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MobLoc: CSI-Based Location Fingerprinting
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Abstract—Many CSI-based localization methods have been proposed over the last decade. Fingerprinting has been
one of the highest achieving approaches due to its capacity to capture environmental characteristics that are not readily
captured using classic localization mechanisms such as multilateration. However, oftentimes the proposed methods are
limited by reliance on large-scale training datasets. Further, methods are rarely evaluated on nonstationary devices, which
are the most common in real-world environments. In our work, we address these challenges by introducing MobLoc. We
adopt MUSIC pseudospectrum-based fingerprinting, which can benefit from, but does not heavily rely upon a large number
of packets for each fingerprint. To evaluate our method, we leverage a publicly available dataset of passively collected
CSI measurements, DLoc (Ayyalasomayajula et al., 2020), where an emitter sends signals in motion. We also benchmark
MobLoc against a series of state-of-the-art localization methods. The results demonstrate that our method outperforms
SpotFi (Kotaru et al., 2015), EntLoc (Chen et al., 2019), and AngLo (Chen et al., 2020), and falls very short of achieving
DLoc accuracy. On the DLoc dataset, MobLoc achieves 0.33 m median (and 0.82 m, 90th percentile) localization error in
a simple environment and 1.15 m median (2.59 m, 90th percentile) localization error in a complex environment. However,
despite MobLoc not exceeding DLoc’s accuracy, we consider its performance as a tradeoff for computational resources
required to deploy the method in a real-world environment. We anticipate that this advantage will enable the adoption of
MobLoc in city-scape localization systems, where the cost of computational resources is key.

Index Terms—Channel state information, fingerprinting, MUSIC, probability density estimation, WiFi localization.

I. INTRODUCTION

THERE has been continuous interest in WiFi localization
over the past decade. This area holds importance to a

variety of applications, including mobile navigation [5], [6], [7],
mobility intelligence [8], [9], [10], and more. Advancements
in the extraction of channel state information from common
off-the-shelf devices have enabled higher accuracy localization
methods that extract novel features from raw data [11], [12], [13],
[14]. Meter-level and even decimeter-level localization accuracy
have been demonstrated within complex environments [3], [4],
[15]. Compared to purely algorithmic methods such as multi-
lateration, CSI has been used to extract uniquely identifying
features for fingerprinting (Section III).

However, a series of challenges hinder the adoption of CSI-
based localization methods in production applications. From
hardware limitations [16], [17], [18], [19] to measurement
calibration procedures [17], [20], sensor deployments are an
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expensive and laborious process. Yet, one of the most important
challenges lies in the amount of data required to build radio maps
and classification models for localization.

First, the extraction of high-quality fingerprints during the live
localization stage often requires a significant number of packets
for each location. For instance, Chen et al. [3] proposed a finger-
printing method, EntLoc, which optimally requires 50 packets
for each location to build a fingerprint. However, consider an
application such as Mobintel [21], where localization relies on
passively emitted probe requests. Here, the devices of interest
usually remain in motion and emit only a few packets at a time
during a probe request burst [22], [23]. Such limitations can
considerably reduce localization accuracy, which we confirm
later in this article.

Second, the environment under observation must be exhaus-
tively surveyed. While this initial objective can be satisfied, fea-
ture degradation requires continuous surveying of the space [4],
[24], which is an expensive and resource-intensive endeavor. In
addition to the above, the majority of the proposed localization
methods are evaluated on proprietary datasets and are not pub-
licly available; proposed methods are rarely open-sourced.

In this work, we attempt to address these issues through a
new localization method, MobLoc. First, we use a fingerprinting
approach due to its ease of use and potential for scalability. To
build fingerprints, we introduce a Multiple Signal Classification
(MUSIC) pseudospectrum-based method, designed to work well
with a small number of packets for each location. Second, we
leverage a publicly available dataset collected by the WCSNG
Group at UC San Diego, DLoc [1]. This presents an oppor-
tunity to evaluate MobLoc on a sparse set of measurements,
where the emitting device is constantly in motion. Third, we
benchmark the performance of our method using the DLoc
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Fig. 1. Uniform linear array.

dataset against a series of state-of-the-art localization methods:
SpotFi [2], EntLoc [3], and AngLoc [4]. Finally, we open-source
MobLoc, as well as our implementation of the above-mentioned
methods [25]. With this, we hope to encourage continued exper-
imentation and adoption of our work by the community.

The rest of the article is organized as follows. Section II
describes the preliminaries behind fingerprinting localization.
Section III outlines recent advancements in the space. Section IV
introduces the MobLoc design and delves into the details of its
implementation. Section V introduces the experimental setup,
benchmarking, experimental results, and performance analysis.
Finally, Section VI presents our conclusions and plans for future
work.

II. PRELIMINARIES

In this section, we introduce the basic principles of channel
state information, hardware errors, and the fundamentals of
direction-of-arrival estimation.

A. Channel State Information

Channel state information (CSI) represents a more capable
input for wireless localization compared to RSSI. Some of its
limitations are similar to RSSI since both are generated from the
same signal source. However, CSI provides amplitude and phase
information for each of the OFDM subcarriers used to transmit
messages. This opens new avenues for localization via the es-
timation of direction-of-arrival and time-of-flight properties of
the signal. We provide a high-level overview of CSI estimation
below.

In wideband, multiple-input, multiple-output (MIMO)
OFDM system releases (802.11a/g/n/ac), IQ samples are
transmitted through a wireless channel through a series of
frequencies—OFDM subcarriers. CSI is used to compensate for
propagation and asynchrony effects associated with the trans-
mission channel. It is estimated through a process of channel
sounding: transmission of a known training sequence (LTS) in
the preamble of every OFDM burst for channel estimation [17]

Y i = Hi ·Xi + ni. (1)

In (1), Xi, Y i, Hi, and ni are the ith transmitted OFDM
symbol, received OFDM symbol, CSI, and additive Gaussian
noise, respectively [26]. We can express Hi as a 2-D matrix:

Hi =





hi
0,0 · · · hi

0,N−1
...

. . .
...

hi
M−1,0 · · · hi

M−1,N−1



 . (2)

Here, CSI is expressed through M receiving antennas and N
equidistant subcarriers [15]. Each element of this matrix is a
linear combination of multipath components, as presented in

hi
m,n(f) =

L∑

l=0

αle
−j2πfτl (3)

where α and τ denote attenuation and propagation delays,
respectively, for L multipath components, given a subcarrier
frequency f [27].

B. CSI Hardware Errors

CSI provides a set of complex values representing amplitudes
and phases for each OFDM subcarrier. Often, these measure-
ments are affected by hardware and transmission channel errors.
We survey key issues here and provide details of our mitigation
techniques in Section IV-C.

1) Sampling Frequency Offsets: Sampling frequency offsets
are caused by the receiver’s analog-to-digital converter. They
are caused by a mismatch between the transmitter’s oscillation
frequency and receiver’s sampling frequency. The result is a
set of phase offsets that are proportional to indices of CSI
subcarriers [17].

2) Symbol Timing Offsets: Symbol timing offsets are the
most significant cause of errors in CSI measurements. They
arise due to a lack of receiver knowledge concerning the be-
ginning of the transmitted OFDM symbols. This challenge can
be addressed by starting an OFDM header with known periodic
sequences—short-training fields. However, due to intercarrier
and intersymbol interference and carrier phase rotation, this error
is not entirely eliminated [17], [28].

3) Interantenna Phase Offsets: Interantenna phase offsets
are introduced due to the independence of oscillator circuits
across antenna radio units. As a result, captured samples often
lack synchronization. Such offsets are semideterministic, and
they only change between reboots of a receiver [20]. Multiple
researchers have attempted to exploit the differences to imple-
ment calibration techniques for CSI measurements [20], [29].

C. MUSIC

The MUSIC superresolution algorithm [30] has been a staple
of WiFi-based localization methods for more than a decade [2],
[17], [31]. Most commonly, it is used to estimate DoA of the
emitted signal. To understand how it works, we must review the
nature of signal propagation in an environment.

Consider a transceiver system in which a signal is emitted
with L propagation paths. Let us assume that a receiver contains
a uniform linear array of M antennas. Importantly, each of the
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antennas is positioned at most λ
2 , where λ is the wavelength of

the signal carrier frequency at distance d. This is required to
avoid spatial aliasing. For the kth propagation path, denote θk
as the DoA angle with respect to the normal of the antenna array
of the receiver.

Consider signal attenuation at each of the antennas of the
receiver. For the second antenna, signal attenuation is the same
as for the first antenna, but with an additional phase shift caused
by the additional distance the signal had to travel to reach the
second antenna. Similar effects are present for all other antennas.
This effect is illustrated in Fig. 1.

Therefore, each propagation path is dependent on DoA and
attenuation, as expressed in the following equation:

Φ(θk) = exp(−j2πd sin θkλ). (4)

Using this formulation, we can formulate a steering vector for
each of the propagation paths-a vector of phase shifts at the
receiving antenna array

a(θk) =
[
1Φ(θk). . .Φ(θk)(M−1)

]"
. (5)

As a result, we obtain a steering matrix with dimensions M × L
of the antenna array, which incorporates all propagation paths

A = [a(θ1), . . ., a(θL)]. (6)

Let us now consider the formulation of the received signal:

x = AΓ+ n (7)

where Γ = [γ1. . .γL]" is a vector of complex attenuations for
each of the L propagation paths, and n is noise with zero mean
and σ2

n variance.
We can use this formulation to obtain an M ×M correlation

matrix Rxx:

Rxx = E[xx∗] = ARssA
∗ + σ2

nI (8)

wherex∗ is the Hermitian transpose ofx,A is the steering matrix
introduced in (6), A∗ is the Hermitian transpose of A, Rss =
E[ss∗] is the source correlation matrix, and I is the identity
matrix.

The correlation matrix Rxx consists of M eigenvalues
λ1, . . ., λM that are respectively associated withM eigenvectors
E = [e1, e2, . . ., eM ]. Here, eigenvalues are sorted in nonde-
scending order. Therefore, the smallest M −D components
correspond to noise, and the remaining D components represent
incoming signals. This provides an opportunity to formulate an
En noise subspace from M −D eigenvectors.

We can use the noise subspace En in combination with
antenna array steering vectors to formulate pseudospectrum P
for a range of possible DoA angles θk

P (θk) =
1

a(θk)HEnEH
n a(θk)

. (9)

Finally, we can perform a peak search on the obtained pseu-
dospectrum vector. The highest peak is expected to yield the
signal’s DoA angle.

III. RELATED WORK

Direct algorithmic localization with DoA (i.e., trilateration) is
challenging. Environments often contain various obstacles that
prevent consistent line-of-sight connectivity. Since exhaustive
modeling of all possible propagation paths is not usually feasi-
ble, researchers have proposed alternative localization methods,
such as fingerprinting.

Compared to trilateration, fingerprinting does not rely on
algorithmic location estimation. Instead, the objective is to build
a radio map by extracting uniquely identifying features for the
majority of the tiles during an offline mapping stage, and later
performing feature matching during an online localization stage.
Still, this method suffers from a number of limitations.

Fingerprinting requires an extensive data collection stage,
which is often performed through war-driving—a process of
surveying the environment to obtain a sufficient number of
measurements for as many of the tiles as possible. However,
the quality of fingerprints deteriorates over time due to grad-
ual environmental changes (i.e., weather changes, movement
of obstacles, etc). This motivated numerous efforts to con-
sider approaches for updating the radio map on a regular
basis.

A variety of CSI-based fingerprinting methods have been
presented in the last decade. Chapre et al. [32] proposed raw
CSI fingerprinting. In MIMO-CSI, fingerprints are composed of
amplitude and phase difference means across 30 subcarriers over
the total number of transmit and receive antennas. To achieve
the overall minimum 1.13-m distance error, the authors use
100 000 samples collected at each location. Wang et al. proposed
two deep learning approaches to CSI-based fingerprinting—
PhaseFi [33] and DeepFi [34]. Here, the authors use the output
values of a deep learning model as features for fingerprinting
the environment. The method achieves a mean error of 1.08
m in a living room environment. Xiao et al. [35] considered
probability distributions of CSI amplitudes as a fingerprinting
feature. They leverage Kullback–Leibler divergence as a finger-
print comparison metric and achieve a distance error of 1.3 m in
50% of the test spots. Wu et al. [36] proposed a deep neural
network-based fingerprinting system—DNNFi. Compared to
DeepFi, DNNFi uses a single model for localization instead
of multiple autoencoders for different reference points, yet
achieves similar performance. Shi et al. [37] proposed a prob-
abilistic fingerprinting method and adopt a Bayes estimator for
comparing online and offline fingerprints. The method achieves
0.96 m of median distance estimation accuracy. Finally, Chen
et al. proposed a fingerprinting solution using two methods:
EntLoc [3] and AngLoc [4]. The former leverages amplitudes
of CSI subcarriers and relies on 50 packets for each location to
produce a mean error of 1.84 m. The latter considers both am-
plitudes and phases of CSI measurements to produce ToF-DoA
estimates using the JADE-MUSIC algorithm [38]. The method
also uses bivariate kernel regression to combine ToF-DoA pairs
with entropy and produces a mean error of 1.18 m. As we
focus on the development of our localization solution, we select
EntLoc, AngLoc, and DLoc—the latest and most architecturally
similar fingerprinting methods—to benchmark our method’s
performance.
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Fig. 2. MobLoc steps: Offline.

Fig. 3. MobLoc steps: Online mode.

IV. SYSTEM DESIGN

In this section, we present the design of the MobLoc local-
ization system.

A. Overview

The MobLoc system design is illustrated in Figs. 2 and 3. The
system is designed following a standard fingerprinting pattern
and consists of two modes of operation.

During the offline mode, illustrated in Fig. 2, the system
receives a training set of labeled CSI measurements, performs
preprocessing, and splits the environment into a grid, where each

Fig. 4. Grid formulation example.

tile is mapped to a known set of coordinates. Next, MobLoc
constructs fingerprints for each of the tiles with the available
CSI measurements. These fingerprints form a database (i.e., a
radio map) and are used to estimate the kernel coefficient that is
required for the weighted kernel regression step during the later
stage of operation.

During the online mode, illustrated in Fig. 3, the system
receives a batch of CSI measurements from the testing dataset,
performs preprocessing, and constructs a new fingerprint of a
similar structure to those stored in the database. The system
then calculates the distances between the online and offline
fingerprints to evaluate the similarity of the live and prerecorded
signals. The resulting distance map is used for weighted ker-
nel regression to predict the device’s coordinates, discussed in
Section IV-E.

B. Grid Formulation

Each offline fingerprint must be associated with a unique
area of the environment. To achieve this, we build a grid of
T tiles of equal size, as illustrated in Fig. 4. We use ground truth
coordinates of the device’s movement trajectory to map CSI data
to these tiles, producing a grid of samples. Each tile is assigned
an index and ground truth location coordinates, later used for
localizing devices. CSI measurements from each of these tiles
are used to formulate the fingerprints.

It is important to note that real-world environments rarely
provide sufficient data coverage for all available grid tiles. Mea-
surements are often obtained from devices that are in motion.
This limits the number of packets available in each of the grid
tiles. Further, it makes extracting fingerprinting features more
challenging since each emitted packet is sent from a slightly
different position, causing phase and amplitude shifts with sig-
nificant impact.
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Fig. 5. Tap filtering threshold.

C. Preprocessing

CSI measurements are often affected by a variety of hard-
ware issues, as summarized in Section II-B. Failure to address
them significantly impacts the accuracy of direction-of-arrival
estimates. Therefore, we must perform a series of preprocessing
steps.

1) Tap Filtering: First, we reduce the impact of noise on the
captured signal. To address this, we adopt tap filtering. The
method is outlined in Algorithm 1. For each packet, we first
perform an inverse fast Fourier transform (IFFT) to convert sig-
nal measurements to the time domain. The values in the resulting
array are referred to as taps. Next, we use (10) to calculate the
cumulative contribution rate for each tap to determine which of
them can be eliminated

Ck =

∑k
i=1 ui∑K
i=1 ui

. (10)

Here, k is the index of the tap for which Ck is calculated, K is
the overall number of taps, and ui is the value of the ith tap.

Next, filtration is performed by removing the taps with Ck >
C, where C is determined by evaluating the cumulative contribu-
tion rate plot, as displayed in Fig. 5. Here, the x-axis denotes the
indices of the IFFT taps, and the y-axis denotes the cumulative
contribution of each tap. The red dashed line demonstrates the
tap, after which the signal reaches the threshold, and the taps
should be truncated.

Finally, the truncated series of taps is converted to a frequency
domain with a fast Fourier transform (FFT), resulting in a
successful filtration of noise from the packet.

2) Sampling Frequency Offsets: Next, we address sampling
frequency offsets introduced due to the transmitter’s synthesis
rate not being perfectly matched to the receiver’s sampling
rate. In CSI, this offset appears as a phase shift proportional
to subcarrier indices, can be identified using linear regression,
and is defined as ρsfo in

ρsfo = argminαω

∑

k

(ϕ+ 2πfδkα+ ω)2. (11)

Algorithm 1 Tap Filtering
Return:
N-element CSI array;
Inverse transform length nfft;
Noise filtering threshold C;
Ensure:
Obtain CSI taps by applying IFFT on CSI array;
Calculate Ck for each tap using (10);
Trim taps with Ck > C;
Apply FFT on the filtered taps to obtain CSIfiltered;
return CSIfiltered

Here, α and ω variables can be estimated using polynomial
fitting, fδ is the intersubcarrier frequency delta, k is the index of
the subcarrier, and ϕ is an unwrapped phase of the packet CSI.

3) Symbol Timing Offsets: Next, we remove symbol timing
offsets. There is asynchrony between transmitters and receivers.
However, a receiver must recognize when a data frame begins.
To address this, transmitters send pilot frames containing an
LTS sequence known to both parties. The receiver performs
autocorrelation using the known sequence and uses the identified
start of the sequence to understand when to start decoding data.
Yet, the identification process is imperfect due to the short size
of the LTS sequence.

To address this and estimate the symbol timing offset ρsto, we
apply the following equation:

ρsto =
−2πk argmax(|ifft(csi)|2)

N
(12)

where argmax(|ifft(csi)|2) is the absolute value of the highest
tap of an inverse fast Fourier transform of a packet of CSI
samples, and k is the index of the subcarrier.

4) Interantenna Phase Offsets: Interantenna offsets con-
tribute significantly to DoA estimation errors. They are usually
caused by a lack of synchronization across clocks associated
with receiver antennas. According to [20], [29], such offsets are
semideterministic and should be computed once per initializa-
tion (i.e., reboot) of a device.

To calculate these offsets, one must have access to CSI mea-
surements collected in a wired setup, which protects the trans-
mitted signals from environmental impacts [31], [39]. Alterna-
tively, offsets can be estimated when an emitter is positioned
at 0◦ to the receiver to achieve equal distances between the TX
antenna and each of the RX antennas [19].

Given the availability of such CSI measurements, one can
estimate interantenna offset ρiao with the following equation:

ρiao = csiAi × csi′Ai+1
(13)

where csiAi is a vector of complex CSI values of a single packet
from the ith antenna, and csi′Ai+1

is a conjugate transpose of a
single packet of CSI from an adjacent antenna i+ 1.

D. Building a Fingerprint

We build our fingerprinting method under two constraints:
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Fig. 6. Building a fingerprint from an access point.

1) Data scarcity: Real-world scenarios limit the number of
measurements available for building fingerprints.

2) Presence of multipath effects: It is challenging to identify
the true line-of-sight signal path between transmitters and
receivers, which limits the accuracy of DoA estimation
algorithms in real-world conditions.

Given these constraints, we leverage the entire DoA pseu-
dospectrum produced by the MUSIC algorithm to extract fin-
gerprinting features. Since MUSIC can perform even on a single
packet of multiantenna CSI measurements, it can withstand data
scarcity in producing this pseudospectrum. Further, the use of
the entire pseudospectrum, instead of selecting the highest peak,
removes the pressure of correct identification of the signal’s
line-of-sight propagation path, which is the cornerstone of most
other localization methods. While the classic implementation of
MUSIC relies on the highest peak to identify DoA, we use the
entire pseudospectrum to associate the underlying behavior with
a tile in the environment.

The process of building a pseudospectrum-based fingerprint
from an access point is illustrated in Fig. 6. The algorithm begins
by obtaining K CSI packets across M antennas for each tile in
the environment grid. Next, the standard MUSIC algorithm is
applied to each packet to produce a K × L-shaped pseudospec-
trum heatmap, where L represents a number of examined DoA
angles. Here, each row represents a pseudospectrum for a single
packet, while each column represents a single DoA angle. Each
cell in the heatmap represents the power of the pseudospectrum.
Next, we estimate the probability density function for each of the
DoA angles in the pseudospectrum, as presented by the green
vertical line covering the MUSIC pseudospectrum heatmap in
the figure. Next, we find the peaks and variances of each of the
DoA angle distributions and store them in the final fingerprint
array. Importantly, we add a small constant 0.001 to ensure
nonzero variance values and inverse them in the fingerprint
to later use them as weights for similarity evaluation; i.e., the
higher the variance, the less impact on the estimation of distance.
The use of peak and variance values for each angle of the
pseudospectrum allows MobLoc to overcome a key limitation on
the number of packets required to build a fingerprint. Compared

Algorithm 2 Building a Fingerprint
Return:
CSI array K ×M ×N , where K > 0,M > 0, N > 0;
Ensure
for i = 1. . .K do
Obtain MUSIC pseudospectrum Pi for CSIi;
end for
Normalize P between 0 and 1;
Initialize FP = zeros(2, L);
for i = 1..L do
Obtain PDFi for angle i across all packets K;
Find maximum of the PDF peak = max(PDFi);
Estimate variance with offset w =

√
var(Pj) + 0.001;

Assign FP (:, i) = [peak, 1
w ];

end for
return Fingerprint FP

to EntLoc and AngLoc, which require at least 50 packets per
location, this method works with a minimum of two packets
per fingerprint and is key to scenarios where collecting an
extensive fingerprinting dataset is not feasible (e.g., pedestrian
and vehicular tracking in cities).

As a result, for each access point, we obtain a 2 ×N fin-
gerprint. Later, for simplicity of storage, we merge fingerprints
from all access points to produce a final fingerprint array of size
2 ×KN .

The overall procedure is detailed in Algorithm 2.

E. Online Mode and Localization

Once the offline fingerprint database is created, real-time
device localization can be performed. A consecutively captured
series of packets is collected from a device of interest. Measure-
ments are preprocessed, and an online fingerprint is extracted
using the series of steps described above.

Next, we use weighted Euclidean distance, as shown in (14),
to determine the similarity between an online fingerprint and
each of the offline fingerprints in the database

Dt =

√∑L

i=0
(xi − x′

i)
2/wi. (14)

Here, Dt is the estimated distance, wi is a weighting factor
calculated in Algorithm 2 for the ith DoA angle from the offline
pseudospectrum, and xi and x′

i are peaks of the probability den-
sity functions for the offline and online pseudospectrum angles,
respectively. Importantly, the variances of online fingerprints are
not used since the number of available packets in online mode is
less likely to accurately represent the volatility of a given DoA
angle compared to its offline counterpart.

As a result, we obtain a 2-D array of distance values for the
entire environment grid, as shown in Fig. 7. The value in the tth
tile represents the similarity estimate Dt. We later use this map
to estimate device location.

To predict the coordinates of a device of interest, we follow
the process proposed in EntLoc [3] and use weighted kernel
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Fig. 7. Fingerprint distance map.

regression. In this approach, often known as weighted centroid
estimation [40], [41], fingerprint similarity is used as a weighting
factor. In other words, the coordinates of tiles with the highest
weights bear the most impact on the predicted coordinates, as
detailed the following equation:

l =

∑T
t=1 Ktlt∑T
t=1 Kt

. (15)

Here, l = (x, y) are coordinates of the predicted location, lt are
the center coordinates of the tth tile, t ∈ [1, T ] tiles, and Kt is a
probability kernel of the tth tile that can be calculated as follows:

Kt = exp(−ρDt) (16)

where Dt is the previously estimated distance between the of-
fline and online fingerprints of the tth tile, and ρ is the kernel co-
efficient. The latter is estimated separately for each environment
using offline fingerprints with leave-one-out cross-validation.

V. PERFORMANCE EVALUATION

In this section, we present a performance evaluation of
MobLoc. We begin by describing our experimental setup and
benchmarks. Next, we compare MobLoc’s performance to other
state-of-the-art localization methods.

A. Experimental Setup

Collection of a multi-AP CSI dataset for fingerprinting is
a challenging task. In addition to various hardware patching
and calibration issues, one must ensure sufficient coverage of
the surveyed area. Further, the emitter movement patterns must
be similar to the behavior of real-world devices. Achieving
these requirements is a lengthy process rife with challenges.
Fortunately, there is a publicly available dataset, DLoc [1], which
simplifies evaluation and enables benchmarking against other
localization methods.

The DLoc dataset was produced by the WCSNG Group
at UC San Diego in an indoor environment. Measurements

were collected in two spaces, emitted by a robotic system,
MapFind, with a single antenna. The simple space (500 sq.
ft.) contained three access points with a direct path available
most of the time. The device’s movement trajectory in this
space is shown in Fig. 8(a). The x-axis and the y-axis denote
the size of the surveyed area. The complex space (1500 sq. ft.)
contained four access points, with one of them placed behind a
wall to introduce non-line-of-sight data. The device’s movement
trajectory in this space is presented in Fig. 8(a). Similarly, the
x-axis and y-axis denote the size of the surveyed area. For each
environment, access points collected measurements for 20 min
without reboots to avoid inconsistencies in interantenna phase
offsets. The research team used common off-the-shelf Quan-
tenna APs, each containing four equidistant antennas. Overall,
the dataset provides access to over 100 000 labeled CSI and RSSI
measurements.

B. Benchmarks

We seek to compare MobLoc’s performance to other localiza-
tion methods in similar conditions. However, this is a significant
challenge. Unfortunately, the majority of publications do not
provide access to the source code of the presented methods and
use proprietary datasets to evaluate their performance. There-
fore, we must implement the methods of interest and benchmark
those implementations against MobLoc using the DLoc dataset.

For this experiment, we select four localization methods to
compare with MobLoc:

1) SpotFi [2]: Introduced in 2015, the method has become
a staple for CSI-based localization in recent years. The
authors observe that the performance of the classic 1-D
MUSIC algorithm is limited by the number of receiver
antennas, which must be higher than the number of sig-
nal propagation paths. This restriction is rarely possible
to overcome, which motivates SpotFi to consider 2-D
MUSIC, which relies both on the number of antennas
and the number of channel subcarriers. This produces
2-D direction-of-arrival and time-of-flight pseudospec-
trum heatmaps that can help separate DoA peaks across
multiple propagation paths. Subsequent temporal analysis
of these peaks and a novel peak likelihood estimation
method are used to determine the signal direction of
arrival.

2) EntLoc [3]: EntLoc is a CSI-based fingerprinting method.
Its fingerprints comprise per-subcarrier autoregressive
modeling-based entropy values of signal amplitudes. The
method was tested on a custom dataset collected in two
classroom environments with the emitter positioned in
locations that were 1 m apart. For each offline fingerprint,
EntLoc uses at least 50 packets to estimate entropy.

3) AngLoc [4]: AngLoc is another CSI-based fingerprinting
method, a continuation of the EntLoc project. Compared
to its predecessor, AngLoc leverages CSI amplitude and
phase, producing two fingerprints. For the amplitude-
based fingerprint, AngLoc reuses EntLoc’s entropy esti-
mation. For the phase-based fingerprint, AngLoc uses the
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Fig. 8. DLoc movement trajectory (reproduced from [1], [42]). (a) Trajectory in a simple environment. (b) Trajectory in a complex environment.

TABLE I
MOBLOC VERSUS DLOC ACCURACY COMPARISON

JADE-MUSIC implementation and records a direction-
of-arrival and time-of-flight pair of the most likely pseu-
dospectrum peak. Both fingerprints are combined using
bivariate kernel regression to estimate a device’s location.

4) DLoc [1], [43]: Finally, DLoc is a deep learning-based
localization method. The authors adapt the deep learning
method from computer vision. Instead of directly extract-
ing features from raw CSI measurements, they train a deep
learning model on figures of 2-D direction-of-arrival and
time-of-flight heatmaps produced by SpotFi. The method
achieves submeter localization accuracy and presents the
best benchmark for MobLoc.

C. Experimental Results

We evaluate MobLoc performance in both the simple and
complex environments from Ayyalasomayajula et al. [1]. For
both, we use a 70%/30% data split. For fingerprinting methods
(EntLoc, AngLoc, and MobLoc), we group measurements into a
grid of tiles, as described in Section IV-B. We limit the number of
samples to ten packets per tile. The latter is important because the
dataset does not provide an even distribution of samples across
all tiles.

Our results are summarized in Figs. 9 and 10 for simple and
complex environments, respectively. The blue, black, red, pink,
and blue lines display the cumulative distribution functions of
localization error in meters for DLoc, MobLoc, SpotFi, AngLoc,
and EntLoc, respectively.

From Fig. 9, we see that DLoc reaches 0.36 and 0.7 m at
the median and 90th percentiles, respectively. MobLoc demon-
strates similar performance. As summarized in Table I, MobLoc
achieves 0.33 and 0.82 m localization accuracy at the median
and 90th percentiles, respectively. In a complex environment,
illustrated in Fig. 10, MobLoc continues outperforming SpotFi,

Fig. 9. MobLoc performance in simple environment.

Fig. 10. MobLoc performance in complex environment.

EntLoc, and AngLoc, with 1.15 and 2.59 m at the median and
90th percentiles, respectively. However, MobLoc falls short of
DLoc, which reaches 0.64 and 1.6 m at the median and 90th
percentiles, respectively. Yet, it offers performance advantages,
which we discuss in Section V-D.
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TABLE II
MOBLOC VERSUS DLOC TIME MEASUREMENTS

D. Performance Analysis

First, consider the limited performance of EntLoc. As dis-
cussed earlier, EntLoc relies solely on CSI amplitudes and
builds fingerprints using per-subcarrier entropy values. The
authors have demonstrated effectiveness in their article, which
we confirmed in our testing. However, EntLoc relies on emitter
stability and large numbers of measurements while building its
fingerprints. According to the authors, the method demonstrates
ideal performance when 50 packets are available for building
each fingerprint. Yet, such quantities are rarely available in
real-world situations, especially when the emitter device is in
motion.

Next, consider the performance of AngLoc. As discussed, An-
gLoc combines entropy fingerprints from EntLoc and direction-
of-arrival and time-of-flight pairs produced by the JADE-
MUSIC algorithm. We can see that the method outperforms
EntLoc, both in the original work, as well as in our imple-
mentation. However, the method’s performance suffers from
the way fingerprints are built. The JADE-MUSIC algorithm
does not leverage the likelihood estimation method presented by
SpotFi and instead selects the first available peak cluster. The
selection of a single peak cluster does not capture the behavior
of the entire pseudospectrum, which may contain additional
valuable insights into signal propagation. This is the motivation
for why MobLoc captures the entire pseudospectrum in each
fingerprint.

Finally, consider the performance of MobLoc, which exceeds
the performance of EntLoc, AngLoc, and SpotFi, but is still
outperformed by DLoc. MobLoc leverages the best features of
the fingerprinting presented in earlier works, such as measure-
ment calibration, weighted kernel regression, and estimation of
signal pseudospectrum. While the method can benefit from high
quantities of measurements, it can perform even with two pack-
ets of CSI within a tile. Further, MobLoc strives to capture the
behavior of the entire pseudospectrum produced by the MUSIC
algorithm instead of a single peak, as in AngLoc. Additionally, it
avoids the estimation of time-of-flight to increase performance
(O(n) versus O(n ∗m)). However, the MobLoc fingerprinting
algorithm does not capture the environmental features as well
as a multilayer perceptron network, which is the foundation of
DLoc. Yet, DLoc requires a computationally intensive model
training stage and is more challenging to scale. The latter
requires significant amounts of training measurements, and it
is often challenging to retrain to adapt the model to changing
environmental conditions.

Experimental Comparison: To further evaluate the differences
between MobLoc and DLoc, we conducted measurement tests
for each of the relevant execution stages. We used the same

configurations adopted to evaluate accuracy. Tests were per-
formed on a machine running Ubuntu 20.04, with 2 AMD EPYC
7313 16-core CPUs @ 3.0 GHz, 128 MB cache, 1024 GB RAM,
and NVIDIA A100 PCIe 80 GB GPUs. Time measurements
were averaged over ten consecutive runs. The findings are sum-
marized in Table II.

First, we consider the training stage of both methods. For
MobLoc, we capture the time required to build the database of
fingerprints. As for DLoc, we capture the training time for the
deep learning model. Our tests demonstrate that DLoc takes 3.7
times more time to train the model for a simple environment
and 2.6 times more time to train the model for a complex
environment compared to MobLoc. Such behavior is expected
since training a deep learning model on visual data is consider-
ably more resource-intensive compared to the largely analytical
algorithmic techniques used in MobLoc.

Second, we consider testing both methods in the online mode
for a single location. We split the evaluation into two parts: build-
ing features for DLoc and building fingerprints for MobLoc.

1) Building features and fingerprints: For both methods,
this involves converting CSI measurements into a set of
location-specific features. In MobLoc, we produce peaks
and variances for each value in the DoA pseudospectrum,
while in DLoc, CSI is converted into DoA-ToF heatmaps.
Our results in Table II indicate that MobLoc takes 2.1
times more time to build online fingerprints for a simple
environment and 1.8 times more time for a complex
environment due to high kernel smoothing density.

2) Localization: In MobLoc, the produced peaks and vari-
ances are compared to the database of offline fingerprints
to find the closest match. In DLoc, the produced 2-D
images are propagated through the trained model to obtain
the estimated location. Our results in Table II indicate that
in both cases, localization speed is very similar.

It is important to note that while MobLoc is implemented in
MATLAB, DLoc is implemented both in MATLAB (for produc-
ing 2-D heatmap imagery) and PyTorch (for training and testing
the deep learning model). According to [44], there are slight
differences in execution time for most common operations. This
limits our capacity to provide an “apples-to-apples” compari-
son. However, even this imperfect analysis provides compelling
evidence for the performance advantages of MobLoc.

VI. CONCLUSION AND FUTURE WORK

In this article, we presented a novel fingerprinting method and
evaluated its localization performance against state-of-the-art
passive, CSI-based localization methods. Our objective was to
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produce a solution for passive device localization within the
constraints of data scarcity and emitter mobility.

We leveraged a publicly available localization dataset,
DLoc [1]. During our evaluation, we identified that state-of-the-
art fingerprinting methods, such as EntLoc and AngLoc, lack
performance when the emitter is constantly in motion.

MobLoc leverages the best features of prior fingerprinting
methods (e.g., measurement calibration, weighted kernel regres-
sion, and estimation of signal pseudospectrum) to address these
issues. It relies on MUSIC pseudospectrum-based fingerprints.
MobLoc can benefit from high quantities of measurements, but
can perform well close to the state-of-the-art—even with two
packets of CSI within a tile. Additionally, we avoid the time-
of-flight analysis used in JADE-MUSIC and SpotFi (O(n ∗m)
complexity), achieving O(n) complexity. On the DLoc dataset,
MobLoc achieves 0.33 and 0.82 m median and 90th percentile lo-
calization error, respectively, in a simple environment. It reaches
1.15 and 2.59 m median and 90th percentile localization errors,
respectively, in a complex environment.

Future work on MobLoc will involve four tracks. The first
will focus on collecting a larger indoor CSI dataset with ac-
cess to raw OFDM IQ samples to provide more opportuni-
ties to introduce lower level fingerprinting methods and data
augmentation strategies. The second will focus on improving
MobLoc performance using faster DoA estimation methods,
including our previous work with Hankel SVD [19], [45].
The third will consider strategies for adopting MobLoc in a
production environment—the Mobintel testbed in downtown
West Palm Beach [21], [46]. The final track will explore new
learning-based methods to (hopefully) overcome the limitations
of DLoc.
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