decoding accuracy. Averaging over
larger spatial scales gradually loses this benefit, perhaps due to a
weaker signal correlation at larger scales.

frontiersin.org


https://doi.org/10.3389/fncel.2024.1287123
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org

Samiei et al.

Finally, it remains an invaluable area of future research
to understand the relationship between the spatiotemporal
resolutions that are optimal for a normative decoding model such
as NeuroPixelHD and those that are optimal for and/or employed
by the brain itself.

Materials and methods

Visual coding—neuropixels dataset

In this study, we utilized data from the Allen Brain
Observatory, specifically from experiments conducted with
Neuropixel probes in wild-type mice. The initial Neuropixels
data release encompassed responses from neurons in the visual
cortex, hippocampus, and thalamus, including brain regions such
as: Striate Cortex, Dorsal Extrastriate Cortex, Ventral Extrastriate
Cortex, Hippocampus, Subiculum, Dentate Gyrus, Thalamus,
Hypothalamus, and Midbrain.

Different visual stimulation tasks were administered to mice,
as illustrated in Figure 4. However, for our data analysis, we
focused on two specific tasks: Gabor and natural scenes. All
experimental sessions commenced with a receptive field mapping
stimulus. During the Gabor task, Gabor patches were randomly
displayed at one of 81 locations on the screen, forming a 9
x 9 grid. Each patch appeared for 250 ms, without any blank
intervals, and this process was repeated 45 times for each
location.

For the natural scenes task, a stimulus comprising 118 grayscale
natural images was employed. These images were sourced from
the Berkeley Segmentation Dataset (Martin et al., 2001), the
van Hateren Natural Image Dataset (Van Hateren and van der
Schaaf, 1998), and the McGill Calibrated Color Image Database
(Olmos and Kingdom, 2004). Prior to presentation, the images
underwent contrast normalization and resizing to 1,174 x 918
pixels. Each image was randomly shown for 0.25 seconds, without
any intervening gray period. For this task, each image was shown
50 times.

Hyperdimensional computing (HDC)

In HDC, (HVs), ie.,
representations of data created from raw signals using an encoding

“hypervectors” high-dimensional
procedure, constitute the basic building blocks of computational
2009).
combined and manipulated using specific mathematical operations

algorithms (Kanerva, These hypervectors are then
(see below) to build transparent, symbolic computational models
with the ability to preserve (memorize) the original information.
Such memorization is enabled by a key property called “near-
orthogonality". Consider two HVs Ijll,IjIZ e {—=1,1}P whose
elements are independent and identically distributed (i.i.d.), each
following the Rademacher distribution. If D is large enough
(often D ~ 10* in practice), these vectors become approximately

orthogonal, as can be seen from their cosine similarity

s H, - H,
8(H|,Hy)) = ————=— >0 D>1
I H1 [ Ha |l
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As such, (pseudo) random HVs with iid. components
are commonly used as essential ingredients in HDC encoding
processes. Such HVs are then combined using established
HDC operations to generate new HVs that have compositional
characteristics and therefore allow computations to be performed
in superposition, effectively encode spatial and temporal
information, and respect intricate hierarchical relationships
present in the data. The most commonly used HDC operations in
the literature are as follows (Gayler, 1998; Zou et al., 2022; Kleyko
etal., 2023):

Binding (®): Two HVs are bound together using component-
wise multiplication of their elements. This operation is often used
for creating association among HV’s, is reversible (Fll ®(ﬁ1 ®ﬁ12) =
ﬁz and 1312 ® (ﬁl ® ﬁz) = FII), and the resulting HV can be
shown to be nearly orthogonal to both operands (8(H, @ Hy, Hy) ~
(S(I_:I] ® Hz,ﬁz) ~0).

Bundling (4): Two HVs are bundled together using
component-wise addition of their elements. Unlike summation
in small dimensions which results in an (irreversible) averaging,
hyperdimensional bundling preserves the information of both
operands. This can be seen from the fact that the bundled
HV has non-negligible similarity with each of its operands
(8(Hy +Hy, Hy) = ||H |1>>>0and 8(Hy +Ha, Hy) = |Hz||> >> 0).
Therefore, by performing a similarity check between a bundled HV
and any query HV, one can determine whether the query has been
one of the constituents of the bundled HV.

Permutation (p): Permutation is achieved by a circular shift
of one HV’s elements and is used to generate sequential order
among HVs. We do not use permutation in the encoding of
NeuroPixelHD.

NeuroPixelHD encoding

Receptive field encoding. In this study, we adopted a novel
approach to encode the identity of each neuron into one HV.
Unlike using iid. HVs for different neurons, this approach
generates neuron HVs which are correlated with each other
depending on the similarity between the receptive fields of their
corresponding neurons. For this, we used the Gabor receptive field
tuning experiments and computed the mean spike count of each
neuron during the full 250ms presentation of each of the 81 Gabor
locations, averaged over the 45 repetitions of each location.

This generates a (pre-encoding) 81-dimensional receptive field
response vector E- for each neuron i, which is then encoded into a
D-dimensional HV via (Rahimi and Recht, 2007; Hernandez-Cano
etal., 2021).

Encoded receptive field response = cos(BTF; + l;) ® sin(B'F))
1)

where B is a 81-by-D random matrix with i.i.d. standard normal
elements, l; e [0,27]P is a random vector with i.i.d. elements
10* >> 81. This
encoding is inspired by the Radial Basis Function (RBF) kernel trick

uniformly distributed over [0,27], and D =

and can account for nonlinear relationships among features during
encoding.
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Brain area encoding. In each of the subjects, spiking data from
neurons in a subset of the following brain areas was available: VISp,
VISam, VISal, VISrl, VISmma, VISpm, VIS], CA1, CA2, CA3, SUB,
ProS, DG, TH, LP, LGv, LGd, PP, PIL, MGy, PO, Eth, POL, ZI, and
APN. In principle, neurons in distinct areas can have very similar
receptive field responses. Therefore, to further distinguish neurons
from different areas, we define a unique, random and independent
HV R € [0, 1)P for each brain area. To simplify indexing notation,
we use R; to denote the area HV corresponding to each neuron i,
thus R; = ﬁj if neurons i and j belong to the same area. These area-
specific HVs are then bound with encoded receptive field HVs, as
described below (cf. Equation 2).

Spiking activity encoding. In each time bin, each neuron may
have a zero or non-zero number of spikes. Both the occurrence
and absence of spikes contains valuable information which need
to be reflected in overall trial encoding. Motivated by our prior
2022), we define two polarization HVs H, and
H_, correspondmg to the presence and lack of spikes, respectlvely
We generated H+ € {£1}P with i.i.d. elements and let H_ = H+.

Time encoding. The duration of each trial, set at 250
milliseconds, is divided into B bins, B = 1,2, 5, 10, 25, 50, 125, 250.
For each time bin, t = 0,1,...,M — 1, which M is the number of
2%0), a HV %(t) is constructed such that
temporal correlation is maintained among {T(t)}ﬁ\io.

work (Zou et al.,

time hypervectors (M =

This is achieved, independently for each trial, by generating
random HVs 7“(0) and i"(M — 1) € {0,1}? for the initial and final
time bins and linearly interpolating between them to generate time
HVs for intermediate bins. Mathematically,

() = (1 _ ﬁ)%(o) + ﬁT(M —

The resulting HVs retain temporal relationships depending on
their temporal proximity.

Trial encoding. Finally, the HVs described earlier are
combined through various levels of binding and bundling to
generate a single HV encoding of each trial. This is done via

S; = cos(BTF; + b) @ sin(BTF:) ® R; )
M N N -
vk = Z[ Z nf(0S; ® Hy + Z *] ® TN (3)
t=1 i=1 =1
nfl(t#o fo=0

The spatial HV §i is the encoding (i.e., identity) of each neuron
i and results from binding its encoded receptive field response
in Equation (1) with its encoded area HV l_é,'. These spatial HV's
are then scaled and polarized appropriately, bundled over space,
bound with corresponding time HVs, and then bundled over time
to generate the final trial HV V.

NeuroPixelHD adaptive training

Following our earlier work (Zou et al., 2022), we employed an
adaptive training approach that considers the extent to which each
training data point is correctly or incorrectly classified in updating
the class HVs. Consider a problem with 1 classes and Kiy,in training
samples (represented by encoded trial HVs) {V* }K"‘"“" where each
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training sample k € C; for some class [ = 1,...,m. C; denotes the
set of all trial indices that belong to class I. The goal of the training
is to generate one class HV 61 for each class I = 1, ..., m such that
each test sample V¥ has the highest similarity with its own class HV,
ie,

k € Cmrg max8(VA,G) for all test trials k.

1<l<m

All class HVss are initialized to zero at the beginning of training
and gradually updated such that their similarity with training
samples of their own class is increased and their similarity with
training samples of other classes is decreased.

Consider first the case for the classification of natural scenes
(m = 118). At initialization, all 6, are set to zero. Then, for each
training sample VK let ¢ denote its correct class (k € Cp) and ¢/
denote its predicted class (¢ = argmax, _;_,, s(VK, él)). Further,
define o

8 =08(V5Co), 8y =8(VECp).

When the training sample is predicted correctly (¢’ = ¢), the
correct class HV Cy is updated in order to further increase its
similarity with vk,

Ce = Co+n(1 = 8)V*

The update is proportional to 1 — & so that Cy is modified less
if its similarity with V* is already high. If the training sample is
predicted incorrectly (¢' # ¢€), the predicted class is also updated
such that its similarity with VK is decreased,

Ce = Co + 8y — 8)VF
Co = Cy — (8¢ — 80) V.

Similar to the previous case, the adaptive training considers the
extent to which a training point is misclassified. In cases where
the prediction is significantly off (8¢ >> &) the update equation
substantially modifies Cy/, whereas for marginal mispredictions
(8¢ >~ 8¢), the update makes smaller adjustments. For both cases,
we used 7 = 0.01 and performed the training for 3 epochs (rounds
of presenting the training samples).

The above equations are slightly adjusted for the classification
of the location of Gabor patches (m = 81) due to the presence of
a natural notion of proximity between classes. In this case when
the query data is predicted correctly (¢ = ¢'), we update not only
the correct class HV 65 but also the HVs for the (up to 8) classes
adjacent to it, i.e.,

E:L’ = a@ + ncenter(l - 83)‘7k
év = év + nneighbor(l - 65)‘71(

for all classes (Gabor locations) v adjacent to £. Similarly, when each
training sample is predicted incorrectly (¢’ # £), we let

Ce = Co + Neenter(8¢ — 80)VE

Co = Co + Nneighbor(8er — 80)VF

Co = Co — Neenter By — 80)V*

Cv = Cu — Tneighbor (B¢ — 80)VF
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for all classes v adjacent to ¢ and V" adjacent to ¢'. We used
Neenter = 0.01 and Neignbor = 0.001 and executed the algorithm for
2 epochs.

Spatial averaging

In this study, we employed the HDC algorithm at various levels
of spatiotemporal resolution. The spatial averaging involved five,
progressively coarser levels: neuron level, population level, area
level, region level, and whole brain.

At the neuron level (no spatial averaging), neurons were
the basic spatial units, and we used the spike counts of all
recorded neurons separately during the trial encoding process as
summarized in Equations (2, 3).

At the population level, we clustered the neurons within
each brain area into putatively excitatory (E) and inhibitory (I)
populations. Among the various functional proxies suggested for
E/1 classification (Connors and Gutnick, 1990; Bartho et al., 2004;
Becchetti et al., 2012), we used spike count Fano factor (variance-
to-mean ratio), which was found by Becchetti et al. (2012) to most
accurately distinguish the two populations in comparison with
ground truth based on fluorescence imaging. For each neuron, its
Fano factor was computed based on its number of spikes during a
specific time bin across all Gabor positions and trials. This value
is expected to be higher for inhibitory neurons than excitatory
ones (Becchetti et al., 2012). Therefore, given the nominal 80-
20 ratio of excitatory and inhibitory neurons (Beaulieu, 1993;
Markram et al., 2004), we labeled the 20% of neurons in each area
with highest Fano factor as putatively inhibitory and the rest as
putatively excitatory (Supplementary Figure 1A). The spike counts
of neurons within each E/I population were than summed and
used instead of nf(t) in Equation (3), where i now refers to a
population rather than a neuron. Accordingly, the spatial HVs S;
in Equation (2) were also replaced by population HVs computed
via binding a randomly generated E/I HV (same across all regions)
with the corresponding area HV R;. Considering the potential for
the above clustering based on Fano factor to produce varied clusters
depending on the chosen time resolution, particularly for neurons
that exhibit intermediate traits, we compared the classification
accuracy of population-level classifiers that used different bin sizes
in the computation of Fano factors, and selected the Fano factor
bin size that achieved the highest classification accuracy for each
mouse. The resulting optimal population-level model was then
compared against other spatial resolutions at the finest (1ms)
temporal resolution.

At the area level, the spike counts of all neurons within each
area were summed and used instead of nf-‘(t) in Equation (3).
Spatial HVs §,' in Equation (3) were accordingly replaced by ﬁi.
Similarly, at the region level, the spike counts of all neurons
within each region were summed and used instead of nf-‘(t)
in Equation (3). Table 1 shows the assignment (clustering) of brain
areas to regions. For each region, one random and independent
spatial HV was generated and used as S; in Equation (3). Finally,
at the whole-brain level, the spike counts of all recorded neurons
for each mouse were combined, simplifying Equations (2, 3) to
VE =M k() TE).
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TABLE 1 List of brain areas available within each brain region.

Region Included areas

Striate cortex VISp

Dorsal extrastriate cortex VISam, VISal, VISrl, VISmma

Ventral extrastriate cortex VISpm, VISI

Hippocampus CA1, CA2,CA3

Subiculum SUB, ProS

Dentate Gyrus DG

Thalamus TH, LP, LGv, LGd, PP, PIL,
MGy, PO, Eth, POL

Hypothalamus Z1

Midbrain APN

Each mouse has data from neurons in some subset of these areas. The “dorsal” and “ventral”
extrastriate cortices are named as such for ease of reference and based on homology to the
primate brain (Marshel et al., 2011), not anatomical location in the mouse brain [cf. Allen
Institute (2019), Figure 6].

Temporal averaging

To assess the optimal temporal resolution for visual decoding,
we binned raw spike counts into bin sizes of 1, 2, 5, 10, 25, 50, 125,
250 ms, effectively averaging spike counts at the finest scale (1ms)
over larger bins. The resulting binned spike counts are provided to
k(#) in Equation (3).

the NeuroPixelHD encoder, i.e., 5

Data augmentation

The amount of neural data available to train the NeuroPixel HD
classifier is relatively small compared to contemporary machine
learning experiments, even though it consists of one of the largest
MUA datasets available to date. In particular, the number of trials
in which the exact same stimulus is shown to the mice (45 for
Gabor patches and 50 for natural images) allows for no more
than 1-2 dozen test samples per class, which often results in low
statistical power when comparing among different spatiotemporal
resolutions. This is often treated with data augmentation, for which
various techniques have been proposed (Antoniou et al, 2017;
Shorten and Khoshgoftaar, 2019; Bayer et al., 2022). In this work we
used a novel form of data augmentation for comparisons between
different spatial and temporal scales which exploits the specific
dynamical structure of our data. Let the three-dimensional array
Ny« rxxk contain all the binned spike counts of N neurons over
T time bins and K trials of the same class (same image). Then,
we randomly shuffle the trial indices, uniformly for all neurons
and independently for all times. In other words, we generate T
it =1,...,T each
of which is a permutation of (1,...,K), and generate a permuted

independent sets of random indices (f}, . .

array N where
NG, t,k) = NG, ), forallt k.

This process is repeated four times for each class, separately
among training and test samples, resulting in a 5-fold increase in
the total number of training and test samples.
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Measures of classification accuracy

For classifiers trained on images of natural scenes (118 images,
each serving as one classification category), we measured their
accuracy using cross-validated F1 score,

precision - recall

Fi=2———
precision + recall

true positive
true positive+false positive

computed for each

where precision = and recall =

true positive
true positive-+false negative *
using sklearn.metrics.precision recall fscore

This was class
support in python. The F1 score ranges from 0 to 1, with higher
values indicating better classification and F; = % = 0.008
representing chance level.

For classifiers trained on the location of Gabor patches, we
incorporated the geometric nature of the task and instead used the
distribution of Euclidean distances between the true location and

the prediction location of each Gabor patch,

Euclidean error = \/(xtrue - xpred)2 + (ytrue - )’pred)2>
(xtrue)ytrue)) (xpred»ypred) € {0> ..., 8}2-

This metric distinguishes between slight misclassifications,
where the predicted location is close to the true one, and large
misclassifications where the predicted location is many cells away
from the true one. Given that the patches were presented at either
cell of a 9x9 grid, each Euclidean distance can range from 0 to 8+/2,
with a chance level of approximately 4.7.

Alternative classifiers

Alternative machine learning classifiers were implemented
using the scikit-learn package version 1.3.0 in python
with the following parameters. Random forest: 10 estimators; k-
nearest-neighbor: 18 neighbors; artificial neural network: multi-
layer perceptron with one hidden layer, 10 hidden units, and ReLU
activation. We also experimented with support vector machine
(SVM) classification due to its conceptual similarity with HDC
but had to remove it from comparisons due to its infeasibly
high run times. For all algorithms, each training/test sample
consisted of binned spike counts from all neurons throughout one
trial at some specific spatial and temporal resolution. In other
words, for each trial, a dataframe was created in which rows
represent spatially averaged units of neuronal response (including
individual neurons if the algorithm is applied at the neuron-
level spatial resolution), columns represent time bins, and values
represent binned spike counts at the corresponding spatiotemporal
resolution. This dataframe was then flattened (vectorized) and used
as input feature for all algorithms.

Estimating the central frequency of neural
oscillations

In order to estimate the central oscillatory frequency of each
brain region illustrated in Figure 3B, we computed each region’s
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average firing rate via averaging the lms-binned spike counts
of all neurons within that region. The resulting time series was
not broken or averaged across trials but was rather estimated
as one contiguous stream throughout all Gabor classification
trials. For each region, power spectral density was then computed
using the Welch’'s method and passed through the FOOOF
toolbox (Donoghue et al., 2020) to estimate the central frequency
of the slowest neural oscillation. We manually inspected FOOOF
estimates and adjusted its hyper-parameters to ensure accuracy of
its findings. We discarded oscillations below 3Hz due to lack of
sufficient frequency resolution to determine whether an oscillation
actually existed in this range. For regions that showed multiple
oscillations above 3Hz, we only selected the slowest one. In the vast
majority of cases, these lied in the theta range. In very few cases,
no theta oscillations were detectable, in which case we recorded
no oscillation for that region (instead of, e.g., recording a gamma-
band oscillation which would have caused inconsistency with other
regions).

Statistical testing

All statistical testing was performed using the non-parametric
Wilcoxon signed rank test. The only exception is the testing of the
significance of the Pearson correlation coefficient between optimal
temporal resolution and oscillatory central frequency in Figure 3B.
For the latter, we used non-parametric randomization testing with
10* random permutations.

Computing

All the computations reported in this study were performed on
a Lenovo P620 workstation with AMD 3970X 32-Core processor,
Nvidia GeForce RTX 2080 GPU, and 512GB of RAM.
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Supplementary Material

1 SUPPLEMENTARY NOTE 1: THEORETICAL ANALYSES
1.1 NeuroPixelHD Memory Analysis

In this section, we analyze the expressive power of HDC and its ability for performing averaging-free
computation through a rigorous mathematical analysis of the memory capacity of the NeuroPixelHD
classifier.

Setup. To simplify the theoretical analyses, we use dot product as the similarity metric, i.e., for any two
hypervectors (HVs) @ and Cy, & (Q, qu) = QT@. Normalizing this dot product by ||Q I| - H@ || gives the
cosine similarity used in NeuroPixelHD. Recall from the main text that for each trial £, the trial HV is
computed as V¥ = doteT K%(t) where T = {1,..., M} is the set of all time bins,

Rr(t) = [ SonkSiedi+ Y Se FL} ® TH (1),

icP ic€P
nf (£)70 n (£)=0
P = {1,..., N} denotes the set of neurons, n¥(¢) is the number of spikes for neuron i in trial k and time
bin ¢, 5’1 is the spatial HV for neuron ¢, T k(t) denotes the time HV of time bin ¢ of trial k, H is the HV
indicating spiking activity, and H_ is the HV indicating the absence of spikes. We explicitly parameterize
the time HV by k to emphasize that they are generated independently across trials. Then, to classify trials
into behavioral categories, we construct a class HV qu for each class [ by bundling all trial HVs belonging
to that class: qu =3 kee, V¥, where C; denotes the set of trial indices belonging to class /. This method
of training allows for a more concise analysis and is a simplification of the adaptive approach we use in
NeuroPixelHD, where the latter leads to a weighted version of the former with negative weights depending
on misclassifications during adaptive training.

Memorization and decoding. To decode the neural activity HV K ¥(t) back to its constituent set of
neural spike counts {n%(t)};, we may retrieve each n¥(t) via

S(KH(t), S @ T*(t) ® Hy) =~ Dnf(1) (S1)

where D is the hyperdimension. This can be shown using the dissociation property of binding. To simplify
the analysis, assume that the spatial and temporal HVs are nearly orthogonal among themselves and to each
other. Then, since binding preserves dissimilarity, §(S; ® T%(t), Sy @ T* () ~ 0 for (i, k, t) # (i, K, t).
Now, consider a case where nf;(t) # (. Dropping the fixed k£ and ¢ indices to simplify notation, we have

K S@TowH) =Y 6nS;eH T, SieoH oT)+ > §S;0H T SieH, eT)
JEP JEP
n;#0 n;=0
Y Dn;+ Y max{1,n;}N(0, D)
JEP
J#i
= Dn;i + N(0, (||7i]|3 — ni) D)
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~ Dn; + N(0, ||7]3D)
= D[n; + N(0,||7|3/D)] (S2)

where N (i1, 02) denotes a normally distributed random variable with mean p and variance o2, and
¥ (t) = [max{1 ”1( )} max{l ns (t)} e max{l nk (t)}]T. The approximate equality (a) results from
the fact that §(n; x S;oT® H+, Ss@TwoH +) = n; D and other terms in the similarity between two
nearly orthogonal HVs each contribute a noise term that can be approximated by a normally distributed
random variable with mean 0 and variance D, scaled by the magnitude of the neural activities (n; for
n; > 0, and 1 for n; = 0). The case where n; = 0 is similar, except that only noise is produced:
§(K, § ®T ® H.)~ N(0, (||n||%D)) Analogous computation of the similarity can be done with trial
HV M* and each class HV Cl In particular:

S(M*, S & TH(t) & Hy) = D|n (1) + N (0, Y I7*1)I3/D)) ($3)
teT
and, for 7 € Cj,
8(Ci, Sy 0 THt) @ Hy) = D[nk(t) + N (0, Y |7 ®)I3/D)]. (34)
teT ,keC;

Because of the discreteness of neural activity nf(t) as spike counts, we round the similarity as the final
retrieved signal:

) = 6(Cy, 5 @ T"(t) © H,)/D]. (S5)

As noise accumulates with each bundling operation, performing a complete decoding directly from a class
HV to each neural activity nf (t) would require a large hyperdimension D to ensure that the signal-to-noise
ratio is sufficiently high for producing accurate results. To avoid this issue, one may use intermediate
codebooks, so that the decoding can be hierarchical, effectively adding noise reduction during the decoding
process. A similar alternative is via iterative noise cancellation method introduced in Poduval et al. (2022):
while retrieving multiple entries of nf(t) in parallel, one can improve the prediction of each entry by
subtracting the HV introduced by the other entries from the composite HV to effectively reduce the noise
they introduce. This process can be iteratively performed to all entries to improve the quality of their
decoding.

Memory accuracy. To measure the memory accuracy and capacity of a class HV (}, we evaluate its
ability to accurately recall neural activity nf(t) Note that this differs from “prediction accuracy”, where
many class HVs are compared with a query HV to predict whether or not it belongs to a class. As we use
rounding at the end of our retrieval, the accuracy of the class HV (] for each term nf(t),z’ € C; can be
approximated by

AccF(t) = Pr {ﬁf(t) = nk(t)}

:1-2@(—m>




where ® denotes the cumulative distribution function of the standard normal distribution and L =
> teT keC, |7%(¢)]|3/ D is the variance derived in Eq. S4. Notice that the accuracy for a certain term
depends on the norm of all terms involved. Therefore, the average accuracy across all terms is the same:
Acc =1 —28(—1/(2v/L)). Finally, note that this is a rough estimation of the accuracy from direct recalls
while the optimizations mentioned previously may improve the total accuracy.

Memory capacity. Following the methodology in (Frady et al., 2018), we define the memory capacity of
NeuroPixelHD as its information content: the mutual information between true inputs (spike counts) and
those retrievable from each model (class HV) qu. For any fixed (4, k, t), with an abuse of notation, Let n be a
(continuous) Gaussian approximation of the actual neural spike count and 7 be the Gaussian approximation
of the corresponding predicted output from the model in (S5). This discrete to continuous approximation
can be quite accurate if, e.g., each discrete spike count follows a Poisson distribution with a rate A = 5. The
mutual information between n and 7 can then be computed via I,, = Dy (p(n,n)||p(n)p(n)) where Dg .
denotes the KL divergence. Assuming that the joint distribution p(n, n) is also Gaussian, the correlation p
between p(7) and p(n) would be sufficient to compute I,,, as I, = —% logy(1 — p*) (Gel’fand and Yaglom,
1957). For NeuroPixelHD, correlation coefficient p can be derived as p = \/n2?§2+L) = \/(nngL) (Borga,

2001). Thus, the total information content of each class HV (; is given by

I:% Z log, ([nf(t)f/ll%—l).

keCteT ieP
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Figure S1: Clustering neurons into putatively excitatory and inhibitory populations based on spike
width and Fano factor lead to significantly different outcomes. (1a) Sorted Fano factors for neurons
in a sample brain region (V1) for a randomly selected mouse. The red line represents the threshold (80th
percentile) used to distinguish between fast spiking (larger Fano factor, putatively inhibitory) and regular
spiking (smaller Fano factor, putatively excitatory) neurons. (1b) Scatter plot depicting the absence of
any apparent relationship between the Fano Factor and Peak-to-Trough metrics for neurons in the VISp
region. (1¢) Euclidean errors of NeuroPixelHD classification of Gabor locations at the population level
spatial resolution. The left and right bars in each panel correspond to population classification based on
Fano factor and duration of spike peak to trough, respectively. Error bars represent 1 s.e.m. (1d) Similar
to (1c) but for F1 scores of classifying images of natural scenes.
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Figure S2: Comparing the results of NeuroPixelHD when using the same set of time HVs for all
trials versus defining a unique set of time HVs for each trial. (2a) Euclidean errors of NeuroPixelHD
classification for Gabor locations at the neuron level spatial resolution and 125ms temporal resolution for
three randomly selected mice. In each panel, the left and right bars represent the classification outcomes
achieved by using a consistent time HV for all trials and using distinct time HVs for individual trials,
respectively. (2b) Similar to (2a) but for F1 scores of classifying images of natural scenes.
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Figure S3: Power spectra and mean Euclidean distances at different temporal resolutions for different
brain regions. Each row corresponds to each mouse. See Methods in the main text for computational
details.
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Figure S4: Comparisons between classification accuracy of NeuroPixelHD with different temporal
resolutions including coarser time bins (75, 100, 150, 175, 200, and 225ms). (4a,4b) parallel Figure 2a
and 2b in the main text, showing mean Euclidean distance errors of NeuroPixelHD in classifying Gabor
locations and distribution of the number of mice for whom each time bin is optimal, respectively. To ensure
a more reliable comparison with the initial time bins, the results of the newly added time bins are computed
via two methods and averaged: overlapping (whereby time bins are allowed to overlap in order to cover
the whole 250ms duration of each trial) and cropping (whereby time bins are not allowed to overlap and
some remaining portion of the 250ms duration is discarded accordingly). (4¢c,4d) Similar to (4a,4b) but for
decoding of natural scene images.
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Figure S5: Accuracy and time complexity of decoding natural scenes by NeuroPixelHD and alternative
machine-learning algorithms at different temporal resolutions. Panels parallel those in Figure 5 in the
main text except for classification of natural scenes instead of Gabor locations.
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Figure S6: Decoding accuracy of Gabor locations by NeuroPixelHD and alternative algorithms
at different spatial resolutions and mouse-specific optimal temporal resolution. Rows of panels
correspond, from top to bottom, to NeuroPixelHD, RF, ANN, KNN, and NB, respectively. In each row,
the left panel depicts the classification accuracy of the respective algorithm vs. spatial resolution for
each mouse, while the right panel shows the histogram of optimal spatial resolutions across all mice. All
comparisons are conducted at mouse-specific optimal temporal resolutions (cf. Figure 2a in the main text).
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Figure S7: Decoding accuracy of natural scenes by NeuroPixelHD and alternative algorithms at
different spatial resolutions and mouse-specific optimal temporal resolution. Panels parallel those in
Supplementary Figure S6 except for classification of natural scenes instead of Gabor locations.
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Figure S8: Decoding accuracy of Gabor locations by NeuroPixelHD and alternative algorithms
at different temporal resolutions and population-level spatial resolution. Panels parallel those
in Supplementary Figure S6 except that decoding accuracies are computed across different temporal
resolutions and population-level spatial resolution which is optimal for most mice (cf. Figure 4b in the
main text.
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Figure S9: Decoding accuracy of natural scenes by NeuroPixelHD and alternative algorithms
at different temporal resolutions and population level spatial resolution. Panels parallel those in
Supplementary Figure S8 except for classification of natural scenes instead of Gabor locations.
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